WO2021205586A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021205586A1
WO2021205586A1 PCT/JP2020/015903 JP2020015903W WO2021205586A1 WO 2021205586 A1 WO2021205586 A1 WO 2021205586A1 JP 2020015903 W JP2020015903 W JP 2020015903W WO 2021205586 A1 WO2021205586 A1 WO 2021205586A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
resistor
power conversion
contactor
filter capacitor
Prior art date
Application number
PCT/JP2020/015903
Other languages
French (fr)
Japanese (ja)
Inventor
道夫 大坪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022513786A priority Critical patent/JP7229425B2/en
Priority to DE112020007050.6T priority patent/DE112020007050T5/en
Priority to PCT/JP2020/015903 priority patent/WO2021205586A1/en
Publication of WO2021205586A1 publication Critical patent/WO2021205586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock

Definitions

  • This disclosure relates to a power conversion device.
  • Some electric railway vehicles are equipped with a power converter that converts the DC power supplied from the substation through the overhead wire into the desired AC power and supplies the converted power to the motor.
  • a power conversion device that converts the DC power supplied from the substation through the overhead wire into the desired AC power and supplies the converted power to the motor.
  • An example of this type of power conversion device is disclosed in Patent Document 1.
  • This power conversion device has a power conversion unit, a filter capacitor whose ends are connected to the primary terminal of the power conversion unit, a discharge circuit having a discharge resistor for discharging the filter capacitor, and an inrush current when charging the filter capacitor. It is provided with a charging resistor for suppressing.
  • Some electric railway vehicles can generate brakes by dynamic braking in addition to mechanical brakes.
  • the electric power conversion device disclosed in Patent Document 1 in order to enable braking of an electric railway vehicle by a dynamic braking method, a circuit for consuming electric power supplied from an electric motor operating as a generator is required. You will need it.
  • the power converter needs to further include a switching element connected in series and a brake chopper circuit having a brake resistor.
  • the power conversion device has a discharge resistance, a charge resistance, and a brake resistance.
  • the power conversion device that enables the electric railroad vehicle to be braked by the dynamic braking method has resistance for each function, so that the structure becomes complicated and the size becomes large. Note that this problem can occur in any power conversion device that requires a plurality of resistors for each function.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a power conversion device having a simple structure.
  • the power conversion device of the present disclosure includes a filter capacitor, a power conversion unit, a circuit switching unit, a chopper circuit, and a discharge switch.
  • the filter capacitor is charged with DC power supplied from the power supply.
  • a filter capacitor is connected between the primary terminals, and the DC power supplied from the power supply via the filter capacitor is converted into DC power or AC power and supplied to the motor connected to the secondary terminal. ..
  • the power conversion unit converts DC power or AC power supplied from an electric motor operating as a generator into DC power and outputs the power to charge the filter capacitor.
  • the circuit switching unit has a first resistor and electrically connects or electrically disconnects the power conversion unit and the filter capacitor from the power supply.
  • the chopper circuit has a switching element and a second resistor connected in series. Further, both ends of the chopper circuit are connected between the primary terminals of the power conversion unit. One end of the discharge switch is connected to one end close to the power supply of the first resistor, and the other end is connected to the connection point between the switching element and the second resistor.
  • the circuit switching unit electrically connects the power conversion unit and the filter capacitor to the power supply via an electric path passing through the first resistor.
  • the switching element when the switching element is turned on, the DC power supplied from the power conversion unit via the filter capacitor is consumed by the second resistor.
  • the discharge switch is turned on, the filter capacitor is discharged by connecting the first resistor and the second resistor in series and electrically connecting the filter capacitor to the first resistor and the second resistor connected in series. ..
  • the filter capacitor is discharged by connecting the first resistor and the second resistor in series and electrically connecting the filter capacitor to the first resistor and the second resistor connected in series. Therefore, it is not necessary to provide a resistor only for discharging the filter capacitor. Therefore, the structure of the power conversion device is simple.
  • Block diagram of the power conversion device according to the first embodiment The figure which shows the example of mounting on the railroad vehicle of the power conversion apparatus which concerns on Embodiment 1.
  • Block diagram of the power conversion device according to the second embodiment A flowchart of an operation for determining the presence or absence of a short-circuit failure performed by the power conversion device according to the second embodiment.
  • Block diagram of the first modification of the power conversion device according to the embodiment Block diagram of a second modification of the power conversion device according to the embodiment
  • the power conversion device 1 according to the first embodiment will be described by taking a power conversion device mounted on a vehicle as an example.
  • the power conversion device 1 shown in FIG. 1 includes a positive electrode input terminal 1a connected to a power source and a negative electrode input terminal 1b to be grounded.
  • the power conversion device 1 converts the DC power supplied from the power supply via the positive input terminal 1a into three-phase AC power for driving the motor 51, and supplies the three-phase AC power from the output terminal to the motor 51. do.
  • the electric motor 51 is, for example, a three-phase induction motor. When the power conversion device 1 supplies the electric power 51 with three-phase AC power, the electric motor 51 is driven and the propulsive force of the vehicle is obtained.
  • the power conversion device 1 converts the three-phase AC power generated by the motor 51 operating as a generator into DC power when the vehicle is braked, and consumes it in the second resistance BR described later. As a result, a braking force for decelerating the vehicle is obtained.
  • the current collector 52 acquires DC power from the substation via the overhead wire 53, and supplies the power to the power conversion device 1 via the high-speed circuit breaker 54.
  • the current collector 52 corresponds to a power source that supplies electric power to the electric power converter 1.
  • the high-speed circuit breaker 54 is controlled by a circuit breaker control unit (not shown) to electrically connect the current collector 52 and the power converter 1 or electrically cut off the power converter 1 from the current collector 52.
  • the power conversion device 1 has a pair of primary terminals 11a and 11b, converts DC power supplied from the current collector 52 via the primary terminals 11a into three-phase AC power, and supplies power to the electric motor 51.
  • the filter capacitor FC1 whose ends are connected to the primary terminals 11a and 11b of the power conversion unit 11 and charged with the DC power supplied from the current collector 52, and the power conversion unit 11 and the filter capacitor FC1 are collected.
  • a circuit switching unit 12 that is electrically connected to or electrically disconnected from the current collector 52 is provided.
  • the power conversion device 1 has a chopper circuit 13 in which both ends are connected to the primary terminals 11a and 11b of the power conversion unit 11 and consumes power generated by the electric motor 51 that operates as a generator when the electric railway vehicle is braked, and a circuit switching unit.
  • the first resistance CHBR described later of 12 and the second resistance BR described later of the chopper circuit 13 are connected in series, and the filter capacitor FC1 is electrically connected to the first resistance CHR and the second resistance BR connected in series.
  • a discharge switch SW1 for discharging the filter capacitor FC1 and a voltage measuring unit 14 for measuring the voltage value of the filter capacitor FC1 are provided.
  • the power conversion device 1 further includes a contactor control unit 15 that controls the circuit switching unit 12, specifically, switching the electric circuit of the circuit switching unit 12, a switching control unit 16 that controls the power conversion unit 11, and a chopper.
  • a chopper control unit 17 for controlling the circuit 13 is provided.
  • the power conversion device 1 discharges the filter capacitor FC1 by the first resistance CHR and the second resistance BR, and consumes the power supplied from the motor 51 that operates as a generator when the electric railway vehicle is braked by the second resistance BR. conduct. Therefore, in order to consume the resistance used when charging the filter capacitor FC1, the resistance for discharging the filter capacitor FC1, and the electric power supplied from the motor 51 which operates as a generator when the electric railway vehicle is braked. Since it is not necessary to provide each resistor, miniaturization is possible. The details of the structure of the power conversion device 1 will be described below.
  • the power conversion unit 11 converts the DC power supplied via the primary terminal 11a into three-phase AC power, and supplies the three-phase AC power to the motor 51 connected to each secondary terminal. Further, the power conversion unit 11 converts the three-phase AC power supplied from the motor 51 into DC power, and outputs the DC power from the primary terminal 11a.
  • the power conversion unit 11 is a VVVF (Variable Voltage Variable Frequency) inverter.
  • the filter capacitor FC1 is connected between the primary terminals 11a and 11b of the power conversion unit 11, and is charged by the power acquired by the current collector 52 via the overhead wire 53.
  • the circuit switching unit 12 has a first resistance CHR, and when charging the filter capacitor FC1, the power conversion unit 11 is electrically connected to the current collector 52 via an electric path passing through the first resistance CHR. As a result, the inrush current is suppressed from flowing through the filter capacitor FC1 when the filter capacitor FC1 is charged.
  • the first resistor CHR serves as a charging resistor that suppresses the inrush current flowing through the filter capacitor FC1 during charging.
  • the resistance value of the first resistance CHR is arbitrary as long as it can suppress the inrush current, and is, for example, several tens of ⁇ .
  • the circuit switching unit 12 is a contact with the first resistor CHR, which is a first contactor having one end connected to the current collector 52 via a high-speed circuit breaker 54 and located in parallel with the first resistor CHR. It includes a contactor MC1 and a contactor MC2, which is a second contactor whose one end is connected to the current collector 52 via a high-speed circuit breaker 54 and the other end is connected to one end of the first resistor CHR.
  • one end of the first resistor CHR is connected to the contactor MC2, and the other end is connected to the primary terminal 11a of the power conversion unit 11.
  • the contactor MC1 is a DC electromagnetic contactor and is controlled by the contactor control unit 15.
  • the contactor control unit 15 turns on the contactor MC1, one end and the other end of the contactor MC1 are connected to each other.
  • the contactor MC1 is turned on with the high-speed circuit breaker 54 turned on, the power conversion unit 11 and the filter capacitor FC1 are electrically connected to the current collector 52.
  • the contactor control unit 15 opens the contactor MC1, one end and the other end of the contactor MC1 are insulated.
  • the contactor control unit 15 opens the contactor MC1 while the contactor MC2 is open, the power conversion unit 11 and the filter capacitor FC1 are electrically disconnected from the current collector 52.
  • the contactor MC2 is a DC electromagnetic contactor and is controlled by the contactor control unit 15.
  • the contactor control unit 15 turns on the contactor MC2, one end and the other end of the contactor MC2 are connected to each other.
  • the high-speed circuit breaker 54 and the first resistor CHR are electrically connected.
  • the contactor MC2 is turned on with the high-speed circuit breaker 54 turned on, the power conversion unit 11 and the filter capacitor FC1 are electrically connected to the current collector 52.
  • the contactor control unit 15 opens the contactor MC2, one end and the other end of the contactor MC2 are insulated. As a result, the first resistor CHR is electrically disconnected from the high speed circuit breaker 54.
  • the chopper circuit 13 includes a switching element SW2 and a second resistor BR connected in series.
  • the second resistor BR consumes the DC power supplied from the power conversion unit 11 via the filter capacitor FC1.
  • the chopper circuit 13 serves as a brake chopper that enables the vehicle to be braked by the dynamic braking system, and the BR in the second boat storage serves as a brake resistance.
  • the switching element SW2 is an element capable of high-speed switching, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the collector terminal of the switching element SW2 is connected to the connection point between the other end of the contactor MC1 and the primary terminal 11a of the power conversion unit 11, and the emitter terminal is connected to one end of the second resistor BR.
  • a chopper control signal S3 from the chopper control unit 17, which will be described later, is input to the gate terminal.
  • One end of the second resistor BR is connected to the emitter terminal of the switching element SW2, and the other end is grounded.
  • the second resistor BR is supplied from the motor 51 operating as a generator, converted by the power conversion unit 11, and consumes the DC power supplied through the filter capacitor FC1.
  • the resistance value of the second resistor BR is arbitrary as long as it can generate the braking force of the electric railroad vehicle by consuming the DC power supplied through the filter capacitor FC1, for example, with a few ⁇ . be.
  • One end of the discharge switch SW1 is connected to one end close to the power supply of the first resistor CHR, specifically, to the connection point between the contactor MC2 and the first resistor CHR.
  • the other end of the discharge switch SW1 is connected to the connection point between the switching element SW2 and the second resistor BR.
  • the discharge switch SW1 is a knife switch. A maintenance worker who performs maintenance work on the power conversion device 1 mechanically operates the discharge switch SW1 to turn the discharge switch SW1 on or off.
  • the maintenance worker turns on the discharge switch SW1 with the contactors MC1 and MC2 both open.
  • the discharge switch SW1 When the discharge switch SW1 is turned on, both ends of the discharge switch SW1 are electrically connected, and the first resistor CHR and the second resistor BR are connected in series.
  • the filter capacitor FC1 is electrically connected to the first resistor CHR and the second resistor BR connected in series. Therefore, the filter capacitor FC1 is discharged by the first resistor CHR and the second resistor BR connected in series.
  • both ends of the discharge switch SW1 are insulated.
  • the voltage measuring unit 14 is connected to the primary terminals 11a and 11b of the power conversion unit 11 and measures the value of the voltage between the terminals of the filter capacitor FC1. Then, the voltage measuring unit 14 supplies a signal indicating the measured voltage value to the contactor control unit 15, the switching control unit 16, and the chopper control unit 17.
  • the contactor control unit 15 is supplied with an open / close instruction signal instructing the contactors MC1 and MC2 to be turned on or off from a driver's cab (not shown). Further, the contactor control unit 15 turns on or opens the contactors MC1 and MC2 according to the opening / closing instruction signal. Specifically, the contactor control unit 15 sends a contactor control signal S1 instructing the contactors MC1 and MC2 to be turned on or off, and controls the contactors MC1 and MC2.
  • An operation command is supplied to the switching control unit 16 from a driver's cab (not shown).
  • the operation command includes a power running command indicating the target acceleration of the electric railway vehicle, a brake command indicating the target deceleration of the electric railway vehicle, and the like.
  • the switching control unit 16 sends a switching control signal S2 to the switching element included in the power conversion unit 11 in response to an operation command to control the switching element.
  • An operation command is supplied to the chopper control unit 17 from a driver's cab (not shown).
  • the chopper control unit 17 switches on / off the switching element SW2 of the chopper circuit 13 when the operation command includes the brake command.
  • the chopper control unit 17 sends a chopper control signal S3 for adjusting the flow rate of the switching element SW2 of the chopper circuit 13 so that a regenerative braking force can be obtained when the operation command includes a brake command. It is supplied to the gate terminal of the switching element SW2.
  • an ascending switch for raising the pantograph which is an example of the current collector 52
  • the current collector 52 receives power from the substation. Receive supply.
  • the high-speed circuit breaker 54 is turned on, and the power conversion device 1 is electrically connected to the current collector 52.
  • an open / close instruction signal for instructing the start is supplied to the contactor control unit 15.
  • the contactor control unit 15 When the contactor control unit 15 is supplied with the opening / closing instruction signal instructing the start, the contactor control unit 15 outputs the contactor control signal S1 instructing the contactor MC2 to be turned on.
  • the contactor MC2 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is transferred to the filter capacitor FC1 via the high-speed circuit breaker 54, the contactor MC2, and the first resistor CHR. It is supplied and charging of the filter capacitor FC1 is started. Since the first resistor CHR is connected in series to the contactor MC2, the inrush current is suppressed from flowing through the filter capacitor FC1 when the contactor MC2 is turned on.
  • the contactor control unit 15 After that, when the filter capacitor FC1 is sufficiently charged, the contactor control unit 15 outputs a contactor control signal S1 instructing the contactor MC1 to be turned on. As a result, the contactor MC1 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is supplied to the filter capacitor FC1 via the high-speed circuit breaker 54 and the contactor MC1.
  • the contactor control unit 15 outputs the contactor control signal S1 instructing the opening of the contactor MC2.
  • the first resistor CHR is electrically disconnected from the current collector 52.
  • the operation command from the cab is input to the switching control unit 16 and the chopper control unit 17.
  • the operation of the switching control unit 16 and the chopper control unit 17 in response to the operation command will be described.
  • the switching control unit 16 controls the switching element of the power conversion unit 11 to drive the electric power 51 to the power conversion unit 11. Converted to three-phase AC power for.
  • the switching control unit 16 calculates the target torque for obtaining the target acceleration indicated by the power running command. Further, the switching control unit 16 acquires a measured value of the current flowing through the motor 51 from a motor current measuring unit (not shown), and calculates the actual torque of the motor 51 from the acquired measured value. Specifically, the switching control unit 16 acquires the measured value of the phase current flowing through the motor 51 from the motor current measuring unit that measures the values of the U-phase, V-phase, and W-phase currents flowing through the motor 51, and the phase current. The actual torque of the motor 51 is calculated from the measured value of. Then, the switching control unit 16 sends a switching control signal S2 to the switching element of the power conversion unit 11 to control the switching element in order to bring the actual torque of the electric motor 51 closer to the target torque.
  • the motor 51 When the operation command includes a brake command, that is, when the electric railroad vehicle is braked, the motor 51 operates as a generator and supplies three-phase AC power to the power conversion unit 11.
  • the switching control unit 16 controls the switching element of the power conversion unit 11 to cause the power conversion unit 11 to convert the three-phase AC power into DC power.
  • the power conversion device 1 can supply electric power to other electric railway vehicles located in the vicinity via the overhead wire 53. As a result, a regenerative braking force is generated in the electric railway vehicle, and the electric railway vehicle decelerates.
  • the chopper control unit 17 switches the switching element SW2 on and off so that the second resistor BR consumes the DC power output by the power conversion unit 11. Specifically, the chopper control unit 17 adjusts the flow rate of the switching element SW2 according to the value of the voltage between the terminals of the filter capacitor FC1 acquired from the voltage measurement unit 14, and the voltage between the terminals of the filter capacitor FC1. Keep the value of in the specified range.
  • the defined range is a value in a range lower than the maximum voltage that can supply power to the overhead wire 53 and can be applied to the filter capacitor FC1.
  • the chopper control unit 17 increases the flow rate of the switching element SW2. As a result, the electric power supplied from the electric motor 51 is consumed by the second resistance BR, and the braking force of the electric railway vehicle is obtained.
  • the operation of the power conversion device 1 when the electric railway vehicle is stopped will be described.
  • the high-speed circuit breaker 54 and the contactor MC1 are opened after the power conversion unit 11 is stopped.
  • the power conversion unit 11 is electrically disconnected from the current collector 52.
  • the discharge switch SW1 When the maintenance work of the power conversion device 1 is performed after the electric railway vehicle is stopped, the discharge switch SW1 is turned on by the maintenance worker mechanically operating the discharge switch SW1. When the discharge switch SW1 is turned on while the contactors MC1 and MC2 are open, the first resistor CHR and the second resistor BR are connected in series. Further, the filter capacitor FC1 is electrically connected to the first resistance CHR and the second resistance BR connected in series, and is discharged by the first resistance CHR and the second resistance BR.
  • the first resistor CHR provided for suppressing the discharge of the filter capacitor FC1 and the inrush current at the time of charging the filter capacitor FC1 is used. This is performed by the second resistance BR provided to consume the electric power supplied from the electric motor 51 when the electric railway vehicle is braked. Therefore, in addition to the first resistor CHR and the second resistor BR, it is not necessary to newly provide a resistor for discharging the filter capacitor FC1. Therefore, the structure of the power conversion device 1 capable of braking the electric railway vehicle by the dynamic braking method becomes simple. Further, the power conversion device 1 can be miniaturized.
  • the power conversion device 1 discharges the filter capacitor FC1 after connecting the first resistor CHR and the second resistor BR in series. Therefore, the resistance value of the discharge circuit of the filter capacitor FC1 is the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR.
  • the power conversion device 1 even if the discharge switch SW1 fails due to a short circuit, the ground fault current is reduced because the second resistance BR is connected to the other end of the discharge switch SW1. NS.
  • the discharge current flowing when the filter capacitor FC1 is discharged is inversely proportional to the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR.
  • the first resistance CHR has a resistance value high enough to suppress the inrush current when the contactor MC2 is turned on, for example, several tens of ⁇ . Therefore, the discharge current becomes sufficiently small, a switch having a small current capacity can be used as the discharge switch SW1, and the wiring of the circuit through which the discharge current flows can be thinned. In other words, it is possible to relax the electrical restrictions of the circuit through which the current flows when the filter capacitor FC1 is discharged.
  • the power conversion device 2 according to the second embodiment shown in FIG. 3 includes a current measuring unit 18 for measuring the value of the current flowing through the second resistance BR and a current. Further, a failure determination unit 19 for determining the presence or absence of a short-circuit failure of the discharge switch SW1 based on the measured value of the measurement unit 18 is provided.
  • the contactor control unit 15 supplies the contactor status signal S4 indicating whether or not at least one of the contactors MC1 and MC2 is turned on to the failure determination unit 19.
  • the contactor control unit 15 has a contactor state signal that becomes a Low level when both the contactors MC1 and MC2 are open, and becomes a High level when at least one of the contactors MC1 and MC2 is turned on.
  • Output S4 Further, the contactor control unit 15 opens both the contactors MC1 and MC2 when the failure determination unit 19 determines that a short-circuit failure of the discharge switch SW1 has occurred, as will be described later.
  • the switching control unit 16 turns off the switching element of the power conversion unit 11 when the failure determination unit 19 determines that a short-circuit failure of the discharge switch SW1 has occurred, as will be described later.
  • the chopper control unit 17 supplies the element state signal S5 indicating which state the switching element SW2 is on / off to the failure determination unit 19. For example, the chopper control unit 17 outputs an element state signal S5 which becomes a high level when the switching element SW2 is on and becomes a low level when the switching element SW2 is off.
  • the current measuring unit 18 is provided between the switching element SW2 and the second resistor BR. Specifically, one end of the current measuring unit 18 is connected to the emitter terminal of the switching element SW2, and the other end is connected to one end of the second resistor BR. Further, the other end of the discharge switch SW1 is connected to the connection point between the current measuring unit 18 and the switching element SW2.
  • the current measuring unit 18 provided at the above-mentioned position is a CT (Current Transformer) and measures the value of the current flowing through the second resistor BR. Then, the current measuring unit 18 supplies a signal indicating the measured value of the current to the failure determining unit 19.
  • CT Current Transformer
  • the current value IB which is the measured value of the current acquired from the current measurement unit 18, is equal to or higher than the threshold current Th. It is determined whether or not it is. If the discharge switch SW1 is off, the switching element SW2 of the chopper circuit 13 is off, and the current value IB is the threshold current Th or more, it can be considered that the discharge switch SW1 has a short-circuit failure. ..
  • the threshold current Th can be determined according to the value obtained by dividing the overhead wire voltage, which is the voltage of the overhead wire 53, by the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR. Specifically, it is preferable that the threshold current Th is the value obtained by dividing the minimum value that the overhead wire voltage can take by the total of the resistance value of the first resistance CHR and the resistance value of the second resistance BR.
  • the failure determination unit 19 outputs a determination result signal S6 based on the determination result of whether or not the current value IB is equal to or higher than the threshold current Th to the contactor control unit 15 and the switching control unit 16. Specifically, when the failure determination unit 19 determines that the current value IB is less than the threshold current Th, the failure determination unit 19 switches the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has not occurred with the contactor control unit 15. Output to the control unit 16.
  • the failure determination unit 19 determines that the current value IB is equal to or higher than the threshold current Th, the failure determination unit 19 outputs the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred between the contactor control unit 15 and the switching control unit 16. Output to.
  • the failure determination unit 19 outputs a determination result signal S6 which becomes the Low level when it is determined that the current value IB is less than the threshold current and becomes the High level when it is determined that the current value IB is equal to or more than the threshold current. do.
  • the maintenance worker turns on the discharge switch SW1 in a state where the high-speed circuit breaker 54 and the contactors MC1 and MC2 are open. In other words, in a state where at least one of the contactors MC1 and MC2 is turned on, if the discharge switch SW1 is normal, the discharge switch SW1 is off. Therefore, the failure determination unit 19 determines whether or not the discharge switch SW1 is turned off based on the contactor state signal S4.
  • the failure determination unit 19 determines whether or not at least one of the contactors MC1 and MC2 is in the ON state based on the contactor status signal S4 (step S11). When both the contactors MC1 and MC2 are in the off state (step S11; No), the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
  • the failure determination unit 19 determines whether or not the switching element SW2 of the chopper circuit 13 is in the OFF state (step S12). ). Specifically, the failure determination unit 19 determines whether or not the element state signal S5 indicates that the switching element SW2 is off. When the switching element SW2 is in the ON state (step S12; No), the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
  • the failure determination unit 19 acquires the current value IB from the current measurement unit 18 (step S13). The failure determination unit 19 determines whether or not the current value IB is equal to or greater than the threshold current Th (step S14). If the current value IB is less than the threshold current Th, it can be considered that the short-circuit failure of the discharge switch SW1 has not occurred. Therefore, when the current value IB is less than the threshold current Th (step S14; No), the failure determination unit 19 outputs a determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has not occurred (step S15). .. When the process of step S15 is completed, the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
  • the failure determination unit 19 outputs a determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred (step S16). ..
  • the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
  • the failure determination unit 19 repeats the above-mentioned process at a predetermined timing.
  • the failure determination unit 19 may repeat the above-mentioned processing at regular intervals.
  • the contactor control unit 15 that has acquired the determination result signal S6 indicating that the discharge switch SW1 has a short-circuit failure outputs the contactor control signal S1 instructing to open both the contactors MC1 and MC2. Further, the switching control unit 16 that has acquired the determination result signal S6 indicating that the discharge switch SW1 has a short-circuit failure outputs a switching control signal S2 instructing that the switching element of the power conversion unit 11 is turned off. ..
  • the power conversion device 2 According to the power conversion device 2 according to the second embodiment, it is possible to determine the presence or absence of a short-circuit failure of the discharge switch SW1 based on the current flowing through the second resistor BR.
  • the circuit switching unit 12a included in the power conversion device 3 may include contactors MC1 and MC2 connected in series and a first resistor CHR connected in parallel to the contactor MC2. good.
  • One end of the contactor MC1 is connected to the high speed circuit breaker 54.
  • One end of the contactor MC2 is connected to the other end of the contactor MC1, and the other end is connected to the primary terminal 11a of the power conversion unit 11.
  • One end of the first resistor CHR is connected to the connection point of the contactors MC1 and MC2, and the other end is connected to the other end of the contactor MC2.
  • the circuit switching unit 12 included in the power conversion device 2 may have the same configuration as the circuit switching unit 12a included in the power conversion device 3.
  • the contactor control unit 15 included in the power conversion device 3 outputs the contactor control signal S1 instructing the contactor MC1 to be turned on when the opening / closing instruction signal instructing the start is supplied.
  • the contactor MC1 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is transferred to the filter capacitor FC1 via the high-speed circuit breaker 54, the contactor MC1, and the first resistor CHR. It is supplied and charging of the filter capacitor FC1 is started.
  • the contactor control unit 15 included in the power conversion device 3 outputs a contactor control signal S1 instructing the contactor MC2 to be turned on.
  • the contactor MC2 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is supplied to the filter capacitor FC1 via the high-speed circuit breaker 54 and the contactors MC1 and MC2.
  • FIG. 6 shows an example of yet another circuit configuration.
  • the power conversion device 4 shown in FIG. 6 includes a filter reactor FL1 in addition to the configuration of the power conversion device 1.
  • the filter reactor FL1 is provided in the circuit between the circuit switching unit 12 and the chopper circuit 13. Specifically, one end of the filter reactor FL1 is connected to the other end of the contactor MC1, and the other end is connected to the primary terminal 11a of the power conversion unit 11.
  • By providing the filter reactor FL1 it is possible to smooth the input current of the power conversion unit 11 and the output current of the power conversion unit 11 at the time of regenerative braking. Further, by providing the filter reactor FL1, it is possible to suppress the inrush current from flowing through the first resistor CHR and the second resistor BR at the start of discharging the filter capacitor FC1.
  • the filter reactor FL1 may be provided in the power conversion devices 2 and 3.
  • the method for determining the presence or absence of a short-circuit failure of the discharge switch SW1 is not limited to the above example.
  • the order in which the processes of steps S11 and S12 in FIG. 4 are executed is arbitrary, and the failure determination unit 19 may perform the process of step S12 and then the process of step S11.
  • the discharge switch SW1 is provided with a function of outputting a signal indicating which of the on / off states it is, and the failure determination unit 19 is in a state where the discharge switch SW1 is off based on the signal acquired from the discharge switch SW1. It may be determined whether or not there is.
  • the failure determination unit 19 acquires the current value IB from the current measurement unit 18 at regular intervals and stores it in the memory, reads the current value IB from the memory in step S13 of FIG. 4, and is based on the read current value IB. Then, the processing of the subsequent step S14 may be performed.
  • the failure determination unit 19 has a timer, the discharge switch SW1 is off, the switching element SW2 of the chopper circuit 13 is off, and the current value IB is defined to be equal to or higher than the threshold current Th. It may be determined whether or not it continues for only the time. In this case, when the failure determination unit 19 determines that the state in which the current value IB is equal to or higher than the threshold current Th has not continued for a predetermined time, the determination result indicating that a short-circuit failure of the discharge switch SW1 has not occurred.
  • the signal S6 may be output to the contactor control unit 15 and the switching control unit 16.
  • the failure determination unit 19 determines that the state in which the current value IB is equal to or higher than the threshold current Th continues for a predetermined time
  • the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred. May be output to the contactor control unit 15 and the switching control unit 16.
  • the defined time may be a time that can prevent the failure determination unit 19 from outputting an erroneous determination result due to a momentary fluctuation of the current value IB.
  • the defined time may be set to be longer than the update cycle of the on / off state of each element such as the discharge switch SW1 and the switching element SW2, and longer than the sampling cycle of the current value IB.
  • the failure determination unit 19 may output the determination result signal S6 to a display device provided in the driver's cab. In this case, the presence or absence of a short-circuit failure of the discharge switch SW1 can be displayed on the driver's cab.
  • the motor 51 is not limited to the three-phase induction motor.
  • the electric motor 51 may be a synchronous motor, a DC motor, or the like.
  • the power conversion unit 11 is an arbitrary power conversion circuit capable of bidirectional power conversion.
  • the power conversion unit 11 may be a DC (Direct Current) -DC converter.
  • the power conversion device 1-4 can be mounted on any vehicle, any device, etc. that can supply DC power to the power conversion device 1-4.
  • the power conversion device 1-4 can be mounted on an AC feeder type electric railway vehicle.
  • one of the primary terminals of the transformer may be connected to the other end of the high-speed circuit breaker 54, the converter may be connected to the secondary terminal of the transformer, and the output of the converter may be supplied to the power converters 1-4.
  • the power conversion device 1-4 may be mounted on an electric railway vehicle that acquires electric power via the third rail.
  • the power conversion device 1-4 is not limited to a device that enables braking of an electric railroad vehicle by a dynamic braking method, and is an arbitrary power conversion device having a plurality of resistors.
  • the power converter 1-4 may discharge the filter capacitor FC1 using a resistor provided for any application instead of the first resistor CHR and the second resistor BR. As a result, it is not necessary to newly provide a resistor for discharging the filter capacitor FC1, and the structure of the power conversion device 1-4 can be simplified.
  • 1,2,3,4 Power converter 1a Positive input terminal, 1b Negative input terminal, 11 Power conversion unit, 11a, 11b Primary terminal, 12,12a Circuit switching unit, 13 Chopper circuit, 14 Voltage measuring unit, 15 Contact Instrument control unit, 16 switching control unit, 17 chopper control unit, 18 current measurement unit, 19 failure determination unit, 51 motor, 52 current collector, 53 overhead wire, 54 high-speed breaker, BR 2nd resistance, CHR 1st resistance, FC1 filter capacitor, FL1 filter reactor, MC1, MC2 contactor, S1 contactor control signal, S2 switching control signal, S3 chopper control signal, S4 contactor state signal, S5 element state signal, S6 discrimination result signal, SW1 discharge switch, SW2 switching element.

Abstract

A power conversion device (1) comprises: a filter capacitor (FC1) that is charged by power supplied from a power supply; a power conversion unit (11) that supplies electric power to an electric motor (51), converts electric power supplied from the electric motor (51) operating as a generator, and charges the filter capacitor (FC1); a circuit switching unit (12) that has a first resistor (CHR); a chopper circuit (13) that has a switching element (SW2) and a second resistor (BR) connected in series; and a discharge switch (SW1). In the chopper circuit (13), when the switching element (SW2) is turned on, the electric power supplied from the power conversion unit (11) is consumed by the second resistor (BR). When the discharge switch (SW1) is turned on, the first resistor (CHR) and the second resistor (BR) are connected in series, and the filter capacitor (FC1) is connected to the first resistor (CHR) and the second resistor (BR) that are connected in series and is discharged.

Description

電力変換装置Power converter
 本開示は、電力変換装置に関する。 This disclosure relates to a power conversion device.
 電気鉄道車両には、架線を通して変電所から供給された直流電力を所望の交流電力に変換し、変換した電力を電動機に供給する電力変換装置が搭載されているものがある。この種の電力変換装置の一例が特許文献1に開示されている。この電力変換装置は、電力変換部と、両端が電力変換部の一次端子に接続されるフィルタコンデンサと、フィルタコンデンサを放電させる放電抵抗を有する放電回路と、フィルタコンデンサを充電する際の突入電流を抑制するための充電抵抗と、を備える。 Some electric railway vehicles are equipped with a power converter that converts the DC power supplied from the substation through the overhead wire into the desired AC power and supplies the converted power to the motor. An example of this type of power conversion device is disclosed in Patent Document 1. This power conversion device has a power conversion unit, a filter capacitor whose ends are connected to the primary terminal of the power conversion unit, a discharge circuit having a discharge resistor for discharging the filter capacitor, and an inrush current when charging the filter capacitor. It is provided with a charging resistor for suppressing.
特開2015-050854号公報Japanese Unexamined Patent Publication No. 2015-050854
 電気鉄道車両には、機械ブレーキに加えて、発電ブレーキ方式でブレーキを生じさせることができるものがある。特許文献1に開示される電力変換装置において、発電ブレーキ方式で電気鉄道車両にブレーキをかけることを可能とするためには、発電機として動作する電動機から供給される電力を消費するための回路が必要となる。詳細には、電力変換装置は、直列に接続されたスイッチング素子とブレーキ抵抗を有するブレーキチョッパ回路をさらに備える必要がある。上述したように、電力変換装置は、放電抵抗と、充電抵抗と、ブレーキ抵抗とを有する。このため、発電ブレーキ方式で電気鉄道車両にブレーキをかけることを可能とする電力変換装置は、機能別に抵抗を備えるため、構造が複雑になり、サイズも大きくなる。なおこの課題は、機能別に複数の抵抗を要する任意の電力変換装置で起こり得る。 Some electric railway vehicles can generate brakes by dynamic braking in addition to mechanical brakes. In the electric power conversion device disclosed in Patent Document 1, in order to enable braking of an electric railway vehicle by a dynamic braking method, a circuit for consuming electric power supplied from an electric motor operating as a generator is required. You will need it. Specifically, the power converter needs to further include a switching element connected in series and a brake chopper circuit having a brake resistor. As described above, the power conversion device has a discharge resistance, a charge resistance, and a brake resistance. For this reason, the power conversion device that enables the electric railroad vehicle to be braked by the dynamic braking method has resistance for each function, so that the structure becomes complicated and the size becomes large. Note that this problem can occur in any power conversion device that requires a plurality of resistors for each function.
 本開示は上述の事情に鑑みてなされたものであり、構造が簡易な電力変換装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a power conversion device having a simple structure.
 上記目的を達成するために、本開示の電力変換装置は、フィルタコンデンサと、電力変換部と、回路切替部と、チョッパ回路と、放電スイッチと、を備える。フィルタコンデンサは、電源から供給される直流電力で充電される。電力変換部は、一次端子間にフィルタコンデンサが接続され、電源からフィルタコンデンサを介して供給される直流電力を、直流電力または交流電力に変換して、二次端子に接続された電動機に供給する。また電力変換部は、発電機として動作する電動機から供給される直流電力または交流電力を直流電力に変換して出力し、フィルタコンデンサを充電する。回路切替部は、第1抵抗を有し、電力変換部およびフィルタコンデンサを電源に電気的に接続し、または、電源から電気的に切り離す。チョッパ回路は、直列に接続されたスイッチング素子および第2抵抗を有する。またチョッパ回路の両端は、電力変換部の一次端子間に接続される。放電スイッチの一端は第1抵抗の電源に近い一端に接続され、他端がスイッチング素子と第2抵抗との接続点に接続される。回路切替部は、フィルタコンデンサを電源から供給される直流電力で充電する際に、第1抵抗を通る電路を介して、電力変換部およびフィルタコンデンサを電源に電気的に接続する。チョッパ回路は、スイッチング素子がオンになると電力変換部からフィルタコンデンサを介して供給される直流電力を第2抵抗で消費させる。放電スイッチは、オンになると、第1抵抗と第2抵抗とを直列に接続し、フィルタコンデンサを直列に接続した第1抵抗および第2抵抗に電気的に接続することで、フィルタコンデンサを放電させる。 In order to achieve the above object, the power conversion device of the present disclosure includes a filter capacitor, a power conversion unit, a circuit switching unit, a chopper circuit, and a discharge switch. The filter capacitor is charged with DC power supplied from the power supply. In the power conversion unit, a filter capacitor is connected between the primary terminals, and the DC power supplied from the power supply via the filter capacitor is converted into DC power or AC power and supplied to the motor connected to the secondary terminal. .. Further, the power conversion unit converts DC power or AC power supplied from an electric motor operating as a generator into DC power and outputs the power to charge the filter capacitor. The circuit switching unit has a first resistor and electrically connects or electrically disconnects the power conversion unit and the filter capacitor from the power supply. The chopper circuit has a switching element and a second resistor connected in series. Further, both ends of the chopper circuit are connected between the primary terminals of the power conversion unit. One end of the discharge switch is connected to one end close to the power supply of the first resistor, and the other end is connected to the connection point between the switching element and the second resistor. When charging the filter capacitor with DC power supplied from the power supply, the circuit switching unit electrically connects the power conversion unit and the filter capacitor to the power supply via an electric path passing through the first resistor. In the chopper circuit, when the switching element is turned on, the DC power supplied from the power conversion unit via the filter capacitor is consumed by the second resistor. When the discharge switch is turned on, the filter capacitor is discharged by connecting the first resistor and the second resistor in series and electrically connecting the filter capacitor to the first resistor and the second resistor connected in series. ..
 本開示によれば、第1抵抗と第2抵抗とを直列に接続し、フィルタコンデンサを直列に接続した第1抵抗および第2抵抗に電気的に接続することで、フィルタコンデンサを放電させる。このため、フィルタコンデンサを放電させるためだけの抵抗を設ける必要がない。したがって、電力変換装置の構造が簡易である。 According to the present disclosure, the filter capacitor is discharged by connecting the first resistor and the second resistor in series and electrically connecting the filter capacitor to the first resistor and the second resistor connected in series. Therefore, it is not necessary to provide a resistor only for discharging the filter capacitor. Therefore, the structure of the power conversion device is simple.
実施の形態1に係る電力変換装置のブロック図Block diagram of the power conversion device according to the first embodiment 実施の形態1に係る電力変換装置の鉄道車両への搭載例を示す図The figure which shows the example of mounting on the railroad vehicle of the power conversion apparatus which concerns on Embodiment 1. 実施の形態2に係る電力変換装置のブロック図Block diagram of the power conversion device according to the second embodiment 実施の形態2に係る電力変換装置が行う短絡故障の有無を判別する動作のフローチャートA flowchart of an operation for determining the presence or absence of a short-circuit failure performed by the power conversion device according to the second embodiment. 実施の形態に係る電力変換装置の第1変形例のブロック図Block diagram of the first modification of the power conversion device according to the embodiment 実施の形態に係る電力変換装置の第2変形例のブロック図Block diagram of a second modification of the power conversion device according to the embodiment
 以下、本開示の実施の形態に係る電力変換装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, the power conversion device according to the embodiment of the present disclosure will be described in detail with reference to the drawings. In the figure, the same or equivalent parts are designated by the same reference numerals.
 (実施の形態1)
 車両に搭載される電力変換装置を例にして、実施の形態1に係る電力変換装置1について説明する。
 図1に示す電力変換装置1は、電源に接続される正極入力端子1aと、接地される負極入力端子1bとを備える。電力変換装置1は、電源から正極入力端子1aを介して供給された直流電力を、電動機51を駆動するための三相交流電力に変換して、出力端子から三相交流電力を電動機51に供給する。電動機51は、例えば、三相誘導電動機である。電力変換装置1が電動機51に三相交流電力を供給することで、電動機51が駆動され、車両の推進力が得られる。また電力変換装置1は、車両のブレーキ時に、発電機として動作する電動機51で発生した三相交流電力を直流電力に変換し、後述の第2抵抗BRで消費させる。この結果、車両を減速させるブレーキ力が得られる。
(Embodiment 1)
The power conversion device 1 according to the first embodiment will be described by taking a power conversion device mounted on a vehicle as an example.
The power conversion device 1 shown in FIG. 1 includes a positive electrode input terminal 1a connected to a power source and a negative electrode input terminal 1b to be grounded. The power conversion device 1 converts the DC power supplied from the power supply via the positive input terminal 1a into three-phase AC power for driving the motor 51, and supplies the three-phase AC power from the output terminal to the motor 51. do. The electric motor 51 is, for example, a three-phase induction motor. When the power conversion device 1 supplies the electric power 51 with three-phase AC power, the electric motor 51 is driven and the propulsive force of the vehicle is obtained. Further, the power conversion device 1 converts the three-phase AC power generated by the motor 51 operating as a generator into DC power when the vehicle is braked, and consumes it in the second resistance BR described later. As a result, a braking force for decelerating the vehicle is obtained.
 電力変換装置1が直流き電方式の電気鉄道車両に搭載される場合を例にして、電力変換装置1の詳細について説明する。図2に示すように、集電装置52は、架線53を介して変電所から直流電力を取得し、高速遮断器54を介して、電力変換装置1に電力を供給する。なお集電装置52は、電力変換装置1に電力を供給する電源に相当する。高速遮断器54は、図示しない遮断器制御部によって制御され、集電装置52と電力変換装置1とを電気的に接続し、または電力変換装置1を集電装置52から電気的に遮断する。 The details of the power conversion device 1 will be described by taking as an example the case where the power conversion device 1 is mounted on a DC feeder type electric railway vehicle. As shown in FIG. 2, the current collector 52 acquires DC power from the substation via the overhead wire 53, and supplies the power to the power conversion device 1 via the high-speed circuit breaker 54. The current collector 52 corresponds to a power source that supplies electric power to the electric power converter 1. The high-speed circuit breaker 54 is controlled by a circuit breaker control unit (not shown) to electrically connect the current collector 52 and the power converter 1 or electrically cut off the power converter 1 from the current collector 52.
 電力変換装置1は、一対の一次端子11a,11bを有し、集電装置52から一次端子11aを介して供給される直流電力を三相交流電力に変換して、電動機51に供給する電力変換部11と、両端が電力変換部11の一次端子11a,11bに接続され、集電装置52から供給される直流電力で充電されるフィルタコンデンサFC1と、電力変換部11およびフィルタコンデンサFC1を集電装置52に電気的に接続し、または、集電装置52から電気的に切り離す回路切替部12と、を備える。 The power conversion device 1 has a pair of primary terminals 11a and 11b, converts DC power supplied from the current collector 52 via the primary terminals 11a into three-phase AC power, and supplies power to the electric motor 51. The filter capacitor FC1 whose ends are connected to the primary terminals 11a and 11b of the power conversion unit 11 and charged with the DC power supplied from the current collector 52, and the power conversion unit 11 and the filter capacitor FC1 are collected. A circuit switching unit 12 that is electrically connected to or electrically disconnected from the current collector 52 is provided.
 電力変換装置1はさらに、両端が電力変換部11の一次端子11a,11bに接続され、電気鉄道車両のブレーキ時に発電機として動作する電動機51で生じる電力を消費するチョッパ回路13と、回路切替部12が有する後述の第1抵抗CHRとチョッパ回路13が有する後述の第2抵抗BRとを直列に接続し、フィルタコンデンサFC1を直列に接続した第1抵抗CHRおよび第2抵抗BRに電気的に接続することでフィルタコンデンサFC1を放電させる放電スイッチSW1と、フィルタコンデンサFC1の電圧の値を測定する電圧測定部14と、を備える。 Further, the power conversion device 1 has a chopper circuit 13 in which both ends are connected to the primary terminals 11a and 11b of the power conversion unit 11 and consumes power generated by the electric motor 51 that operates as a generator when the electric railway vehicle is braked, and a circuit switching unit. The first resistance CHBR described later of 12 and the second resistance BR described later of the chopper circuit 13 are connected in series, and the filter capacitor FC1 is electrically connected to the first resistance CHR and the second resistance BR connected in series. A discharge switch SW1 for discharging the filter capacitor FC1 and a voltage measuring unit 14 for measuring the voltage value of the filter capacitor FC1 are provided.
 電力変換装置1はさらに、回路切替部12の制御、具体的には回路切替部12の電路の切替を行う接触器制御部15と、電力変換部11の制御を行うスイッチング制御部16と、チョッパ回路13を制御するチョッパ制御部17と、を備える。 The power conversion device 1 further includes a contactor control unit 15 that controls the circuit switching unit 12, specifically, switching the electric circuit of the circuit switching unit 12, a switching control unit 16 that controls the power conversion unit 11, and a chopper. A chopper control unit 17 for controlling the circuit 13 is provided.
 電力変換装置1は、フィルタコンデンサFC1の放電を第1抵抗CHRおよび第2抵抗BRで行い、電気鉄道車両のブレーキ時に発電機として動作する電動機51から供給される電力の消費を第2抵抗BRで行う。このため、フィルタコンデンサFC1を充電する際に用いる抵抗と、フィルタコンデンサFC1の放電を行うための抵抗と、電気鉄道車両のブレーキ時に発電機として動作する電動機51から供給される電力を消費するための抵抗をそれぞれ備える必要がないため、小型化が可能となる。電力変換装置1の構造の詳細について以下に説明する。 The power conversion device 1 discharges the filter capacitor FC1 by the first resistance CHR and the second resistance BR, and consumes the power supplied from the motor 51 that operates as a generator when the electric railway vehicle is braked by the second resistance BR. conduct. Therefore, in order to consume the resistance used when charging the filter capacitor FC1, the resistance for discharging the filter capacitor FC1, and the electric power supplied from the motor 51 which operates as a generator when the electric railway vehicle is braked. Since it is not necessary to provide each resistor, miniaturization is possible. The details of the structure of the power conversion device 1 will be described below.
 電力変換部11は、一次端子11aを介して供給された直流電力を三相交流電力に変換し、三相交流電力を各二次端子に接続された電動機51に供給する。また電力変換部11は、電動機51から供給される三相交流電力を直流電力に変換し、直流電力を一次端子11aから出力する。例えば、電力変換部11は、VVVF(Variable Voltage Variable Frequency)インバータである。 The power conversion unit 11 converts the DC power supplied via the primary terminal 11a into three-phase AC power, and supplies the three-phase AC power to the motor 51 connected to each secondary terminal. Further, the power conversion unit 11 converts the three-phase AC power supplied from the motor 51 into DC power, and outputs the DC power from the primary terminal 11a. For example, the power conversion unit 11 is a VVVF (Variable Voltage Variable Frequency) inverter.
 フィルタコンデンサFC1は、電力変換部11の一次端子11a,11bの間に接続され、集電装置52が架線53を介して取得した電力で充電される。 The filter capacitor FC1 is connected between the primary terminals 11a and 11b of the power conversion unit 11, and is charged by the power acquired by the current collector 52 via the overhead wire 53.
 回路切替部12は、第1抵抗CHRを有し、フィルタコンデンサFC1を充電する際に、第1抵抗CHRを通る電路を介して、電力変換部11を集電装置52に電気的に接続する。この結果、フィルタコンデンサFC1の充電時にフィルタコンデンサFC1に突入電流が流れることが抑制される。換言すれば、第1抵抗CHRは、充電時にフィルタコンデンサFC1に突入電流が流れることを抑制する充電抵抗としての役割を果たす。なお第1抵抗CHRの抵抗値は、突入電流を抑制可能な値であれば任意であり、例えば数十Ωである。 The circuit switching unit 12 has a first resistance CHR, and when charging the filter capacitor FC1, the power conversion unit 11 is electrically connected to the current collector 52 via an electric path passing through the first resistance CHR. As a result, the inrush current is suppressed from flowing through the filter capacitor FC1 when the filter capacitor FC1 is charged. In other words, the first resistor CHR serves as a charging resistor that suppresses the inrush current flowing through the filter capacitor FC1 during charging. The resistance value of the first resistance CHR is arbitrary as long as it can suppress the inrush current, and is, for example, several tens of Ω.
 詳細には、回路切替部12は、第1抵抗CHRと、一端が高速遮断器54を介して集電装置52に接続され、第1抵抗CHRに並列に位置する第1の接触器である接触器MC1と、一端が高速遮断器54を介して集電装置52に接続され、他端が第1抵抗CHRの一端に接続される第2の接触器である接触器MC2と、を備える。 Specifically, the circuit switching unit 12 is a contact with the first resistor CHR, which is a first contactor having one end connected to the current collector 52 via a high-speed circuit breaker 54 and located in parallel with the first resistor CHR. It includes a contactor MC1 and a contactor MC2, which is a second contactor whose one end is connected to the current collector 52 via a high-speed circuit breaker 54 and the other end is connected to one end of the first resistor CHR.
 具体的には、第1抵抗CHRの一端は接触器MC2に接続され、他端は電力変換部11の一次端子11aに接続される。 Specifically, one end of the first resistor CHR is connected to the contactor MC2, and the other end is connected to the primary terminal 11a of the power conversion unit 11.
 接触器MC1の一端は高速遮断器54に接続され、他端は電力変換部11の一次端子11aに接続される。接触器MC1は、直流電磁接触器であり、接触器制御部15によって制御される。接触器制御部15が接触器MC1を投入すると、接触器MC1の一端と他端は互いに接続される。高速遮断器54が投入された状態で、接触器MC1が投入されると、電力変換部11およびフィルタコンデンサFC1は、集電装置52に電気的に接続される。
 また接触器制御部15が接触器MC1を開放すると、接触器MC1の一端と他端は絶縁される。接触器MC2が開放された状態で、接触器制御部15が接触器MC1を開放すると、電力変換部11およびフィルタコンデンサFC1は、集電装置52から電気的に切り離される。
One end of the contactor MC1 is connected to the high-speed circuit breaker 54, and the other end is connected to the primary terminal 11a of the power conversion unit 11. The contactor MC1 is a DC electromagnetic contactor and is controlled by the contactor control unit 15. When the contactor control unit 15 turns on the contactor MC1, one end and the other end of the contactor MC1 are connected to each other. When the contactor MC1 is turned on with the high-speed circuit breaker 54 turned on, the power conversion unit 11 and the filter capacitor FC1 are electrically connected to the current collector 52.
When the contactor control unit 15 opens the contactor MC1, one end and the other end of the contactor MC1 are insulated. When the contactor control unit 15 opens the contactor MC1 while the contactor MC2 is open, the power conversion unit 11 and the filter capacitor FC1 are electrically disconnected from the current collector 52.
 接触器MC2の一端は高速遮断器54に接続され、他端は第1抵抗CHRの一端に接続される。接触器MC2は、直流電磁接触器であり、接触器制御部15によって制御される。接触器制御部15が接触器MC2を投入すると、接触器MC2の一端と他端は互いに接続される。この結果、高速遮断器54と第1抵抗CHRは電気的に接続される。なお高速遮断器54が投入された状態で、接触器MC2が投入されると、電力変換部11およびフィルタコンデンサFC1は、集電装置52に電気的に接続される。
 また接触器制御部15が接触器MC2を開放すると、接触器MC2の一端と他端は絶縁される。この結果、第1抵抗CHRは、高速遮断器54から電気的に切り離される。
One end of the contactor MC2 is connected to the high speed circuit breaker 54, and the other end is connected to one end of the first resistor CHR. The contactor MC2 is a DC electromagnetic contactor and is controlled by the contactor control unit 15. When the contactor control unit 15 turns on the contactor MC2, one end and the other end of the contactor MC2 are connected to each other. As a result, the high-speed circuit breaker 54 and the first resistor CHR are electrically connected. When the contactor MC2 is turned on with the high-speed circuit breaker 54 turned on, the power conversion unit 11 and the filter capacitor FC1 are electrically connected to the current collector 52.
When the contactor control unit 15 opens the contactor MC2, one end and the other end of the contactor MC2 are insulated. As a result, the first resistor CHR is electrically disconnected from the high speed circuit breaker 54.
 チョッパ回路13は、直列に接続されたスイッチング素子SW2および第2抵抗BRを備える。またチョッパ回路13は、オンになると電力変換部11からフィルタコンデンサFC1を介して供給される直流電力を第2抵抗BRで消費させる。換言すれば、チョッパ回路13は、発電ブレーキ方式で車両にブレーキをかけることを可能にするブレーキチョッパとしての役割を果たし、第2艇庫うBRはブレーキ抵抗としての役割を果たす。 The chopper circuit 13 includes a switching element SW2 and a second resistor BR connected in series. When the chopper circuit 13 is turned on, the second resistor BR consumes the DC power supplied from the power conversion unit 11 via the filter capacitor FC1. In other words, the chopper circuit 13 serves as a brake chopper that enables the vehicle to be braked by the dynamic braking system, and the BR in the second boat storage serves as a brake resistance.
 スイッチング素子SW2は、高速スイッチングが可能な素子、例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)である。この場合、スイッチング素子SW2のコレクタ端子は、接触器MC1の他端と電力変換部11の一次端子11aの接続点に接続され、エミッタ端子は、第2抵抗BRの一端に接続される。ゲート端子には、後述のチョッパ制御部17からのチョッパ制御信号S3が入力される。
 第2抵抗BRの一端は、スイッチング素子SW2のエミッタ端子に接続され、他端は接地されている。スイッチング素子SW2がオンになると、フィルタコンデンサFC1が第2抵抗BRに接続される。この結果、第2抵抗BRは、発電機として動作する電動機51から供給され、電力変換部11で変換され、フィルタコンデンサFC1を介して供給される直流電力を消費する。第2抵抗BRの抵抗値は、フィルタコンデンサFC1を介して供給される直流電力を消費することで、電気鉄道車両のブレーキ力を生じさせることができる値であれば任意であり、例えば数Ωである。
The switching element SW2 is an element capable of high-speed switching, for example, an IGBT (Insulated Gate Bipolar Transistor). In this case, the collector terminal of the switching element SW2 is connected to the connection point between the other end of the contactor MC1 and the primary terminal 11a of the power conversion unit 11, and the emitter terminal is connected to one end of the second resistor BR. A chopper control signal S3 from the chopper control unit 17, which will be described later, is input to the gate terminal.
One end of the second resistor BR is connected to the emitter terminal of the switching element SW2, and the other end is grounded. When the switching element SW2 is turned on, the filter capacitor FC1 is connected to the second resistor BR. As a result, the second resistor BR is supplied from the motor 51 operating as a generator, converted by the power conversion unit 11, and consumes the DC power supplied through the filter capacitor FC1. The resistance value of the second resistor BR is arbitrary as long as it can generate the braking force of the electric railroad vehicle by consuming the DC power supplied through the filter capacitor FC1, for example, with a few Ω. be.
 放電スイッチSW1の一端は、第1抵抗CHRの電源に近い一端、詳細には、接触器MC2と第1抵抗CHRの接続点に接続される。また放電スイッチSW1の他端は、スイッチング素子SW2と第2抵抗BRの接続点に接続される。また放電スイッチSW1は、ナイフスイッチである。電力変換装置1の保守作業を行う保守作業員が、放電スイッチSW1を機械的に操作することで、放電スイッチSW1がオンまたはオフになる。 One end of the discharge switch SW1 is connected to one end close to the power supply of the first resistor CHR, specifically, to the connection point between the contactor MC2 and the first resistor CHR. The other end of the discharge switch SW1 is connected to the connection point between the switching element SW2 and the second resistor BR. The discharge switch SW1 is a knife switch. A maintenance worker who performs maintenance work on the power conversion device 1 mechanically operates the discharge switch SW1 to turn the discharge switch SW1 on or off.
 詳細には、接触器MC1,MC2が共に開放された状態で、保守作業員が放電スイッチSW1をオンにする。放電スイッチSW1がオンになると、放電スイッチSW1の両端が電気的に接続され、第1抵抗CHRと第2抵抗BRが直列に接続される。この結果、フィルタコンデンサFC1は、直列に接続された第1抵抗CHRおよび第2抵抗BRに電気的に接続される。このため、フィルタコンデンサFC1は、直列に接続された第1抵抗CHRおよび第2抵抗BRによって放電される。また放電スイッチSW1がオフになると、放電スイッチSW1の両端は絶縁される。 Specifically, the maintenance worker turns on the discharge switch SW1 with the contactors MC1 and MC2 both open. When the discharge switch SW1 is turned on, both ends of the discharge switch SW1 are electrically connected, and the first resistor CHR and the second resistor BR are connected in series. As a result, the filter capacitor FC1 is electrically connected to the first resistor CHR and the second resistor BR connected in series. Therefore, the filter capacitor FC1 is discharged by the first resistor CHR and the second resistor BR connected in series. When the discharge switch SW1 is turned off, both ends of the discharge switch SW1 are insulated.
 電圧測定部14は、電力変換部11の一次端子11a,11bに接続され、フィルタコンデンサFC1の端子間電圧の値を測定する。そして、電圧測定部14は、接触器制御部15、スイッチング制御部16、およびチョッパ制御部17に測定した電圧値を示す信号を供給する。 The voltage measuring unit 14 is connected to the primary terminals 11a and 11b of the power conversion unit 11 and measures the value of the voltage between the terminals of the filter capacitor FC1. Then, the voltage measuring unit 14 supplies a signal indicating the measured voltage value to the contactor control unit 15, the switching control unit 16, and the chopper control unit 17.
 接触器制御部15には、図示しない運転台から、接触器MC1,MC2の投入または開放を指示する開閉指示信号が供給される。また接触器制御部15は、開閉指示信号に従って、接触器MC1,MC2を投入または開放する。具体的には、接触器制御部15は、接触器MC1,MC2に投入または開放を指示する接触器制御信号S1を送り、接触器MC1,MC2を制御する。 The contactor control unit 15 is supplied with an open / close instruction signal instructing the contactors MC1 and MC2 to be turned on or off from a driver's cab (not shown). Further, the contactor control unit 15 turns on or opens the contactors MC1 and MC2 according to the opening / closing instruction signal. Specifically, the contactor control unit 15 sends a contactor control signal S1 instructing the contactors MC1 and MC2 to be turned on or off, and controls the contactors MC1 and MC2.
 スイッチング制御部16には、図示しない運転台から運転指令が供給される。運転指令は、電気鉄道車両の目標加速度を示す力行指令、電気鉄道車両の目標減速度を示すブレーキ指令等を含む。スイッチング制御部16は、後述するように、運転指令に応じて、電力変換部11が有するスイッチング素子にスイッチング制御信号S2を送り、スイッチング素子を制御する。 An operation command is supplied to the switching control unit 16 from a driver's cab (not shown). The operation command includes a power running command indicating the target acceleration of the electric railway vehicle, a brake command indicating the target deceleration of the electric railway vehicle, and the like. As will be described later, the switching control unit 16 sends a switching control signal S2 to the switching element included in the power conversion unit 11 in response to an operation command to control the switching element.
 チョッパ制御部17には、図示しない運転台から運転指令が供給される。チョッパ制御部17は、運転指令がブレーキ指令を含む場合に、チョッパ回路13のスイッチング素子SW2のオンオフを切り替える。詳細には、チョッパ制御部17は、運転指令がブレーキ指令を含む場合に、回生ブレーキ力が得られるように、チョッパ回路13のスイッチング素子SW2の通流率を調節するためのチョッパ制御信号S3をスイッチング素子SW2のゲート端子に供給する。 An operation command is supplied to the chopper control unit 17 from a driver's cab (not shown). The chopper control unit 17 switches on / off the switching element SW2 of the chopper circuit 13 when the operation command includes the brake command. Specifically, the chopper control unit 17 sends a chopper control signal S3 for adjusting the flow rate of the switching element SW2 of the chopper circuit 13 so that a regenerative braking force can be obtained when the operation command includes a brake command. It is supplied to the gate terminal of the switching element SW2.
 次に、上記構成を有する電力変換装置1の動作について説明する。
 電気鉄道車両の始動時に、集電装置52の一例であるパンタグラフを上昇させる上昇スイッチの操作が行われて、集電装置52が架線53に接触すると、集電装置52は、変電所から電力の供給を受ける。また上昇スイッチの操作に連動して、高速遮断器54が投入され、電力変換装置1は集電装置52に電気的に接続される。
Next, the operation of the power conversion device 1 having the above configuration will be described.
When the electric railway vehicle is started, an ascending switch for raising the pantograph, which is an example of the current collector 52, is operated, and when the current collector 52 comes into contact with the overhead wire 53, the current collector 52 receives power from the substation. Receive supply. Further, in conjunction with the operation of the rise switch, the high-speed circuit breaker 54 is turned on, and the power conversion device 1 is electrically connected to the current collector 52.
 また上昇スイッチの操作に連動して、始動を指示する開閉指示信号が接触器制御部15に供給される。接触器制御部15は、始動を指示する開閉指示信号が供給されると、接触器MC2の投入を指示する接触器制御信号S1を出力する。この結果、接触器MC2が投入され、集電装置52が架線53を介して変電所から取得した電力が、高速遮断器54、接触器MC2、および第1抵抗CHRを介して、フィルタコンデンサFC1に供給され、フィルタコンデンサFC1の充電が開始される。接触器MC2に第1抵抗CHRが直列に接続されているため、接触器MC2の投入時にフィルタコンデンサFC1に突入電流が流れることが抑制される。 Further, in conjunction with the operation of the rise switch, an open / close instruction signal for instructing the start is supplied to the contactor control unit 15. When the contactor control unit 15 is supplied with the opening / closing instruction signal instructing the start, the contactor control unit 15 outputs the contactor control signal S1 instructing the contactor MC2 to be turned on. As a result, the contactor MC2 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is transferred to the filter capacitor FC1 via the high-speed circuit breaker 54, the contactor MC2, and the first resistor CHR. It is supplied and charging of the filter capacitor FC1 is started. Since the first resistor CHR is connected in series to the contactor MC2, the inrush current is suppressed from flowing through the filter capacitor FC1 when the contactor MC2 is turned on.
 その後、フィルタコンデンサFC1が十分に充電されると、接触器制御部15は、接触器MC1の投入を指示する接触器制御信号S1を出力する。この結果、接触器MC1が投入され、集電装置52が架線53を介して変電所から取得した電力が、高速遮断器54および接触器MC1を介して、フィルタコンデンサFC1に供給される。 After that, when the filter capacitor FC1 is sufficiently charged, the contactor control unit 15 outputs a contactor control signal S1 instructing the contactor MC1 to be turned on. As a result, the contactor MC1 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is supplied to the filter capacitor FC1 via the high-speed circuit breaker 54 and the contactor MC1.
 その後、接触器制御部15は、接触器MC2の開放を指示する接触器制御信号S1を出力する。この結果、第1抵抗CHRは集電装置52から電気的に切り離される。 After that, the contactor control unit 15 outputs the contactor control signal S1 instructing the opening of the contactor MC2. As a result, the first resistor CHR is electrically disconnected from the current collector 52.
 電気鉄道車両の始動後、運転開始されると、スイッチング制御部16およびチョッパ制御部17に、運転台からの運転指令が入力される。運転指令に応じたスイッチング制御部16およびチョッパ制御部17の動作について説明する。 When the operation is started after the electric railway vehicle is started, the operation command from the cab is input to the switching control unit 16 and the chopper control unit 17. The operation of the switching control unit 16 and the chopper control unit 17 in response to the operation command will be described.
 運転指令が力行指令を含む場合、すなわち、電気鉄道車両の力行時に、スイッチング制御部16は、電力変換部11のスイッチング素子を制御して、電力変換部11に、直流電力を電動機51を駆動するための三相交流電力に変換させる。 When the operation command includes a power running command, that is, when the electric railway vehicle is running, the switching control unit 16 controls the switching element of the power conversion unit 11 to drive the electric power 51 to the power conversion unit 11. Converted to three-phase AC power for.
 詳細には、スイッチング制御部16は、力行指令が示す目標加速度を得るための目標トルクを算出する。またスイッチング制御部16は、図示しない電動機電流測定部から電動機51に流れる電流の測定値を取得し、取得した測定値から電動機51の実トルクを算出する。具体的には、スイッチング制御部16は、電動機51に流れるU相、V相、W相の電流の値を測定する電動機電流測定部から電動機51に流れる相電流の測定値を取得し、相電流の測定値から電動機51の実トルクを算出する。そして、スイッチング制御部16は、電動機51の実トルクを目標トルクに近づけるために、電力変換部11のスイッチング素子にスイッチング制御信号S2を送ってスイッチング素子を制御する。 Specifically, the switching control unit 16 calculates the target torque for obtaining the target acceleration indicated by the power running command. Further, the switching control unit 16 acquires a measured value of the current flowing through the motor 51 from a motor current measuring unit (not shown), and calculates the actual torque of the motor 51 from the acquired measured value. Specifically, the switching control unit 16 acquires the measured value of the phase current flowing through the motor 51 from the motor current measuring unit that measures the values of the U-phase, V-phase, and W-phase currents flowing through the motor 51, and the phase current. The actual torque of the motor 51 is calculated from the measured value of. Then, the switching control unit 16 sends a switching control signal S2 to the switching element of the power conversion unit 11 to control the switching element in order to bring the actual torque of the electric motor 51 closer to the target torque.
 運転指令がブレーキ指令を含む場合、すなわち、電気鉄道車両のブレーキ時は、電動機51は発電機として動作し、三相交流電力を電力変換部11に供給する。
 この場合、スイッチング制御部16は、電力変換部11のスイッチング素子を制御して、電力変換部11に、三相交流電力を直流電力に変換させる。そして、電力変換装置1は、架線53を介して、近隣に位置する他の電気鉄道車両に電力を供給することが可能となる。この結果、電気鉄道車両には回生ブレーキ力が生じ、電気鉄道車両が減速する。
When the operation command includes a brake command, that is, when the electric railroad vehicle is braked, the motor 51 operates as a generator and supplies three-phase AC power to the power conversion unit 11.
In this case, the switching control unit 16 controls the switching element of the power conversion unit 11 to cause the power conversion unit 11 to convert the three-phase AC power into DC power. Then, the power conversion device 1 can supply electric power to other electric railway vehicles located in the vicinity via the overhead wire 53. As a result, a regenerative braking force is generated in the electric railway vehicle, and the electric railway vehicle decelerates.
 例えば近隣に力行中の他の電気鉄道車両が位置していないため、架線53に電力を供給できない場合、電動機51から供給される電力をチョッパ回路13で消費することで、電気鉄道車両に発電ブレーキ力を生じさせることができる。
 チョッパ制御部17は、運転指令がブレーキ指令を含む場合、スイッチング素子SW2のオンオフを切り替えて、電力変換部11が出力する直流電力を第2抵抗BRに消費させる。詳細には、チョッパ制御部17は、電圧測定部14から取得したフィルタコンデンサFC1の端子間電圧の値に応じて、スイッチング素子SW2の通流率を調節して、フィルタコンデンサFC1の端子間の電圧の値を定められた範囲に維持する。なお定められた範囲は、架線53に電力を供給することが可能となり、かつ、フィルタコンデンサFC1に印加可能な最大電圧より低い範囲の値である。
For example, when it is not possible to supply electric power to the overhead wire 53 because another electric railway vehicle that is running power is not located in the vicinity, the electric power supplied from the electric motor 51 is consumed by the chopper circuit 13 to generate electric power brakes on the electric railway vehicle. Force can be generated.
When the operation command includes the brake command, the chopper control unit 17 switches the switching element SW2 on and off so that the second resistor BR consumes the DC power output by the power conversion unit 11. Specifically, the chopper control unit 17 adjusts the flow rate of the switching element SW2 according to the value of the voltage between the terminals of the filter capacitor FC1 acquired from the voltage measurement unit 14, and the voltage between the terminals of the filter capacitor FC1. Keep the value of in the specified range. The defined range is a value in a range lower than the maximum voltage that can supply power to the overhead wire 53 and can be applied to the filter capacitor FC1.
 具体的には、架線53に電力を供給できず、フィルタコンデンサFC1の端子間の電圧が上昇した場合は、チョッパ制御部17がスイッチング素子SW2の通流率を大きくする。この結果、電動機51から供給される電力は第2抵抗BRで消費され、電気鉄道車両のブレーキ力が得られる。 Specifically, when power cannot be supplied to the overhead wire 53 and the voltage between the terminals of the filter capacitor FC1 rises, the chopper control unit 17 increases the flow rate of the switching element SW2. As a result, the electric power supplied from the electric motor 51 is consumed by the second resistance BR, and the braking force of the electric railway vehicle is obtained.
 次に、電気鉄道車両の停止時の電力変換装置1の動作について説明する。電気鉄道車両を停止する際には、電力変換部11の停止後に、高速遮断器54および接触器MC1が開放される。これにより、電力変換部11は、集電装置52から電気的に切り離される。 Next, the operation of the power conversion device 1 when the electric railway vehicle is stopped will be described. When the electric railway vehicle is stopped, the high-speed circuit breaker 54 and the contactor MC1 are opened after the power conversion unit 11 is stopped. As a result, the power conversion unit 11 is electrically disconnected from the current collector 52.
 電気鉄道車両の停止後に、電力変換装置1の保守作業が行われる場合、保守作業員が放電スイッチSW1を機械的に操作することで、放電スイッチSW1がオンになる。接触器MC1,MC2が開放された状態で、放電スイッチSW1がオンになると、第1抵抗CHRと第2抵抗BRは直列に接続される。またフィルタコンデンサFC1は、直列に接続された第1抵抗CHRおよび第2抵抗BRに電気的に接続され、第1抵抗CHRおよび第2抵抗BRによって放電される。 When the maintenance work of the power conversion device 1 is performed after the electric railway vehicle is stopped, the discharge switch SW1 is turned on by the maintenance worker mechanically operating the discharge switch SW1. When the discharge switch SW1 is turned on while the contactors MC1 and MC2 are open, the first resistor CHR and the second resistor BR are connected in series. Further, the filter capacitor FC1 is electrically connected to the first resistance CHR and the second resistance BR connected in series, and is discharged by the first resistance CHR and the second resistance BR.
 以上説明した通り、実施の形態1に係る電力変換装置1によれば、フィルタコンデンサFC1の放電を、フィルタコンデンサFC1の充電時の突入電流を抑制するために設けられている第1抵抗CHRと、電気鉄道車両のブレーキ時に電動機51から供給される電力を消費するために設けられている第2抵抗BRで行う。このため、第1抵抗CHRおよび第2抵抗BRに加えて、フィルタコンデンサFC1を放電するための抵抗を新たに備える必要がない。したがって、発電ブレーキ方式で電気鉄道車両にブレーキをかけることができる電力変換装置1の構造が簡易となる。また電力変換装置1の小型化が可能となる。 As described above, according to the power conversion device 1 according to the first embodiment, the first resistor CHR provided for suppressing the discharge of the filter capacitor FC1 and the inrush current at the time of charging the filter capacitor FC1 is used. This is performed by the second resistance BR provided to consume the electric power supplied from the electric motor 51 when the electric railway vehicle is braked. Therefore, in addition to the first resistor CHR and the second resistor BR, it is not necessary to newly provide a resistor for discharging the filter capacitor FC1. Therefore, the structure of the power conversion device 1 capable of braking the electric railway vehicle by the dynamic braking method becomes simple. Further, the power conversion device 1 can be miniaturized.
 なお電力変換装置1は、第1抵抗CHRおよび第2抵抗BRを直列接続した上で、フィルタコンデンサFC1の放電を行う。このため、フィルタコンデンサFC1の放電回路の抵抗値は、第1抵抗CHRの抵抗値と第2抵抗BRの抵抗値を加算したものである。 The power conversion device 1 discharges the filter capacitor FC1 after connecting the first resistor CHR and the second resistor BR in series. Therefore, the resistance value of the discharge circuit of the filter capacitor FC1 is the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR.
 また実施の形態1に係る電力変換装置1によれば、放電スイッチSW1が短絡故障しても、放電スイッチSW1の他端には第2抵抗BRが接続されているため、地絡電流が低減される。 Further, according to the power conversion device 1 according to the first embodiment, even if the discharge switch SW1 fails due to a short circuit, the ground fault current is reduced because the second resistance BR is connected to the other end of the discharge switch SW1. NS.
 またフィルタコンデンサFC1の放電時に流れる放電電流は、第1抵抗CHRの抵抗値と第2抵抗BRの抵抗値の合計に反比例する。第1抵抗CHRは、接触器MC2の投入時の突入電流を抑制可能な程度に高い抵抗値、例えば数十Ωを有する。このため、放電電流は十分に小さくなり、電流容量の小さいスイッチを放電スイッチSW1として用いることが可能となり、また放電電流が流れる回路の配線を細くすることが可能となる。換言すれば、フィルタコンデンサFC1の放電時に電流が流れる回路の電気的制約を緩和することが可能となる。 The discharge current flowing when the filter capacitor FC1 is discharged is inversely proportional to the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR. The first resistance CHR has a resistance value high enough to suppress the inrush current when the contactor MC2 is turned on, for example, several tens of Ω. Therefore, the discharge current becomes sufficiently small, a switch having a small current capacity can be used as the discharge switch SW1, and the wiring of the circuit through which the discharge current flows can be thinned. In other words, it is possible to relax the electrical restrictions of the circuit through which the current flows when the filter capacitor FC1 is discharged.
 (実施の形態2)
 放電スイッチSW1が短絡故障すると、集電装置52から放電スイッチSW1を介して第2抵抗BRに地絡電流が流れてしまう。そこで、第2抵抗BRに流れる電流に基づいて、放電スイッチSW1の短絡故障の有無を判別することが可能な電力変換装置2について実施の形態2で説明する。なお電力変換装置2の電気鉄道車両への搭載の仕方は、実施の形態1と同様である。電力変換装置2が、実施の形態1に係る電力変換装置1と異なる点について以下に説明する。
(Embodiment 2)
If the discharge switch SW1 fails due to a short circuit, a ground fault current flows from the current collector 52 to the second resistor BR via the discharge switch SW1. Therefore, the power conversion device 2 capable of determining the presence or absence of a short-circuit failure of the discharge switch SW1 based on the current flowing through the second resistor BR will be described in the second embodiment. The method of mounting the power conversion device 2 on the electric railway vehicle is the same as that of the first embodiment. The difference between the power conversion device 2 and the power conversion device 1 according to the first embodiment will be described below.
 図3に示す実施の形態2に係る電力変換装置2は、実施の形態1に係る電力変換装置1の構成に加え、第2抵抗BRを流れる電流の値を測定する電流測定部18と、電流測定部18の測定値に基づいて放電スイッチSW1の短絡故障の有無を判別する故障判別部19と、をさらに備える。 In addition to the configuration of the power conversion device 1 according to the first embodiment, the power conversion device 2 according to the second embodiment shown in FIG. 3 includes a current measuring unit 18 for measuring the value of the current flowing through the second resistance BR and a current. Further, a failure determination unit 19 for determining the presence or absence of a short-circuit failure of the discharge switch SW1 based on the measured value of the measurement unit 18 is provided.
 接触器制御部15は、接触器MC1,MC2の少なくともいずれかが投入されているか否かを示す接触器状態信号S4を故障判別部19に供給する。例えば、接触器制御部15は、接触器MC1,MC2が共に開放されている場合にLowレベルとなり、接触器MC1,MC2の少なくともいずれかが投入されている場合にHighレベルとなる接触器状態信号S4を出力する。
 また接触器制御部15は、後述するように故障判別部19が放電スイッチSW1の短絡故障が生じていると判別した場合、接触器MC1,MC2を共に開放する。
The contactor control unit 15 supplies the contactor status signal S4 indicating whether or not at least one of the contactors MC1 and MC2 is turned on to the failure determination unit 19. For example, the contactor control unit 15 has a contactor state signal that becomes a Low level when both the contactors MC1 and MC2 are open, and becomes a High level when at least one of the contactors MC1 and MC2 is turned on. Output S4.
Further, the contactor control unit 15 opens both the contactors MC1 and MC2 when the failure determination unit 19 determines that a short-circuit failure of the discharge switch SW1 has occurred, as will be described later.
 スイッチング制御部16は、後述するように故障判別部19が放電スイッチSW1の短絡故障が生じていると判別した場合、電力変換部11が有するスイッチング素子をオフにする。 The switching control unit 16 turns off the switching element of the power conversion unit 11 when the failure determination unit 19 determines that a short-circuit failure of the discharge switch SW1 has occurred, as will be described later.
 チョッパ制御部17は、スイッチング素子SW2がオンオフのいずれの状態であるかを示す素子状態信号S5を故障判別部19に供給する。例えば、チョッパ制御部17は、スイッチング素子SW2がオンの状態でHighレベルとなり、スイッチング素子SW2がオフの状態でLowレベルとなる素子状態信号S5を出力する。 The chopper control unit 17 supplies the element state signal S5 indicating which state the switching element SW2 is on / off to the failure determination unit 19. For example, the chopper control unit 17 outputs an element state signal S5 which becomes a high level when the switching element SW2 is on and becomes a low level when the switching element SW2 is off.
 電流測定部18は、スイッチング素子SW2と第2抵抗BRとの間に設けられる。詳細には、電流測定部18の一端は、スイッチング素子SW2のエミッタ端子に接続され、他端は、第2抵抗BRの一端に接続される。また電流測定部18とスイッチング素子SW2との接続点に放電スイッチSW1の他端が接続される。上述の位置に設けられた電流測定部18は、CT(Current Transformer:変流器)であり、第2抵抗BRに流れる電流の値を測定する。そして、電流測定部18は、電流の測定値を示す信号を故障判別部19に供給する。 The current measuring unit 18 is provided between the switching element SW2 and the second resistor BR. Specifically, one end of the current measuring unit 18 is connected to the emitter terminal of the switching element SW2, and the other end is connected to one end of the second resistor BR. Further, the other end of the discharge switch SW1 is connected to the connection point between the current measuring unit 18 and the switching element SW2. The current measuring unit 18 provided at the above-mentioned position is a CT (Current Transformer) and measures the value of the current flowing through the second resistor BR. Then, the current measuring unit 18 supplies a signal indicating the measured value of the current to the failure determining unit 19.
 故障判別部19は、放電スイッチSW1がオフになっていて、チョッパ回路13のスイッチング素子SW2がオフの状態で、電流測定部18から取得した電流の測定値である電流値IBが閾値電流Th以上であるか否かを判別する。放電スイッチSW1がオフの状態で、かつ、チョッパ回路13のスイッチング素子SW2がオフの状態で、電流値IBが閾値電流Th以上であれば、放電スイッチSW1が短絡故障しているとみなすことができる。 In the failure determination unit 19, when the discharge switch SW1 is off and the switching element SW2 of the chopper circuit 13 is off, the current value IB, which is the measured value of the current acquired from the current measurement unit 18, is equal to or higher than the threshold current Th. It is determined whether or not it is. If the discharge switch SW1 is off, the switching element SW2 of the chopper circuit 13 is off, and the current value IB is the threshold current Th or more, it can be considered that the discharge switch SW1 has a short-circuit failure. ..
 なお閾値電流Thは、架線53の電圧である架線電圧を第1抵抗CHRの抵抗値と第2抵抗BRの抵抗値の合計で除算した値に応じて定めることができる。具体的には、架線電圧が取り得る値の最小値を第1抵抗CHRの抵抗値と第2抵抗BRの抵抗値の合計で除算した値を、閾値電流Thとすることが好ましい。 The threshold current Th can be determined according to the value obtained by dividing the overhead wire voltage, which is the voltage of the overhead wire 53, by the sum of the resistance value of the first resistance CHR and the resistance value of the second resistance BR. Specifically, it is preferable that the threshold current Th is the value obtained by dividing the minimum value that the overhead wire voltage can take by the total of the resistance value of the first resistance CHR and the resistance value of the second resistance BR.
 また故障判別部19は、電流値IBが閾値電流Th以上であるか否かの判別結果に基づく判別結果信号S6を接触器制御部15とスイッチング制御部16に出力する。詳細には、故障判別部19は、電流値IBが閾値電流Th未満であると判別した場合、放電スイッチSW1の短絡故障が生じていないことを示す判別結果信号S6を接触器制御部15とスイッチング制御部16に出力する。また故障判別部19は、電流値IBが閾値電流Th以上であると判別した場合、放電スイッチSW1の短絡故障が生じていることを示す判別結果信号S6を接触器制御部15とスイッチング制御部16に出力する。例えば、故障判別部19は、電流値IBが閾値電流未満であると判別した場合にLowレベルとなり、電流値IBが閾値電流以上であると判別した場合にHighレベルとなる判別結果信号S6を出力する。 Further, the failure determination unit 19 outputs a determination result signal S6 based on the determination result of whether or not the current value IB is equal to or higher than the threshold current Th to the contactor control unit 15 and the switching control unit 16. Specifically, when the failure determination unit 19 determines that the current value IB is less than the threshold current Th, the failure determination unit 19 switches the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has not occurred with the contactor control unit 15. Output to the control unit 16. Further, when the failure determination unit 19 determines that the current value IB is equal to or higher than the threshold current Th, the failure determination unit 19 outputs the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred between the contactor control unit 15 and the switching control unit 16. Output to. For example, the failure determination unit 19 outputs a determination result signal S6 which becomes the Low level when it is determined that the current value IB is less than the threshold current and becomes the High level when it is determined that the current value IB is equal to or more than the threshold current. do.
 故障判別部19が行う短絡故障の有無を判別する処理について図4を用いて説明する。実施の形態1で説明したように、高速遮断器54および接触器MC1,MC2が開放された状態で、保守作業員は放電スイッチSW1をオンにする。換言すれば、接触器MC1,MC2の少なくともいずれかが投入されている状態では、放電スイッチSW1が正常であれば、放電スイッチSW1はオフになっている。そこで、故障判別部19は、接触器状態信号S4に基づいて、放電スイッチSW1がオフになっているか否かを判別する。 The process of determining the presence or absence of a short-circuit failure performed by the failure determination unit 19 will be described with reference to FIG. As described in the first embodiment, the maintenance worker turns on the discharge switch SW1 in a state where the high-speed circuit breaker 54 and the contactors MC1 and MC2 are open. In other words, in a state where at least one of the contactors MC1 and MC2 is turned on, if the discharge switch SW1 is normal, the discharge switch SW1 is off. Therefore, the failure determination unit 19 determines whether or not the discharge switch SW1 is turned off based on the contactor state signal S4.
 具体的には、故障判別部19は、接触器状態信号S4に基づいて、接触器MC1,MC2の少なくともいずれかがオンの状態であるか否かを判別する(ステップS11)。接触器MC1,MC2が共にオフの状態である場合(ステップS11;No)、故障判別部19は短絡故障の有無を判別する処理を終了する。 Specifically, the failure determination unit 19 determines whether or not at least one of the contactors MC1 and MC2 is in the ON state based on the contactor status signal S4 (step S11). When both the contactors MC1 and MC2 are in the off state (step S11; No), the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
 接触器MC1,MC2のいずれかがオンの状態である場合(ステップS11;Yes)、故障判別部19は、チョッパ回路13のスイッチング素子SW2がオフの状態であるか否かを判別する(ステップS12)。詳細には、故障判別部19は、素子状態信号S5が、スイッチング素子SW2がオフであることを示しているか否かを判別する。スイッチング素子SW2がオンの状態である場合(ステップS12;No)、故障判別部19は短絡故障の有無を判別する処理を終了する。 When any of the contactors MC1 and MC2 is in the ON state (step S11; Yes), the failure determination unit 19 determines whether or not the switching element SW2 of the chopper circuit 13 is in the OFF state (step S12). ). Specifically, the failure determination unit 19 determines whether or not the element state signal S5 indicates that the switching element SW2 is off. When the switching element SW2 is in the ON state (step S12; No), the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
 スイッチング素子SW2がオフの状態である場合(ステップS12;Yes)、故障判別部19は、電流測定部18から電流値IBを取得する(ステップS13)。故障判別部19は、電流値IBが閾値電流Th以上であるか否かを判別する(ステップS14)。電流値IBが閾値電流Th未満であれば、放電スイッチSW1の短絡故障は生じていないとみなすことができる。そこで、故障判別部19は、電流値IBが閾値電流Th未満である場合(ステップS14;No)、放電スイッチSW1の短絡故障が生じていないことを示す判別結果信号S6を出力する(ステップS15)。ステップS15の処理が終了すると、故障判別部19は短絡故障の有無を判別する処理を終了する。 When the switching element SW2 is in the off state (step S12; Yes), the failure determination unit 19 acquires the current value IB from the current measurement unit 18 (step S13). The failure determination unit 19 determines whether or not the current value IB is equal to or greater than the threshold current Th (step S14). If the current value IB is less than the threshold current Th, it can be considered that the short-circuit failure of the discharge switch SW1 has not occurred. Therefore, when the current value IB is less than the threshold current Th (step S14; No), the failure determination unit 19 outputs a determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has not occurred (step S15). .. When the process of step S15 is completed, the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
 また電流値IBが閾値電流Th以上であれば、放電スイッチSW1の短絡故障が生じているとみなすことができる。そこで、故障判別部19は、電流値IBが閾値電流Th以上である場合(ステップS14;Yes)、放電スイッチSW1の短絡故障が生じていることを示す判別結果信号S6を出力する(ステップS16)。ステップS16の処理が終了すると、故障判別部19は短絡故障の有無を判別する処理を終了する。 If the current value IB is equal to or higher than the threshold current Th, it can be considered that a short-circuit failure of the discharge switch SW1 has occurred. Therefore, when the current value IB is equal to or greater than the threshold current Th (step S14; Yes), the failure determination unit 19 outputs a determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred (step S16). .. When the process of step S16 is completed, the failure determination unit 19 ends the process of determining the presence or absence of a short-circuit failure.
 故障判別部19は、定められたタイミングで上述の処理を繰り返し行う。例えば、故障判別部19は、一定の間隔で上述の処理を繰り返し行えばよい。 The failure determination unit 19 repeats the above-mentioned process at a predetermined timing. For example, the failure determination unit 19 may repeat the above-mentioned processing at regular intervals.
 放電スイッチSW1の短絡故障が生じていることを示す判別結果信号S6を取得した接触器制御部15は、接触器MC1,MC2を共に開放することを指示する接触器制御信号S1を出力する。
 また放電スイッチSW1の短絡故障が生じていることを示す判別結果信号S6を取得したスイッチング制御部16は、電力変換部11が有するスイッチング素子をオフにすることを指示するスイッチング制御信号S2を出力する。
The contactor control unit 15 that has acquired the determination result signal S6 indicating that the discharge switch SW1 has a short-circuit failure outputs the contactor control signal S1 instructing to open both the contactors MC1 and MC2.
Further, the switching control unit 16 that has acquired the determination result signal S6 indicating that the discharge switch SW1 has a short-circuit failure outputs a switching control signal S2 instructing that the switching element of the power conversion unit 11 is turned off. ..
 以上説明した通り、実施の形態2に係る電力変換装置2によれば、第2抵抗BRを流れる電流に基づいて、放電スイッチSW1の短絡故障の有無を判別することが可能となる。 As described above, according to the power conversion device 2 according to the second embodiment, it is possible to determine the presence or absence of a short-circuit failure of the discharge switch SW1 based on the current flowing through the second resistor BR.
 上述の回路構成は一例である。他の回路構成の一例を図5に示す。図5に示すように、電力変換装置3が備える回路切替部12aは、直列に接続された接触器MC1,MC2と、接触器MC2に並列に接続された第1抵抗CHRと、を備えてもよい。接触器MC1の一端は、高速遮断器54に接続される。接触器MC2の一端は、接触器MC1の他端に接続され、他端は電力変換部11の一次端子11aに接続される。第1抵抗CHRの一端は、接触器MC1,MC2の接続点に接続され、他端は接触器MC2の他端に接続される。放電スイッチSW1の一端は、接触器MC1,MC2の接続点に接続され、他端はチョッパ回路13のスイッチング素子SW2と第2抵抗BRの接続点に接続される。なお電力変換装置2が備える回路切替部12を、電力変換装置3が備える回路切替部12aと同様の構成としてもよい。 The above circuit configuration is an example. An example of another circuit configuration is shown in FIG. As shown in FIG. 5, the circuit switching unit 12a included in the power conversion device 3 may include contactors MC1 and MC2 connected in series and a first resistor CHR connected in parallel to the contactor MC2. good. One end of the contactor MC1 is connected to the high speed circuit breaker 54. One end of the contactor MC2 is connected to the other end of the contactor MC1, and the other end is connected to the primary terminal 11a of the power conversion unit 11. One end of the first resistor CHR is connected to the connection point of the contactors MC1 and MC2, and the other end is connected to the other end of the contactor MC2. One end of the discharge switch SW1 is connected to the connection point of the contactors MC1 and MC2, and the other end is connected to the connection point of the switching element SW2 of the chopper circuit 13 and the second resistor BR. The circuit switching unit 12 included in the power conversion device 2 may have the same configuration as the circuit switching unit 12a included in the power conversion device 3.
 電力変換装置3が備える接触器制御部15は、始動を指示する開閉指示信号が供給されると、接触器MC1の投入を指示する接触器制御信号S1を出力する。この結果、接触器MC1が投入され、集電装置52が架線53を介して変電所から取得した電力が、高速遮断器54、接触器MC1、および第1抵抗CHRを介して、フィルタコンデンサFC1に供給され、フィルタコンデンサFC1の充電が開始される。 The contactor control unit 15 included in the power conversion device 3 outputs the contactor control signal S1 instructing the contactor MC1 to be turned on when the opening / closing instruction signal instructing the start is supplied. As a result, the contactor MC1 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is transferred to the filter capacitor FC1 via the high-speed circuit breaker 54, the contactor MC1, and the first resistor CHR. It is supplied and charging of the filter capacitor FC1 is started.
 その後、フィルタコンデンサFC1が十分に充電されると、電力変換装置3が備える接触器制御部15は、接触器MC2の投入を指示する接触器制御信号S1を出力する。この結果、接触器MC2が投入され、集電装置52が架線53を介して変電所から取得した電力が、高速遮断器54および接触器MC1,MC2を介して、フィルタコンデンサFC1に供給される。 After that, when the filter capacitor FC1 is sufficiently charged, the contactor control unit 15 included in the power conversion device 3 outputs a contactor control signal S1 instructing the contactor MC2 to be turned on. As a result, the contactor MC2 is turned on, and the electric power acquired from the substation by the current collector 52 via the overhead wire 53 is supplied to the filter capacitor FC1 via the high-speed circuit breaker 54 and the contactors MC1 and MC2.
 さらに他の回路構成の一例を図6に示す。図6に示す電力変換装置4は、電力変換装置1の構成に加えて、フィルタリアクトルFL1を備える。フィルタリアクトルFL1は、回路切替部12とチョッパ回路13との間の回路に設けられる。詳細には、フィルタリアクトルFL1の一端は、接触器MC1の他端に接続され、他端は電力変換部11の一次端子11aに接続される。フィルタリアクトルFL1を設けることで、電力変換部11の入力電流の平滑化、および、回生ブレーキ時の電力変換部11の出力電流の平滑化が可能となる。またフィルタリアクトルFL1を設けることで、フィルタコンデンサFC1の放電開始時に第1抵抗CHRおよび第2抵抗BRに突入電流が流れることを抑制することが可能となる。なお電力変換装置2,3にフィルタリアクトルFL1を設けてもよい。 FIG. 6 shows an example of yet another circuit configuration. The power conversion device 4 shown in FIG. 6 includes a filter reactor FL1 in addition to the configuration of the power conversion device 1. The filter reactor FL1 is provided in the circuit between the circuit switching unit 12 and the chopper circuit 13. Specifically, one end of the filter reactor FL1 is connected to the other end of the contactor MC1, and the other end is connected to the primary terminal 11a of the power conversion unit 11. By providing the filter reactor FL1, it is possible to smooth the input current of the power conversion unit 11 and the output current of the power conversion unit 11 at the time of regenerative braking. Further, by providing the filter reactor FL1, it is possible to suppress the inrush current from flowing through the first resistor CHR and the second resistor BR at the start of discharging the filter capacitor FC1. The filter reactor FL1 may be provided in the power conversion devices 2 and 3.
 放電スイッチSW1の短絡故障の有無を判別する方法は、上述の例に限られない。一例として、図4におけるステップS11,S12の処理を実行する順序は任意であり、故障判別部19は、ステップS12の処理を行ってから、ステップS11の処理を行ってもよい。 The method for determining the presence or absence of a short-circuit failure of the discharge switch SW1 is not limited to the above example. As an example, the order in which the processes of steps S11 and S12 in FIG. 4 are executed is arbitrary, and the failure determination unit 19 may perform the process of step S12 and then the process of step S11.
 また放電スイッチSW1に、オンオフの状態のいずれであるかを示す信号を出力する機能を持たせ、故障判別部19は、放電スイッチSW1から取得した信号に基づいて、放電スイッチSW1がオフの状態であるか否かを判別してもよい。 Further, the discharge switch SW1 is provided with a function of outputting a signal indicating which of the on / off states it is, and the failure determination unit 19 is in a state where the discharge switch SW1 is off based on the signal acquired from the discharge switch SW1. It may be determined whether or not there is.
 また故障判別部19は、一定間隔で電流測定部18から電流値IBを取得してメモリに記憶しておき、図4のステップS13でメモリから電流値IBを読み出し、読み出した電流値IBに基づいて後続のステップS14の処理を行ってもよい。 Further, the failure determination unit 19 acquires the current value IB from the current measurement unit 18 at regular intervals and stores it in the memory, reads the current value IB from the memory in step S13 of FIG. 4, and is based on the read current value IB. Then, the processing of the subsequent step S14 may be performed.
 さらに故障判別部19は、タイマを有し、放電スイッチSW1がオフになっていて、チョッパ回路13のスイッチング素子SW2がオフの状態で、電流値IBが閾値電流Th以上である状態が定められた時間だけ継続しているか否かを判別してもよい。この場合、故障判別部19は、電流値IBが閾値電流Th以上である状態が定められた時間だけ継続していないと判別した場合、放電スイッチSW1の短絡故障が生じていないことを示す判別結果信号S6を接触器制御部15とスイッチング制御部16に出力すればよい。
 また故障判別部19は、電流値IBが閾値電流Th以上である状態が定められた時間だけ継続していると判別した場合、放電スイッチSW1の短絡故障が生じていることを示す判別結果信号S6を接触器制御部15とスイッチング制御部16に出力すればよい。なお定められた時間は、瞬間的な電流値IBの変動によって故障判別部19が誤った判別結果を出力することを防ぐことができる程度の時間であればよい。例えば定められた時間は、放電スイッチSW1、スイッチング素子SW2等の各素子のオンオフ状態の更新周期より長く、かつ、電流値IBのサンプリング周期より長い時間に設定されればよい。
Further, the failure determination unit 19 has a timer, the discharge switch SW1 is off, the switching element SW2 of the chopper circuit 13 is off, and the current value IB is defined to be equal to or higher than the threshold current Th. It may be determined whether or not it continues for only the time. In this case, when the failure determination unit 19 determines that the state in which the current value IB is equal to or higher than the threshold current Th has not continued for a predetermined time, the determination result indicating that a short-circuit failure of the discharge switch SW1 has not occurred. The signal S6 may be output to the contactor control unit 15 and the switching control unit 16.
Further, when the failure determination unit 19 determines that the state in which the current value IB is equal to or higher than the threshold current Th continues for a predetermined time, the determination result signal S6 indicating that a short-circuit failure of the discharge switch SW1 has occurred. May be output to the contactor control unit 15 and the switching control unit 16. The defined time may be a time that can prevent the failure determination unit 19 from outputting an erroneous determination result due to a momentary fluctuation of the current value IB. For example, the defined time may be set to be longer than the update cycle of the on / off state of each element such as the discharge switch SW1 and the switching element SW2, and longer than the sampling cycle of the current value IB.
 また故障判別部19は、判別結果信号S6を運転台に設けられた表示装置に出力してもよい。この場合、運転台に放電スイッチSW1の短絡故障の有無を表示することができる。 Further, the failure determination unit 19 may output the determination result signal S6 to a display device provided in the driver's cab. In this case, the presence or absence of a short-circuit failure of the discharge switch SW1 can be displayed on the driver's cab.
 電動機51は、三相誘導電動機に限られない。一例として、電動機51は、同期電動機、直流電動機等でもよい。 The motor 51 is not limited to the three-phase induction motor. As an example, the electric motor 51 may be a synchronous motor, a DC motor, or the like.
 電力変換部11は、双方向の電力変換が可能な任意の電力変換回路である。一例として、電動機51が直流電動機である場合、電力変換部11は、DC(Direct Current:直流)-DCコンバータであればよい。 The power conversion unit 11 is an arbitrary power conversion circuit capable of bidirectional power conversion. As an example, when the electric motor 51 is a direct current electric motor, the power conversion unit 11 may be a DC (Direct Current) -DC converter.
 電力変換装置1-4は、電力変換装置1-4に直流電力を供給可能な任意の車両、任意の機器等に搭載可能である。一例として、電力変換装置1-4は、交流き電方式の電気鉄道車両に搭載可能である。この場合、高速遮断器54の他端にトランスの一次端子の一方を接続し、トランスの二次端子にコンバータを接続し、コンバータの出力を電力変換装置1-4に供給すればよい。 The power conversion device 1-4 can be mounted on any vehicle, any device, etc. that can supply DC power to the power conversion device 1-4. As an example, the power conversion device 1-4 can be mounted on an AC feeder type electric railway vehicle. In this case, one of the primary terminals of the transformer may be connected to the other end of the high-speed circuit breaker 54, the converter may be connected to the secondary terminal of the transformer, and the output of the converter may be supplied to the power converters 1-4.
 他の一例として、電力変換装置1-4は、第三軌条を介して電力を取得する電気鉄道車両に搭載されてもよい。 As another example, the power conversion device 1-4 may be mounted on an electric railway vehicle that acquires electric power via the third rail.
 また電力変換装置1-4は、発電ブレーキ方式で電気鉄道車両にブレーキをかけることを可能にするものに限られず、複数の抵抗器を有する任意の電力変換装置である。一例として、電力変換装置1-4は、第1抵抗CHRおよび第2抵抗BRに代えて、任意の用途のために設けられた抵抗器を用いてフィルタコンデンサFC1を放電してもよい。この結果、フィルタコンデンサFC1を放電するための抵抗器を新たに備える必要がなく、電力変換装置1-4の構造を簡易にすることが可能となる。 Further, the power conversion device 1-4 is not limited to a device that enables braking of an electric railroad vehicle by a dynamic braking method, and is an arbitrary power conversion device having a plurality of resistors. As an example, the power converter 1-4 may discharge the filter capacitor FC1 using a resistor provided for any application instead of the first resistor CHR and the second resistor BR. As a result, it is not necessary to newly provide a resistor for discharging the filter capacitor FC1, and the structure of the power conversion device 1-4 can be simplified.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 The present disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and within the scope of the equivalent disclosure are considered to be within the scope of this disclosure.
 1,2,3,4 電力変換装置、1a 正極入力端子、1b 負極入力端子、11 電力変換部、11a,11b 一次端子、12,12a 回路切替部、13 チョッパ回路、14 電圧測定部、15 接触器制御部、16 スイッチング制御部、17 チョッパ制御部、18 電流測定部、19 故障判別部、51 電動機、52 集電装置、53 架線、54 高速遮断器、BR 第2抵抗、CHR 第1抵抗、FC1 フィルタコンデンサ、FL1 フィルタリアクトル、MC1,MC2 接触器、S1 接触器制御信号、S2 スイッチング制御信号、S3 チョッパ制御信号、S4 接触器状態信号、S5 素子状態信号、S6 判別結果信号、SW1 放電スイッチ、SW2 スイッチング素子。 1,2,3,4 Power converter, 1a Positive input terminal, 1b Negative input terminal, 11 Power conversion unit, 11a, 11b Primary terminal, 12,12a Circuit switching unit, 13 Chopper circuit, 14 Voltage measuring unit, 15 Contact Instrument control unit, 16 switching control unit, 17 chopper control unit, 18 current measurement unit, 19 failure determination unit, 51 motor, 52 current collector, 53 overhead wire, 54 high-speed breaker, BR 2nd resistance, CHR 1st resistance, FC1 filter capacitor, FL1 filter reactor, MC1, MC2 contactor, S1 contactor control signal, S2 switching control signal, S3 chopper control signal, S4 contactor state signal, S5 element state signal, S6 discrimination result signal, SW1 discharge switch, SW2 switching element.

Claims (7)

  1.  電源から供給される直流電力で充電されるフィルタコンデンサと、
     一次端子間に前記フィルタコンデンサが接続され、前記電源から前記フィルタコンデンサを介して供給される直流電力を、直流電力または交流電力に変換して、二次端子に接続された電動機に供給し、発電機として動作する前記電動機から供給される直流電力または交流電力を直流電力に変換して出力し、前記フィルタコンデンサを充電する電力変換部と、
     第1抵抗を有し、前記電力変換部および前記フィルタコンデンサを、前記電源に電気的に接続し、または、前記電源から電気的に切り離す回路切替部と、
     直列に接続されたスイッチング素子および第2抵抗を有し、両端が前記電力変換部の前記一次端子間に接続されるチョッパ回路と、
     一端が前記第1抵抗の前記電源に近い一端に接続され、他端が前記スイッチング素子と前記第2抵抗との接続点に接続される放電スイッチと、を備え、
     前記回路切替部は、前記フィルタコンデンサを前記電源から供給される直流電力で充電する際に、前記第1抵抗を通る電路を介して、前記電力変換部および前記フィルタコンデンサを前記電源に電気的に接続し、
     前記チョッパ回路は、前記スイッチング素子がオンになると前記電力変換部から前記フィルタコンデンサを介して供給される直流電力を前記第2抵抗で消費させ、
     前記放電スイッチは、オンになると、前記第1抵抗と前記第2抵抗とを直列に接続し、前記フィルタコンデンサを直列に接続した前記第1抵抗および前記第2抵抗に電気的に接続することで前記フィルタコンデンサを放電させる、
     電力変換装置。
    A filter capacitor that is charged with DC power supplied from the power supply,
    The filter capacitor is connected between the primary terminals, and the DC power supplied from the power supply via the filter capacitor is converted into DC power or AC power and supplied to the motor connected to the secondary terminal to generate power. A power conversion unit that converts DC power or AC power supplied from the motor that operates as a machine into DC power and outputs it to charge the filter capacitor.
    A circuit switching unit having a first resistor and electrically connecting the power conversion unit and the filter capacitor to the power supply or electrically disconnecting the filter capacitor from the power supply.
    A chopper circuit having a switching element and a second resistor connected in series, both ends of which are connected between the primary terminals of the power converter.
    One end is connected to one end of the first resistor close to the power supply, and the other end is a discharge switch connected to a connection point between the switching element and the second resistor.
    When charging the filter capacitor with DC power supplied from the power supply, the circuit switching unit electrically connects the power conversion unit and the filter capacitor to the power supply via an electric path passing through the first resistor. connection,
    In the chopper circuit, when the switching element is turned on, the DC power supplied from the power conversion unit via the filter capacitor is consumed by the second resistor.
    When the discharge switch is turned on, the first resistor and the second resistor are connected in series, and the filter capacitor is electrically connected to the first resistor and the second resistor connected in series. Discharge the filter capacitor,
    Power converter.
  2.  前記回路切替部は、
     一端が前記電源に接続され、前記第1抵抗に並列に位置する第1の接触器と、
     一端が前記電源に接続され、他端が前記第1抵抗の一端に接続される第2の接触器と、を有し、
     前記第1抵抗の他端は、前記電力変換部の前記一対の一次端子に接続され、
     前記放電スイッチの一端は、前記第1抵抗の一端に接続され、
     前記放電スイッチの他端は、前記チョッパ回路の前記スイッチング素子と前記第2抵抗との接続点に接続される、
     請求項1に記載の電力変換装置。
    The circuit switching unit is
    A first contactor, one end of which is connected to the power supply and located in parallel with the first resistor.
    It has a second contactor, one end of which is connected to the power supply and the other end of which is connected to one end of the first resistor.
    The other end of the first resistor is connected to the pair of primary terminals of the power conversion unit.
    One end of the discharge switch is connected to one end of the first resistor.
    The other end of the discharge switch is connected to a connection point between the switching element of the chopper circuit and the second resistor.
    The power conversion device according to claim 1.
  3.  前記回路切替部は、直列に接続された第1の接触器および第2の接触器を有し、
     前記第1接触器の一端は、前記電源に接続され、
     前記第1接触器の他端は、前記第2接触器の一端に接続され、
     前記第2接触器の他端は、前記電力変換部の前記一次端子に接続され、
     前記第1抵抗の一端は、前記第1接触器と前記第2接触器の接続点に接続され、
     前記第1抵抗の他端は、前記第2接触器の前記他端に接続され、
     前記放電スイッチの一端は、前記第1抵抗の前記一端に接続され、
     前記放電スイッチの他端は、前記チョッパ回路の前記スイッチング素子と前記第2抵抗との接続点に接続される、
     請求項1に記載の電力変換装置。
    The circuit switching unit has a first contactor and a second contactor connected in series.
    One end of the first contactor is connected to the power supply and
    The other end of the first contactor is connected to one end of the second contactor.
    The other end of the second contactor is connected to the primary terminal of the power conversion unit.
    One end of the first resistor is connected to a connection point between the first contactor and the second contactor.
    The other end of the first resistor is connected to the other end of the second contactor.
    One end of the discharge switch is connected to the one end of the first resistor.
    The other end of the discharge switch is connected to a connection point between the switching element of the chopper circuit and the second resistor.
    The power conversion device according to claim 1.
  4.  前記第2抵抗を流れる電流に基づいて、前記放電スイッチの短絡故障の有無を判別する故障判別部をさらに備える、
     請求項1から3のいずれか1項に記載の電力変換装置。
    A failure determination unit for determining the presence or absence of a short-circuit failure of the discharge switch based on the current flowing through the second resistor is further provided.
    The power conversion device according to any one of claims 1 to 3.
  5.  前記故障判別部は、前記放電スイッチが開放されていて、前記チョッパ回路の前記スイッチング素子がオフの状態で、前記第2抵抗を流れる電流が閾値電流以上であるか否かを判別し、判別結果を出力する、
     請求項4に記載の電力変換装置。
    The failure determination unit determines whether or not the current flowing through the second resistor is equal to or greater than the threshold current when the discharge switch is open and the switching element of the chopper circuit is off. To output,
    The power conversion device according to claim 4.
  6.  前記回路切替部は、前記故障判別部が、前記放電スイッチが短絡故障していると判別した場合に、前記電力変換部を前記電源から電気的に切り離す、
     請求項4または5に記載の電力変換装置。
    The circuit switching unit electrically disconnects the power conversion unit from the power supply when the failure determination unit determines that the discharge switch has a short-circuit failure.
    The power conversion device according to claim 4 or 5.
  7.  前記電力変換部が有するスイッチング素子のオンオフを切り替えることで前記電力変換部に、前記電源から前記フィルタコンデンサを介して供給される直流電力を、直流電力または交流電力に変換させ、または、前記電動機から供給される直流電力または交流電力を直流電力に変換させるスイッチング制御部をさらに備え、
     前記スイッチング制御部は、前記故障判別部が、前記放電スイッチが短絡故障していると判別した場合に、前記電力変換部の前記スイッチング素子をオフにする、
     請求項4から6のいずれか1項に記載の電力変換装置。
    By switching the switching element of the power conversion unit on and off, the power conversion unit converts the DC power supplied from the power supply via the filter capacitor into DC power or AC power, or from the electric power unit. Further equipped with a switching control unit that converts the supplied DC power or AC power into DC power,
    The switching control unit turns off the switching element of the power conversion unit when the failure determination unit determines that the discharge switch has a short-circuit failure.
    The power conversion device according to any one of claims 4 to 6.
PCT/JP2020/015903 2020-04-09 2020-04-09 Power conversion device WO2021205586A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022513786A JP7229425B2 (en) 2020-04-09 2020-04-09 power converter
DE112020007050.6T DE112020007050T5 (en) 2020-04-09 2020-04-09 POWER CONVERTER DEVICE
PCT/JP2020/015903 WO2021205586A1 (en) 2020-04-09 2020-04-09 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015903 WO2021205586A1 (en) 2020-04-09 2020-04-09 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021205586A1 true WO2021205586A1 (en) 2021-10-14

Family

ID=78023593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015903 WO2021205586A1 (en) 2020-04-09 2020-04-09 Power conversion device

Country Status (3)

Country Link
JP (1) JP7229425B2 (en)
DE (1) DE112020007050T5 (en)
WO (1) WO2021205586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139912A (en) * 2016-02-04 2017-08-10 富士電機株式会社 Power converter
JP2018074619A (en) * 2016-10-24 2018-05-10 ニチコン株式会社 Gate pulse generating circuit and pulse power supply device
WO2020008575A1 (en) * 2018-07-04 2020-01-09 三菱電機株式会社 Control device for railway vehicles and disconnection determination method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109686B2 (en) 2013-09-02 2017-04-05 株式会社東芝 Electric vehicle control device
EP3953163B1 (en) 2019-04-11 2023-10-11 Compagnie Générale des Etablissements Michelin Solid tyre made of elastomer material for a roller of a cable railway

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139912A (en) * 2016-02-04 2017-08-10 富士電機株式会社 Power converter
JP2018074619A (en) * 2016-10-24 2018-05-10 ニチコン株式会社 Gate pulse generating circuit and pulse power supply device
WO2020008575A1 (en) * 2018-07-04 2020-01-09 三菱電機株式会社 Control device for railway vehicles and disconnection determination method

Also Published As

Publication number Publication date
JPWO2021205586A1 (en) 2021-10-14
JP7229425B2 (en) 2023-02-27
DE112020007050T5 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
US4093900A (en) Dynamic brake blending for an inverter propulsion system
US9868355B2 (en) Propulsion control apparatus for railroad vehicle
CN102422524B (en) Power conversion device, and method for controlling the condenser voltage of the power conversion device
US10525838B2 (en) Power conversion system
US11834033B2 (en) Regenerative braking system and electrically-driven work vehicle using regenerative braking system
KR101627960B1 (en) Electric vehicle control device
CN110034717B (en) Motor drive device and motor drive system
CN111082671B (en) Power management in an elevator system
EP1885055A1 (en) Controller of variable speed ac motor
US11097620B2 (en) Circuit system for railroad vehicle
JP2017055500A (en) Control system and control method of railway vehicle
WO2021205586A1 (en) Power conversion device
JP2015056993A (en) Railroad vehicle drive device
JP7034331B2 (en) Power converter and disconnection detection method
JP5385728B2 (en) Control method and control apparatus
WO2021192141A1 (en) Power conversion device
JP2723372B2 (en) AC electric vehicle control device
KR20210051227A (en) Power apparatus on board charger and electric motor driver of electric vehicle
KR20040005122A (en) Motor controlling device of an electric vehicle and method thereof
JP7443167B2 (en) Power storage devices, electric vehicle control devices, and railway systems
JP7301686B2 (en) power conversion system
EP4227142A1 (en) An electric machine drive arrangement for a heavy-duty vehicle
JP6937913B2 (en) Control device for railway vehicles
KR0181680B1 (en) A vector inverter system for a railway car
JPS6352602A (en) Braking controller for electric automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513786

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20930490

Country of ref document: EP

Kind code of ref document: A1