WO2021207873A1 - Receive antenna hopping for downlink communication - Google Patents

Receive antenna hopping for downlink communication Download PDF

Info

Publication number
WO2021207873A1
WO2021207873A1 PCT/CN2020/084431 CN2020084431W WO2021207873A1 WO 2021207873 A1 WO2021207873 A1 WO 2021207873A1 CN 2020084431 W CN2020084431 W CN 2020084431W WO 2021207873 A1 WO2021207873 A1 WO 2021207873A1
Authority
WO
WIPO (PCT)
Prior art keywords
receive
repetitions
communication
slot
pdsch
Prior art date
Application number
PCT/CN2020/084431
Other languages
French (fr)
Inventor
Jing Dai
Qiaoyu Li
Chao Wei
Chenxi HAO
Min Huang
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/084431 priority Critical patent/WO2021207873A1/en
Publication of WO2021207873A1 publication Critical patent/WO2021207873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for receive antenna hopping for downlink communication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number ofbase stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include: monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information (DCI) scheduling the one or more repetitions of the PDSCH communication.
  • DCI downlink control information
  • a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to: monitor a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receive one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to: monitor a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receive one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
  • an apparatus for wireless communication may include: means for monitoring a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and means for receiving one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of a transmit (Tx) chain and a receive (Rx) chain of a UE, in accordance with various aspects of the present disclosure.
  • Figs. 4A-4B are diagrams illustrating one or more examples of receive antenna hopping patterns for downlink communications with inter-slot repetition and intra-slot repetition, in accordance with various aspects of the present disclosure.
  • Figs. 5A-5D are diagrams illustrating one or more examples of receive antenna hopping for downlink communication, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, aglobal positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with receive antenna hopping for downlink communication, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot, means for receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information (DCI) scheduling the one or more repetitions of the PDSCH communication, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a transmit (Tx) chain 302 and a receive (Rx) chain 304 of a UE 120, in accordance with various aspects of the present disclosure.
  • Tx chain 302 may be implemented in transmit processor 264, TX MIMO processor 266, MOD/DEMOD 254, controller/processor 280, and/or the like, as described above in connection with Fig. 2.
  • Tx chain 302 may be implemented in UE 120 for transmitting data 306 (e.g., uplink data, an uplink reference signal, uplink control information, and/or the like) to base station 110 on an uplink channel.
  • data 306 e.g., uplink data, an uplink reference signal, uplink control information, and/or the like
  • An encoder 307 may alter a signal (e.g., a bitstream) 303 into data 306.
  • Data 306 to be transmitted is provided from encoder 307 as input to a serial-to-parallel (S/P) converter 308.
  • S/P converter 308 may split the transmission data into N parallel data streams 310.
  • the N parallel data streams 310 may then be provided as input to a mapper 312.
  • Mapper 312 may map the N parallel data streams 310 onto N constellation points. The mapping may be done using a modulation constellation, such as binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , 8 phase-shift keying (8PSK) , quadrature amplitude modulation (QAM) , etc.
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • 8PSK 8 phase-shift keying
  • QAM quadrature amplitude modulation
  • mapper 312 may output N parallel symbol streams 316, each symbol stream 316 corresponding to one ofN orthogonal subcarriers of an inverse fast Fourier transform (IFFT) component 320.
  • IFFT inverse fast Fourier transform
  • N parallel modulations in the frequency domain correspond to N modulation symbols in the frequency domain, which are equal to N mapping and N-point IFFT in the frequency domain, which are equal to one (useful) OFDM symbol in the time domain, which are equal to N samples in the time domain.
  • One OFDM symbol in the time domain, Ns is equal to Ncp (the number of guard samples per OFDM symbol) +N (the number of useful samples per OFDM symbol) .
  • the N parallel time domain sample streams 318 may be converted into an OFDM/OFDMA symbol stream 322 by a parallel-to-serial (P/S) converter 324.
  • a guard insertion component 326 may insert a guard interval between successive OFDM/OFDMA symbols in the OFDM/OFDMA symbol stream 322.
  • the output of guard insertion component 326 may then be upconverted to a desired transmit frequency band by a radio frequency (RF) front end 328.
  • RF radio frequency
  • An antenna 330 may then transmit the resulting signal 332.
  • Rx chain 304 may utilize OFDM/OFDMA.
  • one or more components of Rx chain 304 may be implemented in receive processor 258, MIMO detector 256, MOD/DEMOD 254, controller/processor 280, and/or the like, as described above in connection with Fig. 2.
  • Rx chain 304 may be implemented in UE 120 for receiving data 306 (e.g., downlink data, a downlink reference signal, downlink control information, and/or the like) from base station 110 on a downlink channel.
  • data 306 e.g., downlink data, a downlink reference signal, downlink control information, and/or the like
  • a transmitted signal 332 is shown traveling over a wireless channel 334 from Tx chain 302 to Rx chain 304.
  • the received signal 332' may be downconverted to a baseband signal by an RF front end 328'.
  • a guard removal component 326' may then remove the guard interval that was inserted between OFDM/OFDMA symbols by guard insertion component 326.
  • guard removal component 326' may be provided to an S/P converter 324'.
  • the output may include an OFDM/OFDMA symbol stream 322', and S/P converter 324' may divide the OFDM/OFDMA symbol stream 322' into N parallel time-domain symbol streams 318', each of which corresponds to one of the N orthogonal subcarriers.
  • a fast Fourier transform (FFT) component 320' may convert the N parallel time-domain symbol streams 318' into the frequency domain and output N parallel frequency-domain symbol streams 316'.
  • FFT fast Fourier transform
  • a demapper 312' may perform the inverse of the symbol mapping operation that was performed by mapper 312, thereby outputting N parallel data streams 310'.
  • a P/S converter 308' may combine the N parallel data streams 310' into a single data stream 306'.
  • data stream 306' corresponds to data 306 that was provided as input to Tx chain 302.
  • Data stream 306' may be decoded into a decoded data stream 303' by decoder 307'.
  • a UE 120 may be a reduced-capability UE.
  • a reduced-capability UE may be a device that has reduced or lower capabilities relative to other UEs (e.g., due to a small form factor, to achieve a low cost for the reduced-capability UE low, and/or the like) .
  • a reduced-capability UE may be equipped with fewer receive antennas 330' and only a single Rx chain 304 (e.g., front end modules such as RF filters, analog-to-digital converters, RF front end 328', guard removal component 326', and/or the like) shared among multiple receive antennas 330' (e.g., two or four receive antennas) .
  • a reduced-capability UE may be equipped with fewer transmit antennas 330, a lower- capability battery, and/or fewer processing and/or memory resources (which may result in longer processing timelines) , may be capable of monitoring and/or processing only a reduced frequency bandwidth, may be capable of only half-duplex frequency division duplexing, and/or the like.
  • Examples of a reduced-capability UE may include an IoT device, a biometric sensors/device, a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry, a vehicular component or sensor (e.g., a cellular-enabled onboard diagnostic device) , a smart meter/sensor, and/or the like.
  • a reduced-capability UE that has a single Rx chain 304 may perform Rx switching or Rx hopping to switch the single Rx chain 304 among multiple receive antennas 330'.
  • performance for the downlink channels may be improved from the perspective of a base station, which may use different transmit precoders to transmit downlink communications intended to be received by different receive antennas 330' associated with the UE 120.
  • the base station may optimize transmit precoding separately for the different receive antennas 330' according to different channel state information (CSI) measurements associated with the different receive antennas 330', which may be determined from a sounding reference signal (SRS) transmitted by the UE 120, a CSI report received from the UE 120 following a channel state information reference signal (CSI-RS) transmission by the base station, and/or the like.
  • CSI channel state information
  • SRS sounding reference signal
  • CSI-RS channel state information reference signal
  • the UE 120 performs Rx switching or Rx hopping to switch the single Rx chain 304 among multiple receive antennas 330', there may be certain time periods during which the UE 120 is unable to receive any downlink communications. For example, as shown in Fig.
  • a UE 120 may initially use the single Rx chain 304 to process downlink communications received via a first receive antenna 330' (Rx#1) , and may subsequently switch the single Rx chain 304 to process downlink communications received via a second receive antenna 330' (Rx#2) . Accordingly, switching the single Rx chain 304 between the first receive antenna 330' and the second receive antenna 330' may cause an interruption time (e.g., one or more interruption symbols) during which no receiving can be performed by the UE 120.
  • an interruption time e.g., one or more interruption symbols
  • the multiple receive patterns may include a first receive pattern that is used to monitor and/or receive downlink communications that are associated with intra-slot repetitions and a second receive pattern that is used to monitor and/or receive downlink communications that are associated with inter-slot repetitions.
  • the first receive pattern and the second receive pattern may include respective interruption times that are aligned with time periods in which no downlink communications are transmitted.
  • the UE 120 may switch the single Rx chain among different receive antennas to achieve transmit diversity for different downlink channels, to enable a base station to optimize transmit precoders separately for different receive antennas, and/or the like without compromising reliability of the different downlink channels.
  • Fig. 3 The number and arrangement of components shown in Fig. 3 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 3. Furthermore, two or more components shown in Fig. 3 may be implemented within a single component, or a single component shown in Fig. 3 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 3 may perform one or more functions described as being performed by another set of components shown in Fig. 3.
  • a set of components e.g., one or more components
  • Figs. 4A-4B are diagrams illustrating one or more examples 400 of receive antenna hopping patterns for downlink communications with inter-slot repetition and intra-slot repetition, in accordance with various aspects of the present disclosure. As shown in Figs. 4A-4B, different receive antenna hopping patterns may be applied for the downlink communications with inter-slot repetition and intra-slot repetition.
  • inter-slot repetition may be performed for a PDSCH communication to increase a signal-to-noise ratio (SNR) or otherwise improve transmission reliability for the PDSCH communication.
  • SNR signal-to-noise ratio
  • a PDSCH communication includes four repetitions across four successive slots, where each repetition of the PDSCH communication is transmitted in an initial portion of a slot, and no downlink communications are scheduled in a later portion of each slot.
  • the repetition is generally performed using a common modulation and coding scheme (MCS) and resource allocation over M successive slots, where M is an integer having a value greater than one.
  • MCS modulation and coding scheme
  • a receive pattern to be used to monitor a downlink channel and/or receive a downlink communication with inter-slot repetition may generally align one or more interruption time units (e.g., symbols) with periods in which no downlink communications are scheduled to be transmitted.
  • interruption time units e.g., symbols
  • a first receive antenna associated with a UE may be used to receive a first repetition of the PDSCH communication during an initial portion of a first slot (e.g., during time units in which the first repetition of the PDSCH communication is scheduled to be transmitted) , and an interruption time (e.g., two symbols in Fig.
  • the UE may switch an Rx chain to a second receive antenna during the interruption time and then use the second receive antenna to receive a second repetition of the PDSCH communication during an initial portion of a second slot. The UE may then switch the Rx chain back to the first receive antenna during the interruption time that follows the second repetition of the PDSCH communication, and this pattern may be repeated for the additional two repetitions of the PDSCH communication.
  • intra-slot repetition may be performed for a PDCCH communication to increase detection reliability for the PDCCH communication.
  • a UE may be configured with a control resource set (CORESET) that includes multiple intra-slot repetitions in which multiple repetitions of a PDCCH communication may be transmitted.
  • CORESET control resource set
  • the multiple repetitions of the PDCCH communication are transmitted at different times within a slot, and the different times at which the repetitions of the PDCCH communication are transmitted are separated by one or more time units (e.g., five symbols, in the illustrated example) .
  • a receive pattern to be used to monitor a downlink channel and/or receive a downlink communication with intra-slot repetition may generally align one or more interruption time units (e.g., symbols) with periods in which no downlink communications are scheduled to be transmitted.
  • interruption time units e.g., symbols
  • a first receive antenna associated with a UE may be used to receive a first intra-slot repetition of the PDCCH communication during an initial portion of a slot that covers a time period in which the first intra-slot repetition is transmitted, which is followed by an interruption time (e.g., two symbols in Fig.
  • the UE may then use the second receive antenna to receive the second intra-slot repetition of the PDSCH communication, and the final portion of the slot may include an additional interruption time during which the UE can switch the Rx chain back to the first receive antenna prior to a first intra-slot repetition of a PDCCH communication scheduled in a next slot.
  • the Rx switching or Rx hopping is generally performed according to a receive pattern in which only one receive antenna can be used to receive in a particular time unit (e.g., one or more symbols, one or more slots, and/or the like) .
  • a receive pattern in which only one receive antenna can be used to receive in a particular time unit (e.g., one or more symbols, one or more slots, and/or the like) .
  • different receive patterns may be appropriate for downlink communications associated with inter-slot repetitions (e.g., PDSCH communications) versus downlink communications associated with intra-slot repetitions (e.g., PDCCH communications) .
  • an inter-slot receive pattern may be more appropriate for PDSCH communications with inter-slot repetition, in order to reduce an impact of interruption to transmission of the PDSCH communication
  • an intra-slot receive pattern may be more appropriate for PDCCH communications with intra-slot repetition, to achieve transmit diversity for the PDCCH communication.
  • the receive pattern that defines associations between time units and different receive antennas and interruptions between the time units associated with the different receive antennas may vary.
  • the intra-slot receive pattern and the inter-slot receive pattern may include one or more time units that conflict with one another (e.g., the inter-slot receive pattern shown in Fig.
  • FIG. 4A associates one receive antenna with time units that overlap with different intra-slot PDCCH repetitions, and the intra-slot receive pattern shown in Fig. 4B includes a mid-slot interruption time that overlaps with time units in which an inter-slot PDSCH repetition is transmitted) .
  • some aspects described herein define a default receive pattern that may be used to monitor a first downlink channel for multiple repetitions of a first downlink communication and one or more triggering events that may cause the default receive pattern to be overridden such that a UE may monitor a second downlink channel for multiple repetitions of a second downlink communication using a different receive pattern when the one or more triggering events occur.
  • some aspects described herein may prioritize a PDCCH over a PDSCH, whereby the default receive pattern may be an intra-slot receive pattern used to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication.
  • the intra-slot receive pattern may be temporarily overridden by an inter-slot receive pattern such that the UE may receive the multiple inter-slot PDSCH repetitions via a PDSCH.
  • Figs. 4A-4B are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 4A-4B.
  • Figs. 5A-5D are diagrams illustrating one or more examples 500 of receive antenna hopping for downlink communication, in accordance with various aspects of the present disclosure.
  • example (s) 500 may include communication between a UE (e.g., UE 120) and a base station (e.g., base station 110) in a wireless network (e.g., wireless network 100) .
  • the UE and the base station may communicate via an access link, which may include a downlink and an uplink.
  • the base station may be a serving base station or a serving cell for the UE.
  • the UE may have reduced capabilities, such as a single Rx chain that is shared among multiple receive antennas (e.g., one Rx chain shared among two antennas, four antennas, and/or the like) .
  • the UE may apply different receive patterns to monitor and/or receive downlink communications from the base station via different downlink channels.
  • the base station may transmit, and the UE may receive, information semi-statically configuring an intra-slot receive pattern.
  • the intra-slot receive pattern may be configured via radio resource control (RRC) signaling, and may define a default receive pattern to be used by the UE.
  • RRC radio resource control
  • the intra-slot receive pattern may define an association between different time units within a slot and different receive antennas associated with the UE.
  • the intra-slot receive pattern may define one or more interruption time units within the slot, during which the UE is to switch between different antennas.
  • the intra-slot receive pattern may define an association whereby a first set of time units (e.g., symbols) within a slot are associated with a first receive antenna, a second set of time units within the slot are associated with a second receive antenna, and one or more time units within the slot correspond to an interruption time to permit the UE to switch between the first receive antenna and the second receive antenna.
  • a first set of time units e.g., symbols
  • a second set of time units within the slot are associated with a second receive antenna
  • one or more time units within the slot correspond to an interruption time to permit the UE to switch between the first receive antenna and the second receive antenna.
  • a duration of the interruption time may depend on a capability of the UE (e.g., an amount of time that the UE needs to switch between different receive antennas) , and a quantity of symbols or other time units that are included in the duration of the interruption time may increase with a subcarrier spacing (e.g., because a larger subcarrier spacing is generally associated with a shorter symbol duration) .
  • the UE may monitor a PDCCH according to the intra-slot receive pattern configured by the base station to receive intra-slot repetitions of one or more PDCCH communications. For example, in some aspects, the UE may use a first receive antenna to receive a first repetition of the PDCCH communication during a first set of time units within a slot, may use a second receive antenna to receive a second repetition of the PDCCH communication during a second set of time units within a slot, and may switch between the first receive antenna and the second receive antenna during one or more time units that are scheduled between intra-slot repetitions of the PDCCH communication and/or a first repetition of a PDCCH communication in a next slot.
  • the base station may transmit, and the UE may receive, DCI scheduling multiple inter-slot repetitions of a PDSCH communication.
  • the DCI may schedule the multiple repetitions of the PDSCH communication over M successive slots in which the same MCS and resource allocation are used for each inter-slot repetition, where M is an integer having a value greater than two.
  • the DCI scheduling the multiple inter-slot repetitions of the PDSCH communication may override the default intra-slot receive pattern that is semi-statically configured by the base station, and the override may apply to a set of time units (e.g., symbols) in which the multiple inter-slot repetitions of the PDSCH communication are scheduled.
  • the scheduling DCI may cause the default intra-slot receive pattern to be overridden by or otherwise switched to an inter-slot receive pattern in which interruption time units are aligned with time periods (e.g., symbols) that occur between different inter-slot repetitions of the PDSCH communication.
  • the override may apply only to cross-slot scheduling, where a PDCCH carrying the scheduling DCI is received in a slot that is earlier than a first repetition of the PDSCH communication.
  • the UE may refrain from overriding the intra-slot receive pattern in cases where the first repetition of the PDSCH communication is scheduled in the same slot as the PDCCH carrying the scheduling DCI.
  • the UE may receive the multiple inter-slot repetitions of the PDSCH communication via a PDSCH. For example, in cases where the scheduling DCI is received in a slot that is earlier than a first repetition of the PDSCH communication (e.g., cross-slot scheduling) , the UE may receive the inter-slot repetitions of the PDSCH communication according to an inter-slot receive pattern that overrides the (default) intra-slot receive pattern over the M successive slots in which the repetitions of the PDSCH communication are scheduled.
  • the scheduling DCI is received in a slot that is earlier than a first repetition of the PDSCH communication
  • the UE may receive the inter-slot repetitions of the PDSCH communication according to an inter-slot receive pattern that overrides the (default) intra-slot receive pattern over the M successive slots in which the repetitions of the PDSCH communication are scheduled.
  • the UE may continue to apply the intra-slot receive pattern when receiving the repetitions of the PDSCH communication.
  • the inter-slot receive pattern to be applied for receiving the repetitions of the PDSCH communication may be indicated in the PDCCH carrying the scheduling DCI for the multiple inter-slot repetitions of the PDSCH communication.
  • the scheduling DCI may include one or more bits that define a virtual resource block (VRB) to physical resource block (PRB) mapping, which the UE may interpret in order to determine a receive antenna hopping configuration for the PDSCH.
  • VRB virtual resource block
  • PRB physical resource block
  • the time units in which the inter-slot repetitions of the PDSCH communication are scheduled may be associated with a particular receive antenna to override the default intra-slot receive pattern.
  • the time units in which the inter-slot repetitions of the PDSCH communication are scheduled may be associated with different receive antennas to override the default intra-slot receive pattern.
  • reference number 520 indicates a default intra-slot receive pattern that may be semi-statically configured by the base station and used by the UE to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication.
  • the UE may use a first receive antenna to monitor the PDCCH during a first set of time units within a slot, which is followed by an interruption gap in which the UE may switch from the first receive antenna to a second receive antenna.
  • the UE may then use the second receive antenna to monitor the PDCCH during a second set of time units within the slot, which is followed by another interruption gap in which the UE may switch from the second receive antenna back to the first receive antenna.
  • the UE may continue to follow the default intra-slot pattern to receive intra-slot PDCCH repetitions in subsequent slots.
  • the UE may receive a PDCCH that includes DCI scheduling inter-slot repetitions of a PDSCH communication over M successive slots.
  • the scheduling DCI may configure receive antenna hopping for the inter-slot repetitions of the PDSCH communication, whereby the default intra-slot receive pattern may be temporarily overridden (e.g., during slots in which the repetitions of the PDSCH communication are scheduled) to associate the time units in which the inter-slot repetitions of the PDSCH communication with different receive antennas.
  • the inter-slot receive pattern may associate time units in which the PDSCH communication are scheduled over two successive slots with different receive antennas.
  • the first M/2 slots may be associated with a first receive antenna and the second M/2 slots may be associated with a second receive antenna (e.g., in the case of a four-slot PDSCH, the inter-slot receive pattern may associate the first two slots with the first receive antenna and may associate the last two slots with the second receive antenna) .
  • respective floor and ceiling operations may be used to allocate time units in the M slots among the first receive antenna and the second receive antenna (e.g., in the case of a three-slot PDSCH, the inter-slot receive pattern may associate the first slot or the first two slots with the first receive antenna and may associate the last two slots or the last slot with the second receive antenna) .
  • one or more time units within a slot that occur after a PDSCH repetition may be configured as interruption time units, during which the UE may switch from one receive antenna to another.
  • a duration of the interruption time may depend on a capability of the UE (e.g., an amount of time that the UE needs to switch between different receive antennas) , and a quantity of symbols or other time units that are included in the duration of the interruption time may increase with a subcarrier spacing.
  • reference number 530 indicates another example intra-slot receive pattern that may be semi-statically configured by the base station and used by the UE to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication.
  • one or more final time units in a current slot e.g., slot n
  • the UE may use the same receive antenna to receive the last intra-slot PDCCH repetition in the current slot and the first intra-slot PDCCH repetition in the next slot (e.g., the UE may use the same receive antenna for successive PDCCH repetitions in back-to-back slots) , which may allow the UE to reduce receive antenna hopping times and thereby conserve power.
  • the UE may use a first receive antenna to receive a first repetition of a first PDCCH communication during a first set of time units within a slot, which is followed by an interruption gap in which the UE may switch from the first receive antenna to a second receive antenna.
  • the UE may then use the second receive antenna to receive a second repetition of the first PDCCH communication within the slot and to receive a first repetition of a second PDCCH communication in a next slot.
  • the intra-slot receive pattern then defines another interruption gap in which the UE switches back to the first receive antenna to receive the second repetition of the second PDCCH communication.
  • the UE may receive a PDCCH that includes DCI scheduling inter-slot repetitions of a PDSCH communication over M successive slots.
  • the starting symbol of the inter-slot receive pattern is associated with the same receive antenna as the default intra-slot receive pattern.
  • the UE may avoid having to switch receive antennas prior to receiving the first repetition of the PDSCH communication.
  • one or more time units within a slot that occur after a PDSCH repetition may be configured as interruption time units, during which the UE may switch receive antennas. In this way, the UE may switch to the second receive antenna prior to the first time unit in which the next repetition of the PDSCH communication is scheduled, which decreases a probability of the UE not receiving the first one or more symbols of the next PDSCH repetition.
  • the UE may be further configured to apply one or more rules to handle conflicts between different receive patterns. For example, in cases where the UE is configured to communicate using carrier aggregation, the UE may determine relative priorities associated with different cells according to downlink channels and/or reference signals associated with the different cells. For example, in some aspects, the relative priorities may be configured according to a cell identifier associated with the different cells. Additionally, or alternatively, the relative priorities may be configured to prioritize a receive pattern associated with a primary cell (Pcell) or a primary secondary cell (PScell) over a receive pattern associated with a secondary cell (Scell) . Alternatively, in some aspects, the UE may be configured to disable switching between different receive antennas in one or more slots in which there is a collision between different receive patterns.
  • Pcell primary cell
  • PScell primary secondary cell
  • Scell secondary cell
  • the UE may be configured to disable switching between different receive antennas in one or more slots in which there is a collision between different receive patterns.
  • the UE may be further configured with one or more CSI-RS resources that are associated with respective receive antennas following the default intra-slot receive pattern used to monitor and receive intra-slot repetitions of a PDCCH communication. Furthermore, in cases where the UE receives DCI scheduling inter-slot repetitions of a PDSCH communication, the UE may be configured to apply one or more rules to determine whether to override the default intra-slot receive pattern with an inter-slot receive pattern for the one or more CSI-RS resources.
  • the inter-slot repetitions of the PDSCH communication may be prioritized over the CSI-RS resources, in which case the CSI-RS resources may follow the inter-slot receive pattern used to receive the inter-slot repetitions of the PDSCH communication.
  • the PDSCH communication and the CSI-RS resources may have relative priorities that depend on whether the CSI-RS resources are periodic or aperiodic.
  • periodic CSI-RS resources may be associated with a highest priority, whereby periodic CSI-RS resources may follow the default intra-slot receive pattern (e.g., DCI scheduling inter-slot repetitions of a PDSCH communication cannot override the default receive pattern for periodic CSI-RS resources) .
  • DCI scheduling inter-slot repetitions of a PDSCH communication may override the default receive pattern, such that aperiodic CSI-RS resources follow the inter-slot receive pattern (e.g., because aperiodic CSI-RS resources may not be triggered in some cases) .
  • Figs. 5A-5D are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 5A-5D.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with receive antenna hopping for downlink communication.
  • the UE e.g., UE 120 and/or the like
  • process 600 may include monitoring a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot (block 610) .
  • the UE may monitor (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, Rx chain 304, antenna 330', and/or the like) a PDCCH for one or more repetitions of a PDCCH communication, as described above.
  • the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot.
  • process 600 may include receiving one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication (block 620) .
  • the UE may receive (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, Rx chain 304, antenna 330', and/or the like) one or more repetitions of a PDSCH communication, as described above.
  • the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the second receive pattern associates the one or more of the multiple receive antennas with time units in which the one or more repetitions of the PDSCH communication are scheduled across successive slots.
  • the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots among the multiple receive antennas.
  • the time units in a first M/2 slots are allocated to a first receive antenna and a last M/2 slots are allocated to a second receive antenna based at least in part on the multiple receive antennas including two receive antennas, where M is a quantity of the successive slots in which the one or more repetitions of the PDSCH communication are scheduled.
  • the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots to one receive antenna among the multiple receive antennas.
  • an initial time unit in the second receive pattern is associated with the same receive antenna as the first receive pattern.
  • the second receive pattern configures one or more time units after the one or more repetitions of the PDSCH communication in a slot to be interruption time units used to switch among the multiple receive antennas.
  • the first receive pattern associates a final time unit in a current slot with the same receive antenna as a first time unit in a next slot.
  • the PDSCH communication is received according to the second receive pattern based at least in part on receiving the PDCCH communication scheduling the one or more repetitions of the PDSCH communication in a slot that is earlier than a first repetition of the PDSCH communication.
  • the second receive pattern is indicated in the DCI scheduling the one or more repetitions of the PDSCH communication.
  • the DCI indicates the second receive pattern in one or more bits that include information related to a VRB-to-PRB mapping.
  • one or more CSI-RS resources are associated with one or more of the multiple receive antennas based at least in part on the first receive pattern.
  • one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the second receive pattern based at least in part on receiving the DCI scheduling the one or more repetitions of the PDSCH communication.
  • one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the first receive pattern based at least in part on the one or more CSI-RS resources having a periodic configuration.
  • one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the second receive pattern, based at least in part on the one or more CSI-RS resources having an aperiodic configuration.
  • process 600 includes receiving downlink communications from two or more different cells according to either the first receive pattern or the second receive pattern based at least in part on relative priorities associated with the two or more different cells.
  • process 600 includes disabling switching between the first receive pattern and the second receive pattern in one or more slots based at least in part on one or more collisions between the first receive pattern and the second receive pattern in one or more slots.
  • a duration of an interruption gap used to switch among the multiple receive antennas in one or more of the first receive pattern or the second receive pattern is based at least in part on a capability of the UE.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may monitor a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot. The UE may receive one or more repetitions of a physical downlink shared channel (PDSCH) communication using one or more of the multiple receive antennas according toa second receive pattern based at least in part on receiving downlink control information scheduling the one or more repetitions of the PDSCH communication. Numerous other aspects are provided.

Description

RECEIVE ANTENNA HOPPING FOR DOWNLINK COMMUNICATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for receive antenna hopping for downlink communication.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number ofbase stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include: monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information (DCI) scheduling the one or more repetitions of the PDSCH communication.
In some aspects, a UE for wireless communication may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to: monitor a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receive one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to: monitor a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and receive one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
In some aspects, an apparatus for wireless communication may include: means for monitoring a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and means for receiving one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of a transmit (Tx) chain and a receive (Rx) chain of a UE, in accordance with various aspects of the present disclosure.
Figs. 4A-4B are diagrams illustrating one or more examples of receive antenna hopping patterns for downlink communications with inter-slot repetition and intra-slot repetition, in accordance with various aspects of the present disclosure.
Figs. 5A-5D are diagrams illustrating one or more examples of receive antenna hopping for downlink communication, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of  the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects oftelecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area  and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, aglobal positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between  wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T≥1 and R≥1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process  (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network  controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with receive antenna hopping for downlink communication, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6 and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot, means for receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information (DCI) scheduling the one or more repetitions of the PDSCH communication, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a transmit (Tx) chain 302 and a receive (Rx) chain 304 of a UE 120, in accordance with various aspects of the present disclosure. In some aspects, one or more components of Tx chain 302 may be implemented in transmit processor 264, TX MIMO processor 266, MOD/DEMOD 254, controller/processor 280, and/or the like, as described above in connection with Fig. 2. In some aspects, Tx chain 302 may be implemented in UE 120 for transmitting data 306 (e.g., uplink data, an uplink reference signal, uplink control information, and/or the like) to base station 110 on an uplink channel.
An encoder 307 may alter a signal (e.g., a bitstream) 303 into data 306. Data 306 to be transmitted is provided from encoder 307 as input to a serial-to-parallel (S/P) converter 308. In some aspects, S/P converter 308 may split the transmission data into N parallel data streams 310.
The N parallel data streams 310 may then be provided as input to a mapper 312. Mapper 312 may map the N parallel data streams 310 onto N constellation points. The mapping may be done using a modulation constellation, such as binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , 8 phase-shift keying (8PSK) , quadrature amplitude modulation (QAM) , etc. Thus, mapper 312 may output N parallel symbol streams 316, each symbol stream 316 corresponding to one ofN orthogonal subcarriers of an inverse fast Fourier transform (IFFT) component 320. These N parallel symbol streams 316 are represented in the frequency domain and may be converted into N parallel time domain sample streams 318 by IFFT component 320.
In some aspects, N parallel modulations in the frequency domain correspond to N modulation symbols in the frequency domain, which are equal to N mapping and N-point IFFT in the frequency domain, which are equal to one (useful) OFDM symbol in the time domain, which are equal to N samples in the time domain. One OFDM symbol in the time domain, Ns, is equal to Ncp (the number of guard samples per OFDM symbol) +N (the number of useful samples per OFDM symbol) .
The N parallel time domain sample streams 318 may be converted into an OFDM/OFDMA symbol stream 322 by a parallel-to-serial (P/S) converter 324. A guard insertion component 326 may insert a guard interval between successive OFDM/OFDMA symbols in the OFDM/OFDMA symbol stream 322. The output of guard insertion component 326 may then be upconverted to a desired transmit frequency band by a radio frequency (RF) front end 328. An antenna 330 may then transmit the resulting signal 332.
In some aspects, Rx chain 304 may utilize OFDM/OFDMA. In some aspects, one or more components of Rx chain 304 may be implemented in receive processor 258, MIMO detector 256, MOD/DEMOD 254, controller/processor 280, and/or the like, as described above in connection with Fig. 2. In some aspects, Rx chain 304 may be implemented in UE 120 for receiving data 306 (e.g., downlink data, a downlink reference signal, downlink control information, and/or the like) from base station 110 on a downlink channel.
A transmitted signal 332 is shown traveling over a wireless channel 334 from Tx chain 302 to Rx chain 304. When a signal 332' is received by an antenna 330′, the received signal 332' may be downconverted to a baseband signal by an RF front end 328'. A guard removal component 326' may then remove the guard interval that was inserted between OFDM/OFDMA symbols by guard insertion component 326.
The output of guard removal component 326' may be provided to an S/P converter 324'. The output may include an OFDM/OFDMA symbol stream 322', and S/P converter 324' may divide the OFDM/OFDMA symbol stream 322' into N parallel time-domain symbol streams 318', each of which corresponds to one of the N orthogonal subcarriers. A fast Fourier transform (FFT) component 320' may convert the N parallel time-domain symbol streams 318' into the frequency domain and output N parallel frequency-domain symbol streams 316'.
A demapper 312' may perform the inverse of the symbol mapping operation that was performed by mapper 312, thereby outputting N parallel data streams 310'. A P/S converter 308' may combine the N parallel data streams 310' into a single data stream 306'. Ideally, data stream 306' corresponds to data 306 that was provided as input to Tx chain 302. Data stream 306' may be decoded into a decoded data stream 303' by decoder 307'.
In some cases, a UE 120 may be a reduced-capability UE. In general, a reduced-capability UE may be a device that has reduced or lower capabilities relative to other UEs (e.g., due to a small form factor, to achieve a low cost for the reduced-capability UE low, and/or the like) . For example, in some cases, a reduced-capability UE may be equipped with fewer receive antennas 330' and only a single Rx chain 304 (e.g., front end modules such as RF filters, analog-to-digital converters, RF front end 328', guard removal component 326', and/or the like) shared among multiple receive antennas 330' (e.g., two or four receive antennas) . Additionally, or alternatively, a reduced-capability UE may be equipped with fewer transmit antennas 330, a lower- capability battery, and/or fewer processing and/or memory resources (which may result in longer processing timelines) , may be capable of monitoring and/or processing only a reduced frequency bandwidth, may be capable of only half-duplex frequency division duplexing, and/or the like. Examples of a reduced-capability UE, which may also be referred to as an NR-Lite UE and/or the like, may include an IoT device, a biometric sensors/device, a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry, a vehicular component or sensor (e.g., a cellular-enabled onboard diagnostic device) , a smart meter/sensor, and/or the like.
In general, to achieve transmit diversity and thereby improve performance for one or more downlink channels, such as a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , and/or the like, a reduced-capability UE that has a single Rx chain 304 may perform Rx switching or Rx hopping to switch the single Rx chain 304 among multiple receive antennas 330'. Additionally, or alternatively, performance for the downlink channels may be improved from the perspective of a base station, which may use different transmit precoders to transmit downlink communications intended to be received by different receive antennas 330' associated with the UE 120. For example, the base station may optimize transmit precoding separately for the different receive antennas 330' according to different channel state information (CSI) measurements associated with the different receive antennas 330', which may be determined from a sounding reference signal (SRS) transmitted by the UE 120, a CSI report received from the UE 120 following a channel state information reference signal (CSI-RS) transmission by the base station, and/or the like. However, when the UE 120 performs Rx switching or Rx hopping to switch the single Rx chain 304 among multiple receive antennas 330', there may be certain time periods during which the UE 120 is unable to receive any downlink communications. For example, as shown in Fig. 3, and by reference number 340, a UE 120 may initially use the single Rx chain 304 to process downlink communications received via a first receive antenna 330' (Rx#1) , and may subsequently switch the single Rx chain 304 to process downlink communications received via a second receive antenna 330' (Rx#2) . Accordingly, switching the single Rx chain 304 between the first receive antenna 330' and the second receive antenna 330' may cause an interruption time (e.g., one or more interruption symbols) during which no receiving can be performed by the UE 120.
Some techniques and apparatuses described herein may configure multiple receive patterns that a UE 120 can apply to receive different downlink channels to avoid  and/or minimize symbol loss that may occur when switching a single Rx chain among different receive antennas. For example, in some aspects, the multiple receive patterns may include a first receive pattern that is used to monitor and/or receive downlink communications that are associated with intra-slot repetitions and a second receive pattern that is used to monitor and/or receive downlink communications that are associated with inter-slot repetitions. Accordingly, in some aspects, the first receive pattern and the second receive pattern may include respective interruption times that are aligned with time periods in which no downlink communications are transmitted. In this way, the UE 120 may switch the single Rx chain among different receive antennas to achieve transmit diversity for different downlink channels, to enable a base station to optimize transmit precoders separately for different receive antennas, and/or the like without compromising reliability of the different downlink channels.
The number and arrangement of components shown in Fig. 3 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 3. Furthermore, two or more components shown in Fig. 3 may be implemented within a single component, or a single component shown in Fig. 3 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 3 may perform one or more functions described as being performed by another set of components shown in Fig. 3.
Figs. 4A-4B are diagrams illustrating one or more examples 400 of receive antenna hopping patterns for downlink communications with inter-slot repetition and intra-slot repetition, in accordance with various aspects of the present disclosure. As shown in Figs. 4A-4B, different receive antenna hopping patterns may be applied for the downlink communications with inter-slot repetition and intra-slot repetition.
For example, as shown in Fig. 4A, and by reference number 410, inter-slot repetition may be performed for a PDSCH communication to increase a signal-to-noise ratio (SNR) or otherwise improve transmission reliability for the PDSCH communication. For example, in Fig. 4A, a PDSCH communication includes four repetitions across four successive slots, where each repetition of the PDSCH communication is transmitted in an initial portion of a slot, and no downlink communications are scheduled in a later portion of each slot. Accordingly, for a downlink communication with inter-slot repetition, the repetition is generally performed  using a common modulation and coding scheme (MCS) and resource allocation over M successive slots, where M is an integer having a value greater than one.
As further shown in Fig. 4A, and by reference number 415, a receive pattern to be used to monitor a downlink channel and/or receive a downlink communication with inter-slot repetition may generally align one or more interruption time units (e.g., symbols) with periods in which no downlink communications are scheduled to be transmitted. For example, in the case of a four-slot PDSCH communication with inter-slot repetition, a first receive antenna associated with a UE may be used to receive a first repetition of the PDSCH communication during an initial portion of a first slot (e.g., during time units in which the first repetition of the PDSCH communication is scheduled to be transmitted) , and an interruption time (e.g., two symbols in Fig. 4A) may follow the initial portion of the first slot corresponding to the time units in which the first repetition of the PDSCH communication is scheduled to be transmitted. Accordingly, the UE may switch an Rx chain to a second receive antenna during the interruption time and then use the second receive antenna to receive a second repetition of the PDSCH communication during an initial portion of a second slot. The UE may then switch the Rx chain back to the first receive antenna during the interruption time that follows the second repetition of the PDSCH communication, and this pattern may be repeated for the additional two repetitions of the PDSCH communication.
Alternatively, as shown in Fig. 4B, and by reference number 420, intra-slot repetition may be performed for a PDCCH communication to increase detection reliability for the PDCCH communication. For example, in Fig. 4B, a UE may be configured with a control resource set (CORESET) that includes multiple intra-slot repetitions in which multiple repetitions of a PDCCH communication may be transmitted. As shown in Fig. 4B, the multiple repetitions of the PDCCH communication are transmitted at different times within a slot, and the different times at which the repetitions of the PDCCH communication are transmitted are separated by one or more time units (e.g., five symbols, in the illustrated example) .
As further shown in Fig. 4B, and by reference number 425, a receive pattern to be used to monitor a downlink channel and/or receive a downlink communication with intra-slot repetition may generally align one or more interruption time units (e.g., symbols) with periods in which no downlink communications are scheduled to be transmitted. For example, in the case of a PDCCH communication transmitted in a CORESET with two intra-slot repetitions, a first receive antenna associated with a UE  may be used to receive a first intra-slot repetition of the PDCCH communication during an initial portion of a slot that covers a time period in which the first intra-slot repetition is transmitted, which is followed by an interruption time (e.g., two symbols in Fig. 4B) during which the UE can switch an Rx chain to a second receive antenna. Accordingly, the UE may then use the second receive antenna to receive the second intra-slot repetition of the PDSCH communication, and the final portion of the slot may include an additional interruption time during which the UE can switch the Rx chain back to the first receive antenna prior to a first intra-slot repetition of a PDCCH communication scheduled in a next slot.
In some aspects, as described above, when a UE performs Rx switching or Rx hopping using a single Rx chain to process downlink communications received via different receive antennas, the Rx switching or Rx hopping is generally performed according to a receive pattern in which only one receive antenna can be used to receive in a particular time unit (e.g., one or more symbols, one or more slots, and/or the like) . However, as shown in Figs. 4A-4B, different receive patterns may be appropriate for downlink communications associated with inter-slot repetitions (e.g., PDSCH communications) versus downlink communications associated with intra-slot repetitions (e.g., PDCCH communications) . For example, an inter-slot receive pattern may be more appropriate for PDSCH communications with inter-slot repetition, in order to reduce an impact of interruption to transmission of the PDSCH communication, and an intra-slot receive pattern may be more appropriate for PDCCH communications with intra-slot repetition, to achieve transmit diversity for the PDCCH communication. Accordingly, depending on which downlink channel is to be prioritized (e.g., PDCCH or PDSCH) , the receive pattern that defines associations between time units and different receive antennas and interruptions between the time units associated with the different receive antennas may vary. For example, the intra-slot receive pattern and the inter-slot receive pattern may include one or more time units that conflict with one another (e.g., the inter-slot receive pattern shown in Fig. 4A associates one receive antenna with time units that overlap with different intra-slot PDCCH repetitions, and the intra-slot receive pattern shown in Fig. 4B includes a mid-slot interruption time that overlaps with time units in which an inter-slot PDSCH repetition is transmitted) .
Accordingly, some aspects described herein define a default receive pattern that may be used to monitor a first downlink channel for multiple repetitions of a first downlink communication and one or more triggering events that may cause the default  receive pattern to be overridden such that a UE may monitor a second downlink channel for multiple repetitions of a second downlink communication using a different receive pattern when the one or more triggering events occur. For example, as described in further detail below with reference to Figs. 5A-5D, some aspects described herein may prioritize a PDCCH over a PDSCH, whereby the default receive pattern may be an intra-slot receive pattern used to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication. Furthermore, when a UE receives DCI scheduling multiple inter-slot PDSCH repetitions, the intra-slot receive pattern may be temporarily overridden by an inter-slot receive pattern such that the UE may receive the multiple inter-slot PDSCH repetitions via a PDSCH.
As indicated above, Figs. 4A-4B are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 4A-4B.
Figs. 5A-5D are diagrams illustrating one or more examples 500 of receive antenna hopping for downlink communication, in accordance with various aspects of the present disclosure. As shown in Fig. 5A, example (s) 500 may include communication between a UE (e.g., UE 120) and a base station (e.g., base station 110) in a wireless network (e.g., wireless network 100) . In some aspects, the UE and the base station may communicate via an access link, which may include a downlink and an uplink. In some aspects, the base station may be a serving base station or a serving cell for the UE. Furthermore, in some aspects, the UE may have reduced capabilities, such as a single Rx chain that is shared among multiple receive antennas (e.g., one Rx chain shared among two antennas, four antennas, and/or the like) . Furthermore, as shown in Figs. 5B-5D, the UE may apply different receive patterns to monitor and/or receive downlink communications from the base station via different downlink channels.
As shown in Fig. 5A, and by reference number 510, the base station may transmit, and the UE may receive, information semi-statically configuring an intra-slot receive pattern. In some aspects, the intra-slot receive pattern may be configured via radio resource control (RRC) signaling, and may define a default receive pattern to be used by the UE. For example, in some aspects, the intra-slot receive pattern may define an association between different time units within a slot and different receive antennas associated with the UE. Furthermore, in some aspects, the intra-slot receive pattern may define one or more interruption time units within the slot, during which the UE is to switch between different antennas. For example, in some aspects, the intra-slot receive pattern may define an association whereby a first set of time units (e.g., symbols) within  a slot are associated with a first receive antenna, a second set of time units within the slot are associated with a second receive antenna, and one or more time units within the slot correspond to an interruption time to permit the UE to switch between the first receive antenna and the second receive antenna. In general, a duration of the interruption time may depend on a capability of the UE (e.g., an amount of time that the UE needs to switch between different receive antennas) , and a quantity of symbols or other time units that are included in the duration of the interruption time may increase with a subcarrier spacing (e.g., because a larger subcarrier spacing is generally associated with a shorter symbol duration) .
As further shown in Fig. 5A, and by reference number 512, the UE may monitor a PDCCH according to the intra-slot receive pattern configured by the base station to receive intra-slot repetitions of one or more PDCCH communications. For example, in some aspects, the UE may use a first receive antenna to receive a first repetition of the PDCCH communication during a first set of time units within a slot, may use a second receive antenna to receive a second repetition of the PDCCH communication during a second set of time units within a slot, and may switch between the first receive antenna and the second receive antenna during one or more time units that are scheduled between intra-slot repetitions of the PDCCH communication and/or a first repetition of a PDCCH communication in a next slot.
As further shown in Fig. 5A, and by reference number 514, the base station may transmit, and the UE may receive, DCI scheduling multiple inter-slot repetitions of a PDSCH communication. For example, in some aspects, the DCI may schedule the multiple repetitions of the PDSCH communication over M successive slots in which the same MCS and resource allocation are used for each inter-slot repetition, where M is an integer having a value greater than two. In some aspects, the DCI scheduling the multiple inter-slot repetitions of the PDSCH communication may override the default intra-slot receive pattern that is semi-statically configured by the base station, and the override may apply to a set of time units (e.g., symbols) in which the multiple inter-slot repetitions of the PDSCH communication are scheduled. For example, as described herein, the scheduling DCI may cause the default intra-slot receive pattern to be overridden by or otherwise switched to an inter-slot receive pattern in which interruption time units are aligned with time periods (e.g., symbols) that occur between different inter-slot repetitions of the PDSCH communication. Furthermore, in some aspects, the override may apply only to cross-slot scheduling, where a PDCCH carrying  the scheduling DCI is received in a slot that is earlier than a first repetition of the PDSCH communication. In other words, the UE may refrain from overriding the intra-slot receive pattern in cases where the first repetition of the PDSCH communication is scheduled in the same slot as the PDCCH carrying the scheduling DCI.
As further shown in Fig. 5A, and by reference number 516, the UE may receive the multiple inter-slot repetitions of the PDSCH communication via a PDSCH. For example, in cases where the scheduling DCI is received in a slot that is earlier than a first repetition of the PDSCH communication (e.g., cross-slot scheduling) , the UE may receive the inter-slot repetitions of the PDSCH communication according to an inter-slot receive pattern that overrides the (default) intra-slot receive pattern over the M successive slots in which the repetitions of the PDSCH communication are scheduled. Alternatively, in cases where the first repetition of the PDSCH communication is scheduled in the same slot as the PDCCH carrying the scheduling DCI, the UE may continue to apply the intra-slot receive pattern when receiving the repetitions of the PDSCH communication. In the former case, the inter-slot receive pattern to be applied for receiving the repetitions of the PDSCH communication may be indicated in the PDCCH carrying the scheduling DCI for the multiple inter-slot repetitions of the PDSCH communication. For example, in some aspects, the scheduling DCI may include one or more bits that define a virtual resource block (VRB) to physical resource block (PRB) mapping, which the UE may interpret in order to determine a receive antenna hopping configuration for the PDSCH. For example, in cases where the PDSCH is scheduled without receive antenna hopping, the time units in which the inter-slot repetitions of the PDSCH communication are scheduled may be associated with a particular receive antenna to override the default intra-slot receive pattern. Alternatively, in cases where the PDSCH is scheduled with receive antenna hopping, the time units in which the inter-slot repetitions of the PDSCH communication are scheduled may be associated with different receive antennas to override the default intra-slot receive pattern.
For example, referring to Fig. 5B, reference number 520 indicates a default intra-slot receive pattern that may be semi-statically configured by the base station and used by the UE to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication. For example, the UE may use a first receive antenna to monitor the PDCCH during a first set of time units within a slot, which is followed by an interruption gap in which the UE may switch from the first receive antenna to a second  receive antenna. Accordingly, the UE may then use the second receive antenna to monitor the PDCCH during a second set of time units within the slot, which is followed by another interruption gap in which the UE may switch from the second receive antenna back to the first receive antenna. As shown, the UE may continue to follow the default intra-slot pattern to receive intra-slot PDCCH repetitions in subsequent slots.
As further shown in Fig. 5B, and by reference number 522, the UE may receive a PDCCH that includes DCI scheduling inter-slot repetitions of a PDSCH communication over M successive slots. In this case, the scheduling DCI may configure receive antenna hopping for the inter-slot repetitions of the PDSCH communication, whereby the default intra-slot receive pattern may be temporarily overridden (e.g., during slots in which the repetitions of the PDSCH communication are scheduled) to associate the time units in which the inter-slot repetitions of the PDSCH communication with different receive antennas. For example, in the case of a PDSCH communication with inter-slot repetition, the inter-slot receive pattern may associate time units in which the PDSCH communication are scheduled over two successive slots with different receive antennas. Additionally, or alternatively, in the case of a UE with two receive antennas and a PDSCH with M inter-slot repetitions, where M is an even integer greater than or equal to two, the first M/2 slots may be associated with a first receive antenna and the second M/2 slots may be associated with a second receive antenna (e.g., in the case of a four-slot PDSCH, the inter-slot receive pattern may associate the first two slots with the first receive antenna and may associate the last two slots with the second receive antenna) . Additionally, or alternatively, in the case of a UE with two receive antennas and a PDSCH with M inter-slot repetitions, where M is an odd integer greater than or equal to two, respective floor and ceiling operations may be used to allocate time units in the M slots among the first receive antenna and the second receive antenna (e.g., in the case of a three-slot PDSCH, the inter-slot receive pattern may associate the first slot or the first two slots with the first receive antenna and may associate the last two slots or the last slot with the second receive antenna) . Furthermore, as shown in Fig. 5B, one or more time units within a slot that occur after a PDSCH repetition may be configured as interruption time units, during which the UE may switch from one receive antenna to another. Furthermore, as described above, a duration of the interruption time may depend on a capability of the UE (e.g., an amount of time that the UE needs to switch between different receive antennas) , and a quantity  of symbols or other time units that are included in the duration of the interruption time may increase with a subcarrier spacing.
Referring to Fig. 5C, reference number 530 indicates another example intra-slot receive pattern that may be semi-statically configured by the base station and used by the UE to monitor a PDCCH for multiple intra-slot repetitions of a PDCCH communication. For example, in the intra-slot receive pattern shown in Fig. 5C, one or more final time units in a current slot (e.g., slot n) may be associated with the same receive antenna as one or more initial time units in a next slot (e.g., slot n+1) . In this way, the UE may use the same receive antenna to receive the last intra-slot PDCCH repetition in the current slot and the first intra-slot PDCCH repetition in the next slot (e.g., the UE may use the same receive antenna for successive PDCCH repetitions in back-to-back slots) , which may allow the UE to reduce receive antenna hopping times and thereby conserve power. For example, as shown, the UE may use a first receive antenna to receive a first repetition of a first PDCCH communication during a first set of time units within a slot, which is followed by an interruption gap in which the UE may switch from the first receive antenna to a second receive antenna. Accordingly, the UE may then use the second receive antenna to receive a second repetition of the first PDCCH communication within the slot and to receive a first repetition of a second PDCCH communication in a next slot. The intra-slot receive pattern then defines another interruption gap in which the UE switches back to the first receive antenna to receive the second repetition of the second PDCCH communication.
As further shown in Fig. 5C, and by reference number 532, the UE may receive a PDCCH that includes DCI scheduling inter-slot repetitions of a PDSCH communication over M successive slots. In this case, the starting symbol of the inter-slot receive pattern is associated with the same receive antenna as the default intra-slot receive pattern. In this way, the UE may avoid having to switch receive antennas prior to receiving the first repetition of the PDSCH communication. Furthermore, as shown in Fig. 5C, one or more time units within a slot that occur after a PDSCH repetition may be configured as interruption time units, during which the UE may switch receive antennas. In this way, the UE may switch to the second receive antenna prior to the first time unit in which the next repetition of the PDSCH communication is scheduled, which decreases a probability of the UE not receiving the first one or more symbols of the next PDSCH repetition.
In some aspects, the UE may be further configured to apply one or more rules to handle conflicts between different receive patterns. For example, in cases where the UE is configured to communicate using carrier aggregation, the UE may determine relative priorities associated with different cells according to downlink channels and/or reference signals associated with the different cells. For example, in some aspects, the relative priorities may be configured according to a cell identifier associated with the different cells. Additionally, or alternatively, the relative priorities may be configured to prioritize a receive pattern associated with a primary cell (Pcell) or a primary secondary cell (PScell) over a receive pattern associated with a secondary cell (Scell) . Alternatively, in some aspects, the UE may be configured to disable switching between different receive antennas in one or more slots in which there is a collision between different receive patterns.
In some aspects, as shown in Fig. 5D, and by reference number 540, the UE may be further configured with one or more CSI-RS resources that are associated with respective receive antennas following the default intra-slot receive pattern used to monitor and receive intra-slot repetitions of a PDCCH communication. Furthermore, in cases where the UE receives DCI scheduling inter-slot repetitions of a PDSCH communication, the UE may be configured to apply one or more rules to determine whether to override the default intra-slot receive pattern with an inter-slot receive pattern for the one or more CSI-RS resources. For example, in some cases, the inter-slot repetitions of the PDSCH communication may be prioritized over the CSI-RS resources, in which case the CSI-RS resources may follow the inter-slot receive pattern used to receive the inter-slot repetitions of the PDSCH communication. Additionally, or alternatively, the PDSCH communication and the CSI-RS resources may have relative priorities that depend on whether the CSI-RS resources are periodic or aperiodic. For example, in some aspects, periodic CSI-RS resources may be associated with a highest priority, whereby periodic CSI-RS resources may follow the default intra-slot receive pattern (e.g., DCI scheduling inter-slot repetitions of a PDSCH communication cannot override the default receive pattern for periodic CSI-RS resources) . However, for aperiodic CSI-RS resources, DCI scheduling inter-slot repetitions of a PDSCH communication may override the default receive pattern, such that aperiodic CSI-RS resources follow the inter-slot receive pattern (e.g., because aperiodic CSI-RS resources may not be triggered in some cases) .
As indicated above, Figs. 5A-5D are provided as one or more examples. Other examples may differ from what is described with regard to Figs. 5A-5D.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with receive antenna hopping for downlink communication.
As shown in Fig. 6, in some aspects, process 600 may include monitoring a PDCCH for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot (block 610) . For example, the UE may monitor (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, Rx chain 304, antenna 330', and/or the like) a PDCCH for one or more repetitions of a PDCCH communication, as described above. In some aspects, the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot.
As further shown in Fig. 6, in some aspects, process 600 may include receiving one or more repetitions of a PDSCH communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication (block 620) . For example, the UE may receive (e.g., using antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, controller/processor 280, memory 282, Rx chain 304, antenna 330', and/or the like) one or more repetitions of a PDSCH communication, as described above. In some aspects, the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving DCI scheduling the one or more repetitions of the PDSCH communication.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the second receive pattern associates the one or more of the multiple receive antennas with time units in which the one or more repetitions of the PDSCH communication are scheduled across successive slots.
In a second aspect, alone or in combination with the first aspect, the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots among the multiple receive antennas.
In a third aspect, alone or in combination with one or more of the first and second aspects, the time units in a first M/2 slots are allocated to a first receive antenna and a last M/2 slots are allocated to a second receive antenna based at least in part on the multiple receive antennas including two receive antennas, where M is a quantity of the successive slots in which the one or more repetitions of the PDSCH communication are scheduled.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots to one receive antenna among the multiple receive antennas.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, an initial time unit in the second receive pattern is associated with the same receive antenna as the first receive pattern.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the second receive pattern configures one or more time units after the one or more repetitions of the PDSCH communication in a slot to be interruption time units used to switch among the multiple receive antennas.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the first receive pattern associates a final time unit in a current slot with the same receive antenna as a first time unit in a next slot.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the PDSCH communication is received according to the second receive pattern based at least in part on receiving the PDCCH communication scheduling the one or more repetitions of the PDSCH communication in a slot that is earlier than a first repetition of the PDSCH communication.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, the second receive pattern is indicated in the DCI scheduling the one or more repetitions of the PDSCH communication.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the DCI indicates the second receive pattern in one or more bits that include information related to a VRB-to-PRB mapping.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, one or more CSI-RS resources are associated with one or more of the multiple receive antennas based at least in part on the first receive pattern.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the second receive pattern based at least in part on receiving the DCI scheduling the one or more repetitions of the PDSCH communication.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the first receive pattern based at least in part on the one or more CSI-RS resources having a periodic configuration.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, one or more CSI-RS resources are associated with one or more of the multiple receive antennas according to the second receive pattern, based at least in part on the one or more CSI-RS resources having an aperiodic configuration.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, process 600 includes receiving downlink communications from two or more different cells according to either the first receive pattern or the second receive pattern based at least in part on relative priorities associated with the two or more different cells.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, process 600 includes disabling switching between the first receive pattern and the second receive pattern in one or more slots based at least in part on one or more collisions between the first receive pattern and the second receive pattern in one or more slots.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, a duration of an interruption gap used to switch among the  multiple receive antennas in one or more of the first receive pattern or the second receive pattern is based at least in part on a capability of the UE.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least  one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (21)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and
    receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information (DCI) scheduling the one or more repetitions of the PDSCH communication.
  2. The method of claim 1, wherein the second receive pattern associates the one or more of the multiple receive antennas with time units in which the one or more repetitions of the PDSCH communication are scheduled across successive slots.
  3. The method of claim 2, wherein the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots among the multiple receive antennas.
  4. The method of claim 3, wherein the time units in a first M/2 slots are allocated to a first receive antenna and a last M/2 slots are allocated to a second receive antenna based at least in part on the multiple receive antennas including two receive antennas, where M is a quantity of the successive slots in which the one or more repetitions of the PDSCH communication are scheduled.
  5. The method of claim 2, wherein the second receive pattern allocates the time units in which the one or more repetitions of the PDSCH communication are scheduled across the successive slots to one receive antenna among the multiple receive antennas.
  6. The method of claim 1, wherein an initial time unit in the second receive pattern is associated with the same receive antenna as the first receive pattern.
  7. The method of claim 1, wherein the second receive pattern configures one or more time units after the one or more repetitions of the PDSCH communication in a slot to be interruption time units used to switch among the multiple receive antennas.
  8. The method of claim 1, wherein the first receive pattern associates a final time unit in a current slot with the same receive antenna as a first time unit in a next slot.
  9. The method of claim 1, wherein the PDSCH communication is received according to the second receive pattern based at least in part on receiving the PDCCH communication scheduling the one or more repetitions of the PDSCH communication in a slot that is earlier than a first repetition of the PDSCH communication.
  10. The method of claim 1, wherein the second receive pattern is indicated in the DCI scheduling the one or more repetitions of the PDSCH communication.
  11. The method of claim 10, wherein the DCI indicates the second receive pattern in one or more bits that include information related to a virtual resource block to physical resource block mapping.
  12. The method of claim 1, wherein one or more channel state information reference signal resources are associated with one or more of the multiple receive antennas based at least in part on the first receive pattern.
  13. The method of claim 1, wherein one or more channel state information reference signal resources are associated with one or more of the multiple receive antennas according to the second receive pattern based at least in part on receiving the DCI scheduling the one or more repetitions of the PDSCH communication.
  14. The method of claim 1, wherein one or more channel state information reference signal (CSI-RS) resources are associated with one or more of the multiple receive  antennas according to the first receive pattern based at least in part on the one or more CSI-RS resources having a periodic configuration.
  15. The method of claim 1, wherein one or more channel state information reference signal (CSI-RS) resources are associated with one or more of the multiple receive antennas according to the second receive pattern based at least in part on the one or more CSI-RS resources having an aperiodic configuration.
  16. The method of claim 1, further comprising:
    receiving downlink communications from two or more different cells according to either the first receive pattern or the second receive pattern based at least in part on relative priorities associated with the two or more different cells.
  17. The method of claim 1, further comprising:
    disabling switching between the first receive pattern and the second receive pattern in one or more slots based at least in part on one or more collisions between the first receive pattern and the second receive pattern in one or more slots.
  18. The method of claim 1, wherein a duration of an interruption gap used to switch among the multiple receive antennas in one or more of the first receive pattern or the second receive pattern is based at least in part on a capability of the UE.
  19. A user equipment for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    monitor a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and
    receive one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas  according to a second receive pattern based at least in part on receiving downlink control information scheduling the one or more repetitions of the PDSCH communication.
  20. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment, cause the one or more processors to:
    monitor a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and
    receive one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information scheduling the one or more repetitions of the PDSCH communication.
  21. An apparatus for wireless communication, comprising:
    means for monitoring a physical downlink control channel (PDCCH) for one or more repetitions of a PDCCH communication, wherein the PDCCH is monitored using multiple receive antennas according to a first receive pattern that associates the multiple receive antennas with different time units within a slot; and
    means for receiving one or more repetitions of a physical downlink shared channel (PDSCH) communication, wherein the one or more repetitions of the PDSCH communication are received using one or more of the multiple receive antennas according to a second receive pattern based at least in part on receiving downlink control information scheduling the one or more repetitions of the PDSCH communication.
PCT/CN2020/084431 2020-04-13 2020-04-13 Receive antenna hopping for downlink communication WO2021207873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084431 WO2021207873A1 (en) 2020-04-13 2020-04-13 Receive antenna hopping for downlink communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084431 WO2021207873A1 (en) 2020-04-13 2020-04-13 Receive antenna hopping for downlink communication

Publications (1)

Publication Number Publication Date
WO2021207873A1 true WO2021207873A1 (en) 2021-10-21

Family

ID=78084695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084431 WO2021207873A1 (en) 2020-04-13 2020-04-13 Receive antenna hopping for downlink communication

Country Status (1)

Country Link
WO (1) WO2021207873A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029528A1 (en) * 2010-11-02 2014-01-30 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
CN104904150A (en) * 2013-01-07 2015-09-09 Lg电子株式会社 Method and apparatus for transmitting /receiving signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140029528A1 (en) * 2010-11-02 2014-01-30 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
CN104904150A (en) * 2013-01-07 2015-09-09 Lg电子株式会社 Method and apparatus for transmitting /receiving signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Potential PDCCH enhancements for URLLC", 3GPP DRAFT; R1-1813234 POTENTIAL PDCCH ENHANCEMENTS FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051555237 *

Similar Documents

Publication Publication Date Title
EP3791520B1 (en) Spatial multiplexing of a sounding reference signal (srs) and a physical uplink shared channel (pusch) communication
AU2019221649B2 (en) Physical resource block bundle size selection
WO2021000788A1 (en) Rate matching for spectrum sharing between different radio access technologies
US11050598B2 (en) Carrier information signaling in a 5G network
US11606810B2 (en) Sidelink communication resource signaling
WO2019210044A1 (en) Uplink control information payload size
WO2021087504A1 (en) Dynamic slot format indicator configuration
KR20220024110A (en) Techniques for Transmitting Sidelink HARQ Feedback
WO2020186440A1 (en) Receiver automatic gain control
WO2021258092A1 (en) Configuring listen before talk bandwidth monitoring
EP3701658A1 (en) Techniques and apparatuses for physical downlink control channel downlink control information to search space mapping
EP3811712B1 (en) Collision management
US20220408440A1 (en) Tone reservation signaling outside of an allocated bandwidth
US11849459B2 (en) Bandwidth part configuration for sidelink communication
WO2020236732A1 (en) Ofdm control channel with single carrier waveform data channel
WO2020251846A1 (en) Multiplexing communications of user equipment that support different transmission time interval lengths
WO2021207873A1 (en) Receive antenna hopping for downlink communication
WO2020146601A1 (en) Feedback transmission using multiple access signatures
WO2022067867A1 (en) Time gaps between physical uplink shared channel repetitions
WO2022174383A1 (en) Techniques for uplink transmission switching with sounding reference signal carrier switching
WO2022021061A1 (en) Downlink control information signaling with a resource repetition factor
WO2022192810A1 (en) Time domain resource allocation for a time domain waveform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931524

Country of ref document: EP

Kind code of ref document: A1