WO2021208483A1 - Led显示屏的驱动方法、装置、系统、设备和存储介质 - Google Patents

Led显示屏的驱动方法、装置、系统、设备和存储介质 Download PDF

Info

Publication number
WO2021208483A1
WO2021208483A1 PCT/CN2020/138736 CN2020138736W WO2021208483A1 WO 2021208483 A1 WO2021208483 A1 WO 2021208483A1 CN 2020138736 W CN2020138736 W CN 2020138736W WO 2021208483 A1 WO2021208483 A1 WO 2021208483A1
Authority
WO
WIPO (PCT)
Prior art keywords
gamma value
led
led lamp
display
frequency
Prior art date
Application number
PCT/CN2020/138736
Other languages
English (en)
French (fr)
Inventor
何皓嘉
Original Assignee
广州视源电子科技股份有限公司
西安青松光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司, 西安青松光电技术有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2021208483A1 publication Critical patent/WO2021208483A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • the embodiments of the present application relate to LED display technology, for example, to a display driving method, device, system, equipment, and storage medium of an LED display screen.
  • LED Light-Emitting Diode, light-emitting diode
  • RGB red
  • G green
  • B blue
  • LED lamp beads that emit red (R), green (G), and blue (B) are different, which causes the LED lamp beads to emit red (R) at low brightness when displaying a low-brightness screen.
  • the brightness ratio of the three colors of, green (G) and blue (B) is inconsistent with the brightness ratio of red (R), green (G) and blue (B) under high brightness.
  • low The white color temperature under the brightness is inconsistent with the white color temperature under the high brightness. This phenomenon is the "low gray color cast" phenomenon.
  • the LED driver chip when adjusting the display quality of an LED display, the LED driver chip is usually used to control the parasitic capacitance of the PCB (Printed Circuit Board) traces of the LED lamp beads on the display effect. These operations will lead to The phenomenon of "low gray color cast” is more serious.
  • PCB printed Circuit Board
  • the embodiments of the present application provide a display driving method, device, system, equipment and storage medium of an LED display screen to solve the problem of reducing the gray color cast while balancing the parasitic capacitance of the PCB traces of the LED display screen. .
  • an embodiment of the present application provides a display driving method for an LED display screen, including:
  • the LED lamp bead is driven to display according to the target gamma value.
  • an embodiment of the present application also provides a display driving device for an LED display screen, including:
  • the reference gamma value determination module is used to determine the reference gamma value set in the preset display period of the LED lamp beads in the LED display;
  • a conduction frequency determination module configured to determine the frequency of conduction of the LED lamp bead in the display period
  • a target gamma value calculation module configured to compensate the reference gamma value according to the frequency of conduction to obtain a target gamma value
  • the LED lamp bead driving display module is used for driving the LED lamp bead to display according to the target gamma value.
  • the embodiments of the present application also provide an LED display screen, the LED display screen includes an LED control system and a plurality of LED display boxes; the LED control system includes a sending card, a receiving card, and the LED display
  • the box body includes one or more LED display unit boards, and the LED display unit boards include LED lamp beads;
  • the sending card is used to receive a video signal, decode and cut the video signal into multiple partial video signals, and transmit the partial video signal to the receiving card, and the receiving card implements the same as described in the first aspect
  • the display driving method of the LED display screen is used to receive a video signal, decode and cut the video signal into multiple partial video signals, and transmit the partial video signal to the receiving card, and the receiving card implements the same as described in the first aspect
  • the embodiments of the present application also provide an LED control system, which is applied to an LED display, and includes:
  • the sending card is used to send a reference gamma value to the receiving card, where the reference gamma value is a gamma value set in a preset display period for the LED lamp beads in the LED display screen;
  • the receiving card is used to determine the frequency of conduction of the LED lamp bead in the display period, and compensate the reference gamma value according to the frequency of conduction to obtain a target gamma value, according to the target gamma
  • the horse value drives the LED lamp bead to display.
  • an embodiment of the present application also provides an electronic device, the electronic device including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the display driving method of the LED display screen as described in the first aspect.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the display driving method of the LED display screen as described in the first aspect is realized.
  • This embodiment provides a system-level compensation scheme to determine the reference gamma value set in the preset display period of the LED lamp beads in the LED display screen, and determine the frequency of the LED lamp bead conduction in the display period, according to the frequency of conduction Compensate the reference gamma value to obtain the target gamma value, and drive the LED lamp bead display according to the target gamma value.
  • This solution can be implemented in the control system of the LED display screen through coding, without the need for hardware of the control system of the LED display screen.
  • the modification has a lower technical threshold, low cost, and easy promotion. It can balance the parasitic capacitance of the PCB traces of the LED driver chip. At the same time, by compensating the turn-on time of the LED lamp bead, the LED lamp bead can be turned on when it is turned on. The cut-off speed is the same or similar, thereby slowing down or eliminating the phenomenon of low gray color cast.
  • Figures 1A to 1B are the architecture diagrams of a large-scale LED display
  • FIGS. 2A to 2C are diagrams showing examples of components of a current LED display unit board
  • FIG. 3 is a flowchart of a display driving method of an LED display screen provided in the first embodiment of the application
  • 4A to 4B are schematic diagrams of characteristics of an LED
  • FIG. 5 is an equivalent circuit diagram of an LED
  • FIG. 6 is a flowchart of a display driving method for an LED display screen provided in the second embodiment of the present application.
  • FIG. 7 is a schematic diagram of comparison of time proportions provided in the second embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a display driving device for an LED display screen provided in the third embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an LED display screen provided in Embodiment 4 of this application.
  • FIG. 10 is a schematic structural diagram of an LED control system provided by Embodiment 5 of the application.
  • FIG. 11 is a schematic structural diagram of an electronic device according to Embodiment 6 of this application.
  • the LED display screen referred to in this embodiment is usually a large-scale LED display screen, as shown in Figure 1A and Figure 1B, the LED display screen generally includes the following parts:
  • Sending card 101 is also called controller, video sending card, video controller, video processing sending card, video processing controller, etc. It is mainly used to receive DVI (Digital Visual Interface), HDMI (High Definition Multimedia Interface) Definition multimedia interface) and other standard video signals, decode the video signal, convert it to standard RGB, YCrCb or YUV format video signal, and, for the receiving card, perform preprocessing of the target video signal, cropping of the display area, etc. After that, the corresponding partial video signal is obtained, and the target video signal is output to the receiving card 102 through an interface defined by the control system (such as a gigabit network interface, etc.).
  • DVI Digital Visual Interface
  • HDMI High Definition Multimedia Interface
  • the receiving card 102 also known as the module control board, is the back-end device of the sending card. It is mainly used to receive the target video signal output by the sending card, and perform Gamma meter (gamma meter, also known as Gamma curve) correction, brightness processing, Multi-level data processing such as color space correction and LED point-by-point correction, and the processed target video signal is transmitted to the LED according to the principle of the LED display unit board 103 and the control sequence required by the driving control chip. Display unit board 103.
  • Gamma meter gamma meter, also known as Gamma curve
  • the receiving card 102 can be cascaded and hung behind the sending card 101 to form a link of sending card 101-receiving card 102-receiving card 102...receiving card 102.
  • LED display unit board 103
  • the LED display unit board 103 is also called an LED light board, an LED module, an LED module, etc., and contains LED lamp beads that can emit three colors of red (R), green (G), and blue (B) to display local video signals.
  • one receiving card 102 can control one or more LED display unit boards 103 to form an LED display box 120 (also called box, LED display single box, etc.), that is, one LED display box 120 contains 1
  • One receiving card 102 and one or more boxes 120 can be spliced together to form the entire LED display screen.
  • the sending card 101 and the receiving card 102 mentioned above are the control system 110 of the LED display, and the LED display unit board 103 is the screen of the LED display controlled by the control system.
  • the sending card 101 and the receiving card 102 It is integrated into a device that directly controls the screen of the LED display. This fused device also belongs to the control system of the LED display.
  • the LED display control system has different product forms. Some of the control systems are dedicated systems, that is, the control system of the LED display developed by a certain manufacturer, which is only used for the LED display developed by the manufacturer. Use; part of the control system is a general-purpose system, that is, the control system of the LED display developed by a certain manufacturer, which is market-oriented and can support the use of the LED display developed by other manufacturers. However, whether it is a dedicated system or a general-purpose system, what it accomplishes is the function of controlling the screen body of the LED display, which belongs to the control system of the LED display.
  • the aforementioned large LED screens such as large LED display screens, can be applied to at least one of the following scenarios:
  • the video background wall of the festival gala stage For example, the video background wall of the festival gala stage, the video background wall of the banquet hall, and so on.
  • billboards on the side of highways advertising screens outside shopping malls and office buildings, and so on.
  • wall-mounted display screens are installed in large conference rooms, and so on.
  • light pole screen For example, light pole screen, and so on.
  • LED array composed of row lines, column lines and LED lamp beads
  • the LED array composed of row and column lines and LED lamp beads is the part of the final display screen.
  • the LED array shown in Figure 2A is a circuit of row power supply and column control type.
  • the LED array has 4*4 pixels and a total of 4 row lines (LINE 1, LINE 2, LINE 3, LINE 4). ), each pixel is composed of three independent LED lamp beads that emit red (R), green (G), and blue (B).
  • Scanning power supply control circuit for LED array because there are many types of MOS (metal-oxide-semiconductor, metal-oxide-semiconductor) tubes used for LED row line control, for example: the most basic 138 circuit decoding control 4953MOS tube For power supply, there are also RT5957, ICND2018 and other row MOS tubes dedicated to the integrated decoding and blanking control of the LED display unit board.
  • MOS metal-oxide-semiconductor, metal-oxide-semiconductor
  • the 138 decoder is a 3-wire to 8-wire decoding, that is, the binary CBA is in 8 states from "000" to "111". 1 channel is valid, the other 7 channels are invalid.
  • the 4953MOS tube can be understood as an electronic switch. When the G connection signal is valid, S and D are turned on; when the G connection signal is invalid, S and D are open.
  • the 4953MOS transistor input terminal is connected to the power supply VCC. Then, when the front end CBA is "000”, “001”, “010”, and “011” in turn, it will control "CON1 is valid, the other 3 channels are invalid", “CON2 is valid, and the other 3 channels are invalid", “ CON3 is valid, the other 3 channels are invalid”, “CON4 is valid, and the other 3 channels are invalid” cycle in turn; and then through the 4953MOS tube, the purpose of controlling LINE1, LINE2, LINE3, and LINE4 to scan power supply in turn is realized.
  • UR, UG, and UB are LED displays, such as constant current drive chips dedicated to large-scale LED displays.
  • Common constant current drive chips include SUM20167, MBI5036, etc., self-decoding constant current
  • the driver chip includes SUM2033, ICN2053, MBI5153, etc., and its functions include two points:
  • the first point is to control its sink output channel.
  • the current passing through is a constant value, and the constant current is controlled by the independent current limiting resistor value of each constant current drive chip.
  • the constant current drive chip controls whether its perfusion output channel is opened and when it is opened. Moreover, each perfusion output channel can be individually controlled.
  • control signals required by the above functional modules and chips are all given to the LED display unit board by the control system of the LED display screen. These control signals can be output by the FPGA (Field-Programmable Gate Array) chip on the receiving card in the control system of the LED display screen.
  • FPGA Field-Programmable Gate Array
  • the LED display unit board in order to ensure accurate white balance, and the brightness ratio of red (R), green (G), and blue (B), different current values will be selected according to the target color temperature.
  • the turn-on and cut-off speeds of the LED lamp beads in the LED array are different under different currents; and the volt-ampere characteristics of the LED lamp beads of different colors are not consistent, so red (R) and green (G) are emitted.
  • the turn-on and turn-off speeds of the blue (B) three-color LED lamp beads are inherently different.
  • the LED array When displaying a low-brightness picture, the LED array emits red (R), green (G), and blue (B) LED lamp beads. , The cut-off speed is different. Given the same control pulse width, that is, the same control on time, the actual on time of the red (R), green (G), and blue (B) LED lamp beads is parallel The difference is that the brightness ratio of the three colors of red (R), green (G), and blue (B) in the low-brightness screen appears, and the red (R), green (G), and blue ( B) The brightness ratio of the three colors is inconsistent.
  • the intuitive performance is that the low-brightness white color temperature is inconsistent with the high-brightness white color temperature. This phenomenon is the "low gray color cast" phenomenon.
  • the LED driver chip When adjusting the display quality of the LED display, the LED driver chip is usually used to control the pre-charge voltage and current of the LED lamp bead before it is turned on, and the negative voltage value of the LED lamp bead when it is turned off to balance the PCB traces of the rows and columns.
  • the influence of parasitic capacitance on the display effect, these operations will cause the "low gray color cast" phenomenon to become more serious.
  • Fig. 3 is a flowchart of a display driving method for an LED display screen provided in the first embodiment of the application.
  • This embodiment is applicable to the case of performing compensation according to the frequency of conduction of the LED lamp beads.
  • the display device is implemented, and the display device of the LED display screen can be implemented by software and/or hardware, and can be configured in the control system of the LED display screen.
  • this embodiment can be implemented in the FPGA chip of the receiving card, specifically executed every time the LED display screen refreshes the display screen, that is, every time the sending card sends the reference gamma value.
  • the method specifically includes the following steps:
  • S301 Determine a reference gamma value set by the LED lamp beads in the LED display screen in a preset display period.
  • the preset display period may specifically be the continuous display time of one frame of picture.
  • S302 Determine how often the LED lamp bead is turned on during the display period.
  • S303 Compensate the reference gamma value according to the frequency of conduction to obtain the target gamma value.
  • This embodiment belongs to a system-level low-gray color cast compensation scheme.
  • its implementation is a control system based on an LED display screen, which can be implemented through programming of an FPGA chip without modifying the board-level hardware circuit of the LED display unit.
  • the de-shadow action of the driver chip will also affect the turn-on and cut-off speed of the lamp beads; and red (R), green (G), and blue (B) are emitted.
  • the volt-ampere characteristics of the colored LED lamp beads are also not consistent, so the turn-on and cut-off speeds of the LED lamp beads that emit red (R), green (G), and blue (B) are different in themselves.
  • LED lamp beads also known as light-emitting diodes, are made of III-IV compounds, such as GaAs (gallium arsenide), GaP (gallium phosphide), GaAsP (gallium arsenide phosphorous) and other semiconductors, and its core is a PN junction . Therefore, it has the I-N characteristics of a general P-N junction, that is, forward conduction, reverse cutoff, and breakdown characteristics. In addition, under certain conditions, it also has light-emitting properties. Under the forward voltage, electrons are injected into the P zone from the N zone, and holes are injected into the N zone from the P zone. Part of the minority carriers (minority carriers) entering the opposing area recombine with the majority carriers (many carriers) to emit light.
  • III-IV compounds such as GaAs (gallium arsenide), GaP (gallium phosphide), GaAsP (gallium arsenide phosphorous) and other semiconductors, and its core is
  • the factor directly related to its light-emitting characteristics is the magnitude of the current I.
  • the luminous characteristics of the LED lamp beads which are the volt-ampere characteristics as shown in FIG. 4A and the relative light intensity and forward current characteristics as shown in FIG. 4B.
  • the present embodiment focuses more on the relative light intensity and forward current characteristics.
  • This characteristic represents the luminous intensity of the LED lamp bead when the current value I is given.
  • the characteristic curve is related to the semiconductor material of the light-emitting layer used in the light-emitting diode and the packaging process of the LED lamp bead.
  • LED lamp beads emit different colors of red (R), green (G), and blue (B), the material of the light-emitting layer is different. Therefore, in terms of relative light intensity and forward current characteristics, the difference between red (R), green (G), and blue (B) is particularly obvious. This is also one of the reasons for the difference between the red (R), green (G), and blue (B) current values of the LED display unit board to determine the white balance. The other reason is that the white brightness is The proportions of red (R), green (G), and blue (B) brightness are different in themselves. Therefore, when the required color temperature is determined, the brightness of the three colors of red (R), green (G), and blue (B) is often adjusted to meet the requirements of the required color temperature.
  • the LED lamp bead is simplified into an equivalent circuit to explain the turn-on and cut-off time of the LED lamp bead.
  • the LINE terminal is an ideal wire line power supply terminal (that is, without any internal resistance and parasitic capacitance); the terminal is an ideal constant current drive chip perfusion output terminal (that is, without any internal resistance and parasitic capacitance); the LED is without any internal resistance and is not conductive LED lamp beads with any voltage drop; resistor R1 is the equivalent internal resistance of the row line and LED; resistor R2 is the equivalent internal resistance of the constant current drive chip; C1 is the equivalent parasitic capacitance of the entire link (including the PN junction capacitance of the LED , Row line, column line parasitic capacitance, etc.).
  • the LED needs to be turned off to on, increase the LINE voltage, lower the terminal voltage, and discharge C1.
  • the voltage of the anode of C1 drops below the LINE voltage
  • the LED starts to conduct (that is, there is current flowing); and as C1 continues to discharge, the voltage of the anode of C1 gradually decreases, and the current flowing through the LED gradually increases; when the balance is finally reached At this time, the current flowing through the LED is the largest, and the LED reaches the brightness of the normal constant current at this time.
  • the time used is the turn-on time that the LED display unit panel pays attention to during the display process.
  • the LED is turned on to off, it is the opposite direction of the above process. It is necessary to reduce the LINE voltage, increase the terminal voltage, and charge C1.
  • C1 When C1 is charged, the voltage of the positive electrode of C1 begins to rise, and the current flowing through the LED begins to decrease; when the voltage of the positive electrode of C1 rises to higher than the LINE voltage, the final equilibrium is reached, the current flowing through the LED completely disappears, and the LED is cut off at this time Status, the light is completely off. From the beginning of charging C1 to the complete disappearance of the current flowing through the LED, the time used is the cut-off time that the LED unit board pays attention to during the display process.
  • the state of the LINE terminal is the state when the LED is on and off; the state of the terminal is when the LED is on and off.”
  • the cut-off time is completely determined by the R1, R2, and C1 of the hardware link, and is basically a fixed value.
  • the turn-on speed and turn-off speed of the LED can be controlled.
  • the voltage value provided when the R1 terminal is turned off the speed at which the LED is turned on and off can also be controlled.
  • the LED lamp beads in the LED display screen are blanked, such as accelerating the turn-off speed of the LED lamp beads and reducing the turn-on speed of the LED lamp beads, that is, when the gamma value Gamma is constant
  • the row and column drive chips adjust the voltage and current values when the LED lamp beads are turned off, so that the LED lamp beads can be turned off more easily, thereby eliminating the problem of "invisible light” caused by the parasitic capacitance of the row and line.
  • the state of the LED lamp beads in the LED display can be determined through the timing, that is, if the previously agreed timing is to drive the LED lamp bead display on the LED driver chip Previously, the LED driver chip performed blanking processing and the receiving card compensated the gamma value issued by the sending card.
  • the receiving card receives the gamma value issued by the sending card, it can confirm that the LED lamp beads in the LED display have been processed. Blanking processing. If this state indicates that the LED lamp beads in the LED display screen have been blanked, it is determined that the gamma value set by the sending card and other components to the LED lamp beads is the reference gamma value.
  • the blanking processing is the processing of the LED driver chip.
  • the low gray compensation in this embodiment is the processing of the receiving card. The two are independent of each other.
  • the blanking processing does not modify the gamma value.
  • the gamma value Gamma received by the receiving card can also be set as the reference gamma value, which is not added in this embodiment. limit.
  • the LEDs emitting red (R), green (G), and blue (B) should all be on. However, due to the on-time, it is not actually all three colors. Bright. In addition, the current is actually determined according to the color temperature requirements. The current of the green (G) LED lamp is generally the largest, followed by the current of the red (R) LED lamp, and the current of the blue (B) LED lamp. The current is the smallest, and the magnitude is smaller than the other two colors. According to the analysis of the equivalent circuit shown in Figure 5, it can be seen that the smaller the constant current value, the more time it takes to turn on.
  • the on-time is basically on the order of 10 -7 s, that is, the on-time is at the level of 100ns.
  • the minimum unit display time given by the gray-scale display clock is on the order of 10 -8 s, which is mostly around 40 ns, which may be smaller for higher refresh and higher scan count display screens. Increasing blanking processing may produce longer on-time, which brings problems.
  • the minimum time unit of grayscale decoding will be smaller than the response time of LED lamp beads, resulting in more serious "low gray color cast" phenomenon .
  • the current driver chip manufacturers have added the function of low-gray concentrated display in the drive constant current chip, which can display multiple minimum time units together, increase the low-gray compensation function of the driver chip, and let the LED lamp bead as much as possible.
  • the pass time is guaranteed, but because driving the constant current chip also has to bear the blanking process, the result is not satisfactory enough, that is, the compensation effect is insufficient, and if the compensation is too large, the blanking process effect will be affected.
  • this embodiment adopts a method of processing data from the control system of the LED display screen, and adds system-level low-gray compensation according to the display mechanism of the LED drive chip.
  • the most direct compensation method that the control system can achieve is to make additional adjustments to the red (R), green (G), and blue (B) display pulse widths every time the LED lamp bead is turned on.
  • the adjustment can be directly adjusted and compensated for the Gamma value of the final displayed red (R), green (G), and blue (B) color data.
  • the compensation step of this adjustment method is the entire smallest Display period, but it can be compensated separately for red (R), green (G), and blue (B).
  • this embodiment uses compensation for the final displayed RGB data (ie, the reference gamma value).
  • this embodiment determines the frequency of the LED lamp bead being turned on in the entire display period of a frame of the current RGB data (reference gamma value), and then it is possible to know how many turn-on times are lost, and accordingly , Increase the compensation value several times to obtain the compensated RGB data (target gamma value).
  • the current RGB data (reference gamma value) makes the LED lamp bead turn on once, then increase the compensation value once to compensate for the loss of the first turn-on time; in the same way, the LED lamp bead is turned on 2 times, loss of 2 times of on-time, then increase the compensation value twice to compensate for the lost 2 times of on-time.
  • the gamma curve will be set first, that is, the gamma meter of the control system.
  • the gamma meter will set the image gray scale from 0 to 255 (Image Gray Scale, aGS, 8bit)—A 16-bit display gray scale (Display Gray Scale, DGS, 16bit) mapped to 0-65535, where the display gray scale linearly represents the time duty cycle.
  • the display gray scale is compensated to obtain the target gamma value.
  • the LED driving chip can be called to drive the LED lamp bead to turn on according to the time duty ratio indicated by the target gamma value.
  • the FPGA chip can also preprocess the Gamma table (gamma table) in the same compensation method before the sending card sends the reference gamma value. Compensation is performed in the level gamma value, and the reference gamma value is used to look up the time duty cycle in the Gamma table after compensation. At this time, the reference gamma value can be considered to be compensated to obtain the time duty cycle corresponding to the target gamma value This embodiment does not impose restrictions on this.
  • This embodiment provides a system-level compensation scheme to determine the reference gamma value set for the LED lamp beads in the LED display screen in the preset display period, and determine the frequency of the LED lamp beads conducting in the display period, according to the conduction Frequently compensate the reference gamma value to obtain the target gamma value, and drive the LED lamp bead display according to the target gamma value.
  • This solution can be implemented in the LED display control system through coding, without the need for the hardware of the LED display control system
  • the modification has a lower technical threshold, low cost, and easy promotion. It can take into account the parasitic capacitance of the LED driver chip to balance the row and column PCB traces.
  • the LED lamp bead can be turned on when it is turned on.
  • the cut-off speed is the same or similar, so as to slow down or eliminate the phenomenon of low gray color cast.
  • this embodiment does not affect the way of brightness adjustment. Regardless of whether the Gamma table is used to adjust the brightness or the Gamma table is directly calculated for brightness adjustment, the compensation effect will not be affected, and the compatibility is strong.
  • this embodiment can take into account the low gray color cast method, and the adjustment range is larger, which can make up for the problem that the register adjustment cannot slow down or eliminate the low gray color cast phenomenon.
  • the method provided in this embodiment is simple, efficient and convenient, and takes less time.
  • This embodiment can complete the low gray deviation of a single LED cabinet in 1-2 minutes. Color compensation is more convenient for large-scale use, and the problem of low gray color cast can be slowed down or eliminated in batches before the LED display leaves the factory.
  • FIG. 6 is a flowchart of a display driving method for an LED display screen provided in the second embodiment of the application. This embodiment is based on the foregoing embodiment, and further refines the processing operation of calculating the turn-on period and compensating the gamma value. The method specifically includes the following steps:
  • the LED lamp beads in the LED display screen include LED lamp beads that emit three colors of red (R), green (G), and blue (B), and emit three colors of red (R), green (G), and blue (B).
  • the color LED lamp beads can be controlled independently, therefore, you can separately confirm the reference gamma value set by the sending card to the red (R) LED lamp beads in the preset display period, as the red reference gamma value Xr, confirm The reference gamma value set in the preset display period for the green (G) LED lamp bead is used as the green reference gamma value Xg, and confirm that the red and blue (B) LED lamp bead is in the preset display The reference gamma value set in the period is used as the blue reference gamma value Xb.
  • S602. Determine the gamma value when the LED lamp bead is turned on once in the display period as the standard gamma value.
  • the minimum demarcation value ⁇ Gray and grayscale dispersion coefficient ⁇ pwmmode of the decoded grayscale of the LED driver chip can be determined.
  • the minimum demarcation value ⁇ Gray and grayscale dispersion coefficient ⁇ pwmmode are adjustable parameters.
  • the minimum demarcation value ⁇ Gray and grayscale dispersion coefficient ⁇ pwmmode can be read from the register of the LED driver chip. ⁇ pwmmode.
  • the LED driver chips currently in use basically have a limit on the number of bits of grayscale decoding.
  • the limit on the number of bits of gray-scale decoding is more related to the control system of the LED display on the ordinary LED driver chip; on the self-decoding LED driver chip, it is related to the driver chip itself and the display cycle decoding GCLK clock number .
  • the data bits of the Gamma table are all 16 bits, and the commonly used LED driver chips have 13bits, 14bits, 15bits, and 16bits in the commonly used grayscale decoding bits, the accuracy of the corresponding Gamma table data values will be greater than or equal to the actual The number of decoded grayscale bits, which results in the effective grading of grayscale data.
  • the gray scale dispersion coefficient ⁇ pwmmode refers to the gray scale of the response within a few times of the minimum pulse width, without splitting, and concentrated display. This is the low gray concentrated display function of the LED driver chip, which means that the LED driver chip will How many minimum display unit times are displayed in a centralized manner. Commonly used are 1, 2, 4, and 8.
  • the product of the minimum demarcation value of the decoded grayscale and the grayscale dispersion coefficient can be calculated as the gamma value when the LED lamp bead is turned on once in the display period, so as to obtain the standard gamma value.
  • the ratio between the reference gamma value and the gamma value can be calculated, and the ratio can indicate the frequency of conduction of the LED lamp bead.
  • the ratio between the calculated reference gamma value and the standard gamma value is an integer, the ratio can be directly set as the frequency of the LED lamp bead being turned on in the preset display period.
  • the ratio can be rounded up by removing the decimal place and then adding 1 to the whole (that is, taking the value that is larger than the ratio and is an integer, For example, if the ratio is 3.1, it will be rounded up to 4), as the frequency of LED lamp bead conduction in the display period, or the ratio can be rounded down by removing decimal places (that is, the ratio is smaller than the ratio). , And is an integer value, for example, the ratio is 3.1, then rounded up to 3), as the frequency of LED lamp bead conduction in the display cycle.
  • S604 Determine the frame refresh rate of the LED lamp beads.
  • the frame refresh rate ReFreshRate commonly used as 64 (that is, 3840Hz display refresh at 60Hz frame rate), 32, refers to the same frame of the same screen, LED display unit board, within one frame time, complete the display scan refresh times. It should be noted that the frame refresh rate ReFreshRate is the same for the LED display screen, the LED lamp beads, and the LED driver chip.
  • the frame refresh rate ReFreshRate is related to the timing of the control.
  • the parameters of the LED display (such as the number of pixels, the refresh rate of the pixels, etc.) can be read from the specified register, and the parameters are used according to the preset
  • the function relationship formula calculates the frame refresh rate ReFreshRate.
  • the display pulse width will increase by 1 times the minimum pulse width for every phase difference of 8.
  • Gclk the narrowest EN pulse width of an ordinary LED driver chip).
  • the frame refresh rate is 64, that is, the maximum number of LED lamp beads per second is 64.
  • the gray scale scattering coefficient is 8, which means that the gray scale of the response is within 8 times of the minimum pulse width, and it is displayed in a concentrated manner without splitting.
  • S605 Calculate a compensation coefficient based on the frequency of the LED lamp bead being turned on during the display period and the frame refresh rate.
  • the frequency of conduction can be compared with the frame refresh rate.
  • the frequency of conduction is assigned to the compensation coefficient, so that the lost conduction time can be compensated for the complete display cycle; if the frequency of conduction is greater than or equal to the frame refresh rate, the frame is refreshed The rate is assigned to the compensation coefficient, so that the lost conduction time can be compensated as much as possible at the upper limit of the display period.
  • the LED lamp beads emitting red (R), green (G), and blue (B) can be independently controlled, the LED lamp beads emitting red (R) color can be The frequency of the red (R) LED lamp bead conduction is compared with the frame refresh rate.
  • the turn-on frequency of the red (R) LED lamp bead is less than the frame refresh rate, then assign the turn-on frequency to the compensation coefficient of the red (R) LED lamp bead as the red compensation coefficient Yr; if The turn-on frequency is greater than or equal to the frame refresh rate, then the frame refresh rate is assigned to the compensation coefficient of the red (R) LED lamp bead as the red compensation coefficient Yr, namely:
  • the frequency of conduction of the LED lamp bead emitting green (G) color can be compared with the frame refresh rate.
  • the frequency of conduction of the green (G) LED lamp bead is less than the frame refresh rate, the number of times of conduction is assigned to the compensation coefficient of the green (G) LED lamp bead as the green compensation coefficient Yg; if The frequency of the LED lamp bead emitting green (G) color is greater than or equal to the frame refresh rate, then the frame refresh rate is assigned to the compensation coefficient of the LED lamp bead emitting green (G) color as the green compensation coefficient Yg, namely :
  • the frequency of conduction of the LED lamp bead emitting blue (B) color can be compared with the frame refresh rate.
  • the turn-on frequency of the blue (B) LED lamp bead is less than the frame refresh rate, then assign the turn-on frequency to the compensation coefficient of the blue (B) LED lamp bead as the blue compensation coefficient Yb; if The frequency of the LED lamp bead emitting blue (B) color is greater than or equal to the frame refresh rate, then the frame refresh rate is assigned to the compensation coefficient of the LED lamp bead emitting blue (B) color as the blue compensation coefficient Yb, namely :
  • S606 Use the compensation coefficient to compensate the reference gamma value to obtain the target gamma value.
  • compensation can be performed based on the compensation coefficient to obtain the target gamma value, thereby realizing compensation for the on-time loss of the LED lamp beads, so that red (R) and green are emitted.
  • (G) and blue (B) LED lamp beads have the same or similar turn-on time.
  • the preset loss gamma value can be determined by reading from the designated register, etc., because the LED lamp beads emitting red (R), green (G), and blue (B) can be independently controlled Therefore, the loss gamma value can be set for the red (R) LED lamp bead as the red loss gamma value ⁇ R, and the loss gamma value for the green (G) LED lamp bead can be set as the The green loss gamma value ⁇ G is the loss gamma value set for the blue (B) LED lamp bead as the blue loss gamma value ⁇ B.
  • the loss gamma value (such as ⁇ R, ⁇ G, ⁇ B) is adjusted according to the actual situation when the problem of low gray color cast is finally debugged. Specifically, when the low gray white screen is displayed, use the colorimeter to observe, Determine how to compensate the LED lamp beads that emit red (R), green (G), and blue (B).
  • the loss gamma value (such as ⁇ R, ⁇ G, ⁇ B) that does not need to be compensated is 0, and the compensated loss gamma
  • the maximum value of the value (such as ⁇ R, ⁇ G, ⁇ B) is generally 255, and after compensation, use the colorimeter to observe the effect of compensation.
  • the value range of the loss gamma value (such as ⁇ R, ⁇ G, ⁇ B) is determined by its low gray compensation, and the value range is generally 0-255. Under normal circumstances, the display data reaches 255, which is already Correspondingly, the gray level is above 20.
  • the product of the compensation coefficient and the loss gamma value is calculated as the compensation gamma value, and the sum of the reference gamma value and the compensation gamma value is used as the target gamma value.
  • the LED lamp beads emitting red (R), green (G), and blue (B) colors can be independently controlled, for the LED lamp beads emitting red (R) color, set the set loss gamma value as red Loss gamma value ⁇ R, set the loss gamma value for the LED lamp bead emitting green (G), as the green loss gamma value ⁇ G, set the set loss gamma value for the LED lamp bead emitting blue (B) color Value, as the blue loss gamma value ⁇ B.
  • the product of the red compensation coefficient Yr and the red loss gamma value ⁇ R can be calculated as the red compensation gamma value, and the red reference gamma value and the red compensation gamma value Xr
  • the product of the green compensation coefficient Yg and the green loss gamma value ⁇ G can be calculated as the green compensation gamma value, and the green reference gamma value and the green compensation gamma value Xg
  • the product of the blue compensation coefficient Yb and the blue loss gamma value ⁇ B can be calculated as the blue compensation gamma value, and the blue reference gamma value and the blue compensation gamma value Xb
  • the display time ratio of LED lamp beads that emit red (R), green (G) and blue (B) colors is displayed.
  • the display time ratio does not indicate the brightness ratio, but the monochrome The percentage of the effective display time in the sum of the three-color effective display time.
  • the conduction of the LED lamp beads is a gradual process, that is, the current reaches the required value from nothing. Yes, the LED lamp beads reach the required brightness is a gradual change process.
  • the gradual process is idealized as an absolute process, that is, the idealized current reaches the required value from nothing, and it is an instantaneous operation for the LED lamp beads to reach the required brightness.
  • the display time ratio has a great deviation, the red (R) is 44.44%, the green (G) is 47.22%, and the blue (B) is 8.34%, which can affect the actual human eye perception.
  • the red (R), green (G), and blue (B) blanking processing causes the same reduction in the effective time of each color.
  • the horizontal ratio can be the proportion of time in the above cases, as shown in the following table:
  • the gamma value displayed when the LED lamp bead is turned on once the reference gamma value and other parameters are used to calculate the frequency of the LED lamp bead being turned on in the preset display period, and the compensation coefficient is calculated by the frame refresh rate.
  • the parameter adjustment method is used, the calculation amount is small, the operation is simple, and the calculation time can be greatly reduced.
  • FIG. 8 is a schematic structural diagram of a display driving device for an LED display screen provided in the third embodiment of the application.
  • the device may specifically include the following modules:
  • the reference gamma value determination module 801 is configured to determine the reference gamma value set by the LED lamp beads in the LED display screen in a preset display period;
  • the turn-on frequency determination module 802 is used to determine the turn-on frequency of the LED lamp bead in the display period
  • the target gamma value calculation module 803 is configured to compensate the reference gamma value according to the frequency of conduction to obtain a target gamma value
  • the LED lamp bead driving display module 804 is configured to drive the LED lamp bead to display according to the target gamma value.
  • the reference gamma value determining module 801 includes:
  • the blanking determination sub-module is used to determine the gamma value set for the LED lamp bead as a reference gamma value if the blanking process has been performed on the LED lamp bead in the LED display screen.
  • the conduction frequency determination module 802 includes:
  • the single gamma value determination sub-module is used to determine the gamma value when the LED lamp bead is turned on once in the display period, as the standard gamma value;
  • the turn-on frequency calculation sub-module is configured to calculate the turn-on frequency of the LED lamp bead in the display period based on the ratio between the reference gamma value and the standard gamma value.
  • the single gamma value determination sub-module includes:
  • the decoding parameter determination unit is used to determine the minimum demarcation value of the decoding gray scale and the gray scale scattering coefficient of the LED driving chip;
  • a parameter product calculation unit for calculating the product between the minimum demarcation value of the decoded grayscale and the grayscale dispersion coefficient as the gamma value when the LED lamp bead is turned on once in the display period .
  • the conduction frequency calculation submodule includes:
  • a ratio calculation unit configured to calculate the ratio between the reference gamma value and the standard gamma value
  • the rounding unit is used to round up the ratio as the frequency at which the LED lamp bead is turned on in the display period.
  • the target gamma value calculation module 803 includes:
  • Refresh frame rate determination sub-module used to determine the frame refresh rate of the LED lamp beads
  • a compensation coefficient calculation sub-module configured to calculate a compensation coefficient based on the frequency of the LED lamp bead being turned on in the display period and the frame refresh rate;
  • the gamma compensation sub-module is configured to use the compensation coefficient to compensate the reference gamma value to obtain a target gamma value.
  • the compensation coefficient calculation submodule includes:
  • a parameter comparison unit configured to compare the frequency of conduction with the frame refresh rate
  • the first assignment unit is configured to assign the frequency of conduction to the compensation coefficient if the frequency of conduction is less than the frame refresh rate;
  • the second assignment unit is configured to assign the frame refresh rate to the compensation coefficient if the frequency of conduction is greater than or equal to the frame refresh rate.
  • the gamma compensation sub-module includes:
  • the loss gamma value determining unit is used to determine the preset loss gamma value
  • a compensation gamma value calculation unit configured to calculate a product between the compensation coefficient and the loss gamma value as a compensation gamma value
  • the gamma value adding unit is configured to use the sum of the reference gamma value and the compensation gamma value as a target gamma value.
  • the display driving device of the LED display screen provided by the embodiment of the present application can execute the display driving method of the LED display screen provided in any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the LED display screen may specifically include an LED control system 910 and a plurality of LED display boxes 920; the LED control system includes a sending card and a receiving card , The LED display box includes one or more LED display unit boards, and the LED display unit boards include LED lamp beads;
  • the sending card is used to receive a video signal, decode and cut the video signal into multiple partial video signals, and transmit the partial video to the receiving card, and the receiving card implements an LED display Driving method, the method includes:
  • the LED lamp bead is driven to display according to the target gamma value.
  • the LED display screen provided by the embodiments of the present application is not limited to the above-mentioned method operations, and can also perform related operations in the display driving method of the LED display screen provided by any embodiment of the present application, with corresponding execution methods Functional modules and beneficial effects.
  • FIG. 10 is a schematic structural diagram of an LED control system provided by Embodiment 5 of the application.
  • the LED control system is applied to an LED display.
  • the LED display includes an LED display screen, a remote control and other components.
  • the LED control system include:
  • the sending card 1001 is configured to send a reference gamma value to a receiving card, where the reference gamma value is a gamma value set in a preset display period for the LED lamp beads in the LED display screen;
  • the receiving card 1002 is used to determine the frequency of conduction of the LED lamp bead in the display period, compensate the reference gamma value according to the frequency of conduction, and obtain a target gamma value, according to the target
  • the gamma value drives the LED lamp beads to display.
  • the LED driving control system provided by the embodiments of the present application can execute the display driving method of the LED display screen provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 11 is a schematic structural diagram of an electronic device according to Embodiment 6 of this application.
  • the electronic device includes a processor 1100, a memory 1101, a communication module 1102, an input device 1103, and an output device 1104; the number of processors 1100 in the electronic device may be one or more, and may include MCU (Microcontroller Unit). , Micro-control unit) and FPGA and other parts.
  • MCU Microcontroller Unit
  • FPGA field-programmable gate array
  • a processor 1100 is taken as an example; the processor 1100, the memory 1101, the communication module 1102, the input device 1103 and the output device 1104 in the electronic equipment can be connected by a bus or other means , Figure 11 takes the bus connection as an example.
  • the memory 1101 can include RAM and Flash (or ROM), which can be used to store software programs, computer executable programs, and modules, such as the module corresponding to the display driving method of the LED display in this embodiment (for example, the reference gamma value determination module 801, the conduction frequency determination module 802, the target gamma value calculation module 803, and the LED lamp bead driving display module 804 in the display driving device of the LED display screen shown in FIG. 8).
  • the processor 1100 executes various functional applications and data processing of the electronic device by running the software programs, instructions, and modules stored in the memory 1101, that is, realizes the above-mentioned display driving method of the LED display screen.
  • the memory 1101 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the electronic device and the like.
  • the memory 1101 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1101 may further include a memory remotely provided with respect to the processor 1100, and these remote memories may be connected to an electronic device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 1102 is used to establish a connection with the display screen and realize data interaction with the display screen.
  • the input device 1103 can be used to receive input digital or character information, and to generate key signal input related to user settings and function control of the electronic device. It can also be a camera for acquiring images and a pickup device for acquiring audio data.
  • the output device 1104 may include audio equipment such as speakers, and may also include multiple LED display cabinets.
  • the LED display cabinets include one or more LED display unit boards, and the LED display unit boards include LED lamp beads.
  • composition of the input device 1103 and the output device 1104 can be set according to actual conditions.
  • the processor 1100 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 1101, that is, realizes the above-mentioned method for controlling the connection node of the electronic whiteboard.
  • the electronic device provided in this embodiment can execute the display driving method of the LED display screen provided in any embodiment of the present application, with specific corresponding functions and beneficial effects.
  • the seventh embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, a display driving method of an LED display screen is realized, and the method includes:
  • the LED lamp bead is driven to display according to the target gamma value.
  • the computer program of the computer-readable storage medium provided by the embodiments of the present application is not limited to the method operations described above, and can also perform related operations in the display driving method of the LED display screen provided by any embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种LED显示屏的显示驱动方法、装置、系统、设备和存储介质,方法包括:确定对LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值(S301);确定LED灯珠在显示周期中导通的频次(S302);根据导通的频次对参考伽马值进行补偿,获得目标伽马值(S303);根据目标伽马值驱动LED灯珠显示(S304)。可在LED显示屏的控制系统通过编码实现,无需对LED显示屏的控制系统的硬件进行修改,技术门槛更低,成本低廉,容易推广,可以兼顾LED驱动芯片平衡行列PCB走线的寄生电容,同时,通过补偿LED灯珠导通的时间,使得LED灯珠导通时的导通、截止速度相同或相近,从而减缓或消除低灰偏色的现象。

Description

LED显示屏的驱动方法、装置、系统、设备和存储介质
本申请要求申请日为2020年4月17日、申请号为202010304860.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及LED显示技术,例如涉及一种LED显示屏的显示驱动方法、装置、系统、设备和存储介质。
背景技术
在LED(Light-Emitting Diode,发光二极管)显示屏,为保证拥有准确的白平衡,以及,红(R)、绿(G)、蓝(B)三色的亮度配比,根据目标色温不同,会选定不同的电流值。
但是,发出红(R)、绿(G)、蓝(B)三色的LED灯珠的特性有所不同,导致在显示低亮度的画面时,LED灯珠在低亮度下发出红(R)、绿(G)、蓝(B)三色的亮度配比,和高亮度下发出红(R)、绿(G)、蓝(B)三色的亮度配比不一致,简而言之,低亮度下的白色色温和高亮度下的白色色温不一致,这个现象就是“低灰偏色”现象。
例如,在调教LED显示屏显示的质量时,通常会通过LED驱动芯片控制LED灯珠平衡行列PCB(Printed Circuit Board,印制电路板)走线的寄生电容对显示效果的影响,这些操作都会导致“低灰偏色”现象更加严重。
发明内容
本申请实施例提供了一种LED显示屏的显示驱动方法、装置、系统、设备和存储介质,以解决LED显示屏在兼顾平衡行列PCB走线的寄生电容的同时,减缓低灰偏色的现象。
第一方面,本申请实施例提供了一种LED显示屏的显示驱动方法,包括:
确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
确定所述LED灯珠在所述显示周期中导通的频次;
根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
根据所述目标伽马值驱动所述LED灯珠显示。
第二方面,本申请实施例还提供了一种LED显示屏的显示驱动装置,包括:
参考伽马值确定模块,用于确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
导通频次确定模块,用于确定所述LED灯珠在所述显示周期中导通的频次;
目标伽马值计算模块,用于根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
LED灯珠驱动显示模块,用于根据所述目标伽马值驱动所述LED灯珠显示。
第三方面,本申请实施例还提供了一种LED显示屏,所述LED显示屏包括LED控制系统和多个LED显示箱体;所述LED控制系统包括发送卡、接收卡,所述LED显示箱体中包括一个或多个LED显示单元板,所述LED显示单元板中包括LED灯珠;
所述发送卡用于接收视频信号,对所述视频信号进行解码并裁剪为多个局部视频信号、将所述局部视频信号传输给所述接收卡,所述接收卡实现如第一方面所述的LED显示屏的显示驱动方法。
第四方面,本申请实施例还提供了一种LED控制系统,应用于LED显示器中,包括:
发送卡,用于将参考伽马值下发至接收卡,所述参考伽马值为对LED显示屏中LED灯珠在预设的显示周期中设置的伽马值;
接收卡,用于确定所述LED灯珠在所述显示周期中导通的频次,根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值,根据所述目标伽马值驱动所述LED灯珠显示。
第五方面,本申请实施例还提供了一种电子设备,所述电子设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面所述的LED显示屏的显示驱动方法。
第六方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所述的LED显示屏的显示驱动方法。
本实施例提供系统级的补偿方案,确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值,确定LED灯珠在显示周期中导通的频次,根据导通 的频次对参考伽马值进行补偿,获得目标伽马值,根据目标伽马值驱动LED灯珠显示,该方案可在LED显示屏的控制系统通过编码实现,无需对LED显示屏的控制系统的硬件进行修改,技术门槛更低,成本低廉,容易推广,可以兼顾LED驱动芯片平衡行列PCB走线的寄生电容,同时,通过补偿LED灯珠导通的时间,使得LED灯珠导通时的导通、截止速度相同或相近,从而减缓或消除低灰偏色的现象。
附图说明
图1A至图1B为一种大型的LED显示屏的架构图;
图2A至图2C为一种目前的LED显示单元板的组件示例图;
图3为本申请实施例一提供的一种LED显示屏的显示驱动方法的流程图;
图4A至图4B为一种LED的特性示意图;
图5为一种LED的等效电路图;
图6是本申请实施例二提供的一种LED显示屏的显示驱动方法的流程图;
图7是本申请实施例二提供的一种时间占比的对比示意图;
图8为本申请实施例三提供的一种LED显示屏的显示驱动装置的结构示意图;
图9为本申请实施例四提供的一种LED显示屏的结构示意图;
图10为本申请实施例五提供的一种LED控制系统的结构示意图;
图11为本申请实施例六提供的一种电子设备的结构示意图。
具体实施方式
本实施例中所指LED显示屏,通常为大型的LED显示屏,如图1A和图1B所示,LED显示屏一般包括以下几部分:
1、发送卡101
发送卡101又称控制器、视频发送卡、视频控制器、视频处理发送卡、视频处理控制器等,主要用于接收DVI(Digital Visual Interface,数字视频接口)、HDMI(High Definition Multimedia Interface,高清晰度多媒体接口)等标准的视频信号,对视频信号进行解码,转换为标准RGB、YCrCb或YUV等格式的视频信号,以及,针对接收卡,进行目标视频信号的预处理、显示区域裁剪等处理后,获得相应的局部视频信号,通过控制系统定义的接口(如千兆网接口等), 将目标视频信号输出送至接收卡102。
2、接收卡102
接收卡102又称模组控制板等,是发送卡的后端设备,主要用于接收发送卡输出的目标视频信号,并且进行Gamma表(伽马表,又称Gamma曲线)校正、亮度处理、颜色空间校正、LED逐点校正等多级数据处理,并将处理好的目标视频信号,按照LED显示单元板103原理及使用驱动控制芯片需求的控制时序,将处理好的目标视频信号传输至LED显示单元板103。
在实际应用中,接收卡102可以级联,挂在在发送卡101之后,形成的链路为发送卡101-接收卡102-接收卡102……接收卡102。
3、LED显示单元板103
LED显示单元板103又称LED灯板、LED模块、LED模组等等,包含可以发出红(R)、绿(G)、蓝(B)三色的LED灯珠,从而显示局部视频信号。
一般而言,一个接收卡102可以控制一个或多个LED显示单元板103,从而构成一个LED显示箱体120(又称箱体、LED显示单箱等),即一个LED显示箱体120包含1个接收卡102,一个或多个箱体120拼接可构成整个LED显示屏。进一步而言,上述发送卡101和接收卡102为LED显示屏的控制系统110,LED显示单元板103为控制系统所控制LED显示屏的屏体,在部分产品中,发送卡101和接收卡102融合为一个设备,直接控制LED显示屏的屏体,这个融合的设备,也属于LED显示屏的控制系统。
LED显示屏的控制系统,经过多年的发展,产品形态各有不用,部分控制系统是专用系统,即某个厂商研发的LED显示屏的控制系统,仅供该厂商研发的LED显示屏的屏体使用;部分控制系统是通用系统,即某个厂商研发的LED显示屏的控制系统,面向市场,可以支持其他厂商研发的LED显示屏的屏体使用。但是,不论是专用系统还是通用系统,其完成的都是控制LED显示屏的屏体的功能,都属于LED显示屏的控制系统。
在实际应用中,上述的LED大屏,例如大型的LED显示屏,可应用于如下至少一种场景:
1、舞台显示背景墙
例如,节日联欢晚会舞台的视频背景墙,宴会大厅的视频背景墙,等等。
2、户外商显
例如,高速公路边上的广告牌,商场和办公大楼外的广告显示屏,等等。
3、户内商显
例如,大型商场内的大型壁挂广告显示屏,等等。
4、体育显示
例如,大型球赛球场的环形长条广告屏,等等。
5、商务显示
例如,大型会议室固装壁挂显示屏,等等。
6、道路交通显示
例如,灯杆屏,等等。
在LED显示屏中,目前的LED显示单元板的硬件电路,大多数为共阳极LED灯珠,其包括如下几个部分:
1、行线、列线及LED灯珠组成的LED阵列
由行、列线及LED灯珠组成的LED阵列,为最终显示画面的部分。
如图2A所示的LED阵列,该LED阵列属于行供电、列控制类型的电路,该LED阵列为4*4像素,共4条行线(分别为LINE 1、LINE 2、LINE 3、LINE 4),每个像素由发出红(R)、绿(G)、蓝(B)三个独立的LED灯珠构成。
需要说明的是,目前较小间距的LED显示屏,红(R)、绿(G)、蓝(B)三色灯珠封装在同一结构内,但其原理依旧等效于图2所示的LED阵列。
如2图所示,就单像素点观察,连接红(R)、绿(G)、蓝(B)三色的LED灯珠的正极连接在一起,负极独立控制,该原理即为LED共阳极原理。其中,同一行的所有像素点的正极,连在统一的供电线上,称之为行线,用于扫描供电。同一列的同色灯的负极连接在一起,用于在扫描情况下,控制LED灯珠的通断和过电流。
通过上述组合,当LINE 1供电,LINE 2、LINE 3、LINE 4不供电时,列线R1\G1\B1、R2\G2\B2、R3\G3\B3、R4\G4\B4就可以实现,对第一行LED灯珠的独立控制,依次从LINE 1到LINE 2,再到LINE 3,最后到LINE 4进行扫描,就可以实现对每一颗LED灯珠,分行的不同时控制。
当行线LINE 1、LINE 2、LINE 3、LINE 4扫描速度足够快时,由于视觉暂留效应,用户肉眼就能看到这个4x4的LED阵列全部点亮。并且,由于列线控制了每一颗LED阵列的电流和开关状态,再进行扫描,就可以看到每一颗LED阵列的亮度是不同的,所以,对其列线再进行控制,就可以得到显示画面。
2、用于LED阵列的供电控制电路
用于LED阵列的扫描供电控制电路,由于用于LED行线控制的MOS(metal-oxide-semiconductor,金属-氧化物-半导体)管类型较多,例如:最基本的138电路译码控制4953MOS管供电,也有RT5957、ICND2018等专用于LED显示单元板的集成解码和消隐控制的行MOS管。
如图2B所示,以138电路(74HC138D NXP)译码控制4953MOS管(BR4953D)供电作为示例,在本示例中,LED阵列为4*4像素,共4条行线(分别为LINE 1、LINE 2、LINE 3、LINE 4)。
如图2B所示,138译码器为3线对8线译码,即二进制CBA为“000”到“111”共8种状态,对应译码出,同时仅选则输出的8路中的1路有效、其他7路无效。4953MOS管可以理解为电子开关,当G连接信号有效时,S和D导通;当G连接信号无效时,S和D开路。
在本示例中,将4953MOS管输入端,连接到电源VCC。那么,当前端CBA为“000”、“001”、“010”、“011”依次循环时,就依次控制了“CON1有效,其他3路无效”、“CON2有效,其他3路无效”、“CON3有效,其他3路无效”、“CON4有效,其他3路无效”依次循环;再通过4953MOS管,就实现了控制LINE1、LINE2、LINE3、LINE4依次扫描供电的目的。
3、用于LED阵列的电流及通断控制电路。
如图2C所示,UR、UG、UB即为LED显示屏,例如为大型的LED显示屏所专用的恒流驱动芯片,普通的恒流驱动芯片包括SUM20167、MBI5036等等,自解码的恒流驱动芯片包括SUM2033、ICN2053、MBI5153等等,其功能包括两点:
第一点,控制其灌流输出通道,在正常工作电压范围内,通过的电流为恒定值,恒定的电流大小由每个恒流驱动芯片独立的限流电阻阻值大小控制。
第二点,根据控制信号送入的数据和控制,恒流驱动芯片控制其灌流输出通道是否打开以及打开的时间。并且,每个灌流输出通道是可以单独控制的。
上述功能模块、芯片所需的控制信号,均由LED显示屏的控制系统给出到LED显示单元板。这些控制信号,可以由LED显示屏的控制系统中的接收卡上的FPGA(Field-Programmable Gate Array,现场可编程门阵列)芯片输出。
LED显示单元板,为保证拥有准确的白平衡,以及,红(R)、绿(G)、蓝(B)三色的亮度配比,根据目标色温不同,会选定不同的电流值。
而LED阵列中LED灯珠的导通、截止速度,在不同电流下,并不相同;而 且不同颜色的LED灯珠,其伏安特性也并不一致,所以发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通、截止速度,本身就不同。
由上述两点,就带来了以下的问题:在显示低亮度的画面时,由于LED阵列中,发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通、截止速度不同,在给出相同控制脉宽大小,即相同控制导通时间情况下,发出红(R)、绿(G)、蓝(B)三色的LED灯珠的实际导通时间并不相同,就出现了低亮度的画面下红(R)、绿(G)、蓝(B)三色的亮度配比,和高亮度的画面下红(R)、绿(G)、蓝(B)三色的亮度配比不一致,直观的表现就是,低亮度白色色温和高亮度白色色温不一致。这个现象就是“低灰偏色”现象。
在调教LED显示屏显示的质量时,通常还会通过LED驱动芯片控制其LED灯珠导通前预充电电压、电流,和截止时的LED灯珠负极电压值,用以平衡行列PCB走线的寄生电容对显示效果的影响,这些操作都会导致“低灰偏色”现象更加严重。
针对“低灰偏色”现象,在LED显示屏的控制系统中,可以通过以下方式解决:
1、依靠LED驱动芯片自身的补偿功能,调节“低灰偏色”的现象。
但是,因为LED驱动芯片还需要兼顾平衡行列PCB走线的寄生电容对显示效果的影响,多数情况是需要在“低灰偏色”和平衡行列PCB走线的寄生电容中进行权衡,所以,“低灰偏色”的补偿效果较弱,往往还是出现较为严重的“低灰偏色”的现象。
2、将红(R)、绿(G)、蓝(B)三色的Gamma表独立开来,并且分别向红(R)、绿(G)、蓝(B)三色各自的Gamma曲线校准。
但是,校准Gamma表后,不能再对参数进行调整,否则可能需要重新进行校准;校准Gamma表后,若再使用直接运算Gamma表的方式调节显示亮度,则可能在不同亮度下,依旧出现“低灰偏色”的现象,也就是说其效果大多是需要固定亮度的。
并且,校准Gamma表需要的工作量极大,单屏单次校准耗时通常需要4-8小时才能完成,并且必须要提前确定参数。
实施例一
图3为本申请实施例一提供的一种LED显示屏的显示驱动方法的流程图, 本实施例可适用于根据LED灯珠导通的频次进行补偿的情况,该方法可以由LED显示屏的显示装置来执行,该LED显示屏的显示装置可以由软件和/或硬件实现,可配置在LED显示屏的控制系统中。此时,本实施例可在接收卡的FPGA芯片中实现,具体在LED显示屏每次刷新显示画面,即发送卡每次下发参考伽马值时执行。
如图3所示,该方法具体包括如下步骤:
S301、确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值。
本实施例中,预设的显示周期具体可以是一帧画面的持续显示时间。
S302、确定LED灯珠在显示周期中导通的频次。
S303、根据导通的频次对参考伽马值进行补偿,获得目标伽马值。
S304、根据目标伽马值驱动LED灯珠显示。
本实施例属于系统级的低灰偏色补偿方案,顾名思义,其实现是基于LED显示屏的控制系统,可以通过FPGA芯片的编程实现,无需对LED显示单元板层级的硬件电路做修改。
为了解本实施例提供的系统级的低灰偏色补偿方案,首先了解“低灰偏色”的具体成因。在前一部分中,已经描述过,产生“低灰偏色”现象的成因是:
1、在不同电流下,LED阵列中灯珠的导通、截止速度并不相同。
2、为消除LED阵列中行、列线寄生电容的影响,驱动芯片的消影动作也会影响灯珠的导通、截止速度;而且发出红(R)、绿(G)、蓝(B)三色的LED灯珠,其伏安特性也并不一致,所以发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通、截止速度,本身就不同。
上述2个成因导致在LED显示屏的控制系统中,给出相同控制脉宽大小,即相同控制导通时间情况下,发出红(R)、绿(G)、蓝(B)三色的LED灯珠的实际导通时间并不相同。
需要明确的是,在参数固定的情况下,发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通、截止速度,虽然不相同,但其基本为固定值。
为使本领域技术人员更好地理解本实施例,在本实施例中,将划分如下结构进行说明:
一、LED灯珠的导通与截止
LED灯珠,也就是发光二极管,是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、 GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。
由上述发光原理可知,对于LED灯珠而言,与其发光特性直接相关的因素,为电流I的大小。在本实施例中,关注LED灯珠的发光特性,为如图4A所示伏安特性和如图4B所示的相对光强与正向电流特性。
由伏安特性可以得到,在固定电流I的情况下,在设计LED显示单元板供电部分时较为关注LED灯珠导通后的压降Vf这个指标。但是,该指标与电源部分相关,其对显示效果的影响并非直接因素。
而对于显示效果而言,本实施例更关注的是,相对光强与正向电流特性。该特性表示的是,当电流值I给定的情况下,LED灯珠的发光强度。其特性曲线和发光二极管采用的发光层半导体材料、LED灯珠的封装工艺相关。
因为LED灯珠发出红(R)、绿(G)、蓝(B)三色的不同,其发光层存在材料差异。所以,在相对光强与正向电流特性上,红(R)、绿(G)、蓝(B)三色的差异尤为明显。这也是导致,LED显示单元板,为确定白平衡,最终确定的红(R)、绿(G)、蓝(B)电流值差异的原因之一,另一个原因是因为显示白色时,白色亮度中红(R)、绿(G)、蓝(B)三色亮度的占比,本身就是不同的。所以在确定需求色温情况下,往往调整红(R)、绿(G)、蓝(B)三色的亮度满足需求色温的要求。
如图5所示,将LED灯珠简化为等效电路用以解释LED灯珠的导通和截止时间。
LINE端子为理想导线行供电端子(即无任何内阻及寄生电容);端子为理想恒流驱动芯片灌流输出端子(即无任何内阻及寄生电容);LED为无任何内阻且导通无任何压降的LED灯珠;电阻R1为行线和LED的等效内阻;电阻R2为恒流驱动芯片的等效内阻;C1为整个链路等效寄生电容(包括LED的PN结电容、行线、列线的寄生电容等)。
若需要LED从截止到导通,则提高LINE电压,降低端子的电压,将C1进行放电。当C1正极的电压降低至低于LINE电压,LED开始导通(即有电流流过);并且随着C1继续放电,C1正极电压逐步降低,流过LED的电流逐渐 增大;当最终达到平衡时,流过LED的电流最大,LED此时达到正常恒定电流下的亮度。从C1开始放电到最终达到平衡,所使用的时间,是LED显示单元板在显示过程中关注的导通时间。
若要LED从导通到截止,则为上述过程的相反方向,需要降低LINE电压,升高端子的电压,将C1充电。当C1充电,C1的正极的电压开始升高,流过LED的电流开始降低;当C1正极的电压升高至高于LINE电压,达到最终平衡,流过LED的电流完全消失,LED此时达到截止状态,灯完全不亮。从C1开始充电到流过LED的电流完全消失,所使用的时间,是LED单元板在显示过程中关注的截止时间。
“LINE端状态为LED导通时、截止时状态;端子的状态在LED导通、截止时状态”在控制情况不做调整时,是不会发生不变化的,所以,可以发现,导通时间和截止时间完全受硬件链路的R1、R2、C1决定,基本为固定值。此时,通过调节LINE端,调整其导通和截止时电压变化速度,可以控制LED的导通速度和截止速度。或者,通过调节R1端截止时提供的电压值,也可以控制LED导通和截止的速度。
二、消隐处理
在行线进行切换时,由于PMOS管开关的打开和关闭以及行线寄生电容Cr上的电荷泄放需要一段时间,因此在下一行扫LED灯珠与OUT开启瞬间,上一行扫LED灯珠的未释放的电荷有了导通路径。LINE(n)打开时,行寄生电容Cr充电到VCC电位。切换到LINE(n+1)时,Cr与OUT之间形成电位差,电荷通过灯珠进行泄放,产生“隐亮”(俗称鬼影)的现象。
而在LED显示屏在实际应用时,对LED显示屏中的LED灯珠进行消隐处理,如加速LED灯珠关断速度,降低LED灯珠导通速度,即在伽马值Gamma不变的情况下,行、列的驱动芯片,在LED灯珠截止时,调整电压值和电流值,使得LED灯珠更容易截止,从而消除行线寄生电容影响带来的“隐亮”等问题,此时,由于LED驱动芯片、接收卡的处理是存在既定的时序,因此,可以通过时序确定LED显示屏中LED灯珠的状态,即如果在先约定的时序为在LED驱动芯片驱动LED灯珠显示之前,LED驱动芯片进行消隐处理、接收卡补偿发送卡下发的伽马值,则接收卡在接收到发送卡下发的伽马值时,可确认已对LED显示屏中LED灯珠进行消隐处理,若该状态表示已对LED显示屏中LED灯珠进行消隐处理,则确定发送卡等部件对LED灯珠设置的伽马值为参考伽马值。
需要说明的是,消隐处理是LED驱动芯片的处理,本实施例中的低灰补偿是接收卡的处理,两者相互独立,消隐处理并不会修改伽马值,如果不对LED显示屏中的LED灯珠进行消隐处理,也会存在低灰偏色的现象,此时,也可以将接收卡所接收到的伽马值Gamma设置为参考伽马值,本实施例对此不加以限制。
按照此方式进行消隐处理,虽然消除了隐亮,但是带来了新的问题,就是“低灰偏色问题”。因为加速LED灯珠的关断速度,降低LED灯导通速度,这使得,当显示较暗灰度时,红(R)、绿(G)、蓝(B)配比变得不一致。
理想情况下,全部的显示周期内,发出红(R)、绿(G)、蓝(B)三色的LED灯珠应该全部亮,但是,由于导通时间的存在,实际并不是三色全部亮的。并且,实际根据色温要求确定电流,发出绿(G)色的LED灯珠的电流一般最大,其次是发出红(R)色的LED灯珠的电流,发出蓝(B)色的LED灯珠的电流最小,且大幅度小于其他两色。根据图5所示等效电路分析可知,若恒定电流值越小,其导通所需的时间越多。
假设消隐处理后,导致发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通时间变慢相同的时间值,那么,原始不调整消隐,和消隐处理后的红(R)、绿(G)、蓝(B)三色配比差异将极其巨大,色温会出现严重偏差,会出现低灰白色显示成黄色。
为了前例的“消隐”效果,难以平衡低亮度下的导通时间的配比,这就导致了低灰偏色现象的产生。
实际预期的显示周期内,红(R)、绿(G)、蓝(B)三色,显示成白色时,理论上有效显示时间占比,应该为红(R)、绿(G)、蓝(B)各占1/3。
原始的情况下,显示时间占比上已经出现了偏差,但是,由于人眼对极低亮度下色彩敏感性降低,差异不大,仍旧在可接受范围内。
在消隐后,显示时间占比上出现了极大的偏差,已经能够影响实际人眼观感了。
并且,由于LED灯珠自身的特性导致其导通时间,基本上都在10 -7s的数量级,即在100ns级别的导通时间,而为满足现在的高扫描行数、高刷新要求,的灰度显示时钟给出的最小单位显示时间在10 -8s的数量级,实际大多在40ns左右,针对更高刷新、更高扫描数显示屏的要求,可能会更小。而增加消隐处理可能会产生更长的导通时间,这就带来了问题,灰度解码的最小时间单位都会小过 LED灯珠的响应时间,导致更严重的“低灰偏色”现象。
目前的驱动芯片厂家针对这个问题,在驱动恒流芯片增加了低灰集中显示的功能,可以将多个最小时间单位集中显示,增加驱动芯片的低灰补偿功能,尽可能让LED灯珠的导通时间得到保证,但是,因为驱动恒流芯片还要负担消隐处理,得到的效果不足够理想,即补偿效果不足,且,若补偿过大,又会影响其消隐处理的效果。
三、根据导通的频次进行补偿
为解决该问题,本实施例,便采用从LED显示屏的控制系统,对数据进行处理的方式,根据LED驱动芯片的显示机制,增加了系统级的低灰补偿。
通过上述“低灰偏色”的成因可以了解到,若要实现对“低灰偏色”补偿,则可以将每一次LED灯珠导通时的导通、截止速度补偿到几乎不存在差异的情况。
那么,控制系统能够实现的补偿方式,最直接的就是在每一次LED灯珠导通时,对红(R)、绿(G)、蓝(B)三色的显示脉宽进行额外的调整。具体而言,该调整可以是直接针对最终显示的红(R)、绿(G)、蓝(B)三色的色彩数据的Gamma值进行调整补偿,这种调整方式补偿步进为整个最小的显示周期,但可以对红(R)、绿(G)、蓝(B)单独补偿。
基于上述调整的方式,由于不同LED驱动芯片对显示最小脉宽的控制方式是不相同的,所以补偿是有针对的进行调教。不同的LED驱动芯片,对显示的解码要求是不一样的。综合考虑,为了能够实现对各种解码要求的兼容,本实施例使用了针对最终显示的RGB数据(即参考伽马值)的补偿。
因为LED灯珠每次导通时的速度差异导致的“低灰偏色”现象,那么,每导通一次就会损失一部分导通时间。所以,本实施例确定了LED灯珠在当前RGB数据(参考伽马值)下,在一帧画面的全部显示周期中导通的频次,就可以知道损失了多少次的导通时间,相应地,增加几倍的补偿值,从而获得补偿之后的RGB数据(目标伽马值)。
就是说,若当前RGB数据(参考伽马值)使LED灯珠导通1次,那么,增加1次补偿值,将损失的1次导通时间,补偿回来;同理,LED灯珠导通2次,损失2次导通时间,那么,增加2次补偿值,将损失的2次导通时间,补偿回来。
进一步而言,对于LED显示屏,会先设置伽马曲线,即控制系统的伽马表,以16灰阶的控制系统为例,伽马表将0-255的图像灰阶(Image Gray Scale,aGS, 8bit)—一映射到0-65535的16位显示灰阶(Display Gray Scale,DGS,16bit),其中,显示灰阶线性表示时间占空比。
在本实施例中,对显示灰阶进行补偿,得到目标伽马值,此时,可调用LED驱动芯片,按照该目标伽马值所表示的时间占空比驱动LED灯珠导通。
当然,除了应用FPGA芯片直接对参考伽马值进行补偿之外,还可以在发送卡下发参考伽马值之前,以相同的补偿方式预处理Gamma表(伽马表),在Gamma表中每级伽马值中进行补偿,使用参考伽马值在补偿之后的Gamma表查找时间占空比,此时,可认为对参考伽马值进行补偿,从而获得目标伽马值对应的时间占空比,本实施例对此不加以限制。
本实施例提供系统级的补偿方案,确定对LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值,确定LED灯珠在显示周期中导通的频次,根据导通的频次对参考伽马值进行补偿,获得目标伽马值,根据目标伽马值驱动LED灯珠显示,该方案可在LED显示屏的控制系统通过编码实现,无需对LED显示屏的控制系统的硬件进行修改,技术门槛更低,成本低廉,容易推广,可以兼顾LED驱动芯片平衡行列PCB走线的寄生电容,同时,通过补偿LED灯珠导通的时间,使得LED灯珠导通时的导通、截止速度相同或相近,从而减缓或消除低灰偏色的现象。
此外,本实施例不影响亮度调节的方式,不论使用Gamma表调节亮度,还是使用直接运算Gamma表的方式进行亮度调节,都不会影响到补偿效果,兼容性强。
相比于LED驱动芯片(寄存器)调节的方式,本实施例可以兼顾低灰偏色的方式,调节范围更大,很好弥补寄存器调节不能减缓或消除低灰偏色的现象的问题。
与Gamma表校准单个LED箱体需要半天时间相比,本实施例提供的方法计算简单,高效便捷,耗时更短,本实施例在1-2分钟就可以完成单个LED箱体的低灰偏色补偿,更方便大规模使用,在LED显示屏出厂之前可以批量减缓或消除低灰偏色的现象的问题。
实施例二
图6为本申请实施例二提供的一种LED显示屏的显示驱动方法的流程图,本实施例以前述实施例为基础,进一步细化计算导通的周期、补偿伽马值的处 理操作,该方法具体包括如下步骤:
S601、确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值。在本实施例中,若应用在接收卡的FPGA芯片中,则可接收发送卡下发的伽马值,作为参考伽马值。
进一步而言,LED显示屏中LED灯珠包括发出红(R)、绿(G)、蓝(B)三色的LED灯珠,发出红(R)、绿(G)、蓝(B)三色的LED灯珠可以独立控制,因此,可以分别确认发送卡对发出红(R)色的LED灯珠在预设的显示周期中设置的参考伽马值,作为红参考伽马值Xr,确认对发出绿(G)色的LED灯珠在预设的显示周期中设置的参考伽马值,作为绿参考伽马值Xg,确认对发出红蓝(B)的LED灯珠在预设的显示周期中设置的参考伽马值,作为蓝参考伽马值Xb。
S602、确定LED灯珠在显示周期中导通一次时的伽马值,作为标准伽马值。
在具体实现中,针对LED驱动芯片,可确定该LED驱动芯片的解码灰度的最小分界值ΔGray、灰度打散系数Δpwmmode,最小分界值ΔGray、灰度打散系数Δpwmmode属于可调整的参数,通常存储在LED驱动芯片的寄存器中,在每次刷新显示画面,即发送卡每次下发参考伽马值时,可从LED驱动芯片的寄存器中读取最小分界值ΔGray、灰度打散系数Δpwmmode。
目前使用的LED驱动芯片,基本存在灰度解码的位数限制。其灰度解码的位数限制,在普通的LED驱动芯片上,更多和LED显示屏的控制系统相关;在自解码的LED驱动芯片上,则和驱动芯片自身、显示周期解码GCLK时钟数相关。
其中,因为Gamma表的数据位数均为16位,而常用的LED驱动芯片在常用的灰度解码位数有13bits、14bits、15bits、16bits,其对应的Gamma表数据值的精度会大于等于实际解码的灰度位数,这就导致灰度数据的有效分级,相对于16为Gamma数据值,存在解码灰度的最小分界值ΔGray,其数值为8(16位Gamma表数据,按13位解码,就要丢弃掉低3位,也就是相当于“16位Gamma表数据,其数值每相差8”,“13位的解码的数值加1”)、4(16位Gamma表数据,按14位解码)、2(16位Gamma表数据,按15位解码)、1(16位Gamma表数据,按16位解码)。
灰度打散系数Δpwmmode指的是响应的灰阶在最小脉宽的几倍以内,不做拆分,集中显示,这就是LED驱动芯片的低灰集中显示功能,意味着LED驱动 芯片,会将多少个最小显示单位时间,进行集中显示,常用为1、2、4、8。
在本实施例中,可计算解码灰度的最小分界值与灰度打散系数之间的乘积,作为LED灯珠在显示周期中导通一次时的伽马值,从而获得标准伽马值。
S603、基于参考伽马值与标准伽马值之间的比值,计算LED灯珠在显示周期中导通的频次。
在具体实现中,可计算参考伽马值与伽马值之间的比值,该比值可表示LED灯珠的导通的频次。
若计算参考伽马值与标准伽马值之间的比值为整数,则可以将该比值直接设置为LED灯珠在预设的显示周期中导通的频次。
若计算参考伽马值与标准伽马值之间的比值为非整数,则可以通过去除小数位之后加1等方式对该比值向上取整(即取比该比值大、且为整数的数值,例如,比值为3.1,则向上取整为4),作为LED灯珠在显示周期中导通的频次,或者,可以通过去除小数位等方式对该比值向下取整(即取比该比值小、且为整数的数值,例如,比值为3.1,则向上取整为3),作为LED灯珠在显示周期中导通的频次。
S604、确定LED灯珠的帧刷新率。
帧刷新率ReFreshRate,常用为64(即60Hz帧频下3840Hz的显示屏刷新)、32,是指同一帧相同的画面,LED显示单元板,在一帧时间之内,完成显示扫描刷新的次数。需要说明的是,对于LED显示屏、LED灯珠、LED驱动芯片而言,帧刷新率ReFreshRate均是相同的。
例如,对于LED显示屏,帧刷新率ReFreshRate与控制的时序相关,可以从指定的寄存器读取LED显示屏的参数(如像素点的数量、像素点的刷新速度等),使用该参数按照预设的函数关系式计算出帧刷新率ReFreshRate。
以ΔGray=8,ReFreshRate=64,Δpwmmode=8为例,这三个条件说明:
1、13bits灰度下,针对0-65535的Gamma表,每相差8,则显示脉宽增加1倍最小脉宽(Gamma值为8时,控制显示自解码的LED驱动芯片最小脉宽1个周期Gclk,普通的LED驱动芯片1个最窄EN脉宽)。
2、帧刷新率为64,即每秒每行LED灯珠最大导通次数为64。
3、灰度打散系数为8,表示响应的灰阶在最小脉宽的8倍以内,不做拆分,集中显示。
设经过亮度、校正、颜色空间转换等处理之后的红(R)、绿(G)、蓝(B) 的伽马值为Xr、Xg、Xb,当Xr、Xg、Xb,在ΔGray*Δpwmmode=8*8=64以内时,LED灯珠导通的频次为1次,在64-128之间,LED灯珠导通的频次为2次,等等,当Xr、Xg、Xb,大于或等于ΔGray*Δpwmmode*ReFreshRate=8*8*64=4096时,LED灯珠的导通频次为最大64次。
S605、基于LED灯珠在显示周期中导通的频次与帧刷新率计算补偿系数。
在具体实现中,可将导通的频次与帧刷新率进行比较。
若导通的频次小于帧刷新率,则将导通的频次赋值给补偿系数,使得可以完整的显示周期补偿损失的导通时间;若导通的频次大于或等于帧刷新率,则将帧刷新率赋值给补偿系数,使得可以在显示周期的上限尽可能补偿损失的导通时间。
在本实施例中,由于发出红(R)、绿(G)、蓝(B)三色的LED灯珠可以独立控制,因此,针对发出红(R)色的LED灯珠,可以将该发出红(R)色的LED灯珠导通的频次与帧刷新率进行比较。
若发出红(R)色的LED灯珠的导通的频次小于帧刷新率,则将导通的频次赋值给发出红(R)色的LED灯珠的补偿系数,作为红补偿系数Yr;若导通的频次大于或等于帧刷新率,则将帧刷新率赋值给发出红(R)色的LED灯珠的补偿系数,作为红补偿系数Yr,即:
若[Xr/(ΔGray*Δpwmmode)]+1<ReFreshRate,则Yr=[Xr/(ΔGray*Δpwmmode)]+1;
若[Xr/(ΔGray*Δpwmmode)]+1≥ReFreshRate时,则Yr=ReFreshRate。
针对发出绿(G)色的LED灯珠,可以将该发出绿(G)色的LED灯珠导通的频次与帧刷新率进行比较。
若发出绿(G)色的LED灯珠的导通的频次小于帧刷新率,则将导通的次数赋值给发出绿(G)色的LED灯珠的补偿系数,作为绿补偿系数Yg;若发出绿(G)色的LED灯珠的导通的频次大于或等于帧刷新率,则将帧刷新率赋值给发出绿(G)色的LED灯珠的补偿系数,作为绿补偿系数Yg,即:
若[Xg/(ΔGray*Δpwmmode)]+1<ReFreshRate,则Yg=[Xg/(ΔGray*Δpwmmode)]+1;
若[Xg/(ΔGray*Δpwmmode)]+1≥ReFreshRate时,则Yg=ReFreshRate。
针对发出蓝(B)色的LED灯珠,可以将该发出蓝(B)色的LED灯珠导通的频次与帧刷新率进行比较。
若发出蓝(B)色的LED灯珠的导通的频次小于帧刷新率,则将导通的频次赋值给发出蓝(B)色的LED灯珠的补偿系数,作为蓝补偿系数Yb;若发出蓝(B)色的LED灯珠的导通的频次大于或等于帧刷新率,则将帧刷新率赋值给发出蓝(B)色的LED灯珠的补偿系数,作为蓝补偿系数Yb,即:
若[Xb/(ΔGray*Δpwmmode)]+1<ReFreshRate,则Yb=[Xb/(ΔGray*Δpwmmode)]+1;
若[Xb/(ΔGray*Δpwmmode)]+1≥ReFreshRate时,则Yb=ReFreshRate。
S606、使用补偿系数对参考伽马值进行补偿,获得目标伽马值。
在本实施例中,可以在参考伽马值的基础上,基于补偿系数进行补偿,获得目标伽马值,从而实现对LED灯珠损失的导通时间进行补偿,使得发出红(R)、绿(G)、蓝(B)三色的LED灯珠的导通时间相同或相近。
在具体实现中,可通过从指定的寄存器读取等方式,确定预设的损失伽马值,由于发出红(R)、绿(G)、蓝(B)三色的LED灯珠可以独立控制,因此,可分别针对发出红(R)色的LED灯珠设置的损失伽马值,作为红损失伽马值ΔR,针对发出绿(G)色的LED灯珠设置的损失伽马值,作为绿损失伽马值ΔG,针对发出蓝(B)色的LED灯珠设置的损失伽马值,作为蓝损失伽马值ΔB。
一般情况下,损失伽马值(如ΔR、ΔG、ΔB)是最终调试低灰偏色的问题时,根据实际情况进行调整的,具体地,在显示低灰白色画面时,使用色度计观察,确定发出红(R)、绿(G)、蓝(B)三色的LED灯珠分别如何补偿,不需要补偿的损失伽马值(如ΔR、ΔG、ΔB)为0,补偿的损失伽马值(如ΔR、ΔG、ΔB)的最大值一般为255,并且在补偿后再次使用色度计观察补偿后的效果,在保证低灰对比度的情况下,尽可能保证色度和高亮白色一致即可。由此可知,该损失伽马值(如ΔR、ΔG、ΔB)的取值范围是由于其补偿低灰决定,取值范围一般是0-255,而按照正常情况下,显示数据达到255,已经对应的是20级灰度以上了。
此后,计算补偿系数与损失伽马值之间的乘积,作为补偿伽马值,将参考伽马值与补偿伽马值之和,作为目标伽马值。
由于发出红(R)、绿(G)、蓝(B)三色的LED灯珠可以独立控制,因此,针对发出红(R)色的LED灯珠,设设置的损失伽马值,作为红损失伽马值ΔR,针对发出绿(G)色的LED灯珠设设置的损失伽马值,作为绿损失伽马值ΔG,针对发出蓝(B)色的LED灯珠设设置的损失伽马值,作为蓝损失伽马值ΔB。
对于发出红(R)色的LED灯珠,可计算红补偿系数Yr与红损失伽马值ΔR之间的乘积,作为红补偿伽马值,将红参考伽马值与红补偿伽马值Xr之和,作为红目标伽马值Zr(即目标伽马值),即Zr=Xr+Yr*ΔR。
对于发出绿(G)色的LED灯珠,可计算绿补偿系数Yg与绿损失伽马值ΔG之间的乘积,作为绿补偿伽马值,将绿参考伽马值与绿补偿伽马值Xg之和,作为绿目标伽马值Zg(即目标伽马值),即Zg=Xg+Yg*ΔG。
对于发出蓝(B)色的LED灯珠,可计算蓝补偿系数Yb与蓝损失伽马值ΔB之间的乘积,作为蓝补偿伽马值,将蓝参考伽马值与蓝补偿伽马值Xb之和,作为蓝目标伽马值Zb(即目标伽马值),即Zb=Xb+Yb*ΔB。
S607、根据目标伽马值驱动LED灯珠显示。
为使本领域技术人员更好地理解本实施例,以下通过具体的示例来说明本实施例中LED灯珠的补偿方法。
在本示例中,设ΔGray=8,ReFreshRate=64,Δpwmmode=8。
此时,显示1级纯白色灰阶,因为ΔGray=8,所以Xr=Xg=Xb=8;
即为下述示意图(前例)中,因为ΔGray=8,所以LED驱动芯片在显示数据为8时,仅有1个最小显示周期的时间导通,在消隐处理后进行补偿。
如图7所示,显示出发出红(R)、绿(G)、蓝(B)三色的LED灯珠的显示时间占比,该显示时间占比并不表示亮度占比,表示单色有效显示时间在三色有效显示时间总和内的占比。
需要说明的是,LED灯珠的导通是一个渐变的过程,即电流从无到达所需的值,是的LED灯珠到达所需的亮度是一个逐渐变化的过程,在本示例中,为便于比较、讨论,将渐变的过程理想化为绝对化的过程,即理想化电流从无到达所需的值,是的LED灯珠到达所需的亮度是一个瞬间完成的操作。
原始的情况下,显示时间占比上已经出现了偏差,红(R)为36.50%、绿(G)为37.30%、蓝(B)为26.20%,但是,由于人眼对极低亮度下色彩敏感性降低,差异不大,仍旧在可接受范围内。
在消隐后,显示时间占比上出现了极大的偏差,红(R)为44.44%、绿(G)为47.22%、蓝(B)为8.34%,已经能够影响实际人眼观感了。
在本示例中,红(R)、绿(G)、蓝(B)消隐处理导致的各颜色有效时间减少相同,可以设置ΔR=ΔG=ΔB=8,ΔGray=8,此时,计算出Yr=Yg=Yb=1。
那么,参考伽马值相同,补偿伽马值相同,补偿系数相同,可以计算出 Zr=Zg=Zb=16。
又因为ΔGray=8,所以LED驱动芯片在Zr=Zg=Zb=16时,有2个最小的显示周期时间导通,显示时间占比上,红(R)为35.48%、绿(G)为36.02%、蓝(B)为28.50%。
横向可以上述情况下的时间占比,如下表所示:
  原始 消隐 补偿
R 36.50% 44.44% 35.48%
G 37.30% 47.22% 36.02%
B 26.20% 8.34% 28.50%
设定发出红(R)、绿(G)、蓝(B)三色的LED灯珠的时间占比均在33.33%为目标标准,基本可以接受,从消隐后差异过大、不达标,到补偿后的差异基本可以接受,本示例的补偿就达到了预期的补偿“低亮偏灰”的目的。
在本实施例中,通过LED灯珠在一次导通时显示的伽马值、参考伽马值等参数计算LED灯珠在预设的显示周期中导通的频次,通过帧刷新率计算补偿系数,从而计算目标伽马值,使用的是参数调整的方式,计算量小,操作简单,可以大大降低计算耗时。
实施例三
图8为本申请实施例三提供的一种LED显示屏的显示驱动装置的结构示意图,该装置具体可以包括如下模块:
参考伽马值确定模块801,用于确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
导通频次确定模块802,用于确定所述LED灯珠在所述显示周期中导通的频次;
目标伽马值计算模块803,用于根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
LED灯珠驱动显示模块804,用于根据所述目标伽马值驱动所述LED灯珠显示。
在本申请的一个实施例中,所述参考伽马值确定模块801包括:
消隐确定子模块,用于若已对LED显示屏中LED灯珠进行消隐处理,则确 定对所述LED灯珠设置的伽马值为参考伽马值。
在本申请的一个实施例中,所述导通频次确定模块802包括:
单次伽马值确定子模块,用于确定所述LED灯珠在所述显示周期中导通一次时的伽马值,作为标准伽马值;
导通频次计算子模块,用于基于所述参考伽马值与所述标准伽马值之间的比值,计算所述LED灯珠在所述显示周期中导通的频次。
在本申请的一个实施例中,所述单次伽马值确定子模块包括:
解码参数确定单元,用于确定LED驱动芯片的解码灰度的最小分界值、灰度打散系数;
参数乘积计算单元,用于计算所述解码灰度的最小分界值与所述灰度打散系数之间的乘积,作为所述LED灯珠在所述显示周期中导通一次时的伽马值。
在本申请的一个实施例中,所述导通频次计算子模块包括:
比值计算单元,用于计算所述参考伽马值与所述标准伽马值之间的比值;
取整单元,用于对所述比值向上取整,作为所述LED灯珠在所述显示周期中导通的频次。
在本申请的一个实施例中,所述目标伽马值计算模块803包括:
刷新帧率确定子模块,用于确定所述LED灯珠的帧刷新率;
补偿系数计算子模块,用于基于所述LED灯珠在所述显示周期中导通的频次与所述帧刷新率计算补偿系数;
伽马值补偿子模块,用于使用所述补偿系数对所述参考伽马值进行补偿,获得目标伽马值。
在本申请的一个实施例中,所述补偿系数计算子模块包括:
参数比较单元,用于将所述导通的频次与所述帧刷新率进行比较;
第一赋值单元,用于若所述导通的频次小于所述帧刷新率,则将所述导通的频次赋值给补偿系数;
第二赋值单元,用于若所述导通的频次大于或等于所述帧刷新率,则将所述帧刷新率赋值给补偿系数。
在本申请的一个实施例中,所述伽马值补偿子模块包括:
损失伽马值确定单元,用于确定预设的损失伽马值;
补偿伽马值计算单元,用于计算所述补偿系数与所述损失伽马值之间的乘积,作为补偿伽马值;
伽马值相加单元,用于将所述参考伽马值与所述补偿伽马值之和,作为目标伽马值。
本申请实施例所提供的LED显示屏的显示驱动装置可执行本申请任意实施例所提供的LED显示屏的显示驱动方法,具备执行方法相应的功能模块和有益效果。
实施例四
图9为本申请实施例三提供的一种LED显示屏的结构示意图,该LED显示屏具体可以包括LED控制系统910和多个LED显示箱体920;所述LED控制系统包括发送卡、接收卡,所述LED显示箱体中包括一个或多个LED显示单元板,所述LED显示单元板中包括LED灯珠;
所述发送卡用于接收视频信号,对所述视频信号进行解码并裁剪为多个局部视频信号、将所述局部视频传输给所述接收卡,所述接收卡实现一种LED显示屏的显示驱动方法,该方法包括:
确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
确定所述LED灯珠在所述显示周期中导通的频次;
根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
根据所述目标伽马值驱动所述LED灯珠显示。
当然,本申请实施例所提供的LED显示屏,不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的LED显示屏的显示驱动方法中的相关操作,具备执行方法相应的功能模块和有益效果。
实施例五
图10为本申请实施例五提供的一种LED控制系统的结构示意图,该LED控制系统应用于LED显示器中,该LED显示器包括LED显示屏、遥控器等组件,具体而言,该LED控制系统包括:
发送卡1001,用于将参考伽马值下发至接收卡,所述参考伽马值为对LED显示屏中LED灯珠在预设的显示周期中设置的伽马值;
接收卡1002,用于确定所述LED灯珠在所述显示周期中导通的频次,根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值,根据所述目标伽马值驱动所述LED灯珠显示。本申请实施例所提供的LED驱动控制系统可执 行本申请任意实施例所提供的LED显示屏的显示驱动方法,具备执行方法相应的功能模块和有益效果。
实施例六
图11为本申请实施例六提供的一种电子设备的结构示意图。如图11所示,该电子设备包括处理器1100、存储器1101、通信模块1102、输入装置1103和输出装置1104;电子设备中处理器1100的数量可以是一个或多个,可以包括MCU(Microcontroller Unit,微控制单元)和FPGA等部分,图11中以一个处理器1100为例;电子设备中的处理器1100、存储器1101、通信模块1102、输入装置1103和输出装置1104可以通过总线或其他方式连接,图11中以通过总线连接为例。
存储器1101作为一种计算机可读存储介质,可以包括RAM和Flash(或者ROM)可用于存储软件程序、计算机可执行程序以及模块,如本实施例中的LED显示屏的显示驱动方法对应的模块(例如,如图8所示的LED显示屏的显示驱动装置中的参考伽马值确定模块801、导通频次确定模块802、目标伽马值计算模块803和LED灯珠驱动显示模块804)。处理器1100通过运行存储在存储器1101中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的LED显示屏的显示驱动方法。
存储器1101可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器1101可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1101可进一步包括相对于处理器1100远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块1102,用于与显示屏建立连接,并实现与显示屏的数据交互。
输入装置1103可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入,还可以是用于获取图像的摄像头以及获取音频数据的拾音设备。
输出装置1104可以包括扬声器等音频设备,也可以包括多个LED显示箱体,LED显示箱体中包括一个或多个LED显示单元板,LED显示单元板中包括LED 灯珠。
需要说明的是,输入装置1103和输出装置1104的具体组成可以根据实际情况设定。
处理器1100通过运行存储在存储器1101中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的电子白板的连接节点控制方法。
本实施例提供的电子设备,可执行本申请任一实施例提供的LED显示屏的显示驱动方法,具体相应的功能和有益效果。
实施例七
本申请实施例七还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现一种LED显示屏的显示驱动方法,该方法包括:
确定对LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
确定所述LED灯珠在所述显示周期中导通的频次;
根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
根据所述目标伽马值驱动所述LED灯珠显示。
当然,本申请实施例所提供的计算机可读存储介质,其计算机程序不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的LED显示屏的显示驱动方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述LED显示屏的显示驱动装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互 区分,并不用于限制本申请的保护范围。

Claims (13)

  1. 一种LED显示屏的显示驱动方法,包括:
    确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
    确定所述LED灯珠在所述显示周期中导通的频次;
    根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
    根据所述目标伽马值驱动所述LED灯珠显示。
  2. 根据权利要求1所述的方法,其中,所述确定所述LED灯珠在所述显示周期中导通的频次,包括:
    确定所述LED灯珠在所述显示周期中导通一次时的伽马值,作为标准伽马值;
    基于所述参考伽马值与所述标准伽马值之间的比值,计算所述LED灯珠在所述显示周期中导通的频次。
  3. 根据权利要求2所述的方法,其中,所述确定所述LED灯珠在所述显示周期中导通一次时的伽马值,作为标准伽马值,包括:
    确定LED驱动芯片的解码灰度的最小分界值、灰度打散系数;
    计算所述解码灰度的最小分界值与所述灰度打散系数之间的乘积,作为所述LED灯珠在所述显示周期中导通一次时的伽马值。
  4. 根据权利要求2所述的方法,其中,所述基于所述参考伽马值与所述标准伽马值之间的比值,计算所述LED灯珠在所述显示周期中导通的频次,包括:
    计算所述参考伽马值与所述标准伽马值之间的比值;
    对所述比值向上取整,作为所述LED灯珠在所述显示周期中导通的频次。
  5. 根据权利要求1-4任一所述的方法,其中,所述根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值,包括:
    确定所述LED灯珠的帧刷新率;
    基于所述LED灯珠在所述显示周期中导通的频次与所述帧刷新率计算补偿系数;
    使用所述补偿系数对所述参考伽马值进行补偿,获得目标伽马值。
  6. 根据权利要求5所述的方法,其中,所述基于所述LED灯珠在所述显示周期中导通的频次与所述帧刷新率计算补偿系数,包括:
    将所述导通的频次与所述帧刷新率进行比较;
    若所述导通的频次小于所述帧刷新率,则将所述导通的频次赋值给补偿系数;
    若所述导通的频次大于或等于所述帧刷新率,则将所述帧刷新率赋值给补偿系数。
  7. 根据权利要求5所述的方法,其中,所述使用所述补偿系数对所述参考伽马值进行补偿,获得目标伽马值,包括:
    确定预设的损失伽马值;
    计算所述补偿系数与所述损失伽马值之间的乘积,作为补偿伽马值;
    将所述参考伽马值与所述补偿伽马值之和,作为目标伽马值。
  8. 根据权利要求1或2或3或4或6或7所述的方法,其中,所述确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值显示屏,包括:
    若已对LED显示屏中LED灯珠进行消隐处理,则确定对所述LED灯珠设置的伽马值为参考伽马值。
  9. 一种LED显示屏的显示驱动装置,包括:
    参考伽马值确定模块,用于确定LED显示屏中LED灯珠在预设的显示周期中设置的参考伽马值;
    导通频次确定模块,用于确定所述LED灯珠在所述显示周期中导通的频次;
    目标伽马值计算模块,用于根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值;
    LED灯珠驱动显示模块,用于根据所述目标伽马值驱动所述LED灯珠显示。
  10. 一种LED显示屏,包括LED控制系统和多个LED显示箱体;所述LED控制系统包括发送卡、接收卡,所述LED显示箱体中包括一个或多个LED显示单元板,所述LED显示单元板中包括LED灯珠;
    所述发送卡用于接收视频信号,对所述视频信号进行解码并裁剪为多个局部视频信号、将所述局部视频信号传输给所述接收卡,所述接收卡实现如权利要求1-8中任一所述的LED显示屏的显示驱动方法。
  11. 一种LED控制系统,应用于LED显示器中,包括:
    发送卡,用于将参考伽马值下发至接收卡,所述参考伽马值为对LED显示屏中LED灯珠在预设的显示周期中设置的伽马值;
    接收卡,用于确定所述LED灯珠在所述显示周期中导通的频次,根据所述导通的频次对所述参考伽马值进行补偿,获得目标伽马值,根据所述目标伽马值驱动所述LED灯珠显示。
  12. 一种电子设备,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-8中任一所述的LED显示屏的显示驱动方法。
  13. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1-8中任一所述的LED显示屏的显示驱动方法。
PCT/CN2020/138736 2020-04-17 2020-12-23 Led显示屏的驱动方法、装置、系统、设备和存储介质 WO2021208483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304860.XA CN111445839B (zh) 2020-04-17 2020-04-17 Led显示屏的驱动方法、装置、系统、设备和存储介质
CN202010304860.X 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208483A1 true WO2021208483A1 (zh) 2021-10-21

Family

ID=71653331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138736 WO2021208483A1 (zh) 2020-04-17 2020-12-23 Led显示屏的驱动方法、装置、系统、设备和存储介质

Country Status (2)

Country Link
CN (1) CN111445839B (zh)
WO (1) WO2021208483A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116386519A (zh) * 2023-05-09 2023-07-04 集创北方(成都)科技有限公司 Led驱动电路、驱动方法、芯片及显示装置
CN117079587A (zh) * 2023-10-16 2023-11-17 长春希达电子技术有限公司 一种有源Micro-LED均匀性补偿方法及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111445839B (zh) * 2020-04-17 2021-12-14 广州视源电子科技股份有限公司 Led显示屏的驱动方法、装置、系统、设备和存储介质
CN112419959B (zh) 2020-12-08 2022-04-08 深圳市华星光电半导体显示技术有限公司 伽马电压校正方法及装置、显示装置
CN113923837B (zh) * 2021-10-14 2023-07-25 深圳市轩火部落科技有限公司 圣诞灯群组显示控制方法及相关产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053233A1 (en) * 2008-09-04 2010-03-04 Seiko Epson Corporation Method of driving pixel circuit, light emitting device, and electronic apparatus
CN102013237A (zh) * 2009-09-07 2011-04-13 联咏科技股份有限公司 用来驱动一液晶显示面板的驱动装置及其相关显示装置
US20120200609A1 (en) * 2011-02-07 2012-08-09 Choi Hak-Mo Method for driving a liquid crystal display device
CN103000130A (zh) * 2012-11-29 2013-03-27 安徽皖投新辉光电科技有限公司 一种节能型led显示屏
CN110751933A (zh) * 2019-12-04 2020-02-04 京东方科技集团股份有限公司 刷新率切换的显示方法及装置、计算机设备及介质
CN111445839A (zh) * 2020-04-17 2020-07-24 广州视源电子科技股份有限公司 Led显示屏的驱动方法、装置、系统、设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896317B2 (en) * 2008-02-15 2014-11-25 Nxp B.V. Lighting unit with compensation for output frequency, and method for determining output frequency
CN104582108A (zh) * 2013-10-22 2015-04-29 西安造新电子信息科技有限公司 Led驱动集成电路的脉冲宽度调制方法
CN107452333B (zh) * 2017-08-29 2019-07-09 京东方科技集团股份有限公司 一种像素补偿方法、像素补偿装置及显示装置
CN107316611B (zh) * 2017-08-30 2019-10-11 深圳市华星光电半导体显示技术有限公司 Oled显示器的补偿方法
CN109346000B (zh) * 2018-09-28 2020-05-26 苏州科达科技股份有限公司 Led显示控制方法、系统以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053233A1 (en) * 2008-09-04 2010-03-04 Seiko Epson Corporation Method of driving pixel circuit, light emitting device, and electronic apparatus
CN102013237A (zh) * 2009-09-07 2011-04-13 联咏科技股份有限公司 用来驱动一液晶显示面板的驱动装置及其相关显示装置
US20120200609A1 (en) * 2011-02-07 2012-08-09 Choi Hak-Mo Method for driving a liquid crystal display device
CN103000130A (zh) * 2012-11-29 2013-03-27 安徽皖投新辉光电科技有限公司 一种节能型led显示屏
CN110751933A (zh) * 2019-12-04 2020-02-04 京东方科技集团股份有限公司 刷新率切换的显示方法及装置、计算机设备及介质
CN111445839A (zh) * 2020-04-17 2020-07-24 广州视源电子科技股份有限公司 Led显示屏的驱动方法、装置、系统、设备和存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116386519A (zh) * 2023-05-09 2023-07-04 集创北方(成都)科技有限公司 Led驱动电路、驱动方法、芯片及显示装置
CN116386519B (zh) * 2023-05-09 2023-10-24 集创北方(成都)科技有限公司 Led驱动电路、驱动方法、芯片及显示装置
CN117079587A (zh) * 2023-10-16 2023-11-17 长春希达电子技术有限公司 一种有源Micro-LED均匀性补偿方法及显示装置
CN117079587B (zh) * 2023-10-16 2024-01-09 长春希达电子技术有限公司 一种有源Micro-LED均匀性补偿方法及显示装置

Also Published As

Publication number Publication date
CN111445839B (zh) 2021-12-14
CN111445839A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021208483A1 (zh) Led显示屏的驱动方法、装置、系统、设备和存储介质
US10056035B2 (en) Pixel circuit and driving method thereof
CN103680413B (zh) 一种图像处理装置及方法
KR20240015130A (ko) 표시 장치 및 그 구동 방법
Svilainis LED brightness control for video display application
US11094285B2 (en) Driving chip, method for controlling the same, and display device
CN109643518A (zh) 显示设备及其驱动方法
KR20170028623A (ko) 영상표시장치 및 영상표시장치의 구동 방법
US20180053460A1 (en) Light-emitting device (led) and led displaying circuit
CN103391412A (zh) 一种光源亮度自适应调节的图像显示方法及装置
CN109036256A (zh) 伽马电压调节电路及显示装置
TW201115542A (en) Organic light emitting diode (OLED) display, driving method thereof, and pixel unit thereof
US20160225323A1 (en) Display Device and Method of Adjusting Backlight Brightness of Display Device
CN103489411A (zh) 显示屏的色彩维持方法及系统
CN114067724A (zh) 灰度数据处理方法、装置及系统和显示装置
CN105913796B (zh) Led显示屏的驱动电路、驱动方法及led驱动芯片
CN115968492A (zh) 显示驱动电路及方法、led显示板和显示装置
WO2021057161A1 (zh) 显示驱动电路及显示屏
US10706762B2 (en) Display device and control method for color gamut range variation and driving current adjustment
KR101046114B1 (ko) 저전력 구동 엘이디 전광판
CN102768820B (zh) Led大屏幕显示装置及其驱动电路
KR101877776B1 (ko) 백라이트 드라이버용 구동집적회로 및 그를 포함하는 액정표시장치
CN117316097A (zh) 显示屏亮度调节方法、电子设备及存储介质
CN112017596A (zh) 一种显示面板、亮度调整方法及显示装置
CN208157018U (zh) 一种Micro-LED显示系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930868

Country of ref document: EP

Kind code of ref document: A1