WO2021208007A1 - Subband power offset configuration for channel state information reporting - Google Patents

Subband power offset configuration for channel state information reporting Download PDF

Info

Publication number
WO2021208007A1
WO2021208007A1 PCT/CN2020/085095 CN2020085095W WO2021208007A1 WO 2021208007 A1 WO2021208007 A1 WO 2021208007A1 CN 2020085095 W CN2020085095 W CN 2020085095W WO 2021208007 A1 WO2021208007 A1 WO 2021208007A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
channel state
state information
power offset
subcarriers
Prior art date
Application number
PCT/CN2020/085095
Other languages
French (fr)
Inventor
Alexandros MANOLAKOS
Muhammad Sayed Khairy Abdelghaffar
Yu Zhang
Wanshi Chen
Krishna Kiran Mukkavilli
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/085095 priority Critical patent/WO2021208007A1/en
Publication of WO2021208007A1 publication Critical patent/WO2021208007A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the following relates generally to wireless communications and more specifically to subband power offset configurations for channel state information reporting.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Beamforming is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station or a UE) to select an antenna beam (for example, a transmit beam or a receive beam) .
  • a base station may transmit a channel state information reference signal (CSI-RS) to a UE.
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection in a CSI report.
  • the base station using the feedback, may select an antenna beam for communicating with the UE. In some cases, however, such methods fail to account for potential sources of interference.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support subband power offset configurations for channel state information reporting.
  • the described techniques provide for a user equipment (UE) , a base station, or both to select beams that account for the effects of self-interference as a device operates in a given mode, such as a full-duplex mode.
  • a UE configured to operate in a full-duplex mode may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the UE may receive one or more channel state information reference signals over at least a portion of the band and may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, or the one or more channel state information reference signals, or any combination thereof.
  • the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • a method for wireless communication at a UE may include receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receiving one or more channel state information reference signals over at least a portion of the band, determining one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receive one or more channel state information reference signals over at least a portion of the band, determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • the apparatus may include means for receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, means for receiving one or more channel state information reference signals over at least a portion of the band, means for determining one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and means for transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receive one or more channel state information reference signals over at least a portion of the band, determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • a method for wireless communication at a base station may include transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmitting one or more channel state information reference signals over at least a portion of the band, and receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmit one or more channel state information reference signals over at least a portion of the band, and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the apparatus may include means for transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, means for transmitting one or more channel state information reference signals over at least a portion of the band, and means for receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmit one or more channel state information reference signals over at least a portion of the band, and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • Figure 1 illustrates an example of a wireless communications system that supports subband power offset configurations for channel state information (CSI) reporting in accordance with aspects of the present disclosure.
  • CSI channel state information
  • Figure 2 illustrates an example of a wireless communications system that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figures 3A and 3B illustrate examples of resource configurations that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figures 4A, 4B, and 4C illustrate examples of subband power configurations that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figure 5 illustrates an example of a process flow that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figures 6 and 7 show block diagrams of devices that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figure 8 shows a block diagram of a communication manager that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figure 9 shows a diagram of a system including a device that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figures 10 and 11 show block diagrams of devices that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figure 12 shows a block diagram of a communication manager that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figure 13 shows a diagram of a system including a device that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • Figures 14–18 show flowcharts illustrating methods that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • a base station and user equipment may operate in a frequency division duplexing (FDD) scheme, in which uplink and downlink transmissions between the base station and the UE may overlap in time.
  • the UE may transmit an uplink transmission from a transmit antenna panel (for example, an antenna panel configured to transmit) of the UE to a receive antenna panel (for example, an antenna panel configured to receive) of the base station that overlaps in time with a downlink transmission transmitted from a transmit antenna panel of the base station to a receive antenna panel of the UE.
  • the uplink transmission may generate interference at the receive antenna panel of the UE that is receiving the overlapping downlink transmission.
  • the downlink transmission may generate interference at the receive antenna panel of the base station that is receiving the overlapping uplink transmission.
  • Such interference at a device based on transmitting and receiving operations at the device may be referred to as self-interference.
  • the base station may perform a beam training procedure, in which the base station or the UE (or both) may determine one or more beams for communicating with each other.
  • the beam training procedure may include the base station transmitting a channel state information (CSI) reference signal (CSI-RS) to the UE in a band and receiving a CSI report from the UE which may include values for a set (for example, one or more) of CSI parameters. Examples of such parameters may include a channel quality indicator (CQI) , a rank indicator (RI) , a layer indicator (LI) , or a precoding matrix indicator (PMI) .
  • CQI channel quality indicator
  • RI rank indicator
  • LI layer indicator
  • PMI precoding matrix indicator
  • a level of self-interference at the base station in the uplink resource due to transmissions in the downlink resource may be higher at a first edge closest to the downlink resource than a second edge of the uplink resource.
  • the level of self-interference at a UE in the downlink resource due to transmissions in the uplink resource may be higher at a first edge closest to the uplink resource than a second edge of the downlink resource.
  • a downlink resource for receiving the CSI-RS when receiving a CSI-RS, may span a bandwidth of the band. In such cases, the downlink resource for receiving the CSI-RS may not overlap an uplink resource within the band. However, at a time after receiving the CSI-RS, an uplink resource within the band may overlap a downlink resource within the band. As such, a greater level of self-interference may occur at the time after receiving the CSI-RS than at the time when the CSI-RS is received.
  • the UE may determine the CSI report parameters according to the level of self-interference occurring when receiving the CSI-RS, but may not do so according to the level of self-interference occurring when an uplink resource within the band overlaps a downlink resource in the band after the CSI-RS is received. As such, the CSI report parameters reported by the UE may fail to account for the level of self-interference when the uplink resource overlaps the downlink resource at the time after the CSI-RS is received.
  • Various aspects generally relate to CSI reporting, and more specifically, to subband power offset configurations for CSI reporting that enable a UE, a base station, or both to select beams that account for the effects of self-interference. Some aspects particularly relate to techniques for beam training for full duplex communications (for example, communications in which a UE or a base station may be capable of transmitting and receiving simultaneously) .
  • the UE in response to receiving a CSI-RS over a band, the UE may select multiple subbands from the band over which the CSI-Rs is received, and in some examples, may select multiple sets of subbands, each including one or more subbands, from the band.
  • the UE may identify a first set of subbands of the band more likely to have a higher level of self-interference and a second set of subbands of the band more likely to have a lower level of self-interference.
  • the UE may associate each subband or set of subbands with a respective subband power offset according to a subband power offset configuration transmitted by the base station for each subband or set of subbands.
  • the base station may transmit, to the UE, an indication of a first power offset for the first set of subbands and a second power offset for the second set of subbands.
  • the first power offset may have a value relative to the second power offset that accounts for the higher level of self-interference in the first set of subbands.
  • the first power offset may be lower than the second power offset by an amount equal to or greater than an expected power level of self-interference in the first set of subbands.
  • the UE may determine values for the set of CSI report parameters and may report the values for the set of CSI report parameters to the base station in a single CSI report.
  • the set of CSI report parameters may include a first subset for the first set of subbands and a second subset for the second set of subbands.
  • the UE may determine values for a first set of CSI report parameters for the first set of subbands and values for a second set of CSI report parameters for the second set of subbands, and may transmit a first CSI report to indicate the values for the first set of CSI report parameters and a second CSI report to indicate the values for the second set of CSI report parameters.
  • the base station may transmit multiple CSI-RSs: at least a first CSI-RS within the first set of subbands and at least a second CSI-RS within the second set of subbands.
  • the UE may determine values for the first set of CSI report parameters based on the first CSI-RS and values for the second set of CSI report parameters based on the second CSI-RS.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of an additional wireless communications system, resource configurations, subband power configurations, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to subband power offset configurations for CSI reporting.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • a set of elements may include one or more elements in the set of elements.
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
  • network equipment for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly between base stations 105) , or indirectly (for example, via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology.
  • the "device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • carrier may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) .
  • Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and time division duplexing (TDD) component carriers.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a "system bandwidth" of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 (for example, the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (for example, a subband, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (for example, a duration of one modulation symbol) and one subcarrier, in which the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (for example, depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (for example, N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration for example, the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region for example, a control resource set (CORESET)
  • CORESET control resource set
  • a control region for example, a control resource set (CORESET) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions.
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (for example, from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more subbands.
  • the base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (for example, directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as "listening" according to different receive configurations or receive directions.
  • a receiving device may use a single receive configuration to receive along a single beam direction (for example, when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) .
  • a wireless network for example a wireless local area network (WLAN) , such as a Wi-Fi (in other words, Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices.
  • the AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) .
  • a wireless device may communicate with a network device bi-directionally.
  • a device may communicate with an associated AP via downlink (for example, the communication link from the AP to the device) and uplink (for example, the communication link from the device to the AP) .
  • a wireless personal area network which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices.
  • wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
  • a UE 115 configured to operate in a full-duplex mode may receive, from a base station 105, an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the UE 115 may receive, from the base station 105, a CSI-RS over at least a portion of the band and may determine values for a set of CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the CSI-RS.
  • the UE 115 may transmit, to the base station 105, a CSI report indicating the values for the set of CSI report parameters.
  • Each subband may include a set of consecutive physical resource blocks (PRB) (for example, a set of 2, 4, or 8 subcarriers) or a set of consecutive subcarriers.
  • PRB physical resource blocks
  • Figure 2 illustrates an example of a wireless communications system 200 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may be implemented by aspects of the wireless communications system 100.
  • a UE 115-a may be an example of aspects of a UE 115 as described with reference to Figure 1
  • a base station 105-a may be an example of aspects of a base station 105 as described with reference to Figure 1.
  • the UE 115-a may include a set of antenna panels 205.
  • the UE 115-a may include a first antenna panel 205-a and a second antenna panel 205-b.
  • the base station 105-a may include a set of antenna panels 215.
  • the base station 105-a may include a first antenna panel 215-a and a second antenna panel 215-b.
  • Each antenna panel 205 and 215 may include an array of antennas configurable to perform beamforming.
  • a set of elements may include one or more elements in the set of elements.
  • the antenna panels 215-a and 215-b of the base station 105-a may be in a communication configuration 220.
  • the antenna panel 215-a may be configured to transmit signaling (for example, a downlink transmission 225) and the antenna panel 215-b may be configured to receive signaling (for example, an uplink transmission 230) .
  • the communication configuration 220-a may be referred to as a split-panel configuration.
  • both the antenna panels 215-a and 215-b may both be configured to transmit signaling.
  • both the antenna panels 215-a and 215-b may be configured to receive signaling.
  • the antenna panels 205-a and 205-b of the UE 115-a may be in a communication configuration 210.
  • the antenna panel 205-a may be configured to receive signaling (for example, downlink transmission 225) and the antenna panel 205-b may be configured to transmit signaling (for example, uplink transmission 230) .
  • the antenna panels 205-a and 205-b may be in a communication configuration in which both are configured to transmit signaling or both are configured to receive signaling.
  • the base station 105-a may operate in a full-duplex mode, in which the base station 105-a may be capable of receiving transmissions (for example, the uplink transmission 230) that overlap at least in time, frequency, or both within a component carrier with transmissions transmitted by the base station 105-a (for example, the downlink transmission 225) .
  • the UE 115-a may operate in a full-duplex mode, in which the UE 115-a may be capable of transmitting transmissions (for example, the uplink transmission 230) that overlap at least in time, frequency, or both within a component carrier with transmissions received by the UE 115-a (for example, the downlink transmission 225) .
  • the UE 115-a or the base station 105-a communicates uplink and downlink transmissions in different subbands concurrently (for example, at least partially overlapping) or simultaneously, such an operation may be referred to as a subband full duplex operation.
  • the UE 115-a may operate in a half-duplex mode, in which the UE 115-a may transmit signaling or receive signaling, but may not do both concurrently or simultaneously within a same component carrier or within same frequency domain resources.
  • Performing full duplex operations may enable the UE 115-a or the base station 105-a (or both) to have increased uplink coverage and reduced latency as compared to half-duplex operations.
  • each slot 235 may be assigned for uplink or downlink operations but not both.
  • the UE 115-a or base station 105-a may not communicate an uplink transmission 230 at a same time as the downlink transmission 225.
  • the UE 115-a or base station 105-a may refrain from transmitting one of the uplink transmission 230 or downlink transmission 225 until at least the next slot 235.
  • the UE 115-a or base station 105-a may be able to communicate the uplink transmission 230 at the same time as the downlink transmission 225.
  • uplink coverage may be increased.
  • latency may be reduced.
  • each of the base station 105-a and the UE 115-a may share at least some resource of the system bandwidth according to a resource configuration.
  • the resource configuration may include sets of downlink resources 240 (for example, resources for communicating a downlink transmission 225) and sets of uplink resources 245 (for example, resources for communicating an uplink transmission 230) .
  • the resource configuration includes the set of downlink resources 240, the set of uplink resources 245, or both within a given bandwidth 237 of a band may vary within a slot 235.
  • the resource configuration may include a set of downlink resources 240 within the slot 235-a; may include two sets of downlink resources 240 (e.g., sets of downlink resources 240-a and 240-b) and a set of uplink resources 245 within the slots 235-b and 235-c; and may include a set of uplink resources 245 within the slot 235-d.
  • the bandwidth 237 may be spanned by a first set of uplink resources 245 and two sets of downlink resources 240.
  • each set of downlink resources 240 may border an edge of the set of uplink resources 245.
  • a guard band may be present between each of the set of downlink resources 240 and the set of uplink resources 245.
  • each set of downlink resources 240 within the slots 235-b and 235-c may have a wider bandwidth (for example, 40 MHz, 80 MHz) than the set of uplink resources 245 within the slots 235-b and 235-c (for example, 20 MHz) . Additional details corresponding to resource configurations are described elsewhere herein, for example, with reference to Figures 3A and 3B.
  • the communication configuration 220 of the base station 105-a may be different for different slots 235.
  • the antenna panels 215-a and 215-b may both be configured to transmit transmissions (for example, according to the communication configuration 220-b) .
  • the antenna panel 215-a may be configured to transmit transmissions and the antenna panel 215-b may be configured to receive transmissions (for example, according to the communication configuration 220-a) .
  • the antenna panels 215-a and 215-b may both be configured to receive transmissions (for example, according to the communication configuration 220-c) .
  • the communication configuration 210 of the UE 115-a may be different for different slots 235.
  • the antenna panels 205-a and 205-b may both be configured to receive transmissions; for the slots 235-b and 235-c, the antenna panel 205-a may be configured to receive transmissions and the antenna panel 205-b may be configured to transmit transmissions; and for the slot 235-d, the antenna panel 205-d may be configured to transmit transmissions.
  • the antenna panel 215-a may transmit a transmission (for example, a downlink transmission 225) that overlaps in time with a transmission received by the antenna panel 215-b (for example, an uplink transmission 230) .
  • the transmission transmitted by the antenna panel 215-a may interfere with the transmission received by the antenna panel 215-b.
  • the antenna panel 205-a when the antenna panel 205-a is configured to receive transmissions and the antenna panel 205-b is configured to transmit transmissions, the antenna panel 205-a may receive a transmission (for example, a downlink transmission 225) that overlaps in time with a transmission transmitted by the antenna panel 205-b (for example, an uplink transmission 230) .
  • the transmission transmitted by the antenna panel 205-b may interfere with the transmission received by the antenna panel 205-a.
  • Such interference at the antenna panel 205-a, the antenna panel 215-b, or both may be referred to as self-interference.
  • Self-interference affects communication may depend on a pattern of resources over which the interfering transmission is transmitted and resources over which the interfered transmission is received. Self-interference may be present in higher levels in subcarriers of the interfered transmission that are closer in frequency to subcarriers of the interfering transmission and may be present in lower levels in subcarriers of the interfered transmission that are farther in frequency from subcarriers of the interfering transmission.
  • the uplink transmission 230 may be communicated within a set of subcarriers of the set of uplink resources 245 and the downlink transmission 225 may be communicated within a set of subcarriers of the two sets of downlink resources 240-a and 240-b.
  • the interfering transmission may be the uplink transmission 230 and the interfered transmission may be the downlink transmission 225.
  • self-interference may be present in higher levels in subcarriers of the set of downlink resources 240-a that are lower in frequency (for example, closer to the set of uplink resources 245) and may be present in lower levels in subcarriers of the set of downlink resources 240-a that are higher in frequency (for example, farther from the set of uplink resources 245) .
  • self-interference may be present in higher levels in subcarriers of the set of downlink resources 240-b that are higher in frequency (for example, closer to the set of uplink resources 245) and may be present in higher levels in subcarriers of the set of downlink resources 240-b that are lower in frequency (for example, farther from the set of uplink resources 245) .
  • the interfering transmission may be the downlink transmission 225 and the interfered transmission may be the uplink transmission 230.
  • self-interference may be present in higher levels in the subcarriers of the set of uplink resource 245 closer to the set of downlink resources 240-a or 240-b (for example, those closer to an edge of the set of uplink resources 245) and may be present in lower levels in the subcarriers that are farther from the set of downlink resources 240-a or 240-b (for example, those closer to the middle of the set of uplink resources 245) .
  • the base station 105-a may transmit a CSI-RS 250 in the slot 235-a and over a total span of the bandwidth 237 as part of a beam training or CSI acquisition procedure.
  • the UE 115-a may provide values for a set of CSI report parameters (for example, CQI, PMI, RI, LI) to the base station 105-a.
  • the base station 105-a may use the received values for the set of CSI report parameters to select beams for communicating with the UE 115-a.
  • the UE 115-a may employ a similar technique (for example, using a sounding reference signal (SRS) instead of a CSI-RS) to select beams for communicating with the base station 105-a.
  • SRS sounding reference signal
  • each of the frequency resources within the bandwidth 237 may be dedicated for receiving downlink transmissions (for example, each frequency resource may be dedicated for receiving the CSI-RS 250) .
  • the antenna panels 205-a and 205-b of the UE 115-a may both be configured to receive transmissions (and may not be configured to transmit transmissions, for example) and self-interference may not be present when the UE 115-a receives the CSI-RS 250.
  • the UE 115-a may fail to account for self-interference.
  • the antenna panels 205-a and 205-b of the UE 115-a may be configured to receive signaling.
  • the antenna panels 205-a and 205-b may be in a split-panel configuration.
  • the set of CSI report parameters may correspond to when the antenna panels 205-a and 205-b are configured to receive signaling, but may not account for when the antenna panels 205-a and 205-b are in a split-panel configuration or when the antenna panels 205-a and 205-b are both configured to transmit transmissions.
  • Various aspects generally relate to CSI reporting, and more specifically, to subband power offset configurations for CSI reporting that enable the UE 115-a, the base station 105-a, or both to select beams that account for the effects of self-interference. Some aspects particularly relate to techniques for beam training for full duplex communications.
  • the UE 115-a in response to receiving a CSI-RS 250 over the bandwidth 237, the UE 115-a may select multiple subbands from the bandwidth 237 over which the CSI-RS 250 is received, and in some examples, multiple sets of subbands, each including one or more subbands, from the bandwidth 237.
  • the UE 115-a may identify a first set of subbands of the bandwidth 237 whose subcarriers are more likely to have a higher level of self-interference and a second set of subbands of the bandwidth 237 whose subcarriers more likely to have a lower level of self-interference.
  • the UE 115-a may associate each subband or set of subbands with a respective subband power offset according to a subband power offset configuration transmitted by the base station 105-a for each subband or set of subbands.
  • the base station 105-a may transmit, to the UE 115-a, an indication of a first power offset for the first set of subbands and a second power offset for the second set of subbands.
  • the first power offset may have a value relative to the second power offset that accounts for the higher level of self-interference in the first set of subbands.
  • the first power offset may be lower than the second power offset by an amount equal to or greater than an expected power level of self-interference in the first set of subbands.
  • the UE 115-a may determine values for the set of CSI report parameters and may report the values for the set of CSI report parameters to the base station 105-a in a single CSI report.
  • the set of CSI report parameters may include a first subset for the first set of subbands and a second subset for the second set of subbands.
  • a set of CSI report parameters may include a single CSI report parameter or multiple CSI report parameters.
  • the UE 115-a may determine values for a first set of CSI report parameters for the first set of subbands and values for a second set of CSI report parameters for the second set of subbands, and may transmit a first CSI report to indicate the values for the first set of CSI report parameters and a second CSI report to indicate the values for the second set of CSI report parameters.
  • the base station 105-a may transmit multiple CSI-RSs: at least a first CSI-RS within the first set of subbands and at least a second CSI-RS within the second set of subbands.
  • the UE 115-a may determine values for the first set of CSI report parameters based on the at least the first CSI-RS and values for the second set of CSI report parameters based on the at least the second CSI-RS. Additional details corresponding to the configuration of the sets of subbands and the CSI report parameters may be described elsewhere herein, for example, with reference to Figures 3A and 3B. Additional details about the power offsets may be described elsewhere herein, for example, with reference to Figures 4A, 4B, and 4C.
  • the bandwidth 237 of a slot 235 may be spanned by a set of downlink resource 240 and two sets of uplink resources 245, and each set of uplink resources 245 may border an edge of the two sets of downlink resources 240.
  • a guard band may be present between each set of uplink resources 245 and the adjacent two sets of downlink resources 240.
  • a slot 235 includes a set of downlink resources 240 and two sets of uplink resources 245.
  • a resource configuration may be subject to interference alignment between the base station 105-a and an operator.
  • Figures 3A and 3B illustrate examples of resource configurations 300-a and 300-b that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the resource configurations 300-a and 300-b may be implemented by aspects of the wireless communications systems 100, 200, or both.
  • the resource configuration 300-a, 300-b, or both may represent a configuration of uplink and downlink resources for communications between a UE 115 and a base station 105.
  • the resource configurations 300-a and 300-b may include sets of downlink resources and sets of uplink resources.
  • Each set of downlink resources may include a downlink control region 305 over which a UE 115 may receive downlink control information (DCI) (for example, a physical downlink control channel (PDCCH) transmission) and a downlink data region 310 over which the UE 115 may receive data (for example, a physical downlink shared channel (PDSCH) transmission) .
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • Each set of uplink resources may include an uplink control region 315 over which a UE 115 may transmit uplink control information (UCI) (for example, a physical uplink control channel (PUCCH) transmission) and an uplink data region 320 over which the UE 115 may transmit data (for example, a physical uplink shared channel (PUSCH) transmission) .
  • UCI uplink control information
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Resource configurations 300-a and 300-b may include sets of downlink resources within the slot 302-a; may include sets of downlink resources and sets of uplink resources within the slots 302-b and 302-c; and may include sets of uplink resources within the slot 302-d.
  • the band 303 may be spanned by an uplink resource and two downlink resources.
  • each downlink resource may border an edge of the uplink resource.
  • a guard band may be present between each downlink resource and the uplink resource.
  • a base station 105 may transmit a CSI-RS 325 in slot 302-a as part of a beam training procedure.
  • the UE 115 may select a first set of subbands 330-a and a second set of subbands 335-a.
  • the first set of subbands 330-a and the second set of subbands 335-a cumulatively (for example, together) may span a total bandwidth of the sets of downlink resources in the band 303.
  • first set of subbands 330-a and the second set of subbands 335-a may each span a same number of subcarriers within each set of downlink resources.
  • first set of subbands 330-a may have more subcarriers (for example, may be wider) within each set of downlink resources than the second set of subbands 335-a.
  • subcarriers of the first set of subbands 330-a may be more likely to have a lower level of self-interference and subcarriers of the second set of subbands 335-a may be more likely to have a higher level of self-interference.
  • the UE 115 may select a first set of subbands 330-b, a second set of subbands 335-b, a third set of subbands 340, and a fourth set of subbands 345.
  • the first, second, third, and fourth sets of subbands may cumulatively span a total bandwidth of the downlink resources in the band 303.
  • the first set of subbands 330-b may span a same number of subcarriers as the fourth set of subbands 345 and the second set of subbands 335-b may span a same number of subcarriers as the third set of subbands 340.
  • the first set of subbands 330-b may span more subcarriers (for example, may be wider) than the second set of subbands 335-b and the fourth set of subbands 345 may span more subcarriers (for example, may be wider) than the third set of subbands 340.
  • the second set of subbands 335-b and the third set of subbands 340 may be more likely to have a higher level of self-interference and the first set of subbands 330-a and the fourth set of subbands 345 may be more likely to have a higher level of self-interference.
  • the UE 115 may identify an associated power offset (for example, an associated subband power level) .
  • the UE 115 may identify a first power offset for the first set of subbands 330-a and a second power offset for the second set of subbands 335-a.
  • the UE 115 may identify a first power offset for the first set of subbands 330-b, a second power offset for the second set of subbands 335-b, a third power offset for the third set of subbands 340, and a fourth power offset for the fourth set of subbands 345.
  • the second power offset may have a value that is the same as the third power offset or may have independent values (for example, if different downlink-uplink boundaries are associated with different power levels) .
  • the base station 105 may provide the power offsets to the UE 115 when configuring resources for communicating a CSI report (for example, a CSIreportConfig) .
  • CSI report for example, a CSIreportConfig
  • Such signaling may include DCI, RRC, or MAC-CE signaling.
  • the base station 105 may update the power offsets dynamically through MAC-CE and DCI signaling.
  • each power offset may be defined as an energy per resource element ratio (EPRE) associated with the CSI-RS 325 and a downlink shared channel resource 310 (for example, a PDSCH resource) .
  • EPRE energy per resource element ratio
  • the UE 115 may determine values for a set of CSI report parameters to transmit in a single CSI report (for example, according to a single CSIreportConfig) in response to receiving a CSI-RS 325 over a single CSI-RS resource.
  • Such CSI report parameters may include one or more of CQI, RI, LI, or PMI.
  • the UE 115 may determine a single wideband CQI, a single wideband+subband CQI, and a single rank that corresponds to each set of subbands. In some examples, each set of subbands may have its own PMI.
  • the first set of subbands 330-a may have a first PMI and the second set of subbands 335-a may have a second PMI.
  • each set of subbands may be associated with a unique block error rate (BLER) target configured for the UE 115.
  • BLER block error rate
  • the first set of subbands 330-a may have a first BLER target
  • the second set of subbands 335-a may have a second BLER target.
  • the UE 115 may determine the values for the set of CSI report parameters based on the first BLER target and the second BLER target.
  • the UE 115 may determine values for a first set of CSI report parameters to be indicated in a first CSI report and a second set of CSI report parameters to be indicated in a second CSI report.
  • Each CSI report may be associated with an associated CSI report configuration (for example, an associated CSIreportConfig) .
  • the UE 115 may be configured to transmit a same rank (for example, the UE 115 may receive signaling that indicates that the UE 115 is to report a same rank for the first set of subbands 330-a and the second set of subbands 335-a) .
  • the UE 115 may include CQI values (for example, a wideband CQI, a wideband+subband CQI, or both) for the first set of subbands 330-a in the first CSI report according to the associated CSI report configuration for the first set of subbands 330-a. Additionally the UE 115 may include CQI values (for example, a wideband CQI, a wideband+subband CQI, or both) in the second CSI report according to the associated CSI report configuration the second set of subbands 335-a. In some examples, the UE 115 may report multiple CQI for multiple power offsets or subband power levels. In some examples, the UE 115 may report a same CQI or LI over the first CSI report and the second CSI report.
  • CQI values for example, a wideband CQI, a wideband+subband CQI, or both
  • a single CSI-RS 325 may still be transmitted over a set of CSI resources.
  • the UE 115 may determine values for the first set of CSI report parameters according to a first set of CSI-RSs transmitted over a first set of CSI-RS resources and may determine values for the second set of CSI report parameters according to a second set of CSI-RSs transmitted over a second set of CSI-RS resources.
  • the first set of CSI-RS resources may be transmitted within a bandwidth of the first set of subbands 330-a (for example, may span a total set of subcarriers of the first set of subbands 330-a) .
  • the second set of CSI-RS resources may be transmitted within a bandwidth of the second set of subbands 335-a (for example, may span a total set of subcarriers of the second set of subbands 335-a) .
  • Each set of CSI-RSs may include a single CSI-RS or multiple CSI-RSs.
  • each set of CSI-RS resources may include a single CSI-RS resource or multiple CSI-RS resources.
  • a UE 115 may determine values for a set of CSI report parameters that accounts for the way in which self-interference affects subbands closer to subbands of interfering transmissions versus those farther away from subbands of interfering transmissions. For instance, for sets of subbands closer to subbands of interfering transmissions, the UE 115 may use a power offset with a lower value and for sets of subbands farther from subbands of interfering transmissions, the UE 115 may use power offsets with a higher value. The difference between the power offsets of closer subbands and farther subbands may account for self-interference. Additional details about the power offsets may be described herein elsewhere, for example, with respect to Figures 4A, 4B, and 4C.
  • Figures 4A, 4B, and 4C illustrate examples of subband power configurations 400-a, 400-b, and 400-c that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the subband power configurations 400-a, 400-b, and 400-c may be implemented by aspects of wireless communications system 100, 200, or both.
  • the subband power configurations 400-a, 400-b, and 400-c may represent configurations of subband powers that a UE 115 may use to determine values for a set of CSI report parameters.
  • an upper set of subbands 402-a may be an example of a portion of the first set of subbands 330-a (for example, the portion within the upper downlink resource of the slot 302-b) or the first set of subbands 330-b described with reference to Figure 3.
  • a lower set of subbands 407-a may be an example of a portion of the second set of subbands 335-a (for example, the portion within the upper downlink resource of the slot 302-b) or the second set of subbands 335-b described with reference to Figure 3.
  • An uplink data region 401-a may be an example of an uplink data region 320 as described with reference to Figure 3.
  • the upper set of subbands 402-a may have an associated first power offset 405-a and the lower set of subbands 407-c may have an associated second power offset 410-a.
  • a UE 115 may use the first power offset 405-a and the second power offset 410-a to determine values for a set of CSI report parameters.
  • an upper set of subbands 402-b, a lower set of subbands 407-b, and a middle set of subbands 412-a may correspond to three sets of subbands within (for example, spanning) a downlink resource (for example, the upper downlink resource of the slot 302-b) .
  • An uplink data region 401-b may be an example of an uplink data region 320 as described with reference to Figure 3.
  • the upper set of subbands 402-b may have an associated first power offset 405-b and the lower set of subbands 407-b may have an associated second power offset 410-b.
  • the middle set of subbands 412-a may have an associated middle power offset 415 that has a value in between that of the first power offset 405-b and the second power offset 410-b. Having a middle power offset 415 in between the first power offset 405-b and the second power offset 410-b may enable a less sudden change in power levels between the first power offset 405-b and the second power offset 410-b.
  • an upper set of subbands 402-c, a lower set of subbands 407-c, and a middle set of subbands 412-c may correspond to three sets of subbands within (for example, spanning) a downlink resource (for example, the upper downlink resource of the slot 302-b) .
  • An uplink data region 401-c may be an example of an uplink data region 320 as described with reference to Figure 3.
  • the upper set of subbands 402-c may have an associated first power offset 405-c and the lower set of subbands 407-c may have an associated second power offset 410-c. Additionally, the middle set of subbands 412-b may have an associated power offset gradient 420, which may also be referred to as a power offset relationship or a power offset function.
  • the power offset gradient 420 may include a gradient of power offset values that vary according to frequency from a value of the first power offset 405-c (for example, at a border between the upper set of subbands 402-c and the middle set of subbands 412-b) to a value of the second power offset 410-b (for example, at a border between the lower set of subbands 407-c and the middle set of subbands 412-b) .
  • the power offset gradient 420 may be indicated to the UE 115 via signaling by the base station 105. Having a power offset gradient 420 in between the first power offset 405-c and the second power offset 410-c may enable a less sudden change in power levels between the first power offset 405-c and the second power offset 410-c.
  • the different subband power configurations 400 described herein may each have several advantages including one or more different advantages.
  • the subband power configuration 400-a may be associated with fewer power offsets than other subband configurations and may thus involve less overhead for indicating for the power offsets.
  • Subband power configuration 400-a may have a sudden change in power levels between the upper set of subbands 402-a and the lower set of subbands 407-a.
  • Subband power configurations 400-b and 400-c may enable a less sudden change in power levels between an upper set of subbands 402 and a lower set of subbands 407.
  • Figure 5 illustrates an example of a process flow 500 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the process flow 500 may be implemented by aspects of wireless communications system 100.
  • a UE 115-b may be an example of aspects of a UE 115 as described with reference to Figure 1 and a base station 105-b may be an example of aspects of a base station 105 as described with reference to Figure 1.
  • Both the UE 115-b and the base station 105-b may be configured to operate in a full-duplex mode.
  • the base station 105-b may transmit an indication of a first power offset (for example, a first power offset 405) associated with a first subband of a band (for example, a subband of a first set of subbands 330) .
  • the UE 115-b may receive the indication of the first power offset.
  • the base station 105-b may transmit an indication of a second power offset (for example, a second power offset 410) associated with a second subband of the band (for example, a subband of a second set of subbands 335) .
  • the UE 115-b may receive the indication of the second power offset.
  • the first power offset and the second power offset may be based on an EPRE ratio associated with the a set of CSI-RSs and a set of downlink shared channel resources (for example, downlink resources 240, PDSCH resources) .
  • the indication of the first power offset and the indication of the second power offset may be provided via DCI or a MAC-CE.
  • a third subband of the band (for example, a subband of a third set of subbands 340) may be associated with a third power offset and a fourth subband of the band (for example, a subband of a fourth set of subbands 345) may be associated with a fourth power offset.
  • the third power offset may have a value different than the first power offset.
  • the first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband.
  • the first subband may span a first set of subcarriers lower than a second set of subcarriers that the second subband spans.
  • the third subband may span a third set of subcarriers higher than fourth set of subcarriers that the fourth set of subcarriers span.
  • the first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers.
  • a first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers.
  • the base station 105-b may transmit an indication of a middle power offset (for example, a middle power offset 415) associated with a middle subband of the band (for example, a subband of a middle set of subbands 412) .
  • the middle subband may be contiguous with (for example, between) the first subband and the second subband.
  • the middle power offset may have a value between a value of the first power offset and a value of the second power offset.
  • the UE 115-b may receive the indication of the middle power offset.
  • the base station 105-b may transmit an indication of a power offset gradient (for example, a power offset gradient 420) associated with a middle subband (for example, a subband of a middle set of subbands 412) .
  • the middle subband may be contiguous with (for example, between) the first subband and the second subband.
  • the UE 115-b may receive the indication of the power offset gradient.
  • the base station 105-b may transmit a set of CSI-RSs (for example, a CSI-RS 325) over at least a portion of the band.
  • the UE 115-b may receive the set of CSI-RSs.
  • the set of CSI-RSs may include a first set of CSI-RSs and a second set of CSI-RSs.
  • a first set of resources for receiving the first set of CSI-RSs of the set of CSI-RSs may be within the first subband and second set of resources for receiving the second set of CSI-RSs of the set of CSI-RSs may be within the second subband.
  • the first set of resources may span a total set of subcarriers of the first subband and the second set of resources may span a total set of subcarriers of the second subband.
  • the UE 115-b may determine values for the set of CSI report parameters based on the indication of the first power offset, the indication of the power offset, and the set of CSI-RSs, or some combination thereof. In some examples, determining the values for the set of CSI report parameters may involve the UE 115-b determining values for a first set of CSI report parameters for the first subband based on the first power offset and the set of CSI-RSs. Additionally, determining the values for the set of CSI report parameters may involve the UE 115-b determining values for second set of CSI report parameters for the second subband based on the second power offset and the set of CSI-RSs.
  • determining the values for the first set of CSI report parameters may be based on the first set of CSI-RSs of the set of CSI-RSs. Additionally, determining the values for the second set of CSI report parameters may be based on the second set of CSI-RSs of the set of CSI-RSs.
  • determining the values for the first set of CSI report parameters may involve determining a value for a first CQI associated with the first subband. Additionally, determining the values for the second set of CSI report parameters may involve determining a value of a second CQI associated with the second subband.
  • the UE 115-b may receive signaling indicating that the first set of CSI report parameters and the second set of CSI report parameters are to include a same RI.
  • the first set of CSI report parameters and the second set of CSI report parameters may each include an LI, a PMI, or both.
  • the LI, PMI, or both associated with the first set of CSI report parameters may have a same value as the respective LI, PMI, or both associated with the second set of CSI report parameters.
  • the set of CSI report parameters may include a CQI for one or both of the first subband or the second subband, an RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, an LI for one or both of the first subband or the second subband, or any combination thereof.
  • the UE 115-b may determine a first PMI for the first subband and a second PMI for the second subband. The UE 115-b may determine the values for the set of CSI report parameters based on the first PMI and the second PMI. Additionally or alternatively, the UE 115-b may determine a first BLER for the first subband and a second BLER for the second subband. Determining the values for the set of CSI report parameters may be based on the first BLER and the second BLER. In some examples, the UE 115-b may determine the values for the set of CSI report parameters based on a difference between the first power offset and the second power offset.
  • the difference between the first power offset and the second power offset may be associated with an alignment between PRGs, an alignment between subbands, or both.
  • determining the values for the set of CSI report parameters may be based on the third power offset and the fourth power offset.
  • the UE 115-b may transmit a single CSI report or multiple CSI reports indicating one or more of the values for the set of CSI report parameters.
  • transmitting the single CSI report or the multiple CSI reports may involve the UE 115-b transmitting a first CSI report indicating the values for the first set of CSI report parameters and a second CSI report indicating the values for the second set of CSI report parameters.
  • transmitting the first and second CSI reports may be based on receiving the signaling indicating that the first set of CSI report parameters and the second set of CSI report parameters are to include a same RI.
  • the base station 105-b may receive the single CSI report or the multiple CSI reports.
  • Figure 6 shows a block diagram of a device 605 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communication manager 615, and a transmitter 620.
  • the device 605 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 915 described with reference to Figure 9.
  • the receiver 610 may utilize a set of antennas.
  • the communication manager 615 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; receive one or more CSI-RSs over at least a portion of the band; determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs; and transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
  • the communication manager 615 may be an example of aspects of the communication manager 910 described herein.
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver component.
  • the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to Figure 9.
  • the transmitter 620 may utilize a set of antennas.
  • Figure 7 shows a block diagram of a device 705 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communication manager 715, and a transmitter 740.
  • the device 705 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 915 described with reference to Figure 9.
  • the receiver 710 may utilize a set of antennas.
  • the communication manager 715 may be an example of aspects of the communication manager 615 as described herein.
  • the communication manager 715 may include a power offset indication receiver 720, a CSI-RS receiver 725, a CSI report parameter determination component 730, and a CSI report transmitter 735.
  • the communication manager 715 may be an example of aspects of the communication manager 910 described herein.
  • the power offset indication receiver 720 may receive, in examples in which the UE is configured to operate in a full-duplex mode, an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the CSI-RS receiver 725 may receive one or more CSI-RSs over at least a portion of the band.
  • the CSI report parameter determination component 730 may determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
  • the CSI report transmitter 735 may transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
  • the transmitter 740 may transmit signals generated by other components of the device 705.
  • the transmitter 740 may be collocated with a receiver 710 in a transceiver component.
  • the transmitter 740 may be an example of aspects of the transceiver 915 described with reference to Figure 9.
  • the transmitter 740 may utilize a set of antennas.
  • Figure 8 shows a block diagram of a communication manager 805 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the communication manager 805 may be an example of aspects of a communication manager 615, a communication manager 715, or a communication manager 910 described herein.
  • the communication manager 805 may include a power offset indication receiver 810, a CSI-RS receiver 815, a CSI report parameter determination component 820, a CSI report transmitter 825, a rank indicator signaling receiver 830, and a power offset gradient receiver 835. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the power offset indication receiver 810 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. In some examples, the power offset indication receiver 810 may receive an indication of a third power offset associated with a third subband of the band. In some examples, the third subband is contiguous with the first subband and the second subband. The third power offset may have a value between a value of the first power offset and a value of the second power offset.
  • a third subband of the band may be associated with a third power offset and a fourth subband of the band may be associated with a fourth power offset.
  • the third power offset has a value different than the first power offset.
  • the first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband.
  • the first subband may span a first set of subcarriers lower than a second set of subcarriers that the second subband spans
  • the third subband may span a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans.
  • a first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers, and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers.
  • a first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers, and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers.
  • the indication of the first power offset and the indication of the second power offset are provided via DCI or a MAC-CE.
  • the CSI-RS receiver 815 may receive one or more CSI-RSs over at least a portion of the band.
  • the one or more CSI-RSs include a set of CSI-RSs.
  • the first power offset and the second power offset are based on an EPRE ratio associated with the one or more CSI-RSs and one or more downlink shared channel resources.
  • the CSI report parameter determination component 820 may determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs. In some examples, the CSI report parameter determination component 820 determining the one or more values for the one or more CSI report parameters may involve determining one or more values for one or more first CSI report parameters for the first subband based on the first power offset and the one or more CSI-RSs. Additionally, determining the one or more values for the one or more CSI report parameters may involve determining one or more values for one or more second CSI report parameters for the second subband based on the second power offset and the one or more CSI-RSs.
  • the CSI report parameter determination component 820 determining the one or more values for the one of more first CSI report parameters is based on one or more first CSI-RSs of the set of CSI-RSs. Additionally, in some examples, the CSI report parameter determination component 820 determining the one or more values for the one or more second CSI report parameters is based at least in part on one or more second CSI-RSs of the set of CSI-RSs.
  • the one or more first CSI report parameters and the one more second CSI report parameters each include one or more of a LI or a PMI.
  • one or more of the LI or the PMI associated with at least one of the first CSI report parameters may have a same value as the respective LI or PMI associated with a respective one of the second CSI report parameters.
  • determining the one or more values for the one or more first CSI report parameters involves determining a value for a first CQI associated with the first subband.
  • determining the one or more values for the second one or more CSI report parameters may involve determining a value of a second CQI associated with the second subband.
  • the CSI report parameter determination component 820 may determine a first PMI for the first subband and a second PMI for the second subband. In some examples, determining the one or more values for the one or more CSI report parameters is based on the first PMI and the second PMI. In some examples, the CSI report parameter determination component 820 may determine a first BLER for the first subband and a second BLER for the second subband. In some examples, determining the one or more values for the one or more CSI report parameters is based on the first BLER and the second BLER.
  • the CSI report parameter determination component 820 may determine the one or more values for the one or more CSI report parameters based on a difference between the first power offset and the second power offset associated with an alignment between PRGs, an alignment between subbands, or both.
  • the one or more CSI report parameters include a CQI for one or both of the first subband or the second subband, a RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, a LI for one or both of the first subband or the second subband, or any combination thereof.
  • the CSI report parameter determination component 820 may determine the one or more values for the one or more CSI report parameters is based on the third power offset and the fourth power offset.
  • the CSI report transmitter 825 may transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
  • transmitting the one or more CSI reports involves transmitting a first CSI report indicating the one or more values for the one or more first CSI report parameters and a second CSI report indicating the one or more values for the one or more second CSI report parameters.
  • the rank indicator signaling receiver 830 may receive signaling indicating that the one or more first CSI report parameters and the one or more second CSI report parameters are to include a same RI. In some examples, transmitting the first CSI report and the second CSI report is based on receiving the signaling.
  • the power offset gradient receiver 835 may receive an indication of a power offset gradient associated with a third subband of the band.
  • the third subband is contiguous with the first subband and the second subband.
  • Figure 9 shows a diagram of a system including a device 905 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 910, a transceiver 915, an antenna 920, memory 925, and a processor 935. These components may be in electronic communication via one or more buses (for example, bus 940) .
  • buses for example, bus 940
  • the communication manager 910 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; receive one or more CSI-RSs over at least a portion of the band; determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs; and transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
  • the transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 920. However, in some examples the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 925 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 930 may not be directly executable by the processor 935 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
  • the processor 935 may include an intelligent hardware device, (for example, a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, a field-programmable gate array (FPGA) , a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 935 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 935.
  • the processor 935 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 925) to cause the device 905 to perform various functions (for example, functions or tasks supporting subband power offset configurations for CSI reporting) .
  • Figure 10 shows a block diagram of a device 1005 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communication manager 1015, and a transmitter 1020.
  • the device 1005 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to Figure 13.
  • the receiver 1010 may utilize a set of antennas.
  • the communication manager 1015 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; transmit one or more CSI-RSs over at least a portion of the band; and receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
  • the communication manager 1015 may be an example of aspects of the communication manager 1310 described herein.
  • the transmitter 1020 may transmit signals generated by other components of the device 1005.
  • the transmitter 1020 may be collocated with a receiver 1010 in a transceiver component.
  • the transmitter 1020 may be an example of aspects of the transceiver 1320 described with reference to Figure 13.
  • the transmitter 1020 may utilize a set of antennas.
  • Figure 11 shows a block diagram of a device 1105 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communication manager 1115, and a transmitter 1135.
  • the device 1105 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to Figure 13.
  • the receiver 1110 may utilize a set of antennas.
  • the communication manager 1115 may be an example of aspects of the communication manager 1015 as described herein.
  • the communication manager 1115 may include a power offset indication transmitter 1120, a CSI-RS transmitter 1125, and a CSI report receiver 1130.
  • the communication manager 1115 may be an example of aspects of the communication manager 1310 described herein.
  • the power offset indication transmitter 1120 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the CSI-RS transmitter 1125 may transmit one or more CSI-RSs over at least a portion of the band.
  • the CSI report receiver 1130 may receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
  • the transmitter 1135 may transmit signals generated by other components of the device 1105.
  • the transmitter 1135 may be collocated with a receiver 1110 in a transceiver component.
  • the transmitter 1135 may be an example of aspects of the transceiver 1320 described with reference to Figure 13.
  • the transmitter 1135 may utilize a set of antennas.
  • Figure 12 shows a block diagram of a communication manager 1205 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the communication manager 1205 may be an example of aspects of a communication manager 1015, a communication manager 1115, or a communication manager 1310 described herein.
  • the communication manager 1205 may include a power offset indication transmitter 1210, a CSI-RS transmitter 1215, a CSI report receiver 1220, a rank indicator signaling transmitter 1225, and a power offset gradient transmitter 1230. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
  • the power offset indication transmitter 1210 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the base station is configured to operate in a full-duplex mode.
  • the power offset indication transmitter 1210 may transmit an indication of a third power offset associated with a third subband of the band.
  • the third subband is contiguous with the first subband and the second subband.
  • the third power offset has a value between a value of the first power offset and a value of the second power offset.
  • a difference between the first power offset and the second power offset may be based on an alignment between PRGs, an alignment between subbands, or any combination thereof.
  • the first power offset and the second power offset may be based on an EPRE ratio associated with the one or more CSI-RSs and one or more downlink shared channel resources.
  • a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset.
  • the third power offset has a value different than the first power offset.
  • the CSI-RS transmitter 1215 may transmit one or more CSI-RSs over at least a portion of the band.
  • the one or more CSI-RSs may include a set of CSI-RSs.
  • the CSI report receiver 1220 may receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
  • the CSI report receiver 1220 receiving the one or more CSI reports may involve receiving a first CSI report indicating one or more values for one or more first CSI report parameters based on transmitting the indication of the first power offset and transmitting the one or more CSI-RSs. Additionally, the CSI report receiver 1220 receiving the one or more CSI reports may involve receiving a second CSI report indicating one or more values for one or more second CSI report parameters based on transmitting the indication of the second power offset and transmitting the one or more CSI-RSs.
  • the one or more values of the one or more first CSI report parameters are based on one or more first channel state reference signals of the set of CSI-RSs.
  • the first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband.
  • the first subband may span a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and the third subband may span a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  • the first subband may span a first set of subcarriers lower than a second set of subcarriers spanned by the second subband and the third subband may span a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  • a first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers.
  • the first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers, and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers.
  • the indication of the first power offset and the indication of the second offset may be provided via DCI or a MAC-CE.
  • the one or more values for the one or more second CSI report parameters are based on one or more second channel state reference signals of the set of CSI-RSs.
  • one or more first resources for transmitting the one or more first channel state reference signals of the set of CSI-RSs are within the first subband and one or more second resources for transmitting the one or more second channel state reference signals of the set of CSI-RSs are within the second subband.
  • the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  • the one or more first CSI report parameters include a first CQI associated with the first subband and the one or more second CSI report parameters include a second CQI associated with the second subband.
  • the CSI report receiver 1220 may receive the one or more CSI reports based on a first PMI for the first subband and a second PMI for the second subband. In some examples, the CSI report receiver 1220 may receive the one or more CSI reports based on a first BLER for the first subband and a second BLER for the second subband.
  • the one or more first CSI report parameters and the one more second CSI report parameters both include one or more of a LI or a PMI.
  • one or more of the LI or the PMI associated with at least one of the first CSI report parameters may have a same value as the respective LI or the PMI associated with a respective one of the second CSI report parameters.
  • the one or more CSI report parameters may include a CQI for one or both of the first subband or the second subband, a RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, a LI for one or both of the first subband or the second subband, or any combination thereof.
  • the CSI report receiver 1220 may receive the one or more CSI reports based on the third power offset and the fourth power offset.
  • the rank indicator signaling transmitter 1225 may transmit signaling indicating that the one or more first CSI report parameters and the one or more second CSI report parameters to include a same RI. In some examples, transmitting the first CSI report and the second CSI report is based on receiving the signaling.
  • the power offset gradient transmitter 1230 may transmit an indication of a power offset gradient associated with a third subband of the band.
  • the third subband is contiguous with the first subband and the second subband.
  • Figure 13 shows a diagram of a system including a device 1305 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein.
  • the device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (for example, bus 1350) .
  • buses for example, bus 1350
  • the communication manager 1310 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; transmit one or more CSI-RSs over at least a portion of the band; and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
  • the network communications manager 1315 may manage communications with the core network (for example, via one or more wired backhaul links) .
  • the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1325. However, in some examples the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1330 may include RAM and ROM.
  • the memory 1330 may store computer-readable, computer-executable code 1335 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 1335 may not be directly executable by the processor 1340 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
  • the processor 1340 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1340 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1340.
  • the processor 1340 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1330) to cause the device 1305 to perform various functions (for example, functions or tasks supporting subband power offset configurations for CSI reporting) .
  • the inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • Figure 14 shows a flowchart illustrating a method 1400 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communication manager as described with reference to Figures 6–9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
  • the UE may receive one or more channel state information reference signals over at least a portion of the band.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
  • the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
  • the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
  • Figure 15 shows a flowchart illustrating a method 1500 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communication manager as described with reference to Figures 6–9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
  • the UE may receive one or more CSI-RSs over at least a portion of the band.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
  • the UE may determine one or more values for one or more first CSI report parameters for the first subband based on the first power offset and the one or more CSI-RSs.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
  • the UE may determine one or more values for one or more second CSI report parameters for the second subband based on the second power offset and the one or more CSI-RSs.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
  • the UE may transmit a first CSI report indicating the one or more values for the one or more first CSI report parameters and a second CSI report indicating the one or more values for the one or more second CSI report parameters.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
  • Figure 16 shows a flowchart illustrating a method 1600 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communication manager as described with reference to Figures 6–9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
  • the UE may receive an indication of a third power offset associated with a third subband of the band.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
  • the UE may receive one or more channel state information reference signals over at least a portion of the band.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
  • the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
  • the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
  • Figure 17 shows a flowchart illustrating a method 1700 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communication manager as described with reference to Figures 6–9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
  • the UE may receive an indication of a power offset gradient associated with a third subband of the band.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a power offset gradient receiver as described with reference to Figures 6–9.
  • the UE may receive one or more channel state information reference signals over at least a portion of the band.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
  • the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
  • the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
  • Figure 18 shows a flowchart illustrating a method 1800 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communication manager as described with reference to Figures 10–13.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, a base station may perform aspects of the described functions using special-purpose hardware.
  • the base station may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a power offset indication transmitter as described with reference to Figures 10–13.
  • the base station may transmit one or more channel state information reference signals over at least a portion of the band.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a CSI-RS transmitter as described with reference to Figures 10–13.
  • the base station may receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a CSI report receiver as described with reference to Figures 10–13.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc in which disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The UE may receive one or more channel state information reference signals over at least a portion of the band and may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals. The UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.

Description

SUBBAND POWER OFFSET CONFIGURATION FOR CHANNEL STATE INFORMATION REPORTING
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to subband power offset configurations for channel state information reporting.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Beamforming is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station or a UE) to select an antenna beam (for example, a transmit beam or a receive beam) . To aid in performing beamforming, a base station may transmit a channel state information reference signal (CSI-RS) to a UE. The UE 115 may provide feedback for beam selection in a CSI report. The base station, using the feedback, may select an antenna beam for communicating with the UE. In some cases, however, such methods fail to account for potential sources of interference.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support subband power offset configurations for channel state information reporting. Generally, the described techniques provide for a user equipment (UE) , a base station, or both to select beams that account for the effects of self-interference as a device operates in a given mode, such as a full-duplex mode. For example, a UE configured to operate in a full-duplex mode may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The UE may receive one or more channel state information reference signals over at least a portion of the band and may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, or the one or more channel state information reference signals, or any combination thereof. The UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
A method for wireless communication at a UE is described. The method may include receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receiving one or more channel state information reference signals over at least a portion of the band, determining one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receive one or more channel state information reference signals over at least a portion of the band, determine one or more values for one or more channel state  information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, means for receiving one or more channel state information reference signals over at least a portion of the band, means for determining one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and means for transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, receive one or more channel state information reference signals over at least a portion of the band, determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals, and transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
A method for wireless communication at a base station is described. The method may include transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmitting one or more channel state information reference signals over at least a portion of the band, and receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the  indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmit one or more channel state information reference signals over at least a portion of the band, and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, means for transmitting one or more channel state information reference signals over at least a portion of the band, and means for receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band, transmit one or more channel state information reference signals over at least a portion of the band, and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an example of a wireless communications system that supports subband power offset configurations for channel state information (CSI) reporting in accordance with aspects of the present disclosure.
Figure 2 illustrates an example of a wireless communications system that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figures 3A and 3B illustrate examples of resource configurations that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figures 4A, 4B, and 4C illustrate examples of subband power configurations that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figure 5 illustrates an example of a process flow that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figures 6 and 7 show block diagrams of devices that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figure 8 shows a block diagram of a communication manager that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figure 9 shows a diagram of a system including a device that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figures 10 and 11 show block diagrams of devices that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figure 12 shows a block diagram of a communication manager that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figure 13 shows a diagram of a system including a device that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
Figures 14–18 show flowcharts illustrating methods that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A base station and user equipment (UE) may operate in a frequency division duplexing (FDD) scheme, in which uplink and downlink transmissions between the base station and the UE may overlap in time. For instance, the UE may transmit an uplink transmission from a transmit antenna panel (for example, an antenna panel configured to transmit) of the UE to a receive antenna panel (for example, an antenna panel configured to receive) of the base station that overlaps in time with a downlink transmission transmitted from a transmit antenna panel of the base station to a receive antenna panel of the UE. In some examples, if the UE transmits the uplink transmission from the transmit antenna panel of the UE, the uplink transmission may generate interference at the receive antenna panel of the UE that is receiving the overlapping downlink transmission. Similarly, if the base station transmits the downlink transmission from the transmit antenna panel of the base station, the downlink transmission may generate interference at the receive antenna panel of the base station that is receiving the overlapping uplink transmission. Such interference at a device based on transmitting and receiving operations at the device may be referred to as self-interference.
In some cases the base station may perform a beam training procedure, in which the base station or the UE (or both) may determine one or more beams for communicating with each other. The beam training procedure may include the base station transmitting a channel state information (CSI) reference signal (CSI-RS) to the UE in a band and receiving a CSI report from the UE which may include values for a set (for example, one or more) of CSI parameters. Examples of such parameters may include a channel quality indicator (CQI) , a rank indicator (RI) , a layer indicator (LI) , or a precoding matrix indicator (PMI) . Using the values of the CSI report parameters, the base station may determine one or more beams for communicating with the UE.
In cases in which a downlink resource (for example, a resource for transmitting downlink transmissions) and an uplink resource (for example, a resource for transmitting uplink transmissions) overlap in time within the band in which the CSI-RS is received, a level of self-interference at the base station in the uplink resource due to transmissions in the downlink resource may be higher at a first edge closest to the downlink resource than a second edge of the uplink resource. Similarly, the level of self-interference at a UE in the downlink resource due to transmissions in the uplink resource may be higher at a first edge closest to the uplink resource than a second edge of the downlink resource.
In some cases, when receiving a CSI-RS, a downlink resource for receiving the CSI-RS may span a bandwidth of the band. In such cases, the downlink resource for receiving the CSI-RS may not overlap an uplink resource within the band. However, at a time after receiving the CSI-RS, an uplink resource within the band may overlap a downlink resource within the band. As such, a greater level of self-interference may occur at the time after receiving the CSI-RS than at the time when the CSI-RS is received. The UE may determine the CSI report parameters according to the level of self-interference occurring when receiving the CSI-RS, but may not do so according to the level of self-interference occurring when an uplink resource within the band overlaps a downlink resource in the band after the CSI-RS is received. As such, the CSI report parameters reported by the UE may fail to account for the level of self-interference when the uplink resource overlaps the downlink resource at the time after the CSI-RS is received.
Various aspects generally relate to CSI reporting, and more specifically, to subband power offset configurations for CSI reporting that enable a UE, a base station, or both to select beams that account for the effects of self-interference. Some aspects particularly relate to techniques for beam training for full duplex communications (for example, communications in which a UE or a base station may be capable of transmitting and receiving simultaneously) . In some aspects, in response to receiving a CSI-RS over a band, the UE may select multiple subbands from the band over which the CSI-Rs is received, and in some examples, may select multiple sets of subbands, each including one or more subbands, from the band. For instance, the UE may identify a first set of subbands of the band more likely to have a higher level of self-interference and a second set of subbands of the band more likely to have a lower level of self-interference. The UE may associate each subband or set of subbands with a respective subband power offset according to a subband  power offset configuration transmitted by the base station for each subband or set of subbands. For instance, the base station may transmit, to the UE, an indication of a first power offset for the first set of subbands and a second power offset for the second set of subbands. The first power offset may have a value relative to the second power offset that accounts for the higher level of self-interference in the first set of subbands. For example, the first power offset may be lower than the second power offset by an amount equal to or greater than an expected power level of self-interference in the first set of subbands.
Using the first power offset and the second power offset, the UE may determine values for the set of CSI report parameters and may report the values for the set of CSI report parameters to the base station in a single CSI report. In such cases, the set of CSI report parameters may include a first subset for the first set of subbands and a second subset for the second set of subbands. Alternatively, the UE may determine values for a first set of CSI report parameters for the first set of subbands and values for a second set of CSI report parameters for the second set of subbands, and may transmit a first CSI report to indicate the values for the first set of CSI report parameters and a second CSI report to indicate the values for the second set of CSI report parameters. In some examples in which the UE transmits multiple CSI reports, the base station may transmit multiple CSI-RSs: at least a first CSI-RS within the first set of subbands and at least a second CSI-RS within the second set of subbands. In such cases, the UE may determine values for the first set of CSI report parameters based on the first CSI-RS and values for the second set of CSI report parameters based on the second CSI-RS.
Aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of an additional wireless communications system, resource configurations, subband power configurations, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to subband power offset configurations for CSI reporting.
Figure 1 illustrates an example of a wireless communications system 100 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the  wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (for example, mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof. As used herein, unless otherwise explicitly noted, a set of elements may include one or more elements in the set of elements.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in Figure 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (for example, core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in Figure 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (for example, via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (for example, via an X2, Xn, or other interface) either directly (for example, directly between base stations 105) , or indirectly (for example, via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology. The "device" may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in Figure 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term "carrier" may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (for example, a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (for example, LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (for example, synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink  component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and time division duplexing (TDD) component carriers.
In some examples (for example, in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (for example, an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode in which initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode in which a connection is anchored using a different carrier (for example, of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (for example, in an FDD mode) or may be configured to carry downlink and uplink communications (for example, in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a "system bandwidth" of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (for example, 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (for example, the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (for example, a subband, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (for example, using multi-carrier modulation (MCM) techniques such as  orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (for example, a duration of one modulation symbol) and one subcarrier, in which the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (for example, the order of the modulation scheme, the coding rate of the modulation scheme, or both) . The more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (for example, spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, in which a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, in which Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (for example, 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (for example, ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (for example, in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a  number of symbol periods (for example, depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (for example, N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (for example, in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (for example, the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (for example, in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (for example, a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (for example, CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (for example, control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (for example, mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (for example, using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (for example, a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (for example, a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (for example, radio heads and ANCs) or consolidated into a single network device (for example, a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (for example, less than 100 kilometers)  compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (for example, LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (for example, a base station 105, a UE 115) to shape or steer an antenna beam (for example, a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by  combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (for example, with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (for example, antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (for example, synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (for example, by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (for example, a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (for example, by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined  beam for transmission (for example, from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more subbands. The base station 105 may transmit a reference signal (for example, a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (for example, a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (for example, for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (for example, for transmitting data to a receiving device) .
A receiving device (for example, a UE 115) may try multiple receive configurations (for example, directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (for example, different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as "listening" according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (for example, when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (for example, a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (for example, time, frequency, and power) . A wireless network, for example a wireless local area network (WLAN) , such as a Wi-Fi (in other words, Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices. The AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) . A wireless device may communicate with a network device bi-directionally. For example, in a WLAN, a device may communicate with an associated AP via downlink (for example, the communication link from the AP to the device) and uplink (for example, the communication link from the device to the AP) . A wireless personal area network (PAN) , which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices. For example, wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
Generally, the described techniques provide for a UE 115, a base station 105, or both to select beams that account for the effects of self-interference when operating in a full-duplex mode. For instance, a UE 115 configured to operate in a full-duplex mode may receive, from a base station 105, an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The UE 115 may receive, from the base station 105, a CSI-RS over at least a portion of the band and may determine values for a set of CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the CSI-RS. The UE 115 may transmit, to the base station 105, a CSI report indicating the values for the set of CSI report parameters. Each subband may include a set of consecutive physical resource blocks (PRB) (for example, a set of 2, 4, or 8 subcarriers) or a set of consecutive subcarriers.
Figure 2 illustrates an example of a wireless communications system 200 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. In some examples, the wireless communications system 200 may be  implemented by aspects of the wireless communications system 100. For instance, a UE 115-a may be an example of aspects of a UE 115 as described with reference to Figure 1 and a base station 105-a may be an example of aspects of a base station 105 as described with reference to Figure 1.
The UE 115-a may include a set of antenna panels 205. For instance, the UE 115-a may include a first antenna panel 205-a and a second antenna panel 205-b. Similarly, the base station 105-a may include a set of antenna panels 215. For instance, the base station 105-a may include a first antenna panel 215-a and a second antenna panel 215-b. Each  antenna panel  205 and 215 may include an array of antennas configurable to perform beamforming. As used herein, unless otherwise explicitly noted, a set of elements may include one or more elements in the set of elements.
In some examples, the antenna panels 215-a and 215-b of the base station 105-a may be in a communication configuration 220. For instance, in a communication configuration 220-a, the antenna panel 215-a may be configured to transmit signaling (for example, a downlink transmission 225) and the antenna panel 215-b may be configured to receive signaling (for example, an uplink transmission 230) . In some examples, the communication configuration 220-a may be referred to as a split-panel configuration. In a communication configuration 220-b, both the antenna panels 215-a and 215-b may both be configured to transmit signaling. In a communication configuration 220-c, both the antenna panels 215-a and 215-b may be configured to receive signaling. Similarly, the antenna panels 205-a and 205-b of the UE 115-a may be in a communication configuration 210. For instance, the antenna panel 205-a may be configured to receive signaling (for example, downlink transmission 225) and the antenna panel 205-b may be configured to transmit signaling (for example, uplink transmission 230) . Alternatively, the antenna panels 205-a and 205-b may be in a communication configuration in which both are configured to transmit signaling or both are configured to receive signaling.
In some examples, the base station 105-a may operate in a full-duplex mode, in which the base station 105-a may be capable of receiving transmissions (for example, the uplink transmission 230) that overlap at least in time, frequency, or both within a component carrier with transmissions transmitted by the base station 105-a (for example, the downlink transmission 225) . Similarly, the UE 115-a may operate in a full-duplex mode, in which the  UE 115-a may be capable of transmitting transmissions (for example, the uplink transmission 230) that overlap at least in time, frequency, or both within a component carrier with transmissions received by the UE 115-a (for example, the downlink transmission 225) . When the UE 115-a or the base station 105-a communicates uplink and downlink transmissions in different subbands concurrently (for example, at least partially overlapping) or simultaneously, such an operation may be referred to as a subband full duplex operation. Alternatively, the UE 115-a may operate in a half-duplex mode, in which the UE 115-a may transmit signaling or receive signaling, but may not do both concurrently or simultaneously within a same component carrier or within same frequency domain resources.
Performing full duplex operations may enable the UE 115-a or the base station 105-a (or both) to have increased uplink coverage and reduced latency as compared to half-duplex operations. For instance, in half-duplex operations, each slot 235 may be assigned for uplink or downlink operations but not both. As such, during a slot 235 in which the UE 115-a or base station 105-a are performing in a half-duplex mode, the UE 115-a or base station 105-a may not communicate an uplink transmission 230 at a same time as the downlink transmission 225. Thus, the UE 115-a or base station 105-a may refrain from transmitting one of the uplink transmission 230 or downlink transmission 225 until at least the next slot 235. Alternatively, if performing in a full-duplex mode in the same slot 235, the UE 115-a or base station 105-a may be able to communicate the uplink transmission 230 at the same time as the downlink transmission 225. As uplink and downlink communications may occur in a same slot 235, uplink coverage may be increased. Additionally, as an uplink transmission 230 may be transmitted in a same slot as a downlink transmission 225 (for example, instead of being transmitted in a next slot) , latency may be reduced.
When operating in a full-duplex mode, each of the base station 105-a and the UE 115-a may share at least some resource of the system bandwidth according to a resource configuration. The resource configuration may include sets of downlink resources 240 (for example, resources for communicating a downlink transmission 225) and sets of uplink resources 245 (for example, resources for communicating an uplink transmission 230) . Whether the resource configuration includes the set of downlink resources 240, the set of uplink resources 245, or both within a given bandwidth 237 of a band may vary within a slot 235. For instance the resource configuration may include a set of downlink resources 240 within the slot 235-a; may include two sets of downlink resources 240 (e.g., sets of downlink  resources 240-a and 240-b) and a set of uplink resources 245 within the slots 235-b and 235-c; and may include a set of uplink resources 245 within the slot 235-d. In the slots 235-b and 235-c, the bandwidth 237 may be spanned by a first set of uplink resources 245 and two sets of downlink resources 240. In some examples, each set of downlink resources 240 may border an edge of the set of uplink resources 245. In some examples, a guard band may be present between each of the set of downlink resources 240 and the set of uplink resources 245. In some examples, each set of downlink resources 240 within the slots 235-b and 235-c may have a wider bandwidth (for example, 40 MHz, 80 MHz) than the set of uplink resources 245 within the slots 235-b and 235-c (for example, 20 MHz) . Additional details corresponding to resource configurations are described elsewhere herein, for example, with reference to Figures 3A and 3B.
In some examples, the communication configuration 220 of the base station 105-a may be different for different slots 235. For instance, for the slot 235-a, which may include only a set of downlink resources 240, the antenna panels 215-a and 215-b may both be configured to transmit transmissions (for example, according to the communication configuration 220-b) . For the slots 235-b and 235-c, which may include two sets of downlink resources 240 and a set of uplink resources 245, the antenna panel 215-a may be configured to transmit transmissions and the antenna panel 215-b may be configured to receive transmissions (for example, according to the communication configuration 220-a) . For the slot 235-d, which may include only a set of uplink resources 245, the antenna panels 215-a and 215-b may both be configured to receive transmissions (for example, according to the communication configuration 220-c) . Similarly, in examples in which the UE 115-a is configured to operate in a full-duplex mode, the communication configuration 210 of the UE 115-a may be different for different slots 235. Complementary to the antenna panels 215-a and 215-b, for the slot 235-a, the antenna panels 205-a and 205-b may both be configured to receive transmissions; for the slots 235-b and 235-c, the antenna panel 205-a may be configured to receive transmissions and the antenna panel 205-b may be configured to transmit transmissions; and for the slot 235-d, the antenna panel 205-d may be configured to transmit transmissions.
In some examples, when the antenna panels 215-a and 215-b are in the communication configuration 220-a, the antenna panel 215-a may transmit a transmission (for example, a downlink transmission 225) that overlaps in time with a transmission received  by the antenna panel 215-b (for example, an uplink transmission 230) . In such examples, the transmission transmitted by the antenna panel 215-a may interfere with the transmission received by the antenna panel 215-b. Similarly, when the antenna panel 205-a is configured to receive transmissions and the antenna panel 205-b is configured to transmit transmissions, the antenna panel 205-a may receive a transmission (for example, a downlink transmission 225) that overlaps in time with a transmission transmitted by the antenna panel 205-b (for example, an uplink transmission 230) . In such examples, the transmission transmitted by the antenna panel 205-b may interfere with the transmission received by the antenna panel 205-a. Such interference at the antenna panel 205-a, the antenna panel 215-b, or both may be referred to as self-interference.
How self-interference affects communication may depend on a pattern of resources over which the interfering transmission is transmitted and resources over which the interfered transmission is received. Self-interference may be present in higher levels in subcarriers of the interfered transmission that are closer in frequency to subcarriers of the interfering transmission and may be present in lower levels in subcarriers of the interfered transmission that are farther in frequency from subcarriers of the interfering transmission. For instance, if a downlink transmission 225 overlaps an uplink transmission 230 in the slot 235-b, the uplink transmission 230 may be communicated within a set of subcarriers of the set of uplink resources 245 and the downlink transmission 225 may be communicated within a set of subcarriers of the two sets of downlink resources 240-a and 240-b. At the UE 115-a, the interfering transmission may be the uplink transmission 230 and the interfered transmission may be the downlink transmission 225. In cases in which the downlink transmission 225 is transmitted within subcarriers of the set of downlink resources 240-a, self-interference may be present in higher levels in subcarriers of the set of downlink resources 240-a that are lower in frequency (for example, closer to the set of uplink resources 245) and may be present in lower levels in subcarriers of the set of downlink resources 240-a that are higher in frequency (for example, farther from the set of uplink resources 245) . In cases in which the downlink transmission 225 is transmitted within subcarriers of the set of downlink resources 240-b, self-interference may be present in higher levels in subcarriers of the set of downlink resources 240-b that are higher in frequency (for example, closer to the set of uplink resources 245) and may be present in higher levels in subcarriers of the set of downlink resources 240-b that are lower in frequency (for example, farther from the set of  uplink resources 245) . Similarly, at the base station 105-a, the interfering transmission may be the downlink transmission 225 and the interfered transmission may be the uplink transmission 230. As such, at the base station 105-a, self-interference may be present in higher levels in the subcarriers of the set of uplink resource 245 closer to the set of downlink resources 240-a or 240-b (for example, those closer to an edge of the set of uplink resources 245) and may be present in lower levels in the subcarriers that are farther from the set of downlink resources 240-a or 240-b (for example, those closer to the middle of the set of uplink resources 245) .
In some examples, the base station 105-a may transmit a CSI-RS 250 in the slot 235-a and over a total span of the bandwidth 237 as part of a beam training or CSI acquisition procedure. The UE 115-a may provide values for a set of CSI report parameters (for example, CQI, PMI, RI, LI) to the base station 105-a. The base station 105-a may use the received values for the set of CSI report parameters to select beams for communicating with the UE 115-a. In some examples, the UE 115-a may employ a similar technique (for example, using a sounding reference signal (SRS) instead of a CSI-RS) to select beams for communicating with the base station 105-a.
When the UE 115-a receives the CSI-RS 250, during each symbol that includes a resource for receiving the CSI-RS 250, each of the frequency resources within the bandwidth 237 may be dedicated for receiving downlink transmissions (for example, each frequency resource may be dedicated for receiving the CSI-RS 250) . As such, the antenna panels 205-a and 205-b of the UE 115-a may both be configured to receive transmissions (and may not be configured to transmit transmissions, for example) and self-interference may not be present when the UE 115-a receives the CSI-RS 250. Accordingly, when the UE 115-a determines values for the set of CSI report parameters to report to the base station 105-a, the UE 115-a may fail to account for self-interference. Additionally, when receiving the CSI-RS 250, the antenna panels 205-a and 205-b of the UE 115-a may be configured to receive signaling. However, in the slots 235-b and 235-c, the antenna panels 205-a and 205-b may be in a split-panel configuration. As such, the set of CSI report parameters may correspond to when the antenna panels 205-a and 205-b are configured to receive signaling, but may not account for when the antenna panels 205-a and 205-b are in a split-panel configuration or when the antenna panels 205-a and 205-b are both configured to transmit transmissions.
Various aspects generally relate to CSI reporting, and more specifically, to subband power offset configurations for CSI reporting that enable the UE 115-a, the base station 105-a, or both to select beams that account for the effects of self-interference. Some aspects particularly relate to techniques for beam training for full duplex communications. In some aspects, in response to receiving a CSI-RS 250 over the bandwidth 237, the UE 115-a may select multiple subbands from the bandwidth 237 over which the CSI-RS 250 is received, and in some examples, multiple sets of subbands, each including one or more subbands, from the bandwidth 237. For instance, the UE 115-a may identify a first set of subbands of the bandwidth 237 whose subcarriers are more likely to have a higher level of self-interference and a second set of subbands of the bandwidth 237 whose subcarriers more likely to have a lower level of self-interference. The UE 115-a may associate each subband or set of subbands with a respective subband power offset according to a subband power offset configuration transmitted by the base station 105-a for each subband or set of subbands. For instance, the base station 105-a may transmit, to the UE 115-a, an indication of a first power offset for the first set of subbands and a second power offset for the second set of subbands. The first power offset may have a value relative to the second power offset that accounts for the higher level of self-interference in the first set of subbands. For example, the first power offset may be lower than the second power offset by an amount equal to or greater than an expected power level of self-interference in the first set of subbands.
Using the first power offset and the second power offset, the UE 115-a may determine values for the set of CSI report parameters and may report the values for the set of CSI report parameters to the base station 105-a in a single CSI report. In such cases, the set of CSI report parameters may include a first subset for the first set of subbands and a second subset for the second set of subbands. A set of CSI report parameters may include a single CSI report parameter or multiple CSI report parameters. Alternatively, the UE 115-a may determine values for a first set of CSI report parameters for the first set of subbands and values for a second set of CSI report parameters for the second set of subbands, and may transmit a first CSI report to indicate the values for the first set of CSI report parameters and a second CSI report to indicate the values for the second set of CSI report parameters. In some examples in which the UE 115-a transmits multiple CSI reports, the base station 105-a may transmit multiple CSI-RSs: at least a first CSI-RS within the first set of subbands and at  least a second CSI-RS within the second set of subbands. In such cases, the UE 115-a may determine values for the first set of CSI report parameters based on the at least the first CSI-RS and values for the second set of CSI report parameters based on the at least the second CSI-RS. Additional details corresponding to the configuration of the sets of subbands and the CSI report parameters may be described elsewhere herein, for example, with reference to Figures 3A and 3B. Additional details about the power offsets may be described elsewhere herein, for example, with reference to Figures 4A, 4B, and 4C.
In some examples, other partitions within the resource configuration (for example, other partitions of the bandwidth 237) may be used without deviating from the scope of the present disclosure. For instance, in some other examples, the bandwidth 237 of a slot 235 may be spanned by a set of downlink resource 240 and two sets of uplink resources 245, and each set of uplink resources 245 may border an edge of the two sets of downlink resources 240. In some such examples, a guard band may be present between each set of uplink resources 245 and the adjacent two sets of downlink resources 240. As with the case in which two downlink resources 240 each border an edge of an uplink resource 245, self-interference may be present in higher levels in subcarriers of the interfered transmission that are closer in frequency to subcarriers of the interfering transmission and may be present in lower levels in subcarriers of the interfered transmission that are farther in frequency from subcarriers of the interfering transmission. As such, the methods as described herein may be applicable in examples in which a slot 235 includes a set of downlink resources 240 and two sets of uplink resources 245. Generally, a resource configuration may be subject to interference alignment between the base station 105-a and an operator.
Figures 3A and 3B illustrate examples of resource configurations 300-a and 300-b that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. In some examples, the resource configurations 300-a and 300-b may be implemented by aspects of the  wireless communications systems  100, 200, or both. For instance, the resource configuration 300-a, 300-b, or both may represent a configuration of uplink and downlink resources for communications between a UE 115 and a base station 105.
The resource configurations 300-a and 300-b may include sets of downlink resources and sets of uplink resources. Each set of downlink resources may include a  downlink control region 305 over which a UE 115 may receive downlink control information (DCI) (for example, a physical downlink control channel (PDCCH) transmission) and a downlink data region 310 over which the UE 115 may receive data (for example, a physical downlink shared channel (PDSCH) transmission) . Each set of uplink resources may include an uplink control region 315 over which a UE 115 may transmit uplink control information (UCI) (for example, a physical uplink control channel (PUCCH) transmission) and an uplink data region 320 over which the UE 115 may transmit data (for example, a physical uplink shared channel (PUSCH) transmission) .
Resource configurations 300-a and 300-b may include sets of downlink resources within the slot 302-a; may include sets of downlink resources and sets of uplink resources within the slots 302-b and 302-c; and may include sets of uplink resources within the slot 302-d. In slots 302-b and 302-c, the band 303 may be spanned by an uplink resource and two downlink resources. In some examples, each downlink resource may border an edge of the uplink resource. In some examples, a guard band may be present between each downlink resource and the uplink resource.
In some examples, a base station 105 may transmit a CSI-RS 325 in slot 302-a as part of a beam training procedure. In response to receiving the CSI-RS 325, select multiple subbands from the band over which the CSI-RS 325 is received, and in some examples, multiple sets of subbands, each including one or more subbands, from the band 303. For instance, for the resource configuration 300-a, the UE 115 may select a first set of subbands 330-a and a second set of subbands 335-a. The first set of subbands 330-a and the second set of subbands 335-a cumulatively (for example, together) may span a total bandwidth of the sets of downlink resources in the band 303. Additionally, the first set of subbands 330-a and the second set of subbands 335-a may each span a same number of subcarriers within each set of downlink resources. In some examples, the first set of subbands 330-a may have more subcarriers (for example, may be wider) within each set of downlink resources than the second set of subbands 335-a. In some examples, subcarriers of the first set of subbands 330-a may be more likely to have a lower level of self-interference and subcarriers of the second set of subbands 335-a may be more likely to have a higher level of self-interference.
For the resource configuration 300-b, the UE 115 may select a first set of subbands 330-b, a second set of subbands 335-b, a third set of subbands 340, and a fourth set  of subbands 345. The first, second, third, and fourth sets of subbands may cumulatively span a total bandwidth of the downlink resources in the band 303. Additionally, the first set of subbands 330-b may span a same number of subcarriers as the fourth set of subbands 345 and the second set of subbands 335-b may span a same number of subcarriers as the third set of subbands 340. In some examples, the first set of subbands 330-b may span more subcarriers (for example, may be wider) than the second set of subbands 335-b and the fourth set of subbands 345 may span more subcarriers (for example, may be wider) than the third set of subbands 340. In some examples, the second set of subbands 335-b and the third set of subbands 340 may be more likely to have a higher level of self-interference and the first set of subbands 330-a and the fourth set of subbands 345 may be more likely to have a higher level of self-interference.
For each of the sets of subbands that the UE 115 selects, the UE 115 may identify an associated power offset (for example, an associated subband power level) . For the resource configuration 300-a, the UE 115 may identify a first power offset for the first set of subbands 330-a and a second power offset for the second set of subbands 335-a. For the resource configuration 300-b, the UE 115 may identify a first power offset for the first set of subbands 330-b, a second power offset for the second set of subbands 335-b, a third power offset for the third set of subbands 340, and a fourth power offset for the fourth set of subbands 345. The second power offset may have a value that is the same as the third power offset or may have independent values (for example, if different downlink-uplink boundaries are associated with different power levels) . In some examples, the base station 105 may provide the power offsets to the UE 115 when configuring resources for communicating a CSI report (for example, a CSIreportConfig) . Such signaling may include DCI, RRC, or MAC-CE signaling. Additionally, the base station 105 may update the power offsets dynamically through MAC-CE and DCI signaling.
In some examples, each power offset may be defined as an energy per resource element ratio (EPRE) associated with the CSI-RS 325 and a downlink shared channel resource 310 (for example, a PDSCH resource) . For instance, if the EPRE, which may be a ratio of CSI-RS power over PDSCH power, has a value of X (for example, in which X= 0 dB) the first power offset associated with the first set of subbands 330-a may have a power value P0 1=X+Y (for example, in which Y=10) and the second power offset associated with the second set of subbands 335-a may have a power value P0 2=X-Z (for example, in  which Z=10) . In such examples, P0 1=P0 2+Z+Y (for example, P0 1=P0 2+20 dB) . Alternatively, the first power offset may have a power value of P0 1=X and the second power offset may have a power value of P0 2=X-Z (for example, in which Z=20) . In such examples, P0 1=P0 2+Z (for example, P0 1=P0 2+20 dB) .
In some examples, using the power offset values, the UE 115 may determine values for a set of CSI report parameters to transmit in a single CSI report (for example, according to a single CSIreportConfig) in response to receiving a CSI-RS 325 over a single CSI-RS resource. Such CSI report parameters may include one or more of CQI, RI, LI, or PMI. In some examples, the UE 115 may determine a single wideband CQI, a single wideband+subband CQI, and a single rank that corresponds to each set of subbands. In some examples, each set of subbands may have its own PMI. For instance, the first set of subbands 330-a may have a first PMI and the second set of subbands 335-a may have a second PMI. In some examples, each set of subbands may be associated with a unique block error rate (BLER) target configured for the UE 115. For instance, the first set of subbands 330-a may have a first BLER target, and the second set of subbands 335-a may have a second BLER target. In such examples, the UE 115 may determine the values for the set of CSI report parameters based on the first BLER target and the second BLER target.
Alternatively, in some examples, the UE 115 may determine values for a first set of CSI report parameters to be indicated in a first CSI report and a second set of CSI report parameters to be indicated in a second CSI report. Each CSI report may be associated with an associated CSI report configuration (for example, an associated CSIreportConfig) . Additionally, for each CSI report, the UE 115 may be configured to transmit a same rank (for example, the UE 115 may receive signaling that indicates that the UE 115 is to report a same rank for the first set of subbands 330-a and the second set of subbands 335-a) . In some examples in which the UE 115 transmits two CSI reports, the UE 115 may include CQI values (for example, a wideband CQI, a wideband+subband CQI, or both) for the first set of subbands 330-a in the first CSI report according to the associated CSI report configuration for the first set of subbands 330-a. Additionally the UE 115 may include CQI values (for example, a wideband CQI, a wideband+subband CQI, or both) in the second CSI report according to the associated CSI report configuration the second set of subbands 335-a. In some examples, the UE 115 may report multiple CQI for multiple power offsets or subband  power levels. In some examples, the UE 115 may report a same CQI or LI over the first CSI report and the second CSI report.
In some examples in which the UE 115 transmits two CSI reports, a single CSI-RS 325 may still be transmitted over a set of CSI resources. Alternatively, the UE 115 may determine values for the first set of CSI report parameters according to a first set of CSI-RSs transmitted over a first set of CSI-RS resources and may determine values for the second set of CSI report parameters according to a second set of CSI-RSs transmitted over a second set of CSI-RS resources. In some examples, the first set of CSI-RS resources may be transmitted within a bandwidth of the first set of subbands 330-a (for example, may span a total set of subcarriers of the first set of subbands 330-a) . Additionally, the second set of CSI-RS resources may be transmitted within a bandwidth of the second set of subbands 335-a (for example, may span a total set of subcarriers of the second set of subbands 335-a) . Each set of CSI-RSs may include a single CSI-RS or multiple CSI-RSs. Similarly, each set of CSI-RS resources may include a single CSI-RS resource or multiple CSI-RS resources.
By using multiple power offsets for multiple subbands or sets of subbands, a UE 115 may determine values for a set of CSI report parameters that accounts for the way in which self-interference affects subbands closer to subbands of interfering transmissions versus those farther away from subbands of interfering transmissions. For instance, for sets of subbands closer to subbands of interfering transmissions, the UE 115 may use a power offset with a lower value and for sets of subbands farther from subbands of interfering transmissions, the UE 115 may use power offsets with a higher value. The difference between the power offsets of closer subbands and farther subbands may account for self-interference. Additional details about the power offsets may be described herein elsewhere, for example, with respect to Figures 4A, 4B, and 4C.
Figures 4A, 4B, and 4C illustrate examples of subband power configurations 400-a, 400-b, and 400-c that support subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. In some examples, the subband power configurations 400-a, 400-b, and 400-c may be implemented by aspects of  wireless communications system  100, 200, or both. For instance, the subband power configurations 400-a, 400-b, and 400-c may represent configurations of subband powers that a UE 115 may use to determine values for a set of CSI report parameters.
In the subband power configuration 400-a shown in Figure 4A, an upper set of subbands 402-a may be an example of a portion of the first set of subbands 330-a (for example, the portion within the upper downlink resource of the slot 302-b) or the first set of subbands 330-b described with reference to Figure 3. Similarly, a lower set of subbands 407-a may be an example of a portion of the second set of subbands 335-a (for example, the portion within the upper downlink resource of the slot 302-b) or the second set of subbands 335-b described with reference to Figure 3. An uplink data region 401-a may be an example of an uplink data region 320 as described with reference to Figure 3.
The upper set of subbands 402-a may have an associated first power offset 405-a and the lower set of subbands 407-c may have an associated second power offset 410-a. A UE 115 may use the first power offset 405-a and the second power offset 410-a to determine values for a set of CSI report parameters.
In the subband power configuration 400-b shown in Figure 4B, an upper set of subbands 402-b, a lower set of subbands 407-b, and a middle set of subbands 412-a may correspond to three sets of subbands within (for example, spanning) a downlink resource (for example, the upper downlink resource of the slot 302-b) . An uplink data region 401-b may be an example of an uplink data region 320 as described with reference to Figure 3.
The upper set of subbands 402-b may have an associated first power offset 405-b and the lower set of subbands 407-b may have an associated second power offset 410-b. Additionally, the middle set of subbands 412-a may have an associated middle power offset 415 that has a value in between that of the first power offset 405-b and the second power offset 410-b. Having a middle power offset 415 in between the first power offset 405-b and the second power offset 410-b may enable a less sudden change in power levels between the first power offset 405-b and the second power offset 410-b.
In the subband power configuration 400-c shown in Figure 4C, an upper set of subbands 402-c, a lower set of subbands 407-c, and a middle set of subbands 412-c may correspond to three sets of subbands within (for example, spanning) a downlink resource (for example, the upper downlink resource of the slot 302-b) . An uplink data region 401-c may be an example of an uplink data region 320 as described with reference to Figure 3.
The upper set of subbands 402-c may have an associated first power offset 405-c and the lower set of subbands 407-c may have an associated second power offset 410-c.  Additionally, the middle set of subbands 412-b may have an associated power offset gradient 420, which may also be referred to as a power offset relationship or a power offset function. The power offset gradient 420 may include a gradient of power offset values that vary according to frequency from a value of the first power offset 405-c (for example, at a border between the upper set of subbands 402-c and the middle set of subbands 412-b) to a value of the second power offset 410-b (for example, at a border between the lower set of subbands 407-c and the middle set of subbands 412-b) . The power offset gradient 420 may be indicated to the UE 115 via signaling by the base station 105. Having a power offset gradient 420 in between the first power offset 405-c and the second power offset 410-c may enable a less sudden change in power levels between the first power offset 405-c and the second power offset 410-c.
The different subband power configurations 400 described herein may each have several advantages including one or more different advantages. For instance, the subband power configuration 400-a may be associated with fewer power offsets than other subband configurations and may thus involve less overhead for indicating for the power offsets. Subband power configuration 400-a, however, may have a sudden change in power levels between the upper set of subbands 402-a and the lower set of subbands 407-a. Subband power configurations 400-b and 400-c may enable a less sudden change in power levels between an upper set of subbands 402 and a lower set of subbands 407.
Figure 5 illustrates an example of a process flow 500 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. In some examples, the process flow 500 may be implemented by aspects of wireless communications system 100. For instance, a UE 115-b may be an example of aspects of a UE 115 as described with reference to Figure 1 and a base station 105-b may be an example of aspects of a base station 105 as described with reference to Figure 1. Both the UE 115-b and the base station 105-b may be configured to operate in a full-duplex mode.
At 505, the base station 105-b may transmit an indication of a first power offset (for example, a first power offset 405) associated with a first subband of a band (for example, a subband of a first set of subbands 330) . The UE 115-b may receive the indication of the first power offset.
At 510, the base station 105-b may transmit an indication of a second power offset (for example, a second power offset 410) associated with a second subband of the band (for example, a subband of a second set of subbands 335) . The UE 115-b may receive the indication of the second power offset. In some examples, the first power offset and the second power offset may be based on an EPRE ratio associated with the a set of CSI-RSs and a set of downlink shared channel resources (for example, downlink resources 240, PDSCH resources) . The indication of the first power offset and the indication of the second power offset may be provided via DCI or a MAC-CE.
In some examples, a third subband of the band (for example, a subband of a third set of subbands 340) may be associated with a third power offset and a fourth subband of the band (for example, a subband of a fourth set of subbands 345) may be associated with a fourth power offset. The third power offset may have a value different than the first power offset. The first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband. The first subband may span a first set of subcarriers lower than a second set of subcarriers that the second subband spans. The third subband may span a third set of subcarriers higher than fourth set of subcarriers that the fourth set of subcarriers span. The first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers. A first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers.
At 515, the base station 105-b may transmit an indication of a middle power offset (for example, a middle power offset 415) associated with a middle subband of the band (for example, a subband of a middle set of subbands 412) . The middle subband may be contiguous with (for example, between) the first subband and the second subband. The middle power offset may have a value between a value of the first power offset and a value of the second power offset. The UE 115-b may receive the indication of the middle power offset.
At 520, the base station 105-b may transmit an indication of a power offset gradient (for example, a power offset gradient 420) associated with a middle subband (for  example, a subband of a middle set of subbands 412) . The middle subband may be contiguous with (for example, between) the first subband and the second subband. The UE 115-b may receive the indication of the power offset gradient.
At 525, the base station 105-b may transmit a set of CSI-RSs (for example, a CSI-RS 325) over at least a portion of the band. The UE 115-b may receive the set of CSI-RSs. The set of CSI-RSs may include a first set of CSI-RSs and a second set of CSI-RSs. In some examples, a first set of resources for receiving the first set of CSI-RSs of the set of CSI-RSs may be within the first subband and second set of resources for receiving the second set of CSI-RSs of the set of CSI-RSs may be within the second subband. In some examples, the first set of resources may span a total set of subcarriers of the first subband and the second set of resources may span a total set of subcarriers of the second subband.
At 530, the UE 115-b may determine values for the set of CSI report parameters based on the indication of the first power offset, the indication of the power offset, and the set of CSI-RSs, or some combination thereof. In some examples, determining the values for the set of CSI report parameters may involve the UE 115-b determining values for a first set of CSI report parameters for the first subband based on the first power offset and the set of CSI-RSs. Additionally, determining the values for the set of CSI report parameters may involve the UE 115-b determining values for second set of CSI report parameters for the second subband based on the second power offset and the set of CSI-RSs. In some examples, determining the values for the first set of CSI report parameters may be based on the first set of CSI-RSs of the set of CSI-RSs. Additionally, determining the values for the second set of CSI report parameters may be based on the second set of CSI-RSs of the set of CSI-RSs.
In some examples, determining the values for the first set of CSI report parameters may involve determining a value for a first CQI associated with the first subband. Additionally, determining the values for the second set of CSI report parameters may involve determining a value of a second CQI associated with the second subband. In some examples, the UE 115-b may receive signaling indicating that the first set of CSI report parameters and the second set of CSI report parameters are to include a same RI. In some examples, the first set of CSI report parameters and the second set of CSI report parameters may each include an LI, a PMI, or both. In such examples, the LI, PMI, or both associated with the first set of CSI report parameters may have a same value as the respective LI, PMI, or both associated with  the second set of CSI report parameters. In some examples, the set of CSI report parameters may include a CQI for one or both of the first subband or the second subband, an RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, an LI for one or both of the first subband or the second subband, or any combination thereof.
In some examples, at 530, the UE 115-b may determine a first PMI for the first subband and a second PMI for the second subband. The UE 115-b may determine the values for the set of CSI report parameters based on the first PMI and the second PMI. Additionally or alternatively, the UE 115-b may determine a first BLER for the first subband and a second BLER for the second subband. Determining the values for the set of CSI report parameters may be based on the first BLER and the second BLER. In some examples, the UE 115-b may determine the values for the set of CSI report parameters based on a difference between the first power offset and the second power offset. The difference between the first power offset and the second power offset may be associated with an alignment between PRGs, an alignment between subbands, or both. In some examples, determining the values for the set of CSI report parameters may be based on the third power offset and the fourth power offset.
At 535, the UE 115-b may transmit a single CSI report or multiple CSI reports indicating one or more of the values for the set of CSI report parameters. In some examples, transmitting the single CSI report or the multiple CSI reports may involve the UE 115-b transmitting a first CSI report indicating the values for the first set of CSI report parameters and a second CSI report indicating the values for the second set of CSI report parameters. In some examples, transmitting the first and second CSI reports may be based on receiving the signaling indicating that the first set of CSI report parameters and the second set of CSI report parameters are to include a same RI. The base station 105-b may receive the single CSI report or the multiple CSI reports.
Figure 6 shows a block diagram of a device 605 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115 as described herein. The device 605 may include a receiver 610, a communication manager 615, and a transmitter 620. The device 605 can be implemented, at least in part, by one or both of a modem and a processor.  Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 915 described with reference to Figure 9. The receiver 610 may utilize a set of antennas.
The communication manager 615 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; receive one or more CSI-RSs over at least a portion of the band; determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs; and transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters. The communication manager 615 may be an example of aspects of the communication manager 910 described herein.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver component. For example, the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to Figure 9. The transmitter 620 may utilize a set of antennas.
Figure 7 shows a block diagram of a device 705 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115 as described herein. The device 705 may include a receiver 710, a communication manager 715, and a transmitter 740. The device 705 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI  reporting) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 915 described with reference to Figure 9. The receiver 710 may utilize a set of antennas.
The communication manager 715 may be an example of aspects of the communication manager 615 as described herein. The communication manager 715 may include a power offset indication receiver 720, a CSI-RS receiver 725, a CSI report parameter determination component 730, and a CSI report transmitter 735. The communication manager 715 may be an example of aspects of the communication manager 910 described herein.
The power offset indication receiver 720 may receive, in examples in which the UE is configured to operate in a full-duplex mode, an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
The CSI-RS receiver 725 may receive one or more CSI-RSs over at least a portion of the band.
The CSI report parameter determination component 730 may determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
The CSI report transmitter 735 may transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
The transmitter 740 may transmit signals generated by other components of the device 705. In some examples, the transmitter 740 may be collocated with a receiver 710 in a transceiver component. For example, the transmitter 740 may be an example of aspects of the transceiver 915 described with reference to Figure 9. The transmitter 740 may utilize a set of antennas.
Figure 8 shows a block diagram of a communication manager 805 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The communication manager 805 may be an example of aspects of a communication manager 615, a communication manager 715, or a communication manager 910 described herein. The communication manager 805 may include a power offset  indication receiver 810, a CSI-RS receiver 815, a CSI report parameter determination component 820, a CSI report transmitter 825, a rank indicator signaling receiver 830, and a power offset gradient receiver 835. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The power offset indication receiver 810 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. In some examples, the power offset indication receiver 810 may receive an indication of a third power offset associated with a third subband of the band. In some examples, the third subband is contiguous with the first subband and the second subband. The third power offset may have a value between a value of the first power offset and a value of the second power offset.
In some examples, a third subband of the band may be associated with a third power offset and a fourth subband of the band may be associated with a fourth power offset. In some examples, the third power offset has a value different than the first power offset. The first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband. The first subband may span a first set of subcarriers lower than a second set of subcarriers that the second subband spans, and the third subband may span a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans. A first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers, and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers. A first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers, and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers. In some examples, the indication of the first power offset and the indication of the second power offset are provided via DCI or a MAC-CE.
The CSI-RS receiver 815 may receive one or more CSI-RSs over at least a portion of the band. In some examples, the one or more CSI-RSs include a set of CSI-RSs. In some examples, the first power offset and the second power offset are based on an EPRE ratio associated with the one or more CSI-RSs and one or more downlink shared channel resources.
The CSI report parameter determination component 820 may determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs. In some examples, the CSI report parameter determination component 820 determining the one or more values for the one or more CSI report parameters may involve determining one or more values for one or more first CSI report parameters for the first subband based on the first power offset and the one or more CSI-RSs. Additionally, determining the one or more values for the one or more CSI report parameters may involve determining one or more values for one or more second CSI report parameters for the second subband based on the second power offset and the one or more CSI-RSs. In some examples, the CSI report parameter determination component 820 determining the one or more values for the one of more first CSI report parameters is based on one or more first CSI-RSs of the set of CSI-RSs. Additionally, in some examples, the CSI report parameter determination component 820 determining the one or more values for the one or more second CSI report parameters is based at least in part on one or more second CSI-RSs of the set of CSI-RSs.
In some examples, the one or more first CSI report parameters and the one more second CSI report parameters each include one or more of a LI or a PMI. In such examples, one or more of the LI or the PMI associated with at least one of the first CSI report parameters may have a same value as the respective LI or PMI associated with a respective one of the second CSI report parameters. In some examples, determining the one or more values for the one or more first CSI report parameters involves determining a value for a first CQI associated with the first subband. Additionally, determining the one or more values for the second one or more CSI report parameters may involve determining a value of a second CQI associated with the second subband.
In some examples, the CSI report parameter determination component 820 may determine a first PMI for the first subband and a second PMI for the second subband. In some examples, determining the one or more values for the one or more CSI report parameters is based on the first PMI and the second PMI. In some examples, the CSI report parameter determination component 820 may determine a first BLER for the first subband and a second BLER for the second subband. In some examples, determining the one or more values for the one or more CSI report parameters is based on the first BLER and the second BLER.
In some examples, the CSI report parameter determination component 820 may determine the one or more values for the one or more CSI report parameters based on a difference between the first power offset and the second power offset associated with an alignment between PRGs, an alignment between subbands, or both. In some examples, the one or more CSI report parameters include a CQI for one or both of the first subband or the second subband, a RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, a LI for one or both of the first subband or the second subband, or any combination thereof. In some examples, the CSI report parameter determination component 820 may determine the one or more values for the one or more CSI report parameters is based on the third power offset and the fourth power offset.
The CSI report transmitter 825 may transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters. In some examples, transmitting the one or more CSI reports involves transmitting a first CSI report indicating the one or more values for the one or more first CSI report parameters and a second CSI report indicating the one or more values for the one or more second CSI report parameters.
The rank indicator signaling receiver 830 may receive signaling indicating that the one or more first CSI report parameters and the one or more second CSI report parameters are to include a same RI. In some examples, transmitting the first CSI report and the second CSI report is based on receiving the signaling.
The power offset gradient receiver 835 may receive an indication of a power offset gradient associated with a third subband of the band. In some examples, the third subband is contiguous with the first subband and the second subband.
Figure 9 shows a diagram of a system including a device 905 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 910, a transceiver 915, an antenna 920, memory 925, and a processor 935. These components may be in electronic communication via one or more buses (for example, bus 940) .
The communication manager 910 may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; receive one or more CSI-RSs over at least a portion of the band; determine one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs; and transmit one or more CSI reports indicating the one or more values for the one or more CSI report parameters.
The transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some examples, the wireless device may include a single antenna 920. However, in some examples the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 925 may include random-access memory (RAM) and read-only memory (ROM) . The memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein. In some examples, the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 930 may not be directly executable by the processor 935 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
The processor 935 may include an intelligent hardware device, (for example, a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, a field-programmable gate array (FPGA) , a programmable logic device, a discrete gate  or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 935 may be configured to operate a memory array using a memory controller. In other examples, a memory controller may be integrated into the processor 935. The processor 935 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 925) to cause the device 905 to perform various functions (for example, functions or tasks supporting subband power offset configurations for CSI reporting) .
Figure 10 shows a block diagram of a device 1005 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a base station 105 as described herein. The device 1005 may include a receiver 1010, a communication manager 1015, and a transmitter 1020. The device 1005 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1320 described with reference to Figure 13. The receiver 1010 may utilize a set of antennas.
The communication manager 1015 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; transmit one or more CSI-RSs over at least a portion of the band; and receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs. The communication manager 1015 may be an example of aspects of the communication manager 1310 described herein.
The transmitter 1020 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1020 may be collocated with a receiver 1010 in a transceiver component. For example, the transmitter 1020 may be an example of aspects  of the transceiver 1320 described with reference to Figure 13. The transmitter 1020 may utilize a set of antennas.
Figure 11 shows a block diagram of a device 1105 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a device 1005, or a base station 105 as described herein. The device 1105 may include a receiver 1110, a communication manager 1115, and a transmitter 1135. The device 1105 can be implemented, at least in part, by one or both of a modem and a processor. Each of these components may be in communication with one another (for example, via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (for example, control channels, data channels, and information related to subband power offset configurations for CSI reporting) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1320 described with reference to Figure 13. The receiver 1110 may utilize a set of antennas.
The communication manager 1115 may be an example of aspects of the communication manager 1015 as described herein. The communication manager 1115 may include a power offset indication transmitter 1120, a CSI-RS transmitter 1125, and a CSI report receiver 1130. The communication manager 1115 may be an example of aspects of the communication manager 1310 described herein.
The power offset indication transmitter 1120 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band.
The CSI-RS transmitter 1125 may transmit one or more CSI-RSs over at least a portion of the band.
The CSI report receiver 1130 may receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
The transmitter 1135 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1135 may be collocated with a receiver 1110  in a transceiver component. For example, the transmitter 1135 may be an example of aspects of the transceiver 1320 described with reference to Figure 13. The transmitter 1135 may utilize a set of antennas.
Figure 12 shows a block diagram of a communication manager 1205 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The communication manager 1205 may be an example of aspects of a communication manager 1015, a communication manager 1115, or a communication manager 1310 described herein. The communication manager 1205 may include a power offset indication transmitter 1210, a CSI-RS transmitter 1215, a CSI report receiver 1220, a rank indicator signaling transmitter 1225, and a power offset gradient transmitter 1230. Each of these components may communicate, directly or indirectly, with one another (for example, via one or more buses) .
The power offset indication transmitter 1210 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. In some examples, the base station is configured to operate in a full-duplex mode. In some examples, the power offset indication transmitter 1210 may transmit an indication of a third power offset associated with a third subband of the band. In some examples, the third subband is contiguous with the first subband and the second subband. In some examples, the third power offset has a value between a value of the first power offset and a value of the second power offset. In some examples, a difference between the first power offset and the second power offset may be based on an alignment between PRGs, an alignment between subbands, or any combination thereof. In some examples, the first power offset and the second power offset may be based on an EPRE ratio associated with the one or more CSI-RSs and one or more downlink shared channel resources. In some examples, a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset. In some examples, the third power offset has a value different than the first power offset.
The CSI-RS transmitter 1215 may transmit one or more CSI-RSs over at least a portion of the band. In some examples, the one or more CSI-RSs may include a set of CSI-RSs.
The CSI report receiver 1220 may receive one or more CSI reports indicating one or more values for one or more CSI report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
In some examples, the CSI report receiver 1220 receiving the one or more CSI reports may involve receiving a first CSI report indicating one or more values for one or more first CSI report parameters based on transmitting the indication of the first power offset and transmitting the one or more CSI-RSs. Additionally, the CSI report receiver 1220 receiving the one or more CSI reports may involve receiving a second CSI report indicating one or more values for one or more second CSI report parameters based on transmitting the indication of the second power offset and transmitting the one or more CSI-RSs.
In some examples, the one or more values of the one or more first CSI report parameters are based on one or more first channel state reference signals of the set of CSI-RSs. The first subband may be contiguous with the second subband and the third subband may be contiguous with the fourth subband. The first subband may span a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and the third subband may span a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers. The first subband may span a first set of subcarriers lower than a second set of subcarriers spanned by the second subband and the third subband may span a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers. A first span of the first set of subcarriers may be narrower than a second span of the second set of subcarriers and a third span of the third set of subcarriers may be narrower than a fourth span of the fourth set of subcarriers. The first span of the first set of subcarriers may be equal to a third span of the third set of subcarriers, and a second span of the second set of subcarriers may be equal to a fourth span of the fourth set of subcarriers. In some examples, the indication of the first power offset and the indication of the second offset may be provided via DCI or a MAC-CE.
In some examples, the one or more values for the one or more second CSI report parameters are based on one or more second channel state reference signals of the set of CSI-RSs. In some examples, one or more first resources for transmitting the one or more first channel state reference signals of the set of CSI-RSs are within the first subband and one or more second resources for transmitting the one or more second channel state reference  signals of the set of CSI-RSs are within the second subband. In some examples, the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
In some examples, the one or more first CSI report parameters include a first CQI associated with the first subband and the one or more second CSI report parameters include a second CQI associated with the second subband.
In some examples, the CSI report receiver 1220 may receive the one or more CSI reports based on a first PMI for the first subband and a second PMI for the second subband. In some examples, the CSI report receiver 1220 may receive the one or more CSI reports based on a first BLER for the first subband and a second BLER for the second subband.
In some examples, the one or more first CSI report parameters and the one more second CSI report parameters both include one or more of a LI or a PMI. In such examples, one or more of the LI or the PMI associated with at least one of the first CSI report parameters may have a same value as the respective LI or the PMI associated with a respective one of the second CSI report parameters.
In some examples, the one or more CSI report parameters may include a CQI for one or both of the first subband or the second subband, a RI for one or both of the first subband or the second subband, a PMI for one or both of the first subband or the second subband, a LI for one or both of the first subband or the second subband, or any combination thereof.
In some examples, the CSI report receiver 1220 may receive the one or more CSI reports based on the third power offset and the fourth power offset.
The rank indicator signaling transmitter 1225 may transmit signaling indicating that the one or more first CSI report parameters and the one or more second CSI report parameters to include a same RI. In some examples, transmitting the first CSI report and the second CSI report is based on receiving the signaling.
The power offset gradient transmitter 1230 may transmit an indication of a power offset gradient associated with a third subband of the band. In some examples, the third subband is contiguous with the first subband and the second subband.
Figure 13 shows a diagram of a system including a device 1305 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The device 1305 may be an example of or include the components of device 1005, device 1105, or a base station 105 as described herein. The device 1305 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1310, a network communications manager 1315, a transceiver 1320, an antenna 1325, memory 1330, a processor 1340, and an inter-station communications manager 1345. These components may be in electronic communication via one or more buses (for example, bus 1350) .
The communication manager 1310 may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band; transmit one or more CSI-RSs over at least a portion of the band; and receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more CSI-RSs.
The network communications manager 1315 may manage communications with the core network (for example, via one or more wired backhaul links) . For example, the network communications manager 1315 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1320 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1320 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1320 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some examples, the wireless device may include a single antenna 1325. However, in some examples the device may have more than one antenna 1325, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1330 may include RAM and ROM. The memory 1330 may store computer-readable, computer-executable code 1335 including instructions that, when  executed, cause the processor to perform various functions described herein. In some examples, the memory 1330 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 1335 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1335 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some examples, the code 1335 may not be directly executable by the processor 1340 but may cause a computer (for example, when compiled and executed) to perform functions described herein.
The processor 1340 may include an intelligent hardware device, (for example, a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some examples, the processor 1340 may be configured to operate a memory array using a memory controller. In other examples, a memory controller may be integrated into the processor 1340. The processor 1340 may be configured to execute computer-readable instructions stored in a memory (for example, the memory 1330) to cause the device 1305 to perform various functions (for example, functions or tasks supporting subband power offset configurations for CSI reporting) .
The inter-station communications manager 1345 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1345 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1345 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
Figure 14 shows a flowchart illustrating a method 1400 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be  performed by a communication manager as described with reference to Figures 6–9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1405, the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
At 1410, the UE may receive one or more channel state information reference signals over at least a portion of the band. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
At 1415, the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
At 1420, the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
Figure 15 shows a flowchart illustrating a method 1500 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communication manager as described with reference to Figures 6–9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE  to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1505, the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
At 1510, the UE may receive one or more CSI-RSs over at least a portion of the band. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
At 1515, the UE may determine one or more values for one or more first CSI report parameters for the first subband based on the first power offset and the one or more CSI-RSs. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
At 1520, the UE may determine one or more values for one or more second CSI report parameters for the second subband based on the second power offset and the one or more CSI-RSs. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
At 1525, the UE may transmit a first CSI report indicating the one or more values for the one or more first CSI report parameters and a second CSI report indicating the one or more values for the one or more second CSI report parameters. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
Figure 16 shows a flowchart illustrating a method 1600 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its  components as described herein. For example, the operations of method 1600 may be performed by a communication manager as described with reference to Figures 6–9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1605, the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
At 1610, the UE may receive an indication of a third power offset associated with a third subband of the band. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
At 1615, the UE may receive one or more channel state information reference signals over at least a portion of the band. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
At 1620, the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
At 1625, the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
Figure 17 shows a flowchart illustrating a method 1700 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communication manager as described with reference to Figures 6–9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1705, the UE may receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a power offset indication receiver as described with reference to Figures 6–9.
At 1710, the UE may receive an indication of a power offset gradient associated with a third subband of the band. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a power offset gradient receiver as described with reference to Figures 6–9.
At 1715, the UE may receive one or more channel state information reference signals over at least a portion of the band. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a CSI-RS receiver as described with reference to Figures 6–9.
At 1720, the UE may determine one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a CSI report parameter determination component as described with reference to Figures 6–9.
At 1725, the UE may transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters. The operations of 1725 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1725 may be performed by a CSI report transmitter as described with reference to Figures 6–9.
Figure 18 shows a flowchart illustrating a method 1800 that supports subband power offset configurations for CSI reporting in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communication manager as described with reference to Figures 10–13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, a base station may perform aspects of the described functions using special-purpose hardware.
At 1805, the base station may transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a power offset indication transmitter as described with reference to Figures 10–13.
At 1810, the base station may transmit one or more channel state information reference signals over at least a portion of the band. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a CSI-RS transmitter as described with reference to Figures 10–13.
At 1815, the base station may receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a CSI report receiver as described with reference to Figures 10–13.
The methods described herein describe possible implementations. The operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (for example, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of  software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at different locations, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc in which disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, "or" as used in a list of items (for example, a list of items prefaced by a phrase such as "at least one of" or "one or more of" ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (in other words, A and B and C) . Also, as used herein, the phrase "based on" shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as "based on condition A" may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In  other words, as used herein, the phrase "based on" shall be construed in the same manner as the phrase "based at least in part on. "
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term "example" used herein means "serving as an example, instance, or illustration, " and not "preferred" or "advantageous over other examples. " The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. The disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (176)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    receiving one or more channel state information reference signals over at least a portion of the band;
    determining one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals; and
    transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  2. The method of claim 1, wherein determining the one or more values for the one or more channel state information report parameters comprises:
    determining one or more values for one or more first channel state information report parameters for the first subband based at least in part on the first power offset and the one or more channel state information reference signals; and
    determining one or more values for one or more second channel state information report parameters for the second subband based at least in part on the second power offset and the one or more channel state information reference signals, wherein transmitting the one or more channel state information reports comprises transmitting a first channel state information report indicating the one or more values for the one or more first channel state information report parameters and a second channel state information report indicating the one or more values for the one or more second channel state information report parameters.
  3. The method of claim 2, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein determining the one or more values for the one or more first channel state information report parameters is based at least in part on one or more first channel state information reference signals of the plurality of channel state information reference signals, and wherein determining the one or more values for the one or more second channel state  information report parameters is based at least in part on one or more second channel state information reference signals of the plurality of channel state information reference signals.
  4. The method of claim 3, wherein one or more first resources for receiving the one or more first channel state information reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for receiving the second one or more channel state information reference signals of the plurality of channel state information reference signals are within the second subband.
  5. The method of claim 4, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  6. The method of any of claims 2–5, wherein determining the one or more values for the one or more first channel state information report parameters comprises determining a value for a first channel quality indicator associated with the first subband, and wherein determining the one or more values for the second one or more channel state information report parameters comprises determining a value of a second channel quality indicator associated with the second subband.
  7. The method of any of claim 2–6, further comprising receiving signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters are to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  8. The method of any of claim 2–7, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters each comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  9. The method of any of claims 1–8, further comprising receiving an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  10. The method of claim 9, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  11. The method of any of claims 1–10, further comprising receiving an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  12. The method of any of claims 1–11, further comprising determining a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first precoding matrix indicator and the second precoding matrix indicator.
  13. The method of any of claims 1–12, further comprising determining a first block error rate for the first subband and a second block error rate for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first block error rate and the second block error rate.
  14. The method of any of claims 1–13, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on a difference between the first power offset and the second power offset associated with an alignment between physical resource groups, an alignment between subbands, or both.
  15. The method of any of claims 1–14, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  16. The method of any of claims 1–15, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first  subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  17. The method of any of claims 1–16, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the third power offset and the fourth power offset.
  18. The method of claim 17, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  19. The method of claim 18, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers that the second subband spans, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans.
  20. The method of claim 19, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  21. The method of any of claims 19–20, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  22. The method of any of claims 1–21, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  23. A method for wireless communication at a base station, comprising:
    transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    transmitting one or more channel state information reference signals over at least a portion of the band; and
    receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  24. The method of claim 23, wherein receiving the one or more channel state information reports comprises:
    receiving a first channel state information report indicating one or more values for one or more first channel state information report parameters based at least in part on transmitting the indication of the first power offset and transmitting the one or more channel state information reference signals; and
    receiving a second channel state information report indicating one or more values for one or more second channel state information report parameters based at least in part on transmitting the indication of the second power offset and transmitting the one or more channel state information reference signals.
  25. The method of claim 24, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein the one or more values of the one or more first channel state information report parameters are based at least in part on one or more first channel state reference signals of the plurality of channel state information reference signals, and wherein the one or more values for the one or more second channel state information report parameters are based at least in part on one or more second channel state reference signals of the plurality of channel state information reference signals.
  26. The method of claim 25, wherein one or more first resources for transmitting the one or more first channel state reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for transmitting the one or more second channel state reference signals of the plurality of channel state information reference signals are within the second subband.
  27. The method of claim 26, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  28. The method of any of claims 24–27, wherein the one or more first channel state information report parameters comprise a first channel quality indicator associated with the first subband, and wherein the one or more second channel state information report parameters comprise a second channel quality indicator associated with the second subband.
  29. The method of any of claims 24–28, further comprising transmitting signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  30. The method of any of claims 24–29, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters both comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or the precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  31. The method of any of claims 23–30, further comprising transmitting an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  32. The method of claim 31, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  33. The method of any of claims 23–32, further comprising transmitting an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  34. The method of any of claims 23–33, wherein receiving the one or more channel state information reports is based at least in part on a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband.
  35. The method of any of claims 23–34, wherein receiving the one or more channel state information reports is based at least in part on a first block error rate for the first subband and a second block error rate for the second subband.
  36. The method of any of claims 23–35, wherein a difference between the first power offset and the second power offset is based at least in part on an alignment between physical resource groups, an alignment between subbands, or any combination thereof.
  37. The method of any of claims 23–36, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  38. The method of any of claims 23–37, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  39. The method of any of claims 23–38, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein receiving the one or more channel state information reports is based at least in part on the third power offset and the fourth power offset.
  40. The method of claim 39, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  41. The method of claim 40, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and  wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  42. The method of claim 41, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  43. The method of any of claims 41–42, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  44. The method of any of claims 23–43, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  45. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor, and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    receive one or more channel state information reference signals over at least a portion of the band;
    determine one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals; and
    transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  46. The apparatus of claim 45, wherein the instructions to determine the one or more values for the one or more channel state information report parameters are executable by the processor to cause the apparatus to:
    determine one or more values for one or more first channel state information report parameters for the first subband based at least in part on the first power offset and the one or more channel state information reference signals; and
    determine one or more values for one or more second channel state information report parameters for the second subband based at least in part on the second power offset and the one or more channel state information reference signals, wherein transmitting the one or more channel state information reports are executable by the processor to cause the apparatus to transmit a first channel state information report indicating the one or more values for the one or more first channel state information report parameters and a second channel state information report indicating the one or more values for the one or more second channel state information report parameters.
  47. The apparatus of claim 46, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein determining the one or more values for the one or more first channel state information report parameters is based at least in part on one or more first channel state information reference signals of the plurality of channel state information reference signals, and wherein determining the one or more values for the one or more second channel state information report parameters is based at least in part on one or more second channel state information reference signals of the plurality of channel state information reference signals.
  48. The apparatus of claim 47, wherein one or more first resources for receiving the one or more first channel state information reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for receiving the second one or more channel state information reference signals of the plurality of channel state information reference signals are within the second subband.
  49. The apparatus of claim 48, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  50. The apparatus of any of claims 46–49, wherein the instructions to determine the one or more values for the one or more first channel state information report parameters are executable by the processor to cause the apparatus to determine a value for a first channel quality indicator associated with the first subband, and wherein determining the one or more values for the second one or more channel state information report parameters.
  51. The apparatus of any of claims 46–50, wherein the instructions are further executable by the processor to cause the apparatus to receive signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters are to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  52. The apparatus of any of claims 46–51, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters each comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  53. The apparatus of any of claims 45–52, wherein the instructions are further executable by the processor to cause the apparatus to receive an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  54. The apparatus of claim 53, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  55. The apparatus of any of claims 45–54, wherein the instructions are further executable by the processor to cause the apparatus to receive an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  56. The apparatus of any of claims 45–55, wherein the instructions are further executable by the processor to cause the apparatus to determine a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first precoding matrix indicator and the second precoding matrix indicator.
  57. The apparatus of any of claims 45–56, wherein the instructions are further executable by the processor to cause the apparatus to determine a first block error rate for the first subband and a second block error rate for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first block error rate and the second block error rate.
  58. The apparatus of any of claims 45–57, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on a difference between the first power offset and the second power offset associated with an alignment between physical resource groups, an alignment between subbands, or both.
  59. The apparatus of any of claims 45–58, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  60. The apparatus of any of claims 45–59, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  61. The apparatus of any of claims 45–60, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein determining the one or more values for the one or more channel state  information report parameters is based at least in part on the third power offset and the fourth power offset.
  62. The apparatus of claim 61, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  63. The apparatus of claim 62, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers that the second subband spans, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans.
  64. The apparatus of claim 63, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  65. The apparatus of any of claims 63–64, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  66. The apparatus of any of claims 45–65, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  67. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory in electronic communication with the processor, and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    transmit one or more channel state information reference signals over at least a portion of the band; and
    receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based at least in  part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  68. The apparatus of claim 67, wherein the instructions to receive the one or more channel state information reports are executable by the processor to cause the apparatus to:
    receive a first channel state information report indicating one or more values for one or more first channel state information report parameters based at least in part on transmitting the indication of the first power offset and transmitting the one or more channel state information reference signals; and
    receive a second channel state information report indicating one or more values for one or more second channel state information report parameters based at least in part on transmitting the indication of the second power offset and transmitting the one or more channel state information reference signals.
  69. The apparatus of claim 68, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein the one or more values of the one or more first channel state information report parameters are based at least in part on one or more first channel state reference signals of the plurality of channel state information reference signals, and wherein the one or more values for the one or more second channel state information report parameters are based at least in part on one or more second channel state reference signals of the plurality of channel state information reference signals.
  70. The apparatus of claim 69, wherein one or more first resources for transmitting the one or more first channel state reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for transmitting the one or more second channel state reference signals of the plurality of channel state information reference signals are within the second subband.
  71. The apparatus of claim 70, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  72. The apparatus of any of claims 68–71, wherein the one or more first channel state information report parameters comprise a first channel quality indicator associated with  the first subband, and wherein the one or more second channel state information report parameters comprise a second channel quality indicator associated with the second subband.
  73. The apparatus of any of claims 68–72, wherein the instructions are further executable by the processor to cause the apparatus to transmit signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  74. The apparatus of any of claims 68–73, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters both comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or the precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  75. The apparatus of any of claims 67–74, wherein the instructions are further executable by the processor to cause the apparatus to transmit an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  76. The apparatus of claim 75, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  77. The apparatus of any of claim 67–76, wherein the instructions are further executable by the processor to cause the apparatus to transmit an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  78. The apparatus of any of claims 67–77, wherein receiving the one or more channel state information reports is based at least in part on a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband.
  79. The apparatus of any of claims 67–78, wherein receiving the one or more channel state information reports is based at least in part on a first block error rate for the first subband and a second block error rate for the second subband.
  80. The apparatus of any of claims 67–79, wherein a difference between the first power offset and the second power offset is based at least in part on an alignment between physical resource groups, an alignment between subbands, or any combination thereof.
  81. The apparatus of any of claims 67–80, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  82. The apparatus of any of claims 67–81, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  83. The apparatus of any of claims 67–82, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein receiving the one or more channel state information reports is based at least in part on the third power offset and the fourth power offset.
  84. The apparatus of claim 83, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  85. The apparatus of claim 84, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  86. The apparatus of claim 85, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  87. The apparatus of any of claims 85–86, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  88. The apparatus of any of claims 67–87, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  89. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    means for receiving one or more channel state information reference signals over at least a portion of the band;
    means for determining one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals; and
    means for transmitting one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  90. The apparatus of claim 89, wherein the means for determining the one or more values for the one or more channel state information report parameters comprises:
    means for determining one or more values for one or more first channel state information report parameters for the first subband based at least in part on the first power offset and the one or more channel state information reference signals; and
    means for determining one or more values for one or more second channel state information report parameters for the second subband based at least in part on the second power offset and the one or more channel state information reference signals, wherein  transmitting the one or more channel state information reports comprises means for transmitting a first channel state information report indicating the one or more values for the one or more first channel state information report parameters and a second channel state information report indicating the one or more values for the one or more second channel state information report parameters.
  91. The apparatus of claim 90, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein determining the one or more values for the one or more first channel state information report parameters is based at least in part on one or more first channel state information reference signals of the plurality of channel state information reference signals, and wherein determining the one or more values for the one or more second channel state information report parameters is based at least in part on one or more second channel state information reference signals of the plurality of channel state information reference signals.
  92. The apparatus of claim 91, wherein one or more first resources for receiving the one or more first channel state information reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for receiving the second one or more channel state information reference signals of the plurality of channel state information reference signals are within the second subband.
  93. The apparatus of claim 92, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  94. The apparatus of any of claims 90–93, wherein the means for determining the one or more values for the one or more first channel state information report parameters comprises means for determining a value for a first channel quality indicator associated with the first subband, and wherein determining the one or more values for the second one or more channel state information report parameters.
  95. The apparatus of any of claims 90–94, further comprising means for receiving signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters are to comprise a same  rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  96. The apparatus of any of claims 90–95, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters each comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  97. The apparatus of any of claims 89–96, further comprising means for receiving an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  98. The apparatus of claim 97, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  99. The apparatus of any of claims 89–98, further comprising means for receiving an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  100. The apparatus of any of claims 89–99, further comprising means for determining a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first precoding matrix indicator and the second precoding matrix indicator.
  101. The apparatus of any of claims 89–100, further comprising means for determining a first block error rate for the first subband and a second block error rate for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first block error rate and the second block error rate.
  102. The apparatus of any of claims 89–101, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part  on a difference between the first power offset and the second power offset associated with an alignment between physical resource groups, an alignment between subbands, or both.
  103. The apparatus of any of claims 89–102, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  104. The apparatus of any of claims 89–103, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  105. The apparatus of any of claims 89–104, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the third power offset and the fourth power offset.
  106. The apparatus of claim 105, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  107. The apparatus of claim 106, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers that the second subband spans, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans.
  108. The apparatus of claim 107, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  109. The apparatus of any of claims 107–108, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  110. The apparatus of any of claims 89–109, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  111. An apparatus for wireless communication at a base station, comprising:
    means for transmitting an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    means for transmitting one or more channel state information reference signals over at least a portion of the band; and
    means for receiving one or more channel state information reports indicating one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  112. The apparatus of claim 111, wherein the means for receiving the one or more channel state information reports comprises:
    means for receiving a first channel state information report indicating one or more values for one or more first channel state information report parameters based at least in part on transmitting the indication of the first power offset and transmitting the one or more channel state information reference signals; and
    means for receiving a second channel state information report indicating one or more values for one or more second channel state information report parameters based at least in part on transmitting the indication of the second power offset and transmitting the one or more channel state information reference signals.
  113. The apparatus of claim 112, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein the one or more values of the one or more first channel state information report parameters are based at least in part on one or more first channel state reference signals  of the plurality of channel state information reference signals, and wherein the one or more values for the one or more second channel state information report parameters are based at least in part on one or more second channel state reference signals of the plurality of channel state information reference signals.
  114. The apparatus of claim 113, wherein one or more first resources for transmitting the one or more first channel state reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for transmitting the one or more second channel state reference signals of the plurality of channel state information reference signals are within the second subband.
  115. The apparatus of claim 114, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  116. The apparatus of any of claims 112–115, wherein the one or more first channel state information report parameters comprise a first channel quality indicator associated with the first subband, and wherein the one or more second channel state information report parameters comprise a second channel quality indicator associated with the second subband.
  117. The apparatus of any of claims 112–116, further comprising means for transmitting signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  118. The apparatus of any of claims 112–117, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters both comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or the precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  119. The apparatus of any of claims 111–118, further comprising means for transmitting an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  120. The apparatus of claim 119, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  121. The apparatus of any of claims 111–120, further comprising means for transmitting an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  122. The apparatus of any of claims 111–121, wherein receiving the one or more channel state information reports is based at least in part on a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband.
  123. The apparatus of any of claims 111–122, wherein receiving the one or more channel state information reports is based at least in part on a first block error rate for the first subband and a second block error rate for the second subband.
  124. The apparatus of any of claims 111–123, wherein a difference between the first power offset and the second power offset is based at least in part on an alignment between physical resource groups, an alignment between subbands, or any combination thereof.
  125. The apparatus of any of claims 111–124, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  126. The apparatus of any of claims 111–125, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  127. The apparatus of any of claims 111–126, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein receiving the one or more channel state information reports is based at least in part on the third power offset and the fourth power offset.
  128. The apparatus of claim 127, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  129. The apparatus of claim 128, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  130. The apparatus of claim 129, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  131. The apparatus of any of claims 129–130, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  132. The apparatus of any of claims 111–131, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  133. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    receive one or more channel state information reference signals over at least a portion of the band;
    determine one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals; and
    transmit one or more channel state information reports indicating the one or more values for the one or more channel state information report parameters.
  134. The non-transitory computer-readable medium of claim 133, wherein the instructions to determine the one or more values for the one or more channel state information report parameters are executable by the processor to:
    determine one or more values for one or more first channel state information report parameters for the first subband based at least in part on the first power offset and the one or more channel state information reference signals; and
    determine one or more values for one or more second channel state information report parameters for the second subband based at least in part on the second power offset and the one or more channel state information reference signals, wherein transmitting the one or more channel state information reports are executable by the processor to cause the apparatus to transmit a first channel state information report indicating the one or more values for the one or more first channel state information report parameters and a second channel state information report indicating the one or more values for the one or more second channel state information report parameters.
  135. The non-transitory computer-readable medium of claim 134, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein determining the one or more values for the one or more first channel state information report parameters is based at least in part on one or more first channel state information reference signals of the plurality of channel state information reference signals, and wherein determining the one or more values for the one or more second channel state information report parameters is based at least in part on one or more second channel state information reference signals of the plurality of channel state information reference signals.
  136. The non-transitory computer-readable medium of claim 135, wherein one or more first resources for receiving the one or more first channel state information reference signals of the plurality of channel state information reference signals are within the first  subband and one or more second resources for receiving the second one or more channel state information reference signals of the plurality of channel state information reference signals are within the second subband.
  137. The non-transitory computer-readable medium of claim 136, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  138. The non-transitory computer-readable medium of any of claims 134–137, wherein the instructions to determine the one or more values for the one or more first channel state information report parameters are executable by the processor to cause the apparatus to determine a value for a first channel quality indicator associated with the first subband, and wherein determining the one or more values for the second one or more channel state information report parameters.
  139. The non-transitory computer-readable medium of any of claims 134–138, wherein the instructions are further executable by the processor to receive signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters are to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  140. The non-transitory computer-readable medium of any of claims 134–139, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters each comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  141. The non-transitory computer-readable medium of any of claims 133–140, wherein the instructions are further executable by the processor to receive an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  142. The non-transitory computer-readable medium of claim 141, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  143. The non-transitory computer-readable medium of any of claims 133–142, wherein the instructions are further executable by the processor to receive an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  144. The non-transitory computer-readable medium of any of claims 133–143, wherein the instructions are further executable by the processor to determine a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first precoding matrix indicator and the second precoding matrix indicator.
  145. The non-transitory computer-readable medium of any of claims 133–144, wherein the instructions are further executable by the processor to determine a first block error rate for the first subband and a second block error rate for the second subband, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the first block error rate and the second block error rate.
  146. The non-transitory computer-readable medium of any of claims 133–145, wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on a difference between the first power offset and the second power offset associated with an alignment between physical resource groups, an alignment between subbands, or both.
  147. The non-transitory computer-readable medium of any of claims 133–146, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  148. The non-transitory computer-readable medium of any of claims 133–147, wherein the one or more channel state information report parameters comprise a channel  quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  149. The non-transitory computer-readable medium of any of claims 133–148, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein determining the one or more values for the one or more channel state information report parameters is based at least in part on the third power offset and the fourth power offset.
  150. The non-transitory computer-readable medium of claim 149, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  151. The non-transitory computer-readable medium of claim 150, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers that the second subband spans, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers that the fourth set of subcarriers spans.
  152. The non-transitory computer-readable medium of claim 151, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  153. The non-transitory computer-readable medium of any of claims 151–152, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  154. The non-transitory computer-readable medium of any of claims 133–153, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
  155. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    transmit an indication of a first power offset associated with a first subband of a band and an indication of a second power offset associated with a second subband of the band;
    transmit one or more channel state information reference signals over at least a portion of the band; and
    receive one or more channel state information reports indicating one or more values for one or more channel state information report parameters based at least in part on the indication of the first power offset, the indication of the second power offset, and the one or more channel state information reference signals.
  156. The non-transitory computer-readable medium of claim 155, wherein the instructions to receive the one or more channel state information reports are executable by the processor to:
    receive a first channel state information report indicating one or more values for one or more first channel state information report parameters based at least in part on transmitting the indication of the first power offset and transmitting the one or more channel state information reference signals; and
    receive a second channel state information report indicating one or more values for one or more second channel state information report parameters based at least in part on transmitting the indication of the second power offset and transmitting the one or more channel state information reference signals.
  157. The non-transitory computer-readable medium of claim 156, wherein the one or more channel state information reference signals comprise a plurality of channel state information reference signals, and wherein the one or more values of the one or more first channel state information report parameters are based at least in part on one or more first channel state reference signals of the plurality of channel state information reference signals, and wherein the one or more values for the one or more second channel state information report parameters are based at least in part on one or more second channel state reference signals of the plurality of channel state information reference signals.
  158. The non-transitory computer-readable medium of claim 157, wherein one or more first resources for transmitting the one or more first channel state reference signals of the plurality of channel state information reference signals are within the first subband and one or more second resources for transmitting the one or more second channel state reference signals of the plurality of channel state information reference signals are within the second subband.
  159. The non-transitory computer-readable medium of claim 158, wherein the one or more first resources span a total set of subcarriers of the first subband and the one or more second resources span a total set of subcarriers of the second subband.
  160. The non-transitory computer-readable medium of any of claims 156–159, wherein the one or more first channel state information report parameters comprise a first channel quality indicator associated with the first subband, and wherein the one or more second channel state information report parameters comprise a second channel quality indicator associated with the second subband.
  161. The non-transitory computer-readable medium of any of claims 156–160, wherein the instructions are further executable by the processor to transmit signaling indicating that the one or more first channel state information report parameters and the one or more second channel state information report parameters to comprise a same rank indicator, wherein transmitting the first channel state information report and the second channel state information report is based at least in part on receiving the signaling.
  162. The non-transitory computer-readable medium of any of claims 156–161, wherein the one or more first channel state information report parameters and the one more second channel state information report parameters both comprise one or more of a layer indicator or a precoding matrix indicator, and wherein one or more of the layer indicator or the precoding matrix indicator associated with at least one of the first channel state information report parameters has a same value as the respective layer indicator or the precoding matrix indicator associated with a respective one of the second channel state information report parameters.
  163. The non-transitory computer-readable medium of any of claims 155–162, wherein the instructions are further executable by the processor to transmit an indication of a third power offset associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  164. The non-transitory computer-readable medium of claim 163, wherein the third power offset has a value between a value of the first power offset and a value of the second power offset.
  165. The non-transitory computer-readable medium of any of claims 155–164, wherein the instructions are further executable by the processor to transmit an indication of a power offset gradient associated with a third subband of the band, wherein the third subband is contiguous with the first subband and the second subband.
  166. The non-transitory computer-readable medium of any of claims 155–165, wherein receiving the one or more channel state information reports is based at least in part on a first precoding matrix indicator for the first subband and a second precoding matrix indicator for the second subband.
  167. The non-transitory computer-readable medium of any of claims 155–166, wherein receiving the one or more channel state information reports is based at least in part on a first block error rate for the first subband and a second block error rate for the second subband.
  168. The non-transitory computer-readable medium of any of claims 155–167, wherein a difference between the first power offset and the second power offset is based at least in part on an alignment between physical resource groups, an alignment between subbands, or any combination thereof.
  169. The non-transitory computer-readable medium of any of claims 155–168, wherein the first power offset and the second power offset are based at least in part on an energy per resource element ratio associated with the one or more channel state information reference signals and one or more downlink shared channel resources.
  170. The non-transitory computer-readable medium of any of claims 155–169, wherein the one or more channel state information report parameters comprise a channel quality indicator for one or both of the first subband or the second subband, a rank indicator for one or both of the first subband or the second subband, a precoding matrix indicator for one or both of the first subband or the second subband, a layer indicator for one or both of the first subband or the second subband, or any combination thereof.
  171. The non-transitory computer-readable medium of any of claims 155–170, wherein a third subband of the band is associated with a third power offset and a fourth subband of the band is associated with a fourth power offset, wherein the third power offset has a value different than the first power offset, and wherein receiving the one or more channel state information reports is based at least in part on the third power offset and the fourth power offset.
  172. The non-transitory computer-readable medium of claim 171, wherein the first subband is contiguous with the second subband, and wherein the third subband is contiguous with the fourth subband.
  173. The non-transitory computer-readable medium of claim 172, wherein the first subband spans a first set of subcarriers lower than a second set of subcarriers spanned by the second subband, and wherein the third subband spans a third set of subcarriers higher than a fourth set of subcarriers spanned by the fourth set of subcarriers.
  174. The non-transitory computer-readable medium of claim 173, wherein a first span of the first set of subcarriers is narrower than a second span of the second set of subcarriers, and wherein a third span of the third set of subcarriers is narrower than a fourth span of the fourth set of subcarriers.
  175. The non-transitory computer-readable medium of any of claims 173–174, wherein a first span of the first set of subcarriers is equal to a third span of the third set of subcarriers, and wherein a second span of the second set of subcarriers is equal to a fourth span of the fourth set of subcarriers.
  176. The non-transitorcyomputer-readable medium of any of claims 155–175, wherein the indication of the first power offset and the indication of the second power offset are provided via downlink control information or a medium access control control element.
PCT/CN2020/085095 2020-04-16 2020-04-16 Subband power offset configuration for channel state information reporting WO2021208007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085095 WO2021208007A1 (en) 2020-04-16 2020-04-16 Subband power offset configuration for channel state information reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085095 WO2021208007A1 (en) 2020-04-16 2020-04-16 Subband power offset configuration for channel state information reporting

Publications (1)

Publication Number Publication Date
WO2021208007A1 true WO2021208007A1 (en) 2021-10-21

Family

ID=78085089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085095 WO2021208007A1 (en) 2020-04-16 2020-04-16 Subband power offset configuration for channel state information reporting

Country Status (1)

Country Link
WO (1) WO2021208007A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138507A1 (en) * 2022-01-22 2023-07-27 华为技术有限公司 Communication method, apparatus and system
WO2024026864A1 (en) * 2022-08-05 2024-02-08 Nokia Shanghai Bell Co., Ltd. Enhancements on transmission power adaptation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662969A (en) * 2012-09-27 2015-05-27 华为技术有限公司 System and method for configuring channel state information in a communications system
US20160119951A1 (en) * 2014-10-27 2016-04-28 Qualcomm Incorporated Multi-channel csi feedback for lte/lte-a with unlicensed spectrum
WO2019040352A1 (en) * 2017-08-21 2019-02-28 Qualcomm Incorporated Multiplexing channel state information reference signals and synchronization signals in new radio
US20190149256A1 (en) * 2016-05-13 2019-05-16 Intel Corporation Inter evolved nodeb coordinated beamforming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662969A (en) * 2012-09-27 2015-05-27 华为技术有限公司 System and method for configuring channel state information in a communications system
US20160119951A1 (en) * 2014-10-27 2016-04-28 Qualcomm Incorporated Multi-channel csi feedback for lte/lte-a with unlicensed spectrum
US20190149256A1 (en) * 2016-05-13 2019-05-16 Intel Corporation Inter evolved nodeb coordinated beamforming
WO2019040352A1 (en) * 2017-08-21 2019-02-28 Qualcomm Incorporated Multiplexing channel state information reference signals and synchronization signals in new radio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138507A1 (en) * 2022-01-22 2023-07-27 华为技术有限公司 Communication method, apparatus and system
WO2024026864A1 (en) * 2022-08-05 2024-02-08 Nokia Shanghai Bell Co., Ltd. Enhancements on transmission power adaptation

Similar Documents

Publication Publication Date Title
US11689945B2 (en) Measuring cross link interference
EP3994807A1 (en) Virtual serving beam tracking in millimeter wave wireless systems
US20240121640A1 (en) Subband reference signal measurements
US20230179260A1 (en) Indication of doppler pre-compensation in multi-transmission reception point communications
WO2021208007A1 (en) Subband power offset configuration for channel state information reporting
US20230379953A1 (en) Techniques for communicating over asynchronous slots
WO2021253664A1 (en) Doppler shift reporting for multiple transmission reception points
US20230216546A1 (en) Doppler compensation capability signaling in wireless communications
US20230179370A1 (en) Uplink tracking reference signal techniques in wireless communications
US11711830B2 (en) Resource sharing between transmission hypotheses
US20220078655A1 (en) Techniques for reporting multiple quantity types
US20210298083A1 (en) Front-loaded transmission in a random access channel procedure
US20220224397A1 (en) Reporting angular offsets across a frequency range
US20230189163A1 (en) Power control based on reciprocity for cross link interference
WO2021155508A1 (en) Sounding reference signal usage enhancements
WO2021247903A1 (en) Wideband and subband precoder selection
US20220191850A1 (en) Control signaling for beam update and reference signals
US11792818B2 (en) Semipersistent reporting of channel state information
US20220150941A1 (en) User equipment recommended configurations across different transmissions
US20220217725A1 (en) Beam indications for multiple uplink or downlink channels and reference signals
US20220353038A1 (en) Reference signal patterns for beam management
US20230269599A1 (en) Inter-base station interference mitigation
WO2021253282A1 (en) Aligned frequency hopping
WO2022087948A1 (en) Techniques for mapping sounding reference signal resources
WO2022240471A1 (en) Techniques for updating transmission configuration indicator states

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931681

Country of ref document: EP

Kind code of ref document: A1