WO2021206046A1 - Method for objective sleep evaluation of mentally disordered patient - Google Patents

Method for objective sleep evaluation of mentally disordered patient Download PDF

Info

Publication number
WO2021206046A1
WO2021206046A1 PCT/JP2021/014471 JP2021014471W WO2021206046A1 WO 2021206046 A1 WO2021206046 A1 WO 2021206046A1 JP 2021014471 W JP2021014471 W JP 2021014471W WO 2021206046 A1 WO2021206046 A1 WO 2021206046A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep
patient
information
time
treatment
Prior art date
Application number
PCT/JP2021/014471
Other languages
French (fr)
Japanese (ja)
Inventor
紀夫 尾崎
邦弘 岩本
聖子 宮田
淳一 江口
智史 中田
邦明 加賀
Original Assignee
国立大学法人東海国立大学機構
株式会社三菱ケミカルホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 株式会社三菱ケミカルホールディングス filed Critical 国立大学法人東海国立大学機構
Priority to JP2022514059A priority Critical patent/JPWO2021206046A1/ja
Publication of WO2021206046A1 publication Critical patent/WO2021206046A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms

Definitions

  • the present invention relates to a method for evaluating sleep of a mentally ill patient, and therapeutic support for the mentally ill patient based on the evaluation.
  • Sleep disorders are known to cause various illnesses. For example, those with insomnia have a higher incidence of depression than those without insomnia.
  • shorter subjective sleep times increase the intracerebral deposition of ⁇ -amyloid associated with Alzheimer's disease.
  • insomnia In mental disorders such as depression, bipolar disorder, schizophrenia, anxiety, dementia, and neurodevelopment (developmental disorder), sleep problems such as insomnia are often observed.
  • insomnia is one of the most frequent complaints from the beginning, and insomnia is also the most common residual symptom of depression. Changes in sleep often precede other clinical symptoms, and their exacerbations and improvements are considered clinically useful indicators of the course of treatment for depression.
  • sleep disorders such as sleep apnea syndrome often coexist, and it is essential to distinguish between insomnia and hypersomnia, and psychiatric symptoms and psychiatric disorders.
  • dementia Lewy body dementias, which presents with depressive symptoms similar to depression, shows morbid sleep in which muscle tension appears during REM sleep, and it is possible to confirm this type of sleep. It is useful for distinguishing from.
  • PSG polysomnography
  • actigraphy which evaluates sleep-wake rhythm
  • sleep scope Sleepwell: Simple sleep evaluation devices such as Patent Document 1) and Sleep Profiler (Advanced Brain Monitoring Co., Ltd .: Patent Document 2) are known.
  • the PSG test is a test that measures biological activities such as electroencephalogram, eye movement, electrocardiogram, electromyogram, respiratory curve, snoring, and arterial oxygen saturation overnight.
  • the PSG test is a medically recognized method for objectively assessing sleep, but it requires large-scale measuring equipment, is limited to measurements in a special laboratory after hospitalization, and is subject to testing. Since it is necessary to equip a person with many sensors and electrodes, continuous measurement for a long period of time is difficult.
  • the PSG test has the inconvenience that the physical burden on the test subject is heavy and the measurement is performed in an environment different from the normal sleeping environment.
  • Extraordinary effects called first night effects such as decreased sleep, decreased sleep efficiency, and increased arousal in patients with mental disorders, decreased total sleep time, decreased sleep efficiency, decreased REM sleep, and increased awakening time. The effect appears. Therefore, the PSG test is not suitable for early detection and follow-up of sleep disorders in psychiatric patients who are sensitive to environmental changes.
  • Actigraphy is a small accelerometer and logger with a wristwatch structure, which is attached to the non-interested arm or waist of the person to be measured to detect the sleep-wake rhythm.
  • the measurement subject wearing the actigraphy was bedtime, wake-up time, time spent on the bed without sleeping, nap, mood when waking up, taking sleeping pills, activities different from daily life and time when the device was removed. Record such things in a sleep diary.
  • the data recorded in the actigraphy is processed by a computer, and by comparing it with the sleep diary, information such as total sleep time, sleep time ratio, total awakening time, awakening time ratio, awakening frequency and sleep onset latency can be obtained. ..
  • actigraphy is effective for observing the general tendency of sleep-wake rhythm, since it is an evaluation based on body movement, it is compared with the PSG test in the evaluation of total sleep time, mid-wake time, sleep efficiency, and sleep onset latency. The correlation is very poor and it is not suitable for grasping sleep depth and accurate sleep time.
  • the sleep scope is a device that simply measures sleep electroencephalograms from electrodes attached to the forehead and nape of the neck (behind the ears).
  • a method for determining the presence or absence of mental disorders by acquiring sleep electroencephalogram information using a sleep scope and analyzing information indicating the appearance status of ⁇ wave, ⁇ wave, or ⁇ wave has been published (patented). Document 1). This method is essentially intended for the detection of psychiatric disorders, not for sleep assessment in psychiatric patients.
  • the sleep profiler is a device that simply measures brain waves, eye movements, pulse rate, chin EMG, etc. during sleep. Evaluation of sleep in healthy adults and patients with sleep-breathing disorders such as obstructive sleep apnea syndrome has been reported using a sleep profiler (Patent Document 1, Non-Patent Documents 1 to 3).
  • sleep profilers are not suitable for psychiatric patients who are often sensitive to hyperesthesia and environmental changes because they wear a relatively large device on the forehead of the face.
  • Patent Document 3 Although there is a report of a method of diagnosing depression using brain waves (Patent Document 3), it is necessary to attach a plurality of electrodes to the scalp, which imposes a heavy burden on the subject. There is also a report on a device (Patent Document 4) that measures biological signals such as brain waves using an auricle wearing device, but wearing it during sleep causes a large resistance when the ear is placed down, which hinders sleep, especially. It is not acceptable to hypersensitive mentally handicapped patients. As described above, the existing simple sleep evaluation devices and methods are not sufficient as a method for objectively evaluating sleep, particularly for evaluating changes in sleep of mentally handicapped patients.
  • An object of the present invention is to provide a method for easily and accurately evaluating the sleep of a subject and treatment support for a mentally handicapped patient using the method.
  • the inventors have attached a small electrode to the skin on the temporal bone of a mentally ill patient (for example, behind the left and right ears) to acquire an electroencephalogram, and analyze the information contained in the electroencephalogram to analyze the existing PSG method.
  • sleep can be evaluated with an accuracy comparable to that of.
  • various combinations of a plurality of information parameters
  • the present invention is based on the above findings and relates to the following (1) to (24).
  • a method for objectively evaluating a subject's sleep in which an electroencephalogram signal of the subject is used to electrically process bioelectric activity acquired from an electrode attached to the skin on the temporal bone.
  • An evaluation method including a step of acquiring sleep information after processing and determining a sleep stage, and a step of analyzing the sleep information to evaluate the sleep of a subject.
  • Sleep parameters include sleep efficiency, REM sleep time, REM sleep appearance rate, REM sleep latency, light sleep time, deep sleep time, light sleep time appearance rate, deep sleep time appearance rate, and sleep stage.
  • the evaluation method according to (1) which is selected from the group consisting of the number or frequency of transitions and the time series of transitions of sleep stages.
  • sleep efficiency (i) sleep efficiency, (ii) REM sleep time or its appearance rate or REM sleep latency, and (iii) light sleep and / or deep sleep time or its appearance rate, (iv) sleep onset It is preferable to use latency, (v) the number or frequency of sleep stage transitions, and the time series of sleep stage transitions, with (i)-(iii) being more preferred. Is preferably used.
  • the method according to any one of (1) to (3) which comprises a step of comparing sleep information of the patient at two or more different time points.
  • the method according to any one of (1) to (5) which comprises a step of diagramming and analyzing sleep information in a sleep progress chart.
  • the method according to any one of (1) to (6) which comprises the step of performing.
  • the step of comparing the probability (p) calculated by using the machine learning model with a predetermined threshold value is included, and if the probability (p) is smaller than the threshold value, it is evaluated that the subject's sleep is close to that of a healthy person.
  • a method for supporting (assisting) the treatment of a psychiatric patient based on the step of evaluating the sleep of the patient according to the method according to any one of (1) to (13), and the evaluation result.
  • the method comprising assessing the symptoms or extent of a patient's mental illness.
  • a method for supporting (assisting) the treatment of a mentally handicapped patient based on a step of evaluating the sleep of the patient according to the method according to any one of (1) to (13), and the evaluation result.
  • the method comprising the step of selecting a preferred treatment.
  • the orexin receptor antagonist is presented as the preferred treatment option when the sleep onset latency is 30 minutes or more and the bedtime or less, or the sleep efficiency is 75% or less, according to (15).
  • a treatment support system for a mentally handicapped patient which includes an electroencephalogram signal processing device for electrically processing an electroencephalogram signal and an information analysis device.
  • the electroencephalogram signal processing device is a device that electrically processes electroencephalogram signals acquired from electrodes attached to the skin on the temporal bone of a patient, preferably behind the left and right ears, and more preferably to the mastoid process.
  • the information analysis device is A storage unit that stores sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, and a storage unit.
  • An analysis unit that analyzes and evaluates sleep information stored in the storage unit, Equipped with an output unit that outputs analysis / evaluation results
  • the analysis unit evaluates the sleep of the patient according to the method according to any one of (1) to (13), or the patient according to any one of (14) to (17).
  • the treatment support system for assessing the symptoms of mental illness or its degree, or selecting a preferred treatment.
  • An information analysis device for supporting the treatment of mentally handicapped patients.
  • An analysis unit that analyzes and evaluates sleep information stored in the storage unit, Equipped with an output unit that outputs analysis / evaluation results
  • the analysis unit evaluates sleep according to the method according to any one of (1) to (13), or the mentality of the patient according to any one of (14) to (17).
  • the information analyzer for assessing the symptoms of a disorder or its degree, or selecting a preferred treatment.
  • a program to support the treatment of mentally ill patients Processing that acquires sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, stores the sleep information, evaluates / analyzes the stored sleep information, and outputs the evaluation / analysis result.
  • the evaluation / analysis evaluates sleep according to the method according to any one of (1) to (13), or mental disorder of a patient according to any one of (14) to (17).
  • (21) A method of supporting the treatment of mentally ill patients. In the step of processing the brain wave signal of the patient to acquire sleep information using a device that electrically processes the brain wave signal, the step of analyzing the sleep information to evaluate the sleep of the patient, and the evaluation result. Including the step of selecting the preferred treatment based on The electroencephalogram signal was obtained from an electrode attached to the skin on the patient's temporal bone.
  • the sleep information includes (i) sleep efficiency, (ii) REM sleep time or rate thereof or REM sleep latency, and (iii) light sleep and / or deep sleep time or rate thereof.
  • the method comprising a step of diagnosing.
  • a method for selecting a subject for a clinical trial in which the step of evaluating sleep according to the method according to any one of (1) to (13), and according to the evaluation result (insomnia therapeutic agent, etc.) )
  • the method comprising selecting a subject to be the subject of a clinical trial. According to this method, in a hypnotic clinical trial, a subject can be easily selected before a definitive diagnosis by a PSG test.
  • a method for treating a psychiatric patient the step of evaluating the patient's sleep according to the method according to any one of (1) to (13), the symptom of the patient's psychiatric disorder or the patient's psychiatric disorder based on the evaluation result.
  • the method comprising assessing the degree and determining treatment.
  • orexin receptor antagonists are offered as preferred treatment options when sleep onset latency is 30 minutes or more and bedtime or less, or sleep efficiency is 75% or less.
  • the method may include a step of assessing the therapeutic effect and / or a step of assessing changes in the patient's symptoms over time by assessing sleep over time.
  • the step of evaluating a patient's sleep can be performed using the treatment system according to (18) or the information analysis device according to (19).
  • the method of the present invention uses small electrodes attached to the skin on the temporal bone (for example, behind the left and right ears), unlike the conventional method that requires the attachment of a large device and the restriction of physical freedom. Because of this, the subjects are well tolerated and are also suitable for sleep evaluation in psychiatric patients who are often hypersensitive. Therefore, there are few measurement errors and failures due to the burden associated with the measurement, and accurate sleep information can be obtained. As will be described later, the waveforms of the EEG acquired from the forehead and the EEG acquired from the skin on the temporal bone (for example, behind the left and right ears) are different, but the EEG acquired from the electrodes attached to the skin on the temporal bone. It was also demonstrated by the present invention that sleep can be easily evaluated with an accuracy comparable to that of the PSG method.
  • FIG. 1 shows an example of an electroencephalogram signal processing device used in the method of the present invention.
  • A Schematic configuration diagram
  • FIG. 2A shows one form of the information analysis device of the present invention.
  • FIG. 2B shows a processing example of the processor of the information analysis device.
  • FIG. 2C is a schematic configuration diagram of one form of the treatment support system (electroencephalogram signal processing device + information analysis device) of the present invention.
  • the treatment support system consists of an electroencephalogram signal processing device and an information analysis device.
  • FIG. 3 shows the correlation of the evaluation results when the PSG test and the method of the present invention are applied to the same mentally ill patient at the same time.
  • FIG. 4 shows the results of comparing the sleep quality of healthy adults and the first night and the second night for each disease when the PSG test was performed ( ⁇ : sleep apnea disorder group, ⁇ : insomnia disorder group, ⁇ : exercise. ⁇ Behavioral disorders, ⁇ : healthy adults).
  • sleep efficiency (b) mid-wake time, (c) deep sleep time, (d) REM sleep time.
  • FIG. 5 compares the correlation of the evaluation results when the PSG test and the actigraphy are applied to the same mentally handicapped patient at the same time with the correlation of the evaluation results when the PSG test and the method of the present invention are applied at the same time. Shown ( ⁇ : actigraphy, ⁇ : method of the present invention).
  • A total sleep time, (b) mid-wake time, (c) sleep efficiency, (d) sleep onset latency.
  • FIG. 6 shows the correlation of the evaluation results when the PSG test and the sleep profiler are applied to the same mentally ill patient at the same time.
  • A total sleep time, (b) sleep efficiency, (c) non-REM sleep time, (d) REM sleep time, (e) light sleep time.
  • FIG. 7 shows a typical sleep progress chart of a healthy person.
  • FIG. 8 shows a sleep progress chart and sleep variables of a bipolar I disorder patient (case 1).
  • A At the time of admission, (b) At the time of remission, (c) At the time of relapse.
  • FIG. 9 shows a sleep progress chart and sleep variables of a bipolar disorder patient (case 2).
  • A 1st time, (b) 2nd time.
  • FIG. 10 shows a sleep progress chart and sleep variables of a depressed patient (case 3).
  • FIG. 11 shows a sleep progress chart and sleep variables of a hypnotic-dependent patient (case 4).
  • FIG. 12 shows a sleep progress chart and sleep variables of a schizophrenia patient (case 5).
  • FIG. 13 shows a sleep progress chart and sleep variables of a depressed patient (case 6).
  • FIG. 14 shows a sleep progress chart and sleep variables of a bipolar disorder (outpatient) patient (case 7).
  • A) Simultaneous measurement with PSG at hospitalization, (b) and (c) are home measurement.
  • FIG. 12 shows a sleep progress chart and sleep variables of a schizophrenia patient (case 5).
  • FIG. 13 shows a sleep progress chart and sleep variables of a depressed patient (case 6).
  • FIG. 14 shows a sleep progress chart and sleep variables of a bipolar disorder (outpatient) patient (case 7).
  • Simultaneous measurement with PSG at hospitalization, (b) and (c) are home measurement.
  • the present invention is a method for evaluating sleep of a mentally handicapped patient, which includes a step of acquiring sleep information from an electroencephalogram signal of a patient using a device that electrically processes an electroencephalogram signal, and the sleep information. It includes a step of evaluating the patient's sleep by analyzing the above, and is characterized by using an electroencephalogram signal acquired from the skin on the patient's temporal bone, particularly the electrodes attached to the back of the left and right ears.
  • Electroencephalogram is an electrical activity that occurs from the brain.
  • EEG electroencephalogram signal
  • EEG electroencephalogram signal
  • PSG examination multiple electrodes are placed in the center of the head and the back of the head.
  • sleep profiler which is a simple electroencephalogram measuring device, electrodes are attached to the head, and in the sleep scope, electrodes are attached to the forehead (center of the forehead) and under the ears to measure the electroencephalogram.
  • electrodes are placed on the skin on the temporal bone, preferably behind the left and right ears, and more preferably on the mastoid process to acquire electroencephalogram signals. Attaching a small electrode to the above-mentioned site is less uncomfortable for the subject (patient) than the conventional placement of multiple electrodes on the scalp, and is shinobi even in patients with mental disorders who are sensitive to hyperesthesia and environmental changes. It is highly tolerant and enables accurate measurement of brain waves. In fact, in experiments conducted by the inventors, a sleep profiler with a relatively large device attached to the forehead of the face had a high patient dropout rate (59%), but with the method of the present invention, the dropout rate was 10 minutes. It decreased to 1 (6%), and it was possible to measure and evaluate in patients with mental disorders (Example 6).
  • the waveform of the electroencephalogram differs depending on the electrode mounting site, but the inventors obtained it from the electrodes attached to the skin on the temporal bone (behind the left and right ears). It was confirmed that the sleep information derived from the brain waves is comparable to the sleep information of the PSG test, which is medically recognized as a method for measuring sleep brain waves.
  • sleep information is acquired from a subject's EEG signal using a device for electrically processing EEG signals. Since the electroencephalogram signal is obtained from the skin on the subject's temporal bone, preferably behind the left and right ears, and more preferably from electrodes attached to the mastoid process, the subject is subject to physical restraint when acquiring the electroencephalogram with this device. No. Moreover, since the electrodes are small, the subject does not feel uncomfortable.
  • FIG. 1 is an example of a device that electrically processes an electroencephalogram signal.
  • the device (device that electrically processes an electroencephalogram signal) 1 includes a display 2, an input operation button 3, electrodes 4 (4a, 4b, 4c), a visual warning sensor 5, and an auditory warning sensor 6.
  • the device 1 includes a means for acquiring a brain wave signal from the subject, an analysis means for outputting an output measurement signal indicating the sleep stage of the subject in response to the brain wave signal acquired from the subject, and an analysis means in response to the output measurement signal. It has a thresholding means for outputting an output signal corresponding to the sleep stage, and the thresholding means is a means for determining a threshold value associated with the output measurement signal and corresponds to the physiological state of the sleep stage of the subject.
  • the device can be rechargeable or battery-powered, does not need to be plugged into an electrical outlet for measurement, and does not require complex transmitters and receivers.
  • the electrode 4 composed of the "+ electrode” 4a, the "-electrode” 4b and the “com electrode” 4c is connected to the amplifier 11. Using the “com electrode” 4c, the reference point of the amplifier 11 is set to the same potential as the subject. The output of the subject's electroencephalogram signal is input to the amplifier 11 via the "+ electrode” 4a and the "-electrode” 4b.
  • Reference numeral 12 denotes a device for digitizing the analog output signal of the amplifier 11.
  • Reference numeral 13 denotes a single board computer, and all the computer hardware necessary for carrying out the method of the present invention is incorporated in the single board computer 13.
  • Reference numeral 14 denotes a liquid crystal display with a keypad.
  • the liquid crystal display 14 is used as both an output device (display and backlight) and an input device (keypad).
  • Reference numeral 15 is a speaker
  • 16 is a main power source
  • 17 is an amplifier power source. Since many devices are connected to the main power supply 16, electrical noise tends to occur in the system. Therefore, it is preferable to provide a power supply for the amplifier because it is not necessary to worry about the influence of electrical noise on the amplifier 11.
  • the amplifier 11, the digitizing device 12, the single board computer 13, the liquid crystal display 14, the speaker 15, the main power supply 16, and the amplifier power supply 17 are incorporated in the device 1.
  • the “+ electrode” 4a and the “-electrode” 4b are the skin on the temporal bone, which is highly tolerated by the subject, preferably the left and right posterior ears, and more preferably the left and right mastoids. It is attached to the protrusion, and the "com electrode” 4c is attached to the back neck.
  • An example of a suitable electrode is a self-adhesive electrode comprising a fixed gel adhesive hydrogel and a pre-mounted lead wire having a safety socket end.
  • the sleep information described later can be obtained by the algorithm installed in the device 1.
  • These various sleep information can be displayed on the monitor screen of the personal computer by processing with special software or by using an Excel macro or the like created for analysis.
  • a Z machine manufactured by General Sleep can be mentioned.
  • Sleep information (sleep parameters)
  • sleep parameters can be obtained by a device that electrically processes an electroencephalogram signal.
  • this quantified sleep information is referred to as a "sleep variable". That is, "sleep variable" means sleep parameters used in sleep science research and sleep clinical practice, for example, total bedtime, sleep latency, total sleep time, sleep time, sleep efficiency, light sleep time or the like.
  • Appearance rate deep sleep time or its appearance rate, REM sleep time or its appearance rate and latency, non-REM sleep time or its appearance rate, mid-wake time and its appearance rate, awakening response number, arousal response index (times / hour) , Sleep cycle, REM sleep interval, ratio of each sleep stage, appearance rate and power of each frequency band of brain wave, number of transitions of sleep stage, and other variables, but these are within the scope of the present invention. Not limited to. In the present specification, these "sleep variables" and non-quantified information such as the time series of transitions of sleep stages are collectively referred to as “sleep information (sleep parameters)".
  • sleep information used in the present invention will be described, but sleep information is not limited thereto.
  • Total bedtime is the time from bedtime to waking up.
  • ⁇ “Sleep onset latency” is the time required from awakening after bedtime to falling asleep. It is an indicator of drowsiness and good or bad sleep.
  • -The “total sleep time” is the actual sleep time, which is the time from falling asleep to awakening the next morning excluding halfway awakening.
  • -"Sleep efficiency” is the ratio of total sleep time to total bedtime (time from bedtime to waking up).
  • REM sleep is sleep accompanied by rapid eye movement (REM), in which the body is in a resting state, but the brain is in a wakeful state.
  • the time from falling asleep to the appearance of REM sleep is called “REM sleep”, and the appearance rate of REM sleep with respect to the total bedtime (Time in Bed: TIB) is called “REM sleep appearance rate”.
  • TST Total Sleep Time
  • SPT Sleep Period Time
  • -"Non-rem sleep is sleep that does not involve rapid eye movement, and the appearance rate of non-rem sleep with respect to the total bedtime is called “non-rem sleep appearance rate".
  • the denominator of the appearance rate is as described above.
  • stage 1 and stage 2 are called “light sleep”, and stages 3 and 4 are called “deep sleep”.
  • Stage 1 "Alpha wave is 50% or less” or “Waves of various frequencies with low amplitude are mixed” or "No bump wave is present”
  • Stage 2 "There is a low-amplitude irregular ⁇ - ⁇ wave or a high-amplitude slow wave (-)” or "There is a bump wave, a spindle wave or a K complex”
  • Step 4 "Slow wave 50% or more of 2Hz or less and 75 ⁇ V or more” or “Spindle wave ( ⁇ )” Every 30 seconds is determined as one unit (epoch).
  • the longest sleep stage in 30 seconds is the epoch stage.
  • the epoch is determined to be deep sleep.
  • the appearance rates of light sleep and deep sleep with respect to the total bedtime are referred to as "light sleep appearance rate” and "deep sleep appearance rate", respectively.
  • the denominator of the appearance rate is as described above.
  • -"Mid-time awakening means a state of waking up after falling asleep, and is indicated by the awakening time within the sleep time.
  • ⁇ "Early morning awakening” means a state of waking up early in the morning and then unable to sleep.
  • -The "sleep cycle” is the time from falling asleep to the end of the first REM sleep, and then from the end of the REM sleep to the end of the next REM sleep.
  • ⁇ "REM sleep interval” is the time from the end of REM sleep to the start of the next REM sleep.
  • ⁇ "Brain wave frequency band” is a classification based on the frequency of brain waves, and is defined as ⁇ wave: 0.5 to less than 4 Hz, ⁇ wave: 4 to less than 8 Hz, ⁇ wave: 8 to less than 13 Hz, ⁇ wave: 13 Hz or more, etc. However, it is not limited to this.
  • -"Power refers to the sum of each frequency band or all frequency bands among the power obtained by power spectrum analysis of brain waves.
  • sleep information in particular, (i) sleep efficiency, (ii) REM sleep time or its appearance rate or REM sleep latency, and (iii) light sleep and / or deep sleep time or its appearance rate.
  • sleep latency sleep latency
  • the number or frequency of sleep phase transitions are suitable for sleep evaluation in patients with mental disorders, with (i)-(iii) being more preferred. Is.
  • sleep variables well reflect the sleep disorders characteristic of mentally ill patients.
  • Example 4 using logistic regression analysis also shows that these sleep variables are useful for evaluation in sleep evaluation of psychiatric patients.
  • a sleep progress chart can be used for sleep analysis.
  • the sleep progress chart is a diagram of the progress (transition) of the sleep stage in the sleep time, and the overall image (profile) of sleep can be easily visually grasped as an image.
  • FIGS. 8 to 13 the sleep profile of a mentally handicapped patient is clearly different from that of a healthy person (FIG. 7), and the sleep profile and sleep variables change significantly depending on the course of symptoms and the therapeutic effect. .. Therefore, it is useful to use the sleep progress chart for analysis and evaluation of the whole picture of sleep.
  • the logistic regression model is shown by the following general formula, and the value of the probability (p) obtained by inputting the subject's sleep information (sleep variable) into this formula is between 0 and 1, and the closer it is to 0, the healthier it is. The closer it is to a person, the closer to a mentally ill patient.
  • the sleep variables used are preferably information that is not easily affected by the environment such as hospitalization in the sleep evaluation of mentally handicapped patients.
  • sleep efficiency REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, and arousal.
  • Ratios such as response index and latency such as REM sleep latency and sleep onset latency can be mentioned.
  • a combination of sleep efficiency, REM sleep latency, and light sleep appearance rate, or a combination of sleep efficiency, REM sleep latency, light sleep appearance rate, and indwelling sleep is preferable.
  • the combination of sleep variables used can be changed as appropriate by selecting population information according to the target mental disorder or sleep disorder, and the logistic regression model (correlation coefficient and correlation coefficient) can be changed accordingly. Correlation function) is also set as appropriate.
  • the coefficient a_i and the constant term b of the sleep variable are determined according to each model and population. If the coefficient is positive, the larger the sleep variable, the closer the subject's sleep is to the sleep of the mentally ill patient, and if the coefficient is negative, the smaller the sleep variable, the more the subject's sleep. It contributes to the judgment that it is close to sleep of a mentally ill patient.
  • the magnitude of the absolute value of the coefficient indicates the contribution of the sleep variable to the sleepiness of the mentally handicapped patient.
  • the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value”.
  • the “threshold” is determined according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
  • a preferable example for distinguishing between a mentally ill patient and a healthy person is a combination of sleep efficiency, REM sleep latency, and light sleep appearance rate (model 1).
  • Another preferred example is the combination of four sleep variables (model 2), which is the sleep information plus the sleep onset latency.
  • a combination of sleep efficiency, REM sleep appearance rate, and deep sleep appearance rate can be cited (Model 7). can.
  • Model 1 Model 1 is represented by the following equation.
  • a1 -1.299
  • a2 0.591
  • a3 0.531
  • b -0.635.
  • the threshold is 0.3 to 0.5, preferably 0.3 to 0.4, more preferably 0.3 to 0.36, 0.3 to 0.35, 0.3 to 0.34, for example 0.339. If the probability (p) obtained by inputting the patient's sleep information (sleep variable) into the model 1 is higher than the threshold value, it can be said that the patient's sleep is close to that of a mentally ill patient. If the probability (p) becomes lower than the threshold value as a result of the treatment, it can be said that the sleep of the patient approaches that of a healthy person and is normalized.
  • Model 2 Model 2 is represented by the following equation.
  • a1 -1.263
  • a2 0.604
  • a3 0.532
  • a4 0.064
  • b -0.635.
  • the threshold is 0.3 to 0.5, preferably 0.3 to 0.4, more preferably 0.3 to 0.36, 0.3 to 0.35, 0.3 to 0.34, for example 0.335. If the probability (p) obtained by inputting the patient's sleep information (sleep variable) into the model 2 is higher than the threshold value, it can be said that the patient's sleep is close to that of a mentally ill patient. If the probability (p) becomes lower than the threshold value as a result of the treatment, it can be said that the sleep of the patient approaches that of a healthy person and is normalized.
  • Model 7 For a group of patients showing a specific sleep profile or a therapeutic drug, it is possible to set a model according to the sleep profile. For example, unlike benzodiazepine hypnotics that increase light sleep, orexin receptor inhibitors increase deep sleep and REM sleep. Patients treated with orexin receptor inhibitors have increased deep and REM sleep if they respond to treatment. Examples of orexin receptor inhibitors include, but are not limited to, suvorexant and lemborexant. Model 7 is a logistic regression model in which the incidence of deep sleep and REM sleep was determined as sleep information in order to evaluate the sleep of patients treated with orexin receptor inhibitors that increase deep sleep and REM sleep. be.
  • Model 7 is represented by the following equation.
  • a1 -0.742
  • a2 -0.744
  • a3 -0.307
  • b -0.681.
  • the threshold is 0.3 to 0.5, preferably 0.35 to 0.45, more preferably 0.35 to 0.44, 0.36 to 0.43, 0.37 to 0.42, 0.38 to 0.42, 0.39 to 0.42, for example 0.409.
  • Model 7 is preferred for patients treated with orexin receptor inhibitors. In patients treated with orexin receptor inhibitors, if the probability (p) is lower than the threshold, the patient can be said to have been successfully treated.
  • the value of the probability (p) obtained by inputting the subject's sleep information is between 0 and 1, and the closer it is to 0, the closer it is to a healthy person, and the closer it is to 1, the closer it is to a mentally ill patient.
  • the sleep variables used are preferably information that is not easily affected by the environment such as hospitalization in the sleep evaluation of mentally handicapped patients. For example, sleep efficiency, REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, and arousal. Examples include ratios such as response index, number or frequency of sleep stage transitions, and latency such as REM sleep latency and sleep onset latency.
  • the number or frequency of transitions of the sleep variable between sleep stages is evaluated for each stage.
  • the frequency of transitions between sleep stages is assumed to be the number of transitions between each sleep stage divided by the total bedtime, and 12 types (awakening ⁇ REM sleep, awakening ⁇ light sleep, awakening ⁇ deep sleep, REM sleep).
  • the number of transitions between each sleep stage may be divided by the total sleep time.
  • the combination of sleep variables to be used can be appropriately changed by selecting population information according to the target mental disorder or sleep disorder, and the machine learning model is appropriately set accordingly. ..
  • XGBoost is used as a machine learning model.
  • FIG. 2A shows an example of the information analysis device of the present invention.
  • FIG. 2B is a flowchart showing a processing example of the processor 21.
  • the processor 21 acquires a set of data each composed of a plurality of data. That is, the processor 21 acquires a plurality of data via the storage device 22 or the communication circuit 23.
  • step S12 the processor 21 calculates the sleep variable, which is a feature amount of each of the plurality of data acquired in step S11, and obtains a probability (p) by a machine learning model using the calculated sleep variable as an input. If the data acquired in step S11 is for a healthy person, it is set to 0, and if it is for a mentally handicapped patient, it is set to 1, and a loss function determined by an error from the probability (p) calculated by the machine learning model is calculated. Then, the parameters of the machine learning model are modified (the weights of each parameter are updated) so that the loss function is reduced by the gradient boosting method.
  • the sleep variable which is a feature amount of each of the plurality of data acquired in step S11
  • a gradient boosting tree is used with gbtree as a Booster, and parameters are updated based on the loss function binary cross entropy error, but the loss function may be a mean square error or the like.
  • the binary cross entropy error E can be expressed by the following equation, where tk is the teacher data and pk is the predicted value by the machine learning model.
  • the model performance is evaluated by AUC (Area Under the Curve), the model parameter that maximizes the evaluation index is determined, and stored via the storage device 22 or the communication circuit 23.
  • AUC Average Under the Curve
  • the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value”.
  • the “threshold value” is determined in step S13 according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
  • step S14 the processor 21 reads the machine learning model saved in step S12 via the storage device (storage unit) or the communication circuit.
  • step S15 the processor 21 acquires the data (input data) to be the identification target data from the storage device (storage unit) or the like, and the processor 1 extracts the feature amount from the identification target data and reads it in step S14.
  • the probability (p) is calculated by the machine learning model. The closer p is to 0, the closer to a healthy person, and the closer to 1 is, the closer to a mentally ill patient.
  • step S16 the processor 21 compares the probability calculated in step S15 with the threshold value set in step S13, and makes a determination. At this time, if the probability is equal to or higher than the threshold value, the patient is determined to be a mentally ill patient.
  • steps S17 and S18 the processor 21 outputs the determination result obtained in step S16 (for example, it is displayed on the display 25).
  • analysis / evaluation of sleep information may be performed by machine learning other than logistic regression analysis or XGBoost (supervised learning).
  • XGBoost supervised learning
  • Machine learning may be unsupervised learning, supervised learning, or semi-supervised learning.
  • unsupervised learning for example, k-means clustering, hierarchical clustering, neural network, and the like can be preferably used.
  • Supervised learning includes, for example, k-nearest neighbor method, support vector machine, decision tree, ensemble learning (Random Forest, XGBoost, LightGBM, Ada Boost, etc.), linear discrimination, quadratic discrimination, naive bayes, logistic regression, neural network.
  • semi-supervised learning such as a self-organizing map, for example, a neural network or the like can be preferably used.
  • a neural network encoder and classifier are used as a machine learning model.
  • the processor 21 acquires a set of data each composed of a plurality of data. That is, the processor 21 acquires a plurality of data from the network via the storage device 22 or the communication circuit 23.
  • the processor 21 has a probability (p) calculated from the feature quantity obtained by the encoder from the input data using the classifier, 0 when the input data is that of a healthy person, and a mental disorder. If it belongs to a patient, it is set to 1, and the loss function is calculated from the difference from these.
  • the processor 1 corrects the parameters of the encoder and the classifier (updates the weights of each parameter) so as to reduce the loss function by the error backpropagation method (backpropagation), determines the parameters of the machine learning model, and determines the parameters of the machine learning model. It is stored via the storage device 22 or the communication circuit 23.
  • the cross entropy error E can be expressed by the following equation, where tk is the teacher data and pk is the predicted value by the machine learning model.
  • the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value”.
  • the “threshold value” is determined in step S13 according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
  • step S14 the processor 21 reads the machine learning model stored in step S12 via the storage device 22 or the communication circuit 23.
  • step S15 the processor 21 acquires the data (input data) to be the identification target data from the storage device 2, the network, or the like, and the processor 21 extracts the feature amount from the identification target data by the encoder from the feature amount. Calculate the probability (p) with the classifier. The closer p is to 0, the closer to a healthy person, and the closer to 1 is, the closer to a mentally ill patient.
  • step S16 the processor 21 compares the probability calculated in step S15 with the threshold value set in step S13, and makes a determination. At this time, if the probability is equal to or higher than the threshold value, the patient is determined to be a mentally ill patient.
  • steps S17 and S18 the processor 21 outputs the determination result obtained in step S16 (for example, it is displayed on the display 25 or transmitted to the network).
  • Transformer which is one of the deep learning models, is used as the encoder, but CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), etc. can also be used.
  • the error back propagation method is performed by calculating a loss function that is determined by the error between the output value and the input data obtained by inputting the feature quantity obtained from the encoder into the classifier and whether it is a healthy person or a mentally handicapped person.
  • the parameters of the encoder and the classifier are modified to reduce the loss function.
  • the loss function can use the cross entropy error, the mean square error, and the like.
  • the judgments of one or more consecutive epochs are collectively digitized (vectorized) into a encoder consisting of one or more Transformer layers. input.
  • a feature amount for the input data is obtained from the encoder, and the probability (p) is calculated from the feature amount by the classifier.
  • the classifier consists of one or more fully connected layers.
  • time-series information pattern of sleep progress chart
  • sleep progress in which each sleep stage appears and shifts is considered to be important. Therefore, when the sleep information acquired in advance is the transition of the sleep stage of the overnight time series, more accurate sleep evaluation becomes possible by constructing a machine learning model that handles it as time series data.
  • the present invention also provides a method for supporting (assisting) the treatment of a mentally ill patient.
  • the method includes a step of evaluating the sleep of a patient according to the method described in 1 above, and a step of evaluating the symptom of mental disorder of the patient or the degree thereof based on the evaluation result.
  • it includes a step of evaluating the sleep of the patient according to the method described in 1 above, and a step of selecting a preferable treatment based on the evaluation result.
  • the arousal level is high and there are many awakenings and light sleep, specifically, if the sleep onset latency is 30 minutes or more and the bedtime or less, or if the sleep efficiency is less than 75%, orexin is accepted. Orexins are presented as the preferred treatment option. If the patient's sleep profile does not change despite treatment, change to a treatment with a different effect or consider modified electroconvulsive therapy.
  • a hypnotic is administered to a patient (Shiro Endo, Psychiatry and Neurology Magazine 64, 173-707, 1962) who complains of excessive insomnia by subjective evaluation. It can be avoided.
  • a degree of improvement in sleep after administration long-term administration when there is no effect can be avoided, and by evaluating the degree of improvement in sleep after administration, an appropriate dose can be selected.
  • FIG. 2C shows an outline of the treatment support system of the present invention.
  • the treatment support system of the present invention includes an electroencephalogram signal processing device (a device that electrically processes an electroencephalogram signal) and an information analysis device.
  • the electroencephalogram signal processing device is a simple device independent of the information analysis device, and is used at the home of the patient (subject), etc., and as described in 1 above, the skin on the temporal bone of the patient, preferably the left and right ears.
  • the electroencephalogram signal obtained from the electrodes attached posteriorly, more preferably on the mastoid process, is electrically processed.
  • the information analysis device includes a storage unit that acquires and stores sleep information (sleep parameters) of a patient processed by the electroencephalogram signal processing device, an analysis unit that analyzes and evaluates sleep information stored in the storage unit, and an analysis unit. It is equipped with an output unit that outputs analysis / evaluation results.
  • the analysis unit evaluates the patient's sleep according to the present invention, or evaluates the symptoms or degree of the patient's psychiatric disorder, or selects a preferable treatment, and together with or separately from the patient's sleep information.
  • the evaluation result is output to.
  • the analysis / evaluation may be carried out by machine learning.
  • the output data is sent to a printer or display for printing or display.
  • the printer and the display may be a part of the information analysis device or may be connected to the outside.
  • FIG. 2C shows an outline of the treatment support system of the present invention.
  • the information analysis device of the present invention is stored in a storage unit (storage device) for storing sleep information of the patient processed by a device that electrically processes a brain wave signal, and a storage unit. It is equipped with an analysis unit (processor) that analyzes / evaluates sleep information and an output unit that outputs analysis / evaluation results. Does the analysis unit perform sleep evaluation according to the sleep evaluation method described in 1 above?
  • the printer and the display for printing or displaying the output data may be a part of the information analysis device or may be connected to the outside.
  • the present invention also provides a program for executing processing in the information analyzer of the present invention. Specifically, the program of the present invention acquires the sleep information of the patient processed by the device that electrically processes the brain wave signal, stores the sleep information, and evaluates / analyzes the stored sleep information. The evaluation / analysis result is output, and the processing is executed by the computer. The evaluation / analysis evaluates the sleep of the patient according to the present invention, or the symptom of the patient's mental disorder. Or it involves assessing the extent of the drug, assessing the effects of drug withdrawal, or selecting the preferred treatment.
  • the sleep of a mentally handicapped patient can be easily and objectively evaluated with almost the same accuracy as the PSG test.
  • the method of the present invention does not restrain the body of the subject, so that the evaluation can be performed under the same conditions as in a normal sleeping environment without showing extraordinary effects such as the first night effect.
  • the evaluation can be performed under the same conditions as in a normal sleeping environment without showing extraordinary effects such as the first night effect.
  • it can be done. Therefore, it can be used not only for sleep evaluation and treatment support for psychiatric patients but also for various clinical purposes.
  • the method of the present invention can be used as a diagnostic aid (method for assisting diagnosis) of a mentally handicapped patient using sleep.
  • a diagnostic aid method for assisting diagnosis
  • the method of the present invention can objectively evaluate sleep in a psychiatric patient, the psychiatric disorder can be diagnosed and appropriate intervention can be performed earlier.
  • the electroencephalogram is measured using a small electrode attached on the temporal bone, there is little burden associated with the measurement and measurement errors and failures due to the measurement, and accurate sleep information can be easily obtained even at home. Can be done. Therefore, outpatient sleep can be assessed at home without the need for hospitalization.
  • the method of the present invention can be used to select subjects for clinical trials such as sleeping pills.
  • subjects for clinical trials such as sleeping pills.
  • a subject suitable for the clinical trial can be quickly and easily selected. Can be selected for.
  • Example 1 Verification of validity of sleep evaluation by the method of the present invention 1. Correlation between sleep evaluation by the method of the present invention and sleep evaluation by the PSG test In order to verify the validity of the sleep evaluation method by the present invention, a comparison with the PSG test was performed. Syndrome, bipolar disorder, depression, Lewy body dementias / REM sleep behavior disorder, sleep disorder, attentionlessness / hyperactivity disorder, autism spectrum disorder, etc. (adjustment disorder, panic disorder, dissection disorder, delusional disorder, For 37 mentally ill patients with at least one condition (such as adjustment disorder), sleep evaluation by PSG test and sleep evaluation by the method of the present invention were simultaneously performed, and the correlation was observed.
  • a Z machine (General Sleep) was used as an electroencephalogram signal processing device. Electrodes were attached to the skin on the patient's temporal bone (behind the left and right ears (mastoid process)) and the neck, and brain waves were measured according to the protocol recommended by the manufacturer to obtain sleep information.
  • the PSG test and the method of the present invention have a good correlation in all of total sleep time, sleep efficiency, REM sleep time, non-REM sleep time, mid-wake time, sleep onset latency, and light sleep time (stages N1 and N2). (Fig. 3 and Table 1)
  • the results were plotted in comparison with the correlation between the PSG test and the method of the present invention (Example 1).
  • the correlation between the PSG test and polysomnography is as follows: (a) total sleep time, (b) mid-wake time, (c) sleep efficiency, (d) as compared to the correlation between the PSG test and the method of the present invention. It was confirmed that it was inferior in all of the sleep onset latency (Fig. 5).
  • the correlation between the PSG test and sleep evaluation by the sleep profiler is as follows in any of (a) total sleep time, (b) sleep efficiency, (c) non-REM sleep time, (d) REM sleep time, and (e) light sleep time. , It was confirmed that it was not good (Fig. 6).
  • Example 2 Examination of the first night effect in the method of the present invention 1.
  • First night effect by the method of the present invention the quality of sleep is affected by measurement in an environment different from the normal sleeping environment, such as many sensors and electrodes being attached to the test subject. Often appears. This is called the first night effect.
  • “increased arousal, decreased total sleep time, decreased deep sleep, decreased sleep efficiency” in healthy adults “increased arousal, decreased sleep efficiency, decreased REM sleep” in insomnia patients, depression.
  • For sick patients "decrease in total sleep time, decrease in sleep efficiency, increase in awakening time, decrease in REM sleep", and in patients with autism spectrum disorder, "decrease in stage N2, increase in awakening, decrease in sleep efficiency", etc.
  • brain waves were measured for 6 days from electrodes attached to the skin on the temporal bone (posterior left and right ears (mastoid process)) using a Z machine, and total sleep time, sleep efficiency, and so on.
  • the quality of sleep (total sleep time, sleep efficiency, light sleep time ratio, deep sleep time ratio, REM sleep time ratio) from the first night to the sixth night. It can be seen that there is no change in and the first night effect does not appear.
  • Example 3 Sleep evaluation in psychiatric patients
  • sleep information was acquired using a Z machine, a sleep progress chart was created, and the relationship between symptoms and treatment transitions and sleep was analyzed.
  • FIG. 7 shows a typical sleep profile (sleep progress chart) of a healthy person.
  • BDI Beck Depression Inventory HA: Harm Avoidance PSQI: Pittsburgh Sleep Quality Index ESS: Epworth Sleepiness Scale HAMD: Hamilton Depression Scale YMRS: Young Mania Rating Scale BPRS: Brief Psychiatric Rating Scale
  • Bipolar Disorder Type I Bipolar Disorder Type I patients (female, 40s) were evaluated for sleep at the following three time points.
  • the severity of depressive symptoms (HAMD) was 17 points and the severity of manic symptoms (YMRS) was 3 points.
  • the severity of the symptom was 0 points, leading to remission, and the patient was discharged from the hospital.
  • the patient was re-hospitalized due to relapse of symptoms due to interpersonal stress and worsening of insomnia, loss of appetite, and malaise.
  • Figure 8 shows the sleep progress chart and sleep variables of Case 1. From admission to remission, along with improvement of symptoms, the sleep progress chart also shows that total sleep time, deep sleep, and sleep efficiency increased, approaching the sleep profile of healthy subjects. At the time of relapse, total sleep time, sleep efficiency, and deep sleep are all reduced. As symptoms worsen, total sleep time and deep sleep time decrease, sleep onset latency increases, sleep efficiency decreases, and psychotic symptoms and changes in sleep profile are consistent.
  • the patient was hospitalized in the depressive phase of bipolar disorder and presented with depressive symptoms such as insomnia, decreased motivation, and malaise. In addition to rest and improvement of life rhythm, insomnia symptoms persisted. Therefore, by adding suvorexant (hypnotic), the symptoms gradually improved and sleep also improved.
  • the severity of depressive symptoms HAMD
  • YMRS severity of manic symptoms
  • Figure 9 shows the sleep progress chart and sleep variables of Case 2. As the symptoms improve, total sleep time and deep sleep time increase, and sleep efficiency also improves. These results indicate that the sleep profile obtained by the method of the present invention may sensitively reflect changes in clinical symptoms due to treatment.
  • Olanzapine antipsychotic
  • flunitrazepam benzodiazepine hypnotic
  • HAMD improved from 26 points to 3 points.
  • the sleep progress chart and sleep variables of Case 3 are shown in FIG. Before the prescription change, the sleep onset latency was long and the deep sleep was small, but after the prescription change, the sleep onset latency was shortened, the deep sleep increased, and a sleep profile close to that of a healthy person was observed.
  • the sleep evaluation according to the present invention is consistent with changes in clinical symptoms and is useful for selecting a therapeutic agent and confirming its effect.
  • the sleep progress chart and sleep variables of Case 4 are shown in FIG. Drugs were rearranged while performing sleep evaluation according to the present invention. By visualizing the sleep state and improvement and feeding back the sleep status to the patient, the patient's anxiety was also improved, and it became possible to prescribe an appropriate hypnotic drug.
  • Modified electroconvulsive therapy (4 out of 5 as of 12/25) with almost no change in drug prescription improved BPRS, which indicates the severity of psychiatric symptoms, from 39 points to 21 points. bottom.
  • BPRS BPRS
  • the sleep progress chart and sleep variables of Case 5 are shown in FIG.
  • the sleep profile (sleep information) obtained by the method of the present invention also correlates with the subjective sleep evaluation and shows that it is useful as auxiliary information for treatment.
  • BDI 24 points Before change of treatment (February X) BDI 24 points, HA 15 points, PSQI 11 points, ESS 6 points, HAMD 19 points Subjective sleep: sleep onset latency 30 minutes, total sleep time 480 minutes, midway awakening time 10 minutes Dosing: Lexapro (escitalopram) 10 mg, Versomura ( Suvorexant) 20 mg, Bredonin (prednisolone), Pariet (labeprazole), Alphacalcidol, Prograf (tacrolimus), Celcept (mycophenolate mofetil), Slokey (potassium chloride) (b) After changing treatment (March X) BDI 41 points, HA 15 points, PSQI 9 points, ESS 5 points, HAMD 18 points Subjective sleep: sleep onset latency 3 minutes, total sleep time 420 minutes, midway awakening time 5 minutes Dosing: Versomura (susvorexant) 20 mg, brothisolam 0.25 mg, sine balta (duloxetine) 40 mg, ble
  • the sleep progress chart of Case 6 is shown in FIG. There was no significant change in the sleep progress chart, there was no significant change in total sleep time and sleep efficiency, and the deep sleep time was rather short. This indicates that the sleep information obtained by the method of the present invention changes in conjunction with the pathophysiology of depression and is useful for evaluation of treatment.
  • Bipolar disorder Sleep was evaluated at the following three time points in outpatients with bipolar disorder (male, 50s).
  • A At the time of admission for examination (July X) PSQI 10 points, ESS 10 points, BDI-2 36 points, HA 13 points, HAMD 6 points, YMRS 2 points Subjective sleep time: 300 minutes, Awakening time: 60 minutes, Sleep onset latency 0 minutes Suvorexant 20 mg, Eszopiclone 3 mg , Quetiapine fumarate 25 mg, lamotrigine 400 mg, lithium carbonate 800 mg
  • Example 4 Distinguishing between healthy and mentally ill patients by the method of the present invention A combination of parameters that can accurately distinguish between inpatients and healthy subjects from the sleep variables of inpatients (92 nights) and healthy subjects (158 nights). In order to find out, the following examination was conducted.
  • Table 3 shows an example of a model in which each model was evaluated using AUC as an index and a high AUC was obtained.
  • a three-item formula (model 1: AUC average 0.811) and a four-item formula (model 2: AUC average 0.809) are evaluated as medically valid and highly accurate indexes. Selected as.
  • model 1 and model 2 a threshold value was set to separate patients from healthy subjects so that the average of false negative rate and false positive rate was minimized.
  • the sleep variables, coefficients, and constant terms in equation (I) of model 1 and model 2 are shown in Tables 4 and 5, respectively.
  • the sleep variables of Model 1 (sleep efficiency, REM sleep latency, light sleep appearance rate) are indicators that are likely to worsen in psychiatric patients.
  • the sleep variable added in model 2 is a treatment-sensitive indicator.
  • the index at the time of the first measurement exceeded the threshold value and was judged to be a patient.
  • the index was below the threshold in 3 of the 4 cases in which the therapeutic effect was clear after treatment, but was above the threshold in 1 case.
  • it did not fall below the threshold in the cases of recovery tendency even after the treatment and the cases in which the therapeutic effect was unclear. From the above, it was confirmed that both the constructed model 1 and model 2 are valid as formulas for distinguishing between patients and healthy subjects.
  • Model 7 (special sleep profile)
  • the hypnotic (susvorexant) which is an orexin receptor blocker was used in this case.
  • the evaluation formula (model) that replaces the appearance rate of light sleep with the appearance rate of deep sleep. 7) was prepared.
  • Table 8 shows the sleep variables, coefficients, and constant terms in equation (I) of model 7.
  • Example 5 Distinction between healthy subjects and mentally handicapped patients by the method of the present invention A machine learning model capable of accurately distinguishing between inpatients and healthy subjects from sleep parameters of inpatients (93 nights) and healthy subjects (88 nights) The following studies were conducted to construct it.
  • the data of inpatients and healthy subjects were divided into 5 groups, 4 groups were used as a training set, and the remaining 1 group was used as a test set, and cross-validation was performed using XGBoost.
  • AUC Absolute Under the Curve
  • Example 6 Distinction between healthy subjects and mentally handicapped patients in the time series information of sleep stage transitions by the method of the present invention From the time series information of sleep stage transitions of inpatients (109 nights) and healthy subjects (105 nights) In order to build a model that can accurately distinguish between inpatients and healthy subjects, the following studies were conducted.
  • Cross-validation was performed by dividing the data of inpatients and healthy subjects into 5 groups, learning the neural network with 4 groups as a training set, and evaluating the learned neural network with the remaining 1 group as a test set.
  • AUC rea Under the Curve
  • a Transformer was used as the encoder and a fully connected neural network was used as the classifier.
  • the average AUC of the cross-validation test data was 0.935 (standard deviation: 0.030) (average AUC of training data: 0.943, standard deviation: 0.018), which exceeded 0.9, which is generally considered to be highly accurate.
  • By treating it as time-series data using a neural network it was confirmed that it can be used to support treatment by evaluating the symptoms of mentally handicapped patients from sleep information.
  • Example 7 Comparison of EEG from the forehead and the skin on the temporal bone (posterior left and right ears (mastoid process)) Using ZA-X (Pro Assist), the EEG was applied to the back of the left ear and the right of the forehead (right of the forehead). Fp2), EEG was acquired using the posterior left ear-posterior right ear for EMG, and the waveforms were compared.
  • ZA-X Pro Assist
  • the waveforms of EEG from the skin (posterior ear (mastoid process)) on the forehead and temporal bone are different in all of arousal (closed eyes), light sleep, deep sleep, and REM sleep. It was confirmed that.
  • a sleep profiler (Advanced Brain Monitoring Co., Ltd.), which has a relatively large device attached to the forehead, was attached to 22 patients with mental disorders who had given their consent in advance, and sleep was measured. Of the 22 cases, 13 cases (59%) could not be measured, and the causes were non-wearing (4 cases), refusal (1 case), and electrode detachment (8 cases). Of the 9 cases that could be measured, 2 cases could not be evaluated (recording failure (1 case) and sleeplessness due to oppressive feeling (1 case)), and only 7 cases (32%) could be evaluated. there were.
  • the sleep of a mentally handicapped patient can be evaluated easily and with high accuracy. This makes it possible to evaluate the sleep profile of mentally ill patients and the response of treatment, and to provide appropriate treatment.

Abstract

The present invention relates to a method for evaluating sleep in a subject and to support of treatment of a mentally disordered patient based on said evaluation. Specifically, the present invention relates to a method for objectively evaluating sleep in a subject, the evaluation method including a step for acquiring sleep information after determining a sleep stage by processing a brain wave signal of the subject using a device that electrically processes bioelectric activity acquired from an electrode affixed to the skin on a temporal bone, and a step for analyzing the sleep information to evaluate the sleep of the subject.

Description

精神障害患者の客観的睡眠評価方法Objective sleep evaluation method for psychiatric patients
関連出願:
 本明細書は、本願の優先権の基礎であるPCT/JP2020/016112(2020年4月10日出願)の明細書に記載された内容を包含する。
技術分野:
 本発明は、精神障害患者の睡眠を評価する方法、前記評価に基づく精神障害患者の治療支援に関する。
Related application:
This specification includes the contents described in the specification of PCT / JP2020 / 016112 (filed on April 10, 2020), which is the basis of the priority of the present application.
Technical field:
The present invention relates to a method for evaluating sleep of a mentally ill patient, and therapeutic support for the mentally ill patient based on the evaluation.
 睡眠の障害は、様々な疾患を引き起こすことが知られている。例えば、不眠を有する者では、不眠のない者と比較し、うつ病の発症率が高い。また、自覚的睡眠時間が短くなるとアルツハイマー病と関連のあるβアミロイドの脳内沈着が増加する。 Sleep disorders are known to cause various illnesses. For example, those with insomnia have a higher incidence of depression than those without insomnia. In addition, shorter subjective sleep times increase the intracerebral deposition of β-amyloid associated with Alzheimer's disease.
 うつ病、双極性障害、統合失調症、不安症、認知症、神経発達症(発達障害)などの精神障害では、不眠をはじめとした睡眠の問題がよく認められる。例えば、うつ病患者においては、不眠はもっとも初期から高頻度にみられる訴えの一つであり、さらに不眠はうつ病の残遺症状で最も頻度の高いものでもある。睡眠の変化はその他の臨床症状に先行することが多く、その悪化や改善はうつ病の治療経過を見るうえで臨床的に有用な指標と考えられている。一方で、睡眠時無呼吸症候群などの睡眠障害が併存していることも多く、それに伴う不眠や過眠、精神症状と精神障害との鑑別も不可欠である。また認知症の中で、うつ病と類似の抑うつ症状を呈するレビー小体型認知症は、レム睡眠時に筋肉の緊張が現れる病的な睡眠を示し、このタイプの睡眠を確認することが、うつ病との鑑別上、有用である。 In mental disorders such as depression, bipolar disorder, schizophrenia, anxiety, dementia, and neurodevelopment (developmental disorder), sleep problems such as insomnia are often observed. For example, in depression patients, insomnia is one of the most frequent complaints from the beginning, and insomnia is also the most common residual symptom of depression. Changes in sleep often precede other clinical symptoms, and their exacerbations and improvements are considered clinically useful indicators of the course of treatment for depression. On the other hand, sleep disorders such as sleep apnea syndrome often coexist, and it is essential to distinguish between insomnia and hypersomnia, and psychiatric symptoms and psychiatric disorders. Among dementia, Lewy body dementias, which presents with depressive symptoms similar to depression, shows morbid sleep in which muscle tension appears during REM sleep, and it is possible to confirm this type of sleep. It is useful for distinguishing from.
 睡眠を客観的に評価する方法としては、睡眠深度や睡眠中の生理現象を総合的に評価する睡眠ポリグラフ検査(polysomnography: PSG)、睡眠覚醒リズムを評価するアクチグラフィ、スリープスコープ(スリープウェル社:特許文献1)やスリーププロファイラー(アドバンスドブレインモニタリング株式会社:特許文献2)などの簡易型睡眠評価装置が知られている。 Methods for objectively evaluating sleep include polysomnography (PSG), which comprehensively evaluates sleep depth and physiological phenomena during sleep, actigraphy, which evaluates sleep-wake rhythm, and sleep scope (Sleepwell: Simple sleep evaluation devices such as Patent Document 1) and Sleep Profiler (Advanced Brain Monitoring Co., Ltd .: Patent Document 2) are known.
 PSG検査は、脳波、眼球運動、心電図、筋電図、呼吸曲線、いびき、動脈血酸素飽和度などの生体活動を一晩にわたって測定する検査である。PSG検査は睡眠を客観的に評価する方法として医学的にも認められた方法であるが、大掛かりな測定機器が必要で、入院しての特別な検査室内での測定に限られ、また検査対象者には多くのセンサや電極を装着する必要があることから、長期間の連続測定は困難である。また、PSG検査は、検査対象者の身体的負担が大きく、通常の睡眠環境と異なる環境で測定されるという不都合な点があるため、健常成人において中途覚醒の増加、総睡眠時間の減少、深睡眠の減少、睡眠効率の低下、精神障害患者においては、中途覚醒の増加、総睡眠時間の減少、睡眠効率の低下、レム睡眠の減少、覚醒時間の増加などの第一夜効果と呼ばれる非日常効果が表出する。そのため、PSG検査は、環境変化に敏感な精神障害患者の睡眠障害の早期検出や経過観察には適していない。 The PSG test is a test that measures biological activities such as electroencephalogram, eye movement, electrocardiogram, electromyogram, respiratory curve, snoring, and arterial oxygen saturation overnight. The PSG test is a medically recognized method for objectively assessing sleep, but it requires large-scale measuring equipment, is limited to measurements in a special laboratory after hospitalization, and is subject to testing. Since it is necessary to equip a person with many sensors and electrodes, continuous measurement for a long period of time is difficult. In addition, the PSG test has the inconvenience that the physical burden on the test subject is heavy and the measurement is performed in an environment different from the normal sleeping environment. Extraordinary effects called first night effects such as decreased sleep, decreased sleep efficiency, and increased arousal in patients with mental disorders, decreased total sleep time, decreased sleep efficiency, decreased REM sleep, and increased awakening time. The effect appears. Therefore, the PSG test is not suitable for early detection and follow-up of sleep disorders in psychiatric patients who are sensitive to environmental changes.
 不眠を訴える精神障害患者では、PSG検査においても睡眠の質の低下や睡眠構築の異常を認めることが知られている。しかし、双極性障害、うつ病、統合失調症といった精神障害では、主観的睡眠評価と、PSG検査によって客観的に測定された睡眠状態とが一致しないことも多いと報告されている。 It is known that in psychiatric patients who complain of insomnia, poor sleep quality and abnormal sleep construction are observed even in PSG examination. However, in psychiatric disorders such as bipolar disorder, depression, and schizophrenia, it has been reported that subjective sleep assessment often does not match sleep status objectively measured by polysomnography.
 アクチグラフィは、腕時計構造の小型加速度センサおよびロガーであり、測定対象者の非利腕や腰に装着して、睡眠覚醒リズムを検出する。アクチグラフィを装着した測定対象者は、就寝時間、起床時間、眠らずに寝床で過ごした時間、昼寝、起床時の気分、睡眠薬等の服薬、日常生活とは違った活動及び機器をはずした時間などを睡眠日誌に記録する。アクチグラフィに記録されたデータはコンピュータで処理され、睡眠日誌との比較により、総睡眠時間、睡眠時間の割合、総覚醒時間、覚醒時間の割合、覚醒回数及び入眠潜時などの情報が得られる。アクチグラフィは睡眠覚醒リズムの大まかな傾向の観察には有効であるが、体動に基づいた評価であるため、総睡眠時間、中途覚醒時間、睡眠効率、入眠潜時の評価においてPSG検査との相関が非常に悪く、睡眠深度や正確な睡眠時間の把握には適していない。 Actigraphy is a small accelerometer and logger with a wristwatch structure, which is attached to the non-interested arm or waist of the person to be measured to detect the sleep-wake rhythm. The measurement subject wearing the actigraphy was bedtime, wake-up time, time spent on the bed without sleeping, nap, mood when waking up, taking sleeping pills, activities different from daily life and time when the device was removed. Record such things in a sleep diary. The data recorded in the actigraphy is processed by a computer, and by comparing it with the sleep diary, information such as total sleep time, sleep time ratio, total awakening time, awakening time ratio, awakening frequency and sleep onset latency can be obtained. .. Although actigraphy is effective for observing the general tendency of sleep-wake rhythm, since it is an evaluation based on body movement, it is compared with the PSG test in the evaluation of total sleep time, mid-wake time, sleep efficiency, and sleep onset latency. The correlation is very poor and it is not suitable for grasping sleep depth and accurate sleep time.
 スリープスコープは、前額部と首筋(耳の後ろ)に貼付した電極から簡易的に睡眠時脳波を測定する装置である。スリープスコープを用いて睡眠時脳波情報を取得し、α波、δ波、またはβ波の出現状況を示す情報を解析することにより、精神障害の有無の判断を行う方法が公表されている(特許文献1)。この方法は、本質的に精神障害の検出が目的であり、精神障害患者における睡眠評価を目的とするものではない。 The sleep scope is a device that simply measures sleep electroencephalograms from electrodes attached to the forehead and nape of the neck (behind the ears). A method for determining the presence or absence of mental disorders by acquiring sleep electroencephalogram information using a sleep scope and analyzing information indicating the appearance status of α wave, δ wave, or β wave has been published (patented). Document 1). This method is essentially intended for the detection of psychiatric disorders, not for sleep assessment in psychiatric patients.
 スリーププロファイラーは、簡易的に睡眠時の脳波、眼球運動、脈拍数、おとがい筋筋電図などを測定する装置である。スリーププロファイラーを用いて、健常成人及び閉塞性睡眠時無呼吸症候群などの睡眠呼吸障害を有する患者における睡眠の評価が報告されている(特許文献1、非特許文献1~3)。しかし、スリーププロファイラーは、顔の前額部に比較的大きい装置を装着するため、感覚過敏や環境変化に対して敏感なことが多い精神障害患者には適していない。 The sleep profiler is a device that simply measures brain waves, eye movements, pulse rate, chin EMG, etc. during sleep. Evaluation of sleep in healthy adults and patients with sleep-breathing disorders such as obstructive sleep apnea syndrome has been reported using a sleep profiler (Patent Document 1, Non-Patent Documents 1 to 3). However, sleep profilers are not suitable for psychiatric patients who are often sensitive to hyperesthesia and environmental changes because they wear a relatively large device on the forehead of the face.
 脳波を用いてうつ病を診断する方法の報告もあるが(特許文献3)、頭皮に複数の電極を装着する必要があり、被験者の負担が大きい。耳介装着具を利用して脳波などの生体信号を測定する装置(特許文献4)に関する報告もあるが、睡眠時における装着は耳を下にしたときの抵抗が大きく、睡眠の妨げとなり、とくに感覚過敏な精神障害患者が受忍できるものではない。以上のように、既存の簡易型睡眠評価装置や方法は、睡眠の客観的評価、特に精神障害患者の睡眠の変化を評価する方法としては十分なものではない。 Although there is a report of a method of diagnosing depression using brain waves (Patent Document 3), it is necessary to attach a plurality of electrodes to the scalp, which imposes a heavy burden on the subject. There is also a report on a device (Patent Document 4) that measures biological signals such as brain waves using an auricle wearing device, but wearing it during sleep causes a large resistance when the ear is placed down, which hinders sleep, especially. It is not acceptable to hypersensitive mentally handicapped patients. As described above, the existing simple sleep evaluation devices and methods are not sufficient as a method for objectively evaluating sleep, particularly for evaluating changes in sleep of mentally handicapped patients.
WO2012/176790WO2012 / 176790 US8,355,769B2US8,355,769B2 US2016/0113567A1US2016 / 0113567A1 特開2011-005176JP 2011-005176
 本発明の課題は、被験者の睡眠を簡易かつ正確に評価するための方法と、これを利用した精神障害患者の治療支援を提供することにある。 An object of the present invention is to provide a method for easily and accurately evaluating the sleep of a subject and treatment support for a mentally handicapped patient using the method.
 発明者らは、精神障害患者の側頭骨上の皮膚(例えば、左右耳後方)に小型の電極を貼付して脳波を取得し、その脳波に含まれる情報を解析することで、既存のPSG法に匹敵する精度で睡眠を評価できることを見出した。さらに、複数の情報(パラメータ)をさまざまに組合せて解析した結果、睡眠効率、レム睡眠潜時、及び浅睡眠出現率の3つのパラメータの組合せが、睡眠評価に有用であることを見出した。 The inventors have attached a small electrode to the skin on the temporal bone of a mentally ill patient (for example, behind the left and right ears) to acquire an electroencephalogram, and analyze the information contained in the electroencephalogram to analyze the existing PSG method. We found that sleep can be evaluated with an accuracy comparable to that of. Furthermore, as a result of analyzing various combinations of a plurality of information (parameters), it was found that the combination of three parameters of sleep efficiency, REM sleep latency, and light sleep appearance rate is useful for sleep evaluation.
 本発明は上記の知見に基づくものであり、以下の(1)~(24)に関する。
(1)被験者の睡眠を客観的に評価する方法であって、側頭骨上の皮膚に貼付した電極から取得された生体電気活動を電気的に処理する装置を用いて、前記被験者の脳波信号を処理して睡眠段階を判定した後に睡眠情報を取得する工程、及び前記睡眠情報を解析して被験者の睡眠を評価する工程を含む評価方法。
(2)睡眠パラメータが、睡眠効率、レム睡眠時間、レム睡眠の出現率、レム睡眠潜時、浅睡眠時間、深睡眠時間、浅睡眠時間の出現率、深睡眠時間の出現率、睡眠段階の遷移の回数又は頻度、及び睡眠段階の遷移の時系列からなる群より選ばれる、(1)に記載の評価方法。
 これらのパラメータのなかでも、(i)睡眠効率、(ii)レム睡眠時間もしくはその出現率又はレム睡眠潜時、並びに(iii)浅睡眠及び/もしくは深睡眠時間又はその出現率、(iv)入眠潜時、(v)睡眠段階の遷移の回数又は頻度、睡眠段階の遷移の時系列を用いることが好ましく、(i)-(iii)がより好ましい。を用いることが好ましい。
(3)前記被験者が精神障害患者である、(1)又は(2)に記載の方法。
(4)前記患者の異なる2以上の時点での睡眠情報を比較する工程を含む、(1)~(3)のいずれかに記載の方法。
(5)異なる2以上の時点が、治療前と治療後、治療変更前と治療変更後、又は寛解時と再発・再燃時を含む、(4)に記載の方法。
(6)睡眠情報を睡眠経過図に図式化して解析する工程を含む、(1)~(5)のいずれかに記載の方法。
(7)あらかじめ取得された健常人と精神障害患者の睡眠情報によって決定された機械学習モデルに、被験者の睡眠情報を入力し、被験者の睡眠が健常人と精神障害患者のいずれに近いかを解析する工程を含む、(1)~(6)のいずれかに記載の方法。
(8)機械学習モデルを用いて算出された確率(p)を所定の閾値と比較する工程を含み、前記確率(p)が前記閾値より小さければ被験者の睡眠は健常人に近いと評価する、(7)に記載の方法。
(9)前記機械学習モデルがロジスティック回帰モデルであり、確率(p)が下記式で示される、(8)に記載の方法。
Figure JPOXMLDOC01-appb-M000003
 係数a1, a2, a3及び定数項bは、母集団に応じて適宜決定される。ある実施形態において、a1=-1.299、a2=0.591、a3=0.531、b =-0.635である。
(10)前記機械学習モデルがロジスティック回帰モデルであり、確率(p)が下記式で示される、(8)に記載の方法。
Figure JPOXMLDOC01-appb-M000004
 係数a1, a2, a3, a4及び定数項bは、母集団に応じて適宜決定される。ある実施形態において、a1=-1.263、a2= 0.604、a3= 0.532、a4= 0.064、b =-0.635である。
(11)前記閾値が0.3~0.5、好ましくは0.3~0.4である、(8)~(10)のいずれかに記載の方法。
(12)前記機械学習モデルがXGBoostである、(7)に記載の方法。
(13)前記機械学習モデルがニューラルネットワーク、好ましくはディープラーニングである、(7)に記載の方法。
(14)精神障害患者の治療を支援する(補助する)方法であって、(1)~(13)のいずれかに記載の方法にしたがい患者の睡眠を評価する工程、及び前記評価結果に基づいて患者の精神障害の症状又はその程度を評価する工程を含む、前記方法。
(15)精神障害患者の治療を支援する(補助する)方法であって、(1)~(13)のいずれかに記載の方法にしたがい患者の睡眠を評価する工程、及び前記評価結果に基づいて好ましい治療を選択する工程を含む、前記方法。
(16)入眠潜時が30分以上で就床時間以下の場合、又は睡眠効率が75%以下の場合に、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される、(15)に記載の方法。
(17)患者の精神障害の症状又はその程度を評価する工程、あるいは、好ましい治療を選択する工程が機械学習を用いて実施される、(14)~(16)のいずれかに記載の方法。
(18)脳波信号を電気的に処理する脳波信号処理装置と情報解析装置とを含む、精神障害患者の治療支援システムであって、
 前記脳波信号処理装置は、患者の側頭骨上の皮膚、好ましくは左右耳後方、より好ましくは乳様突起に貼付した電極から取得された脳波信号を電気的に処理する装置であり、
 前記情報解析装置は、
 脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報が格納される格納部と、
 前記格納部に格納された睡眠情報を解析・評価する解析部と、
 解析・評価結果を出力する出力部とを備え、
 前記解析部は、(1)~(13)のいずれかに記載の方法にしたがい患者の睡眠の評価を実施するか、又は、(14)~(17)のいずれかに記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記治療支援システム。
(19)精神障害患者の治療を支援するための情報解析装置であって、
 脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報が格納される格納部と、
 前記格納部に格納された睡眠情報を解析・評価する解析部と、
 解析・評価結果を出力する出力部とを備え、
 前記解析部は、(1)~(13)のいずれかに記載の方法にしたがい睡眠の評価を実施するか、又は、(14)~(17)のいずれかに記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記情報解析装置。
(20)精神障害患者の治療を支援するためのプログラムであって、
 脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報を取得し、前記睡眠情報を格納し、格納された睡眠情報を評価・解析し、前記評価・解析結果を出力する、処理をコンピュータに実行させるものであり、
 前記評価・解析は、(1)~(13)のいずれかに記載の方法にしたがい睡眠を評価するか、又は、(14)~(17)のいずれかに記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記プログラム。
(21)精神障害患者の治療を支援する方法であって、
 脳波信号を電気的に処理する装置を用いて、前記患者の脳波信号を処理して睡眠情報を取得する工程、及び前記睡眠情報を解析して患者の睡眠を評価する工程、及び前記評価結果に基づいて好ましい治療を選択する工程を含み、
 前記脳波信号が、患者の側頭骨上の皮膚に貼付した電極から取得されたものであり、
 前記睡眠情報が、(i)睡眠効率、(ii)レム睡眠時間もしくはその出現率又はレム睡眠潜時、並びに(iii)浅睡眠及び/もしくは深睡眠時間又はその出現率を含み、
 入眠潜時が30分以上で就床時間以下の場合、又は睡眠効率が75%未満の場合に、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される、前記方法。
(22)精神障害患者の診断を補助する方法であって、(1)~(13)のいずれかに記載の方法にしたがい睡眠を評価する工程、及び前記評価結果に基づいて患者の精神障害を診断する工程を含む、前記方法。
(23)治験のための被験者の選定方法であって、(1)~(13)のいずれかに記載の方法にしたがい睡眠を評価する工程、前記評価結果にしたがい、(不眠症治療薬などの)治験の対象となるべき被験者を選定する工程を含む、前記方法。この方法によれば、睡眠薬の治験において、PSG検査による確定診断前に、被験者を簡便に選定することができる。
(24)精神障害患者の治療方法であって、(1)~(13)のいずれかに記載の方法にしたがい患者の睡眠を評価する工程、前記評価結果に基づいて患者の精神障害の症状又はその程度を評価し、治療を決定する工程を含む、前記方法。例えば、入眠潜時が30分以上で就床時間以下の場合、または、睡眠効率が75%以下の場合に、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される。
 前記方法は、治療効果を評価する工程、及び/又は、経時的に睡眠の評価を行うことで、患者の症状の変化を経時的に評価する工程を含んでいてもよい。
 患者の睡眠を評価する工程は、(18)に記載の治療システム、又は(19)に記載の情報解析装置を用いて実施することができる。
The present invention is based on the above findings and relates to the following (1) to (24).
(1) A method for objectively evaluating a subject's sleep, in which an electroencephalogram signal of the subject is used to electrically process bioelectric activity acquired from an electrode attached to the skin on the temporal bone. An evaluation method including a step of acquiring sleep information after processing and determining a sleep stage, and a step of analyzing the sleep information to evaluate the sleep of a subject.
(2) Sleep parameters include sleep efficiency, REM sleep time, REM sleep appearance rate, REM sleep latency, light sleep time, deep sleep time, light sleep time appearance rate, deep sleep time appearance rate, and sleep stage. The evaluation method according to (1), which is selected from the group consisting of the number or frequency of transitions and the time series of transitions of sleep stages.
Among these parameters, (i) sleep efficiency, (ii) REM sleep time or its appearance rate or REM sleep latency, and (iii) light sleep and / or deep sleep time or its appearance rate, (iv) sleep onset It is preferable to use latency, (v) the number or frequency of sleep stage transitions, and the time series of sleep stage transitions, with (i)-(iii) being more preferred. Is preferably used.
(3) The method according to (1) or (2), wherein the subject is a mentally ill patient.
(4) The method according to any one of (1) to (3), which comprises a step of comparing sleep information of the patient at two or more different time points.
(5) The method according to (4), wherein two or more different time points include before and after treatment, before and after changing treatment, or during remission and recurrence / relapse.
(6) The method according to any one of (1) to (5), which comprises a step of diagramming and analyzing sleep information in a sleep progress chart.
(7) Input the subject's sleep information into a machine learning model determined by the sleep information of the healthy person and the mentally handicapped patient acquired in advance, and analyze whether the subject's sleep is closer to that of the healthy person or the mentally handicapped patient. The method according to any one of (1) to (6), which comprises the step of performing.
(8) The step of comparing the probability (p) calculated by using the machine learning model with a predetermined threshold value is included, and if the probability (p) is smaller than the threshold value, it is evaluated that the subject's sleep is close to that of a healthy person. The method according to (7).
(9) The method according to (8), wherein the machine learning model is a logistic regression model and the probability (p) is represented by the following equation.
Figure JPOXMLDOC01-appb-M000003
The coefficients a1, a2, a3 and the constant term b are appropriately determined according to the population. In one embodiment, a1 = -1.299, a2 = 0.591, a3 = 0.531, b = -0.635.
(10) The method according to (8), wherein the machine learning model is a logistic regression model and the probability (p) is represented by the following equation.
Figure JPOXMLDOC01-appb-M000004
The coefficients a1, a2, a3, a4 and the constant term b are appropriately determined according to the population. In one embodiment, a1 = -1.263, a2 = 0.604, a3 = 0.532, a4 = 0.064, b = -0.635.
(11) The method according to any one of (8) to (10), wherein the threshold value is 0.3 to 0.5, preferably 0.3 to 0.4.
(12) The method according to (7), wherein the machine learning model is XGBoost.
(13) The method according to (7), wherein the machine learning model is a neural network, preferably deep learning.
(14) A method for supporting (assisting) the treatment of a psychiatric patient, based on the step of evaluating the sleep of the patient according to the method according to any one of (1) to (13), and the evaluation result. The method comprising assessing the symptoms or extent of a patient's mental illness.
(15) A method for supporting (assisting) the treatment of a mentally handicapped patient, based on a step of evaluating the sleep of the patient according to the method according to any one of (1) to (13), and the evaluation result. The method comprising the step of selecting a preferred treatment.
(16) The orexin receptor antagonist is presented as the preferred treatment option when the sleep onset latency is 30 minutes or more and the bedtime or less, or the sleep efficiency is 75% or less, according to (15). Method.
(17) The method according to any one of (14) to (16), wherein the step of evaluating the symptom or the degree of mental disorder of the patient or the step of selecting a preferable treatment is carried out using machine learning.
(18) A treatment support system for a mentally handicapped patient, which includes an electroencephalogram signal processing device for electrically processing an electroencephalogram signal and an information analysis device.
The electroencephalogram signal processing device is a device that electrically processes electroencephalogram signals acquired from electrodes attached to the skin on the temporal bone of a patient, preferably behind the left and right ears, and more preferably to the mastoid process.
The information analysis device is
A storage unit that stores sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, and a storage unit.
An analysis unit that analyzes and evaluates sleep information stored in the storage unit,
Equipped with an output unit that outputs analysis / evaluation results
The analysis unit evaluates the sleep of the patient according to the method according to any one of (1) to (13), or the patient according to any one of (14) to (17). The treatment support system for assessing the symptoms of mental illness or its degree, or selecting a preferred treatment.
(19) An information analysis device for supporting the treatment of mentally handicapped patients.
A storage unit that stores sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, and a storage unit.
An analysis unit that analyzes and evaluates sleep information stored in the storage unit,
Equipped with an output unit that outputs analysis / evaluation results
The analysis unit evaluates sleep according to the method according to any one of (1) to (13), or the mentality of the patient according to any one of (14) to (17). The information analyzer for assessing the symptoms of a disorder or its degree, or selecting a preferred treatment.
(20) A program to support the treatment of mentally ill patients
Processing that acquires sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, stores the sleep information, evaluates / analyzes the stored sleep information, and outputs the evaluation / analysis result. To let the computer do
The evaluation / analysis evaluates sleep according to the method according to any one of (1) to (13), or mental disorder of a patient according to any one of (14) to (17). The program for assessing the symptoms or extent of the disease, or selecting the preferred treatment.
(21) A method of supporting the treatment of mentally ill patients.
In the step of processing the brain wave signal of the patient to acquire sleep information using a device that electrically processes the brain wave signal, the step of analyzing the sleep information to evaluate the sleep of the patient, and the evaluation result. Including the step of selecting the preferred treatment based on
The electroencephalogram signal was obtained from an electrode attached to the skin on the patient's temporal bone.
The sleep information includes (i) sleep efficiency, (ii) REM sleep time or rate thereof or REM sleep latency, and (iii) light sleep and / or deep sleep time or rate thereof.
The method described above, wherein an orexin receptor antagonist is presented as the preferred treatment option when sleep onset latency is 30 minutes or more and bedtime or less, or sleep efficiency is less than 75%.
(22) A method for assisting the diagnosis of a psychiatric patient, the step of evaluating sleep according to the method according to any one of (1) to (13), and the psychiatric disorder of the patient based on the evaluation result. The method comprising a step of diagnosing.
(23) A method for selecting a subject for a clinical trial, in which the step of evaluating sleep according to the method according to any one of (1) to (13), and according to the evaluation result (insomnia therapeutic agent, etc.) ) The method comprising selecting a subject to be the subject of a clinical trial. According to this method, in a hypnotic clinical trial, a subject can be easily selected before a definitive diagnosis by a PSG test.
(24) A method for treating a psychiatric patient, the step of evaluating the patient's sleep according to the method according to any one of (1) to (13), the symptom of the patient's psychiatric disorder or the patient's psychiatric disorder based on the evaluation result. The method comprising assessing the degree and determining treatment. For example, orexin receptor antagonists are offered as preferred treatment options when sleep onset latency is 30 minutes or more and bedtime or less, or sleep efficiency is 75% or less.
The method may include a step of assessing the therapeutic effect and / or a step of assessing changes in the patient's symptoms over time by assessing sleep over time.
The step of evaluating a patient's sleep can be performed using the treatment system according to (18) or the information analysis device according to (19).
 本発明の方法は、大型の装置の装着や身体の自由の制限が必要とされる従来法とは異なり、側頭骨上の皮膚(例えば、左右耳後方)に貼付する小型電極を使用するものであるために被験者の認容性が高く、感覚過敏であることが多い精神障害患者の睡眠評価にも適している。それゆえ、測定に伴う負担に起因した測定の誤差や失敗が少なく、正確な睡眠情報を取得することができる。
 後述するように、前額部から取得される脳波と側頭骨上の皮膚(例えば、左右耳後方)から取得される脳波の波形は異なるが、側頭骨上の皮膚に貼付した電極から取得した脳波によっても、PSG法に匹敵する精度で、睡眠を簡便に評価できることが本発明により実証された。
The method of the present invention uses small electrodes attached to the skin on the temporal bone (for example, behind the left and right ears), unlike the conventional method that requires the attachment of a large device and the restriction of physical freedom. Because of this, the subjects are well tolerated and are also suitable for sleep evaluation in psychiatric patients who are often hypersensitive. Therefore, there are few measurement errors and failures due to the burden associated with the measurement, and accurate sleep information can be obtained.
As will be described later, the waveforms of the EEG acquired from the forehead and the EEG acquired from the skin on the temporal bone (for example, behind the left and right ears) are different, but the EEG acquired from the electrodes attached to the skin on the temporal bone. It was also demonstrated by the present invention that sleep can be easily evaluated with an accuracy comparable to that of the PSG method.
図1は、本発明の方法で使用される脳波信号処理装置の一例を示す。(a)概略構成図、(b)ブロック図、(c)装置を身体に装着した状態。FIG. 1 shows an example of an electroencephalogram signal processing device used in the method of the present invention. (A) Schematic configuration diagram, (b) Block diagram, (c) A state in which the device is attached to the body. 図2Aは、本発明の情報解析装置の一形態を示す。FIG. 2A shows one form of the information analysis device of the present invention. 図2Bは、情報解析装置のプロセッサの処理例を示す。FIG. 2B shows a processing example of the processor of the information analysis device. 図2Cは、本発明の治療支援システム(脳波信号処理装置+情報解析装置)の一形態の概略構成図である。治療支援システムは、脳波信号処理装置と情報解析装置からなる。FIG. 2C is a schematic configuration diagram of one form of the treatment support system (electroencephalogram signal processing device + information analysis device) of the present invention. The treatment support system consists of an electroencephalogram signal processing device and an information analysis device. 図3は、同じ精神障害患者にPSG検査と本発明の方法を同時に適用した場合の評価結果の相関を示す。(a)総睡眠時間、(b)睡眠効率、(c)レム睡眠時間、(d)ノンレム睡眠時間、(e)中途覚醒時間、(f)入眠潜時、(g)浅睡眠時間(ステージN1とN2)。FIG. 3 shows the correlation of the evaluation results when the PSG test and the method of the present invention are applied to the same mentally ill patient at the same time. (A) total sleep time, (b) sleep efficiency, (c) REM sleep time, (d) non-REM sleep time, (e) mid-sleep awakening time, (f) sleep onset latency, (g) light sleep time (stage N1) And N2). 図4は、PSG検査を実施したときの健常成人と疾患ごとの第一夜と第二夜の睡眠の質の比較結果を示す(●:睡眠呼吸障害群、×:不眠障害群、▲:運動・行動障害群、○:健常成人)。(a)睡眠効率、(b)中途覚醒時間、(c)深睡眠時間、(d)レム睡眠時間。FIG. 4 shows the results of comparing the sleep quality of healthy adults and the first night and the second night for each disease when the PSG test was performed (●: sleep apnea disorder group, ×: insomnia disorder group, ▲: exercise.・ Behavioral disorders, ○: healthy adults). (A) sleep efficiency, (b) mid-wake time, (c) deep sleep time, (d) REM sleep time. 図5は、同じ精神障害患者に対してPSG検査とアクチグラフィを同時に適用した場合の評価結果の相関を、PSG検査と本発明の方法を同時に適用した場合の評価結果の相関と、比較して示す(〇:アクチグラフィ、●:本発明の方法)。(a)総睡眠時間、(b)中途覚醒時間、(c)睡眠効率、(d)入眠潜時。FIG. 5 compares the correlation of the evaluation results when the PSG test and the actigraphy are applied to the same mentally handicapped patient at the same time with the correlation of the evaluation results when the PSG test and the method of the present invention are applied at the same time. Shown (〇: actigraphy, ●: method of the present invention). (A) total sleep time, (b) mid-wake time, (c) sleep efficiency, (d) sleep onset latency. 図6は、同じ精神障害患者に対してPSG検査とスリーププロファイラーを同時に適用した場合の評価結果の相関を示す。(a)総睡眠時間、(b)睡眠効率、(c)ノンレム睡眠時間、(d)レム睡眠時間、(e)浅睡眠時間。FIG. 6 shows the correlation of the evaluation results when the PSG test and the sleep profiler are applied to the same mentally ill patient at the same time. (A) total sleep time, (b) sleep efficiency, (c) non-REM sleep time, (d) REM sleep time, (e) light sleep time. 図7は健常人の典型的な睡眠経過図を示す。FIG. 7 shows a typical sleep progress chart of a healthy person. 図8は双極性障害I型患者(症例1)の睡眠経過図と睡眠変数を示す。(a)入院時、(b)寛解時、(c)再燃時。FIG. 8 shows a sleep progress chart and sleep variables of a bipolar I disorder patient (case 1). (A) At the time of admission, (b) At the time of remission, (c) At the time of relapse. 図9は双極性障害患者(症例2)の睡眠経過図と睡眠変数を示す。(a)1回目、(b)2回目。FIG. 9 shows a sleep progress chart and sleep variables of a bipolar disorder patient (case 2). (A) 1st time, (b) 2nd time. 図10はうつ病患者(症例3)の睡眠経過図と睡眠変数を示す。(a)治療薬変更前、(b)治療薬変更後。FIG. 10 shows a sleep progress chart and sleep variables of a depressed patient (case 3). (A) Before changing the therapeutic agent, (b) After changing the therapeutic agent. 図11は睡眠薬依存患者(症例4)の睡眠経過図と睡眠変数を示す。(a)薬剤整理前、(b)薬剤整理後。FIG. 11 shows a sleep progress chart and sleep variables of a hypnotic-dependent patient (case 4). (A) Before drug reorganization, (b) After drug reorganization. 図12は統合失調症患者(症例5)の睡眠経過図と睡眠変数を示す。(a)治療変更前、(b)治療変更後。FIG. 12 shows a sleep progress chart and sleep variables of a schizophrenia patient (case 5). (A) Before the treatment change, (b) After the treatment change. 図13はうつ病患者(症例6)の睡眠経過図と睡眠変数を示す。(a)治療変更前、(b)治療変更後。FIG. 13 shows a sleep progress chart and sleep variables of a depressed patient (case 6). (A) Before the treatment change, (b) After the treatment change. 図14は双極性障害(外来)患者(症例7)の睡眠経過図と睡眠変数を示す。(a)検査入院でPSGとの同時測定、(b)と(c)は在宅測定。FIG. 14 shows a sleep progress chart and sleep variables of a bipolar disorder (outpatient) patient (case 7). (A) Simultaneous measurement with PSG at hospitalization, (b) and (c) are home measurement. 図15は、前額部から取得した脳波と、側頭骨上の皮膚(耳後方(乳様突起))に貼付した電極から取得した脳波の波形を示す。上段:前額部(40μV/目盛)、下段:乳様突起(20μV/目盛)、測定装置:ZA-X(プロアシスト社)、バンドパスフィルター:0.3-35Hz(米国睡眠医学会推奨値)FIG. 15 shows the waveforms of the electroencephalograms acquired from the forehead and the electrodes attached to the skin on the temporal bone (posterior ear (mastoid process)). Upper: Forehead (40 μV / scale), Lower: Mastoid process (20 μV / scale), Measuring device: ZA-X (Pro Assist), Bandpass filter: 0.3-35 Hz (Recommended value by the American Society of Sleep Medicine)
1.睡眠の評価方法
 本発明は、精神障害患者の睡眠を評価する方法であって、脳波信号を電気的に処理する装置を用いて、患者の脳波信号から睡眠情報を取得する工程と、前記睡眠情報を解析して患者の睡眠を評価する工程を含み、患者の側頭骨上の皮膚、特に左右耳後方に貼付した電極から取得された脳波信号を用いることを特徴とする。
1. 1. Sleep Evaluation Method The present invention is a method for evaluating sleep of a mentally handicapped patient, which includes a step of acquiring sleep information from an electroencephalogram signal of a patient using a device that electrically processes an electroencephalogram signal, and the sleep information. It includes a step of evaluating the patient's sleep by analyzing the above, and is characterized by using an electroencephalogram signal acquired from the skin on the patient's temporal bone, particularly the electrodes attached to the back of the left and right ears.
1.1 脳波信号
 脳波(Electroencephalogram:EEG)は、脳から生じる電気活動である。脳波(脳波信号)は、頭皮上、前額部、耳朶、などに設置した電極で記録される。PSG検査では、頭の中心部と後頭部に複数の電極を設置する。簡易型脳波測定装置であるスリーププロファイラーでは頭部に電極を貼付し、スリープスコープでは前額部(額の中央)と耳の下に電極を貼付して脳波を計測する。
1.1 Electroencephalogram signal Electroencephalogram (EEG) is an electrical activity that occurs from the brain. EEG (electroencephalogram signal) is recorded by electrodes placed on the scalp, forehead, earlobe, and the like. In PSG examination, multiple electrodes are placed in the center of the head and the back of the head. In the sleep profiler, which is a simple electroencephalogram measuring device, electrodes are attached to the head, and in the sleep scope, electrodes are attached to the forehead (center of the forehead) and under the ears to measure the electroencephalogram.
 本発明では、側頭骨上の皮膚、好ましくは左右耳後方、より好ましくは乳様突起上に電極を設置して脳波信号を取得する。小さな電極の上記部位への貼付は、従来の頭皮上への複数の電極の設置に比べて、被験者(患者)の違和感が小さく、感覚過敏や環境変化に対して敏感な精神障害患者においても忍容性が高く、正確な脳波の測定を可能にする。実際、発明者らが行った実験では、顔の前額部に比較的大きい装置を装着するスリーププロファイラーでは患者の脱落率が高い(59%)が、本発明の方法では、脱落率は10分の1にまで減少し(6%)、精神障害患者での測定、評価が可能であった(実施例6)。 In the present invention, electrodes are placed on the skin on the temporal bone, preferably behind the left and right ears, and more preferably on the mastoid process to acquire electroencephalogram signals. Attaching a small electrode to the above-mentioned site is less uncomfortable for the subject (patient) than the conventional placement of multiple electrodes on the scalp, and is shinobi even in patients with mental disorders who are sensitive to hyperesthesia and environmental changes. It is highly tolerant and enables accurate measurement of brain waves. In fact, in experiments conducted by the inventors, a sleep profiler with a relatively large device attached to the forehead of the face had a high patient dropout rate (59%), but with the method of the present invention, the dropout rate was 10 minutes. It decreased to 1 (6%), and it was possible to measure and evaluate in patients with mental disorders (Example 6).
 後述の実施例5(図15)に示すとおり、脳波の波形は電極の装着部位によって違いがあるが、発明者らは、側頭骨上の皮膚(左右の耳後方)に貼付した電極から取得した脳波から導出された睡眠情報が、睡眠脳波の測定方法として医学的にも認められたPSG検査の睡眠情報に匹敵することを確認した。 As shown in Example 5 (FIG. 15) described later, the waveform of the electroencephalogram differs depending on the electrode mounting site, but the inventors obtained it from the electrodes attached to the skin on the temporal bone (behind the left and right ears). It was confirmed that the sleep information derived from the brain waves is comparable to the sleep information of the PSG test, which is medically recognized as a method for measuring sleep brain waves.
1.2 脳波信号を電気的に処理する装置
 本発明では、脳波信号を電気的に処理する装置を用いて、被験者の脳波信号から、睡眠情報を取得する。脳波信号は、被験者の側頭骨上の皮膚、好ましくは左右耳後方、より好ましくは乳様突起に貼付した電極から取得されるため、この装置で脳波を取得するとき、被験者は身体の拘束を受けない。また電極は小型であるため、被験者に違和感を与えない。
1.2 Device for Electrically Processing EEG Signals In the present invention, sleep information is acquired from a subject's EEG signal using a device for electrically processing EEG signals. Since the electroencephalogram signal is obtained from the skin on the subject's temporal bone, preferably behind the left and right ears, and more preferably from electrodes attached to the mastoid process, the subject is subject to physical restraint when acquiring the electroencephalogram with this device. No. Moreover, since the electrodes are small, the subject does not feel uncomfortable.
 図1は、脳波信号を電気的に処理する装置の一例である。装置(脳波信号を電気的に処理する装置)1は、ディスプレイ2、入力操作ボタン3、電極4(4a、4b、4c)、視覚による警告センサ5、聴覚による警告センサ6を備える。装置1は、被験者から脳波信号を取得する手段と、当該被験者から取得した脳波信号に応答して被験者の睡眠段階を表す出力測定信号を出力する分析手段と、前記出力測定信号に応答していずれかの睡眠段階に相当する出力信号を出力する閾値手段とを有し、閾値手段は、前記出力測定信号に関連する閾値を決定する手段であって、被験者の睡眠段階の生理学的状態に対応する出力測定信号値の範囲を規定する閾値決定手段と、前記出力測定信号と前記閾値決定手段によって決定された閾値とを比較して被験者が生理学的状態にあることを示す前記出力信号を出力する比較手段とを有している。装置は充電式あるいは電池式にでき、測定時にコンセントに差し込む必要がなく、複雑な送信器および受信器も必要としない。 FIG. 1 is an example of a device that electrically processes an electroencephalogram signal. The device (device that electrically processes an electroencephalogram signal) 1 includes a display 2, an input operation button 3, electrodes 4 (4a, 4b, 4c), a visual warning sensor 5, and an auditory warning sensor 6. The device 1 includes a means for acquiring a brain wave signal from the subject, an analysis means for outputting an output measurement signal indicating the sleep stage of the subject in response to the brain wave signal acquired from the subject, and an analysis means in response to the output measurement signal. It has a thresholding means for outputting an output signal corresponding to the sleep stage, and the thresholding means is a means for determining a threshold value associated with the output measurement signal and corresponds to the physiological state of the sleep stage of the subject. Comparison of outputting the output signal indicating that the subject is in a physiological state by comparing the threshold value determining means that defines the range of the output measurement signal value with the threshold value determined by the output measurement signal and the threshold value determining means. Has means. The device can be rechargeable or battery-powered, does not need to be plugged into an electrical outlet for measurement, and does not require complex transmitters and receivers.
 「+電極」4a、「-電極」4b及び「com電極」4cからなる電極4は、増幅器11に接続されている。「com電極」4cを使用して、増幅器11の基準点が被験者と同一の電位にされる。被験者の脳波信号の出力は、「+電極」4a及び「-電極」4bを経て、増幅器11に入力される。12は、増幅器11のアナログ出力信号をデジタル化する機器である。13はシングルボードコンピュータであり、本発明の方法を実施する上において必要なすべてのコンピュータハードウエアはシングルボードコンピュータ13に組み込まれている。14はキーパッド付きの液晶ディスプレイである。液晶ディスプレイ14は、出力装置(ディスプレイ及びバックライト)及び入力装置(キーパッド)の両方として使用される。15はスピーカー、16は主電源、17は増幅器用電源である。主電源16には多くの機器が接続されているので、電気ノイズがシステム内に発生する傾向がある。従って、増幅器用の電源を備えることによって増幅器11に対する電気ノイズの影響を懸念しなくてよいので、好ましい。上記増幅器11、デジタル化機器12、シングルボードコンピュータ13、液晶ディスプレイ14、スピーカー15、主電源16及び増幅器用電源17は装置1に組み込まれている。 The electrode 4 composed of the "+ electrode" 4a, the "-electrode" 4b and the "com electrode" 4c is connected to the amplifier 11. Using the "com electrode" 4c, the reference point of the amplifier 11 is set to the same potential as the subject. The output of the subject's electroencephalogram signal is input to the amplifier 11 via the "+ electrode" 4a and the "-electrode" 4b. Reference numeral 12 denotes a device for digitizing the analog output signal of the amplifier 11. Reference numeral 13 denotes a single board computer, and all the computer hardware necessary for carrying out the method of the present invention is incorporated in the single board computer 13. Reference numeral 14 denotes a liquid crystal display with a keypad. The liquid crystal display 14 is used as both an output device (display and backlight) and an input device (keypad). Reference numeral 15 is a speaker, 16 is a main power source, and 17 is an amplifier power source. Since many devices are connected to the main power supply 16, electrical noise tends to occur in the system. Therefore, it is preferable to provide a power supply for the amplifier because it is not necessary to worry about the influence of electrical noise on the amplifier 11. The amplifier 11, the digitizing device 12, the single board computer 13, the liquid crystal display 14, the speaker 15, the main power supply 16, and the amplifier power supply 17 are incorporated in the device 1.
 図1(c)に示すように、「+電極」4a及び「-電極」4bは、被験者の認容性の高い側頭骨上の皮膚、好ましくは左右の左右耳後方、より好ましくは左右の乳様突起に貼付され、「com電極」4cは後頸部に貼付される。適切な電極の一例は、固定ゲル粘着性ヒドロゲルと、安全ソケット末端を有する予め装着されたリードワイヤとを備える自己粘着性電極である。電極4aと4bを上記部位に装着すると、被験者の脳波信号が装置1に入力される。そして、この装置1専用のキーを装置1の所定の場所に挿入して必要な操作を行うことによって、装置1にインストールされているアルゴリズムによって、後述する睡眠情報が得られる。この様々な睡眠情報は、特別のソフトウエアで処理することによって、もしくは解析用に作成したエクセルマクロ等で、そのパーソナルコンピュータのモニター画面上に表示することができる。 As shown in FIG. 1 (c), the “+ electrode” 4a and the “-electrode” 4b are the skin on the temporal bone, which is highly tolerated by the subject, preferably the left and right posterior ears, and more preferably the left and right mastoids. It is attached to the protrusion, and the "com electrode" 4c is attached to the back neck. An example of a suitable electrode is a self-adhesive electrode comprising a fixed gel adhesive hydrogel and a pre-mounted lead wire having a safety socket end. When the electrodes 4a and 4b are attached to the above-mentioned sites, the subject's electroencephalogram signal is input to the device 1. Then, by inserting the key dedicated to the device 1 into a predetermined place of the device 1 and performing a necessary operation, the sleep information described later can be obtained by the algorithm installed in the device 1. These various sleep information can be displayed on the monitor screen of the personal computer by processing with special software or by using an Excel macro or the like created for analysis.
 本発明の脳波信号を電気的に処理する装置の一例として、General Sleep社のZマシーンを挙げることができる。 As an example of the device for electrically processing the electroencephalogram signal of the present invention, a Z machine manufactured by General Sleep can be mentioned.
1.3 睡眠情報(睡眠パラメータ)
 脳波信号を電気的に処理する装置により、各種の睡眠情報が得られる。本明細書では、この数値化された睡眠情報を「睡眠変数」と呼ぶ。すなわち、「睡眠変数」とは、睡眠科学研究及び睡眠臨床で用いられる睡眠パラメータを意味し、例えば、総就床時間、入眠潜時、総睡眠時間、睡眠時間、睡眠効率、浅睡眠時間又はその出現率、深睡眠時間又はその出現率、レム睡眠時間又はその出現率と潜時、ノンレム睡眠時間又はその出現率、中途覚醒時間及びその出現率、覚醒反応数、覚醒反応指数(回/時間)、睡眠周期、レム睡眠間隔、各睡眠段階の比率、脳波の周波数帯域ごとの出現率及びパワー、睡眠段階の遷移の回数などの変数等が挙げられるが、本発明の趣旨を超えない範囲でこれらに限られない。本明細書においては、これらの「睡眠変数」に、睡眠段階の遷移の時系列、などの非数値化情報を併せて、「睡眠情報(睡眠パラメータ)」と呼ぶ。
1.3 Sleep information (sleep parameters)
Various types of sleep information can be obtained by a device that electrically processes an electroencephalogram signal. In the present specification, this quantified sleep information is referred to as a "sleep variable". That is, "sleep variable" means sleep parameters used in sleep science research and sleep clinical practice, for example, total bedtime, sleep latency, total sleep time, sleep time, sleep efficiency, light sleep time or the like. Appearance rate, deep sleep time or its appearance rate, REM sleep time or its appearance rate and latency, non-REM sleep time or its appearance rate, mid-wake time and its appearance rate, awakening response number, arousal response index (times / hour) , Sleep cycle, REM sleep interval, ratio of each sleep stage, appearance rate and power of each frequency band of brain wave, number of transitions of sleep stage, and other variables, but these are within the scope of the present invention. Not limited to. In the present specification, these "sleep variables" and non-quantified information such as the time series of transitions of sleep stages are collectively referred to as "sleep information (sleep parameters)".
 以下、本発明で使用される睡眠情報(睡眠パラメータ)について説明するが、睡眠情報はこれらに限定されるものではない。
・「総就床時間」とは就床から起床までの時間である。
・「入眠潜時」とは、就床後の覚醒状態から眠りに入るまでの所要時間である。眠気の強さや寝つきの良し悪しの指標となる。
・「総睡眠時間」とは、実際の睡眠時間であり、入眠から翌朝の覚醒までの時間から中途覚醒を除いた時間である。
・「睡眠効率」とは、総就床時間(就床から起床までの時間)に対する総睡眠時間の割合である。
・「レム睡眠」とは、急速眼球運動(Rapid Eye Movement(REM))を伴う睡眠であり、身体は休息状態にあるが、脳は覚醒状態にある。入眠からレム睡眠が出現するまでの時間を「レム潜時」、総就床時間(Time in Bed:TIB)に対するレム睡眠の出現率を「レム睡眠出現率」と言う。なお、出現率の分母にはTIB以外に、総睡眠時間(Total Sleep Time:TST)やSleep Period Time(SPT)が使用されることもある。
・「ノンレム睡眠」とは、急速眼球運動を伴わない睡眠のことであり、総就床時間に対するノンレム睡眠の出現率を「ノンレム睡眠出現率」と言う。出現率の分母は上述のとおりである。
・ノンレム睡眠は1~4の下記4つの段階(Rechtschaffen & Kalesによる判定基準)に分けられ、段階1と段階2を「浅睡眠」、段階3と段階4を「深睡眠」と言う。
段階1:「α波が50%以下」または「低振幅の種々の周波数の波が混在」または「瘤波が存在」
段階2:「低振幅不規則θ~δ波が存在または高振幅徐波(-)が存在」または「瘤波、紡錘波またはK複合が存在」
段階3:「2Hz以下75μV以上の徐波20~50%」または「紡錘波は周波数が遅くなり、より広範囲に出現」
段階4:「2Hz以下75μV以上の徐波50%以上」または「紡錘波(±)」
30秒ごとを1単位(エポック)として判定する。30秒間で一番長かった睡眠段階がそのエポックの段階とする。例えば、あるエポックにおいて、10秒が浅睡眠で、残り20秒が深睡眠の場合、エポックとしては深睡眠の判定とする。総就床時間に対する浅睡眠及び深睡眠の出現率は、それぞれ「浅睡眠出現率」及び「深睡眠出現率」と言う。出現率の分母は上述のとおりである。
・「中途覚醒」は、入眠後に目が覚めた状態を意味し、睡眠時間内での覚醒時間で示される。
・「早朝覚醒」とは、朝早く目が覚め、その後眠れない状態を意味する。
・「睡眠周期」とは、入眠から最初のレム睡眠の終わりまで、その後はレム睡眠の終了から次のレム睡眠の終了までの時間。
・「レム睡眠間隔」とは、レム睡眠が終わった時点から次のレム睡眠が始まるまでの時間。
・「脳波の周波数帯域」とは、脳波の周波数による分類であり、δ波:0.5~4Hz未満、θ波:4~8Hz未満、α波:8~13Hz未満、β波:13Hz以上などに規定されるが、これに限定しない。
・「パワー」とは、脳波をパワースペクトル解析して得られたパワーのうち、各周波数帯あるいは全ての周波数帯の総和を指す。
Hereinafter, sleep information (sleep parameters) used in the present invention will be described, but sleep information is not limited thereto.
・ "Total bedtime" is the time from bedtime to waking up.
・ "Sleep onset latency" is the time required from awakening after bedtime to falling asleep. It is an indicator of drowsiness and good or bad sleep.
-The "total sleep time" is the actual sleep time, which is the time from falling asleep to awakening the next morning excluding halfway awakening.
-"Sleep efficiency" is the ratio of total sleep time to total bedtime (time from bedtime to waking up).
・ "REM sleep" is sleep accompanied by rapid eye movement (REM), in which the body is in a resting state, but the brain is in a wakeful state. The time from falling asleep to the appearance of REM sleep is called "REM sleep", and the appearance rate of REM sleep with respect to the total bedtime (Time in Bed: TIB) is called "REM sleep appearance rate". In addition to TIB, Total Sleep Time (TST) or Sleep Period Time (SPT) may be used as the denominator of the appearance rate.
-"Non-rem sleep" is sleep that does not involve rapid eye movement, and the appearance rate of non-rem sleep with respect to the total bedtime is called "non-rem sleep appearance rate". The denominator of the appearance rate is as described above.
-Non-rem sleep is divided into the following four stages 1 to 4 (judgment criteria by Rechtschaffen & Kales), stage 1 and stage 2 are called "light sleep", and stages 3 and 4 are called "deep sleep".
Stage 1: "Alpha wave is 50% or less" or "Waves of various frequencies with low amplitude are mixed" or "No bump wave is present"
Stage 2: "There is a low-amplitude irregular θ-δ wave or a high-amplitude slow wave (-)" or "There is a bump wave, a spindle wave or a K complex"
Stage 3: "Slow wave 20-50% below 2Hz and above 75μV" or "Spindle wave slows down and appears more widely"
Step 4: "Slow wave 50% or more of 2Hz or less and 75μV or more" or "Spindle wave (±)"
Every 30 seconds is determined as one unit (epoch). The longest sleep stage in 30 seconds is the epoch stage. For example, in a certain epoch, when 10 seconds is light sleep and the remaining 20 seconds is deep sleep, the epoch is determined to be deep sleep. The appearance rates of light sleep and deep sleep with respect to the total bedtime are referred to as "light sleep appearance rate" and "deep sleep appearance rate", respectively. The denominator of the appearance rate is as described above.
-"Mid-time awakening" means a state of waking up after falling asleep, and is indicated by the awakening time within the sleep time.
・ "Early morning awakening" means a state of waking up early in the morning and then unable to sleep.
-The "sleep cycle" is the time from falling asleep to the end of the first REM sleep, and then from the end of the REM sleep to the end of the next REM sleep.
・ "REM sleep interval" is the time from the end of REM sleep to the start of the next REM sleep.
・ "Brain wave frequency band" is a classification based on the frequency of brain waves, and is defined as δ wave: 0.5 to less than 4 Hz, θ wave: 4 to less than 8 Hz, α wave: 8 to less than 13 Hz, β wave: 13 Hz or more, etc. However, it is not limited to this.
-"Power" refers to the sum of each frequency band or all frequency bands among the power obtained by power spectrum analysis of brain waves.
 上記した睡眠情報(睡眠変数)のうち、とくに(i)睡眠効率、(ii)レム睡眠時間もしくはその出現率又はレム睡眠潜時、並びに(iii)浅睡眠及び/もしくは深睡眠時間又はその出現率、(iv)入眠潜時、(v)睡眠段階の遷移の回数又は頻度、睡眠段階の遷移の時系列が、精神障害患者の睡眠評価に好適であり、(i)-(iii)がより好適である。これらの睡眠変数は、精神障害患者に特徴的な睡眠障害をよく反映する。ロジスティック回帰分析を用いた実施例4においても、精神障害患者の睡眠評価において、これらの睡眠変数が評価に有用であることが示されている。 Among the above sleep information (sleep variables), in particular, (i) sleep efficiency, (ii) REM sleep time or its appearance rate or REM sleep latency, and (iii) light sleep and / or deep sleep time or its appearance rate. , (Iv) sleep latency, (v) the number or frequency of sleep phase transitions, and the timeline of sleep phase transitions are suitable for sleep evaluation in patients with mental disorders, with (i)-(iii) being more preferred. Is. These sleep variables well reflect the sleep disorders characteristic of mentally ill patients. Example 4 using logistic regression analysis also shows that these sleep variables are useful for evaluation in sleep evaluation of psychiatric patients.
 精神障害は定量評価できる指標がないことから、患者の主観評価を基に、医師が病状を評価している。一方、精神障害患者では睡眠障害が必発であるが、睡眠は客観的な定量評価が可能であり、サロゲートマーカーとなる可能性が示唆される。 Since there is no index that can be quantitatively evaluated for mental disorders, doctors evaluate the medical condition based on the subjective evaluation of patients. On the other hand, sleep disorders are inevitable in psychiatric patients, but sleep can be objectively quantitatively evaluated, suggesting that it may serve as a surrogate marker.
1.4 睡眠経過図による評価
 睡眠の解析には、睡眠経過図を使用することができる。睡眠経過図とは、睡眠時間における睡眠段階の経過推移(遷移)を図式化したものであり、簡便に睡眠の全体像(プロファイル)を画像として視覚的に把握することができる。図8~13に示されるように、精神障害患者の睡眠プロファイルは健常人の睡眠プロファイル(図7)と明らかに異なり、症状の経過や治療効果に応じて睡眠プロファイルや睡眠変数は顕著に変化する。したがって、睡眠の全体像の解析、評価に、睡眠経過図を使用することは有用である。
1.4 Evaluation by sleep progress chart A sleep progress chart can be used for sleep analysis. The sleep progress chart is a diagram of the progress (transition) of the sleep stage in the sleep time, and the overall image (profile) of sleep can be easily visually grasped as an image. As shown in FIGS. 8 to 13, the sleep profile of a mentally handicapped patient is clearly different from that of a healthy person (FIG. 7), and the sleep profile and sleep variables change significantly depending on the course of symptoms and the therapeutic effect. .. Therefore, it is useful to use the sleep progress chart for analysis and evaluation of the whole picture of sleep.
 例えば、不眠を呈する患者の場合には、総睡眠時間や深睡眠時間の延長、覚醒時間and/or覚醒回数の減少、睡眠効率の増加、睡眠段階の遷移回数の減少、などにより治療が奏功したと判断され、逆に総睡眠時間や深睡眠時間の短縮、覚醒時間及び/又は覚醒回数の増加、睡眠効率の減少、睡眠段階の遷移回数の増加などにより症状が悪化したと判断されるが、これらが視覚的に直感的に把握できる。また、健常者の睡眠パターンに近づいたか、例えば、浅睡眠、深睡眠、レム睡眠の周期が規則的か、睡眠の前半に深睡眠があり、後半にレム睡眠が増えているかを同様に把握できる。 For example, in the case of patients with insomnia, treatment was successful by extending total sleep time and deep sleep time, reducing awakening time and / or awakening frequency, increasing sleep efficiency, and reducing the number of sleep stage transitions. On the contrary, it is judged that the symptoms worsened due to shortening of total sleep time and deep sleep time, increase of awakening time and / or number of awakenings, decrease of sleep efficiency, increase of number of transitions of sleep stage, etc. These can be grasped visually and intuitively. In addition, it is possible to similarly grasp whether the sleep pattern of a healthy person is approached, for example, whether the cycle of light sleep, deep sleep, and REM sleep is regular, or whether there is deep sleep in the first half of sleep and REM sleep is increasing in the second half. ..
1.5 ロジスティック回帰分析による評価
 精神障害患者は睡眠障害を伴うことが多く、その睡眠プロファイルは、健常人の睡眠プロファイルとは区別される。発明者らは、あらかじめ取得された精神障害患者と健常人の睡眠情報をロジスティック回帰分析で分析し、決定されたロジスティック回帰モデルに被験者(患者)の睡眠情報を入力することで、被験者の睡眠が健常人と精神障害患者のいずれに近いかを簡便に評価できることを見出した。
1.5 Evaluation by Logistic Regression Analysis Psychiatric patients often have sleep disorders, and their sleep profiles are distinguished from those of healthy individuals. The inventors analyze the sleep information of a mentally ill patient and a healthy person acquired in advance by logistic regression analysis, and input the sleep information of the subject (patient) into the determined logistic regression model to obtain the subject's sleep. We found that it is possible to easily evaluate whether it is closer to a healthy person or a mentally ill patient.
 ロジスティック回帰モデルは、下記一般式で示され、この式に被験者の睡眠情報(睡眠変数)を入力して得られる確率(p)の値は、0~1の間になり、0に近いほど健常人に、1に近いほど精神障害患者に近づく。
Figure JPOXMLDOC01-appb-M000005
The logistic regression model is shown by the following general formula, and the value of the probability (p) obtained by inputting the subject's sleep information (sleep variable) into this formula is between 0 and 1, and the closer it is to 0, the healthier it is. The closer it is to a person, the closer to a mentally ill patient.
Figure JPOXMLDOC01-appb-M000005
 使用する睡眠変数は、精神障害患者の睡眠評価においては、入院などの環境の影響を受けにくい情報が好ましく、例えば、睡眠効率、レム睡眠出現率、浅睡眠出現率、深睡眠出現率、及び覚醒反応指数などの比率や、レム睡眠潜時及び入眠潜時などの潜時が挙げられる。通常の場合には、睡眠効率、レム睡眠潜時、及び浅睡眠出現率の組合せ、あるいは、睡眠効率、レム睡眠潜時、浅睡眠出現率及び入潜眠時の組合せが好ましい。 The sleep variables used are preferably information that is not easily affected by the environment such as hospitalization in the sleep evaluation of mentally handicapped patients. For example, sleep efficiency, REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, and arousal. Ratios such as response index and latency such as REM sleep latency and sleep onset latency can be mentioned. In the usual case, a combination of sleep efficiency, REM sleep latency, and light sleep appearance rate, or a combination of sleep efficiency, REM sleep latency, light sleep appearance rate, and indwelling sleep is preferable.
 使用する睡眠変数の組合せは、対象とする精神障害や睡眠障害に合わせて、母集団の情報を選択することで、適宜変更することが可能であり、それに応じてロジスティック回帰モデル(相関係数及び相関関数)も適宜設定される。 The combination of sleep variables used can be changed as appropriate by selecting population information according to the target mental disorder or sleep disorder, and the logistic regression model (correlation coefficient and correlation coefficient) can be changed accordingly. Correlation function) is also set as appropriate.
 睡眠変数の係数a_i及び定数項bは、各モデル及び母集団に応じて決定される。係数が正の場合はその睡眠変数が大きいほど、被験者の睡眠が精神障害患者の睡眠に近いという判定となることに寄与し、係数が負の場合はその睡眠変数が小さいほど、被験者の睡眠が精神障害患者の睡眠に近いという判定となることに寄与する。係数の絶対値の大きさはその睡眠変数の精神障害患者の睡眠らしさへの寄与度を示す。 The coefficient a_i and the constant term b of the sleep variable are determined according to each model and population. If the coefficient is positive, the larger the sleep variable, the closer the subject's sleep is to the sleep of the mentally ill patient, and if the coefficient is negative, the smaller the sleep variable, the more the subject's sleep. It contributes to the judgment that it is close to sleep of a mentally ill patient. The magnitude of the absolute value of the coefficient indicates the contribution of the sleep variable to the sleepiness of the mentally handicapped patient.
 確率(p)について、被験者の睡眠が健常人のグループと精神障害患者のグループのいずれに属するかの境界となる値を「閾値」と呼ぶ。「閾値」は、各モデル及び母集団に応じて決定される。確率(p)が前記閾値より小さければ、患者の睡眠は健常人に近いと評価することができる。また同じ患者の2以上の時点での確率(p)を比較したとき、確率(p)が減少し、減少した結果、閾値を跨ぐ或いは閾値に近づいていれば、患者の症状は健常人に近づいた、すなわち改善したと評価することができる。 Regarding the probability (p), the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value". The "threshold" is determined according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
 精神障害患者と健常人を区別するための好ましい一例として、睡眠効率、レム睡眠潜時、及び浅睡眠出現率の組合せによる(モデル1)を挙げることができる。別な好ましい一例として、前記睡眠情報に入眠潜時を加えた4つの睡眠変数の組合せによる(モデル2)を挙げることができる。さらに、特殊な睡眠プロファイルを示す精神障害患者について、その睡眠を健常人と区別するためのモデルとして、睡眠効率、レム睡眠出現率、及び深睡眠出現率の組合せによる(モデル7)を挙げることができる。 A preferable example for distinguishing between a mentally ill patient and a healthy person is a combination of sleep efficiency, REM sleep latency, and light sleep appearance rate (model 1). Another preferred example is the combination of four sleep variables (model 2), which is the sleep information plus the sleep onset latency. Furthermore, as a model for distinguishing the sleep of a mentally handicapped patient showing a special sleep profile from a healthy person, a combination of sleep efficiency, REM sleep appearance rate, and deep sleep appearance rate can be cited (Model 7). can.
(2)モデル1
 モデル1は、下記式で示される。
Figure JPOXMLDOC01-appb-M000006
(2) Model 1
Model 1 is represented by the following equation.
Figure JPOXMLDOC01-appb-M000006
 モデル1において、各睡眠変数の係数、a1, a2, a3及び定数項bは、母集団に応じて適宜決定される。ある実施形態において、a1=-1.299、a2=0.591、a3=0.531、b =-0.635である。 In model 1, the coefficients, a1, a2, a3 and the constant term b of each sleep variable are appropriately determined according to the population. In one embodiment, a1 = -1.299, a2 = 0.591, a3 = 0.531, b = -0.635.
 モデル1において、閾値は0.3~0.5、好ましくは0.3~0.4、より好ましくは0.3~0.36、0.3~0.35、0.3~0.34、例えば0.339である。患者の睡眠情報(睡眠変数)をモデル1に入力して得られる確率(p)が前記閾値よりも高ければ、当該患者の睡眠は精神障害患者に近い睡眠と言える。治療の結果、確率(p)が閾値よりも低くなれば、当該患者の睡眠は健常人に近づき、正常化されたと言える。 In model 1, the threshold is 0.3 to 0.5, preferably 0.3 to 0.4, more preferably 0.3 to 0.36, 0.3 to 0.35, 0.3 to 0.34, for example 0.339. If the probability (p) obtained by inputting the patient's sleep information (sleep variable) into the model 1 is higher than the threshold value, it can be said that the patient's sleep is close to that of a mentally ill patient. If the probability (p) becomes lower than the threshold value as a result of the treatment, it can be said that the sleep of the patient approaches that of a healthy person and is normalized.
(3)モデル2
 モデル2は、下記式で示される。
Figure JPOXMLDOC01-appb-M000007
(3) Model 2
Model 2 is represented by the following equation.
Figure JPOXMLDOC01-appb-M000007
 モデル2において、各睡眠変数の係数、a1, a2, a3, a4及び定数項bは、母集団に応じて適宜決定される。ある実施形態において、a1=-1.263、a2= 0.604、a3= 0.532、a4= 0.064、b =-0.635である。 In model 2, the coefficients, a1, a2, a3, a4 and the constant term b of each sleep variable are appropriately determined according to the population. In one embodiment, a1 = -1.263, a2 = 0.604, a3 = 0.532, a4 = 0.064, b = -0.635.
 モデル2において、閾値は0.3~0.5、好ましくは0.3~0.4、より好ましくは0.3~0.36、0.3~0.35、0.3~0.34、例えば0.335である。患者の睡眠情報(睡眠変数)をモデル2に入力して得られる確率(p)が前記閾値よりも高ければ、当該患者の睡眠は精神障害患者に近い睡眠と言える。治療の結果、確率(p)が閾値よりも低くなれば、当該患者の睡眠は健常人に近づき、正常化されたと言える。 In model 2, the threshold is 0.3 to 0.5, preferably 0.3 to 0.4, more preferably 0.3 to 0.36, 0.3 to 0.35, 0.3 to 0.34, for example 0.335. If the probability (p) obtained by inputting the patient's sleep information (sleep variable) into the model 2 is higher than the threshold value, it can be said that the patient's sleep is close to that of a mentally ill patient. If the probability (p) becomes lower than the threshold value as a result of the treatment, it can be said that the sleep of the patient approaches that of a healthy person and is normalized.
(4)モデル7
 特定の睡眠プロファイルを示す患者群や治療薬に対しては、その睡眠プロファイルに合わせたモデルの設定が可能である。例えば、ベンゾジアゼピン系の睡眠薬が浅睡眠を増加させることとは異なり、オレキシン受容体阻害薬は、深睡眠やレム睡眠を増加させる。オレキシン受容体阻害薬で治療を受けた患者では、治療に応答していれば、深睡眠やレム睡眠が増加する。オレキシン受容体阻害薬としては、例えばスボレキサントやレンボレキサントが挙げられるが、それらに限定されない。モデル7は、深睡眠やレム睡眠を増加させるオレキシン受容体阻害薬で治療を受けた患者の睡眠の評価するために、深睡眠及びレム睡眠の出現率を睡眠情報として決定されたロジスティック回帰モデルである。
(4) Model 7
For a group of patients showing a specific sleep profile or a therapeutic drug, it is possible to set a model according to the sleep profile. For example, unlike benzodiazepine hypnotics that increase light sleep, orexin receptor inhibitors increase deep sleep and REM sleep. Patients treated with orexin receptor inhibitors have increased deep and REM sleep if they respond to treatment. Examples of orexin receptor inhibitors include, but are not limited to, suvorexant and lemborexant. Model 7 is a logistic regression model in which the incidence of deep sleep and REM sleep was determined as sleep information in order to evaluate the sleep of patients treated with orexin receptor inhibitors that increase deep sleep and REM sleep. be.
 モデル7は、下記式で示される。
Figure JPOXMLDOC01-appb-M000008
Model 7 is represented by the following equation.
Figure JPOXMLDOC01-appb-M000008
 モデル7において、各睡眠変数の係数、a1, a2, a3及び定数項bは、母集団に応じて適宜決定される。ある実施形態において、a1=-0.742、a2=-0.744、a3=-0.307、b =-0.681である。 In model 7, the coefficients, a1, a2, a3 and the constant term b of each sleep variable are appropriately determined according to the population. In one embodiment, a1 = -0.742, a2 = -0.744, a3 = -0.307, b = -0.681.
 モデル7において、閾値は0.3~0.5、好ましくは0.35~0.45、より好ましくは0.35~0.44、0.36~0.43、0.37~0.42、0.38~0.42、0.39~0.42、例えば0.409である。オレキシン受容体阻害薬で治療を受けた患者については、モデル7が好ましい。オレキシン受容体阻害薬で治療を受けた患者おいて、確率(p)が閾値よりも低くなれば、患者は治療が奏功したと言える。 In model 7, the threshold is 0.3 to 0.5, preferably 0.35 to 0.45, more preferably 0.35 to 0.44, 0.36 to 0.43, 0.37 to 0.42, 0.38 to 0.42, 0.39 to 0.42, for example 0.409. Model 7 is preferred for patients treated with orexin receptor inhibitors. In patients treated with orexin receptor inhibitors, if the probability (p) is lower than the threshold, the patient can be said to have been successfully treated.
1.6 機械学習モデルXGBoostによる評価
 また、発明者らは睡眠プロファイルの特徴を表す指標として各睡眠段階の移行回数を用いることにより、より高精度な評価が可能であることを見出した。
1.6 Evaluation by machine learning model XGBoost The inventors also found that more accurate evaluation is possible by using the number of transitions of each sleep stage as an index showing the characteristics of the sleep profile.
 被験者の睡眠情報(睡眠変数)を入力して得られる確率(p)の値は、0~1の間になり、0に近いほど健常人に、1に近いほど精神障害患者に近づく。 The value of the probability (p) obtained by inputting the subject's sleep information (sleep variable) is between 0 and 1, and the closer it is to 0, the closer it is to a healthy person, and the closer it is to 1, the closer it is to a mentally ill patient.
 使用する睡眠変数は、精神障害患者の睡眠評価においては、入院などの環境の影響を受けにくい情報が好ましく、例えば、睡眠効率、レム睡眠出現率、浅睡眠出現率、深睡眠出現率、及び覚醒反応指数などの比率や、睡眠段階の遷移の回数又は頻度、レム睡眠潜時及び入眠潜時などの潜時が挙げられる。 The sleep variables used are preferably information that is not easily affected by the environment such as hospitalization in the sleep evaluation of mentally handicapped patients. For example, sleep efficiency, REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, and arousal. Examples include ratios such as response index, number or frequency of sleep stage transitions, and latency such as REM sleep latency and sleep onset latency.
 前記睡眠変数の睡眠段階間の遷移の回数又は頻度は段階ごとに評価されることが好ましい。本実施形態では睡眠段階の遷移の頻度は各睡眠段階間の移行の回数を総就床時間で割ったものとし、12種類(覚醒→レム睡眠、覚醒→浅睡眠、覚醒→深睡眠、レム睡眠→覚醒、レム睡眠→浅睡眠、レム睡眠→深睡眠、浅睡眠→覚醒、浅睡眠→レム睡眠、浅睡眠→深睡眠、深睡眠→覚醒、深睡眠→レム睡眠、深睡眠→浅睡眠)を用いるが、各睡眠段階間の移行の回数を総睡眠時間で割ったもの等でも良い。 It is preferable that the number or frequency of transitions of the sleep variable between sleep stages is evaluated for each stage. In the present embodiment, the frequency of transitions between sleep stages is assumed to be the number of transitions between each sleep stage divided by the total bedtime, and 12 types (awakening → REM sleep, awakening → light sleep, awakening → deep sleep, REM sleep). → Awakening, REM sleep → Light sleep, REM sleep → Deep sleep, Light sleep → Awakening, Light sleep → REM sleep, Light sleep → Deep sleep, Deep sleep → Awakening, Deep sleep → Rem sleep, Deep sleep → Light sleep) Although it is used, the number of transitions between each sleep stage may be divided by the total sleep time.
 使用する睡眠変数の組合せは、対象とする精神障害や睡眠障害に合わせて、母集団の情報を選択することで、適宜変更することが可能であり、それに応じて機械学習モデルも適宜設定される。本実施形態では機械学習モデルとしてXGBoostを用いる。 The combination of sleep variables to be used can be appropriately changed by selecting population information according to the target mental disorder or sleep disorder, and the machine learning model is appropriately set accordingly. .. In this embodiment, XGBoost is used as a machine learning model.
 図2Aに本発明の情報解析装置の一例を示す。図2Bは、プロセッサ21の処理例を示すフローチャートである。ステップS11において、プロセッサ21は、夫々複数のデータから構成されるデータの集合を取得する。すなわち、プロセッサ21は、記憶装置22或いは通信回路23を介して、複数のデータを取得する。 FIG. 2A shows an example of the information analysis device of the present invention. FIG. 2B is a flowchart showing a processing example of the processor 21. In step S11, the processor 21 acquires a set of data each composed of a plurality of data. That is, the processor 21 acquires a plurality of data via the storage device 22 or the communication circuit 23.
 ステップS12では、プロセッサ21は、ステップS11で取得した複数のデータの夫々の特徴量である前記睡眠変数を算出し、算出した睡眠変数を入力として機械学習モデルにより確率(p)を得る。ステップS11で取得したデータが健常者のものである場合は0、精神障害患者のものである場合は1とし、前記機械学習モデルにより算出される確率(p)との誤差で定まる損失関数を算出し、損失関数を小さくするよう機械学習モデルのパラメータ修正(各パラメータの重みの更新)を勾配ブースティング法により行う。本実施形態ではgbtreeをBoosterとして勾配ブースティング木を用い、損失関数バイナリクロスエントロピー誤差に基づき、パラメータの更新を行うが、損失関数は平均二乗誤差等であっても良い。バイナリクロスエントロピー誤差Eは、tkを教師データ、pkを機械学習モデルによる予測値とすると、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000009
In step S12, the processor 21 calculates the sleep variable, which is a feature amount of each of the plurality of data acquired in step S11, and obtains a probability (p) by a machine learning model using the calculated sleep variable as an input. If the data acquired in step S11 is for a healthy person, it is set to 0, and if it is for a mentally handicapped patient, it is set to 1, and a loss function determined by an error from the probability (p) calculated by the machine learning model is calculated. Then, the parameters of the machine learning model are modified (the weights of each parameter are updated) so that the loss function is reduced by the gradient boosting method. In this embodiment, a gradient boosting tree is used with gbtree as a Booster, and parameters are updated based on the loss function binary cross entropy error, but the loss function may be a mean square error or the like. The binary cross entropy error E can be expressed by the following equation, where tk is the teacher data and pk is the predicted value by the machine learning model.
Figure JPOXMLDOC01-appb-M000009
 モデル性能はAUC(Area Under the Curve)で評価し、評価指標を最大にするモデルパラメータを決定し、記憶装置22或いは通信回路23を介して保存する。 The model performance is evaluated by AUC (Area Under the Curve), the model parameter that maximizes the evaluation index is determined, and stored via the storage device 22 or the communication circuit 23.
 確率(p)について、被験者の睡眠が健常人のグループと精神障害患者のグループのいずれに属するかの境界となる値を「閾値」と呼ぶ。「閾値」は、各モデル及び母集団に応じてステップS13で決定される。確率(p)が前記閾値より小さければ、患者の睡眠は健常人に近いと評価することができる。また同じ患者の2以上の時点での確率(p)を比較したとき、確率(p)が減少し、減少した結果、閾値を跨ぐ或いは閾値に近づいていれば、患者の症状は健常人に近づいた、すなわち改善したと評価することができる。 Regarding the probability (p), the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value". The "threshold value" is determined in step S13 according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
 ステップS14では、プロセッサ21は、ステップS12で保存された機械学習モデルを記憶装置(格納部)或いは通信回路を介して読み込む。 In step S14, the processor 21 reads the machine learning model saved in step S12 via the storage device (storage unit) or the communication circuit.
 ステップS15では、プロセッサ21は、識別対象データとなるデータ(入力データ)を、記憶装置(格納部)などから取得し、プロセッサ1は識別対象データから特徴量を抽出し、ステップS14で読みだした機械学習モデルにより確率(p)を算出する。pが0に近いほど健常人に、1に近いほど精神障害患者に近づく。 In step S15, the processor 21 acquires the data (input data) to be the identification target data from the storage device (storage unit) or the like, and the processor 1 extracts the feature amount from the identification target data and reads it in step S14. The probability (p) is calculated by the machine learning model. The closer p is to 0, the closer to a healthy person, and the closer to 1 is, the closer to a mentally ill patient.
 ステップS16では、プロセッサ21は、ステップS15で算出された確率とステップS13で設定された閾値とを比較し、判定を実施する。このとき、確率が閾値以上であれば、精神障害患者と判定する。ステップS17、S18では、プロセッサ21は、ステップS16で得られた判定結果を出力する(例えば、ディスプレイ25に表示する)。 In step S16, the processor 21 compares the probability calculated in step S15 with the threshold value set in step S13, and makes a determination. At this time, if the probability is equal to or higher than the threshold value, the patient is determined to be a mentally ill patient. In steps S17 and S18, the processor 21 outputs the determination result obtained in step S16 (for example, it is displayed on the display 25).
1.7 他の機械学習モデルによる評価
 本発明において、睡眠情報の解析・評価(睡眠経過図の解析含む)は、ロジスティック回帰分析やXGBoost(教師あり学習)以外の機械学習により実施してもよい。機械学習は、教師なし学習でも、教師あり学習でも半教師あり学習でもよい。教師なし学習としては、例えば、k平均法、階層クラスタリング、ニューラルネットワーク等を好適に使用できる。教師あり学習としては、例えば、k近傍法、サポートベクターマシン、決定木、アンサンブル学習(Random Forest, XGBoost, LightGBM, Ada Boost等)、線形判別、2次判別、ナイーブ・ベイズ、ロジスティック回帰、ニューラルネットワーク、自己組織化マップ等、半教師あり学習としては、例えば、ニューラルネットワーク等を好適に使用できる。
1.7 Evaluation by Other Machine Learning Models In the present invention, analysis / evaluation of sleep information (including analysis of sleep progress chart) may be performed by machine learning other than logistic regression analysis or XGBoost (supervised learning). .. Machine learning may be unsupervised learning, supervised learning, or semi-supervised learning. As unsupervised learning, for example, k-means clustering, hierarchical clustering, neural network, and the like can be preferably used. Supervised learning includes, for example, k-nearest neighbor method, support vector machine, decision tree, ensemble learning (Random Forest, XGBoost, LightGBM, Ada Boost, etc.), linear discrimination, quadratic discrimination, naive bayes, logistic regression, neural network. As semi-supervised learning such as a self-organizing map, for example, a neural network or the like can be preferably used.
1.8 時系列睡眠情報の機械学習モデルによる評価
 精神障害患者は睡眠障害を伴うことが多く、その睡眠プロファイルは、健常人の睡眠プロファイルとは区別される。発明者らは、あらかじめ取得された精神障害患者と健常人の睡眠情報から決定された機械学習モデルに被験者(患者)の睡眠情報を入力することで、被験者の睡眠が健常人と精神障害患者のいずれに近いかを簡便に評価できることを見出した。
1.8 Evaluation of time-series sleep information by machine learning model Mental illness patients often have sleep disorders, and their sleep profiles are distinguished from those of healthy people. By inputting the sleep information of the subject (patient) into the machine learning model determined from the sleep information of the mentally ill patient and the healthy person acquired in advance, the inventors can make the subject's sleep of the healthy person and the mentally ill patient. We found that it is possible to easily evaluate which one is closer.
 本実施形態では機械学習モデルとしてニューラルネットワークによる符号化器と分類器を用いる。図2BのステップS11において、プロセッサ21は、夫々複数のデータから構成されるデータの集合を取得する。すなわち、プロセッサ21は、記憶装置22或いは通信回路23を介してネットワークから、複数のデータを取得する。 In this embodiment, a neural network encoder and classifier are used as a machine learning model. In step S11 of FIG. 2B, the processor 21 acquires a set of data each composed of a plurality of data. That is, the processor 21 acquires a plurality of data from the network via the storage device 22 or the communication circuit 23.
 ステップS12では、プロセッサ21は、入力データから符号化器によって得られた特徴量から分類器を用いて算出された確率(p)と、入力データが健常者のものである場合は0、精神障害患者のものである場合は1とし、これらとの差から損失関数を求める。プロセッサ1は、誤差逆伝播法(バックプロパゲーション)により前記損失関数を小さくするよう符号化器及び分類器のパラメータ修正(各パラメータの重みの更新)を行い、機械学習モデルのパラメータを決定し、記憶装置22或いは通信回路23を介して保存する。 In step S12, the processor 21 has a probability (p) calculated from the feature quantity obtained by the encoder from the input data using the classifier, 0 when the input data is that of a healthy person, and a mental disorder. If it belongs to a patient, it is set to 1, and the loss function is calculated from the difference from these. The processor 1 corrects the parameters of the encoder and the classifier (updates the weights of each parameter) so as to reduce the loss function by the error backpropagation method (backpropagation), determines the parameters of the machine learning model, and determines the parameters of the machine learning model. It is stored via the storage device 22 or the communication circuit 23.
 損失関数は、クロスエントロピー誤差を用いる場合、クロスエントロピー誤差Eは、tkを教師データ、pkを機械学習モデルによる予測値とすると、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000010
When the cross entropy error is used as the loss function, the cross entropy error E can be expressed by the following equation, where tk is the teacher data and pk is the predicted value by the machine learning model.
Figure JPOXMLDOC01-appb-M000010
 確率(p)について、被験者の睡眠が健常人のグループと精神障害患者のグループのいずれに属するかの境界となる値を「閾値」と呼ぶ。「閾値」は、各モデル及び母集団に応じて ステップS13で決定される。確率(p)が前記閾値より小さければ、患者の睡眠は健常人に近いと評価することができる。また同じ患者の2以上の時点での確率(p)を比較したとき、確率(p)が減少し、減少した結果、閾値を跨ぐ或いは閾値に近づいていれば、患者の症状は健常人に近づいた、すなわち改善したと評価することができる。 Regarding the probability (p), the value that is the boundary between the group of healthy subjects and the group of mentally handicapped patients is called the "threshold value". The "threshold value" is determined in step S13 according to each model and population. If the probability (p) is smaller than the threshold value, it can be evaluated that the patient's sleep is close to that of a healthy person. Also, when comparing the probabilities (p) of the same patient at two or more time points, if the probabilities (p) decrease, and as a result of the decrease, if the threshold is crossed or approaches the threshold, the patient's symptoms are closer to those of a healthy person. In other words, it can be evaluated as improved.
 ステップS14では、プロセッサ21は、ステップS12で保存された機械学習モデルを記憶装置22或いは通信回路23を介して読み込む。 In step S14, the processor 21 reads the machine learning model stored in step S12 via the storage device 22 or the communication circuit 23.
 ステップS15では、プロセッサ21は、識別対象データとなるデータ(入力データ)を、記憶装置2又はネットワークなどから取得し、プロセッサ21は識別対象データから符号化器により特徴量を抽出し、特徴量から分類器で確率(p)を算出する。pが0に近いほど健常人に、1に近いほど精神障害患者に近づく。 In step S15, the processor 21 acquires the data (input data) to be the identification target data from the storage device 2, the network, or the like, and the processor 21 extracts the feature amount from the identification target data by the encoder from the feature amount. Calculate the probability (p) with the classifier. The closer p is to 0, the closer to a healthy person, and the closer to 1 is, the closer to a mentally ill patient.
 ステップS16では、プロセッサ21は、ステップS15で算出された確率とステップS13で設定された閾値とを比較し、判定を実施する。このとき、確率が閾値以上であれば、精神障害患者と判定する。ステップS17、S18では、プロセッサ21は、ステップS16で得られた判定結果を出力する(例えば、ディスプレイ25に表示する、或いはネットワークに送信する)。 In step S16, the processor 21 compares the probability calculated in step S15 with the threshold value set in step S13, and makes a determination. At this time, if the probability is equal to or higher than the threshold value, the patient is determined to be a mentally ill patient. In steps S17 and S18, the processor 21 outputs the determination result obtained in step S16 (for example, it is displayed on the display 25 or transmitted to the network).
 本実施形態において、符号化器は、ディープラーニングモデルの一つであるTransformerを用いたが、CNN(Convolutional Neural Network)、RNN(Recurrent Neural Network)等を利用することもできる。符号化器から得られる特徴量を分類器に入力して得らえる出力値と入力データが、健常者であるか精神障害患者であるかとの誤差で定まる損失関数を算出し、誤差逆伝搬法により前記損失関数を小さくする前記符号化器及び前記分類器のパラメータ修正を行う。損失関数はクロスエントロピー誤差、平均二乗誤差等を利用できる。 In this embodiment, Transformer, which is one of the deep learning models, is used as the encoder, but CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), etc. can also be used. The error back propagation method is performed by calculating a loss function that is determined by the error between the output value and the input data obtained by inputting the feature quantity obtained from the encoder into the classifier and whether it is a healthy person or a mentally handicapped person. The parameters of the encoder and the classifier are modified to reduce the loss function. The loss function can use the cross entropy error, the mean square error, and the like.
 時系列としての一晩の睡眠の分類を実現するために、1つ若しくは複数の連続するエポックの判定をまとめて数値化(ベクトル化)し、1つ若しくは複数のTransformer層から成る符号化器に入力する。符号化器から入力データに対する特徴量を得て、その特徴量から分類器により確率(p)を算出する。分類器は1つ若しくは複数の全結合層から成る。 In order to realize the classification of overnight sleep as a time series, the judgments of one or more consecutive epochs are collectively digitized (vectorized) into a encoder consisting of one or more Transformer layers. input. A feature amount for the input data is obtained from the encoder, and the probability (p) is calculated from the feature amount by the classifier. The classifier consists of one or more fully connected layers.
 睡眠の評価において、各睡眠段階がどのような順番で出現し、移行していくかの睡眠経過の時系列情報(睡眠経過図のパターン)は重要であると考えられる。そのため、あらかじめ取得された睡眠情報が、一晩の時系列の睡眠段階の遷移である場合、時系列データとして扱う機械学習モデルを構築することにより、より高精度な睡眠評価が可能になる。 In sleep evaluation, time-series information (pattern of sleep progress chart) of sleep progress in which each sleep stage appears and shifts is considered to be important. Therefore, when the sleep information acquired in advance is the transition of the sleep stage of the overnight time series, more accurate sleep evaluation becomes possible by constructing a machine learning model that handles it as time series data.
2. 精神障害患者の治療支援
 本発明は、精神障害患者の治療を支援する(補助する)方法も提供する。前記方法は、上記1に記載した方法にしたがって患者の睡眠を評価する工程と、前記評価結果に基づいて患者の精神障害の症状又はその程度を評価する工程を含む。
2. Treatment Support for Psychiatric Patients The present invention also provides a method for supporting (assisting) the treatment of a mentally ill patient. The method includes a step of evaluating the sleep of a patient according to the method described in 1 above, and a step of evaluating the symptom of mental disorder of the patient or the degree thereof based on the evaluation result.
 あるいは、上記1に記載した方法にしたがって患者の睡眠を評価する工程と、前記評価結果に基づいて好ましい治療を選択する工程を含む。 Alternatively, it includes a step of evaluating the sleep of the patient according to the method described in 1 above, and a step of selecting a preferable treatment based on the evaluation result.
 例えば、覚醒度が高く、中途覚醒や浅睡眠が多い場合、具体的には、入眠潜時が30分以上で就床時間以下の場合、睡眠効率が75%よりも少ない場合には、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される。治療にも関わらず患者の睡眠プロファイルに変化がない場合には、異なる作用の治療薬に変更したり、修正型電気けいれん療法などを検討する。 For example, if the arousal level is high and there are many awakenings and light sleep, specifically, if the sleep onset latency is 30 minutes or more and the bedtime or less, or if the sleep efficiency is less than 75%, orexin is accepted. Orexins are presented as the preferred treatment option. If the patient's sleep profile does not change despite treatment, change to a treatment with a different effect or consider modified electroconvulsive therapy.
 本発明によれば、投薬前に睡眠を評価することにより、主観的評価で過剰に不眠を訴えている患者(遠藤四郎、精神神経学雑誌 64, 173-707, 1962 )への睡眠薬の投薬を回避できる。また、投薬後に睡眠の改善度を評価することで、効果がない場合の長期投与を避けられ、投薬後に睡眠の改善度を評価することで、適切な投与量を選択できる。 According to the present invention, by evaluating sleep before dosing, a hypnotic is administered to a patient (Shiro Endo, Psychiatry and Neurology Magazine 64, 173-707, 1962) who complains of excessive insomnia by subjective evaluation. It can be avoided. In addition, by evaluating the degree of improvement in sleep after administration, long-term administration when there is no effect can be avoided, and by evaluating the degree of improvement in sleep after administration, an appropriate dose can be selected.
3. 精神障害患者の治療支援システム
 本発明は、精神障害患者の治療支援システムも提供する。図2Cに本発明の治療支援システムの概略を示す。図2に示すとおり、本発明の治療支援システムは、脳波信号処理装置(脳波信号を電気的に処理する装置)と情報解析装置とを含む。脳波信号処理装置は、情報解析装置とは独立した簡易型装置であり、患者(被験者)の自宅等で使用され、上記1に記載したように、患者の側頭骨上の皮膚、好ましくは左右耳後方、より好ましくは乳様突起上に貼付した電極から取得された脳波信号を電気的に処理する。情報解析装置は、前記脳波信号処理装置で処理された患者の睡眠情報(睡眠パラメータ)を取得し、格納する格納部と、前記格納部に格納された睡眠情報を解析・評価する解析部と、解析・評価結果を出力する出力部とを備える。前記解析部は、本発明にしたがって、患者の睡眠の評価を実施するか、又は、患者の精神障害の症状又はその程度の評価、あるいは好ましい治療の選択を行い、患者の睡眠情報とともに、あるいは別個に、評価結果を出力する。解析・評価は、機械学習により実施されてもよい。出力されたデータは、プリンター又はディスプレイに送られ、印刷又は表示される。前記プリンター及びディスプレイは、情報解析装置の一部であってもよいし、外部に連結されていてもよい。
3. 3. Treatment Support System for Mental Illness Patients The present invention also provides a treatment support system for mentally ill patients. FIG. 2C shows an outline of the treatment support system of the present invention. As shown in FIG. 2, the treatment support system of the present invention includes an electroencephalogram signal processing device (a device that electrically processes an electroencephalogram signal) and an information analysis device. The electroencephalogram signal processing device is a simple device independent of the information analysis device, and is used at the home of the patient (subject), etc., and as described in 1 above, the skin on the temporal bone of the patient, preferably the left and right ears. The electroencephalogram signal obtained from the electrodes attached posteriorly, more preferably on the mastoid process, is electrically processed. The information analysis device includes a storage unit that acquires and stores sleep information (sleep parameters) of a patient processed by the electroencephalogram signal processing device, an analysis unit that analyzes and evaluates sleep information stored in the storage unit, and an analysis unit. It is equipped with an output unit that outputs analysis / evaluation results. The analysis unit evaluates the patient's sleep according to the present invention, or evaluates the symptoms or degree of the patient's psychiatric disorder, or selects a preferable treatment, and together with or separately from the patient's sleep information. The evaluation result is output to. The analysis / evaluation may be carried out by machine learning. The output data is sent to a printer or display for printing or display. The printer and the display may be a part of the information analysis device or may be connected to the outside.
4. 精神障害患者の治療を支援するための情報解析装置
 本発明は、本発明の治療支援システムで使用される情報解析装置も提供する。図2Cに本発明の治療支援システムの概略を示す。図2Cに示すとおり、本発明の情報解析装置は、脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報が格納される格納部(記憶装置)と、前記格納部に格納された睡眠情報を解析・評価する解析部(プロセッサ)と、解析・評価結果を出力する出力部とを備え、前記解析部は、上記1に記載した睡眠評価方法にしたがって睡眠の評価を実施するか、又は、患者の精神障害の症状又はその程度の評価、あるいは好ましい治療の選択を行い、患者の睡眠情報とともに、あるいは別個に、評価結果を出力する。解析・評価は、機械学習により実施されてもよい。上記のとおり、出力されたデータを印刷又は表示するプリンター及びディスプレイは、情報解析装置の一部であってもよいし、外部に連結されていてもよい。
4. Information Analyst Device for Supporting Treatment of Psychiatric Disorders The present invention also provides an information analyzer used in the treatment support system of the present invention. FIG. 2C shows an outline of the treatment support system of the present invention. As shown in FIG. 2C, the information analysis device of the present invention is stored in a storage unit (storage device) for storing sleep information of the patient processed by a device that electrically processes a brain wave signal, and a storage unit. It is equipped with an analysis unit (processor) that analyzes / evaluates sleep information and an output unit that outputs analysis / evaluation results. Does the analysis unit perform sleep evaluation according to the sleep evaluation method described in 1 above? , Or, evaluate the symptoms or degree of mental disorders of the patient, or select the preferred treatment, and output the evaluation results together with or separately from the sleep information of the patient. The analysis / evaluation may be carried out by machine learning. As described above, the printer and the display for printing or displaying the output data may be a part of the information analysis device or may be connected to the outside.
5. 精神障害患者の治療支援プログラム
 本発明は、本発明の情報解析装置において、処理を実行させるためのプログラムも提供する。具体的に言えば、本発明のプログラムは、脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報を取得し、前記睡眠情報を格納し、格納された睡眠情報を評価・解析し、前記評価・解析結果を出力する、処理をコンピュータに実行させるものであり、前記評価・解析は、本発明にしたがい、患者の睡眠の評価を実施するか、又は、患者の精神障害の症状又はその程度の評価、休薬の影響の評価、あるいは好ましい治療の選択を実施することを含む。
5. Treatment Support Program for Mental Illness Patients The present invention also provides a program for executing processing in the information analyzer of the present invention. Specifically, the program of the present invention acquires the sleep information of the patient processed by the device that electrically processes the brain wave signal, stores the sleep information, and evaluates / analyzes the stored sleep information. The evaluation / analysis result is output, and the processing is executed by the computer. The evaluation / analysis evaluates the sleep of the patient according to the present invention, or the symptom of the patient's mental disorder. Or it involves assessing the extent of the drug, assessing the effects of drug withdrawal, or selecting the preferred treatment.
6.その他の応用
 本発明の方法によればPSG検査とほぼ同等の精度で、簡便に、精神障害患者の睡眠を客観的に評価することができる。本発明の方法は、PSG検査とは異なり、被検査者の身体を拘束することがないため、第一夜効果などの非日常効果を示すことなく通常の睡眠環境と同じ条件で評価することができるという利点がある。したがって、精神障害患者の睡眠評価や治療支援のみならず、臨床において様々な利用が可能である。
6. Other Applications According to the method of the present invention, the sleep of a mentally handicapped patient can be easily and objectively evaluated with almost the same accuracy as the PSG test. Unlike the PSG test, the method of the present invention does not restrain the body of the subject, so that the evaluation can be performed under the same conditions as in a normal sleeping environment without showing extraordinary effects such as the first night effect. There is an advantage that it can be done. Therefore, it can be used not only for sleep evaluation and treatment support for psychiatric patients but also for various clinical purposes.
 例えば、本発明の方法は、睡眠を用いた精神障害患者の診断補助(診断を補助する方法)として利用できる。例えば、本発明の方法を利用して、精神障害患者における睡眠を客観的に評価することで、精神障害を診断し、より早期に適切な介入をすることができる。本発明では、側頭骨上に貼付した小型電極を用いて脳波を測定するため、測定に伴う負担や、それに起因した測定の誤差や失敗が少なく、在宅でも簡便に正確な睡眠情報を取得することができる。それゆえ、入院を必要とせず、外来患者の睡眠を自宅で評価することができる。 For example, the method of the present invention can be used as a diagnostic aid (method for assisting diagnosis) of a mentally handicapped patient using sleep. For example, by using the method of the present invention to objectively evaluate sleep in a psychiatric patient, the psychiatric disorder can be diagnosed and appropriate intervention can be performed earlier. In the present invention, since the electroencephalogram is measured using a small electrode attached on the temporal bone, there is little burden associated with the measurement and measurement errors and failures due to the measurement, and accurate sleep information can be easily obtained even at home. Can be done. Therefore, outpatient sleep can be assessed at home without the need for hospitalization.
 また、本発明の方法を利用して、睡眠薬などの治験のための被験者の選定を行うこともできる。例えば、不眠症患者を対象とした睡眠薬の治験において、PSG検査による確定診断前に、本発明の方法を利用して、睡眠を客観的に評価することで、治験に適した被験者を迅速かつ簡便に選定することができる。 In addition, the method of the present invention can be used to select subjects for clinical trials such as sleeping pills. For example, in a clinical trial of a hypnotic drug for insomnia patients, by using the method of the present invention to objectively evaluate sleep before a definitive diagnosis by a PSG test, a subject suitable for the clinical trial can be quickly and easily selected. Can be selected for.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
実施例1:本発明の方法による睡眠評価の妥当性の検証
1.本発明の方法による睡眠評価とPSG検査による睡眠評価の相関関係
 本発明による睡眠評価方法の妥当性を検証するために、PSG検査との比較を行った。統合失調症、双極性障害、うつ病、レビー小体型認知症・レム睡眠行動障害、睡眠障害、注意欠如・多動症、自閉スペクトラム症、その他(適応障害、パニック症、解離症、妄想性障害、変換症など)の病状を少なくとも1つを有する37例の精神障害患者を対象として、PSG検査による睡眠評価と本発明の方法による睡眠評価を同時に実施し、その相関をみた。
Example 1: Verification of validity of sleep evaluation by the method of the present invention 1. Correlation between sleep evaluation by the method of the present invention and sleep evaluation by the PSG test In order to verify the validity of the sleep evaluation method by the present invention, a comparison with the PSG test was performed. Syndrome, bipolar disorder, depression, Lewy body dementias / REM sleep behavior disorder, sleep disorder, attentionlessness / hyperactivity disorder, autism spectrum disorder, etc. (adjustment disorder, panic disorder, dissection disorder, delusional disorder, For 37 mentally ill patients with at least one condition (such as adjustment disorder), sleep evaluation by PSG test and sleep evaluation by the method of the present invention were simultaneously performed, and the correlation was observed.
 本発明の方法の実施するために、脳波信号処理装置としてZマシーン(General Sleep社)を使用した。患者の側頭骨上の皮膚(左右の耳後方(乳様突起))及び頸部に電極を貼付し、メーカー推奨のプロトコルにより脳波を計測し、睡眠情報を取得した。 In order to carry out the method of the present invention, a Z machine (General Sleep) was used as an electroencephalogram signal processing device. Electrodes were attached to the skin on the patient's temporal bone (behind the left and right ears (mastoid process)) and the neck, and brain waves were measured according to the protocol recommended by the manufacturer to obtain sleep information.
 PSG検査と本発明の方法は、総睡眠時間、睡眠効率、レム睡眠時間、ノンレム睡眠時間、中途覚醒時間、入眠潜時、浅睡眠時間(ステージN1とN2)のいずれにおいても、良好な相関関係を示した(図3及び表1) The PSG test and the method of the present invention have a good correlation in all of total sleep time, sleep efficiency, REM sleep time, non-REM sleep time, mid-wake time, sleep onset latency, and light sleep time (stages N1 and N2). (Fig. 3 and Table 1)
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
2.アクチグラフィによる睡眠評価とPSG検査による睡眠評価の相関関係
 実施例1と同じ37例を対象として、PSG検査による睡眠評価とアクチグラフィ(腕時計構造の小型加速度センサ)による睡眠評価を同時に実施し、その相関関係をみた。
2. Correlation between sleep evaluation by actigraphy and sleep evaluation by PSG test For the same 37 cases as in Example 1, sleep evaluation by PSG test and sleep evaluation by actigraphy (small acceleration sensor with a wristwatch structure) were performed at the same time. I saw the correlation.
 結果を、PSG検査と本発明の方法との相関関係(実施例1)と比較してプロットした。PSG検査とアクチグラフィとの相関関係は、PSG検査と本発明の方法との相関関係に比較して、(a)総睡眠時間、(b)中途覚醒時間、(c)睡眠効率、(d)入眠潜時のいずれにおいても、劣ることが確認された(図5)。 The results were plotted in comparison with the correlation between the PSG test and the method of the present invention (Example 1). The correlation between the PSG test and polysomnography is as follows: (a) total sleep time, (b) mid-wake time, (c) sleep efficiency, (d) as compared to the correlation between the PSG test and the method of the present invention. It was confirmed that it was inferior in all of the sleep onset latency (Fig. 5).
3.スリーププロファイラーによる睡眠評価とPSG検査による睡眠評価の相関関係
 4例を対象として、PSG検査による睡眠評価とスリーププロファイラー(アドバンスドブレインモニタリング株式会社)による睡眠評価を同時に実施し、その相関をみた。
3. 3. Correlation between sleep evaluation by sleep profiler and sleep evaluation by PSG test For 4 cases, sleep evaluation by PSG test and sleep evaluation by sleep profiler (Advanced Brain Monitoring Co., Ltd.) were performed at the same time, and the correlation was observed.
 PSG検査とスリーププロファイラーによる睡眠評価との相関関係を示す。PSG検査とスリーププロファイラーによる睡眠評価の相関関係は、(a)総睡眠時間、(b)睡眠効率、(c)ノンレム睡眠時間、(d)レム睡眠時間、(e)浅睡眠時間のいずれにおいても、よくないことが確認された(図6)。 Shows the correlation between the PSG test and sleep evaluation by the sleep profiler. The correlation between the PSG test and sleep evaluation by the sleep profiler is as follows in any of (a) total sleep time, (b) sleep efficiency, (c) non-REM sleep time, (d) REM sleep time, and (e) light sleep time. , It was confirmed that it was not good (Fig. 6).
実施例2:本発明の方法における第一夜効果の検討
1.本発明の方法による第一夜効果
 一般的に、PSG検査では、検査対象者に多くのセンサや電極が装着されるなど、通常の睡眠環境と異なる環境で測定されることによって睡眠の質へ影響が現れることが多い。これは、第一夜効果と呼ばれている。例えば、健常成人では「中途覚醒の増加、総睡眠時間の減少、深睡眠の減少、睡眠効率の低下」、不眠症患者では「中途覚醒の増加、睡眠効率の低下、レム睡眠の減少」、うつ病患者では「総睡眠時間の減少、睡眠効率の低下、覚醒時間の増加、レム睡眠の減少」、自閉スペクトラム症患者では「ステージN2の減少、中途覚醒の増加、睡眠効率の低下」などの第一夜効果が現れることが多い。そこで、14人の健常成人を対象として、Zマシーンを用いて側頭骨上の皮膚(左右耳後方(乳様突起))に貼付した電極から脳波を6日間計測し、総睡眠時間、睡眠効率、浅睡眠時間比率、深睡眠時間比率、レム睡眠時間比率のパラメータの変化をみた。
Example 2: Examination of the first night effect in the method of the present invention 1. First night effect by the method of the present invention Generally, in a PSG test, the quality of sleep is affected by measurement in an environment different from the normal sleeping environment, such as many sensors and electrodes being attached to the test subject. Often appears. This is called the first night effect. For example, "increased arousal, decreased total sleep time, decreased deep sleep, decreased sleep efficiency" in healthy adults, "increased arousal, decreased sleep efficiency, decreased REM sleep" in insomnia patients, depression. For sick patients, "decrease in total sleep time, decrease in sleep efficiency, increase in awakening time, decrease in REM sleep", and in patients with autism spectrum disorder, "decrease in stage N2, increase in awakening, decrease in sleep efficiency", etc. The first night effect often appears. Therefore, for 14 healthy adults, brain waves were measured for 6 days from electrodes attached to the skin on the temporal bone (posterior left and right ears (mastoid process)) using a Z machine, and total sleep time, sleep efficiency, and so on. We observed changes in the parameters of light sleep time ratio, deep sleep time ratio, and REM sleep time ratio.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、本発明の方法によれば、第一夜~第六夜において、睡眠の質(総睡眠時間、睡眠効率、浅睡眠時間比率、深睡眠時間比率、レム睡眠時間比率)に変化がなく、第一夜効果が現れないことが分かる。 As shown in Table 2, according to the method of the present invention, the quality of sleep (total sleep time, sleep efficiency, light sleep time ratio, deep sleep time ratio, REM sleep time ratio) from the first night to the sixth night. It can be seen that there is no change in and the first night effect does not appear.
2.PSG検査による第一夜効果
 健常成人(1例)と精神障害患者(睡眠呼吸障害群、不眠障害群、運動・行動障害群、各1例)を対象としてPSG検査を実施し、(a)睡眠効率、(b)中途覚醒時間、(c)深睡眠時間、(d)レム睡眠時間について、第一夜と第二夜の睡眠の質を比較した。
 図4に示すように、第一夜と第二夜では、睡眠の質が変化していることが分かる。このように、PSG検査では、第一夜効果が現れることが多い。
2. First night effect by PSG test PSG test was conducted for healthy adults (1 case) and mentally handicapped patients (sleep / breathing disorder group, insomnia disorder group, motor / behavior disorder group, 1 case each), and (a) sleep The sleep qualities of the first and second nights were compared for efficiency, (b) mid-wake time, (c) deep sleep time, and (d) REM sleep time.
As shown in FIG. 4, it can be seen that the quality of sleep changes between the first night and the second night. Thus, in PSG tests, the first night effect often appears.
実施例3:精神障害患者における睡眠評価
 6例の精神障害患者において、Zマシーンを用いて睡眠情報を取得し、睡眠経過図を作製し、症状や治療の推移と睡眠との関係を解析した。比較のため、図7に、健常人の典型的な睡眠プロファイル(睡眠経過図)を示す。
Example 3: Sleep evaluation in psychiatric patients In 6 psychiatric patients, sleep information was acquired using a Z machine, a sleep progress chart was created, and the relationship between symptoms and treatment transitions and sleep was analyzed. For comparison, FIG. 7 shows a typical sleep profile (sleep progress chart) of a healthy person.
 本実施例で使用する略語を以下に示す。
BDI:Beck Depression Inventory(抗うつ症状の評価尺度)
HA:Harm Avoidance(損害回避)
PSQI:Pittsburgh Sleep Quality Index(睡眠状態の評価尺度)
ESS:Epworth Sleepiness Scale(睡眠時無呼吸の評価尺度)
HAMD:Hamilton Depression Scale(ハミルトンうつ病評価尺度)
YMRS:Young Mania Rating Scale(ヤング躁病評価尺度)
BPRS:Brief Psychiatric Rating Scale(簡易精神症状評価尺度)
The abbreviations used in this example are shown below.
BDI: Beck Depression Inventory
HA: Harm Avoidance
PSQI: Pittsburgh Sleep Quality Index
ESS: Epworth Sleepiness Scale
HAMD: Hamilton Depression Scale
YMRS: Young Mania Rating Scale
BPRS: Brief Psychiatric Rating Scale
1.症例1:双極性障害I型
 双極性障害I型患者(女性、40代)について、以下の3つの時点で睡眠を評価した。
(a)入院時(X年6月)
BDI 43点、HA 20点、PSQI 11点、ESS 3点、HAMD 17点、YMRS 3点
自覚的睡眠評価:入眠潜時 50分、総睡眠時間 480分、中途覚醒時間 20分
投薬:炭酸リチウム 1000mg/day、クロナゼパム 2mg/day、クエチアピンフマル酸塩 300mg/day、クエチアピン 50mg/day、バルプロ酸ナトリウム 600mg/day
(b)寛解時((a)の14日後)
BDI 43点、HA 20点、PSQI 4点、ESS 1点、HAMD 4点、YMRS 0点
自覚的睡眠評価:入眠潜時 20分、総睡眠時間 510分、中途覚醒時間 3分
投薬:炭酸リチウム 600mg/day、クロナゼパム 2mg/day、クエチアピンフマル酸塩 300mg/day、バルプロ酸ナトリウム 800mg/day
(c)再燃時(X+1年2月)
BDI 34点、HA 19点、PSQI 15点、ESS 2点、HAMD 20点、YMRS 2点
自覚的睡眠評価:入眠潜時 40分、総睡眠時間 300分、中途覚醒時間 10分
投薬:リボトリール(クロナゼパム)2mg、バルプロ酸Na600mg、リーマス(炭酸リチウム)600mg、ベルソムラ(スボレキサント)20mg、カロナール(アセトアミノフェン)400mg、ビオスリー、コロネル(ポリカルボフィルカルシウム)1500mg、ストラテラカプセル(アトモキセチン)120mg、カルボシステイン1500mg、FAD腸溶錠30mg、ビブラマイシン(ドキシサイクリン)200mg、ベポタスチンベシル酸20mg、タケキャブ(ボノプラザンフマル酸塩)20mg
1. 1. Case 1: Bipolar Disorder Type I Bipolar Disorder Type I patients (female, 40s) were evaluated for sleep at the following three time points.
(a) At the time of admission (June X)
BDI 43 points, HA 20 points, PSQI 11 points, ESS 3 points, HAMD 17 points, YMRS 3 points Subjective sleep evaluation: sleep onset latency 50 minutes, total sleep time 480 minutes, awakening time 20 minutes Dosing: Lithium carbonate 1000 mg / day, clonazepam 2 mg / day, quetiapine fumarate 300 mg / day, quetiapine 50 mg / day, sodium valproate 600 mg / day
(b) At remission (14 days after (a))
BDI 43 points, HA 20 points, PSQI 4 points, ESS 1 point, HAMD 4 points, YMRS 0 points Subjective sleep evaluation: sleep onset latency 20 minutes, total sleep time 510 minutes, awakening time 3 minutes Dosing: Lithium carbonate 600 mg / day, clonazepam 2 mg / day, quetiapine fumarate 300 mg / day, sodium valproate 800 mg / day
(c) Relapse (February X + 1)
BDI 34 points, HA 19 points, PSQI 15 points, ESS 2 points, HAMD 20 points, YMRS 2 points Subjective sleep evaluation: sleep onset latency 40 minutes, total sleep time 300 minutes, awakening time 10 minutes Dosing: Ribotril (clonazepam) ) 2 mg, Na valproate 600 mg, Remus (lithium carbonate) 600 mg, Versomura (svorexant) 20 mg, Caronal (acetaminophen) 400 mg, Bioslee, Coronel (polycarbofyl calcium) 1500 mg, Strattera capsule (atomoxetine) 120 mg, Carbocysteine 1500 mg, FAD enteric coated tablets 30 mg, vibramycin (doxycycline) 200 mg, bepotastine besilic acid 20 mg, bamboo cab (vovorexant fumarate) 20 mg
 患者は、不眠、食思不振、意欲低下などを呈し、うつ病相にて入院となった。入院時はうつ症状の重症度(HAMD)が17点、躁症状の重症度(YMRS)が3点であったが、生活リズムの修正、薬物療法により、うつ症状の重症度は4点、躁症状の重症度は0点と寛解に至り、退院。しかしながら、患者は対人ストレス等により症状が再燃し、不眠、食思不振、倦怠感などうつ病状が悪化して再入院となった。再入院時のうつ症状の重症度は20点、躁症状は2点に増悪した。 The patient presented with insomnia, loss of appetite, decreased motivation, etc. and was hospitalized in the depressive phase. At the time of admission, the severity of depressive symptoms (HAMD) was 17 points and the severity of manic symptoms (YMRS) was 3 points. The severity of the symptom was 0 points, leading to remission, and the patient was discharged from the hospital. However, the patient was re-hospitalized due to relapse of symptoms due to interpersonal stress and worsening of insomnia, loss of appetite, and malaise. Depressive symptoms on readmission worsened to 20 points and manic symptoms to 2 points.
 症例1の睡眠経過図と睡眠変数を図8に示す。入院から寛解時において、症状の改善と共に、睡眠経過図でも、総睡眠時間、深睡眠、睡眠効率が増加し、健常者の睡眠プロファイルに近づいていることがわかる。再燃時には、総睡眠時間、睡眠効率、深睡眠はいずれも減少している。症状の悪化に伴い、総睡眠時間及び深睡眠時間が減少し、入眠潜時が増加し、睡眠効率は低下し、精神障害の症状と睡眠プロファイルの変化は一致している。 Figure 8 shows the sleep progress chart and sleep variables of Case 1. From admission to remission, along with improvement of symptoms, the sleep progress chart also shows that total sleep time, deep sleep, and sleep efficiency increased, approaching the sleep profile of healthy subjects. At the time of relapse, total sleep time, sleep efficiency, and deep sleep are all reduced. As symptoms worsen, total sleep time and deep sleep time decrease, sleep onset latency increases, sleep efficiency decreases, and psychotic symptoms and changes in sleep profile are consistent.
 これらの結果は、本発明の方法による睡眠の評価を治療と組み合わせることで、介入時の治療効果を可視化できるだけでなく、憎悪、再燃、再発などの病態の変化も定量・可視化できることを示す。 These results show that by combining the evaluation of sleep by the method of the present invention with treatment, not only the therapeutic effect at the time of intervention can be visualized, but also changes in pathological conditions such as hatred, relapse, and recurrence can be quantified and visualized.
2.症例2:双極性障害
 双極性障害の患者(男性、60代)について、以下の2つの時点で睡眠を評価した。
(a)1回目(X年10月)
BDI 30点、HAMD 15点、YMRS 6点、HA 15点、PSQI 17点、ESS 8点
投薬:バルプロ酸800mg、アルプラゾラム0.4mg
(b)2回目((a)の28日後
BDI18点、HAMD 6点、YMRS 2点、HA17点、PSQI12点、ESS9点
投薬:バルプロ酸800mg、アルプラゾラム0.4mg、スボレキサント20mg 
2. Case 2: Bipolar disorder Sleep was evaluated in patients with bipolar disorder (male, 60s) at the following two time points.
(a) First time (October X)
BDI 30 points, HAMD 15 points, YMRS 6 points, HA 15 points, PSQI 17 points, ESS 8 points Dosing: Valproic acid 800 mg, Alprazolam 0.4 mg
(b) 28 days after the second ((a))
BDI 18 points, HAMD 6 points, YMRS 2 points, HA 17 points, PSQI 12 points, ESS 9 points Dosing: Valproic acid 800 mg, alprazolam 0.4 mg, suvorexant 20 mg
 双極性障害のうつ病相にて入院した症例であり、不眠、意欲低下、倦怠感などのうつ症状を呈していた。休養、生活リズムの改善に加え、不眠症状が持続することから、スボレキサント(睡眠薬)を追加することにより、症状は徐々に改善し、睡眠も改善した。うつ症状の重症度(HAMD)も15点から6点に軽快し、躁症状の重症度(YMRS)も6点が2点に改善した。 The patient was hospitalized in the depressive phase of bipolar disorder and presented with depressive symptoms such as insomnia, decreased motivation, and malaise. In addition to rest and improvement of life rhythm, insomnia symptoms persisted. Therefore, by adding suvorexant (hypnotic), the symptoms gradually improved and sleep also improved. The severity of depressive symptoms (HAMD) improved from 15 points to 6 points, and the severity of manic symptoms (YMRS) also improved from 6 points to 2 points.
 症例2の睡眠経過図と睡眠変数を図9に示す。症状の改善に伴い、総睡眠時間、深睡眠時間が増えて睡眠効率も改善している。これらの結果は、本発明の方法で得られる睡眠プロファイルが、治療による臨床症状の変化を鋭敏に反映する可能性を示す。 Figure 9 shows the sleep progress chart and sleep variables of Case 2. As the symptoms improve, total sleep time and deep sleep time increase, and sleep efficiency also improves. These results indicate that the sleep profile obtained by the method of the present invention may sensitively reflect changes in clinical symptoms due to treatment.
3.症例3:うつ病
 うつ病患者(女性、50代)について、以下の2つの時点で睡眠を評価した。
(a)治療薬変更前(X年4月)
YMRS 26点(最重症)
ミルタザピン30mg/day、オランザピン2.5mg/day、フルニトラゼパム1mg/day 
(b)治療薬変更後(X年5月)
YMRS 3点(正常範囲)
エスシタロプラム 20 mg/day、オランザピン 5 mg/day、トラゾドン 50 mg/day 
3. 3. Case 3: Depression For depressed patients (female, 50s), sleep was evaluated at the following two time points.
(a) Before change of therapeutic drug (April X)
YMRS 26 points (most severe)
Mirtazapine 30mg / day, olanzapine 2.5mg / day, flunitrazepam 1mg / day
(b) After changing the therapeutic drug (May X)
YMRS 3 points (normal range)
Escitalopram 20 mg / day, olanzapine 5 mg / day, trazodone 50 mg / day
 ミルタザピン(抗うつ薬)を中心に、増強療法としてオランザピン(抗精神病薬)、不眠に対してフルニトラゼパム(ベンゾジアゼピン系睡眠薬)が処方されていたが、症状は改善せず、入眠潜時は長く、深睡眠も少ない状況であった。
 主剤である抗うつ薬を作用機序の異なるエスシタロプラムに変更し、浅睡眠を増加させるベンゾジアゼピン系睡眠薬を中止した上、深睡眠を増加させるトラゾドン(抗うつ薬)を導入したところ、うつ病の重症度(HAMD)は26点から3点に改善した。
Olanzapine (antipsychotic) and flunitrazepam (benzodiazepine hypnotic) were prescribed for insomnia, centering on mirtazapine (antidepressant), but the symptoms did not improve, and sleep onset latency was long and deep. There was little sleep.
After changing the main antidepressant drug to escitalopram, which has a different mechanism of action, discontinuing the benzodiazepine hypnotic that increases light sleep, and introducing trazodone (antidepressant) that increases deep sleep, the severity of depression is severe. Depression (HAMD) improved from 26 points to 3 points.
 症例3の睡眠経過図と睡眠変数を図10に示す。処方変更前では、入眠潜時は長く、深睡眠も少ないが、処方変更後は、入眠潜時が短縮し、深睡眠が増加、健常者に近い睡眠プロファイルを認めるようになった。本発明による睡眠評価は、臨床症状の変化と一致し、治療薬の選択とその効果の確認に有用である。 The sleep progress chart and sleep variables of Case 3 are shown in FIG. Before the prescription change, the sleep onset latency was long and the deep sleep was small, but after the prescription change, the sleep onset latency was shortened, the deep sleep increased, and a sleep profile close to that of a healthy person was observed. The sleep evaluation according to the present invention is consistent with changes in clinical symptoms and is useful for selecting a therapeutic agent and confirming its effect.
4.症例4:睡眠薬使用障害
 睡眠薬使用障害患者(女性、30代)について、以下の2つの時点で睡眠を評価した。
(a)薬剤整理前(X年8月)
投薬:ブロバリン(ブロモバレリル尿酸)1.8g(モノウレイド系睡眠薬)、イソミタール(アモバルビタール)0.4g(バルビツール酸系睡眠薬)、アーテン(トリヘキシフェニジル)6mg(抗コリン薬)、トフラニール(イミプラミン)75mg(三環系抗うつ薬)、セパゾン(クロキサゾラム)6mg及びレキソタン(ブロマゼパム)5mg(いずれもベンゾジアゼピン系抗不安薬)。
(b)薬剤整理後(X年9月)
投薬:トラゾドン 200mg、トフラニール(イミプラミン) 25mg、塩酸セルトラリン 50mg(以上、抗うつ薬)、バルプロ酸ナトリウム 600mg(抗てんかん薬)
4. Case 4: Hypnotic use disorder Patients (female, 30s) with hypnotic use disorder were evaluated for sleep at the following two time points.
(a) Before drug reorganization (August X)
Medication: Bromazepam (bromovaleryl uric acid) 1.8 g (monoureid hypnotic), isomitar (amobarbital) 0.4 g (barbituric acid hypnotic), arten (trihexifenidil) 6 mg (anticholinergic drug), tofranil (imiplamine) 75 mg ( Tricyclic antidepressant), Sepazone (cloxazolam) 6 mg and Lexotan (bromazepam) 5 mg (all are benzodiazepine anxiolytics).
(b) After drug arrangement (September X)
Dosing: trazodone 200 mg, tofranil (imipramine) 25 mg, sertraline hydrochloride 50 mg (above, antidepressant), sodium valproate 600 mg (antiepileptic drug)
 パニック症に加え、強い不眠が持続し、睡眠薬の多剤併用処方に陥り、睡眠薬依存となっていた症例。入院時は、2種類のベンゾジアゼピン系抗不安薬に加えて、バルビツール酸系睡眠薬、抗うつ薬や抗コリン薬など6剤が処方されていた。丁寧な睡眠衛生指導を実施し、不安に対する傾聴も行いながら、バルビツール酸系睡眠薬やベンゾジアゼピン系薬剤等を漸減整理し、代わりに深睡眠を増加させるトラゾドン(抗うつ薬)を開始漸増、ベンゾジアゼピン系薬剤の離脱症状に対処するためにバルプロ酸ナトリウム(抗てんかん薬)を導入し、パニック症に対する薬剤についても薬剤整理することができた。 In addition to panic disorder, a case in which strong insomnia persisted, falling into a polypharmacy prescription of sleeping pills, and becoming dependent on sleeping pills. At the time of admission, in addition to the two benzodiazepine anxiolytics, six drugs including barbituric acid hypnotics, antidepressants and anticholinergic drugs were prescribed. Careful sleep hypnotic guidance and listening to anxiety while gradually reducing barbituric acid hypnotics and benzodiazepines, instead starting trazodon (antidepressant) to increase deep sleep, gradually increasing, benzodiazepines Sodium valproate (an antidepressant) was introduced to deal with the withdrawal symptoms of the drug, and the drug for panic disease could be sorted out.
 症例4の睡眠経過図と睡眠変数を図11に示す。本発明にしたがい睡眠評価を実施しながら、薬剤整理を行った。睡眠の状態および改善を可視化し、睡眠状況を患者にフィードバックすることで患者の不安も改善され、適切な睡眠薬処方が可能となった。 The sleep progress chart and sleep variables of Case 4 are shown in FIG. Drugs were rearranged while performing sleep evaluation according to the present invention. By visualizing the sleep state and improvement and feeding back the sleep status to the patient, the patient's anxiety was also improved, and it became possible to prescribe an appropriate hypnotic drug.
5.症例5:統合失調症
 睡眠薬使用障害患者(女性、30代)について、以下の2つの時点で睡眠を評価した。
(a)治療変更前(X年12月)
BPRS 39点、ESS 0点、PSQI 9点、BDI 17点、HA20 16点
自覚的睡眠:眠れなかった、熟眠感 3、眠気 2、入眠潜時 90分、睡眠時間 270分、中途覚醒時間 60分
投薬:ブロナンセリン20mg、フルニトラゼパム2mg、スボレキサント20mg、プロプラノロール塩酸塩30mg
(b)治療変更後((a)の14日後)
BPRS 21点、ESS 4点、PSQI 8点、BDI 14点、HA20 19点
自覚的睡眠:よく眠れた、熟眠感 8、眠気 1、入眠潜時 60分、睡眠時間 480分、中途覚醒時間 30分
投薬:ブロナンセリン8mg、ブロナンセリン貼付剤40mg、フルニトラゼパム1mg、スボレキサント20mg、プロプラノロール塩酸塩30mg
5. Case 5: Schizophrenia Hypnotic use disorder patients (female, 30s) were evaluated for sleep at the following two time points.
(a) Before change of treatment (December X)
BPRS 39 points, ESS 0 points, PSQI 9 points, BDI 17 points, HA20 16 points Aware sleep: I couldn't sleep, I felt a deep sleep 3, sleepiness 2, sleep onset latency 90 minutes, sleep time 270 minutes, awakening time 60 minutes Dosage: Blonanserin 20 mg, Flunitrazepam 2 mg, Suvorexant 20 mg, Propranolol hydrochloride 30 mg
(b) After treatment change (14 days after (a))
BPRS 21 points, ESS 4 points, PSQI 8 points, BDI 14 points, HA20 19 points Aware sleep: sleep well, deep sleep 8, drowsiness 1, sleep onset latency 60 minutes, sleep time 480 minutes, awakening time 30 minutes Dosage: Blonanserin 8 mg, Blonanserin patch 40 mg, Flunitrazepam 1 mg, Suvorexant 20 mg, Proplanolol hydrochloride 30 mg
 薬剤の処方はほとんど変更せずに、修正型電気けいれん療法を実施(12/25時点で5回中4回実施)したところ、精神症状の重症度を表すBPRSが39点から、21点に改善した。主観的な睡眠評価についても、熟眠感が3から8に増加、眠気が2から1に減少すると共に、主観的な入眠潜時や睡眠時間、中途覚醒も改善された。 Modified electroconvulsive therapy (4 out of 5 as of 12/25) with almost no change in drug prescription improved BPRS, which indicates the severity of psychiatric symptoms, from 39 points to 21 points. bottom. As for subjective sleep evaluation, deep sleep increased from 3 to 8, drowsiness decreased from 2 to 1, and subjective sleep latency, sleep time, and awakening were also improved.
 症例5の睡眠経過図と睡眠変数を図12に示す。修正型電気けいれん療法の実施による症状の改善に伴い、入眠潜時が短縮すると共に、浅睡眠時間、深睡眠時間、レム睡眠時間が延長し、睡眠効率も76%から83.3%に増加した。本発明の方法で得られる睡眠プロファイル(睡眠情報)は、主観的睡眠評価とも相関し、治療の補助情報として有用であることを示す。 The sleep progress chart and sleep variables of Case 5 are shown in FIG. As the symptoms improved with modified electroconvulsive therapy, sleep onset latency was shortened, light sleep time, deep sleep time, and REM sleep time were extended, and sleep efficiency increased from 76% to 83.3%. The sleep profile (sleep information) obtained by the method of the present invention also correlates with the subjective sleep evaluation and shows that it is useful as auxiliary information for treatment.
6.症例6:うつ病
 うつ病入院患者(女性、30代)について、以下の2つの時点で睡眠を評価した。
6. Case 6: Depression Inpatients with depression (female, 30s) were evaluated for sleep at the following two time points.
(a)治療変更前(X年2月)
BDI 24点、HA 15点、PSQI 11点、ESS 6点、HAMD 19点
自覚的睡眠:入眠潜時 30分、総睡眠時間 480分、中途覚醒時間 10分
投薬:レクサプロ(エスシタロプラム)10mg、ベルソムラ(スボレキサント)20mg、ブレドニン(プレドニゾロン)、パリエット(ラベプラゾール)、アルファカルシドール、プログラフ(タクロリムス)、セルセプト(ミコフェノール酸モフェチル)、スローケー(塩化カリウム)
(b)治療変更後(X年3月)
BDI 41点、HA 15点、PSQI 9点、ESS 5点、HAMD 18点
自覚的睡眠:入眠潜時 3分、総睡眠時間 420分、 中途覚醒時間 5分
投薬:ベルソムラ(スボレキサント)20mg、ブロチゾラム0.25mg、サインバルタ(デュロキセチン)40mg、ブレドニン(プレドニゾロン)、パリエット(ラベプラゾール)、アルファカルシドール、プログラフ(タクロリムス)、セルセプト(ミコフェノール酸モフェチル)、スローケー(塩化カリウム)
(a) Before change of treatment (February X)
BDI 24 points, HA 15 points, PSQI 11 points, ESS 6 points, HAMD 19 points Subjective sleep: sleep onset latency 30 minutes, total sleep time 480 minutes, midway awakening time 10 minutes Dosing: Lexapro (escitalopram) 10 mg, Versomura ( Suvorexant) 20 mg, Bredonin (prednisolone), Pariet (labeprazole), Alphacalcidol, Prograf (tacrolimus), Celcept (mycophenolate mofetil), Slokey (potassium chloride)
(b) After changing treatment (March X)
BDI 41 points, HA 15 points, PSQI 9 points, ESS 5 points, HAMD 18 points Subjective sleep: sleep onset latency 3 minutes, total sleep time 420 minutes, midway awakening time 5 minutes Dosing: Versomura (susvorexant) 20 mg, brothisolam 0.25 mg, sine balta (duloxetine) 40 mg, bledonin (prednisolone), pariet (labeprazole), alphacalcidol, prograf (tacrolimus), cerucept (mycophenolate mofetil), slow cake (potassium chloride)
 薬物療法を行ったが、初回測定時のうつ病重症度は19点(ハミルトンうつ病評価尺度)、主剤の抗うつ薬変更後の2回目測定時の重症度は18点と、うつ病の状態像に変化は認められなかった。 Although drug therapy was performed, the severity of depression at the first measurement was 19 points (Hamilton Depression Rating Scale), and the severity at the second measurement after changing the main antidepressant drug was 18 points. No change was observed in the image.
 症例6の睡眠経過図を図13に示す。睡眠経過図に大きな変化はなく、総睡眠時間、睡眠効率とも著変はなく、深睡眠時間はむしろ短くなっていた。このことは、本発明の方法で得られる睡眠情報がうつ病の病態と連動して変化し、治療の評価に有用であることを示す。 The sleep progress chart of Case 6 is shown in FIG. There was no significant change in the sleep progress chart, there was no significant change in total sleep time and sleep efficiency, and the deep sleep time was rather short. This indicates that the sleep information obtained by the method of the present invention changes in conjunction with the pathophysiology of depression and is useful for evaluation of treatment.
7 症例7:双極性障害
 双極性障害(男性、50代)の外来患者について、以下の3つの時点で睡眠を評価した。
(a)検査入院時(X年7月)
PSQI 10点、ESS 10点、BDI-2 36点、HA 13点、HAMD 6点、YMRS 2点
自覚的睡眠時間:300分、覚醒時間:60分、入眠潜時0分
スボレキサント20mg、エスゾピクロン3mg、クエチアピンフマル酸塩25mg、ラモトリギン400mg、炭酸リチウム800mg
7 Case 7: Bipolar disorder Sleep was evaluated at the following three time points in outpatients with bipolar disorder (male, 50s).
(A) At the time of admission for examination (July X)
PSQI 10 points, ESS 10 points, BDI-2 36 points, HA 13 points, HAMD 6 points, YMRS 2 points Subjective sleep time: 300 minutes, Awakening time: 60 minutes, Sleep onset latency 0 minutes Suvorexant 20 mg, Eszopiclone 3 mg , Quetiapine fumarate 25 mg, lamotrigine 400 mg, lithium carbonate 800 mg
(bとc)在宅測定(X+2年11月とその2日後)
PSQI 13点、ESS 14点、BDI-2 25点、HA 18点、HAMD 9点、YMRS 2点
(b)自覚的睡眠時間:300分、覚醒時間:0分、入眠潜時30分
(c)自覚的睡眠時間:270分、覚醒時間:90分、入眠潜時0分
ラメルテオン8mg、エスゾピクロン3mg、ルラシドン塩酸塩60mg、ラモトリギン400mg、炭酸リチウム800mg
(B and c) Home measurement (X + November 2 and 2 days later)
PSQI 13 points, ESS 14 points, BDI-2 25 points, HA 18 points, HAMD 9 points, YMRS 2 points (b) Aware sleep time: 300 minutes, awakening time: 0 minutes, sleep onset latency 30 minutes (c) Subjective sleep time: 270 minutes, awakening time: 90 minutes, sleep onset latency 0 minutes ramelteon 8 mg, eszopiclone 3 mg, lurasidone hydrochloride 60 mg, lamotrigin 400 mg, lithium carbonate 800 mg
症例7の睡眠経過図を図14に示す。眠りが浅い、足りないとの訴えがあったことから、PSGの検査入院時に合わせて睡眠を測定した。その後も余り眠れていない、入眠が良くないとの訴えから、自宅での睡眠を患者自身が2晩測定した。いずれも主観的な睡眠評価と客観的な睡眠評価に乖離が認められた。 The sleep progress chart of Case 7 is shown in FIG. Since there were complaints of light sleep and lack of sleep, sleep was measured at the time of admission to the PSG test. After that, the patient himself measured his sleep at home for two nights because he complained that he did not sleep well and that he did not fall asleep well. In both cases, there was a discrepancy between subjective sleep evaluation and objective sleep evaluation.
実施例4:本発明の方法による健常者と精神障害患者との区別
 入院患者(92晩)及び健常者(158晩)の睡眠変数より、入院患者と健常者を精度よく鑑別できるパラメータの組合せを見出すため、以下の検討を行った。
Example 4: Distinguishing between healthy and mentally ill patients by the method of the present invention A combination of parameters that can accurately distinguish between inpatients and healthy subjects from the sleep variables of inpatients (92 nights) and healthy subjects (158 nights). In order to find out, the following examination was conducted.
(1)17項目の全睡眠変数を対象とした予備検討
 入院病棟では就床、起床時間が決まっていることから、総就床時間は入院環境に依存する変数と考えられる。そこで、総就床時間などの入院環境の影響を受けると考えられる睡眠変数を解析対象から除いた以下の7つの睡眠変数を選択した。
・比率:睡眠効率、レム睡眠出現率、浅睡眠出現率、深睡眠出現率、覚醒反応指数
・潜時:レム睡眠潜時、入眠潜時
(1) Preliminary study of all 17 sleep variables Since bedtime and wake-up time are fixed in the hospital ward, the total bedtime is considered to be a variable that depends on the hospitalization environment. Therefore, the following seven sleep variables were selected, excluding sleep variables that are considered to be affected by the hospitalization environment such as total bedtime.
・ Ratio: Sleep efficiency, REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, arousal response index ・ Latency: REM sleep latency, sleep onset latency
(2)7項目の睡眠変数を対象とした回帰分析
 繰り返し測定例を除いた入院患者と健常者のデータを5群に分け、4群をトレーニングセット、残りの1群をテストセットとして、ロジスティック回帰分析を行いクロスバリデーションを行った。
Figure JPOXMLDOC01-appb-M000013
(2) Regression analysis for 7 items of sleep variables Logistic regression was performed by dividing the data of inpatients and healthy subjects excluding repeated measurement examples into 5 groups, 4 groups as a training set, and the remaining 1 group as a test set. Analysis was performed and cross-validation was performed.
Figure JPOXMLDOC01-appb-M000013
 AUCを指標として各モデルを評価し、高いAUCが得られたモデルの例を表3に示す。これらのモデルのなかから、医学的にも妥当で、かつ精度の高い指標として3項目からなる式(モデル1:AUC平均 0.811)と4項目からなる式(モデル2:AUC平均 0.809)を評価式として選択した。 Table 3 shows an example of a model in which each model was evaluated using AUC as an index and a high AUC was obtained. Among these models, a three-item formula (model 1: AUC average 0.811) and a four-item formula (model 2: AUC average 0.809) are evaluated as medically valid and highly accurate indexes. Selected as.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 モデル1及びモデル2について偽陰性率と偽陽性率の平均が最小となるように患者と健常者を分ける閾値を設定した。モデル1及びモデル2の式(I)における睡眠変数と係数、及び定数項を、それぞれ表4及び表5に示す。モデル1の睡眠変数(睡眠効率、レム睡眠潜時、浅睡眠出現率)は、精神障害患者で悪化しやすい指標である。モデル2で追加される睡眠変数(入眠潜時)は、治療の影響を受けやすい指標である。 For model 1 and model 2, a threshold value was set to separate patients from healthy subjects so that the average of false negative rate and false positive rate was minimized. The sleep variables, coefficients, and constant terms in equation (I) of model 1 and model 2 are shown in Tables 4 and 5, respectively. The sleep variables of Model 1 (sleep efficiency, REM sleep latency, light sleep appearance rate) are indicators that are likely to worsen in psychiatric patients. The sleep variable added in model 2 (sleep onset latency) is a treatment-sensitive indicator.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(3)モデル1及びモデル2の検証
 本発明の方法に従い、実施例3の入院患者6症例の睡眠変数を取得し、モデル1で評価を行い、臨床の重症度と比較した。結果を表6に示す。
(3) Verification of Model 1 and Model 2 According to the method of the present invention, sleep variables of 6 inpatients of Example 3 were acquired, evaluated by Model 1, and compared with clinical severity. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 6症例全てで初回測定時の指数は閾値を上回り患者と判定された。治療後に治療効果が明確な4例中3例で、指数が閾値以下となったが、1例では閾値以上であった。一方、治療後も回復傾向の症例、及び治療効果が不明確な症例では、閾値を下回らなかった。以上より、構築されたモデル1及びモデル2のいずれも、患者と健常者を区別する式として妥当であることが確認された。 In all 6 cases, the index at the time of the first measurement exceeded the threshold value and was judged to be a patient. The index was below the threshold in 3 of the 4 cases in which the therapeutic effect was clear after treatment, but was above the threshold in 1 case. On the other hand, it did not fall below the threshold in the cases of recovery tendency even after the treatment and the cases in which the therapeutic effect was unclear. From the above, it was confirmed that both the constructed model 1 and model 2 are valid as formulas for distinguishing between patients and healthy subjects.
(4)モデル7(特殊な睡眠プロファイル)
 モデル1及びモデル2でうまく評価できない症例2について、その睡眠プロファイルと治療情報を確認すると、この症例では、オレキシン受容体阻薬害薬である睡眠薬(スボレキサント)が使用されていた。浅睡眠を増加させる従来のベンゾジアゼピン受容体作動薬とは異なり、オレキシン受容体阻薬害薬は深睡眠とレム睡眠を増加させるため、浅睡眠出現率を深睡眠出現率に代替させた評価式(モデル7)を作製した。モデル7の式(I)における睡眠変数と係数、及び定数項を表8に示す。
(4) Model 7 (special sleep profile)
When the sleep profile and treatment information of the case 2 which could not be evaluated well by the model 1 and the model 2 were confirmed, the hypnotic (susvorexant) which is an orexin receptor blocker was used in this case. Unlike conventional benzodiazepine receptor agonists that increase light sleep, orexin receptor blockers increase deep sleep and REM sleep, so the evaluation formula (model) that replaces the appearance rate of light sleep with the appearance rate of deep sleep. 7) was prepared. Table 8 shows the sleep variables, coefficients, and constant terms in equation (I) of model 7.
 モデル7に症例2の睡眠情報を入力して確率(p)の値を求めたところ、1回目の値が0.707、2回目の値が0.505となり、臨床の重症度と睡眠評価がより近いものとなった。 When the sleep information of case 2 was input to model 7 and the value of probability (p) was calculated, the first value was 0.707, the second value was 0.505, and the clinical severity and sleep evaluation were closer. became.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 以上の結果から、ロジスティック回帰分析を用いることで、睡眠情報から精神障害患者の症状や治療の奏功性を評価し、治療の支援に利用可能なことが確認できた。 From the above results, it was confirmed that by using logistic regression analysis, the symptoms of mentally ill patients and the response of treatment were evaluated from sleep information, and it could be used to support treatment.
実施例5:本発明の方法による健常者と精神障害患者との区別
 入院患者(93晩)及び健常者(88晩)の睡眠パラメータより、入院患者と健常者を精度よく鑑別できる機械学習モデルを構築するため、以下の検討を行った。
Example 5: Distinction between healthy subjects and mentally handicapped patients by the method of the present invention A machine learning model capable of accurately distinguishing between inpatients and healthy subjects from sleep parameters of inpatients (93 nights) and healthy subjects (88 nights) The following studies were conducted to construct it.
(1)7項目の睡眠変数を対象とした検討
 入院病棟では就床、起床時間が決まっていることから、総就床時間は入院環境に依存するパラメータと考えられる。そこで、総就床時間などの入院環境の影響を受けると考えられる睡眠パラメータを解析対象から除いた以下の7つの睡眠変数を選択した。
・比率:睡眠効率、レム睡眠出現率、浅睡眠出現率、深睡眠出現率、覚醒反応指数
・潜時:レム睡眠潜時、入眠潜時
(1) Examination of 7 items of sleep variables Since bedtime and wake-up time are fixed in the inpatient ward, the total bedtime is considered to be a parameter that depends on the hospitalization environment. Therefore, we selected the following seven sleep variables, excluding sleep parameters that are considered to be affected by the hospitalization environment such as total bedtime.
・ Ratio: Sleep efficiency, REM sleep appearance rate, light sleep appearance rate, deep sleep appearance rate, arousal response index ・ Latency: REM sleep latency, sleep onset latency
(2)19項目の睡眠変数を対象とした検討
 また、上記睡眠変数に加えて、睡眠段階の遷移の頻度を解析対象とした。睡眠段階の遷移の頻度は、各睡眠段階間の遷移の回数を総就床時間で割ったものとし、以下の12種類を用いた。
・遷移頻度:覚醒→レム睡眠、覚醒→浅睡眠、覚醒→深睡眠、レム睡眠→覚醒、レム睡眠→浅睡眠、レム睡眠→深睡眠、浅睡眠→覚醒、浅睡眠→レム睡眠、浅睡眠→深睡眠、深睡眠→覚醒、深睡眠→レム睡眠、深睡眠→浅睡眠
(2) Examination of 19 items of sleep variables In addition to the above sleep variables, the frequency of transitions in the sleep stage was analyzed. The frequency of transitions between sleep stages was calculated by dividing the number of transitions between sleep stages by the total bedtime, and the following 12 types were used.
・ Transition frequency: Awakening → Rem sleep, Awakening → Light sleep, Awakening → Deep sleep, Rem sleep → Awakening, Rem sleep → Light sleep, Rem sleep → Deep sleep, Light sleep → Awakening, Light sleep → Rem sleep, Light sleep → Deep sleep, deep sleep → awakening, deep sleep → rem sleep, deep sleep → light sleep
 上記それぞれの場合について、入院患者と健常者のデータを5群に分け、4群をトレーニングセット、残りの1群をテストセットとして、XGBoostを用いてクロスバリデーションを行った。評価指標としてAUC(Area Under the Curve)を用いた。 For each of the above cases, the data of inpatients and healthy subjects were divided into 5 groups, 4 groups were used as a training set, and the remaining 1 group was used as a test set, and cross-validation was performed using XGBoost. AUC (Area Under the Curve) was used as an evaluation index.
 前記クロスバリデーションのテストデータでの結果、以下の結果が得られた。
(1)7項目の睡眠変数を対象とした検討:平均AUC:0.827(標準偏差:0.084)(学習データの平均AUC:0.950、標準偏差:0.010)
(2)19項目の睡眠パラメータを対象とした検討:平均AUC:0.897(標準偏差:0.060)(学習データの平均AUC:0.995、標準偏差:0.003)
(2)において、大幅な精度の向上が見られ、睡眠段階の遷移が精神障害患者の判定に有効な指標であることが確認できた。
As a result of the cross-validation test data, the following results were obtained.
(1) Examination of 7 items of sleep variables: mean AUC: 0.827 (standard deviation: 0.084) (mean AUC of training data: 0.950, standard deviation: 0.010)
(2) Examination of 19 sleep parameters: mean AUC: 0.897 (standard deviation: 0.060) (mean AUC of training data: 0.995, standard deviation: 0.003)
In (2), a significant improvement in accuracy was observed, and it was confirmed that the transition of the sleep stage is an effective index for determining patients with mental disorders.
 以上の結果から、複数の睡眠パラメータを使用した機械学習モデルを用いることで、睡眠情報から精神障害患者の症状や治療の奏功性を評価し、治療の支援に利用可能なことが確認できた。 From the above results, it was confirmed that by using a machine learning model using multiple sleep parameters, the symptoms of mentally ill patients and the response of treatment were evaluated from sleep information, and it could be used to support treatment.
実施例6:本発明の方法による睡眠段階の遷移の時系列情報における健常者と精神障害患者との区別
 入院患者(109晩)及び健常者(105晩)の睡眠段階の遷移の時系列情報より、入院患者と健常者を精度よく鑑別できるモデルを構築するため、以下の検討を行った。
Example 6: Distinction between healthy subjects and mentally handicapped patients in the time series information of sleep stage transitions by the method of the present invention From the time series information of sleep stage transitions of inpatients (109 nights) and healthy subjects (105 nights) In order to build a model that can accurately distinguish between inpatients and healthy subjects, the following studies were conducted.
 入院患者と健常者のデータを5群に分け、4群をトレーニングセットとしてニューラルネットワークを学習し、残りの1群をテストセットとして学習したニューラルネットワークの評価を行う、クロスバリデーションを行った。評価指標としてAUC(Area Under the Curve)を用いた。また、符号化器としてTransformer、分類器として全結合ニューラルネットワークを用いた。 Cross-validation was performed by dividing the data of inpatients and healthy subjects into 5 groups, learning the neural network with 4 groups as a training set, and evaluating the learned neural network with the remaining 1 group as a test set. AUC (Area Under the Curve) was used as an evaluation index. A Transformer was used as the encoder and a fully connected neural network was used as the classifier.
 前記クロスバリデーションのテストデータでの平均AUC:0.935(標準偏差:0.030)(学習データの平均AUC:0.943、標準偏差:0.018)となり、一般的に高精度とされる0.9を上回る結果が得られ、ニューラルネットワークを用いて時系列データとして扱うことで、睡眠情報から精神障害患者の症状を評価し、治療の支援に利用可能なことが確認できた。 The average AUC of the cross-validation test data was 0.935 (standard deviation: 0.030) (average AUC of training data: 0.943, standard deviation: 0.018), which exceeded 0.9, which is generally considered to be highly accurate. By treating it as time-series data using a neural network, it was confirmed that it can be used to support treatment by evaluating the symptoms of mentally handicapped patients from sleep information.
実施例7:前額部と側頭骨上の皮膚(左右耳後方(乳様突起))からの脳波の比較
 ZA-X(プロアシスト社)を使用し、EEGに左耳後-前額右(Fp2)、EMGに左耳後-右耳後を利用して脳波を取得し波形を比較した。
Example 7: Comparison of EEG from the forehead and the skin on the temporal bone (posterior left and right ears (mastoid process)) Using ZA-X (Pro Assist), the EEG was applied to the back of the left ear and the right of the forehead (right of the forehead). Fp2), EEG was acquired using the posterior left ear-posterior right ear for EMG, and the waveforms were compared.
 図15に示すとおり、前額部と側頭骨上の皮膚(耳後方(乳様突起))からの脳波の波形は、覚醒(閉眼)、浅睡眠、深睡眠、レム睡眠、のいずれにおいても異なることが確認された。 As shown in FIG. 15, the waveforms of EEG from the skin (posterior ear (mastoid process)) on the forehead and temporal bone are different in all of arousal (closed eyes), light sleep, deep sleep, and REM sleep. It was confirmed that.
 前額部に比較的大きな装置を装着するスリーププロファイラー(アドバンスドブレインモニタリング株式会社)を、予め同意を得た22例の精神障害患者に装着し、睡眠の測定を行った。22例中13例(59%)は測定不能で、その原因は、装着不可(4例)、拒否(1例)、電極の脱落(8例)であった。測定可能であった9例についても、2例が評価不可となり(記録不良(1例)及び圧迫感で眠れない(1例))、評価可能であったのはわずか7例(32%)であった。 A sleep profiler (Advanced Brain Monitoring Co., Ltd.), which has a relatively large device attached to the forehead, was attached to 22 patients with mental disorders who had given their consent in advance, and sleep was measured. Of the 22 cases, 13 cases (59%) could not be measured, and the causes were non-wearing (4 cases), refusal (1 case), and electrode detachment (8 cases). Of the 9 cases that could be measured, 2 cases could not be evaluated (recording failure (1 case) and sleeplessness due to oppressive feeling (1 case)), and only 7 cases (32%) could be evaluated. there were.
 一方、側頭骨上の皮膚(左右耳下後方(乳様突起))に電極を貼付するZマシン(General Sleep社)について、同様に試験を実施したところ、測定不能は11例/182例(6%)で、原因は、全例、電極の脱落であった。このことから、側頭骨上の皮膚(左右耳下後方(乳様突起))から脳波を取得する方法は、従来の方法に比べて、精神障害患者の認容性が高いものであることが確認された。 On the other hand, when the same test was conducted on the Z machine (General Sleep) that attaches electrodes to the skin on the temporal bone (posterior left and right ears (mastoid process)), 11 cases / 182 cases (6) could not be measured. %), The cause was electrode dropout in all cases. From this, it was confirmed that the method of acquiring EEG from the skin on the temporal bone (posterior left and right subears (mastoid process)) is more tolerable for patients with mental disorders than the conventional method. rice field.
 本発明によれば、精神障害患者の睡眠を簡便かつ高精度に評価できる。これにより、精神障害患者の睡眠プロファイルや治療の奏功性を評価し、適切な治療の提供が可能になる。 According to the present invention, the sleep of a mentally handicapped patient can be evaluated easily and with high accuracy. This makes it possible to evaluate the sleep profile of mentally ill patients and the response of treatment, and to provide appropriate treatment.
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated herein by reference as is.
1 脳波信号処理装置、2 ディスプレイ、3 入力操作ボタン、4 電極、4a +電極、4b -電極、4c com電極、5 視覚による警告センサ、6 聴覚による警告センサ、
11 増幅器、12 デジタル化機器、13 シングルボードコンピュータ、14 液晶ディスプレイ、15 スピーカー、16 主電源、17 増幅器用電源
21 プロセッサ、22 記憶装置、23 通信回路、24 入力装置、25 ディスプレイ、26 バス
 

 
1 EEG signal processor, 2 display, 3 input operation buttons, 4 electrodes, 4a + electrodes, 4b-electrodes, 4c com electrodes, 5 visual warning sensors, 6 auditory warning sensors,
11 Amplifier, 12 Digitizer, 13 Single Board Computer, 14 LCD Display, 15 Speakers, 16 Main Power Supply, 17 Power Supply for Amplifier
21 processors, 22 storage devices, 23 communication circuits, 24 input devices, 25 displays, 26 buses

Claims (21)

  1.  被験者の睡眠を客観的に評価する方法であって、側頭骨上の皮膚に貼付した電極から取得された生体電気活動を電気的に処理する装置を用いて、前記被験者の脳波信号を処理して睡眠段階を判定した後に睡眠情報を取得する工程、及び前記睡眠情報を解析して被験者の睡眠を評価する工程を含む評価方法。 A method of objectively evaluating a subject's sleep, in which the subject's electroencephalogram signal is processed using a device that electrically processes bioelectric activity acquired from electrodes attached to the skin on the temporal bone. An evaluation method including a step of acquiring sleep information after determining a sleep stage and a step of analyzing the sleep information to evaluate the sleep of a subject.
  2.  睡眠情報が、睡眠効率、レム睡眠時間、レム睡眠の出現率、レム睡眠潜時、浅睡眠時間、深睡眠時間、浅睡眠時間の出現率、深睡眠時間の出現率、入眠潜時、睡眠段階の遷移の回数又は頻度、及び睡眠段階の遷移の時系列からなる群より選ばれる、請求項1に記載の評価方法。 Sleep information includes sleep efficiency, REM sleep time, REM sleep appearance rate, REM sleep latency, light sleep time, deep sleep time, light sleep time appearance rate, deep sleep time appearance rate, sleep onset latency, sleep stage The evaluation method according to claim 1, which is selected from the group consisting of the number or frequency of transitions of the above and the time series of transitions of the sleep stage.
  3.  前記被験者が精神障害患者である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the subject is a mentally ill patient.
  4.  前記被験者の異なる2以上の時点での睡眠情報を比較する工程を含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, which comprises a step of comparing sleep information at two or more different time points of the subject.
  5.  異なる2以上の時点が、治療前と治療後、治療変更前と治療変更後、又は寛解時と再発・再燃時を含む、請求項4に記載の方法。 The method according to claim 4, wherein two or more different time points include before and after treatment, before and after changing treatment, or during remission and recurrence / relapse.
  6.  睡眠情報を睡眠経過図に図式化して解析又は比較する、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein sleep information is schematized into a sleep progress chart for analysis or comparison.
  7.  あらかじめ取得された健常人と精神障害患者の睡眠情報によって決定された機械学習モデルに、被験者の睡眠情報を入力し、被験者の睡眠が健常人と精神障害患者のいずれに近いかを解析する工程を含む、請求項1~6のいずれか1項に記載の方法。 The process of inputting the subject's sleep information into a machine learning model determined by the sleep information of the healthy person and the mentally handicapped patient acquired in advance and analyzing whether the subject's sleep is closer to the healthy person or the mentally handicapped patient. The method according to any one of claims 1 to 6, which includes.
  8.  機械学習モデルを用いて算出された確率(p)を所定の閾値と比較する工程を含み、前記確率(p)が前記閾値より小さければ被験者の睡眠は健常人に近いと評価する、請求項7に記載の方法。 Claim 7 includes a step of comparing a probability (p) calculated using a machine learning model with a predetermined threshold value, and if the probability (p) is smaller than the threshold value, it is evaluated that the subject's sleep is close to that of a healthy person. The method described in.
  9.  前記機械学習モデルがロジスティック回帰モデルであり、確率(p)が下記式で示される、請求項8に記載の方法。
    Figure JPOXMLDOC01-appb-M000001
    The method according to claim 8, wherein the machine learning model is a logistic regression model, and the probability (p) is represented by the following equation.
    Figure JPOXMLDOC01-appb-M000001
  10.  前記機械学習モデルがロジスティック回帰モデルであり、確率(p)が下記式で示される、請求項8に記載の方法。
    Figure JPOXMLDOC01-appb-M000002
    The method according to claim 8, wherein the machine learning model is a logistic regression model, and the probability (p) is represented by the following equation.
    Figure JPOXMLDOC01-appb-M000002
  11.  前記閾値が0.3~0.5、好ましくは0.3~0.4である、請求項8~10のいずれか1項に記載の方法。 The method according to any one of claims 8 to 10, wherein the threshold value is 0.3 to 0.5, preferably 0.3 to 0.4.
  12.  前記機械学習モデルがXGBoostである、請求項7に記載の方法。 The method according to claim 7, wherein the machine learning model is XGBoost.
  13.  前記機械学習モデルがニューラルネットワーク、好ましくはディープラーニングである、請求項7に記載の方法。 The method according to claim 7, wherein the machine learning model is a neural network, preferably deep learning.
  14.  精神障害患者の治療を支援する方法であって、請求項1~13のいずれか1項に記載の方法にしたがい患者の睡眠を評価する工程、及び前記評価結果に基づいて患者の精神障害の症状又はその程度を評価する工程を含む、前記方法。 A method for supporting the treatment of a psychiatric patient, the step of evaluating the sleep of the patient according to the method according to any one of claims 1 to 13, and the symptom of the patient's psychiatric disorder based on the evaluation result. Or the method comprising the step of evaluating the degree thereof.
  15.  精神障害患者の治療を支援する方法であって、請求項1~13のいずれか1項に記載の方法にしたがい患者の睡眠を評価する工程、及び前記評価結果に基づいて好ましい治療を選択する工程を含む、前記方法。 A method for supporting the treatment of a mentally ill patient, the step of evaluating the sleep of the patient according to the method according to any one of claims 1 to 13, and the step of selecting a preferable treatment based on the evaluation result. The method described above.
  16.  入眠潜時が30分以上で就床時間以下の場合、又は睡眠効率が75%未満の場合に、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される、請求項15に記載の方法。 The method of claim 15, wherein an orexin receptor antagonist is presented as a preferred treatment option when sleep onset latency is 30 minutes or more and bedtime or less, or sleep efficiency is less than 75%.
  17.  患者の精神障害の症状又はその程度を評価する工程、あるいは、好ましい治療を選択する工程が機械学習を用いて実施される、請求項14~16のいずれか1項に記載の方法。 The method according to any one of claims 14 to 16, wherein the step of evaluating the symptom or the degree of mental disorder of the patient or the step of selecting a preferable treatment is carried out using machine learning.
  18.  脳波信号を電気的に処理する脳波信号処理装置と情報解析装置とを含む、精神障害患者の治療支援システムであって、
     前記脳波信号処理装置は、患者の側頭骨上の皮膚に貼付した電極から取得された脳波信号を電気的に処理する装置であり、
     前記情報解析装置は、
     脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報が格納される格納部と、
     前記格納部に格納された睡眠情報を解析・評価する解析部と、
     解析・評価結果を出力する出力部とを備え、
     前記解析部は、請求項1~13のいずれか1項に記載の方法にしたがい患者の睡眠の評価を実施するか、又は、請求項14~17のいずれか1項に記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記治療支援システム。
    It is a treatment support system for mentally handicapped patients, including an electroencephalogram signal processing device that electrically processes an electroencephalogram signal and an information analysis device.
    The electroencephalogram signal processing device is a device that electrically processes an electroencephalogram signal acquired from an electrode attached to the skin on the temporal bone of a patient.
    The information analysis device is
    A storage unit that stores sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, and a storage unit.
    An analysis unit that analyzes and evaluates sleep information stored in the storage unit,
    Equipped with an output unit that outputs analysis / evaluation results
    The analysis unit evaluates the sleep of the patient according to the method according to any one of claims 1 to 13, or the patient according to the method according to any one of claims 14 to 17. The treatment support system for assessing the symptoms of mental illness or its degree, or selecting a preferred treatment.
  19.  精神障害患者の治療を支援するための情報解析装置であって、
     脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報が格納される格納部と、
     前記格納部に格納された睡眠情報を解析・評価する解析部と、
     解析・評価結果を出力する出力部とを備え、
     前記解析部は、請求項1~13のいずれか1項に記載の方法にしたがい睡眠の評価を実施するか、又は、請求項14~17のいずれか1項に記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記情報解析装置。
    An information analysis device to support the treatment of mentally handicapped patients.
    A storage unit that stores sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, and a storage unit.
    An analysis unit that analyzes and evaluates sleep information stored in the storage unit,
    Equipped with an output unit that outputs analysis / evaluation results
    The analysis unit evaluates sleep according to the method according to any one of claims 1 to 13, or the mentality of the patient according to the method according to any one of claims 14 to 17. The information analyzer for assessing the symptoms of a disorder or its degree, or selecting a preferred treatment.
  20.  精神障害患者の治療を支援するためのプログラムであって、
     脳波信号を電気的に処理する装置で処理された前記患者の睡眠情報を取得し、前記睡眠情報を格納し、格納された睡眠情報を評価・解析し、前記評価・解析結果を出力する、処理をコンピュータに実行させるものであり、
     前記評価・解析は、請求項1~13のいずれか1項に記載の方法にしたがい睡眠を評価するか、又は、請求項14~17のいずれか1項に記載の方法にしたがい患者の精神障害の症状又はその程度の評価、もしくは好ましい治療の選択を実施するものである、前記プログラム。
    A program to support the treatment of mentally ill patients
    Processing that acquires sleep information of the patient processed by a device that electrically processes an electroencephalogram signal, stores the sleep information, evaluates / analyzes the stored sleep information, and outputs the evaluation / analysis result. To let the computer do
    The evaluation / analysis evaluates sleep according to the method according to any one of claims 1 to 13, or mental disorder of a patient according to the method according to any one of claims 14 to 17. The program for assessing the symptoms or extent of the disease, or selecting the preferred treatment.
  21.  精神障害患者の治療を支援する方法であって、
     脳波信号を電気的に処理する装置を用いて、前記患者の脳波信号を処理して睡眠情報を取得する工程、及び前記睡眠情報を解析して患者の睡眠を評価する工程、及び前記評価結果に基づいて好ましい治療を選択する工程を含み、
     前記脳波信号が、患者の側頭骨上の皮膚に貼付した電極から取得されたものであり、
     前記睡眠情報が、(i)睡眠効率、(ii)レム睡眠時間もしくはその出現率又はレム睡眠潜時、並びに(iii)浅睡眠及び/もしくは深睡眠時間又はその出現率を含み、
     入眠潜時が30分以上で就床時間以下の場合、又は睡眠効率が75%未満の場合に、オレキシン受容体拮抗薬が好ましい治療の選択肢として提示される、前記方法。

     
    A way to help treat patients with mental illness
    In the step of processing the brain wave signal of the patient to acquire sleep information using a device that electrically processes the brain wave signal, the step of analyzing the sleep information to evaluate the sleep of the patient, and the evaluation result. Including the step of selecting the preferred treatment based on
    The electroencephalogram signal was obtained from an electrode attached to the skin on the patient's temporal bone.
    The sleep information includes (i) sleep efficiency, (ii) REM sleep time or rate thereof or REM sleep latency, and (iii) light sleep and / or deep sleep time or rate thereof.
    The method described above, wherein an orexin receptor antagonist is presented as the preferred treatment option when sleep onset latency is 30 minutes or more and bedtime or less, or sleep efficiency is less than 75%.

PCT/JP2021/014471 2020-04-10 2021-04-05 Method for objective sleep evaluation of mentally disordered patient WO2021206046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022514059A JPWO2021206046A1 (en) 2020-04-10 2021-04-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/016112 WO2021205648A1 (en) 2020-04-10 2020-04-10 Objective sleep assessment method for mental disorder patient
JPPCT/JP2020/016112 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021206046A1 true WO2021206046A1 (en) 2021-10-14

Family

ID=78022837

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/016112 WO2021205648A1 (en) 2020-04-10 2020-04-10 Objective sleep assessment method for mental disorder patient
PCT/JP2021/014471 WO2021206046A1 (en) 2020-04-10 2021-04-05 Method for objective sleep evaluation of mentally disordered patient

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016112 WO2021205648A1 (en) 2020-04-10 2020-04-10 Objective sleep assessment method for mental disorder patient

Country Status (2)

Country Link
JP (1) JPWO2021206046A1 (en)
WO (2) WO2021205648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990016A (en) * 2022-12-02 2023-04-21 天津大学 Eye movement characteristic-based autistic quality degree detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005176A (en) * 2009-06-29 2011-01-13 Sony Corp Auricle-installed device and bio-signal measurement apparatus
WO2012039371A1 (en) * 2010-09-22 2012-03-29 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cyclopropane compound
JP2012508628A (en) * 2008-11-14 2012-04-12 ニューロヴィジル,インク. Method for distinguishing sleep and awakening patterns and its use
US20140221780A1 (en) * 2011-07-22 2014-08-07 President And Fellows Of Harvard College Complexity based methods and systems for detecting depression
US20160113567A1 (en) * 2013-05-28 2016-04-28 Laszlo Osvath Systems and methods for diagnosis of depression and other medical conditions
WO2016171248A1 (en) * 2015-04-24 2016-10-27 武田薬品工業株式会社 Heterocyclic compound
WO2018160065A1 (en) * 2017-02-28 2018-09-07 Universiteit Van Amsterdam Device for detecting post-traumatic stress disorder (ptsd) in a subject

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200626137A (en) * 2004-12-13 2006-08-01 Takeda Pharmaceuticals Co Preventive or therapeutic agent for sleep disorder
JP6991092B2 (en) * 2018-03-29 2022-01-12 大阪瓦斯株式会社 Sleep quality improver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508628A (en) * 2008-11-14 2012-04-12 ニューロヴィジル,インク. Method for distinguishing sleep and awakening patterns and its use
JP2011005176A (en) * 2009-06-29 2011-01-13 Sony Corp Auricle-installed device and bio-signal measurement apparatus
WO2012039371A1 (en) * 2010-09-22 2012-03-29 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cyclopropane compound
US20140221780A1 (en) * 2011-07-22 2014-08-07 President And Fellows Of Harvard College Complexity based methods and systems for detecting depression
US20160113567A1 (en) * 2013-05-28 2016-04-28 Laszlo Osvath Systems and methods for diagnosis of depression and other medical conditions
WO2016171248A1 (en) * 2015-04-24 2016-10-27 武田薬品工業株式会社 Heterocyclic compound
WO2018160065A1 (en) * 2017-02-28 2018-09-07 Universiteit Van Amsterdam Device for detecting post-traumatic stress disorder (ptsd) in a subject

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990016A (en) * 2022-12-02 2023-04-21 天津大学 Eye movement characteristic-based autistic quality degree detection device
CN115990016B (en) * 2022-12-02 2024-04-19 天津大学 Eye movement characteristic-based autistic quality degree detection device

Also Published As

Publication number Publication date
WO2021205648A1 (en) 2021-10-14
JPWO2021206046A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7416676B2 (en) QOL monitoring system and method
Guillodo et al. Clinical applications of mobile health wearable–based sleep monitoring: systematic review
Cesari et al. Video-polysomnography procedures for diagnosis of rapid eye movement sleep behavior disorder (RBD) and the identification of its prodromal stages: guidelines from the International RBD Study Group
de Zambotti et al. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents
Ewing et al. Sleep and the heart: Interoceptive differences linked to poor experiential sleep quality in anxiety and depression
Gehrman et al. Sleep-disordered breathing and agitation in institutionalized adults with Alzheimer disease
Ancoli-Israel et al. The role of actigraphy in the study of sleep and circadian rhythms
Luyster et al. Screening and evaluation tools for sleep disorders in older adults
Nayak et al. Effect of carbamazepine on the sleep microstructure of temporal lobe epilepsy patients: a cyclic alternating pattern-based study
Spielmanns et al. Measuring sleep quality and efficiency with an activity monitoring device in comparison to polysomnography
Carotenuto et al. Polysomnographic findings in fragile X syndrome children with EEG abnormalities
Tahmasian et al. Differentiation chronic post traumatic stress disorder patients from healthy subjects using objective and subjective sleep-related parameters
WO2021206046A1 (en) Method for objective sleep evaluation of mentally disordered patient
Dunn et al. Wireless electroencephalography (EEG) to monitor sleep among patients being withdrawn from opioids: Evidence of feasibility and utility.
Concheiro-Moscoso et al. Quality of sleep data validation from the Xiaomi Mi Band 5 against polysomnography: comparison study
Park et al. Asymmetrical electroencephalographic change of human brain during sleep onset period
Solomon et al. Quantifying energy and fatigue: classification and assessment of energy and fatigue using subjective, objective, and mixed methods towards health and quality of life
Park et al. Daytime sleepiness in mild Alzheimer’s disease with and without parkinsonian features
Kukwa et al. Supine sleep patterns as a part of phenotyping patients with sleep apnea—a pilot study
D’Rozario et al. Region-specific changes in brain activity and memory after continuous positive airway pressure therapy in obstructive sleep apnea: a pilot high-density electroencephalography study
Satapathy et al. A review on psychological brainwaves behavior during sleep: causes and diagnosis
Lacaux et al. Embracing sleep-onset complexity
Lee et al. Validation study of a contactless monitoring device for vital signs during sleep and sleep architecture in adults with sleep-disordered breathing
WO2022070480A1 (en) Cerebrovascular accident detection device and cerebrovascular accident detection program
Costa Medical Devices for the Management of Patients With Epilepsy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784740

Country of ref document: EP

Kind code of ref document: A1