WO2021205623A1 - Air bubble dispersion device and impeller - Google Patents

Air bubble dispersion device and impeller Download PDF

Info

Publication number
WO2021205623A1
WO2021205623A1 PCT/JP2020/016035 JP2020016035W WO2021205623A1 WO 2021205623 A1 WO2021205623 A1 WO 2021205623A1 JP 2020016035 W JP2020016035 W JP 2020016035W WO 2021205623 A1 WO2021205623 A1 WO 2021205623A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
bubble
blade
molten metal
end portion
Prior art date
Application number
PCT/JP2020/016035
Other languages
French (fr)
Japanese (ja)
Inventor
藍礼 鈴木
山本 卓也
将也 繁光
諒輔 谷口
保生 石渡
セルゲイ コマロフ
Original Assignee
日本軽金属株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, 国立大学法人東北大学 filed Critical 日本軽金属株式会社
Priority to PCT/JP2020/016035 priority Critical patent/WO2021205623A1/en
Priority to JP2022513819A priority patent/JP7109014B2/en
Publication of WO2021205623A1 publication Critical patent/WO2021205623A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining

Definitions

  • the present invention relates to a bubble disperser and an impeller that blows purified gas into a molten metal.
  • the molten aluminum or aluminum alloy contains impurities such as alkali metal, aluminum carbide, hydrogen gas, and fine powder of furnace material. Impurities with a light specific density are floated and separated by blowing purified gas such as chlorine, nitrogen, and Ar gas into the molten metal as fine bubbles. When the refined gas is blown into the molten metal while generating a vortex, the blown refined gas becomes fine bubbles and is efficiently dispersed in the molten metal to improve the treatment efficiency.
  • impurities with a light specific density are floated and separated by blowing purified gas such as chlorine, nitrogen, and Ar gas into the molten metal as fine bubbles.
  • Patent Document 1 discloses a bubble disperser provided with a rotating shaft having a through hole for purified gas and an impeller fixed to the tip. According to this bubble disperser, the impeller creates a vortex in the molten metal. A covering body having a cylindrical skirt is provided above the impeller, and the molten metal that has infiltrated between the impeller and the covering body is pushed out by the rotation of the impeller and becomes a molten metal circulation flow in the molten metal container. Circulate. The refined gas is blown into the molten metal through an opening provided on the bottom surface of the impeller, and is evenly dispersed throughout the molten metal as fine bubbles on the molten metal circulating flow.
  • the lower end of the skirt portion of the covering body is formed at a position higher than the upper surface of the impeller.
  • the refined gas blown out from the opening on the bottom of the impeller is flowed into the molten metal by the diagonally downward discharge flow generated by the rotation of the impeller.
  • the outer peripheral portion of the lower end portion of the impeller (the portion through which the tip portion of the blade passes) becomes a dividing region in which bubbles of the purified gas are efficiently divided, and when the purified gas passes through the dividing region, it is finely divided. Will be done.
  • the radial dimension of the impeller blade is large, a part of the refined gas passes through the gap between the base ends of the blade near the center of the impeller and escapes upward without passing through the divided region. Therefore, it may remain as a large bubble. That is, there is room for improvement in the dispersion efficiency of bubbles.
  • an object of the present invention is to provide a bubble disperser and an impeller capable of efficiently dividing bubbles.
  • the first invention for solving such a problem is a bubble dispersion device for blowing a purified gas into a molten metal, which is attached to a rotating shaft provided with a through hole for supplying the purified gas and to the lower end of the rotating shaft. It is equipped with an impeller that can be used.
  • the impeller is adjacent to a central body portion having a gas ejection hole communicating with the through hole, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller. It is characterized by including a bubble guiding portion that covers a gap between the matching blade portions.
  • the purified gas ejected from the gas ejection hole is flowed to the tip of the blade portion by the bubble induction portion.
  • the bubbles of the purified gas are efficiently divided. As a result, finely divided bubbles can be efficiently dispersed in the molten metal.
  • the upper surface of the bubble guiding portion is inclined so that the base end portion of the blade portion is higher and the tip end portion of the blade portion is lower. According to such a configuration, as the impeller rotates, the molten metal flows along the upper surface of the bubble induction portion and is rectified, so that the discharge amount of the discharge flow generated diagonally downward from the outer peripheral portion of the impeller is large. Become. As a result, a circulating flow is generated in the molten metal, and the refined gas spreads throughout the molten metal.
  • the outer end portion of the bubble induction portion is located closer to the base end portion than the tip end of the blade portion. According to such a configuration, the purified gas ejected from the gas ejection hole flows into the divided region of the tip portion of the blade portion by the bubble induction portion, then starts to float and collides with the tip portion of the blade portion. , Even more efficiently divided.
  • the bottom surface of the bubble induction portion is flush with the bottom surface of the blade portion. According to such a configuration, the purified gas ejected from the gas ejection hole is smoothly flowed to the outer peripheral side along the bottom surface of the blade portion and the bubble guiding portion.
  • the second invention for solving the above problems is an impeller used in a bubble disperser for blowing purified gas into a molten metal.
  • the central body portion having a gas ejection hole for supplying the refined gas from the lower surface, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller are adjacent to each other. It is characterized in that it is provided with a bubble guiding portion that covers the gap between the blade portions.
  • the purified gas ejected from the gas ejection hole becomes bubbles as in the invention according to claim 1. It is flushed to the tip of the blade by the guide. In the bubble dividing region through which the tip of the blade portion passes, the bubbles of the purified gas are efficiently divided. As a result, finely divided bubbles can be efficiently dispersed in the molten metal.
  • the upper surface of the bubble induction portion is inclined so that the base end portion of the blade portion is high and the tip end portion of the blade portion is low. Further, the outer end portion of the bubble induction portion is preferably located closer to the base end portion side than the tip end portion of the blade portion. Further, the bottom surface of the bubble induction portion is preferably flush with the bottom surface of the blade portion.
  • air bubbles in the molten metal can be efficiently separated.
  • FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A. It is a perspective view for demonstrating the shape of the impeller which concerns on embodiment of this invention.
  • the bubble disperser 1 is a device in which purified gas is blown into the molten metal M as fine bubbles to float and separate impurities.
  • the metal is, for example, aluminum or an aluminum alloy.
  • the bubble disperser 1 according to the present embodiment includes a rotating shaft 10 and an impeller 20.
  • the rotating shaft 10 is made of graphite, ceramics, etc., which have excellent heat resistance and can withstand erosion by molten metal.
  • the rotating shaft 10 includes a through hole 11 extending in the axial direction.
  • the through hole 11 is a flow path for supplying purified gas, and is formed over the entire length of the rotating shaft 10.
  • a male screw portion 12 screwed into the female screw portion 25 of the impeller 20 is formed at the lower end of the rotating shaft 10.
  • the male screw portion 12 is oriented so as to be tightened to the female screw portion 25 of the impeller 20 when the rotation shaft 10 is turned with respect to the impeller 20 in the rotation direction of the impeller 20.
  • the impeller 20 is made of the same material as the rotating shaft 10 and is attached to the lower end of the rotating shaft 10. As shown in FIGS. 1 to 4, the impeller 20 includes a central body portion 21, a blade portion 22, and a bubble guiding portion 23.
  • the central body portion 21 is located at the center of rotation of the impeller 20 and extends in the vertical direction.
  • a gas ejection hole 24 communicating with the through hole 11 is formed in the central body portion 21.
  • the gas ejection hole 24 penetrates the central body portion 21 in the vertical direction.
  • the upper end of the gas ejection hole 24 has an enlarged diameter, and a female screw portion 25 is formed on the inner peripheral surface.
  • the male screw portion 12 of the rotating shaft 10 is screwed into the female screw portion 25.
  • a plurality of blade portions 22 are provided around the central body portion 21 for stirring the molten metal M.
  • the blade portions 22 are arranged at equal intervals in the circumferential direction, and extend radially outward from the central body portion 21.
  • the upper surface 22a and the lower surface 22b of the blade portion 22 are offset from the center of the shaft portion of the impeller 20 by a predetermined angle (30 ° in this embodiment). Both the upper surface 22a and the lower surface 22b are horizontal.
  • the front end surface 22c connecting the upper surface 22a and the lower surface 22a and the side surfaces 22d and 22e are inclined, respectively.
  • the center line connecting (extending in the vertical direction) the intermediate portion in the width direction of the tip surface 22c is inclined with respect to the axial direction of the impeller 20.
  • One side surface 22d faces diagonally upward, and the other side surface 22e faces diagonally downward.
  • the inclination angle of the blade portion 22 is 30 to 60 ° in consideration of the thrust applied to the molten metal M and the driving force required for the rotation of the impeller 20. It is preferably in the range of.
  • the bubble induction unit 23 guides the purified gas ejected from the gas ejection hole 24 toward the tip end side of the blade portion 22.
  • the bubble guiding portion 23 covers the gap between the blade portions 22 and 22 adjacent to each other in the circumferential direction with a predetermined length from the base end portion to the tip end side of the blade portion 22.
  • the bubble induction portions 23 are provided at six locations corresponding to the six blade portions 22, 22 ...
  • the tip end portion (outer end portion) of the bubble induction portion 23 is located at a portion that is closer to the base end portion side than the tip end portion of the blade portion.
  • the upper surface of the bubble guiding portion 23 is inclined so that the blade portion 22 is higher toward the base end portion and the blade portion 22 is lower toward the tip end portion.
  • the upper end of the base end portion of the bubble induction portion 23 is at the same height as the upper surface of the blade portion 22.
  • the bottom surface of the bubble induction portion 23 is flush with the bottom surface of the blade portion 22.
  • the male screw portion 12 of the rotating shaft 10 is screwed into the female screw portion 25 of the impeller 20.
  • the surface around the base end portion of the male screw portion 12 of the rotary shaft 10 is pressed against the upper surface of the impeller 20, so that the impeller 20 is in close contact with the rotary shaft 10 without a gap.
  • the male screw portion 12 is formed so as to be tightened when the impeller 20 rotates, the male screw portion 12 can be firmly crimped to the impeller 20 without loosening the screw during operation.
  • the molten metal M to which thrust is applied by the blades 22 is sent out into the molten metal container 2.
  • the molten metal M is urged downward by the blade portion 22 and rectified along the upper surface of the bubble induction portion 23, and is sent out from the lower portion of the outer peripheral portion of the impeller 20 diagonally downward to the outside. Since the rectification is performed on the upper surface of the bubble induction unit 23, the discharge amount of the discharge flow of the molten metal M to be sent out becomes large, so that a circulating flow is generated in the molten metal container 2.
  • Bubbles G of purified gas ejected from the gas ejection hole 24 are flowed to the tip of the blade portion 22 by the bottom surface of the impeller 20 including the bottom portion of the bubble induction portion 23.
  • the tip of the blade 22 has a high peripheral speed, and the corner of the tip of the blade 22 cuts through air bubbles. That is, the portion through which the tip portion of the blade portion 22 passes becomes the divided region of the bubble G. In the divided region, the bubbles G of the purified gas are efficiently divided.
  • the bubbles G are induced in the divided region by providing the bubble guiding portion 23, so that the bubbles G are efficiently divided. be able to.
  • the bubbles G are finely divided, the surface area thereof is increased and the deimpuration reaction of the molten metal M is promoted.
  • the bubble G is easily guided to the divided region. Specifically, most of the bubbles G of the purified gas ejected from the gas ejection hole 24 flow to the outer end of the bubble guiding portion 23 along the bottom surface of the bubble guiding portion 23, and then begin to rise. Since it collides with the tip corner portion of the blade portion 22 in the dividing region, the blade portion 22 is divided more efficiently. Further, since the bottom surface of the bubble guiding portion 23 is flush with the bottom surface of the blade portion 22, the bubble G is smoothly flowed to the outer peripheral side along the bottom surface of the blade portion 22 and the bubble guiding portion 23.
  • the bubbles G efficiently divided in the divided region are dispersed over the entire molten metal M by the circulating flow of the molten metal M.
  • the bubble dispersing device 1 and the impeller 20 since the bubble G is guided to the outer peripheral portion of the impeller 20 by the bubble guiding portion 23, it is not necessary to provide a covering body as in the conventional case. Therefore, the number of components of the bubble dispersion device 1 can be reduced, and the manufacturing cost can be reduced.
  • the design of the present invention can be appropriately changed within a range not contrary to the gist thereof.
  • the inclined surface of the upper surface of the bubble guiding portion 23 is flat, but may be curved. According to such a configuration, the flow of the molten metal M may be made smoother.
  • the bottom surface of the bubble guiding portion 23 is flush with the bottom surface of the blade portion 22, but for example, a step may be provided so that the bottom surface of the bubble guiding portion 23 is one step higher. According to such a configuration, the bubble G can be guided to the gap between the blades 22 and 22 at the outer end of the bubble guiding portion 23, and the division efficiency can be further improved.
  • the bubble disperser 1 is immersed in the molten metal M so that the rotation axis 10 is vertical, but the present invention is not limited to this.
  • the bubble disperser 1 may be arranged so that the rotating shaft 10 is slanted. According to such a configuration, a circulating flow of the molten metal M may easily occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is an air bubble dispersion device and an impeller that can efficiently separate air bubbles. Provided is an air bubble dispersion device (1) that blows purified gas into a molten metal (M), wherein the device is characterized by including: a rotating shaft (10) provided with a through-hole (11) through which the purified gas is supplied; and an impeller (20) attached to a bottom end of the rotating shaft (10). The device is also characterized in that the impeller (20) includes: a center body part (21) that includes a gas spray hole (24) that communicates with the through-hole (11); a plurality of blade parts (22, 22...) that are arranged at equal intervals in the circumferential direction of the impeller (20) and that are inclined with respect to the axial direction of the impeller (20); and an air bubble guiding part (23) that covers a gap between adjacent blade parts (22, 22).

Description

気泡分散装置およびインペラーBubble disperser and impeller
 本発明は、金属溶湯に精製ガスを吹き込む気泡分散装置およびインペラーに関する。 The present invention relates to a bubble disperser and an impeller that blows purified gas into a molten metal.
 アルミニウム又はアルミニウム合金の溶湯には、アルカリ金属,アルミニウムカーバイド,水素ガス,炉材の微粉等の不純物が含まれている。比重の軽い不純物は、溶湯中に塩素,窒素,Arガス等の精製ガスを微細気泡として吹き込むことにより浮上ささて分離する。精製ガス吹込みに際し、溶湯中に渦流を発生させながら精製ガスを吹き込むと、吹き込まれた精製ガスは微細気泡となって溶湯中に効率よく分散し、処理効率を向上させる。 The molten aluminum or aluminum alloy contains impurities such as alkali metal, aluminum carbide, hydrogen gas, and fine powder of furnace material. Impurities with a light specific density are floated and separated by blowing purified gas such as chlorine, nitrogen, and Ar gas into the molten metal as fine bubbles. When the refined gas is blown into the molten metal while generating a vortex, the blown refined gas becomes fine bubbles and is efficiently dispersed in the molten metal to improve the treatment efficiency.
 たとえば、特許文献1には、精製ガス用の貫通孔を開け、先端にインペラーを固着した回転軸を備えた気泡分散装置が開示されている。この気泡分散装置によると、インペラーによって溶湯中に渦流が発生する。インペラーの上方には円筒形のスカート部を備えた被覆体が設けられており、インペラーと被覆体の間に浸入した溶湯は、インペラーの回転によって押し出され、溶湯循環流となって溶湯容器内を循環する。精製ガスは、インペラーの底面に設けられた開口部から溶湯中に吹き出され、微細気泡として溶湯循環流に乗って溶湯全体に万遍なく分散される。特許文献1の気泡分散装置では、被覆体のスカート部の下端がインペラーの上面よりも高い位置に形成されている。このような構成とすることで、インペラーと被覆体間に浸入する溶湯量が十分に確保されることで、溶湯循環流が安定化し、溶湯に対する微細気泡の分散性が向上するので、アルミニウム又はアルミニウム合金溶湯を効率よく精製することができる。 For example, Patent Document 1 discloses a bubble disperser provided with a rotating shaft having a through hole for purified gas and an impeller fixed to the tip. According to this bubble disperser, the impeller creates a vortex in the molten metal. A covering body having a cylindrical skirt is provided above the impeller, and the molten metal that has infiltrated between the impeller and the covering body is pushed out by the rotation of the impeller and becomes a molten metal circulation flow in the molten metal container. Circulate. The refined gas is blown into the molten metal through an opening provided on the bottom surface of the impeller, and is evenly dispersed throughout the molten metal as fine bubbles on the molten metal circulating flow. In the bubble disperser of Patent Document 1, the lower end of the skirt portion of the covering body is formed at a position higher than the upper surface of the impeller. With such a configuration, a sufficient amount of molten metal infiltrating between the impeller and the covering body is secured, the circulating flow of the molten metal is stabilized, and the dispersibility of fine bubbles in the molten metal is improved. The molten alloy can be purified efficiently.
特開2000-309829号公報Japanese Unexamined Patent Publication No. 2000-309829
 インペラーの底面の開口部から吹き出された精製ガスは、インペラーの回転により発生する斜め下方への吐出流によって溶湯中に流される。このとき、インペラーの下端部の外周部(羽根の先端部が通過する部分)が、精製ガスの気泡が効率的に分断される分断領域となり、精製ガスが分断領域を通過する際に、細かく分断される。しかしながら、インペラーの羽根の径方向寸法が大きい場合には、精製ガスの一部が、インペラーの中心部寄りで羽根の基端部間の隙間を通過し、分断領域を通過せずに上方に抜けてしまうため、大きな気泡として残ってしまう場合があった。つまり、気泡の分散効率は改善の余地が残されている。 The refined gas blown out from the opening on the bottom of the impeller is flowed into the molten metal by the diagonally downward discharge flow generated by the rotation of the impeller. At this time, the outer peripheral portion of the lower end portion of the impeller (the portion through which the tip portion of the blade passes) becomes a dividing region in which bubbles of the purified gas are efficiently divided, and when the purified gas passes through the dividing region, it is finely divided. Will be done. However, when the radial dimension of the impeller blade is large, a part of the refined gas passes through the gap between the base ends of the blade near the center of the impeller and escapes upward without passing through the divided region. Therefore, it may remain as a large bubble. That is, there is room for improvement in the dispersion efficiency of bubbles.
 そこで、本発明は上記問題に鑑みてなされたものであり、気泡を効率的に分断できる気泡分散装置およびインペラーを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a bubble disperser and an impeller capable of efficiently dividing bubbles.
 このような課題を解決するための第一の本発明は、金属溶湯に精製ガスを吹き込む気泡分散装置において、前記精製ガスを供給する貫通孔を備えた回転軸と、前記回転軸の下端に取り付けられるインペラーとを備えている。前記インペラーは、前記貫通孔に連通するガス噴出孔を有する中心胴部と、前記インペラーの周方向に等間隔に配置されるとともに前記インペラーの軸方向に対して傾斜した複数の羽根部と、隣り合う前記羽根部間の隙間を覆う気泡誘導部とを備えていることを特徴とする。 The first invention for solving such a problem is a bubble dispersion device for blowing a purified gas into a molten metal, which is attached to a rotating shaft provided with a through hole for supplying the purified gas and to the lower end of the rotating shaft. It is equipped with an impeller that can be used. The impeller is adjacent to a central body portion having a gas ejection hole communicating with the through hole, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller. It is characterized by including a bubble guiding portion that covers a gap between the matching blade portions.
 本発明に係る気泡分散装置によれば、ガス噴出孔から噴出された精製ガスが、気泡誘導部によって羽根部の先端部に流される。羽根部の先端部が通過する気泡の分断領域では、精製ガスの気泡が効率的に分断される。これによって、細かく分断された気泡を溶湯内に効率的に分散させることができる。 According to the bubble dispersion device according to the present invention, the purified gas ejected from the gas ejection hole is flowed to the tip of the blade portion by the bubble induction portion. In the bubble dividing region through which the tip of the blade portion passes, the bubbles of the purified gas are efficiently divided. As a result, finely divided bubbles can be efficiently dispersed in the molten metal.
 本発明に係る気泡分散装置においては、前記気泡誘導部の上面は、前記羽根部の基端部寄りが高く、前記羽根部の先端部寄りが低くなるように傾斜しているものが好ましい。このような構成によれば、インペラーの回転に伴い、溶湯が気泡誘導部の上面に沿って流れて整流されるため、インペラーの外周部から斜め下方に向かって発生する吐出流の吐出量が大きくなる。これによって、溶湯内に循環流が発生し、精製ガスが溶湯の全体に渡って広がる。 In the bubble disperser according to the present invention, it is preferable that the upper surface of the bubble guiding portion is inclined so that the base end portion of the blade portion is higher and the tip end portion of the blade portion is lower. According to such a configuration, as the impeller rotates, the molten metal flows along the upper surface of the bubble induction portion and is rectified, so that the discharge amount of the discharge flow generated diagonally downward from the outer peripheral portion of the impeller is large. Become. As a result, a circulating flow is generated in the molten metal, and the refined gas spreads throughout the molten metal.
 また、本発明に係る気泡分散装置においては、前記気泡誘導部の外側端部は、前記羽根部の先端よりも基端部側に位置しているものが好ましい。このような構成によれば、ガス噴出孔から噴出された精製ガスは、気泡誘導部によって羽根部の先端部の分断領域に流された後、浮上し始め、羽根部の先端部に衝突するので、より一層効率的に分断される。 Further, in the bubble disperser according to the present invention, it is preferable that the outer end portion of the bubble induction portion is located closer to the base end portion than the tip end of the blade portion. According to such a configuration, the purified gas ejected from the gas ejection hole flows into the divided region of the tip portion of the blade portion by the bubble induction portion, then starts to float and collides with the tip portion of the blade portion. , Even more efficiently divided.
 さらに、本発明に係る気泡分散装置においては、前記気泡誘導部の底面は、前記羽根部の底面と面一であるものが好ましい。このような構成によれば、ガス噴出孔から噴出された精製ガスは、羽根部と気泡誘導部の底面に沿って外周側に円滑に流される。 Further, in the bubble disperser according to the present invention, it is preferable that the bottom surface of the bubble induction portion is flush with the bottom surface of the blade portion. According to such a configuration, the purified gas ejected from the gas ejection hole is smoothly flowed to the outer peripheral side along the bottom surface of the blade portion and the bubble guiding portion.
 前記課題を解決するための第二の本発明は、金属溶湯に精製ガスを吹き込む気泡分散装置に用いられるインペラーである。前記精製ガスを下面から供給するガス噴出孔を有する中心胴部と、前記インペラーの周方向に等間隔に配置されるとともに前記インペラーの軸方向に対して傾斜した複数の羽根部と、隣り合う前記羽根部間の隙間を覆う気泡誘導部とを備えていることを特徴とする。 The second invention for solving the above problems is an impeller used in a bubble disperser for blowing purified gas into a molten metal. The central body portion having a gas ejection hole for supplying the refined gas from the lower surface, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller are adjacent to each other. It is characterized in that it is provided with a bubble guiding portion that covers the gap between the blade portions.
 本発明に係るインペラーを回転軸の下端部に取り付けて、精製ガスを供給しながら溶湯内で回転させると、請求項1に係る発明と同様に、ガス噴出孔から噴出された精製ガスが、気泡誘導部によって羽根部の先端部に流される。羽根部の先端部が通過する気泡の分断領域では、精製ガスの気泡が効率的に分断される。これによって、細かく分断された気泡を溶湯内に効率的に分散させることができる。 When the impeller according to the present invention is attached to the lower end of the rotating shaft and rotated in the molten metal while supplying purified gas, the purified gas ejected from the gas ejection hole becomes bubbles as in the invention according to claim 1. It is flushed to the tip of the blade by the guide. In the bubble dividing region through which the tip of the blade portion passes, the bubbles of the purified gas are efficiently divided. As a result, finely divided bubbles can be efficiently dispersed in the molten metal.
 本発明に係るインペラーにおいては、前記気泡誘導部の上面は、前記羽根部の基端部寄りが高く、前記羽根部の先端部寄りが低くなるように傾斜しているものが好ましい。また、前記気泡誘導部の外側端部は、前記羽根部の先端よりも基端部側に位置しているものが好ましい。さらに、前記気泡誘導部の底面は、前記羽根部の底面と面一であるものが好ましい。請求項2乃至4に係る発明と同様の作用効果を得られる。 In the impeller according to the present invention, it is preferable that the upper surface of the bubble induction portion is inclined so that the base end portion of the blade portion is high and the tip end portion of the blade portion is low. Further, the outer end portion of the bubble induction portion is preferably located closer to the base end portion side than the tip end portion of the blade portion. Further, the bottom surface of the bubble induction portion is preferably flush with the bottom surface of the blade portion. The same effects as those of the inventions according to claims 2 to 4 can be obtained.
 本発明によれば、溶湯内の気泡を効率的に分断することができる。 According to the present invention, air bubbles in the molten metal can be efficiently separated.
本発明の実施形態に係るインペラーを示した平面図である。It is a top view which showed the impeller which concerns on embodiment of this invention. 本発明の実施形態に係るインペラーを示した正面図である。It is a front view which showed the impeller which concerns on embodiment of this invention. 本発明の実施形態に係るインペラーを示した底面図である。It is a bottom view which showed the impeller which concerns on embodiment of this invention. 本発明の実施形態に係るインペラーを斜め上方から示した斜視図である。It is a perspective view which showed the impeller which concerns on embodiment of this invention from diagonally above. 本発明の実施形態に係るインペラーを斜め下方から示した斜視図である。It is a perspective view which showed the impeller which concerns on embodiment of this invention from diagonally below. 図1AのA-A線断面図である。FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1A. 図1AのB-B線断面図である。FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A. 本発明の実施形態に係るインペラーの形状を説明するための斜視図である。It is a perspective view for demonstrating the shape of the impeller which concerns on embodiment of this invention. 本発明の実施形態に係る気泡分散装置を示した分解斜視図である。It is an exploded perspective view which showed the bubble dispersion apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る気泡分散装置を示した側面図である。It is a side view which showed the bubble dispersion apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る気泡分散装置の使用状態を示した側面図である。It is a side view which showed the use state of the bubble disperser which concerns on embodiment of this invention.
 本発明の実施形態に係る気泡分散装置およびインペラーについて、図面を参照しながら詳細に説明する。図8に示すように、気泡分散装置1は、金属の溶湯Mに微細気泡として精製ガスを吹き込み、不純物を浮上させ分離する装置である。金属は、例えばアルミニウムまたはアルミニウム合金である。図6および図7にも示すように、本実施形態に係る気泡分散装置1は、回転軸10とインペラー20とを備えている。 The bubble disperser and the impeller according to the embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 8, the bubble dispersion device 1 is a device in which purified gas is blown into the molten metal M as fine bubbles to float and separate impurities. The metal is, for example, aluminum or an aluminum alloy. As shown in FIGS. 6 and 7, the bubble disperser 1 according to the present embodiment includes a rotating shaft 10 and an impeller 20.
 回転軸10は、金属溶湯による浸食に耐え得る、耐熱性に優れたグラファイト,セラミックス等にて形成されている。回転軸10は、軸方向に延びる貫通孔11を備えている。貫通孔11は、精製ガスを供給するための流路であり、回転軸10の全長に渡って形成されている。回転軸10の下端部には、インペラー20の雌ネジ部25に螺合する雄ネジ部12が形成されている。雄ネジ部12は、回転軸10をインペラー20に対してインペラー20の回転方向に回すとインペラー20の雌ネジ部25に締め付けられる向きになっている。 The rotating shaft 10 is made of graphite, ceramics, etc., which have excellent heat resistance and can withstand erosion by molten metal. The rotating shaft 10 includes a through hole 11 extending in the axial direction. The through hole 11 is a flow path for supplying purified gas, and is formed over the entire length of the rotating shaft 10. At the lower end of the rotating shaft 10, a male screw portion 12 screwed into the female screw portion 25 of the impeller 20 is formed. The male screw portion 12 is oriented so as to be tightened to the female screw portion 25 of the impeller 20 when the rotation shaft 10 is turned with respect to the impeller 20 in the rotation direction of the impeller 20.
 インペラー20は、回転軸10と同じ材質に形成されており、回転軸10の下端に取り付けられる。図1乃至図4に示すように、インペラー20は、中心胴部21と羽根部22と気泡誘導部23とを備えている。中心胴部21は、インペラー20の回転中心に位置し上下方向に延在している。中心胴部21には、貫通孔11に連通するガス噴出孔24が形成されている。ガス噴出孔24は、中心胴部21を上下方向に貫通している。ガス噴出孔24の上端部は、拡径しており、内周面に雌ネジ部25が形成されている。雌ネジ部25には、回転軸10の雄ネジ部12が螺合する。 The impeller 20 is made of the same material as the rotating shaft 10 and is attached to the lower end of the rotating shaft 10. As shown in FIGS. 1 to 4, the impeller 20 includes a central body portion 21, a blade portion 22, and a bubble guiding portion 23. The central body portion 21 is located at the center of rotation of the impeller 20 and extends in the vertical direction. A gas ejection hole 24 communicating with the through hole 11 is formed in the central body portion 21. The gas ejection hole 24 penetrates the central body portion 21 in the vertical direction. The upper end of the gas ejection hole 24 has an enlarged diameter, and a female screw portion 25 is formed on the inner peripheral surface. The male screw portion 12 of the rotating shaft 10 is screwed into the female screw portion 25.
 羽根部22は、溶湯Mを攪拌するものであって、中心胴部21の周囲に複数設けられている。羽根部22は、周方向に等間隔に配置され、中心胴部21から外方に向かって放射状に延在している。羽根部22は、上面22aと下面22bがインペラー20の軸部中心に所定角度(本実施形態では30°)オフセットしている。上面22aと下面22bは共に水平である。上面22aと下面22aを繋ぐ先端面22cと両側面22d,22eがそれぞれ傾斜している。先端面22cを正面から見た状態で、先端面22cの幅方向中間部を結ぶ(縦方向に延在する)中心線は、インペラー20の軸方向に対して傾斜している。一方の側面22dは斜め上方を向き、他方の側面22eは斜め下方を向いている。羽根部22の傾斜角(先端面22cの中心線とインペラー20の軸方向との傾斜角)は、溶湯Mに与える推力とインペラー20の回転に必要な駆動力を考慮して、30~60°の範囲であることが好ましい。 A plurality of blade portions 22 are provided around the central body portion 21 for stirring the molten metal M. The blade portions 22 are arranged at equal intervals in the circumferential direction, and extend radially outward from the central body portion 21. The upper surface 22a and the lower surface 22b of the blade portion 22 are offset from the center of the shaft portion of the impeller 20 by a predetermined angle (30 ° in this embodiment). Both the upper surface 22a and the lower surface 22b are horizontal. The front end surface 22c connecting the upper surface 22a and the lower surface 22a and the side surfaces 22d and 22e are inclined, respectively. When the tip surface 22c is viewed from the front, the center line connecting (extending in the vertical direction) the intermediate portion in the width direction of the tip surface 22c is inclined with respect to the axial direction of the impeller 20. One side surface 22d faces diagonally upward, and the other side surface 22e faces diagonally downward. The inclination angle of the blade portion 22 (the inclination angle between the center line of the tip surface 22c and the axial direction of the impeller 20) is 30 to 60 ° in consideration of the thrust applied to the molten metal M and the driving force required for the rotation of the impeller 20. It is preferably in the range of.
 気泡誘導部23は、ガス噴出孔24から噴出された精製ガスを羽根部22の先端部側に誘導する。気泡誘導部23は、周方向に隣り合う羽根部22,22間の隙間を、羽根部22の基端部から先端側に向かって所定長さで覆っている。気泡誘導部23は、6枚の羽根部22,22・・に対応して6か所に設けられている。気泡誘導部23の先端部(外側端部)は、羽根部の先端よりも基端部側に入った部分に位置している。気泡誘導部23の上面は、羽根部22の基端部寄りが高く、羽根部22の先端部寄りが低くなるように傾斜している。気泡誘導部23の基端部の上端は、羽根部22の上面と同じ高さとなっている。気泡誘導部23の底面は、羽根部22の底面と面一になっている。6つの気泡誘導部23,23・・を仮想的に結ぶと円錐台状(図5参照)になる。つまり、インペラー20は、図5に示すように、中心胴部21と羽根部22とを備えた形状に、円錐台23aを組み合わせて成る形状である。 The bubble induction unit 23 guides the purified gas ejected from the gas ejection hole 24 toward the tip end side of the blade portion 22. The bubble guiding portion 23 covers the gap between the blade portions 22 and 22 adjacent to each other in the circumferential direction with a predetermined length from the base end portion to the tip end side of the blade portion 22. The bubble induction portions 23 are provided at six locations corresponding to the six blade portions 22, 22 ... The tip end portion (outer end portion) of the bubble induction portion 23 is located at a portion that is closer to the base end portion side than the tip end portion of the blade portion. The upper surface of the bubble guiding portion 23 is inclined so that the blade portion 22 is higher toward the base end portion and the blade portion 22 is lower toward the tip end portion. The upper end of the base end portion of the bubble induction portion 23 is at the same height as the upper surface of the blade portion 22. The bottom surface of the bubble induction portion 23 is flush with the bottom surface of the blade portion 22. When the six bubble induction portions 23, 23 ... Are virtually connected, a truncated cone shape (see FIG. 5) is formed. That is, as shown in FIG. 5, the impeller 20 has a shape including a central body portion 21 and a blade portion 22 in combination with a truncated cone 23a.
 回転軸10にインペラー20を固着するに際し、回転軸10の雄ネジ部12をインペラー20の雌ネジ部25に螺合する。雄ネジ部12のねじ込みに伴って回転軸10の雄ネジ部12の基端部の周囲の面がインペラー20の上面に押し付けられるので、インペラー20は隙間なく回転軸10に密着する。また、雄ネジ部12は、インペラー20が回転すると締まるように形成されているので、運転中にネジが緩むことなく強固にインペラー20と圧着できる。 When fixing the impeller 20 to the rotating shaft 10, the male screw portion 12 of the rotating shaft 10 is screwed into the female screw portion 25 of the impeller 20. As the male screw portion 12 is screwed in, the surface around the base end portion of the male screw portion 12 of the rotary shaft 10 is pressed against the upper surface of the impeller 20, so that the impeller 20 is in close contact with the rotary shaft 10 without a gap. Further, since the male screw portion 12 is formed so as to be tightened when the impeller 20 rotates, the male screw portion 12 can be firmly crimped to the impeller 20 without loosening the screw during operation.
 気泡分散装置1を溶湯容器2に貯められた溶湯Mに浸漬してインペラー20を回転させるとき、羽根部22によって推力が付与された溶湯Mは、溶湯容器2内に送り出される。このとき、溶湯Mは、羽根部22によって下方に付勢されるとともに気泡誘導部23の上面に沿って整流され、インペラー20の外周部の下部から外側斜め下方に向かって送り出される。気泡誘導部23の上面で整流されたことで、送り出される溶湯Mの吐出流の吐出量は大きくなるので、溶湯容器2内に循環流が発生する。 When the bubble disperser 1 is immersed in the molten metal M stored in the molten metal container 2 to rotate the impeller 20, the molten metal M to which thrust is applied by the blades 22 is sent out into the molten metal container 2. At this time, the molten metal M is urged downward by the blade portion 22 and rectified along the upper surface of the bubble induction portion 23, and is sent out from the lower portion of the outer peripheral portion of the impeller 20 diagonally downward to the outside. Since the rectification is performed on the upper surface of the bubble induction unit 23, the discharge amount of the discharge flow of the molten metal M to be sent out becomes large, so that a circulating flow is generated in the molten metal container 2.
 ガス噴出孔24から噴出された精製ガスの気泡Gは、気泡誘導部23の底部を含むインペラー20の底面によって羽根部22の先端部に流される。羽根部22の先端部は周速が早く、羽根部22の先端角部が気泡をかき切る。つまり、羽根部22の先端部が通過する部分が気泡Gの分断領域となる。分断領域では、精製ガスの気泡Gが効率的に分断されるが、本実施形態では、気泡誘導部23を設けたことで分断領域に気泡Gを誘導するので、気泡Gを効率的に分断させることができる。気泡Gが細かく分断されることで、その表面積が増加し、溶湯Mの脱不純物反応が促進される。 Bubbles G of purified gas ejected from the gas ejection hole 24 are flowed to the tip of the blade portion 22 by the bottom surface of the impeller 20 including the bottom portion of the bubble induction portion 23. The tip of the blade 22 has a high peripheral speed, and the corner of the tip of the blade 22 cuts through air bubbles. That is, the portion through which the tip portion of the blade portion 22 passes becomes the divided region of the bubble G. In the divided region, the bubbles G of the purified gas are efficiently divided. However, in the present embodiment, the bubbles G are induced in the divided region by providing the bubble guiding portion 23, so that the bubbles G are efficiently divided. be able to. When the bubbles G are finely divided, the surface area thereof is increased and the deimpuration reaction of the molten metal M is promoted.
 また、気泡誘導部23の外側端部は、羽根部22の先端よりも基端部側に位置しているので、気泡Gが分断領域に誘導されやすい。具体的には、ガス噴出孔24から噴出された精製ガスの気泡Gの大部分は、気泡誘導部23の底面に沿って気泡誘導部23の外側端部に流された後、浮上し始め、分断領域において羽根部22の先端角部に衝突するので、より一層効率的に分断される。さらに、気泡誘導部23の底面は、羽根部22の底面と面一であるので、気泡Gは、羽根部22と気泡誘導部23の底面に沿って外周側に円滑に流される。 Further, since the outer end portion of the bubble induction portion 23 is located closer to the base end portion side than the tip end portion of the blade portion 22, the bubble G is easily guided to the divided region. Specifically, most of the bubbles G of the purified gas ejected from the gas ejection hole 24 flow to the outer end of the bubble guiding portion 23 along the bottom surface of the bubble guiding portion 23, and then begin to rise. Since it collides with the tip corner portion of the blade portion 22 in the dividing region, the blade portion 22 is divided more efficiently. Further, since the bottom surface of the bubble guiding portion 23 is flush with the bottom surface of the blade portion 22, the bubble G is smoothly flowed to the outer peripheral side along the bottom surface of the blade portion 22 and the bubble guiding portion 23.
 以上のように、分断領域で効率的に分断された気泡Gは、溶湯Mの循環流によって、溶湯Mの全体に渡って分散される。 As described above, the bubbles G efficiently divided in the divided region are dispersed over the entire molten metal M by the circulating flow of the molten metal M.
 また、本発明に係る気泡分散装置1およびインペラー20においては、気泡誘導部23によって、気泡Gがインペラー20の外周部に誘導されるので、従来のように被覆体を設ける必要がない。したがって、気泡分散装置1の構成部品を減らすことができ、製造コストを軽減することができる。 Further, in the bubble dispersing device 1 and the impeller 20 according to the present invention, since the bubble G is guided to the outer peripheral portion of the impeller 20 by the bubble guiding portion 23, it is not necessary to provide a covering body as in the conventional case. Therefore, the number of components of the bubble dispersion device 1 can be reduced, and the manufacturing cost can be reduced.
 以上本発明の実施形態について説明したが、本発明は、その趣旨に反しない範囲において適宜設計変更が可能である。例えば、前記実施形態では、気泡誘導部23の上面の傾斜面は平面状であるが、曲面状としてもよい。このような構成によれば、溶湯Mの流れをより一層円滑にできる場合がある。 Although the embodiments of the present invention have been described above, the design of the present invention can be appropriately changed within a range not contrary to the gist thereof. For example, in the above-described embodiment, the inclined surface of the upper surface of the bubble guiding portion 23 is flat, but may be curved. According to such a configuration, the flow of the molten metal M may be made smoother.
 また、前記実施形態では、気泡誘導部23の底面は、羽根部22の底面と面一であるが、たとえば、気泡誘導部23の底面が一段高くなるように段差を設けてもよい。このような構成によれば、気泡Gを気泡誘導部23の外側端部の羽根部22,22間の隙間に誘導でき、分断効率をより一層高めることができる。 Further, in the above embodiment, the bottom surface of the bubble guiding portion 23 is flush with the bottom surface of the blade portion 22, but for example, a step may be provided so that the bottom surface of the bubble guiding portion 23 is one step higher. According to such a configuration, the bubble G can be guided to the gap between the blades 22 and 22 at the outer end of the bubble guiding portion 23, and the division efficiency can be further improved.
 前記実施形態では、気泡分散装置1は、回転軸10が垂直になるように、溶湯Mに浸漬しているが、これに限定されるものではない。溶湯容器2の形状に応じて、回転軸10が斜めになるように、気泡分散装置1を配置してもよい。このような構成によれば、溶湯Mの循環流が発生しやすくなる場合がある。 In the above embodiment, the bubble disperser 1 is immersed in the molten metal M so that the rotation axis 10 is vertical, but the present invention is not limited to this. Depending on the shape of the molten metal container 2, the bubble disperser 1 may be arranged so that the rotating shaft 10 is slanted. According to such a configuration, a circulating flow of the molten metal M may easily occur.
 1   気泡分散装置
 10  回転軸
 11  貫通孔
 20  インペラー
 21  中心胴部
 22  羽根部
 23  気泡誘導部
 24  ガス噴出孔
 G   気泡
 M   溶湯
1 Bubble disperser 10 Rotating shaft 11 Through hole 20 Impeller 21 Central body 22 Blade 23 Bubble induction 24 Gas ejection hole G Bubble M Molten

Claims (8)

  1.  金属溶湯に精製ガスを吹き込む気泡分散装置において、
     前記精製ガスを供給する貫通孔を備えた回転軸と、前記回転軸の下端に取り付けられるインペラーとを備え、
     前記インペラーは、前記貫通孔に連通するガス噴出孔を有する中心胴部と、前記インペラーの周方向に等間隔に配置されるとともに前記インペラーの軸方向に対して傾斜した複数の羽根部と、隣り合う前記羽根部間の隙間を覆う気泡誘導部とを備えている
     ことを特徴とする気泡分散装置。
    In a bubble disperser that blows purified gas into molten metal
    A rotary shaft having a through hole for supplying the purified gas and an impeller attached to the lower end of the rotary shaft are provided.
    The impeller is adjacent to a central body portion having a gas ejection hole communicating with the through hole, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller. A bubble disperser including a bubble guide portion that covers a gap between the blade portions that meet the blades.
  2.  前記気泡誘導部の上面は、前記羽根部の基端部寄りが高く、前記羽根部の先端部寄りが低くなるように傾斜している
     ことを特徴とする請求項1に記載の気泡分散装置。
    The bubble dispersion device according to claim 1, wherein the upper surface of the bubble induction portion is inclined so that the blade portion is closer to the base end portion and the blade portion is lower to the tip end portion.
  3.  前記気泡誘導部の外側端部は、前記羽根部の先端よりも基端部側に位置している
     ことを特徴とする請求項1または請求項2に記載の気泡分散装置。
    The bubble dispersion device according to claim 1 or 2, wherein the outer end portion of the bubble induction portion is located closer to the base end portion side than the tip end of the blade portion.
  4.  前記気泡誘導部の底面は、前記羽根部の底面と面一である
     ことを特徴とする請求項1に記載の気泡分散装置。
    The bubble dispersion device according to claim 1, wherein the bottom surface of the bubble induction portion is flush with the bottom surface of the blade portion.
  5.  金属溶湯に精製ガスを吹き込む気泡分散装置に用いられるインペラーにおいて、
      前記精製ガスを下面から供給するガス噴出孔を有する中心胴部と、前記インペラーの周方向に等間隔に配置されるとともに前記インペラーの軸方向に対して傾斜した複数の羽根部と、隣り合う前記羽根部間の隙間を覆う気泡誘導部とを備えている
     ことを特徴とするインペラー。
    In the impeller used for the bubble disperser that blows purified gas into the molten metal
    The central body portion having a gas ejection hole for supplying the refined gas from the lower surface, and a plurality of blade portions arranged at equal intervals in the circumferential direction of the impeller and inclined with respect to the axial direction of the impeller, adjacent to each other. An impeller characterized by having a bubble guide that covers the gap between the blades.
  6.  前記気泡誘導部の上面は、前記羽根部の基端部寄りが高く、前記羽根部の先端部寄りが低くなるように傾斜している
     ことを特徴とする請求項5に記載のインペラー。
    The impeller according to claim 5, wherein the upper surface of the bubble induction portion is inclined so that the blade portion is higher toward the base end portion and the blade portion is lower toward the tip end portion.
  7.  前記気泡誘導部の外側端部は、前記羽根部の先端よりも基端部側に位置している
     ことを特徴とする請求項5または請求項6に記載のインペラー。
    The impeller according to claim 5 or 6, wherein the outer end portion of the bubble induction portion is located closer to the base end portion side than the tip end of the blade portion.
  8.  前記気泡誘導部の底面は、前記羽根部の底面と面一である
     ことを特徴とする請求項5に記載のインペラー。
    The impeller according to claim 5, wherein the bottom surface of the bubble induction portion is flush with the bottom surface of the blade portion.
PCT/JP2020/016035 2020-04-09 2020-04-09 Air bubble dispersion device and impeller WO2021205623A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/016035 WO2021205623A1 (en) 2020-04-09 2020-04-09 Air bubble dispersion device and impeller
JP2022513819A JP7109014B2 (en) 2020-04-09 2020-04-09 Air bubble disperser and impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016035 WO2021205623A1 (en) 2020-04-09 2020-04-09 Air bubble dispersion device and impeller

Publications (1)

Publication Number Publication Date
WO2021205623A1 true WO2021205623A1 (en) 2021-10-14

Family

ID=78023103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016035 WO2021205623A1 (en) 2020-04-09 2020-04-09 Air bubble dispersion device and impeller

Country Status (2)

Country Link
JP (1) JP7109014B2 (en)
WO (1) WO2021205623A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123250U (en) * 1991-04-25 1992-11-06 日立金属株式会社 gas blowing rotor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465624B2 (en) 1999-04-23 2003-11-10 日本軽金属株式会社 Bubble dispersion device for molten metal
US6689310B1 (en) * 2000-05-12 2004-02-10 Paul V. Cooper Molten metal degassing device and impellers therefor
JP2004162102A (en) 2002-11-12 2004-06-10 Akechi Ceramics Co Ltd Degassing and cleaning apparatus for molten metal
JP6196533B2 (en) 2013-11-06 2017-09-13 三井金属鉱業株式会社 Degassing apparatus, degassing method, molten metal stirrer and method for producing the same
JP6317604B2 (en) 2014-03-20 2018-04-25 東京窯業株式会社 Bubble discharge dispersion device
JP6954589B2 (en) 2017-04-14 2021-10-27 日本金属化学株式会社 Stirrer and molten metal processing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123250U (en) * 1991-04-25 1992-11-06 日立金属株式会社 gas blowing rotor

Also Published As

Publication number Publication date
JPWO2021205623A1 (en) 2021-10-14
JP7109014B2 (en) 2022-07-29

Similar Documents

Publication Publication Date Title
US8246295B2 (en) Riserless transfer pump and mixer/pre-melter for molten metal applications
US9234520B2 (en) Riserless transfer pump and mixer/pre-melter for molten metal applications
JP4435713B2 (en) Centrifugal blower
EP3058108B1 (en) Impact resistant scrap submergence device
KR101309356B1 (en) Method and mixer apparatus for mixing gas into slurry in a closed reactor
KR101378068B1 (en) Processing device
CN86100217A (en) A kind of device in the material drying systems
KR910007167B1 (en) Device for releasing and diffusing bubbles into liquid
WO2021205623A1 (en) Air bubble dispersion device and impeller
CN102135111A (en) Cooling fan and rotor thereof
JP2009090961A (en) Pod type propeller and pod type pump device
JP2006007128A (en) Annular type bead mill, pigment dispersion system provided with it and pigment dispersion method using the system
WO2010095360A1 (en) Device for stirring molten metal
KR100820621B1 (en) Jet solder vessel
CA2686331C (en) Agitator for abrasive media
JP2008157216A (en) Centrifugal fan device and electronic apparatus having the same
US7438525B2 (en) Fan housing
CN110195718B (en) Centrifugal fan
CN110475877B (en) Raw material supply device, self-melting furnace, and method for operating self-melting furnace
JP6317604B2 (en) Bubble discharge dispersion device
US6981843B2 (en) Axial-flow fan structure
JP3465624B2 (en) Bubble dispersion device for molten metal
JPWO2021205623A5 (en)
JP4672067B2 (en) Stirrer for molten metal
EP3251739B1 (en) Stirring impeller and stirring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930107

Country of ref document: EP

Kind code of ref document: A1