WO2021208484A1 - 一种面向公交信号优先高频多申请的动态控制方法 - Google Patents

一种面向公交信号优先高频多申请的动态控制方法 Download PDF

Info

Publication number
WO2021208484A1
WO2021208484A1 PCT/CN2020/138972 CN2020138972W WO2021208484A1 WO 2021208484 A1 WO2021208484 A1 WO 2021208484A1 CN 2020138972 W CN2020138972 W CN 2020138972W WO 2021208484 A1 WO2021208484 A1 WO 2021208484A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
priority
bus
signal phase
phase
Prior art date
Application number
PCT/CN2020/138972
Other languages
English (en)
French (fr)
Inventor
马万经
袁见
俞春辉
王玲
马晓龙
Original Assignee
同济大学
青岛海信网络科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 青岛海信网络科技股份有限公司 filed Critical 同济大学
Publication of WO2021208484A1 publication Critical patent/WO2021208484A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals

Definitions

  • the invention relates to the field of bus signal priority control, and in particular to a dynamic control method for bus signal priority high-frequency multiple applications.
  • the priority of the bus signal means that the bus can obtain the corresponding green light phase by sending a request, so as to realize its non-stop traffic at the intersection.
  • a well-designed bus priority strategy not only does not require a large investment, but also can significantly reduce the travel time of the bus system and improve the reliability of the journey. Therefore, the bus priority strategy has become an important part of the urban traffic control system.
  • Active priority strategy Provide priority right of way for specific detected public transport vehicles (or priority applications by vehicles and systems)
  • Real-time priority strategy While providing priority right of way, the given goals (criteria) are continuously optimized. These goals include pedestrian delays, bus delays, social vehicle delays, and their interactions. combination.
  • FCFS first-come-first-serve
  • the existing strategy only focuses on optimizing a limited number of priority applications within a single signal period, and does not consider the specific details of multi-vehicle requests (such as schedule deviation, bus occupancy rate, intersection delays, etc.). And it cannot support the scenario of receiving a series of bus priority applications under multiple consecutive signal cycles.
  • the purpose of the present invention is to provide a dynamic control method for public bus signal priority high frequency multi-application in order to overcome the above-mentioned defects in the prior art.
  • a dynamic control method for public bus signal priority high-frequency multi-application includes the following steps:
  • Step S1 Establish a bus signal priority control model with the goal of minimizing weighted bus delays, and constrain the size of system disturbances to be considered;
  • Step S2 The rolling time domain optimization method is used to dynamically solve the bus signal priority control model in real time. Under different bus demand levels, generate optimized bus priority applications for various bus occupancy rates and bus arrival deviations.
  • the bus priority service sequence and the corresponding signal control scheme realize the bus priority service sequence and signal control.
  • the step S1 includes:
  • Step S11 By setting the saturation threshold of each signal phase, avoid a certain signal phase from reaching an oversaturated state, thereby minimizing system disturbance;
  • Step S12 On the premise of minimizing system disturbance in step S11, optimize the priority service order of bus for multiple bus priority applications in one signal period.
  • the step S2 includes:
  • Step S21 Take the solution of the bus signal priority control model as a multi-signal phase decision problem, and determine the type of strategy for providing services for a bus priority application: green light extension, red light interruption or signal phase insertion;
  • Step S22 Update the minimum green light duration required for the signal phase
  • Step S23 update the adopted priority strategy type
  • Step S24 Determine the end time of the green light of the signal phase
  • Step S25 update the start time and priority time window of the green light of the next signal phase
  • Step S26 update the signal phase green light duration
  • Step S27 Update the priority application status.
  • Q i is the signal phase of the saturation flow rate i
  • q i is the k signal period traffic signal phase i
  • C k is a signal flow key k Total duration period
  • the bus priority strategy actually applied in the signal phase i in the step S23 can be updated with the following formula:
  • step S24 The end time of the green light of the signal phase in step S24 for:
  • Long insertion signal is phase, t in the phase of the signal i when inserting the green signal phase bus length;
  • the green light duration g i,k of the signal phase i in the step S26 can be calculated based on the updated end time of the signal phase i:
  • the weighted bus delays are mainly the sum of the delays of public buses that have received priority services and the delays of public buses that have not received priority services.
  • the weighted total delay d i,k of all request vehicles that have received priority service in the signal phase i of the signal period k among the delays of the bus vehicles that obtain priority service is:
  • the delay f k (0) of the bus that has not received priority service is:
  • C k represents the length of the signal period k, Indicates the running time of the signal period k when the bus that initiated the priority application n arrives at the stop line, Represents the delay of vehicles that have reached the stop line within the signal period k but have not received priority service, Is the number of priority applications in the signal period k, Represents the set of priority applications that have not been processed before the signal period k signal phase i starts, Represents the set of priority applications processed within the signal period k and signal phase i, Represents the delay incurred before getting service within the regular green light time corresponding to the signal phase of the signal period k+1.
  • g i,k is the green light duration of signal period k signal phase i
  • g i,min is the minimum green light duration of signal phase i
  • g i,max is the maximum green light duration of signal phase i
  • Is the signal period k signal phase i in the given maximum allowable saturation The shortest green light duration under the premise.
  • the length of the rolling time domain is the length of the signal period; the bus priority service sequence and signal timing scheme will be optimized in multiple consecutive signal periods, but only applied to a certain signal phase of the signal period; once the bus priority service sequence is consistent with The signal timing scheme is implemented, the rolling time domain will be shifted back by one signal period, and the optimization for the next signal period will start again.
  • the present invention has the following advantages:
  • this method summarizes the signal priority high frequency multiple application problem as a multi-stage optimal decision-making problem with signal phase as the decision stage, which can effectively serve public transportation vehicles prioritizing high frequency multiple applications Scene.
  • Figure 1 is a flow chart of the present invention
  • Figure 2 is the framework of the bus signal priority control model of the present invention.
  • FIG. 3 is a parameter description of the present invention.
  • FIG. 4 is an illustration of the bus priority strategy of the present invention.
  • Figure 5 is an illustration of the rolling time domain optimization scheme of the present invention.
  • FIG. 6 is a diagram of the layout of an intersection according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of simulation evaluation based on VISSIM according to an embodiment of the present invention.
  • Figure 8 shows the time-consuming situation of the dynamic programming model of the present invention
  • Fig. 9 is a comparison of the deviation degree of bus arrival time with different control strategies of the present invention.
  • Fig. 10 is a comparison of the delays of public transportation and social vehicles under different maximum allowable saturations according to the present invention.
  • This embodiment provides a dynamic control method for public bus signal priority high-frequency multi-application, including the following steps:
  • Step S1 Establish a bus signal priority control model with the goal of minimizing weighted bus delays, and constrain the size of system disturbances to be considered;
  • Step S2 The rolling time domain optimization method is used to dynamically solve the bus signal priority control model in real time. Under different bus demand levels, generate optimized bus priority applications for various bus occupancy rates and bus arrival deviations. Bus priority service order and corresponding signal control scheme.
  • Step S1 includes:
  • Step S11 By setting the saturation threshold of each signal phase, avoid a certain signal phase from reaching an oversaturated state, thereby minimizing system disturbance;
  • Step S12 On the premise of minimizing system disturbance in step S11, optimize the priority service order of bus for multiple bus priority applications in one signal period.
  • the step S2 includes:
  • Step S21 Take the solution of the bus signal priority control model as a multi-signal phase decision problem, and determine the type of strategy for providing services for a bus priority application: green extension, red truncation or signal phase insertion (Phase insertion);
  • Step S22 Update the minimum green light duration required for the signal phase.
  • C k denotes the signal cycle k total length
  • Q i, k is the signal period k signal phase i critical flow (holding the maximum flow rate during the phase of the signal i) of the traffic flow
  • Q i is the saturation flow rate signal phase of i
  • g i,k represents the signal period k and the signal phase i corresponding to the green light duration.
  • the traffic flow can be obtained by detecting devices such as loop coils.
  • Step S23 Update the priority strategy type used
  • the actual bus priority strategy PS i,k applied in signal phase i can be updated with the following formula:
  • Step S24 Determine the end time of the phase green light
  • Signal phase green light end time Mainly depends on the selected priority strategy, the start and end time of the priority time window, and the green light interval time (yellow light and full red time):
  • I i,i+1 represents the green light interval time from signal phase i to the next signal phase i+1, It is the start time of the priority time window of signal period k and signal phase i.
  • the end time of signal phase i should be the same as the time when the bus that issued the priority application m arrives at the stop line; if the strategy of early red light breaking is selected, the signal phase i ends The time should be the maximum of the following two items: 1) The start time of the priority time window of signal period k and signal phase i 2) The difference between the time when the bus that issued the priority application m arrives at the stop line and the time between the green lights. If the phase insertion strategy is selected, the end time of signal phase i is This value is determined by the relative position of the insertion phase in the priority time window (Equation (5)). In order to eliminate the uncertainty of travel time, the arrival time of the bus that issued the priority application m should be set as far as possible in the middle of the insertion phase, or at least within the coverage of the insertion phase. The green light interval should also be considered.
  • Step S25 Update the start time and priority time window of the green light of the next signal phase
  • the start time of the green light of signal phase i+1 Indicates that it can be updated based on the end time of the previous signal phase i and the priority strategy used, the formula is as follows:
  • the duration of the priority time window is determined by the earliest end time of the previous signal phase and the earliest start time of the next signal phase. Public buses that arrive at the stop line before the end of the priority time window can receive priority service.
  • Step S26 Update the signal phase green light duration
  • the green light duration g i,k of signal phase i can be calculated based on the end time of the updated signal phase i:
  • Step S27 Update priority application status
  • Priority application m status It can be updated by the following formula (9). It should be noted that if the priority applications of multiple buses are at the same stage and arrive within the same priority time window, or arrive within the regular green light time of signal phase i, they will receive priority traffic services at the same time .
  • weighted bus delay is: Bus load number, bus arrival time deviation.
  • the goal is mainly composed of two parts: the delay of public buses that have received priority services, and the delay of public buses that have not received priority services.
  • d i,k represents the weighted total delay of all requesting vehicles that have received priority service within the signal period k and signal phase i.
  • the calculation formula is as follows:
  • C k represents the length of the signal period k, Indicates the running time of the signal period k when the bus that initiated the priority application n arrives at the stop line, Represents the delay of vehicles that have reached the stop line within the signal period k but have not received priority service, Is the number of priority applications in the signal period k, Represents the set of priority applications that have not been processed before the signal period k signal phase i starts, Represents the set of priority applications processed within the signal period k and signal phase i, Represents the delay incurred before getting service within the regular green light time corresponding to the signal phase of the signal period k+1.
  • the objective function will minimize the weighted delay of all priority application vehicles.
  • the formula is as follows:
  • Formulas (2)-(11) are state transition equations, which are the basic defining constraints of the model. Furthermore, there are the following constraints: 1) Limit the impact of bus priority on other social vehicles; 2) Some conventional constraints on signal control parameters.
  • g i,k is the green light duration of signal period k signal phase i
  • g i,min is the minimum green light duration of signal phase i
  • g i,max is the maximum green light duration of signal phase i
  • Is the signal period k signal phase i in the given maximum allowable saturation The shortest green light duration under the premise.
  • Formula (18) indicates that for each signal phase, at most one priority strategy is allowed;
  • Formula (19) indicates that the green light duration of each signal phase should be greater than or equal to the minimum green light duration under the allowable saturation, and less than or equal to the maximum green light duration;
  • formula ( 20) Means that the minimum green light duration under the permitted saturation should be greater than or equal to the minimum green light duration, but should not exceed the green light duration used to provide bus priority in the original basic signal scheme. Table 1 explains some of the parameters.
  • the control model proposed in this embodiment makes a decision based on the arrival time of the bus in the past signal cycle.
  • this part of information is unknown, and bus priority applications are also unpredictable.
  • the following method based on rolling time domain optimization is used to make the model real-time:
  • the length of the rolling time domain is set to the length of the signal period
  • Step 1 Select actual case scenarios and construct virtual scenarios in VISSIM simulation
  • Step 2 Evaluate the effect of the model through the VISSIM-COM interface.
  • Step 1 includes:
  • the key parameters of the design model include the following:
  • the bus stopping place is upstream of the entrance of each intersection, and the stopping time obeys a normal distribution with an average of 40 seconds and a variance of 40 seconds;
  • the number of passengers of the bus and the deviation of arrival time are simulated by two normal distributions.
  • the average of the former is 30 passengers and the variance is 30 passengers; the average of the latter is 30 seconds and the variance is 120 seconds;
  • the bus and vehicle detectors are installed on the bus lane at a distance of 100 meters from the parking line.
  • Step S2 includes:
  • Figure 8 depicts the calculation time distribution of the proposed model in different bus priority application scenarios. It can be seen that in the worst case of the proposed model (4 consecutive buses issued 4 requests), the calculation time is less than 35 milliseconds. Therefore, the model has extremely low computational cost and can be applied in real-time control systems.
  • Control strategy a There is no fixed control strategy with bus priority. Obtain a fixed signal timing plan through offline optimization without considering bus priority;
  • Control strategy b First-come, first-served bus priority control strategy. Based on the traditional first-come-first-served bus priority service principle, the strategy of extending the green light, breaking the red light early, and phase insertion is provided.
  • This case also analyzes the effect of the proposed model in reducing the deviation of the bus arrival time.
  • This case proposes two evaluation indicators: the variance of the average bus arrival time deviation, and the weighted bus arrival time deviation variance (the weight indicator is the number of passengers per bus).
  • the deviation of arrival time generated by the proposed model is significantly lower than that of the other two control strategies (compared to control strategy a, a decrease of 30% to 70%, compared with control strategy b, a decrease of 21% to 43%).
  • Figure 9b shows that the advantages of this control strategy are more obvious with the weighted calculation of the number of bus loads. This finding shows that the model is very effective in improving the punctuality of bus arrival time.
  • Figure 10a compares the method proposed by this patent with the first-come-first-served (FCFS) strategy.
  • FCFS first-come-first-served
  • the method proposed in this embodiment will reduce the delay of social vehicles (as shown in FIG. 10b).
  • This finding shows that for every different demand scenario, there is a threshold range of saturation x. Within this threshold range, the method proposed in this embodiment can significantly increase the delay of other vehicles. Effectively reduce bus delays. In the daily decision-making process, traffic engineers should carefully choose the maximum allowable saturation to balance the operational efficiency of buses and operating vehicles.
  • This embodiment proposes a dynamic control method for public bus signal priority and high frequency multiple applications.
  • the goal of the method is to minimize the weighted bus delay while avoiding affecting the operating efficiency of ordinary social vehicles.
  • the proposed method can capture the key characteristics of bus operation, such as the impact of bus priority application on traffic operation under different occupancy rates, departure time of arrivals, demand levels, and priority strategy types.
  • the method proposes detailed output information, including: the optimal service order of multiple buses and the corresponding signal timing plan.
  • the rolling time domain optimization strategy is adopted, which can solve the service order based on real-time information.

Abstract

一种面向公交信号优先高频多申请的动态控制方法,充分考虑控制方法对普通社会车辆的影响,考虑单个信号周期内的多申请需求,计算效率高,包括以下步骤:建立目标为加权公交延误最小的公交信号优先控制模型,约束考虑系统扰乱大小(S1);采用滚动时域优化方法对公交信号优先控制模型进行实时动态求解,在不同公交需求水平情况下,针对各种公交占有率、公交到站偏离程度下的多公交优先申请,生成优化的公交优先服务顺序与对应的信号控制方案,实现公交优先服务最优排序和信号控制(S2)。

Description

一种面向公交信号优先高频多申请的动态控制方法 技术领域
本发明涉及公交信号优先控制领域,尤其是涉及一种面向公交信号优先高频多申请的动态控制方法。
背景技术
公交信号优先,表示公交车辆可以通过发出请求获取对应的绿灯相位,从而实现其在交叉口处的不停车通行。设计合理的公交优先策略非但无需投入大量成本,而且能够显著减少公交系统的行程时间,并改善行程可靠性。因此,公交优先策略已经成为城市交通控制系统的重要组成部分。
从Wilbur等人对两个信号控制交叉口通过手动信号提供公交优先的研究开始,早期的研究以为公交车辆提供绝对优先为主,随后众多研究者先后提出了相对优先控制策略。在大多公交优先控制策略研究中假设只有单一的公交优先申请。对公交信号优先高频多申请,一般采用先到先服务的规则。还有相关方法提出了通过决策树进行排序的方法,给出了一个枚举求解过程,但未对优先及最优排序策略及其影响的深入研究。
公交信号优先可按照响应策略分为如下三类:
1、被动优先策略(Passive priority strategy):即便没有公交车也会持续运营,无需公交检测/优先申请生成系统
2、主动优先策略(Active priority strategy):对特定检测到的公交车辆(或由车辆与系统提出优先申请)提供优先通行路权
3、实时优先策略(Real-time priority strategy):在提供优先通行路权的同时不断优化给定目标(准则),这些目标包括行人延误、公交车辆延误、社会车辆延误,以及它们之间的相互组合。
目前存在的问题:随着我国对公交系统的投入的不断加大,公交线网越来越复杂,公交服务的班次、频率大大增加,造成一个交叉口在一个周期内遇到来自多个冲突相位的公交优先申请的可能性也大大提升。然而,其难点在于:每一种公交优先申请都有其特征,进而导致信号优先的效率随着服务顺序的不同而有所变动。例如,对高占有率、班次时刻偏移较大、乘客数量较多的公交车辆提供优先服务将是更优的决策。现有的公交优先信号优先设计方法,针对来自交叉口不同冲突相位的高频多公交优先申请的研究与应用,还不是很充分。不足主要表现在如下三个方面:
1、目前最为常用的方法,一种是基于先到先服务(First come first serve,FCFS)的策略,有研究表明此策略将会造成额外的交通延误。另一种是假设公交车仅在主要道路的主要流向上出现。然而,这种假设并不适宜于实际应用。
2、现有策略还仅仅聚焦于优化单个信号周期内的有限个优先申请,并且没有考虑多车辆请求的具体细节(例如班次偏差(schedule deviation),公交占有率,交叉口延误等等)。并且无法支撑连续多个信号周期下,接收一连串公交优先申请的场景。
3、不同优先策略对普通社会车辆的影响,还没有被充分量化考虑。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种面向公交信号优先高频多申请的动态控制方法。
本发明的目的可以通过以下技术方案来实现:
一种面向公交信号优先高频多申请的动态控制方法,该方法包括以下步骤:
步骤S1:建立目标为加权公交延误最小的公交信号优先控制模型,约束考虑系统扰乱大小;
步骤S2:采用滚动时域优化方法对公交信号优先控制模型进行实时动态求解,在不同公交需求水平情况下,针对各种公交占有率、公交到站偏离程度下的多公交优先申请,生成优化的公交优先服务顺序与对应的信号控制方案,实现公交优先服务顺序和信号控制。
所述的步骤S1包括:
步骤S11:通过设定各个信号相位的饱和度阈值,避免某一信号相位达到过饱和状态,从而最小化系统扰乱;
步骤S12:以步骤S11系统扰乱最小化为前提,针对一个信号周期内的多公交优先申请,进行公交优先服务顺序优化。
所述的步骤S2包括:
步骤S21:将公交信号优先控制模型的求解作为一个多信号相位决策问题,确定针对一个公交优先申请提供服务的策略类型:绿灯延长、红灯早断或信号相位插入;
步骤S22:更新信号相位的要求最小绿灯时长;
步骤S23:更新采用的优先策略类型;
步骤S24:确定信号相位绿灯结束时刻;
步骤S25:更新下一个信号相位绿灯的开始时刻与优先时间窗口;
步骤S26:更新信号相位绿灯时长;
步骤S27:更新优先申请状态。
所述的步骤S22中更新信号相位的要求最小绿灯时长
Figure PCTCN2020138972-appb-000001
的计算公式为:
Figure PCTCN2020138972-appb-000002
其中,
Figure PCTCN2020138972-appb-000003
为给定信号相位i最大可接受的饱和度,Q i为信号相位i的饱和流率,q i,k为信号周期k信号相位i关键流向的交通流量,C k为信号周期k总时长;
所述的步骤S23中在信号相位i实际应用的公交优先策略可以用如下公式进行更新:
Figure PCTCN2020138972-appb-000004
其中,
Figure PCTCN2020138972-appb-000005
表示优先申请m所对应的信号相位,当对应信号相位为当前信号相位i时,在信号相位i采用绿灯延长策略PS i,k=1,当对应信号相位为下一个信号相位i+1时,在信号相位i+1采用红灯早断策略PS i,k=-1,当对应信号既不是当前信号相位i,也不是下一个信号相位i+1时,会在后续信号相位采用信号相位插入的策略
Figure PCTCN2020138972-appb-000006
表示在信号相位i发起的优先申请m是否会被服务,1表示被服务,0表示未被服务;
所述的步骤S24中信号相位绿灯结束时刻
Figure PCTCN2020138972-appb-000007
为:
Figure PCTCN2020138972-appb-000008
其中,
Figure PCTCN2020138972-appb-000009
表示发出优先申请m的公交车辆到达停车线的时刻,I i,i+1表示信号相位i到下一个信号相位i+1的绿灯间隔时长,
Figure PCTCN2020138972-appb-000010
为信号周期k信号相位i的优先时间窗开始时刻,
Figure PCTCN2020138972-appb-000011
为:
Figure PCTCN2020138972-appb-000012
其中,
Figure PCTCN2020138972-appb-000013
为优先时间窗口的结束时刻,
Figure PCTCN2020138972-appb-000014
为车辆的到达时刻,
Figure PCTCN2020138972-appb-000015
为插入信号相位时长,t in为信号相位i中插入公交信号相位的绿灯时长;
所述的步骤S25中信号相位i+1的绿灯开始时刻
Figure PCTCN2020138972-appb-000016
表示为:
Figure PCTCN2020138972-appb-000017
下一个优先时间窗口的开始时刻
Figure PCTCN2020138972-appb-000018
为:
Figure PCTCN2020138972-appb-000019
其中,
Figure PCTCN2020138972-appb-000020
为信号相位i+1的要求最短绿灯时长;
所述的步骤S26中信号相位i的绿灯时长g i,k可基于更新后的信号相位i结束时间计算:
Figure PCTCN2020138972-appb-000021
所述的步骤S27中更新优先申请m的状态
Figure PCTCN2020138972-appb-000022
过程为:
Figure PCTCN2020138972-appb-000023
优先申请n将在信号相位i被服务,且m=n,则优先状态应当被改变为1,
Figure PCTCN2020138972-appb-000024
为:
Figure PCTCN2020138972-appb-000025
其中,
Figure PCTCN2020138972-appb-000026
为信号周期k信号相位i开始之前还没有被处理的优先申请集合,
Figure PCTCN2020138972-appb-000027
为:
Figure PCTCN2020138972-appb-000028
所述加权公交延误主要为获得优先服务的公交车辆的延误和未获得优先服务的公交车辆的延误之和。
所述获得优先服务的公交车辆的延误中在信号周期k信号相位i内得到优先服务的所有请求车辆的加权总延误d i,k为:
Figure PCTCN2020138972-appb-000029
其中,
Figure PCTCN2020138972-appb-000030
为发起优先申请m的公交车辆的乘车人数,
Figure PCTCN2020138972-appb-000031
为发起优先申请m的公交车辆的到站时刻偏差,
Figure PCTCN2020138972-appb-000032
为发起优先申请m的公交车辆在信号周期k内的延误,
Figure PCTCN2020138972-appb-000033
为:
Figure PCTCN2020138972-appb-000034
其中,
Figure PCTCN2020138972-appb-000035
为信号周期k发起优先申请m的公交车辆所处的信号相位;
所述未获得优先服务的公交车辆的延误f k(0)为:
Figure PCTCN2020138972-appb-000036
其中,
Figure PCTCN2020138972-appb-000037
为优先申请n的公交车辆在信号周期k内的延误,
Figure PCTCN2020138972-appb-000038
表示为:
Figure PCTCN2020138972-appb-000039
其中,C k表示信号周期k的长度,
Figure PCTCN2020138972-appb-000040
表示发起优先申请n的公交车辆到达停车线时信号周期k的运行时长,
Figure PCTCN2020138972-appb-000041
表示在信号周期k内到达停车线但是未获得优先服务的车辆的延误,
Figure PCTCN2020138972-appb-000042
为信号周期k内的优先申请数量,
Figure PCTCN2020138972-appb-000043
表示在信号周期k信号相位i开始之前还没有被处理的优先申请集合,
Figure PCTCN2020138972-appb-000044
表示在信号周期k信号相位i内被处理的优先申请集合,
Figure PCTCN2020138972-appb-000045
表示在信号周期k+1对应信号相位的常规绿灯时间内得到服务之前所产生的延误。
公交信号优先控制模型的常规约束包括:
Figure PCTCN2020138972-appb-000046
Figure PCTCN2020138972-appb-000047
Figure PCTCN2020138972-appb-000048
其中,g i,k为信号周期k信号相位i的绿灯时长,g i,min为信号相位i的最小绿灯时长,g i,max为信号相位i的最大绿灯时长,
Figure PCTCN2020138972-appb-000049
为信号周期k信号相位i在给定最高许可饱和度
Figure PCTCN2020138972-appb-000050
前提下的最短绿灯时长。
滚动时域的长度为信号周期的长度;公交优先服务顺序与信号配时方案会在多个连续信号周期内进行优化,但仅仅应用在所在信号周期的某个信号相位;一旦公交优先服务顺序与信号配时方案被执行,滚动时域将会后移一个信号周期,针对下个信号周期的优化将重新开始。
与现有技术相比,本发明具有以下优点:
(1)充分考虑控制方法对普通社会车辆的影响,相比于传统的定时控制、先到先服务控制方法,本方法只要选取合适的临界饱和度阈值,就能够在不显著影响社会车辆运行效率的情况下,有效减少公交延误,并改善公交到站时刻准时性。
(2)考虑单个信号周期内的多申请需求,本方法将信号优先高频多申请问题归结为以信号相位为决策阶段的多阶段最优决策问题,能够有效地服务公交车辆优先高频多申请的场景。
(3)计算效率高,本方法采用了时域滚动策略,运算耗时小于35毫秒,具备在实施公交优先系统中应用的能力。
附图说明
图1为本发明的流程图;
图2为本发明公交信号优先控制模型框架;
图3为本发明参数说明;
图4为本发明公交优先策略说明;
图5为本发明滚动时域优化方案说明;
图6为本发明实施例交叉口布局图示;
图7为本发明实施例基于VISSIM的仿真评价流程图;
图8为本发明动态规划模型耗时情况;
图9为本发明不同控制策略公交到站时刻偏离度对比;
图10为本发明不同最大允许饱和度下公交与社会车辆延误对比。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
本实施例提供一种面向公交信号优先高频多申请的动态控制方法,包括以下步骤:
步骤S1:建立目标为加权公交延误最小的公交信号优先控制模型,约束考虑系统扰乱大小;
步骤S2:采用滚动时域优化方法对公交信号优先控制模型进行实时动态求解,在不同公交需求水平情况下,针对各种公交占有率、公交到站偏离程度下的多公交优先申请,生成优化的公交优先服务顺序与对应的信号控制方案。
步骤S1包括:
步骤S11:通过设定各个信号相位的饱和度阈值,避免某一信号相位达到过饱和状态,从而最小化系统扰乱;
步骤S12:以步骤S11系统扰乱最小化为前提,针对一个信号周期内的多公交优先申请,进行公交优先服务顺序优化。
所述的步骤S2包括:
步骤S21:将公交信号优先控制模型的求解作为一个多信号相位决策问题,确定针对一个公交优先申请提供服务的策略类型:绿灯延长(Green extension)、红灯早断(Red truncation)或信号相位插入(Phase insertion);
步骤S22:更新信号相位的要求最小绿灯时长。
以下介绍状态转移方程:
信号周期k信号相位i关键相位的饱和度x i,k的计算公式如下:
Figure PCTCN2020138972-appb-000051
其中,C k表示信号周期k总时长,q i,k为信号周期k信号相位i关键流向(在信号相位i期间保持最大流率)的交通流量,Q i为信号相位i的饱和流率,g i,k表示信号周期k信号相位i对应绿灯时长。
在公式(1)中,交通流量可通过环形线圈等检测设备获取。
给定信号相位i最大可接受的饱和度
Figure PCTCN2020138972-appb-000052
则要求最短绿灯时长
Figure PCTCN2020138972-appb-000053
计算公式如下:
Figure PCTCN2020138972-appb-000054
步骤S23:更新采用的优先策略类型
在信号相位i实际应用的公交优先策略PS i,k可以用如下公式进行更新:
Figure PCTCN2020138972-appb-000055
其中,
Figure PCTCN2020138972-appb-000056
表示优先申请m所对应的信号相位,当对应信号相位为当前信号相位i时,在信号相位i采用绿灯延长策略PS i,k=1;当对应信号相位为下一个信号相位i+1时,在信号相位i+1采用红灯早断策略PS i,k=-1,当对应信号既不是当前信号相位i,也不是下一个信号相位i+1时,会在后续信号相位采用信号相位插入的策略PS i,k=0。
Figure PCTCN2020138972-appb-000057
表示在信号相位i发起的优先申请m是否会被服务,1表示被服务,0表示未被服务。
步骤S24:确定相位绿灯结束时刻
信号相位绿灯结束时刻
Figure PCTCN2020138972-appb-000058
主要取决于所选择的优先策略,优先时间窗口的开始与结束时间,以及绿灯间隔时间(黄灯与全红时间):
Figure PCTCN2020138972-appb-000059
其中,
Figure PCTCN2020138972-appb-000060
表示发出优先申请的公交车辆到达停车线的时刻(表现为当前周期已运行时长),I i,i+1表示信号相位i到下一个信号相位i+1的绿灯间隔时长,
Figure PCTCN2020138972-appb-000061
为信号周期k信号相位i的优先时间窗开始时刻。
在上述公式(4)中,如选择绿灯延长的策略,则信号相位i结束时刻应当与发出优先申请m的公交车辆到达停车线的时刻相同;如选择红灯早断策略,则信号相位i结束时间应当为如下两项的最大值:1)信号周期k信号相位i的优先时间窗开始时刻
Figure PCTCN2020138972-appb-000062
2)发出优先申请m的公交车辆到达停车线的时刻与绿灯间隔时间的差值。如选择相位插入策略,则信号相位i的结束时间为
Figure PCTCN2020138972-appb-000063
该值由插入相位在优先时间窗口中的相对位置决定(公式(5))。为了消除行程时间的不确定性,发出优先申请m的公交车辆的到达时间应尽可能设置在插入相位的中间时刻,或者至少在插入相位的覆盖范围内。绿灯间隔时间也应当被考虑。
Figure PCTCN2020138972-appb-000064
其中,
Figure PCTCN2020138972-appb-000065
为优先时间窗口的结束时刻,
Figure PCTCN2020138972-appb-000066
为车辆的到达时刻,
Figure PCTCN2020138972-appb-000067
为插入信号相位时长,t in为信号相位i中插入公交信号相位的绿灯时长,
Figure PCTCN2020138972-appb-000068
Figure PCTCN2020138972-appb-000069
分别为插入相位的前后两端绿灯间隔时长。
在公式(5)中:
1)若发出优先申请m的公交车辆的到达时刻早于优先时间窗口的起始时刻加上一半的插入相位时长,则
Figure PCTCN2020138972-appb-000070
等于优先时间窗的开始时刻
Figure PCTCN2020138972-appb-000071
2)若插入相位全部位于优先时间窗口内,则
Figure PCTCN2020138972-appb-000072
等于车辆的到达时刻
Figure PCTCN2020138972-appb-000073
减去一半的插入相位时长
Figure PCTCN2020138972-appb-000074
3)若发出优先申请m的公交车辆的到达时刻晚于优先时间窗口的结束时刻
Figure PCTCN2020138972-appb-000075
减去一半的插入相位时长
Figure PCTCN2020138972-appb-000076
Figure PCTCN2020138972-appb-000077
等于优先时间窗口的结束时刻减去完整的插入相位时长。
步骤S25:更新下一个信号相位绿灯的开始时刻与优先时间窗口
信号相位i+1的绿灯开始时刻
Figure PCTCN2020138972-appb-000078
表示,可以基于前一信号相位i的结束时间以及所使用的优先策略进行更新,公式如下:
Figure PCTCN2020138972-appb-000079
优先时间窗口的时长由上一个信号相位最早结束时刻与下一个信号相位最早开始时刻决定。在优先时间窗口结束时刻之前到达停车线的公交车辆,便能够得到优先服务。
基于上述绿灯开始时刻
Figure PCTCN2020138972-appb-000080
可获得下一个优先时间窗口的开始时刻
Figure PCTCN2020138972-appb-000081
为:
Figure PCTCN2020138972-appb-000082
其中,
Figure PCTCN2020138972-appb-000083
为信号相位i+1的要求最短绿灯时长。
步骤S26:更新信号相位绿灯时长
信号相位i的绿灯时长g i,k可基于更新后的信号相位i结束时间计算:
Figure PCTCN2020138972-appb-000084
步骤S27:更新优先申请状态
优先申请m的状态
Figure PCTCN2020138972-appb-000085
可由如下公式(9)进行更新。需要注意的是,若多辆公交车的优先申请在同一个阶段,并且在同一个优先时间窗口内到达,或者在信号相位i的常规绿灯时间内到达,则会在同一时间内获得优先通行服务。
Figure PCTCN2020138972-appb-000086
在上述公式(9)中,如果优先申请n将在信号相位i
Figure PCTCN2020138972-appb-000087
被服务,且m=n,则优先状态应当被改变为1,即
Figure PCTCN2020138972-appb-000088
是一个二元变量,表示没有在信号相位i内被服务的优先申请的状态,该变量的值由如下因素决定:优先申请的相位序号
Figure PCTCN2020138972-appb-000089
优先申请车辆的到达时刻
Figure PCTCN2020138972-appb-000090
以及在信号相位i所使用的优先策略(PS i,k),具体公式如下:
Figure PCTCN2020138972-appb-000091
在上述公式(10)中,当优先申请在信号相位i得到服务,并且在信号相位i结束时刻之前到达,或者优先申请m要求与优先申请n在同一个信号相位内被服务,并且在对应的优先时间窗口中到达,则
Figure PCTCN2020138972-appb-000092
为信号周期k信号相位i开始之前还没有被处理的优先申请集合。
其中,
Figure PCTCN2020138972-appb-000093
表示含义如下:在优先申请n在信号相位i
Figure PCTCN2020138972-appb-000094
被选择,且优先申请m与优先申请n申请在同一相位内获得优先
Figure PCTCN2020138972-appb-000095
的情况下,判断优先申请m的状态是否允许被设置为1。其公式如下:
Figure PCTCN2020138972-appb-000096
在公式(10)与公式(11)中,
Figure PCTCN2020138972-appb-000097
表示:在
Figure PCTCN2020138972-appb-000098
Figure PCTCN2020138972-appb-000099
的情况下应用绿灯延长策略时,如果优先申请m的车辆比优先申请n(已被提供优先)的车辆提前到达,则优先申请m的优先状态应当切换至
Figure PCTCN2020138972-appb-000100
表示:在
Figure PCTCN2020138972-appb-000101
Figure PCTCN2020138972-appb-000102
的情况下应用红灯早断策略,如果优先申请m的车辆到达时刻比下一个相位开始时刻要早,则优先申请m的优先状态应当切换至
Figure PCTCN2020138972-appb-000103
Figure PCTCN2020138972-appb-000104
表示:在
Figure PCTCN2020138972-appb-000105
Figure PCTCN2020138972-appb-000106
的情况下应用相位插入的策略,如果请优先申请m的车辆到达时刻在信号相位i结束时刻与下一个相位的开始时刻,则优先申请m的优先状态应当切换至
Figure PCTCN2020138972-appb-000107
为了将公交车荷载数(Occupancy)与公交到站准时性(Schedule adherence)两项指标考虑到优化过程中,在动态规划模型中采用了如下最小化控制优化目标:加权公交延误(权重指标为:公交荷载数、公交到站时刻偏差)。该目标主要由两部分组成:获得优先服务的公交车辆的延误,以及未获得优先服务的公交车辆的延误。
计算获得优先服务的公交车辆的延误:
设f k(i)为从信号相位i(包括信号相位i)起到最后一个信号相位内获得优先服务的公交车辆的总延误,则其一个递归表达式如下:
f k(i)=d i,k+f k(i+1)          (12)
其中,d i,k表示在信号周期k信号相位i内得到优先服务的所有请求车辆的加权总延误,其计算公式如下:
Figure PCTCN2020138972-appb-000108
在上述公式(13)中,
Figure PCTCN2020138972-appb-000109
为优先申请m的公交车辆的乘车人数,
Figure PCTCN2020138972-appb-000110
为优先申请m的公交车辆的到站时刻偏差。假设
Figure PCTCN2020138972-appb-000111
Figure PCTCN2020138972-appb-000112
两项信息均可以通过公交运营系统中的射频识别(RFID)与自动乘客计数技术获取到。
Figure PCTCN2020138972-appb-000113
为优先申请m的公交车辆在信号周期k内的延误,具体公式如下:
Figure PCTCN2020138972-appb-000114
其中,
Figure PCTCN2020138972-appb-000115
为信号周期k发起优先申请m的公交车辆所处的信号相位。
计算未获得优先服务的公交车辆的延误:
在当前信号周期内,对于发出请求但是未获得优先服务的公交车辆,会在下一个信号周期k+1的请求相位的常规绿灯时间中得到服务。据此,设这部分车辆的总延误为f k(0),其计算公式如下:
Figure PCTCN2020138972-appb-000116
其中,
Figure PCTCN2020138972-appb-000117
为优先申请m的公交车辆的乘车人数;
Figure PCTCN2020138972-appb-000118
为优先申请m的公交车辆的到站时刻偏差;
Figure PCTCN2020138972-appb-000119
为优先申请n的公交车辆在信号周期k内的延误,具体公式如下:
Figure PCTCN2020138972-appb-000120
在上述公式(16)中,C k表示信号周期k的长度,
Figure PCTCN2020138972-appb-000121
表示发起优先申请n的公交车辆到达停车线时信号周期k的运行时长,
Figure PCTCN2020138972-appb-000122
表示在信号周期k内到达停车线但是未获得优先服务的车辆的延误,
Figure PCTCN2020138972-appb-000123
为信号周期k内的优先申请数量,
Figure PCTCN2020138972-appb-000124
表示在信号周期k信号相位i开始之前还没有被处理的优先申请集合,
Figure PCTCN2020138972-appb-000125
表示在信号周期k信号相位i内被处理的优先申请集合,
Figure PCTCN2020138972-appb-000126
表示在信号周期k+1对应信号相位的常规绿灯时间内得到服务之前所产生的延误。
表1模型符号说明
Figure PCTCN2020138972-appb-000127
Figure PCTCN2020138972-appb-000128
目标函数为最小化所有发出优先申请车辆的加权延误:
以信号周期k为例,目标函数将最小化所有发出优先申请车辆的加权延误,公式如下:
minf k(1)+f k(0)            (17)
设定信号控制、对社会车辆影响等方面的约束条件:
公式(2)-(11)为状态转换方程,是模型的基本定义型约束。更进一步,还有如下约束:1)限制公交优先对其它社会车辆所带来的影响;2)信号控制参数的一些常规约束。
Figure PCTCN2020138972-appb-000129
Figure PCTCN2020138972-appb-000130
Figure PCTCN2020138972-appb-000131
其中,g i,k为信号周期k信号相位i的绿灯时长,g i,min为信号相位i的最小绿灯时长,g i,max为信号相位i的最大绿灯时长,
Figure PCTCN2020138972-appb-000132
为信号周期k信号相位i在给定最高许可饱和度
Figure PCTCN2020138972-appb-000133
前提下的最短绿灯时长。
公式(18)表示针对每一个信号相位,最多允许使用一种优先策略;公式(19)表示每一个信号相位的绿灯时长应该大于等于许可饱和度下最小绿灯时长,小于等于最大绿灯时长;公式(20)表示许可饱和度下最小绿灯时长应该大于等于最小绿灯时长,但不应超过原有基本信号方案中用于提供公交优先的绿灯时长。表1为部分参数解释。
本实施例所提出的控制模型是基于公交车辆在过去信号周期中的到达时刻进行决策的。然而,在一个信号周期刚开始时,这部分信息是未知的,并且公交优先申请也不可预测。为了将最后一辆到达的公交车也考虑进来,采用了如下基于滚动时域优化的方法使得模型具备实时性:
(1)滚动时域的长度被设定为信号周期的长度;
(2)公交优先服务顺序与信号配时方案会在多个连续周期内进行优化,但仅仅应用在 所在信号周期的某个相位;
(3)一旦公交优先服务顺序与信号配时方案被执行,滚动时域将会后移一个信号周期,针对下个信号周期的优化将重新开始。
以下为一具体仿真例子:
步骤1:选取实际案例场景,并在VISSIM仿真中进行虚拟场景构建;
步骤2:通过VISSIM-COM接口对模型效果进行评价。
具体而言:
一、步骤1包括:
1、在VISSIM中搭建虚拟交叉口环境(如图6);
2、设计三种不同的交通需求(以表2为基准,需求百分比分别为70%,100%,130%),在仿真测试中分别对应0.5,0.7,0.9三种流量/通行能力比值。
3、设计模型的关键参数,包括如下内容:
(1)每一条公交线路的平均车头时距为2分钟;
(2)公交车停靠地点在每一个交叉口进口道的上游,停靠时间服从均值为40秒,方差为40秒的正态分布;
(3)公交车的乘客数与到站时刻偏移分别通过两个正态分布进行模拟,前者的均值为30名乘客,方差为30名乘客;后者均值为30秒,方差为120秒;
(4)公交车与车辆检测器被设置于公交专用道上距离停车线100米的位置。
表2仿真环境流量设置方案
Figure PCTCN2020138972-appb-000134
4、开始仿真(具体流程图见图7)。每一次仿真的运行时长为2小时,为了克服微观仿真模型系统的随机性,本案例采用了20次仿真运行结果的平均值。
二、步骤S2包括:
所提出的模型将会通过如下两个步骤进行评价:
1、在不同场景下评价模型计算效率
图8描述了所提出模型在不同公交优先申请场景下的运算时间分布。可以看到,所提出的模型在最差的情况下(4辆连续的公交车发出4个请求),运算耗时也少于35毫秒。因此,该模型计算成本极低,能够应用在实时的控制系统中。
2、模型效果对比分析
具体地,是指对比如下两种不同控制策略的模型优化效果(为了保证模型的公正,对所有的使用相同优化方法的控制策略,生成了基本信号配时方案)。
控制策略a:没有公交优先的固定控制策略。在不考虑公交优先的情况下通过离线优化获得固定信号配时方案;
控制策略b:先到先服务的公交优先控制策略。基于传统先到先服务的公交优先服务原则,提供绿灯延长,红灯早断,以及相位插入的策略。
表3不同控制策略下的模型效果对比
Figure PCTCN2020138972-appb-000135
以下为对比分析结果:
(1)公交与社会车辆的延误降低情况
表3展示了所提出模型与其它两种传统控制策略在不同场景下的模型效果对比。对比数据,可以得出如下结论:
1)结论一:相比较控制策略a与b,所提出的模型在三种不同的交通需求情况下,均能更有效地降低公交车辆的延误(针对策略a下降10~30%,针对策略b下降7%~23%)。模型改善结果在显著性水平为95%的Pair-T检验中具有统计意义。整体交通延误方面,所提出的方法比策略a减少15%,比策略b减少7.9%。该结果充分说明所提出模型在处理多公交优先申请的场景的优势。
2)结论二:本专题所提出的模型不会造成交叉口内其他社会车辆延误的显著提升。更 具体地说,所提出的模型在较低与中等程度的交通需求场景下,能够降低其他社会车辆的延误;对于需求较高的拥堵场景,该模型生成方案对社会车辆造成的延误,不会超过定时控制策略a的11%,以及先到先服务策略b的5%。
(2)降低公交到站时刻偏离
本案例还分析了所提出模型在降低公交到站时刻偏离度方面的效果。本案例提出了两种评价指标:平均公交到站时刻偏离方差,以及加权公交到站时刻偏离方差(权重指标为每辆公交车的乘客数量)。如图9a所示,在不同的交通需求环境下,所提出模型产生的到站时刻偏离程度明显低于其它两种控制策略(相比控制策略a,下降30%~70%,相比控制策略b,下降21%~43%)。图9b显示,以公交荷载数进行加权计算,本控制策略的优势更为明显。这一发现说明本模型在改善公交到站时刻准时性方面非常有效。
(3)最大允许饱和度变化的影响
为了使本专题提出模型能够在实际多样化交通需求场景中得到应用,进一步研究了最大允许饱和度(记为x)对模型控制效果的影响。图10a将本专利提出的方法与先到先服务(FCFS)的策略相对比,数据表明,在公交车延误方面,随着x的不断下降,本实施例提出的模型相对于FCFS策略的优势就越不明显。当交通需求较高的时候(更大的v/c比),一个较低的x值则有可能造成本实施例提出的方法比FCFS策略产生更大的延误。这其中的原因在于,x值越高,本实施例提出的策略中能够用于提供优先服务的优先时间窗口就越短。与之相反,随着x的逐渐下降,本实施例提出的方法将会使社会车辆的延误降低(如图10b所示)。这一发现说明,对于每一个种不同的需求场景,都存在一个饱和度x的阈值范围,在该阈值范围内,本实施例所提出的方法能够在不导致其它车辆延误大幅提升的前提下,有效地降低公交车的延误。在日常决策过程中,交通工程师应当谨慎地选择最大允许饱和度,以平衡公交车与运营车辆的运营效率。
(4)结论
本实施例提出一种面向公交信号优先高频多申请的动态控制方法。方法的目标在于加权公交延误最小,与此同时避免影响普通社会车辆的运行效率。所提出的方法能够捕捉公交运行的关键特征,例如公交在不同占有率、到站时刻偏离、需求水平、优先策略类型的情况下,公交优先申请可能对交通运行造成的影响。方法提出了详细的输出信息,包括:多公交车辆的最优服务顺序以及对应的信号配时方案。采用了滚动时域优化策略,能够基于实时信息对服务顺序进行求解。

Claims (8)

  1. 一种面向公交信号优先高频多申请的动态控制方法,其特征在于,该方法包括以下步骤:
    步骤S1:建立目标为加权公交延误最小的公交信号优先控制模型,约束考虑系统扰乱大小;
    步骤S2:采用滚动时域优化方法对公交信号优先控制模型进行实时动态求解,在不同公交需求水平情况下,针对各种公交占有率、公交到站偏离程度下的多公交优先申请,生成优化的公交优先服务顺序与对应的信号控制方案,实现公交优先服务顺序和信号控制。
  2. 根据权利要求1所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,所述的步骤S1包括:
    步骤S11:通过设定各个信号相位的饱和度阈值,避免某一信号相位达到过饱和状态,从而最小化系统扰乱;
    步骤S12:以步骤S11系统扰乱最小化为前提,针对一个信号周期内的多公交优先申请,进行公交优先服务顺序优化。
  3. 根据权利要求1所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,所述的步骤S2包括:
    步骤S21:将公交信号优先控制模型的求解作为一个多信号相位决策问题,确定针对一个公交优先申请提供服务的策略类型:绿灯延长、红灯早断或信号相位插入;
    步骤S22:更新信号相位的要求最小绿灯时长;
    步骤S23:更新采用的优先策略类型;
    步骤S24:确定信号相位绿灯结束时刻;
    步骤S25:更新下一个信号相位绿灯的开始时刻与优先时间窗口;
    步骤S26:更新信号相位绿灯时长;
    步骤S27:更新优先申请状态。
  4. 根据权利要求3所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,所述的步骤S22中更新信号相位的要求最小绿灯时长
    Figure PCTCN2020138972-appb-100001
    的计算公式为:
    Figure PCTCN2020138972-appb-100002
    其中,
    Figure PCTCN2020138972-appb-100003
    为给定信号相位i最大可接受的饱和度,Q i为信号相位i的饱和流率,q i,k为信号周期k信号相位i关键流向的交通流量,C k为信号周期k总时长;
    所述的步骤S23中在信号相位i实际应用的公交优先策略可以用如下公式进行更新:
    Figure PCTCN2020138972-appb-100004
    其中,
    Figure PCTCN2020138972-appb-100005
    表示优先申请m所对应的信号相位,当对应信号相位为当前信号相位i时,在信号相位i采用绿灯延长策略PS i,k=1,当对应信号相位为下一个信号相位i+1时,在信号相位i+1采用红灯早断策略PS i,k=-1,当对应信号既不是当前信号相位i,也不是下一个信号相位i+1时,会在后续信号相位采用信号相位插入的策略PS i,k=0,
    Figure PCTCN2020138972-appb-100006
    表示在信号相位i发起的优先申请m是否会被服务,1表示被服务,0表示未被服务;
    所述的步骤S24中信号相位绿灯结束时刻
    Figure PCTCN2020138972-appb-100007
    为:
    Figure PCTCN2020138972-appb-100008
    其中,
    Figure PCTCN2020138972-appb-100009
    表示发出优先申请m的公交车辆到达停车线的时刻,I i,i+1表示信号相位i到下一个信号相位i+1的绿灯间隔时长,
    Figure PCTCN2020138972-appb-100010
    为信号周期k信号相位i的优先时间窗开始时刻,
    Figure PCTCN2020138972-appb-100011
    为:
    Figure PCTCN2020138972-appb-100012
    其中,
    Figure PCTCN2020138972-appb-100013
    为优先时间窗口的结束时刻,
    Figure PCTCN2020138972-appb-100014
    为车辆的到达时刻,
    Figure PCTCN2020138972-appb-100015
    为插入信号相位时长,t in为信号相位i中插入公交信号相位的绿灯时长;
    所述的步骤S25中信号相位i+1的绿灯开始时刻
    Figure PCTCN2020138972-appb-100016
    表示为:
    Figure PCTCN2020138972-appb-100017
    下一个优先时间窗口的开始时刻
    Figure PCTCN2020138972-appb-100018
    为:
    Figure PCTCN2020138972-appb-100019
    其中,
    Figure PCTCN2020138972-appb-100020
    为信号相位i+1的要求最短绿灯时长;
    所述的步骤S26中信号相位i的绿灯时长g i,k可基于更新后的信号相位i结束时间计算:
    Figure PCTCN2020138972-appb-100021
    所述的步骤S27中更新优先申请m的状态
    Figure PCTCN2020138972-appb-100022
    过程为:
    Figure PCTCN2020138972-appb-100023
    优先申请n将在信号相位i被服务,且m=n,则优先状态应当被改变为1,
    Figure PCTCN2020138972-appb-100024
    为:
    Figure PCTCN2020138972-appb-100025
    其中,
    Figure PCTCN2020138972-appb-100026
    为信号周期k信号相位i开始之前还没有被处理的优先申请集合,
    Figure PCTCN2020138972-appb-100027
    为:
    Figure PCTCN2020138972-appb-100028
  5. 根据权利要求1所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,所述加权公交延误主要为获得优先服务的公交车辆的延误和未获得优先服务的公交车辆的延误之和。
  6. 根据权利要求5所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,所述获得优先服务的公交车辆的延误中在信号周期k信号相位i内得到优先服务的所有请求车辆的加权总延误d i,k为:
    Figure PCTCN2020138972-appb-100029
    其中,
    Figure PCTCN2020138972-appb-100030
    为发起优先申请m的公交车辆的乘车人数,
    Figure PCTCN2020138972-appb-100031
    为发起优先申请m的公交车辆的到站时刻偏差,
    Figure PCTCN2020138972-appb-100032
    为发起优先申请m的公交车辆在信号周期k内的延误,
    Figure PCTCN2020138972-appb-100033
    为:
    Figure PCTCN2020138972-appb-100034
    其中,
    Figure PCTCN2020138972-appb-100035
    为信号周期k发起优先申请m的公交车辆所处的信号相位;
    所述未获得优先服务的公交车辆的延误f k(0)为:
    Figure PCTCN2020138972-appb-100036
    其中,
    Figure PCTCN2020138972-appb-100037
    为优先申请n的公交车辆在信号周期k内的延误,
    Figure PCTCN2020138972-appb-100038
    表示为:
    Figure PCTCN2020138972-appb-100039
    其中,C k表示信号周期k的长度,
    Figure PCTCN2020138972-appb-100040
    表示发起优先申请n的公交车辆到达停车线时信号周期k的运行时长,
    Figure PCTCN2020138972-appb-100041
    表示在信号周期k内到达停车线但是未获得优先服务的车辆的延误,
    Figure PCTCN2020138972-appb-100042
    为信号周期k内的优先申请数量,
    Figure PCTCN2020138972-appb-100043
    表示在信号周期k信号相位i开始之前还没有被处理的优先申请集合,
    Figure PCTCN2020138972-appb-100044
    表示在信号周期k信号相位i内被处理的优先申请集合,
    Figure PCTCN2020138972-appb-100045
    表示在信号周期k+1对应信号相位的常规绿灯时间内得到服务之前所产生的延误。
  7. 根据权利要求1所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,公交信号优先控制模型的常规约束包括:
    Figure PCTCN2020138972-appb-100046
    其中,g i,k为信号周期k信号相位i的绿灯时长,g i,min为信号相位i的最小绿灯时长,g i,max为信号相位i的最大绿灯时长,
    Figure PCTCN2020138972-appb-100047
    为信号周期k信号相位i在给定最高许可饱和度
    Figure PCTCN2020138972-appb-100048
    前提下的最短绿灯时长。
  8. 根据权利要求1所述的一种面向公交信号优先高频多申请的动态控制方法,其特征在于,滚动时域的长度为信号周期的长度;公交优先服务顺序与信号配时方案会在多个连续信号周期内进行优化,但仅仅应用在所在信号周期的某个信号相位;一旦公交优先服务顺序与信号配时方案被执行,滚动时域将会后移一个信号周期,针对下个信号周期的优化将重新开始。
PCT/CN2020/138972 2020-04-13 2020-12-24 一种面向公交信号优先高频多申请的动态控制方法 WO2021208484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010287082.8 2020-04-13
CN202010287082.8A CN111724584B (zh) 2020-04-13 2020-04-13 一种面向公交信号优先高频多申请的动态控制方法

Publications (1)

Publication Number Publication Date
WO2021208484A1 true WO2021208484A1 (zh) 2021-10-21

Family

ID=72564129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138972 WO2021208484A1 (zh) 2020-04-13 2020-12-24 一种面向公交信号优先高频多申请的动态控制方法

Country Status (2)

Country Link
CN (1) CN111724584B (zh)
WO (1) WO2021208484A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114708741A (zh) * 2022-04-19 2022-07-05 安徽工业大学 一种基于v2x技术的多相位公交优先控制方法
CN114724353A (zh) * 2022-03-10 2022-07-08 深圳大学 考虑行人的公交信号被动优先控制方法及装置
CN114973654A (zh) * 2022-04-27 2022-08-30 深圳大学 考虑停站的被动公交优先干道协调控制实现方法及装置
CN115148036A (zh) * 2022-06-22 2022-10-04 连云港杰瑞电子有限公司 一种感应控制下的公交优先实现方法
CN115311868A (zh) * 2022-07-20 2022-11-08 武汉理工大学 基于公交优先的干线协调控制方法及装置
CN116168551A (zh) * 2023-01-13 2023-05-26 广州市城市规划勘测设计研究院 基于生态效益的公交信号优先控制方法、装置及存储介质
CN117576929A (zh) * 2024-01-19 2024-02-20 山东科技大学 一种考虑不同公交平面相交的车速与信号协同优化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111724584B (zh) * 2020-04-13 2021-09-03 同济大学 一种面向公交信号优先高频多申请的动态控制方法
CN112581775B (zh) * 2020-12-08 2022-12-23 平安国际智慧城市科技股份有限公司 信号灯的公交优先通行控制方法、系统及存储介质
CN113554865B (zh) * 2021-06-04 2022-05-06 广东工业大学 一种车联网环境下公交主通道多交叉口信号协调控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117807A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd 交通信号制御システム、信号制御装置
CN104485005A (zh) * 2014-12-04 2015-04-01 东南大学 交叉口多线路公交车辆优先请求冲突协调控制方法
CN104575038A (zh) * 2015-01-05 2015-04-29 东南大学 一种考虑多路公交优先的交叉口信号控制方法
CN104599513A (zh) * 2015-01-29 2015-05-06 江苏省交通规划设计院股份有限公司 一种公交信号优先的控制方法
CN106297335A (zh) * 2016-11-09 2017-01-04 河海大学 一种交叉口‑下游停靠站相互作用环境下的公交优先绿灯延长时间优化方法
CN108629993A (zh) * 2018-04-27 2018-10-09 上海理工大学 一种适用于高饱和度交叉口的公交优先信号配时优化方法
CN109410609A (zh) * 2018-11-19 2019-03-01 吉林大学 车联网环境下基于多请求的公交优先信号控制方法
CN111724584A (zh) * 2020-04-13 2020-09-29 同济大学 一种面向公交信号优先高频多申请的动态控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409017B (zh) * 2008-10-09 2010-07-28 浙江银江交通技术有限公司 面向快速公交的优先信号控制系统和方法
CN201522783U (zh) * 2009-06-25 2010-07-07 北京北航天华时代科技有限公司 一种公交信号优先控制系统
KR101335999B1 (ko) * 2012-02-21 2013-12-04 금오공과대학교 산학협력단 입력 오프셋 보상 기법을 이용하는 시간-영역 비교 장치
CN109712414B (zh) * 2019-01-30 2021-09-03 同济大学 一种多带宽干道公交控制方案的优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117807A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Ind Ltd 交通信号制御システム、信号制御装置
CN104485005A (zh) * 2014-12-04 2015-04-01 东南大学 交叉口多线路公交车辆优先请求冲突协调控制方法
CN104575038A (zh) * 2015-01-05 2015-04-29 东南大学 一种考虑多路公交优先的交叉口信号控制方法
CN104599513A (zh) * 2015-01-29 2015-05-06 江苏省交通规划设计院股份有限公司 一种公交信号优先的控制方法
CN106297335A (zh) * 2016-11-09 2017-01-04 河海大学 一种交叉口‑下游停靠站相互作用环境下的公交优先绿灯延长时间优化方法
CN108629993A (zh) * 2018-04-27 2018-10-09 上海理工大学 一种适用于高饱和度交叉口的公交优先信号配时优化方法
CN109410609A (zh) * 2018-11-19 2019-03-01 吉林大学 车联网环境下基于多请求的公交优先信号控制方法
CN111724584A (zh) * 2020-04-13 2020-09-29 同济大学 一种面向公交信号优先高频多申请的动态控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA WANJING, XIAOGUANG YANG: "Serve sequence optimization of multiple bus signal priority requests based on dynamic programming", JOURNAL OF TSINGHUA UNIVERSITY (SCIENCE AND TECHNOLOGY), QUINHUA DAXUE, BEIJING, CN, vol. 49, no. 12, 15 December 2009 (2009-12-15), CN , pages 1939 - 1943, XP055857463, ISSN: 1000-0054, DOI: 10.16511/j.cnki.qhdxxb.2009.12.014 *
ZHANG JIAO, HAN YIN ZHANG MENGXIAO: "A Transit Signal Priority Strategy for Multiple Bus Requests Based on Bus Priority Degree", LOGISTICS SCI-TECH, vol. 38, no. 8, 10 August 2015 (2015-08-10), pages 22 - 27, XP055857460, ISSN: 1002-3100, DOI: 10.13714/j.cnki.1002-3100.2015.08.010 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114724353B (zh) * 2022-03-10 2023-06-09 深圳大学 考虑行人的公交信号被动优先控制方法及装置
CN114724353A (zh) * 2022-03-10 2022-07-08 深圳大学 考虑行人的公交信号被动优先控制方法及装置
CN114708741A (zh) * 2022-04-19 2022-07-05 安徽工业大学 一种基于v2x技术的多相位公交优先控制方法
CN114973654A (zh) * 2022-04-27 2022-08-30 深圳大学 考虑停站的被动公交优先干道协调控制实现方法及装置
CN114973654B (zh) * 2022-04-27 2023-10-13 深圳大学 考虑停站的被动公交优先干道协调控制实现方法及装置
CN115148036A (zh) * 2022-06-22 2022-10-04 连云港杰瑞电子有限公司 一种感应控制下的公交优先实现方法
CN115148036B (zh) * 2022-06-22 2023-11-21 连云港杰瑞电子有限公司 一种感应控制下的公交优先实现方法
CN115311868B (zh) * 2022-07-20 2023-07-25 武汉理工大学 基于公交优先的干线协调控制方法及装置
CN115311868A (zh) * 2022-07-20 2022-11-08 武汉理工大学 基于公交优先的干线协调控制方法及装置
CN116168551A (zh) * 2023-01-13 2023-05-26 广州市城市规划勘测设计研究院 基于生态效益的公交信号优先控制方法、装置及存储介质
CN116168551B (zh) * 2023-01-13 2023-12-29 广州市城市规划勘测设计研究院 基于生态效益的公交信号优先控制方法、装置及存储介质
CN117576929A (zh) * 2024-01-19 2024-02-20 山东科技大学 一种考虑不同公交平面相交的车速与信号协同优化方法
CN117576929B (zh) * 2024-01-19 2024-04-02 山东科技大学 一种考虑不同公交平面相交的车速与信号协同优化方法

Also Published As

Publication number Publication date
CN111724584B (zh) 2021-09-03
CN111724584A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2021208484A1 (zh) 一种面向公交信号优先高频多申请的动态控制方法
CN107730922B (zh) 一种单向干线绿波协调控制自适应调整方法
He et al. PAMSCOD: Platoon-based arterial multi-modal signal control with online data
CN107016857B (zh) 一种信控交叉口左转交通组合设计优化方法
CN103337178B (zh) 基于动态优先级的交通信号自适应控制方法
Lin et al. Transit priority strategies for multiple routes under headway-based operations
Guo et al. An integrated MPC and deep reinforcement learning approach to trams-priority active signal control
CN110807918B (zh) 一种基于流量感知协调控制的有轨电车优先通行方法
CN103680163A (zh) 基于公交需求的区域公交信号优先方法
CN108389411B (zh) 一种基于多线路交叉路口的有轨电车信号优先控制方法
CN108364486B (zh) 多场景车辆优先自适应交通信号控制系统及其工作方法
CN108447282A (zh) 一种基于车路协同的公交实时调度与优先控制方法
CN104916142A (zh) 一种干道优先的交叉口自适应交通信号控制方法
Guangwei et al. Optimization of adaptive transit signal priority using parallel genetic algorithm
CN106920403A (zh) 一种基于阵列雷达的单点自适应控制方法
CN112053580A (zh) 一种交叉口公交信号优先控制优化方法
Li et al. A platoon-based adaptive signal control method with connected vehicle technology
CN113724509B (zh) 一种时空协同的公交优先控制方法和装置
CN111524372B (zh) 基于人工智能车路协同的公交信号优先实现方法和系统
Horng et al. Traffic congestion reduce mechanism by adaptive road routing recommendation in smart city
Hao et al. Improving schedule adherence based on dynamic signal control and speed guidance in connected bus system
CN115063988B (zh) 一种应急车辆优先的跨交通子区信号协同控制方法
CN110992716A (zh) 基于交通状态和车辆运行状态实现有轨电车优先控制处理的方法
CN113743685B (zh) 确定公交车时刻表的方法及电子设备
CN115482676B (zh) 一种保障正点率的公交优先信号控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931056

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 27/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20931056

Country of ref document: EP

Kind code of ref document: A1