WO2021206106A1 - 腸内細菌叢改善用組成物 - Google Patents

腸内細菌叢改善用組成物 Download PDF

Info

Publication number
WO2021206106A1
WO2021206106A1 PCT/JP2021/014696 JP2021014696W WO2021206106A1 WO 2021206106 A1 WO2021206106 A1 WO 2021206106A1 JP 2021014696 W JP2021014696 W JP 2021014696W WO 2021206106 A1 WO2021206106 A1 WO 2021206106A1
Authority
WO
WIPO (PCT)
Prior art keywords
nite
promoting
increase
lactobacillus mucosae
bacteria
Prior art date
Application number
PCT/JP2021/014696
Other languages
English (en)
French (fr)
Inventor
茂樹 加田
拓也 塚原
彰 木村
七菜 小川
Original Assignee
雪印メグミルク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020069719A external-priority patent/JP2021164435A/ja
Application filed by 雪印メグミルク株式会社 filed Critical 雪印メグミルク株式会社
Priority to US17/917,385 priority Critical patent/US20230149482A1/en
Priority to EP21784014.9A priority patent/EP4133944A4/en
Priority to KR1020227038529A priority patent/KR20220164034A/ko
Priority to AU2021254477A priority patent/AU2021254477A1/en
Priority to CA3179561A priority patent/CA3179561A1/en
Priority to CN202180040818.4A priority patent/CN115811945A/zh
Publication of WO2021206106A1 publication Critical patent/WO2021206106A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/21Streptococcus, lactococcus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to a food composition for improving intestinal bacteria containing Lactobacillus mucosae as an active ingredient and a method for evaluating a food composition suitable for improving the intestinal bacterial flora.
  • the present invention also relates to an agent for increasing the proportion of bifidobacteria in the human intestine containing Lactobacillus mucosae as an active ingredient, and foods and drinks for promoting the increase.
  • the present invention relates to a bifidobacteria growth-promoting agent containing Lactobacillus mucosae as an active ingredient, and a food and drink for promoting growth.
  • intestinal flora 1000 species and 40 trillion bacteria live in the human intestine, forming a complex symbiotic relationship (intestinal flora).
  • omics analysis in addition to the influence of health condition, aging, diet and lifestyle on the intestinal bacterial flora, the disorder of the intestinal bacterial flora balance (diversity of intestinal bacteria) causes the onset and exacerbation of the disease. It has become clear that it leads to. It has also been demonstrated that gut microbiota diversity is reduced in obese and diabetic patients, and that dietary fiber intake increases gut microbiota diversity and improves related clinical symptoms.
  • Short-chain fatty acids which are the main metabolites of gut microbiota, have been reported to have various health functional effects, and their relationship with the diversity of gut microbiota has also been suggested.
  • Short-chain fatty acids refer to fatty acids having 6 or less carbon atoms, such as acetic acid, propionic acid, and butyric acid. They not only suppress the growth of pathogenic microorganisms by acidifying the pH in the intestine, but also activate intestinal epithelial cells and are involved in complexly involved in the biological defense of the host and the control of the immune system.
  • a food composition that promotes the growth of intestinal bacteria and the production of metabolites as a method of increasing the diversity of intestinal bacteria that compose the intestinal flora and the short-chain fatty acids in the intestinal flora.
  • the main methods are to ingest the food composition (probiotics) containing lactic acid bacteria and bifidobacteria directly.
  • the human gut flora which is composed of a wide variety of gut bacteria, differs significantly from model animals such as mice in which the genus Lactobacillus is the predominant bacterium in the intestine. It is also known that in humans, the intestinal flora differs greatly among individuals, and that the Japanese intestinal flora is more characteristic than the foreign intestinal flora (non-patented). Document 1). In the current situation where there is no model evaluation system that standardizes the variation of the intestinal flora between individuals and races, the diversity of the intestinal bacteria that compose the intestinal flora and the short-chain fatty acids in the intestinal flora are increased. Choosing a food composition is extremely difficult.
  • Non-Patent Document 2 Non-Patent Document 2
  • Non-Patent Document 3 an artificially reconstructed Japanese intestinal flora has not been reported.
  • Non-Patent Document 1 the characteristics of the Japanese intestinal flora are elucidated by metagenome analysis, 50 types of intestinal bacteria predominant in the Japanese intestinal flora are reported, and 11 foreign countries. It has been reported to be the most abundant in the genus Blautia, Bifidobacterium, Streptococcus, and Streptococcus compared to the intestinal flora of human subjects. In addition, the above 50 types do not include the phylum Proteobacteria and the genus Lactobacillus, and it has been clarified that these intestinal bacteria are not the predominant intestinal bacteria in the Japanese intestine.
  • Non-Patent Document 1 intestinal bacteria whose taxonomic proportions of the Japanese intestinal flora belong to the phylum Pharmacutes, Actinobacteria, and Bacteroidetes are classified as bacterial species. It has also been clarified that it contains about 57%, about 24%, and about 19%, respectively. However, the culture of intestinal bacteria predominant in these Japanese intestinal flora has not been carried out, and the combinations that can be cultivated and the culturing method thereof have not been investigated.
  • Non-Patent Document 2 reports a combination of eight types of intestinal bacteria called ASF (Altered Scaler Flora) as the smallest unit model of the intestinal flora.
  • Non-Patent Document 3 reports a combination of 15 types of intestinal bacteria as a model having the characteristics of the intestinal flora of Europeans. However, it contains intestinal bacteria that are not predominant in the Japanese intestinal flora, and does not contain the genus Bifidobacterium, which is also a characteristic of the Japanese intestinal flora.
  • Gut bacteria have a higher anaerobic demand than lactic acid bacteria and bifidobacteria, and are extremely difficult to culture. Therefore, it is common to culture in a medium suitable for the characteristics of each intestinal bacterium.
  • Non-Patent Document 4 it is possible to culture a plurality of types of intestinal bacteria reported to be predominant in the intestinal flora of Europeans in a single medium (GAM bouillon medium, Nissui). Is reported.
  • GAM bouillon medium, Nissui the predominant bacteria in the intestine differ greatly between Europeans and Japanese, and it cannot be expected that the predominant bacteria in the intestine of Japanese can grow stably using the same medium as a single medium.
  • the short-chain fatty acids produced by each bacterial species are compared, only those produced by a single intestinal bacterium are measured, and the amount of short-chain fatty acids produced in the entire flora is unknown. Met.
  • Patent Document 1 reports an intestinal bacterial flora simulation culture method and a culture apparatus capable of culturing while maintaining the composition balance of the intestinal bacterial flora.
  • Non-Patent Document 5 evaluates in vitro that dietary fibers increase short-chain fatty acids in the intestinal flora using the same method and apparatus.
  • Both Patent Document 1 and Non-Patent Document 5 are characterized in that feces are used as an evaluation culture, but the human intestinal flora differs greatly among individuals, and when human-derived feces are used, feces are provided. It is affected by the difference in the intestinal flora between individuals.
  • Commonly used bacterial species include Lactobacillus delbrucky Subspices Bulgalix, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus herveticas.
  • Lactobacillus mucosae is an example of a bacterial species that has not been utilized very much.
  • Patent Document 2 mentions Lactobacillus mucosae as one of the lactic acid bacteria useful for improving lactose intolerance.
  • Lactobacillus mucosae in the patent document is characterized by high intestinal adhesion and lactose decomposing ability, and has been shown to have an effect on the proportion of bifidobacteria in the human large intestine and an effect on the growth of bifidobacteria in vitro.
  • lactose promotes the growth of bifidobacteria
  • ingestion of Lactobacillus mucosae which has a high lactose decomposing ability, may reduce the proportion of bifidobacteria in the human large intestine and may inhibit the growth of bifidobacteria. Conceivable.
  • Non-Patent Documents 6 and 7 show that porcine-derived Lactobacillus mucosae LM1 has high intestinal adhesion and suppresses attachment of pathogenic bacteria to the intestinal tract. However, none of them have shown the effect of Lactobacillus mucosae LM1 on bifidobacteria. Further, Non-Patent Document 6 is an example of in vitro analysis of adhesion to the intestinal tract, and does not show any effect in humans. In Non-Patent Document 7, the suppression of attachment of pathogenic bacteria to the intestinal tract is analyzed using mice, and no effect in humans is shown.
  • An object of the present invention is to provide a food composition and a food or drink containing Lactobacillus mucosae as an active ingredient, which has an intestinal bacterial flora improving function, that is, a short-chain fatty acid increasing function and / or a diversity increasing function.
  • an intestinal bacterial flora improving function that is, a short-chain fatty acid increasing function and / or a diversity increasing function.
  • to construct a new intestinal flora model having the characteristics of the Japanese intestinal flora and to use the model to improve the intestinal flora, that is, to increase short-chain fatty acids and / or diversity.
  • the subject is to provide a new model evaluation system that can evaluate the increasing function and to provide a screening method for food compositions using the system.
  • Another subject of the present invention is the provision of new probiotics.
  • Another object of the present invention is to provide a bifidobacteria growth-promoting agent containing Lactobacillus mucosae as an active ingredient and foods and drinks for promoting growth.
  • the present invention is for solving the above-mentioned problems, and a plurality of intestinal bacteria predominant in the Japanese intestinal flora were extracted to artificially reconstruct the Japanese intestinal flora. At this time, maintaining the taxonomic ratio in the intestine and including intestinal bacteria showing a higher abundance ratio than foreigners were extracted as characteristics of the intestinal flora of the Japanese. Then, when the extracted mixture of intestinal bacteria was used as an evaluation culture and indigestible dietary fibers, which have already been reported to increase short-chain fatty acids in the human intestine by ingestion, were cultured. An increase in short-chain fatty acids was well confirmed.
  • the present invention is effective as a model evaluation system in the Japanese intestinal flora that standardizes the variation of the intestinal flora between individuals, and also short in the Japanese intestinal flora. It was found that it can also be used to evaluate the increase in chain fatty acids. Similarly, we found that this model evaluation system can also be used to evaluate the increase in the diversity of intestinal bacteria that make up the intestinal flora. Further, the present invention is a result of selecting various lactic acid bacteria and bifidobacteria as food compositions having a short-chain fatty acid increasing function and a diversity increasing function by using the model evaluation system in the Japanese intestinal flora. It was confirmed that Lactobacillus mucosae has this function.
  • the short-chain fatty acid increase-promoting action and diversity increase-promoting action of Lactobacillus mucosae have not been known so far, and are used for short-chain fatty acid increase-promoting use and diversity increase-promoting use in the Japanese intestinal flora. It became clear that it could be done.
  • the present invention has the following configuration.
  • ⁇ 1> A composition for improving the intestinal flora which comprises a bacterial cell or a bacterial cell culture of Lactobacillus mucosae as an active ingredient.
  • ⁇ 2> A food or drink for improving the intestinal flora which contains a bacterial cell or a bacterial cell culture of Lactobacillus mucosae as an active ingredient.
  • ⁇ 3> A composition for promoting an increase in short-chain fatty acids which comprises a cell or cell culture of Lactobacillus mucosae as an active ingredient.
  • ⁇ 4> A food or drink for promoting the increase in short-chain fatty acids which contains a cell or cell culture of Lactobacillus mucosae as an active ingredient.
  • ⁇ 5> A composition for promoting an increase in the diversity of intestinal bacteria containing a cell or a cell culture of Lactobacillus mucosae as an active ingredient.
  • Foods and drinks for promoting the increase in diversity of intestinal bacteria containing Lactobacillus mucosae cells or cell cultures as active ingredients.
  • ⁇ 7> A human intestinal flora model for evaluating the effect of promoting the increase of short-chain fatty acids and / or the effect of promoting the increase of diversity in the human intestine of the target food composition.
  • the human intestinal flora composed of an evaluation bacterial cell culture containing at least 9 bacterial species, including bacteria belonging to the genus Bifidobacterium, not containing bacteria belonging to the genus Proteobacteria and Lactobacillus. model.
  • Bacteria belonging to the phylum Fermicutes are included in the number of bacterial species 56-59%, bacteria belonging to the phylum Actinobacteria are included in the number of bacterial species 21-24%, and bacteria belonging to the phylum Bacteroidetes are included in the number of bacterial species 17-22%.
  • the human intestinal bacterial flora model is included.
  • Bacteria of at least 9 species include Blautia wexlerae, Bifidobacterium longum, Bifidobacterium sud catenuratam, Eubacterium rectale, Bifidobacterium addresscentis, Corinthella aerophynicus, Bacteroides Uniformis, Drea longicatena, Bacteroides burgatas, luminococcus gunabas, fecaribacterium prausnitzi, parabacteroides distasonis, drea formicigenerance, luminococcus obeum, luminococcus troques, bacteroides dray, flavoniflactor plauti, parabacteroides , Streptococcus salivarius, Egasera renter, Crostridium borteae, Rosebria intestinaris, Coprococcus comes, Bacteroides obatus, Bacterium harii, Rosebria hominis and Bacteroides tetaiotao
  • Step of adding at least 9 bacterial species or more to the modified GAM bouillon medium, including bacteria belonging to the genus Bifidobacterium, which does not contain bacteria belonging to the genus Proteobacterium and Lactobacillus Anaerobic Step of culturing under specific conditions ⁇ 13>
  • a method for evaluating the effect of promoting the increase of short-chain fatty acids and / or the effect of promoting the increase of diversity in the human intestine of the target food composition which comprises the following steps.
  • the measured and / or calculated values of the steps (3) and (2) for measuring the amount of short-chain fatty acid produced and / or calculating the diversity index are relative values as compared with the case where the food composition is not added.
  • a food composition which is a method for producing a food or drink for improving the intestinal bacterial flora and which is evaluated to have a short-chain fatty acid increase promoting action and / or a diversity increase promoting action in the evaluation method according to ⁇ 13>. How to make food.
  • NITE P-03272 SBT2027 strain (NITE P-03271) SBT2271 strain (NITE P-03273), SBT2025 (NITE P-03189), SBT2269 (NITE P-03191), SBT2867 (NITE P-03192) A strain selected from the group consisting of P-03190), SBT10043 (NITE BP-03187) and SBT10228 (NITE P-03188).
  • Yet another invention of the present application is for solving the above-mentioned other problem, and for the first time, it has been found that Lactobacillus mucosae has a bifidobacteria growth-promoting effect, and as a bifidobacteria growth-promoting agent and a food and drink for promoting growth. It was confirmed that the present invention can be applied to an agent for increasing the proportion of bifidobacteria in the human intestine and foods and drinks for increasing the proportion of bifidobacteria, and the present invention has been completed as a new probiotic.
  • the present invention further has the following configuration.
  • ⁇ 16> An agent that increases the proportion of bifidobacteria in the human intestine containing Lactobacillus mucosae as an active ingredient.
  • ⁇ 17> A bifidobacteria growth promoter containing Lactobacillus mucosae as an active ingredient.
  • ⁇ 19> Lactobacillus mucosae SBT2025 (NITE P-03189), SBT2268 (NITE P-03190), SBT2269 (NITE P-03191), SBT2867 (NITE P-03192), SBT10043 (NITE BP-03187)
  • Lactobacillus mucosae is a strain having a proliferation activity of 1.1 times or more as compared with that without addition when cultured with Bifidobacterium.
  • ⁇ 23> Lactobacillus mucosae SBT2025 (NITE P-03189), SBT2268 (NITE P-03190), SBT2269 (NITE P-03191), SBT2867 (NITE P-03192), SBT10043 (NITE BP-03187)
  • a method for producing a fermented dairy product which comprises a step of culturing Lactobacillus mucosae in a medium containing milk as a main component, wherein a strain having the following properties is used as the lactobacillus mucosae.
  • Lactobacillus mucosae characterized by having 1.1 times or more proliferative activity when cultured with Bifidobacterium as compared with no addition.
  • the production method according to ⁇ 24> which is one or more lactic acid bacteria strains selected from the group consisting of -03188).
  • the present invention further has the following configuration.
  • ⁇ 26> A method for improving the intestinal flora, which comprises a step of administering a bacterial cell or a bacterial cell culture of Lactobacillus mucosae to a subject.
  • ⁇ 27> A method for promoting an increase in short-chain fatty acids, which comprises a step of administering a cell or a cell culture of Lactobacillus mucosae to a subject.
  • ⁇ 28> A method for increasing the diversity of intestinal bacteria, which comprises a step of administering a cell or a cell culture of Lactobacillus mucosae to a subject.
  • ⁇ 29> A method for increasing the proportion of bifidobacteria in the human intestine, which comprises a step of administering a cell or a cell culture of Lactobacillus mucosae to a subject.
  • a method for promoting the growth of bifidobacteria which comprises a step of administering a cell or a cell culture of Lactobacillus mucosae to a subject.
  • the model evaluation system for the Japanese intestinal flora of the present invention is characterized by the Japanese intestinal flora, which is composed of the intestinal bacteria predominantly present in the Japanese intestine.
  • various food compositions can be prepared because they contain gut microbiota that maintain the taxonomic proportion of gut microbiota that composes the gut microbiota and show a higher abundance ratio than foreigners.
  • the function of improving the intestinal environment can be evaluated.
  • the present invention has made it possible to select a food composition that improves the intestinal bacterial flora under the condition that humans and animals are not used and human feces, which is a biological sample, is not used.
  • the composition for improving the intestinal flora containing Lactobacillus mucosae found by the present invention the diversity of intestinal bacteria constituting the intestinal flora and the intestinal bacteria In addition to being expected to increase short-chain fatty acids in the flora, improvement of symptoms such as metabolic diseases and obesity associated with this can be expected.
  • Yet another invention of the present application provides a fermented dairy product containing Lactobacillus mucosae, which has a growth promoting activity of bifidobacteria, as an active ingredient. Then, by ingesting the fermented dairy product of Lactobacillus mucosae, the proportion of bifidobacteria in the human intestine can be increased. Therefore, according to the present invention, it has become possible to provide new probiotics.
  • Lactobacillus mucosae in the present invention means a bacterium belonging to Lactobacillus mucosae. That is, it refers to a strain in which the homology between the Lactobacillus mucosae reference strain JCM12515 and the 16S ribosomal RNA gene base sequence is 97% or more, more preferably 98% or more, still more preferably 99% or more.
  • the source of separation may be any, more preferably of human origin.
  • the diversity of intestinal bacteria constituting the intestinal flora and short-chain fatty acids in the intestinal flora Any strain may be used, and examples thereof include SBT10028, SBT10043, SBT10217, SBT10027, SBT10038, SBT2261, SBT2027, and SBT2271 whose activities have been shown in Examples described later.
  • the strain of Lactobacillus mucosae which is an active ingredient of the agent for increasing the proportion of bifidobacteria in the human intestine and the agent for promoting the growth of bifidobacteria, which is another invention of the present application, may be a strain having a bifidobacteria growth promoting activity.
  • SBT2025, SBT2268, SBT2269, SBT2876, SBT10043, SBT10228 and the like whose activity has been shown in Examples described later can be mentioned.
  • Lactobacillus mucosae which is an active ingredient of the food and drink for promotion and the food and drink for promoting diversity increase, may be in a state having a short-chain fatty acid increase promotion activity or a diversity increase promotion activity in the human intestine.
  • Lactobacillus mucosae which is an active ingredient of the bifidobacteria ratio increasing agent and the bifidobacteria growth promoting agent of the present specification, is in a state of having an activity of increasing the bifidobacteria ratio or promoting the growth of bifidobacteria. All you need is. These are not limited to those purely isolated as cells, and may be cell cultures, cell suspensions, or other cell-containing substances.
  • the bacterial cell may be a live bacterial cell or a dead bacterial cell, and of these, the live bacterial cell is preferable.
  • Examples of the viable cells include a cell concentrate obtained by culturing and collecting the cells, a dried product of the cells, and a freeze-dried product, and examples of the cell culture include a concentrate and a dried product of the cell culture solution.
  • fermented dairy products of lactobacillus mucosae can be mentioned.
  • Examples of fermented dairy products include cheese, fermented milk, dairy products, and dairy products such as lactic acid bacteria beverages, but are not particularly limited.
  • the cells separated from the obtained culture by means of collecting bacteria such as centrifugation can be used as they are as the active ingredient of the present invention.
  • Lactobacillus mucosae can be cultivated according to a conventional method.
  • As the medium various media such as a milk medium, a medium containing a milk component, and a semi-synthetic medium not containing the milk component can be used. Examples of such a medium include a reduced skim milk medium and the like.
  • the fermented dairy product refers to a product obtained by culturing Lactobacillus mucosae in a liquid or a paste containing milk or a non-fat milk solid content equal to or higher than that of milk.
  • the milk may be raw milk, milk, raw goat milk, raw sheep milk, or the like, and skim milk powder may be reduced with water before use.
  • the concentration when skim milk powder is used the concentration is not limited as long as the non-fat solid content is equal to or higher than that of milk and Lactobacillus mucosae can be cultivated, but 8% (w / w) or higher is preferable. Is preferably 9% (w / w) or more, more preferably 10% (w / w) or more.
  • the fermented dairy product may contain nutrients other than skim milk powder, and when yeast extract is added, it is 0.1% (w / w) or more, preferably 0.2% (w / w) or more. More preferably, it is 0.5% (w / w) or more. Other nutrients include sugars, amino acids, minerals, vitamins and the like.
  • the fermented dairy product of the present invention may contain bacteria other than Lactobacillus mucosae.
  • the fermentation starter of fermented milk can also include commonly used lactic acid bacteria such as Lactobacillus delbrucky Subspecies bulgaricus and Streptococcus thermophilus.
  • Lactobacillus mucosae which is an active ingredient of an agent for increasing the proportion of bifidobacteria and an agent for promoting the growth of bifidobacteria, is mixed-cultured with bifidobacteria, and a mixed culture with bifidobacteria whose growth is promoted (for example, fermented dairy products). ) Can also be provided.
  • the fermented dairy product Lactobacillus mucosae is contained as a live bacterium.
  • the viable to colonies on a solid medium impregnated with nutrients to a support such as agar are formed refers to the (colony a forming), the number of viable colony forming units cfu (c olony f orming is represented by u nit).
  • the solid medium for measuring the viable cell count of Lactobacillus mucosae include MRS agar medium, which is a medium for lactic acid bacteria, and LBS agar medium, which is a medium for lactic acid rod bacteria.
  • the viable cell count of Lactobacillus mucosae in the fermented dairy product is preferably 1.0E + 06cfu / mL or more, more preferably 1.0E + 07cfu / mL or more, and most preferably 1.0E + 08cfu / mL or more.
  • short-chain fatty acid increase promoting action refers to promoting the increase of short-chain fatty acids in the human intestine.
  • the activity of promoting the increase of short-chain fatty acids is shorter when the food composition is added and when it is not added in the intestinal flora model having the characteristics of the Japanese intestinal flora. It is said that the activity is present when the increase in chain fatty acids is large. For example, in the intestinal flora model described later, when the concentration of short-chain fatty acids obtained when cultivated without adding bacteria such as lactic acid bacteria and bifidobacteria and indigestible dietary fiber is 1.0 times.
  • Bacteria such as lactic acid bacteria and bifidobacteria, and short-chain fatty acid concentration obtained when indigestible dietary fiber is added is said to have the activity when it is more than 1.0 times.
  • a food composition having this activity is referred to as a composition for promoting an increase in short-chain fatty acids.
  • Lactobacillus mucosae which is the active ingredient of the composition for promoting the increase of short-chain fatty acids of the present invention, is obtained when the concentration of short-chain fatty acids obtained when cultured without addition of Lactobacillus mucosae is 1.0 times.
  • examples of short-chain fatty acids include acetic acid, butyric acid, propionic acid, and total short-chain fatty acids that are the sum of these, and among these, butyric acid, which is said to clearly indicate environmental changes in the intestine, is evaluated. It is preferable to do so.
  • Butyric acid is known to have higher proliferative activity of intestinal epithelial cells than acetic acid and propionic acid, and it has been reported that the intestinal flora decreases and the intestinal bacteria that produce butyric acid decrease in various diseases. ..
  • promoting increased diversity refers to promoting increased diversity in the human gut microbiota.
  • Shannon index which indicates species equivalence
  • Phylogenic diversity index which takes phylogenetic information into consideration, are often used as an index indicating the diversity of intestinal bacteria constituting the intestinal flora.
  • the activity of promoting diversity is increased in the intestine when the food composition is added or not in the intestinal flora model having the characteristics of the Japanese intestinal flora. It is said that the activity is present when the index indicating the diversity of the bacterial flora is large. For example, in the intestinal flora model described later, when the index representing the diversity obtained when cultivated without adding bacteria such as lactic acid bacteria and bifidobacteria and indigestible dietary fiber is set to 1.0 times. It is said that the activity is present when the index representing the diversity obtained when bacteria such as lactic acid bacteria and bifidobacteria and indigestible dietary fibers are added is greater than 1.0 times.
  • the composition having this activity is referred to as a composition for promoting diversity increase in the present invention.
  • Lactobacillus mucosae which is the active ingredient of the composition for promoting diversity increase of the present invention, is obtained when the index representing diversity obtained when cultured without addition of Lactobacillus mucosae is 1.0 times.
  • a strain showing a diversity index of 1.1 times or more, more preferably 1.2 times or more, and even more preferably 1.3 times or more when Lactobacillus mucosae is added is preferable.
  • there is an intestinal bacterial flora improving activity when it has either one or both of the above-mentioned short-chain fatty acid increase promoting activity and diversity increase promoting activity.
  • compositions for promoting the increase in short-chain fatty acids and the composition for promoting the increase in diversity are also compositions for improving the intestinal bacterial flora.
  • foods and drinks for promoting the increase in short-chain fatty acids and foods and drinks for promoting the increase in diversity are also foods and drinks for improving the intestinal bacterial flora.
  • composition for improving intestinal bacterial flora in human intestine composition for promoting increase in short-chain fatty acids, and composition for promoting increase in diversity
  • fermentation of Lactobacillus mucosae is used as an active ingredient of the composition for improving the intestinal flora, the composition for promoting the increase in short-chain fatty acids, and the composition for promoting the increase in diversity in the human intestinal flora of the present invention.
  • the culture itself and the bacterial cells of Lactobacillus mucosae can be used.
  • the fermented culture preferably includes the above-mentioned fermented dairy products.
  • the composition for improving the intestinal bacterial flora, the composition for promoting the increase in short-chain fatty acids, and the composition for promoting the increase in diversity can be further formulated and used.
  • a modeling agent, a stabilizer, a flavoring agent, etc. which are permitted in the formulation, can be appropriately mixed and formulated.
  • the dosage form can be tablets, capsules, granules, powders, powders, syrups and the like. Pharmaceutical products, supplements, etc. fall under this category. Oral ingestion of these is expected to improve the intestinal flora through the effect of promoting the increase of short-chain fatty acids and / or the effect of promoting the increase of diversity in the human intestinal flora.
  • the active ingredients of the food and drink for improving the intestinal bacterial flora, the food and drink for promoting the increase in short-chain fatty acids, and the food and drink for promoting the increase in diversity in the human intestinal bacterial flora of the present invention include the fermented culture of Lactobacillus mucosae itself.
  • the bacterial cells of Lactobacillus mucosae can be used.
  • Examples of the fermented culture used as food include the above-mentioned fermented dairy products.
  • the food and drink for improving the intestinal bacterial flora, the food and drink for promoting the increase in short-chain fatty acids, and the food and drink for promoting the increase in diversity are the composition for improving the intestinal bacterial flora, the composition for promoting the increase in short-chain fatty acids, and the above-mentioned composition for promoting the increase in short-chain fatty acids. It is also possible to use a composition in which a composition for promoting diversity increase is blended with an appropriate food or drink. These formulations may be added to the raw material during the manufacturing process of the food or drink, may be blended into the raw material, or may be blended into the final product, the food or drink.
  • foods and drinks include cheese, fermented milk, dairy fermented milk products, lactic acid bacteria beverages, lactic acid bacteria beverages, butter, dairy products such as margarine, beverages such as dairy beverages, fruit juice beverages, and soft beverages, and eggs such as jelly, candy, pudding, and mayonnaise.
  • Processed products, sweets and breads such as butter cakes, various powdered milks, infant foods, nutritional compositions, etc. can be mentioned, but are not particularly limited.
  • the foods and drinks for improving the intestinal bacterial flora, the foods and drinks for promoting the increase in short-chain fatty acids, and the foods and drinks for promoting the increase in diversity of the present invention are foods with functional claims, foods for specified health use, foods with nutritional function, and foods for beauty. It is also possible to use. Ingestion of foods and drinks is expected to improve the intestinal flora through the effect of promoting the increase of short-chain fatty acids and / or the effect of promoting the increase of diversity in the human intestinal flora.
  • the blending ratio is not particularly limited, and ease of production and preferable one. It may be adjusted appropriately according to the daily dose. It is determined individually in consideration of the symptoms and age of the recipient, but in the case of an adult, usually 10 to 200 g of the cell culture of Lactobacillus mucosae or 0.1 to 100 mg of the cell itself is ingested. The blending amount and the like may be adjusted so as to be possible.
  • the intestinal flora model of the present invention is a mixed culture of bacterial cells that models the average intestinal flora of Japanese people, and does not contain bacteria belonging to the phylum Proteobacterium and the genus Lactobacillus, and is a bifidobacteria. It is a bacterial cell mixed culture characterized by containing at least 9 bacterial species or more, including bacteria belonging to the genus.
  • bacteria contained in the average intestinal flora of Japanese it is composed of bacteria belonging to the phylum Pharmacutes, Actinobacteria, and Bacteroidetes, and further characterized by the genus Blautia, Corinthella, and Streptococcus.
  • the intestinal bacteria belonging to the phylums Fermicutes, Actinobacteria, and Bacteroidetes are combinations containing 56 to 59%, 21 to 24%, and 17 to 22%, respectively, as the composition ratio of the number of bacterial species. More preferably, they are about 57%, about 24% and about 19%, respectively.
  • the combination contains 56 to 59%, 21 to 24%, and 17 to 22% of intestinal bacteria belonging to the phylum Pharmacutes, Actinobacteria, and Bacteroidetes, respectively, as well as the genera Blautia, Streptococcus, and Streptococcus. It is even more desirable to include.
  • a bacterial species means a “species” of a bacterium. That is, the systematic classification of bacteria is called “phylum”, “genus”, “species”, and “strain” in descending order, and means “species” among them.
  • Bacteria of at least 9 species include Blautia wexlerae, Bifidobacterium longum, Bifidobacterium sudocatenuratam, Eubacterium rectale, Bifidobacterium addressntis, Corinthella aerophynicus, Bacteroides uniformis, and Drea.
  • Bacteroides bulgartus, luminococcus gnavas, fecaribacterium prausnitzi, brautia obeum, bacteroides dray, flavoni fractor plauti, streptococcus salivarius, crotridium vorteae and coprococcus comes (17 strains above)
  • the above is sufficient, and more preferably, it is a mixed culture containing these 17 bacterial species, and most preferably, it is a mixed culture composed of these 17 bacterial species.
  • the culture of the bacterial cell mixture which is a model of the intestinal flora, may be performed under conditions that allow a plurality of intestinal bacteria constituting the mixture to grow under a single condition, and the medium is YCFA medium (JCM medium number). 1130) and EG medium (JCM medium No. 14) can be mentioned, and GAM bouillon and modified GAM bouillon, which are easier to prepare, can be mentioned. Of these, modified GAM bouillon medium is preferred.
  • the culture temperature is 36 to 38 ° C., preferably 37 ° C., as a temperature near the human body temperature.
  • the pH of the large intestine differs depending on the site (transverse colon, distal colon, rectum), and the pH changes due to the production of short-chain fatty acids or the absorption of short-chain fatty acids by the host.
  • the pH of the medium before culturing is preferably 6 or more, of which 7 or more is preferable, and around 7.2 is even more preferable.
  • the large intestine is anoxic, and the intestinal bacteria that grow here are obligately anaerobic. Therefore, it is necessary to maintain the medium and the medium air layer in anoxic state by nitrogen gas.
  • carbon dioxide gas and hydrogen gas produced by intestinal bacteria are also present in the intestine, it is preferable to include them.
  • the ratio examples include nitrogen 80 to 90%, carbon dioxide gas 5 to 10%, and hydrogen gas 5 to 10%.
  • the culturing time is preferably carried out until the pH of the medium becomes constant, preferably 16 to 32 hours, and more preferably 16 hours.
  • Various intestinal bacteria constituting the bacterial cell mixture are added to 100 mL of the medium so as to be about 1.0E + 07 to 1.0E + 08 cfu / mL.
  • the bacterial count composition ratio of various intestinal bacteria in the entire bacterial cell mixture can be calculated by making the number of bacteria to be added uniform for all bacterial species.
  • an object to be evaluated is added to a bacterial cell mixture as an intestinal flora model, cultured by the above-mentioned culture method, and the amount of short-chain fatty acids is measured after a lapse of a certain period of time.
  • the measurement can be carried out, for example, by subjecting the culture supernatant to HPLC or the like.
  • an object to be evaluated is added to a bacterial cell mixture as an intestinal flora model and cultured by the above-mentioned culture method, and after a certain period of time, an index indicating diversity is measured. Can be evaluated by performing the above and comparing with the case where no additive is added. The measurement can be performed by calculating an index representing diversity (quantifying the diversity) from the genomic DNA extracted from the supernatant of the culture using a next-generation sequencer and an analysis pipeline.
  • the screening method of the present invention has a short-chain fatty acid increase-promoting action or a diversity-promoting action after a certain period of time has passed by adding a screening object to a bacterial mixture as an intestinal flora model and culturing by the above-mentioned culture method. You can choose the one.
  • a method of increasing the diversity of intestinal bacteria that compose the intestinal flora and the short-chain fatty acids in the intestinal flora it works on the intestinal bacteria that compose the intestinal flora to increase the short-chain fatty acids and diversity.
  • a method of ingesting lactic acid bacteria and bifidus bacteria can be considered. For example, ingesting fermented dairy products containing them.
  • a typical type of lactic acid bacterium used in fermented dairy products is a lactic acid bacterium belonging to the genus Lactobacillus. Commonly used species include Lactobacillus bulgaricus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus herbeticus. On the other hand, Lactobacillus mucosae is an example of a species that has not been utilized very much.
  • EFSA European Food Safety Authority
  • QPS Qualified Precision of Safety
  • Lactobacillus mucosae has an action of promoting the increase of short-chain fatty acids and an action of promoting the increase of diversity.
  • the screening target can be not only bacteria such as lactic acid bacteria and bifidobacteria, but also known food compositions.
  • the indigestible dietary fiber ⁇ -CD alpha cyclodextrin
  • short-chain fatty acids were evaluated. And increased diversity was confirmed.
  • the method for producing a food or drink for improving the intestinal bacterial flora of the present invention uses a food composition evaluated as having a short-chain fatty acid increase-promoting effect and / or a diversity increase-promoting effect in the above-mentioned evaluation method or screening method. It is a method of manufacturing food.
  • Foods and drinks can be produced by blending the food composition of the present invention with foods and drinks. These formulations may be added to the raw material during the manufacturing process of the food or drink, may be blended into the raw material, or may be blended into the final product, the food or drink, to be produced.
  • the food composition of the present invention is a lactic acid bacterium or a bifidobacteria, it can be produced by fermenting these to obtain a culture.
  • Bifidobacterium means a bacterium belonging to the genus Bifidobacterium.
  • Bifidobacterium is not particularly limited as long as it is a bacterium belonging to the genus Bifidobacterium, but Bifidobacterium longum, Bifidobacterium pseudocatenuratam, Bifidobacterium addresscentis, and Bifidobacterium.
  • Bifidobacterium, Bifidobacterium breve, Bifidobacterium dentium and the like can be mentioned. Of these, preferred examples include Bifidobacterium longum.
  • Bifidobacterium longum standard strain JCM1217 or Bifidobacterium longum SBT2928 strain (trust number: FERM P-10657, deposit date: April 13, 1989, National Institute of Advanced Industrial Science and Technology) Laboratory Patent Organism Depositary Center) can be illustrated.
  • promoting the growth of bifidobacteria refers to an increase in the viable number of bifidobacteria.
  • the growth-promoting activity of bifidobacteria is said to be when the increase in the viable cell count of bifidobacteria is greater when lactobacus mucosae is added or not, and when it is added. For example, when the viable cell count of bifidobacteria obtained when bifidobacteria are cultured in vitro without addition of Lactobacillus mucosae is 1.0 times, it is obtained when Lactobacillus mucosae is added.
  • Lactobacillus mucosae which is the active ingredient of the bifidobacteria growth promoter of the present invention, is obtained when the viable cell count of bifidobacteria obtained when cultured without addition of Lactobacillus mucosae is 1.0 times.
  • a strain in which the viable number of bifidobacteria obtained when Lactobacillus mucosae is added is preferably 1.1 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more. Is.
  • the viable number of bifidobacteria refers to the number of colonies formed in GAM medium, which is a medium for anaerobic bacteria in which bifidobacteria can grow, TOS propionic acid agar medium, which is a medium for bifidobacteria, and the like.
  • increasing the proportion of bifidobacteria in the human intestine means that the proportion of bifidobacteria in the human intestinal bacterial group is increased. For example, it is said that it is active when the proportion of bifidobacteria in the intestinal bacteria is greater than 1.0 times after ingestion of Lactobacillus mucosae as compared with that before ingestion.
  • an agent having this activity is referred to as an agent for increasing the proportion of bifidobacteria in the intestine.
  • Lactobacillus mucosae which is the active ingredient of the agent for increasing the proportion of bifidobacteria in the intestine of the present invention, is preferably a strain showing a ratio of 1.1 times or more after ingestion as compared with that before ingestion, and more preferably 1. It is a strain that exhibits 3 times or more, more preferably 2.0 times or more, and even more preferably 3.0 times or more.
  • a method for screening such strains first, the viable number of bifidobacteria obtained when bifidobacteria are cultured in vitro without adding Lactobacillus mucosae under culture conditions that imitate the intestinal environment is determined.
  • a method of screening a strain showing a viable number of bifidobacteria of 1.1 times or more obtained when Lactobacillus mucosae is added when the value is 1.0 times is mentioned.
  • the proportion of bifidobacteria in the human intestine means the proportion of bifidobacteria in DNA in feces.
  • the 16S rRNA gene can be amplified by PCR, and the proportion of bifidobacteria-derived DNA contained in the entire PCR product can be calculated.
  • T-RFLP T erminal R estriction F ragment L ength P olymorphism
  • the fermented culture of Lactobacillus mucosae itself or the cells themselves can be used as the agent for increasing the proportion of bifidobacteria and the agent for promoting the growth of bifidobacteria in the human intestine of the present invention.
  • the fermented culture used as food include the above-mentioned fermented dairy products. It can also be further formulated and used.
  • a modeling agent, a stabilizer, a flavoring agent, etc. which are permitted in the formulation, may be appropriately mixed, concentrated, freeze-dried, or heat-dried to form dead cells. These dried products, concentrates, and pastes are also contained.
  • a type agent, a binder, a disintegrant, a lubricant, a flavoring agent, a suspension agent, a coating agent, and any other agent are mixed and formulated as long as they do not interfere with the activity of promoting the growth of bifidobacteria. You can also do it.
  • the dosage form can be tablets, capsules, granules, powders, powders, syrups, etc., and it is desirable to administer these orally.
  • the fermented culture of Lactobacillus mucosae itself can be used as the food and drink for increasing the proportion of bifidobacteria in the human intestine and the food and drink for promoting the growth of bifidobacteria of the present invention.
  • the fermented culture used as food include the above-mentioned fermented dairy products.
  • these foods and drinks those obtained by blending the agent for increasing the proportion of bifidobacteria in the human intestine and the agent for promoting the growth of bifidobacteria in an appropriate food or drink can also be used.
  • These formulations may be added to the raw material during the manufacturing process of the food or drink, may be blended into the raw material, or may be blended into the final product, the food or drink.
  • foods and drinks include cheese, fermented milk, dairy fermented milk products, lactic acid bacteria beverages, lactic acid bacteria beverages, butter, dairy products such as margarine, beverages such as dairy beverages, fruit juice beverages, and soft beverages, and eggs such as jelly, candy, pudding, and mayonnaise.
  • Processed products, sweets and breads such as butter cakes, various powdered milks, infant foods, nutritional compositions, etc. can be mentioned, but are not particularly limited.
  • the food and drink for increasing the proportion of bifidobacteria in the human intestine and the food and drink for promoting the growth of bifidobacteria of the present invention can also be used as foods with functional claims, foods for specified health use, foods with nutritional function, and foods for beauty. Is.
  • Bifidobacterium growth promoter bifidobacteria growth promoter, food and drink for increasing bifidobacteria ratio in human intestine, bifidobacteria growth by blending Lactobacillus mucosae cells and / or culture
  • a nutritional composition for increasing the proportion of bifidobacteria in the human intestine, or a nutritional composition for a bifidobacteria growth promoter the blending ratio is not particularly limited, and the ease of production and the preferable daily dose are not particularly limited. It may be adjusted appropriately according to.
  • Test Example 1 Preparation of culture for model evaluation system 1. Extraction of gut microbiota having the characteristics of the Japanese gut microbiota (1) Acquisition and selection of gut microbiota Among the predominant gut microbiota in the Japanese gut microbiota, the available bacterial species are distributed by the distributor. It was obtained from JCM (National Research and Development Corporation, Institute of Physical and Chemical Research, Bioresource Research Center) and cultured in a modified GAM bouillon medium (product code 05433, Nissui). From the 29 types of intestinal bacteria whose growth was confirmed by the culture, the intestinal bacteria were extracted in a combination that maintained the taxonomic ratio in the Japanese intestine.
  • JCM National Research and Development Corporation, Institute of Physical and Chemical Research, Bioresource Research Center
  • the combination of intestinal bacteria belonging to the phylum Pharmacutes, the phylum Actinobacteria, and the phylum Bacteroidetes was used as a combination containing about 57%, about 24%, and about 19%, respectively, as the number of bacterial species.
  • the intestines are combined to include the genera Blautia, Bifidobacterium, Streptococcus, and Streptococcus, which are bacterial genera that maintain these ratios and show a higher abundance ratio in Japanese compared to foreigners. Internal bacteria were extracted.
  • a modified GAM bouillon medium was prepared, and the medium was sterilized by heat treatment at 121 ° C. for 15 minutes.
  • the 29 intestinal bacteria were inoculated into individual sterile media and anaerobically cultured at 37 ° C. using an anaerobic workstation (Concept 400, Central Scientific Trade).
  • Each of the obtained cultures was concentrated by centrifugation, and glycerol was added to a concentration of 10% (v / v) to obtain various concentrated cells.
  • These concentrated cells were frozen at -80 ° C, then thawed, serially diluted, and smeared on a modified GAM bouillon agar medium to measure the viable cell count. It was confirmed that the viable cell count of 0E + 07 cfu / mL or more was contained.
  • the composition of the modified GAM bouillon medium used is shown in Table 1 below.
  • intestinal bacteria belonging to the phylum Fermicutes, Actinobacteria, and Bacteroidetes are combined into a total of 9 bacterial species including 5 bacterial species, 2 bacterial species, and 2 bacterial species, respectively, 7 A total of 12 bacterial species including 3 bacterial species and 2 bacterial species, a total of 14 bacterial species including 8 bacterial species, 3 bacterial species and 3 bacterial species, a total of 10 bacterial species, 4 bacterial species and 3 bacterial species Intestinal bacteria were extracted so as to be a combination of 17 bacterial species.
  • Table 2 shows the combinations of 17 bacterial species including all 4 bacterial species belonging to the phylum Actinobacteria contained in the obtained 29 bacterial species.
  • a mixed culture of the reconstructed 17 bacterial species shown in Table 2 was inoculated, and the mixed gas was aerated and cultured with stirring until the pH of the medium became constant.
  • each intestinal bacterium is about 1.0E + 07 to 1.0E + 08 cfu / mL with respect to 100 mL of the medium, stirring is 100 rpm or less, and the pH at the start of culture is 7.2.
  • the culturing time was 16 hours.
  • food composition candidates are added to the model evaluation system, the culture when cultured by the above culture method is collected, the amount of short-chain fatty acid produced is measured, and an index representing diversity is calculated. And evaluate.
  • indigestible dietary fiber ⁇ -CD alpha cyclodextrin, CAVAMAX WG Food, cyclochem
  • indigestible dietary fiber ⁇ -CD alpha cyclodextrin, CAVAMAX WG Food, cyclochem
  • Test Example 3 Screening of lactic acid bacteria that increase the diversity of short-chain fatty acids and / or intestinal flora (1) Test method Short-chain lactic acid bacteria belonging to Lactobacillus mucosae were evaluated by the evaluation method demonstrated in Test Example 2. We confirmed whether fatty acids increased and evaluated the increase in diversity. Specifically, each lactic acid bacterium belonging to Lactobacillus mucosae (Table 2) possessed by the applicant, which isolates and reduces humans, was added to about 1.0E + 07cfu / mL in 100 mL of the medium.
  • the total short-chain fatty acid production (total of acetic acid / propionic acid / butyric acid) also decreased 0.94 times and 0.95 times, respectively.
  • the rate of increase of the diversity index was 0.97 times and 0.85 times for Shannon index, respectively, and decreased to 0.95 times and 0.95 times for Phylogenetic diversity index, respectively.
  • Table 3 shows the rate of increase in short-chain fatty acid production
  • Table 4 shows the rate of increase in the diversity index when the control group to which Lactobacillus mucosae was not added was 1.0.
  • Lactobacillus mucosae Concentrated Bacteria An MRS liquid medium, which is a medium for lactic acid bacteria, was prepared and sterilized by heat treatment at 121 ° C. for 15 minutes. Lactobacillus mucosae SBT2025, Lactobacillus mucosae SBT2268, Lactobacillus mucosae SBT2269, Lactobacillus mucosae SBT2867, Lactobacillus mucosae SBT10043, and Lactobacillus mucosae SBT10043, and Lactobacillus mucosae SBT10 It was anaerobically cultured at 37 ° C.
  • the obtained culture was concentrated by centrifugation, and glycerol was added to a concentration of 10% (v / v) to obtain concentrated cells. These concentrated cells were frozen at -80 ° C, thawed, then serially diluted, smeared on MRS agar medium, and the viable cell count was measured. 2.0E + 09 cfu / mL or more for all strains. It was confirmed that the viable cell count was included.
  • the obtained fermented dairy product was serially diluted in volume and smeared on an LBS agar medium for Lactobacillus containing 0.132% (v / v) acetic acid to measure the viable cell count. It was confirmed that the viable cell count of 0.0E + 06 cfu / mL or more was contained. These were used for mixed culture with Bifidobacterium longum JCM1217.
  • Bifidobacterium Longum JCM1217 Concentrated Bacteria Prepare a GAM liquid medium (GAM bouillon, product code 05422, manufactured by Nissui Pharmaceutical Co., Ltd.), which is a medium for anaerobic bacteria, at 115 ° C. for 15 minutes. The medium was sterilized by heat treatment. Bifidobacterium longum JCM1217 was inoculated therein and anaerobically cultured at 37 ° C. for 16 hours using an anaerobic culture system. The obtained culture was concentrated by centrifugation, and glycerol was added to a concentration of 10% (v / v) to obtain concentrated cells.
  • GAM liquid medium GAM liquid medium (GAM bouillon, product code 05422, manufactured by Nissui Pharmaceutical Co., Ltd.
  • GAM liquid medium GAM liquid medium
  • Bifidobacterium longum JCM1217 was inoculated therein and anaerobically cultured at 37 ° C. for 16
  • the GAM liquid medium is a medium used as a model medium for the intestinal environment (PLOS ONE DOI: 10.1371 / JOURNAL.PONE.0160533 August2, 2016).
  • the number of colonies formed on the agar medium was observed, and the increase in the number of colonies formed (cfu) by each fermented dairy product, that is, the promotion of bifidobacteria growth, was calculated by a magnification when the control colony was set to 1.0 times. ..
  • the viable bifidus count in the control group to which the lactobacillus / mucosae fermented dairy product was not added was 4.7E + 08cfu / mL, whereas the number of SBT2025 fermented dairy products added was 8.7E + 08cfu / mL (proliferation promotion 1).
  • Lactobacillus mucosae fermented dairy products promoted the growth of bifidobacteria 1.1 times or more as compared with the control group (Table 6). Note that “E + 08" and “E + 09” indicate “x10 8 " and “x10 9 ".
  • the above fermented dairy product is newly prepared and sterilized in 10% (w / w) skim milk powder containing 0.5% (w / w) edible yeast extract and 2.5% (w / w) edible glucose. Inoculated to% (w / w), and allowed to stand at 37 ° C. for 24 hours in a closed container. This was made into an edible fermented dairy product. In addition, the edible fermented dairy products were produced a plurality of times as needed by repeating subculture using the same edible fermented dairy products as an inoculum.
  • the proportion of bifidobacteria in the large intestine was determined by ingesting a fermented dairy product containing Lactobacillus mucosae, which exhibits growth-promoting activity of bifidobacteria, in a culture test that mimics the environment in the human large intestine in Test Example 4. It turns out that it can be increased.
  • the present invention by using a model evaluation system in which the Japanese intestinal flora is artificially reconstructed, humans and animals are not used, and human feces, which is a biological sample, is not used. It is possible to search for a variety of gut microbiota that compose the gut microbiota and food compositions that increase short-chain fatty acids in the gut microbiota. In addition, by ingesting foods and drinks containing bacteria belonging to Lactobacillus mucosae screened using the above model evaluation system as an active ingredient, it acts on the intestinal bacteria constituting the intestinal flora and acts in the intestine. It can be expected to improve the bacterial flora.
  • the proportion of bifidobacteria in the human large intestine can be increased by ingesting a fermented dairy product of Lactobacillus mucosae that promotes the growth of bifidobacteria in vitro. This has made it possible to provide new probiotics.
  • NITE P-03273 (8) SBT1004 B. Name and address of the depositary institution that deposited the biomaterial The date on which the biomaterial was deposited in the same Loi depository as in (1) above March 27, 2 (Transfer date to international deposit 3 years) March 23) Deposit number NITE BP-03187 assigned to the deposit by the depository organization of Hai (9) SBT2025 B. Name and address of the depositary institution that deposited the biomaterial The date on which the biomaterial was deposited in the same Loi depository as in (1) above Reiwa March 27, 2 The deposit was made by the depository institution. Number NITE P-03189 (10) SBT2268 B.
  • NITE P-03192 (13) SBT10228 B. Name and address of the depositary institution that deposited the biomaterial The date on which the biomaterial was deposited in the same Loi depository as in (1) above Reiwa March 27, 2 The deposit was made by the depository institution. Number NITE P-03188

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)

Abstract

本願発明は、腸内細菌叢改善機能を有するラクトバチルス・ムコサエを有効成分として含む食品組成物を提供することを課題とする。さらに別の本願発明は、ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤を提供することを課題とする。本願発明は、ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌叢改善用組成物を提供する。さらに別の本願発明は、ラクトバチルス・ムコサエを有効成分とするヒト腸内のおけるビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤を提供する。

Description

腸内細菌叢改善用組成物
 本願発明は、ラクトバチルス・ムコサエを有効成分として含む腸内細菌改善用食品組成物及び腸内細菌叢の改善に適した食品組成物を評価する方法に関する。
 また、本願発明は、ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加剤及び増加促進用飲食品に関する。さらにまた、本願発明は、ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進剤及び増殖促進用飲食品に関する。
 ヒトの腸内には1000種、40兆個もの細菌が棲息し、複雑な共生関係(腸内細菌叢)を形成している。オミクス解析の進展により、健康状態や加齢、食事や生活習慣が腸内細菌叢に影響を与えることに加え、腸内細菌叢バランス(腸内細菌の多様性)の乱れが疾患の発症や増悪に繋がることが明らかとなってきた。肥満及び糖尿病患者において腸内細菌の多様性が減少していることや、食物繊維類の摂取によって腸内細菌の多様性が増加し、関連する臨床症状が改善することなども実証されている。
 また、腸内細菌の主要な代謝産物である短鎖脂肪酸には様々な健康機能効果が報告されていると共に腸内細菌の多様性との関係も示唆されている。短鎖脂肪酸は、酢酸、プロピオン酸、酪酸に代表される炭素数6以下の脂肪酸を指す。これらは、腸内のpHを酸性にすることで病原微生物の生育を抑えるのみならず、腸管上皮細胞を活性化し、宿主の生体防御や免疫系の制御に複雑に関与している。また、腸管の蠕動運動を促進する代謝産物を産生する腸内細菌や、腸管粘膜の恒常性維持に関連する腸内細菌等によって利用されていることも報告されている。腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる方法として、腸内細菌の生育や代謝産物の産生を促進する食品用組成物(プレバイオティクス)を摂取することや、乳酸菌やビフィズス菌を含む食品用組成物(プロバイオティクス)を直接摂取することが主な方法として挙げられる。
 多種多様な腸内細菌から構成されるヒトの腸内細菌叢は、ラクトバチルス属を腸内における優勢細菌とするマウスなどのモデル動物とは大きく異なる。また、ヒトにおいても個人間で腸内細菌叢が大きく異なることに加え、日本人の腸内細菌叢が外国人の腸内細菌叢と比べて特徴的であることも知られている(非特許文献1)。個人間、人種間の腸内細菌叢のばらつきを標準化するモデル評価系が存在しない現状において、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる食品組成物を選択することは極めて難しい。
 ここで、複数の腸内細菌を腸内細菌叢より抽出して人工的に腸内細菌叢を再構築することで標準化をはかる評価in vitro系が複数報告されているが(非特許文献2、非特許文献3)、日本人の腸内細菌叢を人工的に再構築したものは報告されていない。また、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる食品組成物を選択することを目的に構築された評価系は存在しない。
 非特許文献1では、日本人の腸内細菌叢のメタゲノム解析によるその特徴の解明が行われ、日本人の腸内細菌叢において優勢な腸内細菌50種類が報告されると共に、11ヵ国の外国人被験者の腸内細菌叢と比較して、ブラウティア属、ビフィドバクテリウム属、コリンセラ属、ストレプトコッカス属を最も豊富に含むことが報告されている。また、上記50種類に、プロテオバクテリア門、ラクトバチルス属は含まれておらず、これらの腸内細菌は日本人の腸内において優勢な腸内細菌ではないことが明らかとなっている。さらに、非特許文献1で収集された106人のメタゲノムデータから、日本人の腸内細菌叢の分類学的割合がファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する腸内細菌を、菌種としてそれぞれ約57%、約24%、約19%含むことも明らかとなっている。しかし、これら日本人の腸内細菌叢において優勢な腸内細菌の培養については実施されておらず、培養可能な組合せやその培養方法についても検討されていない。
 抽出する菌種数については、非特許文献2で腸内細菌叢の最小単位モデルとしてASF(AlteredSchaedler Flora)と呼ばれる腸内細菌8種類の組合せが報告されている。また、非特許文献3では、欧州人の腸内細菌叢の特徴を有するモデルとして、腸内細菌15種類の組合せが報告されている。しかし、日本人の腸内細菌叢において優勢ではない腸内細菌が含まれており、日本人の腸内細菌叢の特徴でもあるビフィドバクテリウム属も含まれていない。
 腸内細菌は乳酸菌やビフィズス菌と比べて高い嫌気要求性を持ち、培養することが極めて困難である。このため各腸内細菌の特徴に合わせた培地にて培養するのが一般的である。非特許文献4では、欧州人の腸内細菌叢において優勢であることが報告されている複数種類の腸内細菌を単一の培地(GAMブイヨン培地、ニッスイ)で培養することが可能であることを報告している。しかし、前述の通り腸内における優勢細菌は欧州人と日本人では大きくことなるものであり、同培地を単一の培地として日本人の腸内優勢細菌を安定的に生育させることは期待できない。また、菌種毎に産生する短鎖脂肪酸を比較しているが、単一の腸内細菌が産生するものを測定しているに過ぎず、菌叢全体としての短鎖脂肪酸産生量については不明であった。
 特許文献1では、腸内細菌叢の組成バランスをほぼ維持したまま培養できる腸内細菌叢シミュレーション培養方法や培養装置が報告されている。また、非特許文献5は同様の方法・装置を用いて食物繊維類が腸内細菌叢における短鎖脂肪酸を増加させることをin vitroにて評価している。特許文献1、非特許文献5では共に評価用培養物として糞便を用いることを特徴としているが、ヒトの腸内細菌叢は個人間で大きく異なり、ヒト由来の糞便を用いる際は、糞便を提供する個人間の腸内細菌叢の違いによる影響を受ける。従って、糞便を用いることによる、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる食品組成物の選択は限定的であり、糞便を用いない評価系の構築が求められていた。また、そのような評価系を使用して選抜される、腸内細菌叢の多様性や短鎖脂肪酸産生の増加を促進する腸内細菌叢改善用組成物が求められていた。
 また、前記腸内細菌叢における細菌種のバランスは健康状態や加齢によって変化し、腸内細菌のうちビフィズス菌や乳酸菌の割合が減少することが報告されている。減少するビフィズス菌や乳酸菌を補う方法としては、それらを含む発酵乳製品を摂取することが解決策の1つとなる。
 発酵乳製品に使用される乳酸菌として代表的な種類としては、ラクトバチルス属に属する乳酸菌が挙げられる。汎用される菌種としては、ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクス、ラクトバチルス・カゼイ、ラクトバチルス・ガセリ、ラクトバチルス・ロイテリ、ラクトバチルス・ヘルベティカスなどが挙げられる。一方、あまり利活用されていない菌種としては、ラクトバチルス・ムコサエが挙げられる。
 特許文献2は、乳糖不耐症の改善に有用な乳酸菌の1つとしてラクトバチルス・ムコサエが挙げられている。該特許文献におけるラクトバチルス・ムコサエは、腸管付着性及び乳糖分解能が高いことを特徴としており、ヒト大腸におけるビフィズス菌の割合に与える作用や、試験管内におけるビフィズス菌の増殖に与える作用については示されていない。
 また、乳糖はビフィズス菌の増殖を促進することから、乳糖分解能が高いラクトバチルス・ムコサエの摂取では、ヒト大腸におけるビフィズス菌の割合を減少させる可能性や、ビフィズス菌の増殖を阻害する可能性も考えられる。
 非特許文献6および7では、ブタ由来のラクトバチルス・ムコサエLM1について、腸管付着性が高いこと、病原性細菌の腸管への付着を抑制することを示している。しかし、いずれも、ラクトバチルス・ムコサエLM1によるビフィズス菌への作用については示されていない。
 また、非特許文献6では、腸管への付着性を試験管内で解析した例であり、ヒトにおける効果を示していない。非特許文献7では、マウスを使用して腸管への病原性細菌の付着抑制を解析しており、ヒトにおける効果を示していない。
 以上のように、ラクトバチルス・ムコサエのビフィズス菌増殖促進作用や、ヒト大腸におけるビフィズス菌の割合の増加作用についてはこれまで示されておらず、その方法についても不明であった。
特許第6482135号公報 国際公開WO2008/001676号
DNA Res . 2016 Apr;23(2):125-33. Appl Environ Microbiol. 1999 Aug;65(8):3287-92. Sci Transl Med. 2011 Oct 26;3(106):106ra106. Biosci Biotechnol Biochem. 2017 Oct;81(10):2009-2017. Sci Rep . 2018 Jan 11;8(1):435. J.Appl Microbiol.2014年117号2巻485-497頁 Microb.Pathog.2019年137号103760
 本願発明は、腸内細菌叢改善機能、すなわち短鎖脂肪酸増加機能及び/又は多様性増加機能を有するラクトバチルス・ムコサエを有効成分として含む食品組成物及び飲食品を提供することを課題とする。また、日本人の腸内細菌叢の特徴を有する新規な腸内細菌叢モデルを構築すること、また、当該モデルを用いた腸内細菌叢改善機能、すなわち短鎖脂肪酸増加機能及び/又は多様性増加機能を評価できる新たなモデル評価系の提供とこれを用いた食品組成物のスクリーニング方法の提供を課題とする。また、さらには、前記新たな評価方法やスクリーニング方法で得られた食品組成物を用いた腸内細菌叢改善機能、すなわち短鎖脂肪酸増加機能及び/又は多様性増加機能を有する飲食品の提供を課題とする。   
 さらに、本願発明の別の課題は、新たなプロバイオティクスの提供である。特に、ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加剤及び増加用飲食品を提供することである。また、ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進剤及び増殖促進用飲食品を提供することである。
 本願発明は上記課題を解決するためのものであり、日本人の腸内細菌叢において優勢な複数の腸内細菌を抽出して、人工的に日本人の腸内細菌叢を再構築した。この際、腸内の分類学的割合を維持すること、外国人と比較して高い存在比を示す腸内細菌を含むことを、日本人の腸内細菌叢の特徴として捉えて抽出した。そして、抽出した腸内細菌の混合物を評価用培養物として、これと共に摂取によりヒト腸内の短鎖脂肪酸が増加することが既に報告されている難消化性食物繊維類を培養したところ、再現性良く短鎖脂肪酸の増加が確認された。このことから、本願発明が個人間の腸内細菌叢のばらつきを標準化する日本人の腸内細菌叢におけるモデル評価系として有効であることを実証し、また、日本人の腸内細菌叢における短鎖脂肪酸の増加の評価にも利用できることを見出した。同様に、本モデル評価系は腸内細菌叢を構成する腸内細菌の多様性の増加の評価にも活用できることを見出した。
 また、本願発明は、前記日本人の腸内細菌叢におけるモデル評価系を用いて、短鎖脂肪酸増加機能、多様性増加機能を有する食品用組成物として各種の乳酸菌及びビフィズス菌を選抜した結果、ラクトバチルス・ムコサエが当該機能を有することが確認された。ラクトバチルス・ムコサエの短鎖脂肪酸増加促進作用や、多様性増加促進作用についてはこれまで知られておらず、日本人の腸内細菌叢における短鎖脂肪酸増加促進用途、多様性増加促進用途に用いることができることが明らかとなった。
 すなわち、本願発明は以下の構成を有する。
<1>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌叢改善用組成物。
<2>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌叢改善用飲食品。
<3>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする短鎖脂肪酸増加促進用組成物。
<4>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする短鎖脂肪酸増加促進用飲食品。
<5>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌の多様性増加促進用組成物。
<6>
ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌の多様性増加促進用飲食品。
<7>
対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価するためのヒト腸内細菌叢モデルであって、
プロテオバクテリア門、ラクトバチルス属に属する細菌を含まず、ビフィドバクテリウム属に属する細菌を含む、少なくとも9菌種以上の細菌を含む評価用菌体培養物で構成される前記ヒト腸内細菌叢モデル。
<8>
前記9菌種以上の細菌が、ファーミキューテス門、アクチノバクテリア門又はバクテロイデテス門に属する細菌であり、ブラウティア属、コリンセラ属又はストレプトコッカス属に属する細菌を含む<7>に記載のヒト腸内細菌叢モデル。
<9>
ファーミキューテス門に属する細菌が菌種数として56~59%、アクチノバクテリア門に属する細菌が菌種数として21~24%、バクテロイデテス門に属する細菌が菌種数として17~22%含まれる<8>に記載のヒト腸内細菌叢モデル。
<10>
少なくとも9菌種以上の細菌が、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、パラバクテロイデス ディスタソニス、ドレア フォルミシゲネランス、ルミノコッカス オベウム、ルミノコッカス トロクエス、バクテロイデス ドレイ、フラボニフラクター プラウティ、パラバクテロイデス メルダエ、ロゼブリア イヌリニボランス、クロストリジウム ネクサイル、ストレプトコッカス サリバリウス、エガセラ レンタ、クロストリジウム ボルテアエ、ロゼブリア インテスティナリス、コプロコッカス コメス、バクテロイデス オバツス、ユウバクテリウム ハリイ、ロゼブリア ホミニス及びバクテロイデス テタイオタオミクロンからなる群から選ばれる<7>~<9>のいずれかに記載のヒト腸内細菌叢モデル。
<11>
少なくとも9菌種以上の細菌が、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、ブラウティア オベウム、バクテロイデス ドレイ、フラボニフラクター プラウティ、ストレプトコッカス サリバリウス、クロストリジウム ボルテアエ及びコプロコッカス コメスである<7>~<10>のいずれかに記載のヒト腸内細菌叢モデル。
<12>
対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価するためのヒト腸内細菌叢モデルの培養方法であって、以下の工程を含む培養方法。
(1)プロテオバクテリア門、ラクトバチルス属に属する細菌を含まず、ビフィドバクテリウム属に属する細菌を含む、少なくとも9菌種以上の細菌を、変法GAMブイヨン培地に添加する工程
(2)嫌気的条件下で培養する工程
<13>
対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価する方法であって、以下の工程を含む前記評価方法。
(1)<7>~<11>のいずれかに記載のヒト腸内細菌叢モデルに、評価対象となる食品組成物を添加して培養する工程
(2)(1)で得られた培養物の短鎖脂肪酸産生量の測定及び/又は多様性指数を算出する工程
(3)(2)の測定値及び/又は算出値が、前記食品組成物を無添加の場合と比較し、相対値が1.0倍以上となる場合に、短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を有すると評価する工程
<14>
腸内細菌叢改善用飲食品の製造方法であって、<13>に記載の評価方法において短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を有すると評価された食品組成物を用いて食品を製造する方法。
<15>
ラクトバチルス・ムコサエに属する菌株であって、SBT10028株(NITE BP-03275)、SBT10217株(NITE P-03276)、SBT10027株(NITE P-03274)、SBT10038株(NITE P-03283)、SBT2261株(NITE P-03272)、SBT2027株(NITE P-03271)SBT2271株(NITE P-03273)、SBT2025(NITE P-03189)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT2268(NITE P-03190)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる菌株。
 さらに別の本願発明は、上記別の課題を解決するためのものであり、ラクトバチルス・ムコサエにビフィズス菌の増殖促進作用があることを初めて見出し、ビフィズス菌増殖促進剤及び増殖促進用飲食品としての用途及びヒト腸内におけるビフィズス菌割合の増加剤及び増加用飲食品に適用することが可能であることを確認し、新たなプロバイオティクスとして本願発明を完成するに至った。
 すなわち本願発明はさらに、以下の構成を有する。
<16>
ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加剤。
<17>
ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進剤。
<18>
ラクトバチルス・ムコサエが、ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有する株である<16>又は<17>に記載の剤。
<19>
ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である<16>~<18>のいずれかに記載の剤。
<20>
ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加用飲食品。
<21>
ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進用飲食品。
<22>
ラクトバチルス・ムコサエが、ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有する株である<20>又は<21>に記載の飲食品。
<23>
ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である<20>~<22>のいずれかに記載の飲食品。
<24>
乳を主成分とする培地中でラクトバチルス・ムコサエを培養する工程を含む、発酵乳製品の製造方法であって、ラクトバチルス・ムコサエとして以下の性質を有する株を用いることを特徴とする前記製造方法。
性質; ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有することを特徴とするラクトバチルス・ムコサエ。
<25>
ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である<24>に記載の製造方法。

また、本願発明はさらに、以下の構成を有する。
<26>
ラクトバチルス・ムコサエの菌体又は菌体培養物を対象に投与する工程を含む腸内細菌叢改善方法。
<27>
ラクトバチルス・ムコサエの菌体又は菌体培養物を対象に投与する工程を含む短鎖脂肪酸増加促進方法。
<28>
ラクトバチルス・ムコサエの菌体又は菌体培養物を対象に投与する工程を含む腸内細菌の多様性増加方法。
<29>
ラクトバチルス・ムコサエの菌体又は菌体培養物を対象に投与する工程を含むヒト腸内におけるビフィズス菌割合の増加方法。
<30>
ラクトバチルス・ムコサエの菌体又は菌体培養物を対象に投与する工程を含むビフィズス菌増殖促進方法。
 本願発明の日本人の腸内細菌叢におけるモデル評価系は日本人の腸内細菌叢の特徴として、日本人の腸内で優勢に存在する腸内細菌により構成され、日本人の腸内細菌叢を構成する腸内細菌分類学的割合を維持し、かつ、外国人と比較して高い存在比を示す腸内細菌を含むため、本モデル評価系を利用することにより、様々な食品組成物の腸内環境改善機能を評価することができる。
 また、本願発明によってヒトや動物を使用せず、かつ生体試料であるヒト糞便を使用しない条件下において、腸内細菌叢を改善する食品組成物を選抜することが可能となった。
 さらには、本願発明によって見出されたラクトバチルス・ムコサエを有効成分とする腸内細菌叢改善用組成物を摂取することにより、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させることが期待できることに加え、これに伴う代謝疾患及び肥満などの症状の改善が期待できる。
 さらに別の本願発明は、ビフィズス菌の増殖促進活性を有するラクトバチルス・ムコサエを有効成分として含む発酵乳製品を提供するものである。そして、該ラクトバチルス・ムコサエの発酵乳製品等を摂取することにより、ヒト腸内におけるビフィズス菌の割合を増加させることができる。したがって、本願発明によれば新たなプロバイオティクスの提供が可能となった。
(ラクトバチルス・ムコサエ)
 本願発明におけるラクトバチルス・ムコサエとは、ラクトバチルス・ムコサエに属する細菌を意味する。すなわち、ラクトバチルス・ムコサエ基準株JCM12515と、16SリボゾームRNA遺伝子の塩基配列の相同性が97%以上、より好ましくは98%以上、さらに好ましくは99%以上である菌株を指す。分離源としては、いずれでもよく、より好ましくはヒト由来である。
 本願発明の腸内細菌叢改善用組成物や飲食品の有効成分であるラクトバチルス・ムコサエの菌株としては、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる菌株であればよく、例えば後述する実施例にて活性が示されているSBT10028、SBT10043、SBT10217、SBT10027、SBT10038、SBT2261、SBT2027、SBT2271などが挙げられる。
 さらに別の本願発明であるヒト腸内におけるビフィズス菌割合の増加剤やビフィズス菌増殖促進剤の有効成分であるラクトバチルス・ムコサエの菌株としては、ビフィズス菌増殖促進活性を有する菌株であればよく、例えば後述する実施例にて活性が示されているSBT2025、SBT2268、SBT2269、SBT2867、SBT10043、SBT10228などが挙げられる。
 本明細書のヒト腸内細菌叢における腸内細菌叢改善用組成物、短鎖脂肪酸増加促進用組成物又は多様性増加促進用組成物、並びに腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品の有効成分であるラクトバチルス・ムコサエは、ヒト腸内における短鎖脂肪酸増加促進活性又は多様性増加促進活性を有する状態であるものであればよい。
 また、本明細書のビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤の有効成分であるラクトバチルス・ムコサエはビフィズス菌割合を増加させ、又はビフィズス菌を増殖促進する活性を有する状態であるものであればよい。
 これらは、菌体として純粋に分離されたものに限られず、菌体培養物、菌体懸濁物、その他の菌体含有物でもよい。菌体は、生菌体でも死菌体でもよく、このうちでも生菌体がよい。 
 生菌体としては、菌体を培養し集菌した菌体濃縮物や、菌体の乾燥物、凍結乾燥物が挙げられ、菌体培養物としては、菌体培養液の濃縮物、乾燥物、凍結乾燥物のほか、ラクトバチルス・ムコサエの発酵乳製品などが挙げられる。発酵乳製品としては、チーズ、発酵乳、乳製品、乳酸菌飲料などの乳製品などを例示することができるが特に限定されるものではない。
 得られた培養物から遠心分離などの集菌手段によって分離された菌体をそのまま本発明の有効成分として用いることができる。
 ラクトバチルス・ムコサエは、常法に従って培養することができる。培地には、乳培地又は乳成分を含む培地、これを含まない半合成培地など種々の培地を用いることができる。このような培地としては、還元脱脂乳培地などを例示することができる。
(発酵乳製品)
 本明細書において、発酵乳製品とは、乳又はこれと同等以上の無脂肪乳固形分を含む液体又は糊状体中で、ラクトバチルス・ムコサエを培養したものを指す。乳は、生乳、牛乳、生山羊乳、生めん羊乳などであればよく、脱脂粉乳を水で還元して使用してもよい。脱脂粉乳を使用する場合の濃度に関しては、無脂肪固形分が乳と同等以上で、ラクトバチルス・ムコサエが培養できる濃度であればその濃度は限定されないが、8%(w/w)以上、好ましくは9%(w/w)以上、より好ましくは10%(w/w)以上であることが望ましい。
(脱脂紛乳以外の成分)
 前記発酵乳製品は、脱脂粉乳以外の栄養素を含んでいてもよく、酵母エキスを添加する場合には0.1%(w/w)以上、好ましくは0.2%(w/w)以上、より好ましくは0.5%(w/w)以上であることが望ましい。そのほかの栄養素としては、糖類、アミノ酸、ミネラル、ビタミンなどが挙げられる。本願発明の発酵乳製品には、ラクトバチルス・ムコサエ以外の細菌を含んでいてもよい。例えば、発酵乳の発酵スターターとして、汎用される乳酸菌、例えばラクトバチルス デルブルッキー サブスピーシズ ブルガリクス及びストレプトコッカス サーモフィルスを含むこともできる。
 また、ビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤の有効成分であるラクトバチルス・ムコサエは、ビフィズス菌と混合培養し、増殖が促進されたビフィズス菌との混合培養物(例えば、発酵乳製品)として提供することもできる。
(発酵乳製品のラクトバチルス・ムコサエ生菌数)
 発酵乳製品のラクトバチルス・ムコサエについては、生菌として含まれていることが望ましい。本明細書において、生菌とは寒天等の支持体に栄養素を含ませた固体培地にコロニーが形成されること(colony forming)を指し、生菌数とはコロニー形成単位cfu(olony orming nit)で表現される。ラクトバチルス・ムコサエの生菌数を測定する固体培地としては、乳酸菌用培地であるMRS寒天培地、乳酸桿菌用培地であるLBS寒天培地などが挙げられる。発酵乳製品中のラクトバチルス・ムコサエの生菌数は、1.0E+06cfu/mL以上であることが好ましく、さらに好ましくは1.0E+07cfu/mL以上、最も好ましくは1.0E+08cfu/mL以上である。
(短鎖脂肪酸増加促進作用)
 本明細書において、「短鎖脂肪酸増加促進」とは、ヒト腸内において短鎖脂肪酸の増加を促進することを指す。短鎖脂肪酸の増加促進活性は、日本人の腸内細菌叢の特徴を有する腸内細菌叢モデルにおいて食品用組成物を添加した場合と添加しなかった場合とで、添加した場合の方が短鎖脂肪酸の増加が大きい場合に当該活性があるという。例えば、後述する腸内細菌叢モデルにおいて、乳酸菌やビフィズス菌などの細菌、難消化性の食物繊維類を添加せずに培養した場合に得られる短鎖脂肪酸濃度を1.0倍としたときに、乳酸菌やビフィズス菌などの細菌、難消化性の食物繊維類を添加した場合に得られる短鎖脂肪酸濃度が1.0倍より大きい場合に、当該活性があるという。当該活性を有する食品組成物を本願発明では短鎖脂肪酸増加促進用組成物という。本願発明の短鎖脂肪酸増加促進用組成物の有効成分とするラクトバチルス・ムコサエは、ラクトバチルス・ムコサエを添加せずに培養した場合に得られる短鎖脂肪酸濃度を1.0倍としたときに、ラクトバチルス ムコサエを添加した場合に得られる短鎖脂肪酸濃度が1.1倍以上を示す菌株が好ましく、より好ましくは1.5倍以上、よりいっそう好ましくは2.0倍以上を示す菌株である。後述する実施例では、いずれのラクトバチルス・ムコサエも酪酸と総短鎖脂肪酸の両方が無添加に比べて添加した場合に1.0倍より大きくなることを確認している。
 ここで、短鎖脂肪酸としては、酢酸、酪酸、プロピオン酸、あるいはこれらの合計である総短鎖脂肪酸が挙げられ、このうちでも腸内の環境変化を端的に示すとされる酪酸を評価対象とすることが好ましい。酪酸は酢酸、プロピオン酸と比較して腸管上皮細胞の増殖活性が高いことが知られると共に、様々な疾患で腸内細菌叢における減少や、酪酸を産生する腸内細菌の減少が報告されている。潰瘍性大腸炎などの炎症性腸疾患患者では酪酸を産生する腸内細菌として代表的なフェカリバクテリウム・プラウスニッツイが症状の増悪・寛解に伴って減少・増加することが報告されている。
(多様性増加促進作用)
 本明細書において、「多様性増加促進」とは、ヒト腸内細菌叢における多様性の増加を促進することを指す。腸内細菌叢を構成する腸内細菌の多様性を表す指数として、種の均等度を示すShannon indexや、系統学的な情報を考慮したPhylogenic diversity indexなどが多用される。
 多様性の増加促進活性は、日本人の腸内細菌叢の特徴を有する腸内細菌叢モデルにおいて食品用組成物を添加した場合と添加しなかった場合とで、添加した場合の方が腸内細菌叢の多様性を表す指数が大きい場合に当該活性があるという。例えば、後述する腸内細菌叢モデルにおいて、乳酸菌やビフィズス菌などの細菌、難消化性の食物繊維類を添加せずに培養した場合に得られる多様性を表す指数を1.0倍としたときに、乳酸菌やビフィズス菌などの細菌、難消化性の食物繊維類を添加した場合に得られる多様性を表す指数が1.0倍より大きい場合に、当該活性があるという。当該活性を有する組成物を本願発明では多様性増加促進用組成物という。本願発明の多様性増加促進用組成物の有効成分とするラクトバチルス・ムコサエは、ラクトバチルス・ムコサエを添加せずに培養した場合に得られる多様性を表す指数を1.0倍としたときに、ラクトバチルス・ムコサエを添加した場合に得られる多様性を表す指数が1.1倍以上を示す菌株が好ましく、より好ましくは1.2倍以上、よりいっそう好ましくは1.3倍以上を示す菌株である。
 本願発明において、上記の短鎖脂肪酸増加促進活性又は多様性増加促進活性のいずれか一方、あるいは両方の活性を有する場合に、腸内細菌叢改善活性があると言う。したがって、短鎖脂肪酸増加促進用組成物、多様性増加促進用組成物は、腸内細菌叢改善用組成物でもある。また、同様に短鎖脂肪酸増加促進用飲食品、多様性増加促進用飲食品は、腸内細菌叢改善用飲食品でもある。
(ヒト腸内における腸内細菌叢改善用組成物、短鎖脂肪酸増加促進用組成物及び多様性増加促進用組成物)
 本願発明のヒト腸内細菌叢における腸内細菌叢改善用組成物、短鎖脂肪酸増加促進用組成物及び多様性増加促進用組成物の有効成分としては、上述のとおり、ラクトバチルス・ムコサエの発酵培養物そのものやラクトバチルス・ムコサエの菌体そのものを利用することができる。発酵培養物としては好ましくは上述の発酵乳製品が挙げられる。
 当該腸内細菌叢改善用組成物、短鎖脂肪酸増加促進用組成物及び多様性増加促進用組成物は、さらに製剤化して利用することもできる。製剤化に際しては製剤上許可されている賦型剤、安定剤、矯味剤などを適宜混合して製剤化することができる。剤形としては、錠剤、カプセル剤、顆粒剤、散剤、粉剤、シロップ剤などが可能である。医薬製剤、サプリメントなどがこれに該当する。これらを経口的に摂取することによりヒト腸内細菌叢における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を通して腸内細菌叢の改善が期待される。
(ヒト腸内における腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品)
 本願発明のヒト腸内細菌叢における腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品の有効成分としては、ラクトバチルス・ムコサエの発酵培養物そのものやラクトバチルス・ムコサエの菌体そのものを利用することができる。食品として利用される発酵培養物としては上述の発酵乳製品等が挙げられる。
 また、当該腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品は、前記腸内細菌叢改善用組成物、前記短鎖脂肪酸増加促進用組成物及び多様性増加促進用組成物を適当な飲食品に配合したものを利用することもできる。これらの配合は、飲食品の製造工程中に原料に添加しても良く、素材に配合させてもよく、最終製品である飲食品に配合することもできる。
 飲食品の例としては、チーズ、発酵乳、乳製品乳酸菌飲料、乳酸菌飲料、バター、マーガリンなどの乳製品、乳飲料、果汁飲料、清涼飲料などの飲料、ゼリー、キャンディー、プリン、マヨネーズなどの卵加工品、バターケーキなどの菓子・パン類、さらには、各種粉乳の他、乳幼児食品、栄養組成物などを挙げることができるが特に限定されるものではない。
 また、本願発明の腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品は、機能性表示食品、特定保健用食品、栄養機能食品、美容用食品として使用することも可能である。
 これらに飲食品を摂取することによりヒト腸内細菌叢における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を通して腸内細菌叢の改善が期待される。
 ラクトバチルス・ムコサエの菌体及び/又は培養物を配合して、ヒト腸内細菌叢における腸内細菌叢改善用組成物、短鎖脂肪酸増加促進用組成物及び多様性増加促進用組成物、ヒト腸内細菌叢における腸内細菌叢改善用飲食品、短鎖脂肪酸増加促進用飲食品及び多様性増加促進用飲食品を製造する場合、配合割合は特に限定されず、製造の容易性や好ましい一日投与量にあわせて適宜調節すればよい。投与対象者の症状、年齢などを考慮してそれぞれ個別に決定されるが、通常成人の場合、ラクトバチルス・ムコサエの菌体培養物を10~200g、あるいは菌体自体を0.1~100mg摂取できるように配合量などを調整すればよい。
(腸内細菌叢モデル)
 本願発明の腸内細菌叢モデルは、日本人の平均的な腸内細菌叢をモデル化した菌体混合培養物であり、プロテオバクテリア門、ラクトバチルス属に属する細菌を含まず、ビフィドバクテリウム属に属する細菌を含む、少なくとも9菌種以上の細菌を含むことを特徴とする菌体混合培養物である。また、日本人の平均的な腸内細菌叢に含まれる細菌として、ファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する細菌から構成され、さらに特徴としては、ブラウティア属、コリンセラ属、ストレプトコッカス属の細菌を含むことが望ましい。ファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する腸内細菌は、それぞれ菌種数の構成比として56~59%、21~24%、17~22%含む組合せであることが望ましい。さらに望ましくは、それぞれ約57%、約24%、約19%である。
 また、ファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する腸内細菌を、それぞれ56~59%、21~24%、17~22%含む組合せであると共に、ブラウティア属、コリンセラ属、ストレプトコッカス属を含むことがさらに望ましい。
 本願明細書において、菌種とは、細菌の「種」を意味する。すなわち、細菌の系統分類学的分類を大きい順に「門」「属」「種」「株」と呼ぶが、このうちの「種」のことを意味する。
 前記少なくとも9菌種以上の細菌としては、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、パラバクテロイデス ディスタソニス、ドレア フォルミシゲネランス、ルミノコッカス オベウム、ルミノコッカス トロクエス、バクテロイデス ドレイ、フラボニフラクター プラウティ、パラバクテロイデス メルダエ、ロゼブリア イヌリニボランス、クロストリジウム ネクサイル、ストレプトコッカス サリバリウス、エガセラ レンタ、クロストリジウム ボルテアエ、ロゼブリア インテスティナリス、コプロコッカス コメス、バクテロイデス オバツス、ユウバクテリウム ハリイ、ロゼブリア ホミニス及びバクテロイデス テタイオタオミクロン(以上29菌種)から選ばれるいずれか9菌種以上であればよく、さらに好ましくは、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、ブラウティア オベウム、バクテロイデス ドレイ、フラボニフラクター プラウティ、ストレプトコッカス サリバリウス、クロストリジウム ボルテアエ及びコプロコッカス コメス(以上17菌種)から選ばれるいずれか9菌種以上であればよく、いっそう好ましくは、これらの17菌種を含む混合培養物であり、最も好ましくは、これらの17菌種からなる混合培養物である。
 細菌は、日本人の腸内細菌叢において優勢に存在する腸内細菌50種類のうち、国内の分譲機関であるJCM(国立研究開発法人理化学研究所バイオリソース研究センター)にて入手可能な29菌種を入手、培養により増殖が確認された菌株から、日本人の腸内細菌叢の特徴を有するように複数の腸内細菌を抽出した組み合わせである。
(培養方法)
 腸内細菌叢モデルである菌体混合物の培養は、これを構成する複数の腸内細菌を単一の条件で生育させることができる条件であればよく、培地としては、YCFA培地(JCM培地番号1130)やEG培地(JCM培地番号14)が挙げられるが、より調製が簡便なGAMブイヨン、変法GAMブイヨンが挙げられる。このうちでも変法GAMブイヨン培地が好ましい。培養温度は、ヒトの体温付近の温度として36~38℃が挙げられ、37℃が好ましい。大腸は部位(横行結腸、遠位結腸、直腸)によってpHが異なることが知られており、短鎖脂肪酸の産生、あるいは宿主に短鎖脂肪酸が吸収されることでpHが変化する。これに従って、培養前の培地のpHは6以上であることが好ましく、このうちでも7以上が好ましく、7.2前後がいっそう好ましい。大腸は無酸素状態にあり、ここに生育する腸内細菌は偏性嫌気性である。従って、窒素ガスにより培地中及び培地気層中を無酸素状態に維持する必要がある。また、腸内には腸内細菌が産生する炭酸ガスや水素ガスも存在することから、これらを含むと好ましい。割合としては窒素80~90%、炭酸ガス5~10%、水素ガス5~10%が挙げられる。培養時間は、培地pHが一定となるまで行うのが望ましく、16~32時間が望ましく、16時間がいっそう好ましい。
 菌体混合物を構成する各種腸内細菌は、100 mLの培地に対して1.0E+07から1.0E+08 cfu/mL程度となるように加える。菌体混合物全体における各種の腸内細菌の菌数構成比は、加える細菌数を全ての菌種でそろえることにより、算出することができる。
(短鎖脂肪酸増加促進作用の評価方法)
 本願発明の短鎖脂肪酸増加促進作用の評価方法は、腸内細菌叢モデルとしての菌体混合物に、評価対象物を添加して前記培養方法により培養し、一定時間経過後に短鎖脂肪酸量を測定し、無添加の場合と比較することにより評価することができる。測定は、例えば培養上清のHPLCなどに供することで行うことができる。
(多様性増加促進作用の評価方法)
 本願発明の多様性増加促進作用の評価方法は、腸内細菌叢モデルとしての菌体混合物に、評価対象物を添加して前記培養方法により培養し、一定時間経過後に多様性を表す指数の測定を行い、無添加の場合と比較することにより評価することができる。測定は、培養物の上清から抽出したゲノムDNAから次世代シーケンサーと解析パイプラインを用いて多様性を表す指数を算出(多様性の数値化)することにより行うことができる。
(スクリーニング方法)
 本願発明のスクリーニング方法は、腸内細菌叢モデルとしての細菌混合物に、スクリーニング対象物を添加して前記培養方法により培養し、一定時間経過後に短鎖脂肪酸増加促進作用又は多様性増加促進作用を有するものを選択することが出来る。
 腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる方法として、腸内細菌叢を構成する腸内細菌に働きかけ、短鎖脂肪酸や多様性を増加させる乳酸菌やビフィズス菌を摂取する方法が考えられる。例えば、それらを含む発酵乳製品を摂取することである。発酵乳製品に使用される乳酸菌として代表的な種類としては、ラクトバチルス属に属する乳酸菌が挙げられる。汎用される種としては、ラクトバチルス ブルガリクス、ラクトバチルス ガセリ、ラクトバチルス ロイテリ、ラクトバチルス ヘルベティカスなどが挙げられる。一方、あまり利活用されていない種として、ラクトバチルス・ムコサエが挙げられる。EFSA(欧州食品安全機関)のQPS(Qualified Presumption of Safety)において安全性に関する懸念がない菌種として記載されており、病原性細菌の定着を抑制する効果やコレステロール低下効果をもつプロバイオティクス菌株としても注目されている。本願発明のスクリーニング方法により、ラクトバチルス属の各菌種の乳酸菌をスクリーニングしたところ、ラクトバチルス・ムコサエに短鎖脂肪酸増加促進作用及び多様性増加促進作用があることを初めて発見した。
 本スクリーニング対象物としては、乳酸菌やビフィズス菌などの細菌のみならず、公知の食品組成物も対象とすることができる。なお、後述する実施例では、すでに短鎖脂肪酸を増加させることが知られている難消化性食物繊維類α-CD(アルファ シクロデキストリン)を本評価方法で評価(スクリーニング)したところ、短鎖脂肪酸及び多様性を増加することが確認された。
(腸内細菌叢改善用飲食品の製造方法)
 本願発明の腸内細菌叢改善用飲食品の製造方法は、前記の評価方法又はスクリーニング方法において短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を有すると評価された食品組成物を用いて食品を製造する方法である。本願発明の食品組成物を飲食品に配合することにより飲食品を製造することができる。これらの配合は、飲食品の製造工程中に原料に添加しても良く、素材に配合させてもよく、最終製品である飲食品に配合して製造することもできる。また、本願発明の食品組成物が乳酸菌やビフィズス菌である場合には、これらを発酵して培養物を得ることにより製造することができる。
(ビフィズス菌)
 本明細書において、「ビフィズス菌」とは、ビフィドバクテリウム属に属する菌を意味する。ビフィズス菌は、ビフィドバクテリウム属に属する細菌であれば特に限定されないが、ビフィドバクテリウム・ロンガム、ビフィドバクテリウム・シュードカテヌラタム、ビフィドバクテリウム・アドレセンティス、ビフィドバクテリウム・ビフィダム、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・デンティウムなどが挙げられる。このうち、好ましい例として、ビフィドバクテリウム・ロンガムが挙げられる。また、菌株としては、ビフィドバクテリウム・ロンガム基準株JCM1217、またはビフィドバクテリウム・ロンガムSBT2928株(受託番号:FERM P-10657,寄託日:1989年4月13日,独立行政法人 産業技術総合研究所 特許生物寄託センター)を例示できる。
(ビフィズス菌の増殖促進)
 本明細書において、「ビフィズス菌の増殖促進」とは、ビフィズス菌の生菌数が増加することを指す。ビフィズス菌の増殖促進活性は、ビフィズス菌の生菌数の増加が、ラクトバトルス・ムコサエを添加した場合と添加しなかった場合とで、添加した場合の方が大きい場合に当該活性があるという。例えば、試験管内においてビフィズス菌を、ラクトバチルス・ムコサエを添加せずに培養した場合に得られるビフィズス菌の生菌数を1.0倍としたときに、ラクトバチルス・ムコサエを添加した場合に得られるビフィズス菌の生菌数が1.0倍より大きい場合に、活性があるという。当該活性を有する剤を本発明ではビフィズス菌増殖促進剤という。本発明のビフィズス菌増殖促進剤の有効成分とするラクトバチルス・ムコサエは、ラクトバチルス・ムコサエを添加せずに培養した場合に得られるビフィズス菌の生菌数を1.0倍としたときに、ラクトバチルス・ムコサエを添加した場合に得られるビフィズス菌の生菌数が1.1倍以上を示す菌株が好ましく、より好ましくは1.5倍以上、よりいっそう好ましくは2.0倍以上を示す菌株である。 
(ビフィズス菌の生菌数)
 ビフィズス菌の生菌数とは、ビフィズス菌が生育可能な嫌気性細菌用培地であるGAM培地、ビフィズス菌用培地であるTOSプロピオン酸寒天培地等において観測されるコロニー形成数を指す。
(ヒト腸内におけるビフィズス菌割合の増加)
 本明細書において、「ヒト腸内におけるビフィズス菌割合の増加」とは、ヒト腸内細菌群におけるビフィズス菌の割合が増加されることをいう。例えば、ビフィズス菌の腸内細菌における割合がラクトバチルス・ムコサエを摂取する前に比べて、摂取後の割合が1.0倍より大きい場合に活性があるという。当該活性を有する剤を本発明では腸内におけるビフィズス菌割合の増加剤という。本発明の腸内におけるビフィズス菌割合の増加剤の有効成分とするラクトバチルス・ムコサエは、摂取する前に比べて摂取後の割合が1.1倍以上を示す菌株が好ましく、より好ましくは1.3倍以上、よりいっそう好ましくは2.0倍以上、さらに好ましくは3.0倍以上を示す菌株である。このような菌株のスクリーニング方法としては、まず、腸内環境を模倣した培養条件下、試験管内においてラクトバチルス・ムコサエを添加せずにビフィズス菌を培養した場合に得られるビフィズス菌の生菌数を1.0倍としたときに、ラクトバチルス・ムコサエを添加した場合に得られるビフィズス菌の生菌数が1.1倍以上を示す菌株をスクリーニングする方法が挙げられる。
(ビフィズス菌の割合)
 ヒト腸内におけるビフィズス菌の割合とは、糞便中におけるDNA中のビフィズス菌の割合を意味する。糞便中から得られたDNAについて、16SrRNA遺伝子をPCRにより増幅し、PCR産物全体に含まれるビフィズス菌由来のDNAの割合を算出することができる。割合の算出については、次世代シーケンサーによるメタ16S解析法や、T-RFLP(erminal estriction ragment ength olymorphism)法等の菌叢解析手法が使用できる。
(ヒト腸内におけるビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤)
 本発明のヒト腸内におけるビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤は、ラクトバチルス・ムコサエの発酵培養物そのものや菌体そのものを利用することができる。食品として利用される発酵培養物としては上述の発酵乳製品が挙げられる。
 さらに製剤化して利用することもできる。製剤化に際しては製剤上許可されている賦型剤、安定剤、矯味剤などを適宜混合して濃縮、凍結乾燥するほか、加熱乾燥して死菌体にしてもよい。これらの乾燥物、濃縮物、ペースト状物も含有される。
 また、ビフィズス菌増殖促進活性を妨げない範囲で、賦型剤、結合剤、崩壊剤、滑沢剤、矯味矯臭剤、懸濁剤、コーティング剤、その他の任意の薬剤を混合して製剤化することもできる。剤形としては、錠剤、カプセル剤、顆粒剤、散剤、粉剤、シロップ剤などが可能であり、これらを経口的に投与することが望ましい。
(ヒト腸内におけるビフィズス菌割合の増加用飲食品及びビフィズス菌増殖促進用飲食品)
 本発明のヒト腸内のビフィズス菌割合の増加用飲食品及びビフィズス菌増殖促進用飲食品は、ラクトバチルス・ムコサエの発酵培養物そのものを利用することができる。食品として利用される発酵培養物としては上述の発酵乳製品が挙げられる。
 また、これらの飲食品は、前記ヒト腸内のビフィズス菌割合の増加剤及びビフィズス菌増殖促進剤を適当な飲食品に配合したものを利用することもできる。これらの配合は、飲食品の製造工程中に原料に添加しても良く、素材に配合させてもよく、最終製品である飲食品に配合することもできる。
 飲食品の例としては、チーズ、発酵乳、乳製品乳酸菌飲料、乳酸菌飲料、バター、マーガリンなどの乳製品、乳飲料、果汁飲料、清涼飲料などの飲料、ゼリー、キャンディー、プリン、マヨネーズなどの卵加工品、バターケーキなどの菓子・パン類、さらには、各種粉乳の他、乳幼児食品、栄養組成物などを挙げることができるが特に限定されるものではない。
 また、本発明のヒト腸内のビフィズス菌割合の増加用飲食品及びビフィズス菌増殖促進用飲食品は、機能性表示食品、特定保健用食品、栄養機能食品、美容用食品として使用することも可能である。
 ラクトバチルス・ムコサエの菌体及び/又は培養物を配合して、ヒト腸内におけるビフィズス菌割合の増加剤、ビフィズス菌増殖促進剤、ヒト腸内におけるビフィズス菌割合の増加用飲食品、ビフィズス菌増殖促進用飲食品、ヒト腸内におけるビフィズス菌割合の増加用栄養組成物、ビフィズス菌増殖促進剤栄養組成物を製造する場合、配合割合は特に限定されず、製造の容易性や好ましい一日投与量にあわせて適宜調節すればよい。投与対象者の症状、年齢などを考慮してそれぞれ個別に決定されるが、通常成人の場合、ラクトバチルス・ムコサエの菌体培養物を10~200g、あるいは菌体自体を0.1~100mg摂取できるように配合量などを調整すればよい。
 以下、本願発明の実施例を詳細に説明するが、本願発明はこれらに限定されるものではない。
[試験例1] モデル評価系用培養物の調製
1.日本人の腸細菌叢の特徴を有する腸内細菌の抽出
(1)腸内細菌の入手及び選択
 日本人の腸内細菌叢において優勢に存在する腸内細菌のうち入手可能な菌種を分譲機関JCM(国立研究開発法人理化学研究所バイオリソース研究センター)より入手し、変法GAMブイヨン培地(商品コード05433、ニッスイ)にて培養した。当該培養により増殖が確認された29種類の腸内細菌の中から、日本人の腸内の分類学的割合を維持するような組み合わせで腸内細菌を抽出した。すなわち、ファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する腸内細菌を、菌種数としてそれぞれ約57%、約24%、約19%含む組合せとした。そして、これらの割合を維持し、かつ、外国人と比較して日本人で高い存在比を示す菌属であるブラウティア属、ビフィドバクテリウム属、コリンセラ属、ストレプトコッカス属を含むような組み合わせで腸内細菌を抽出した。
(2)各種の濃縮菌体の調製
 変法GAMブイヨン培地を調製し、121℃、15分間の加熱処理にて培地を滅菌した。前記29菌種の腸内細菌を個々の滅菌培地にそれぞれ植菌し、嫌気ワークステーション(コンセプト400、セントラル科学貿易)を用いて37℃で嫌気培養した。得られた各培養物を遠心操作により濃縮し、10%(v/v)となるようにグリセロールを添加して各種の濃縮菌体を取得した。これらの濃縮菌体を-80℃にて凍結、その後融解を実施した後、段階希釈を行い、変法GAMブイヨン寒天培地に塗沫して生菌数を測定し、いずれの菌株についても1.0E+07cfu/mL以上の生菌数が含まれていることを確認した。使用した変法GAMブイヨン培地の組成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
2.試験結果
 上記1(1)の考え方に従って、ファーミキューテス門、アクチノバクテリア門、バクテロイデテス門に属する腸内細菌を、それぞれ5菌種、2菌種、2菌種含む合計9菌種の組合せ、7菌種、3菌種、2菌種含む合計12菌種の組合せ、8菌種、3菌種、3菌種含む合計14菌種の組合せ、10菌種、4菌種、3菌種含む合計17菌種の組合せとなるように腸内細菌を抽出した。入手した29菌種に含まれるアクチノバクテリア門に属する4菌種すべてを含む17菌種の組合せを表2に示す。
Figure JPOXMLDOC01-appb-T000002
3.モデル評価系の培養方法
 温度及びpHを経時的にモニタリング可能な小容量の培養装置に、滅菌した変法GAMブイヨン培地を添加し、培養前に窒素、二酸化炭素、水素の混合ガスを一定時間通気し、培地中の溶存酸素を可能な限り除去した。具体的には、シリコン材質のパッキン類をニトリル(NBR)材質に、チューブ類をファーメドチューブに変更した少量多連培養装置(Bio Jr. 8、エイブル)を用いて、混合ガスの割合は、それぞれ窒素80%、炭酸ガス10%、水素10%の混合ガスで通気した。
 再構築された表2に示す17菌種の細菌の混合培養物を植菌し、上記混合ガスを通気し、攪拌しながら培地のpHが一定となるまで培養した。モデル評価系の混合培養物は100 mLの培地に対して各腸内細菌が1.0E+07から1.0E+08 cfu/mL程度であり、攪拌は100 rpm以下、培養開始時のpHは7.2、培養時間は16時間で行った。
 以下の試験例では、モデル評価系に食品用組成物候補を添加し、上記の培養方法により培養した際の培養物を回収し、短鎖脂肪酸産生量の測定及び多様性を表す指数の算出を行い、評価を行う。
[試験例2] 短鎖脂肪酸及び多様性の増加促進作用の評価方法の確立
 ヒトにおいて難消化性食物繊維類の摂取により腸内細菌叢での短鎖脂肪酸が増加することは広く知られている一方で、安定的に多様性を増加させる食品組成物はこれまでに報告されていない。しかし、肥満や糖尿病、脂質異常症をもつ患者では、短鎖脂肪酸の低下のみならず多様性についても低下が報告されており、短鎖脂肪酸と多様性には一定程度関係性があると推定される。
 本評価系は標準化された腸内細菌叢モデルを利用することから、個人間の腸内細菌叢の違いによって比較が困難であった多様性の増加促進作用を高い精度で確認することができる。
(1)試験方法
 試験対象として、上述の短鎖脂肪酸を増加させることが確認されている難消化性食物繊維類α-CD(アルファ シクロデキストリン、CAVAMAX WG Food、シクロケム)を本評価系に添加し、短鎖脂肪酸が増加するか確認すると共に、多様性についてもその評価を実施した。難消化性食物繊維類はヒトが摂取可能な量である0.2 %(3000gの食事に対して6gの添加を想定)を添加した。
(2)短鎖脂肪酸産生増加促進作用の評価方法
 培養物の上清からHPLC(ICS2100、ダイアテック)を用いて酪酸及び総短鎖脂肪酸産生量(酢酸/ プロピオン酸/ 酪酸の総和)の算出を実施し、評価を実施した。ヒト大腸で腸内細菌により産生される代表的な短鎖脂肪酸は、酢酸、プロピオン酸、及び酪酸の3種類である。
(3)多様性増加促進作用の評価方法
 培養物の上清から抽出したゲノムDNAから次世代シーケンサー(Ion PGM、サーモフィッシャーサイエンティフィック)と解析パイプライン(QIIME2)を用いた多様性を表す指数の算出(多様性の数値化)を実施し、評価を実施した。
 腸内細菌叢の多様性を表す指数として、Shannon index、Phylogenic diversity indexの2つの指標を選択した。
(4)試験結果
 α-CDを添加しなかった対照区を1.0とした場合の短鎖脂肪酸産生量の増加率は酪酸が1.57倍であり、総短鎖脂肪酸産(酢酸/ プロピオン酸/ 酪酸の総和)も1.13倍に増加した。
 また、無添加を1.0とした場合の多様性指数の増加率はShannon indexが1.25倍であり、Phylogenetic diversity indexも1.05倍に増加した。
 以上より、本評価方法においてα-CDの添加の添加により、短鎖脂肪酸の増加が再現性良く確認された。また、多様性の増加についても、再現性良く確認された。したがって、本評価方法は、モデル評価系として精度の良い評価方法であることが実証された。
[試験例3] 短鎖脂肪酸及び/又は腸内細菌叢の多様性を増加させる乳酸菌のスクリーニング
(1)試験方法
 ラクトバチルス・ムコサエに属する乳酸菌を試験例2で実証された評価方法により、短鎖脂肪酸が増加するか確認すると共に、多様性の増加についても評価した。具体的には、出願人が保有するヒトを分離減とするラクトバチルス・ムコサエに属する各乳酸菌(表2)を、100 mLの培地に対して1.0E+07cfu/mL程度添加した。
(2)短鎖脂肪酸産生増加促進作用の評価方法
 試験例2と同様に行った。
(3)多様性増加促進作用の評価方法
 試験例2と同様に行った。
(4)試験結果
 モデル評価系における添加により短鎖脂肪酸を増加させる各種の乳酸菌及びビフィズス菌を探索したところ、短鎖脂肪酸の増加が、ラクトバチルス・ムコサエ培養物の添加で再現性良く確認された。また、多様性の増加についても、再現性良く確認された。
 例えば、出願人が保有するヒトを分離源とするラクトバチルス ラムノーサス、ラクトバチルス デルブルッキー サブスピーシズ ブルガリクスを添加した場合の短鎖脂肪酸産生量の増加率はそれぞれ、酪酸は0.66倍、0.85倍であり、総短鎖脂肪酸産(酢酸/ プロピオン酸/ 酪酸の総和)もそれぞれ0.94倍、0.95倍に減少した。また、多様性指数の増加率はそれぞれ、Shannon indexが0.97倍、0.85倍であり、Phylogenetic diversity indexも0.95倍、0.95倍に減少した。
 ラクトバチルス・ムコサエを添加しなかった対照区を1.0とした場合の、短鎖脂肪酸産生量の増加率を表3に、多様性指数の増加率を表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(5)考察
 日本人の腸内優勢細菌により再構築された混合培養物である腸内細菌叢モデルに、腸内細菌の生育を促進する食品組成物としてα-CD、ラクトバチルス・ムコサエを添加し、混合培養することで、無添加時と比較した際に、短鎖脂肪酸産生量の増加及び/又は多様性の増加が促進されることが確認できた。
〔試験例4〕ビフィズス菌の増殖促進
(1)菌株
 ラクトバチルス・ムコサエとしては、表5のヒトを分離源とする菌株を使用した。また、ビフィズス菌については、日本人の乳幼児から高齢者まで広く分布することが知られているビフィドバクテリウム・ロンガムと同菌種の基準株JCM1217を使用した。
Figure JPOXMLDOC01-appb-T000005
(2)ラクトバチルス・ムコサエ濃縮菌体の調製
 乳酸菌用培地であるMRS液体培地を調製し、121℃、15分間の加熱処理にて培地の滅菌を実施した。そこへ、表5に記載のラクトバチルス・ムコサエSBT2025、ラクトバチルス・ムコサエSBT2268、ラクトバチルス・ムコサエSBT2269、ラクトバチルス・ムコサエSBT2867、ラクトバチルス・ムコサエSBT10043、及びラクトバチルス・ムコサエSBT10228を植菌し、嫌気培養システム(商品名:アネロパック,三菱ガス化学株式会社)を用いて37℃、16時間嫌気培養した。得られた培養物を遠心操作により濃縮し、10%(v/v)となるようにグリセロールを添加して濃縮菌体を取得した。これら濃縮菌体を-80℃にて凍結、その後融解を実施した後、段階希釈を行い、MRS寒天培地に塗沫して生菌数を測定し、いずれの菌株についても2.0E+09cfu/mL以上の生菌数が含まれていることを確認した。
(3)ラクトバチルス・ムコサエ発酵乳製品の調製
 0.5%(w/w)酵母エキス、2.5%(w/w)ぶどう糖を含む10%(w/w)脱脂粉乳を調製し、115℃、20分間の加熱処理にて殺菌を実施した。そこへ、上記のように調製した各濃縮菌体を0.1%(v/w)となるように添加して、嫌気培養システムを用いて37℃、16時間嫌気培養した。得られた発酵乳製品について容量として段階希釈を行い、0.132%(v/v)酢酸を含む乳酸桿菌用LBS寒天培地に塗沫して生菌数を測定し、いずれの菌株についても1.0E+06cfu/mL以上の生菌数が含まれていることを確認した。これらをビフィドバクテリウム・ロンガムJCM1217との混合培養に使用した。
(4)ビフィドバクテリウム・ロンガムJCM1217濃縮菌体の調製
 嫌気性細菌用培地であるGAM液体培地(GAMブイヨン、製品コード05422、日水製薬株式会社製)を調製し、115℃、15分間の加熱処理にて培地の殺菌を実施した。そこへ、ビフィドバクテリウム・ロンガムJCM1217を植菌し、嫌気培養システムを用いて37℃、16時間嫌気培養した。得られた培養物を遠心操作により濃縮し、10%(v/v)となるようにグリセロールを添加して濃縮菌体を取得した。これら濃縮菌体を-80℃にて凍結、その後融解を実施した後、段階希釈を行い、ビフィズス菌用TOSプロピオン酸寒天培地に塗沫して生菌数を測定し、1.0E+09cfu/mLの生菌数が含まれていることを確認した。これをラクトバチルス・ムコサエとの混合培養に使用した。
(5)ラクトバチルス・ムコサエ発酵乳製品とビフィドバクテリウム・ロンガムJCM1217との混合培養
 嫌気性細菌用培地であるGAM液体培地(GAMブイヨン、製品コード05422、日水製薬株式会社製)を調製し、115℃、15分間の加熱処理にて培地の殺菌を実施した。そこへ、1%(v/v)ラクトバチルス・ムコサエ発酵乳製品(1.0E+06cfu/mL以上)と、10%(v/v)ビフィドバクテリウム・ロンガムJCM1217濃縮菌体(1.0E+09cfu/mL)を添加混合し、嫌気培養システムを用いて37℃、16時間培養した。対照区として、ラクトバチルス・ムコサエ発酵乳製品を添加しなかった試験区を設けた。なお、GAM液体培地は腸内環境のモデル培地として使用されている培地である(PLOS ONE DOI:10.1371/JOURNAL.PONE.0160533 August2,2016)。
(6)混合培養後のビフィズス生菌数と増殖促進
 上記混合培養物を容量で10倍となるように段階希釈し、ビフィズス菌の選択培地である0.005%(w/v)ムピロシンリチウムを含むTOSプロピオン酸寒天培地に塗沫し、嫌気培養システムを用いて37℃、3日間培養した。寒天培地上に形成されたコロニー数を観測し、対照区を1.0倍とした場合における、各発酵乳製品によるコロニー形成数(cfu)の増加、すなわちビフィズス菌の増殖促進を倍率で算出した。
 その結果、ラクトバチルス・ムコサエ発酵乳製品を添加しなかった対照区のビフィズス生菌数が4.7E+08cfu/mLであったのに対し、SBT2025発酵乳製品添加では8.7E+08cfu/mL(増殖促進1.8倍)、SBT2268発酵乳製品添加では1.0E+09cfu/mL(増殖促進2.1倍)、SBT2269発酵乳製品添加では1.0E+09cfu/mL(増殖促進2.1倍)、SBT2867発酵乳製品添加では1.3E+09cfu/mL(増殖促進2.9倍)、SBT10043発酵乳製品添加では5.1E+08cfu/mL(増殖促進1.1倍)、SBT10228発酵乳製品添加では1.3E+09cfu/mL(増殖促進2.7倍)であった。すなわち、これらのラクトバチルス・ムコサエ発酵乳製品は、ビフィズス菌の増殖促進が対照区と比較して1.1倍以上であった(表6)。なお「E+08」「E+09」は「×10」「×10」を示す。
Figure JPOXMLDOC01-appb-T000006
〔試験例5〕ヒト腸内におけるビフィズス菌の割合の増加
(1)菌株と発酵乳製品の試作
 試験例4で増殖促進が1.1倍であったSBT10043について、食用発酵乳製品を試作した。SBT10043をMRS寒天培地上に単一コロニー分離した後、1%(w/w)食用酵母エキス、2%(w/w)食用カゼインペプトン、2%(w/w)食用ぶどう糖で構成された栄養培地に釣菌して、嫌気培養システムを使用して37℃、16時間嫌気培養した。この培養物を遠心により容量で10倍に濃縮し、食用濃縮菌体を取得した。次に0.5%(w/w)食用酵母エキス、2.5%(w/w)食用ぶどう糖を含む10%(w/w)脱脂粉乳を調製し、115℃、20分間殺菌した。この脱脂乳培地に10%(v/w)となるように食用濃縮菌体を添加し、密閉した容器内にて37℃、24時間静置培養した。
 上記、発酵乳製品を、新たに調製、殺菌した0.5%(w/w)食用酵母エキス、2.5%(w/w)食用ぶどう糖を含む10%(w/w)脱脂粉乳に10%(w/w)となるように植菌して、密閉した容器内にて37℃、24時間静置培養した。これを食用発酵乳製品とした。また、食用発酵乳製品は同じ食用発酵乳製品を種菌として、継代培養を繰り返して必要に応じて複数回製造を行った。すなわち、食用発酵乳製品を同じ脱脂乳培地(0.5%(w/w)食用酵母エキス、2.5%(w/w)食用ぶどう糖を含む10%(w/w)脱脂粉乳)に10%(w/w)となるように植菌して、密閉した容器内にて37℃24時間静置培養する継代培養を繰り返して、食用発酵乳製品の種菌とするとともに、必要に応じて培養重要を増加させて、食用発酵乳製品として摂取に使用した。
(2)食用発酵乳製品におけるSBT10043の生菌数
 食用発酵乳製品1.0mLを、容量として10倍となるように段階希釈を行い、0.132%(v/v)酢酸を含む乳酸桿菌用LBS寒天培地に塗沫して生菌数を測定し、5.0E+08cfu/mL以上の生菌数が含まれていることを確認した。
(3)食用発酵乳製品の摂取期間と摂取者
 上記SBT10043を含む食用発酵乳製品を1日当たり200mL、すなわち1.0E+09cfu/日以上となるように14日間摂取した。摂取前後の糞便を回収してDNAを抽出し、菌叢解析手法の1つであるT-RFLP法にてビフィズス菌の割合を求めた。摂取する者としては、食用発酵乳製品摂取前にビフィズス菌が10%未満の摂取者Aと、ビフィズス菌が10%以上の摂取者Bの2名で行った。
(4)摂取者Aにおける腸内ビフィズス菌の割合の増加
 ラクトバチルス・ムコサエを含む食用発酵乳製品摂取前の摂取者Aの大腸内におけるビフィズス菌の割合は3.3%であったが、前記発酵乳製品を14日間摂取後は11.6%に増加した。すなわち、前記発酵乳製品摂取前に対して摂取後は3.5倍増加した(表7)。
Figure JPOXMLDOC01-appb-T000007
(5)摂取者Bにおける腸内ビフィズス菌の割合の増加
 ラクトバチルス・ムコサエを含む食用発酵乳製品摂取前の摂取者Bの大腸内におけるビフィズス菌の割合は19.9%であったが、前記発酵乳製品を14日間摂取後は25.9%に増加した。すなわち、前記発酵乳製品摂取前に対して摂取後は1.3倍増加した(表8)。
 以上より、試験例4でヒト大腸内環境を模倣した培養試験によりビフィズス菌の増殖促進活性を示すラクトバチルス・ムコサエを含む発酵乳製品をヒトが摂取することにより、大腸内におけるビフィズス菌の割合を増加させることができることがわかった。
Figure JPOXMLDOC01-appb-T000008
 本願発明によれば、日本人の腸内細菌叢を人工的に再構築したモデル評価系を用いることにより、ヒトや動物を使用せず、かつ生体試料であるヒト糞便を使用しない条件下において、腸内細菌叢を構成する腸内細菌の多様性や腸内細菌叢における短鎖脂肪酸を増加させる食品組成物を探索することが可能である。また、上記モデル評価系を使用してスクリーニングしたラクトバチルス・ムコサエに属する細菌を有効成分として含む飲食品等を摂取することにより、腸内細菌叢を構成する腸内細菌に作用して、腸内細菌叢を改善することが期待できる。
 さらに別の本願発明によれば、試験管内でビフィズス菌の増殖を促進するラクトバチルス・ムコサエの発酵乳製品を摂取することにより、ヒト大腸におけるビフィズス菌の割合を増加させることができる。これにより、新たなプロバイオティクスを提供することが可能となった。
[寄託生物材料への言及]
 (1)SBT10028
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818))
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日(国際寄託への移管日 令和3年3月23日)
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03275
 (2)SBT10217
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03276
 (3)SBT10027
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03274
 (4)SBT10038
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03283
 (5)SBT2261
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03272
(6)SBT2027
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03271
(7)SBT2271
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年9月15日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03273
(8)SBT10043
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日(国際寄託への移管日 令和3年3月23日)
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03187
(9)SBT2025
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03189
(10)SBT2268
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03190
(11)SBT2269
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03191
(12)SBT2867:
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03192
(13)SBT10228
イ 当該生物材料を寄託した寄託機関の名称及び住所
上記(1)と同じ
ロ イの寄託機関に生物材料を寄託した日付
令和2年3月27日
ハ イの寄託機関が寄託について付した受託番号
NITE P-03188

Claims (25)

  1. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌叢改善用組成物。
  2. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌叢改善用飲食品。
  3. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする短鎖脂肪酸増加促進用組成物。
  4. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする短鎖脂肪酸増加促進用飲食品。
  5. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌の多様性増加促進用組成物。
  6. ラクトバチルス・ムコサエの菌体又は菌体培養物を有効成分とする腸内細菌の多様性増加促進用飲食品。
  7. 対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価するためのヒト腸内細菌叢モデルであって、
    プロテオバクテリア門、ラクトバチルス属に属する細菌を含まず、ビフィドバクテリウム属に属する細菌を含む、少なくとも9菌種以上の細菌を含む評価用菌体培養物で構成される前記ヒト腸内細菌叢モデル。
  8. 前記9菌種以上の細菌が、ファーミキューテス門、アクチノバクテリア門又はバクテロイデテス門に属する細菌であり、ブラウティア属、コリンセラ属又はストレプトコッカス属に属する細菌を含む請求項7に記載のヒト腸内細菌叢モデル。
  9. ファーミキューテス門に属する細菌が菌種数として56~59%、アクチノバクテリア門に属する細菌が菌種数として21~24%、バクテロイデテス門に属する細菌が菌種数として17~22%含まれる請求項8に記載のヒト腸内細菌叢モデル。
  10. 少なくとも9菌種以上の細菌が、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、パラバクテロイデス ディスタソニス、ドレア フォルミシゲネランス、ルミノコッカス オベウム、ルミノコッカス トロクエス、バクテロイデス ドレイ、フラボニフラクター プラウティ、パラバクテロイデス メルダエ、ロゼブリア イヌリニボランス、クロストリジウム ネクサイル、ストレプトコッカス サリバリウス、エガセラ レンタ、クロストリジウム ボルテアエ、ロゼブリア インテスティナリス、コプロコッカス コメス、バクテロイデス オバツス、ユウバクテリウム ハリイ、ロゼブリア ホミニス及びバクテロイデス テタイオタオミクロンからなる群から選ばれる請求項7~9のいずれかに記載のヒト腸内細菌叢モデル。
  11. 少なくとも9菌種以上の細菌が、ブラウティア ウェクスレラエ、ビフィドバクテリウム ロンガム、ビフィドバクテリウム シュードカテヌラタム、ユーバクテリウム レクターレ、ビフィドバクテリウム アドレセンティス、コリンセラ アエロファシエンス、バクテロイデス ユニフォルミス、ドレア ロンギカテナ、バクテロイデス ブルガータス、ルミノコッカス グナバス、フェカリバクテリウム プラウスニッツイ、ブラウティア オベウム、バクテロイデス ドレイ、フラボニフラクター プラウティ、ストレプトコッカス サリバリウス、クロストリジウム ボルテアエ及びコプロコッカス コメスである請求項7~10のいずれかに記載のヒト腸内細菌叢モデル。
  12. 対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価するためのヒト腸内細菌叢モデルの培養方法であって、以下の工程を含む培養方法。
    (1)プロテオバクテリア門、ラクトバチルス属に属する細菌を含まず、ビフィドバクテリウム属に属する細菌を含む、少なくとも9菌種以上の細菌を、変法GAMブイヨン培地に添加する工程
    (2)嫌気的条件下で培養する工程
  13. 対象食品組成物のヒト腸内における短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を評価する方法であって、以下の工程を含む前記評価方法。
    (1)請求項7~11のいずれかに記載のヒト腸内細菌叢モデルに、評価対象となる食品組成物を添加して培養する工程
    (2)(1)で得られた培養物の短鎖脂肪酸産生量の測定及び/又は多様性指数を算出する工程
    (3)(2)の測定値及び/又は算出値が、前記食品組成物を無添加の場合と比較し、相対値が1.0倍以上となる場合に、短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を有すると評価する工程
  14. 腸内細菌叢改善用飲食品の製造方法であって、請求項13に記載の評価方法において短鎖脂肪酸増加促進作用及び/又は多様性増加促進作用を有すると評価された食品組成物を用いて食品を製造する方法。
  15. ラクトバチルス・ムコサエに属する菌株であって、SBT10028株(NITE BP-03275)、SBT10217株(NITE P-03276)、SBT10027株(NITE P-03274)、SBT10038株(NITE P-03283)、SBT2261株(NITE P-03272)、SBT2027株(NITE P-03271)SBT2271株(NITE P-03273)、SBT2025(NITE P-03189)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT2268(NITE P-03190)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる菌株。
  16. ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加剤。
  17. ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進剤。
  18. ラクトバチルス・ムコサエが、ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有する株である請求項16又は17に記載の剤。
  19. ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE P-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である請求項16~18のいずれかに記載の剤。
  20. ラクトバチルス・ムコサエを有効成分とするヒト腸内におけるビフィズス菌割合の増加用飲食品。
  21. ラクトバチルス・ムコサエを有効成分とするビフィズス菌増殖促進用飲食品。
  22. ラクトバチルス・ムコサエが、ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有する株である請求項20又は21に記載の飲食品。
  23. ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である請求項20~22のいずれかに記載の飲食品。
  24. 乳を主成分とする培地中でラクトバチルス・ムコサエを培養する工程を含む、発酵乳製品の製造方法であって、ラクトバチルス・ムコサエとして以下の性質を有する株を用いることを特徴とする前記製造方法。
    性質; ビフィズス菌と培養したときに、無添加に比べて1.1倍以上の増殖活性を有することを特徴とするラクトバチルス・ムコサエ。
  25. ラクトバチルス・ムコサエが、SBT2025(NITE P-03189)、SBT2268(NITE P-03190)、SBT2269(NITE P-03191)、SBT2867(NITE P-03192)、SBT10043(NITE BP-03187)及びSBT10228(NITE P-03188)からなる群から選ばれる1以上の乳酸菌株である請求項24に記載の製造方法。
     
     
PCT/JP2021/014696 2020-04-08 2021-04-07 腸内細菌叢改善用組成物 WO2021206106A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/917,385 US20230149482A1 (en) 2020-04-08 2021-04-07 Composition for improving gut microbiota
EP21784014.9A EP4133944A4 (en) 2020-04-08 2021-04-07 COMPOSITION TO IMPROVE THE INTESTINAL BACTERIAL FLORA
KR1020227038529A KR20220164034A (ko) 2020-04-08 2021-04-07 장내 세균총 개선용 조성물
AU2021254477A AU2021254477A1 (en) 2020-04-08 2021-04-07 Composition for improving gut microbiota
CA3179561A CA3179561A1 (en) 2020-04-08 2021-04-07 Composition for improving gut microbiota
CN202180040818.4A CN115811945A (zh) 2020-04-08 2021-04-07 肠道菌群改善用组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-069719 2020-04-08
JP2020069719A JP2021164435A (ja) 2020-04-08 2020-04-08 ビフィズス菌増殖促進剤
JP2020-158770 2020-09-23
JP2020158770 2020-09-23

Publications (1)

Publication Number Publication Date
WO2021206106A1 true WO2021206106A1 (ja) 2021-10-14

Family

ID=78022888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014696 WO2021206106A1 (ja) 2020-04-08 2021-04-07 腸内細菌叢改善用組成物

Country Status (8)

Country Link
US (1) US20230149482A1 (ja)
EP (1) EP4133944A4 (ja)
KR (1) KR20220164034A (ja)
CN (1) CN115811945A (ja)
AU (1) AU2021254477A1 (ja)
CA (1) CA3179561A1 (ja)
TW (1) TW202142129A (ja)
WO (1) WO2021206106A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176951A1 (ja) 2022-03-18 2023-09-21 株式会社明治 Collinsella属細菌の増殖制御用組成物及びその利用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873763A (zh) * 2022-12-06 2023-03-31 中国农业大学 一种通过调节肠道5-羟色胺稳态缓解肠道炎症的菌剂
CN118126899B (zh) * 2024-04-08 2024-10-11 中国农业科学院饲料研究所 一株牛瘤胃源狄氏副拟杆菌及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087317A1 (fr) * 2000-05-16 2001-11-22 Kabushiki Kaisha Yakult Honsha Adsorbant d'agents perturbateurs du systeme endocrinien, et aliments et boissons contenant cet adsorbant
JP2006136240A (ja) * 2004-11-12 2006-06-01 Kumamoto Prefecture ビフィズス菌増殖促進性組成物
WO2008001676A1 (fr) 2006-06-26 2008-01-03 The Food Science Institute Foundation Bactérie d'acide lactique utilisée pour améliorer l'intolérance au lactose
US20150050254A1 (en) * 2011-07-14 2015-02-19 Gt Biologics Ltd Bacterial strains isolated from pigs
JP2015198638A (ja) * 2014-03-31 2015-11-12 サンスター株式会社 ビフィズス菌醗酵方法及び増殖方法
US20150329923A1 (en) * 2012-08-31 2015-11-19 University College Cork-National University Of Ireland, Cork Exopolysaccharide-producing bacteria, and uses thereof for protecting heart health
US20190069586A1 (en) * 2016-03-11 2019-03-07 Evolve Biosystems, Inc. Food Compositions for Weaning
JP6482135B2 (ja) 2014-03-12 2019-03-13 国立大学法人神戸大学 腸内細菌叢シミュレーション培養方法、装置および培養菌叢
JP2019511563A (ja) * 2016-02-04 2019-04-25 ユニベルシテイト ゲントUniversiteit Gent ヒトおよび動物の健康ための微生物コミュニティーの使用
US20190224254A1 (en) * 2016-07-01 2019-07-25 Evolve Biosystems, Inc. Method for facilitating maturation of the mammalian immune system
US20190290706A1 (en) * 2016-06-08 2019-09-26 Sofar S.P.A. New medical use of probiotics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053767B (zh) * 2011-12-21 2016-10-12 热尔韦·达诺尼公司 新的粘膜乳杆菌菌株
JP2021164435A (ja) * 2020-04-08 2021-10-14 雪印メグミルク株式会社 ビフィズス菌増殖促進剤

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001087317A1 (fr) * 2000-05-16 2001-11-22 Kabushiki Kaisha Yakult Honsha Adsorbant d'agents perturbateurs du systeme endocrinien, et aliments et boissons contenant cet adsorbant
JP2006136240A (ja) * 2004-11-12 2006-06-01 Kumamoto Prefecture ビフィズス菌増殖促進性組成物
WO2008001676A1 (fr) 2006-06-26 2008-01-03 The Food Science Institute Foundation Bactérie d'acide lactique utilisée pour améliorer l'intolérance au lactose
US20150050254A1 (en) * 2011-07-14 2015-02-19 Gt Biologics Ltd Bacterial strains isolated from pigs
US20150329923A1 (en) * 2012-08-31 2015-11-19 University College Cork-National University Of Ireland, Cork Exopolysaccharide-producing bacteria, and uses thereof for protecting heart health
JP6482135B2 (ja) 2014-03-12 2019-03-13 国立大学法人神戸大学 腸内細菌叢シミュレーション培養方法、装置および培養菌叢
JP2015198638A (ja) * 2014-03-31 2015-11-12 サンスター株式会社 ビフィズス菌醗酵方法及び増殖方法
JP2019511563A (ja) * 2016-02-04 2019-04-25 ユニベルシテイト ゲントUniversiteit Gent ヒトおよび動物の健康ための微生物コミュニティーの使用
US20190069586A1 (en) * 2016-03-11 2019-03-07 Evolve Biosystems, Inc. Food Compositions for Weaning
US20190290706A1 (en) * 2016-06-08 2019-09-26 Sofar S.P.A. New medical use of probiotics
US20190224254A1 (en) * 2016-07-01 2019-07-25 Evolve Biosystems, Inc. Method for facilitating maturation of the mammalian immune system

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
APPL ENVIRON MICROBIOL, vol. 65, no. 8, August 1999 (1999-08-01), pages 3287 - 92
BIOSCI BIOTECHNOL BIOCHEM., vol. 81, no. 10, October 2017 (2017-10-01), pages 2009 - 2017
DEWHIRST, F. E. ET AL.: "Phylogeny of the defined murine microbiota: altered Schaedler flora", APPL ENVIRON MICROBIOL, vol. 65, 1999, pages 3287 - 3292, XP055402289 *
DNA RES, vol. 23, no. 2, April 2016 (2016-04-01), pages 125 - 33
J. APPL MICROBIOL, vol. 2, no. 117, 2014, pages 485 - 497
MCNULTY NATHAN P., YATSUNENKO TANYA, HSIAO ANSEL, FAITH JEREMIAH J., MUEGGE BRIAN D., GOODMAN ANDREW L., HENRISSAT BERNARD, OOZEER: "The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins", SCIENCE TRANSLATIONAL MEDICINE, vol. 3, no. 106, 26 October 2011 (2011-10-26), XP055864650, ISSN: 1946-6234, DOI: 10.1126/scitranslmed.3002701 *
MICROB. PATHOG, no. 137, 2019, pages 103760
NISHIJIMA SUGURU, SUDA WATARU, OSHIMA KENSHIRO, KIM SEOK-WON, HIROSE YUU, MORITA HIDETOSHI, HATTORI MASAHIRA: "The gut microbiome of healthy Japanese and its microbial and functional uniqueness", DNA RESEARCH, vol. 23, no. 2, 1 April 2016 (2016-04-01), JP , pages 125 - 133, XP055864656, ISSN: 1340-2838, DOI: 10.1093/dnares/dsw002 *
SCI RCP, vol. 8, no. 1, 11 January 2018 (2018-01-11), pages 435
SCI TRANSL MED, vol. 3, no. 106, 26 October 2011 (2011-10-26), pages 106ra106
See also references of EP4133944A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176951A1 (ja) 2022-03-18 2023-09-21 株式会社明治 Collinsella属細菌の増殖制御用組成物及びその利用

Also Published As

Publication number Publication date
KR20220164034A (ko) 2022-12-12
TW202142129A (zh) 2021-11-16
AU2021254477A1 (en) 2022-11-10
US20230149482A1 (en) 2023-05-18
CN115811945A (zh) 2023-03-17
EP4133944A1 (en) 2023-02-15
EP4133944A4 (en) 2024-07-24
CA3179561A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
Yilmaz-Ersan et al. The production of set-type-bio-yoghurt with commercial probiotic culture
WO2021206106A1 (ja) 腸内細菌叢改善用組成物
Oliveira et al. Effect of inulin on growth and acidification performance of different probiotic bacteria in co-cultures and mixed culture with Streptococcus thermophilus
JPWO2008099543A1 (ja) 新規乳酸菌を用いた発酵乳の製造方法
CN110964653A (zh) 一种可调节肠道菌群平衡的副干酪乳杆菌et-22
US10123547B2 (en) Synergistic fermentation of Lactobacillus rhamnosus and Lactobacillus paracasei subsp paracasei
TWI785815B (zh) 用於促進益生菌生長的方法
Figueroa-González et al. Antimicrobial effect of Lactobacillus casei strain Shirota co-cultivated with Escherichia coli UAM0403
CN101583282B (zh) 阿拉伯树胶用于改善双歧杆菌的生长和存活的用途
Tanaka et al. Short-and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505
CN109715181B (zh) 细菌
Xanthopoulos et al. Use of a selected multi-strain potential probiotic culture for the manufacture of set-type yogurt from caprine milk
Rodriguez‐Alonso et al. Antibiotic resistance in lactic acid bacteria and Micrococcaceae/Staphylococcaceae isolates from artisanal raw milk cheeses, and potential implications on cheese making
Aktaş et al. Probiotic and technological properties of isolates from homemade and industrial yoghurts
JP2022052715A (ja) 腸内細菌叢改善用組成物
Pato et al. Bile and acid tolerance of lactic acid bacteria isolated from tempoyak and their probiotic potential.
CN110982731A (zh) 一株具有益生特性的太空诱变植物乳杆菌st20-71及其应用
JP2008271931A (ja) 新規な乳酸菌及び当該乳酸菌を使用して加工した各種製品
Mahrous et al. Production of a functional frozen yoghurt fortified with omega-3 and vitamin E
JP2021164435A (ja) ビフィズス菌増殖促進剤
Mami et al. Probiotic properties of Lactobacillus plantarum isolated from Raw Goat Milk in the Northwestern Region of Algeria
JP4794593B2 (ja) 新規乳酸菌を用いた発酵乳の製造方法
CN116491655B (zh) 益生菌益生元组合物在制备提高肠道益生菌定植的食品中的应用
US20230063695A1 (en) Fermented milk product for administration in canids such as dogs, and uses thereof
Ayad et al. Stimulating the Viability of Bifidobacterium spp. in Synbiotic Fermented Milk by Co-culturing with Lactobacillus paracasei 441 and Inulin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3179561

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227038529

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021254477

Country of ref document: AU

Date of ref document: 20210407

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021784014

Country of ref document: EP

Effective date: 20221108