WO2021205565A1 - Dual mode choke coil - Google Patents

Dual mode choke coil Download PDF

Info

Publication number
WO2021205565A1
WO2021205565A1 PCT/JP2020/015816 JP2020015816W WO2021205565A1 WO 2021205565 A1 WO2021205565 A1 WO 2021205565A1 JP 2020015816 W JP2020015816 W JP 2020015816W WO 2021205565 A1 WO2021205565 A1 WO 2021205565A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
leg
central
permeability
choke coil
Prior art date
Application number
PCT/JP2020/015816
Other languages
French (fr)
Japanese (ja)
Inventor
白木 康博
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/015816 priority Critical patent/WO2021205565A1/en
Publication of WO2021205565A1 publication Critical patent/WO2021205565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • This disclosure relates to a dual mode choke coil.
  • Patent Document 1 discloses a dual-mode choke coil.
  • the dual mode choke coil includes a first magnetic core, a second magnetic core, a first coil, and a second coil. A gap is provided between the first magnetic core and the second magnetic core.
  • the dual mode choke coil is arranged in the electric circuit connecting the power supply and the inverter connected to the load, for example.
  • Electromagnetic interference (EMI) noise is generated by the high-speed switching operation of the inverter.
  • This EMI noise mainly includes normal mode noise and common mode noise.
  • the normal mode noise propagates as a normal mode noise current between the positive side electric wire and the negative side electric wire extending between the power supply and the inverter. Therefore, the normal mode noise current propagates in the positive and negative electric wires extending between the power supply and the inverter in opposite directions.
  • the common mode noise propagates as a common mode noise current between the positive wire and the ground and between the negative wire and the ground. Therefore, the common mode noise current propagates in the same direction between the positive side electric wire and the negative side electric wire extending between the power supply and the inverter.
  • the first AC magnetic flux formed by the normal mode noise current passes through the first magnetic core and the second magnetic core.
  • the second AC magnetic flux formed by the common mode noise current passes through the first magnetic core and the second magnetic core.
  • the first magnetic core and the second magnetic core have a high inductance with respect to the first AC magnetic flux and the second AC magnetic flux, so that the first magnetic core and the second magnetic core have the first AC magnetic flux. It has a high impedance with respect to the second AC magnetic flux.
  • the dual mode choke coil attenuates and eliminates the normal mode noise current and the common mode noise current. It functions as a noise filter for normal mode noise current and common mode noise current.
  • the dual mode choke coil When the dual mode choke coil is connected to a DC power supply, a direct current flows from the DC power supply to the dual mode choke coil.
  • the direct current magnetic flux formed by this direct current passes through the first magnetic core and the second magnetic core.
  • the direct current propagates between the positive and negative wires extending between the power supply and the inverter, similar to the normal mode noise current. Therefore, the magnetic path of the DC magnetic flux in the dual mode choke coil is the same as the magnetic path of the first AC magnetic flux in the dual mode choke coil.
  • the DC magnetic flux causes magnetic saturation of the first magnetic core and the second magnetic core with respect to the smaller first AC magnetic flux.
  • the inductance of the dual-mode choke coil with respect to the normal-mode noise current decreases, and the impedance of the dual-mode choke coil with respect to the normal-mode noise current also decreases. The ability of the dual mode choke coil to remove normal mode noise current is reduced.
  • the length of the gap between the first magnetic core and the second magnetic core is increased to increase the length of the gap between the first magnetic core and the second magnetic core. It is necessary to prevent magnetic saturation of the.
  • the inductance of the dual mode choke coil with respect to the normal mode noise current decreases, and the dual mode choke coil with respect to the normal mode noise current decreases. Impedance also drops. The ability of the dual mode choke coil to remove normal mode noise current is reduced.
  • the present disclosure has been made in view of the above problems, and an object thereof is to suppress a decrease in the ability of a dual mode choke coil to remove a normal mode noise current.
  • the dual mode choke coil of the present disclosure can remove the normal mode noise current and the common mode noise current.
  • the dual mode choke coil includes a first magnetic core, a second magnetic core, a magnetic cylinder, a first coil, and a second coil.
  • the first magnetic core includes a first yoke, a first side magnetic leg, a second side magnetic leg, and a first central magnetic leg.
  • the first side magnetic leg, the second side magnetic leg, and the first central magnetic leg extend from the first yoke.
  • the first central magnetic leg is arranged between the first side magnetic leg and the second side magnetic leg.
  • the second magnetic core includes a second yoke, a third side magnetic leg, a fourth side magnetic leg, and a second central magnetic leg.
  • the third side magnetic leg, the fourth side magnetic leg, and the second central magnetic leg extend from the second yoke.
  • the second central magnetic leg is arranged between the third side magnetic leg and the fourth side magnetic leg.
  • the first side magnetic leg and the third side magnetic leg are in contact with each other.
  • the second side magnetic leg and the fourth side magnetic leg are in contact with each other.
  • the first central magnetic leg and the second central magnetic leg are separated from each other with a first gap.
  • the first central magnetic leg and the second central magnetic leg are inserted into the magnetic cylinder and separated from the magnetic cylinder.
  • the magnetic cylinder is separated from the first yoke with a second gap.
  • the magnetic cylinder is separated from the second yoke with a third gap.
  • the first coil is wound around a first side magnetic leg and a third side magnetic leg.
  • the second coil is wound around a second side magnetic leg and a fourth side magnetic leg.
  • the first winding direction of the first coil is opposite to the second winding direction of the second coil.
  • the first reluctance of the first central magnetic path with respect to the AC magnetic flux is smaller than the second magnetic resistance of the second central magnetic path with respect to the AC magnetic flux.
  • the AC magnetic flux is formed by the normal mode noise current flowing through the first coil and the second coil.
  • the third reluctance of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux.
  • the direct current magnetic flux is formed by the direct current flowing through the first coil and the second coil.
  • the first central magnetic path is a magnetic path formed by the first central magnetic leg, the first gap, and the second central magnetic leg.
  • the second central magnetic path is a magnetic path formed by the second gap, the magnetic cylinder, and the third gap.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the first magnetic core and the second with respect to the AC magnetic flux formed by the normal mode noise current without increasing the first gap length of the first gap between the first central magnetic leg and the second central magnetic leg. Magnetic saturation of the magnetic core is less likely to occur.
  • the length of the first gap of the first gap between the first central magnetic leg and the second central magnetic leg is not increased, the decrease in the inductance and impedance of the dual mode choke coil with respect to the normal mode noise current can be suppressed. In this way, it is possible to suppress a decrease in the noise removing ability of the dual mode choke coil with respect to the normal mode noise current.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line III-III shown in FIG. 2 of the dual-mode choke coil of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line IV-IV shown in FIG. 2 of the dual-mode choke coil of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line VV shown in FIG. 2 of the dual-mode choke coil of the first embodiment.
  • FIG. 1 shows the graph which shows the frequency characteristic of the specific magnetic permeability of a 1st magnetic core, the frequency characteristic of the specific magnetic permeability of a 2nd magnetic core, and the frequency characteristic of the specific magnetic permeability of a magnetic cylinder.
  • FIG. 1 shows the magnetic path of the 1st AC magnetic flux formed by the normal mode noise current in the dual mode choke coil of Embodiment 1.
  • FIG. It is the schematic which shows the magnetic path of the direct current magnetic flux formed by the direct current in the dual mode choke coil of Embodiment 1.
  • FIG. It is the schematic which shows the magnetic path of the 2nd AC magnetic flux formed by the common mode noise current in the dual mode choke coil of Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XI-XI shown in FIG. 10 of the dual-mode choke coil of the second embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XII-XII shown in FIG. 10 of the dual-mode choke coil of the second embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XIII-XIII shown in FIG. 10 of the dual-mode choke coil of the second embodiment.
  • Embodiment 1 The power conversion device 2 of the first embodiment will be described with reference to FIG.
  • the power conversion device 2 is connected to the DC power supply 3 and the load 9.
  • the DC power supply 3 may include an AC power supply (not shown) and a rectifier (not shown) that converts an AC voltage from the AC power supply into a tidal current voltage.
  • the load 9 is, for example, a motor.
  • the power conversion device 2 includes a positive electric wire 4a, a negative electric wire 4b, a capacitor 5, a dual mode choke coil 1, a capacitor 6a, a capacitor 6b, and an inverter 8.
  • the positive side electric wire 4a is connected to the positive electrode of the DC power supply 3.
  • the positive side electric wire 4a extends from the DC power supply 3 to the inverter 8.
  • the negative side electric wire 4b is connected to the negative electrode of the DC power supply 3.
  • the negative wire 4b extends from the DC power supply 3 to the inverter 8.
  • the capacitor 5 is connected to the positive side electric wire 4a and the negative side electric wire 4b.
  • the capacitor 5 is arranged on the input side (DC power supply 3 side) of the dual mode choke coil 1.
  • the dual mode choke coil 1 is connected to the positive side electric wire 4a and the negative side electric wire 4b.
  • the inverter 8 is connected to the positive side electric wire 4a and the negative side electric wire 4b.
  • the inverter 8 is arranged on the output side (load 9 side) of the dual mode choke coil 1.
  • a load 9 is connected to the output side of the inverter 8.
  • the inverter 8 includes a plurality of switching elements (not shown) such as a metal oxide semiconductor field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT).
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • the capacitor 6a is connected to the portion of the positive electric wire 4a extending between the dual mode choke coil 1 and the inverter 8 and the ground 7.
  • the capacitor 6b is connected to a portion of the negative electric wire 4b extending between the dual mode choke coil 1 and the inverter 8 and the ground 7.
  • Electromagnetic interference (EMI) noise is generated by the high-speed switching operation of the inverter 8.
  • This EMI noise mainly includes normal mode noise and common mode noise.
  • the normal mode noise propagates as a normal mode noise current between the positive side electric wire 4a and the negative side electric wire 4b extending between the DC power supply 3 and the inverter 8.
  • the common mode noise propagates as a common mode noise current between the positive side electric wire 4a and the ground and between the negative side electric wire 4b and the ground.
  • the normal mode noise current and the common mode noise current are alternating currents because they are generated due to the high-speed switching operation of the inverter 8.
  • the dual mode choke coil 1 can attenuate the normal mode noise current and the common mode noise current to remove the normal mode noise current and the common mode noise current.
  • the dual mode choke coil 1 of the first embodiment will be described with reference to FIGS. 2 to 6.
  • the dual mode choke coil 1 includes a first magnetic core 10, a second magnetic core 20, a first coil 30, a second coil 35, and a magnetic cylinder 40.
  • the first magnetic core 10 includes a first yoke 11, a first side magnetic leg 13, a second side magnetic leg 14, and a first central magnetic leg 12.
  • the longitudinal direction of the first yoke 11 is the x direction.
  • the first side magnetic leg 13, the second side magnetic leg 14, and the first central magnetic leg 12 extend from the first yoke 11.
  • the first central magnetic leg 12 is arranged between the first side magnetic leg 13 and the second side magnetic leg 14.
  • the longitudinal direction of the first side magnetic leg 13 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11.
  • the longitudinal direction (y direction) of the second side magnetic leg 14 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11.
  • the longitudinal direction of the first central magnetic leg 12 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11.
  • the first magnetic core 10 is an E-type core.
  • the first central magnetic leg 12 has a length L 12 , a width a 1, and a height b 1 .
  • the length L 12 of the first central magnetic leg 12 is the length of the first central magnetic leg 12 in the longitudinal direction (y direction) of the first central magnetic leg 12.
  • the width a 1 of the first central magnetic leg 12 is perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12 and is along the longitudinal direction (x direction) of the first yoke 11. It is the length of the first central magnetic leg 12 in the width direction (x direction).
  • the height b 1 of the first central magnetic leg 12 is the first central magnetic leg 12 perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12 and the width direction (x direction) of the first central magnetic leg 12. It is the length of the first central magnetic leg 12 in the height direction (z direction) of.
  • Sectional area S 12 of the first central magnetic leg 12 is given by the product of width a 1 and a height b 1.
  • the cross-sectional area S 12 of the first central magnetic leg 12 is the area of the first central magnetic leg 12 in the cross section perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12.
  • the width a 1 of the first central magnetic leg 12 may be equal to the height b 1 of the first central magnetic leg 12, and the cross section of the first central magnetic leg 12 may have a square shape.
  • the width a 1 of the first central magnetic leg 12 may be different from the height b 1 of the first central magnetic leg 12, and the cross section of the first central magnetic leg 12 may have a rectangular shape.
  • the first side magnetic leg 13 includes an end face 13a distal to the first yoke 11.
  • the second side magnetic leg 14 includes an end face 14a distal to the first yoke 11.
  • the first central magnetic leg 12 includes an end face 12a distal to the first yoke 11.
  • the second magnetic core 20 includes a second yoke 21, a third side magnetic leg 23, a fourth side magnetic leg 24, and a second central magnetic leg 22.
  • the longitudinal direction of the second yoke 21 is the x direction.
  • the third side magnetic leg 23, the fourth side magnetic leg 24, and the second central magnetic leg 22 extend from the second yoke 21.
  • the second central magnetic leg 22 is arranged between the third side magnetic leg 23 and the fourth side magnetic leg 24.
  • the longitudinal direction of the third side magnetic leg 23 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21.
  • the longitudinal direction (y direction) of the fourth side magnetic leg 24 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21.
  • the longitudinal direction of the second central magnetic leg 22 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21.
  • the second magnetic core 20 is an E-
  • the second central magnetic leg 22 has a length L 22 and a width a 2 and a height b 2 .
  • the length L 22 of the second central magnetic leg 22 is the length of the second central magnetic leg 22 in the longitudinal direction (y direction) of the second central magnetic leg 22.
  • the width a 2 of the second central magnetic leg 22 is perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22 and is along the longitudinal direction (x direction) of the second yoke 21. It is the length of the second central magnetic leg 22 in the width direction (x direction).
  • the height b 2 of the second central magnetic leg 22 is the second central magnetic leg 22 perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22 and the width direction (x direction) of the second central magnetic leg 22. Is the length of the second central magnetic leg 22 in the height direction (z direction) of.
  • Sectional area S 22 of the second central magnetic leg 22 is given by the product of width a 2 and height b 2.
  • the cross-sectional area S 22 of the second central magnetic leg 22 is the area of the second central magnetic leg 22 in the cross section perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22.
  • the width a 2 of the second central magnetic leg 22 may be equal to the height b 2 of the second central magnetic leg 22, and the cross section of the second central magnetic leg 22 may have a square shape.
  • the width a 2 of the second central magnetic leg 22 may be different from the height b 2 of the second central magnetic leg 22, and the cross section of the second central magnetic leg 22 may have a rectangular shape.
  • Width a 2 of the second central magnetic leg 22 is equal to the width a 1 of the first central magnetic leg 12, and the height b 2 of the second center leg 22 to the height b 1 of the first central magnetic leg 12 May be equal.
  • Sectional area S 22 of the second central magnetic leg 22 may be equal to the cross-sectional area S 12 of the first central magnetic leg 12.
  • the third side magnetic leg 23 includes an end face 23a distal to the second yoke 21.
  • the fourth side magnetic leg 24 includes an end face 24a distal to the second yoke 21.
  • the second central magnetic leg 22 includes an end face 22a distal to the second yoke 21.
  • the first side magnetic leg 13 and the third side magnetic leg 23 are in contact with each other. Specifically, the end surface 13a of the first side magnetic leg 13 is in surface contact with the end surface 23a of the third side magnetic leg 23.
  • the second side magnetic leg 14 and the fourth side magnetic leg 24 are in contact with each other. Specifically, the end surface 14a of the second side magnetic leg 14 is in surface contact with the end surface 24a of the fourth side magnetic leg 24.
  • the first central magnetic leg 12 and the second central magnetic leg 22 are separated from each other with a first gap 17. Specifically, the end surface 12a of the first central magnetic leg 12 and the end surface 22a of the second central magnetic leg 22 are separated from each other with a first gap 17.
  • the first gap length G 1 of the first gap 17 includes the first central magnetic leg 12 (end face 12a) and the second central magnetic leg 22 (end face 22a) in the longitudinal direction (y direction) of the first central magnetic leg 12. Is the length between.
  • the first magnetic core 10 and the second magnetic core 20 are made of a soft magnetic material.
  • the first magnetic core 10 and the second magnetic core 20 are, for example, a ferrite core, an amorphous core, or an iron dust core.
  • the ferrite core is, for example, a manganese-zinc (Mn—Zn) -based ferrite core or a nickel-zinc (Ni—Zn) -based ferrite core.
  • the amorphous core is formed of, for example, an iron-based amorphous alloy.
  • the iron dust core is a magnetic core formed by pressure molding iron powder.
  • the iron dust core is made of, for example, any material selected from the group consisting of pure iron, Fe—Si alloys, Fe—Si—Al alloys, Ni—Fe alloys or Ni—Fe—Mo alloys.
  • the first coil 30 is a conducting wire made of a metal material such as copper, for example.
  • the first coil 30 is wound around the first side magnetic leg 13 and the third side magnetic leg 23.
  • the first coil 30 is a part of the positive electric wire 4a.
  • a terminal 31 is provided at the end of the first coil 30 proximal to the DC power supply 3.
  • a terminal 32 is provided at the end of the first coil 30 proximal to the inverter 8.
  • the second coil 35 is a conducting wire made of a metal material such as copper, for example.
  • the second coil 35 is wound around the second side magnetic leg 14 and the fourth side magnetic leg 24.
  • the second coil 35 is a part of the negative side electric wire 4b.
  • a terminal 36 is provided at the end of the second coil 35 proximal to the DC power supply 3.
  • a terminal 37 is provided at the end of the second coil 35 proximal to the inverter 8.
  • the first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35.
  • the longitudinal direction of the magnetic cylinder 40 is the longitudinal direction (y direction) of the first central magnetic leg 12 and the longitudinal direction (y direction) of the second central magnetic leg 22. As shown in FIG. 3, the magnetic cylinder 40 has a length L 40 .
  • the length L 40 of the magnetic cylinder 40 is the length of the magnetic cylinder 40 in the longitudinal direction (y direction) of the magnetic cylinder 40.
  • the magnetic cylinder 40 includes an end face 41 facing the first yoke 11 and an end face 42 facing the second yoke 21.
  • the magnetic cylinder 40 is separated from the first yoke 11 with a second gap 43.
  • the second gap length G 2 of the second gap 43 is the length between the first yoke 11 and the magnetic cylinder 40 (end surface 41) in the longitudinal direction (y direction) of the magnetic cylinder 40.
  • the magnetic cylinder 40 is separated from the second yoke 21 with a third gap 44.
  • the third gap length G 3 of the third gap 44 is the length between the second yoke 21 and the magnetic cylinder 40 (end surface 42) in the longitudinal direction (y direction) of the magnetic cylinder 40.
  • the first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 is the second gap length G 2 of the second gap 43 and the third gap of the third gap 44. it may be greater than the sum of the length G 3.
  • the first central magnetic leg 12 and the second central magnetic leg 22 are inserted into the magnetic cylinder 40.
  • the end surface 12a of the first central magnetic leg 12, the end surface 22a of the second central magnetic leg 22, and the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 are magnetic cylinders 40. It is in the cavity of the magnetic cylinder 40 defined by the inner surface 40b of the.
  • the magnetic cylinder 40 is separated from the first central magnetic leg 12 and the second central magnetic leg 22. Specifically, the inner surface 40b of the magnetic cylinder 40 is separated from the first central magnetic leg 12 and the second central magnetic leg 22.
  • the gap length g 11 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the first central magnetic leg 12 is the first central magnetic leg. It may be equal to the gap length g 12 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of 12.
  • the gap length g 21 (see FIG.
  • the second central magnetic leg 22 between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the second central magnetic leg 22 is the second central magnetic leg 22. It may be equal to the gap length g 22 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of 22.
  • the gap length g 11 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the first central magnetic leg 12 is the second central magnetic leg. It may be equal to the gap length g 21 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of 22.
  • the gap length g 12 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of the first central magnetic leg 12 is the second central magnetic leg. It may be equal to the gap length g 22 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of the leg 22.
  • the outer surface 40a of the magnetic cylinder 40 has a width p 1 and a height p 2 .
  • the width p 1 of the outer surface 40a of the magnetic cylinder 40 is perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and is the width direction of the magnetic cylinder 40 along the longitudinal direction (x direction) of the first yoke 11. It is the length of the outer surface 40a of the magnetic cylinder 40 in the (x direction).
  • the height p 2 of the outer surface 40a of the magnetic cylinder 40 is the height direction of the magnetic cylinder 40 perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and the width direction (x direction) of the magnetic cylinder 40.
  • Z direction is the length of the outer surface 40a of the magnetic cylinder 40.
  • the width p 1 of the outer surface 40a of the magnetic cylinder 40 may be equal to the height p 2 of the outer surface 40a of the magnetic cylinder 40, or different from the height p 2 of the outer surface 40a of the magnetic cylinder 40. May be good.
  • the inner surface 40b of the magnetic cylinder 40 has a width q 1 and a height q 2 .
  • the width q 1 of the inner surface 40b of the magnetic cylinder 40 is perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and is the width direction of the magnetic cylinder 40 along the longitudinal direction (x direction) of the first yoke 11. It is the length of the inner surface 40b of the magnetic cylinder 40 in the (x direction).
  • the height q 2 of the inner surface 40b of the magnetic cylinder 40 is the height direction of the magnetic cylinder 40 perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and the width direction (x direction) of the magnetic cylinder 40.
  • the width q 1 of the inner surface 40b of the magnetic cylinder 40 may be equal to the height q 2 of the inner surface 40b of the magnetic cylinder 40.
  • the width q 1 of the inner surface 40b of the magnetic cylinder 40 may be equal to the height q 2 of the inner surface 40b of the magnetic cylinder 40, or different from the height q 2 of the inner surface 40b of the magnetic cylinder 40. May be good.
  • the cross-sectional area S 40 of the magnetic cylinder 40 is given by the equation (1).
  • the cross-sectional area S 40 of the magnetic cylinder 40 is the area of the magnetic cylinder 40 in a cross section perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40.
  • the magnetic cylinder 40 is made of a material different from that of the first magnetic core 10 and the second magnetic core 20.
  • the saturation magnetic flux density of the magnetic cylinder 40 is larger than the saturation magnetic flux density of the first magnetic core 10 and larger than the saturation magnetic flux density of the second magnetic core 20.
  • the saturation magnetic flux density of the magnetic cylinder 40 is, for example, 1.5 tesla or more.
  • the magnetic cylinder 40 is made of, for example, a rolled steel material for general structure (SS material), a silicon steel plate, or a permalloy.
  • the frequency characteristic ⁇ r40 ( ⁇ ) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic of the specific magnetic permeability of the first central magnetic leg 12 of the first magnetic core 10.
  • the first yoke 11, the first central magnetic leg 12, the first side magnetic leg 13 and the second side magnetic leg 14 are formed of a single magnetic material, and the first magnetic core 10 is the first. 1
  • the frequency characteristic of the relative permeability of the central magnetic leg 12 is equal to the frequency characteristic ⁇ r10 ( ⁇ ) of the relative permeability of the first magnetic core 10.
  • the frequency characteristic ⁇ r40 ( ⁇ ) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic ⁇ r10 ( ⁇ ) of the specific magnetic permeability of the first magnetic core 10.
  • the frequency characteristic ⁇ r40 ( ⁇ ) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic of the specific magnetic permeability of the second central magnetic leg 22 of the second magnetic core 20.
  • the second yoke 21, the second central magnetic leg 22, the third side magnetic leg 23, and the fourth side magnetic leg 24 are formed of a single magnetic material, and the second magnetic core 20 is the second. 2.
  • the frequency characteristic of the relative permeability of the central magnetic leg 22 is equal to the frequency characteristic ⁇ r10 ( ⁇ ) of the relative permeability of the second magnetic core 20.
  • the frequency characteristic ⁇ r40 ( ⁇ ) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic ⁇ r20 ( ⁇ ) of the specific magnetic permeability of the second magnetic core 20.
  • ⁇ n is the frequency of the first alternating magnetic field formed by the normal mode noise current.
  • the frequency ⁇ n of the first AC magnetic field is equal to the frequency of the normal mode noise current.
  • ⁇ c is the frequency of the second AC magnetic field formed by the common mode noise current.
  • the frequency ⁇ c of the second AC magnetic field is equal to the frequency of the common mode noise current.
  • the normal mode noise current and the common mode noise current are generated due to the high-speed switching operation of the inverter 8 (see FIG. 1). Therefore, the frequency of the common mode noise current is substantially equal to the frequency of the normal mode noise current, and the frequency ⁇ c of the second AC magnetic field is substantially equal to the frequency ⁇ n of the first AC magnetic field.
  • the frequency ⁇ n of the first AC magnetic field is, for example, 1 kHz or more.
  • the frequency ⁇ n of the first AC magnetic field is, for example, 500 kHz or less.
  • the frequency ⁇ n of the first AC magnetic field may be 150 kHz or less.
  • the frequency ⁇ c of the second AC magnetic field is, for example, 1 kHz or more.
  • the frequency ⁇ c of the second AC magnetic field is, for example, 500 kHz or less.
  • the frequency ⁇ c of the second AC magnetic field may be 150 kHz or less.
  • the direct current is formed by a direct current flowing from the direct current power source 3 to the positive electric wire 4a including the first coil 30 and the negative electric wire 4b including the second coil 35.
  • the relative magnetic permeability of the vacuum with respect to the first AC magnetic field is equal to 1.
  • the relative permeability of the vacuum with respect to the second AC magnetic field is equal to 1.
  • the relative magnetic permeability of a vacuum with respect to a DC magnetic field is equal to 1.
  • the first AC magnetic flux is formed by the normal mode noise current.
  • the frequency ⁇ n of the first AC magnetic flux is equal to the frequency of the normal mode noise current.
  • the first central magnetic path is a magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22.
  • the second central magnetic path is a magnetic path formed by the second gap 43, the magnetic cylinder 40, and the third gap 44.
  • the direct current magnetic flux is formed by a direct current flowing through the positive electric wire 4a including the first coil 30 and the negative electric wire 4b including the second coil 35.
  • the magnetic flux density of the DC magnetic flux in the magnetic cylinder 40 is smaller than the saturation magnetic flux density of the magnetic cylinder 40.
  • the first reluctance R mca ( ⁇ ) of the first central magnetic path is given by the equation (2).
  • R mca ( ⁇ ) R m12 ( ⁇ ) + R m17 ( ⁇ ) + R m22 ( ⁇ ) (2)
  • R m12 ( ⁇ ) represents the reluctance of the first central magnetic leg 12
  • R m17 ( ⁇ ) represents the reluctance of the first gap 17
  • R m22 ( ⁇ ) represents the reluctance of the second central magnetic leg 22.
  • the width a 1 of the first central magnetic leg 12 is equal to the width a 2 of the second central magnetic leg 22
  • the height b 1 of the first central magnetic leg 12 is equal to the height b 2 of the second central magnetic leg 22.
  • the second reluctance R mcb ( ⁇ ) of the second central magnetic path is given by Eq. (6).
  • R mcb ( ⁇ ) R m43 ( ⁇ ) + R m40 ( ⁇ ) + R m44 ( ⁇ ) (6)
  • R m43 ( ⁇ ) represents the reluctance of the second gap 43
  • R m40 ( ⁇ ) represents the reluctance of the magnetic cylinder 40
  • R m44 ( ⁇ ) represents the reluctance of the third gap 44.
  • R m43 ( ⁇ ) is given by equation (7)
  • R m40 ( ⁇ ) is given by equation (8)
  • R m44 ( ⁇ ) is given by equation (9).
  • ⁇ r43 ( ⁇ ) is equal to 1.
  • ⁇ r44 ( ⁇ ) is equal to 1.
  • the equation (10) holds with respect to the magnitude relationship of the relative magnetic permeability of the substances constituting the first central magnetic
  • the equation (14) holds with respect to the magnitude relationship of the relative magnetic permeability of the substances constituting the second central magnetic path with respect to the DC magnetic field.
  • Normal mode noise current I n propagates between the positive side wire 4a and the negative wire 4b extending between the DC power source 3 and the inverter 8.
  • the first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35. Therefore, the normal mode noise current I n from the inverter 8 (see FIG. 1) flows in opposite directions and a negative wire 4b which includes a positive-side wire 4a and the second coil 35 including the first coil 30.
  • the DC current I dc from the DC power supply 3 also flows in opposite directions to the positive side electric wire 4a including the first coil 30 and the negative side electric wire 4b including the second coil 35.
  • the DC magnetic flux 53 formed by the DC current I dc flowing through the first coil 30 includes the first yoke 11, the second gap 43, the magnetic cylinder 40, and the third gap. It passes through a second central magnetic path formed by 44 and a magnetic path formed by a second yoke 21, a third side magnetic leg 23, and a first side magnetic leg 13.
  • the DC magnetic flux 54 formed by the DC current I dc flowing through the second coil 35 is a second central magnetic path formed by the first yoke 11, the second gap 43, the magnetic cylinder 40, and the third gap 44. 2 Passes through a magnetic path formed by a yoke 21, a fourth side magnetic leg 24, and a second side magnetic leg 14.
  • first magnetic center leg 12 does not increase the first gap length G 1 of the first gap 17 between the second central magnetic leg 22, reduction in the inductance of the dual-mode choke coil 1 is against the normal mode noise current I n Can be suppressed.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed.
  • the inductance of a magnetic core is proportional to the relative permeability of the magnetic core. Therefore, the first alternating magnetic flux 50, 51 formed by the normal mode noise current I n, the dual-mode choke coil 1 has a large inductance.
  • the common mode noise Denryu I c is between Tadashigawa wire 4a and the ground, and propagates between the negative wire 4b and ground.
  • the first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35. Therefore, common-mode noise current I c from the inverter 8 (see FIG. 1) flows and a negative wire 4b which includes a positive-side wire 4a and the second coil 35 including the first coil 30 in the same direction.
  • the second AC magnetic flux 56 includes a first central magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22, the second gap 43, the magnetic cylinder 40, and the second. It does not pass through the second central magnetic path formed by the three gaps 44.
  • the normal mode noise current I n and the common mode noise current I c are generated by the switching operation of a plurality of switching elements included in the inverter 8 (see FIG. 1). Therefore, the frequency ⁇ c of the second AC magnetic field formed by the common mode noise current I c is substantially equal to the frequency ⁇ n of the first AC magnetic field formed by the normal mode noise current I n.
  • the inductance of a magnetic core is proportional to the relative permeability of the magnetic core. Therefore, the dual mode choke coil 1 has a large inductance with respect to the second AC magnetic flux 56 formed by the common mode noise current I c.
  • the dual mode choke coil 1 has a large impedance with respect to the second AC magnetic flux 56 formed by the common mode noise current I c. Therefore, the dual-mode choke coil 1 attenuates the common mode noise current I c, can be removed common-mode noise current I c.
  • the dual mode choke coil 1 of the present embodiment can remove the normal mode noise current and the common mode noise current.
  • the dual mode choke coil 1 includes a first magnetic core 10, a second magnetic core 20, a magnetic cylinder 40, a first coil 30, and a second coil 35.
  • the first magnetic core 10 includes a first yoke 11, a first side magnetic leg 13, a second side magnetic leg 14, and a first central magnetic leg 12.
  • the first side magnetic leg 13, the second side magnetic leg 14, and the first central magnetic leg 12 extend from the first yoke 11.
  • the first central magnetic leg 12 is arranged between the first side magnetic leg 13 and the second side magnetic leg 14.
  • the second magnetic core 20 includes a second yoke 21, a third side magnetic leg 23, a fourth side magnetic leg 24, and a second central magnetic leg 22.
  • the third side magnetic leg 23, the fourth side magnetic leg 24, and the second central magnetic leg 22 extend from the second yoke 21.
  • the second central magnetic leg 22 is arranged between the third side magnetic leg 23 and the fourth side magnetic leg 24.
  • the first side magnetic leg 13 and the third side magnetic leg 23 are in contact with each other.
  • the second side magnetic leg 14 and the fourth side magnetic leg 24 are in contact with each other.
  • the first central magnetic leg 12 and the second central magnetic leg 22 are separated from each other with a first gap 17.
  • the first central magnetic leg 12 and the second central magnetic leg 22 are inserted into the magnetic cylinder 40 and separated from the magnetic cylinder 40.
  • the magnetic cylinder 40 is separated from the first yoke 11 with a second gap 43.
  • the magnetic cylinder 40 is separated from the second yoke 21 with a third gap 44.
  • the first coil 30 is wound around the first side magnetic leg 13 and the third side magnetic leg 23.
  • the second coil 35 is wound around the second side magnetic leg 14 and the fourth side magnetic leg 24.
  • the first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35.
  • the first reluctance of the first central magnetic path with respect to the AC magnetic flux is smaller than the second magnetic resistance of the second central magnetic path with respect to the AC magnetic flux.
  • the AC magnetic flux is formed by the normal mode noise current flowing through the first coil 30 and the second coil 35.
  • the third reluctance of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux.
  • the direct current magnetic flux is formed by the direct current flowing through the first coil 30 and the second coil 35.
  • the first central magnetic path is a magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22.
  • the second central magnetic path is a magnetic path formed by the second gap 43, the magnetic cylinder 40, and the third gap 44.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the first with respect to the AC magnetic flux formed by the normal mode noise current without increasing the first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22. Magnetic saturation of the magnetic core 10 and the second magnetic core 20 is less likely to occur. Since the first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 is not increased, the decrease in the inductance of the dual mode choke coil 1 with respect to the normal mode noise current is suppressed. obtain. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the first relative magnetic permeability (specific magnetic permeability ⁇ r10 ( ⁇ ⁇ n )) of the first central magnetic leg 12 with respect to the AC magnetic field formed by the normal mode noise current
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the first gap length G 1 of the first gap 17 is the second gap length G 2 of the second gap 43 and the third gap length G 3 of the third gap 44. Greater than the sum.
  • the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current.
  • the magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current.
  • the decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
  • the magnetic flux density of the DC magnetic flux in the magnetic cylinder 40 is smaller than the saturation magnetic flux density of the magnetic cylinder 40.
  • the saturation magnetic flux density of the magnetic cylinder 40 is 1.5 tesla or more.
  • the dual mode choke coil 1b of the second embodiment will be described with reference to FIGS. 10 to 13.
  • the dual-mode choke coil 1b of the present embodiment has the same configuration as the dual-mode choke coil 1 of the first embodiment, but is different from the dual-mode choke coil 1 of the first embodiment mainly in the following points. There is.
  • the dual mode choke coil 1b further includes a first non-magnetic spacer 46, a second non-magnetic spacer 47, and a third non-magnetic spacer 48.
  • the first non-magnetic spacer 46, the second non-magnetic spacer 47, and the third non-magnetic spacer 48 are a resin such as an epoxy resin, a silicone resin, an acrylic resin, or an acrylonitrile butadiene styrene (ABS) copolymer resin, or a ceramic. Is formed of.
  • the first non-magnetic spacer 46 fills the second gap 43.
  • the first non-magnetic spacer 46 is in contact with the magnetic cylinder 40 and the first yoke 11. Specifically, the first non-magnetic spacer 46 is in surface contact with the end surface 41 of the magnetic cylinder 40 and the surface of the first yoke 11 facing the end surface 41.
  • the second non-magnetic spacer 47 fills the third gap 44.
  • the second non-magnetic spacer 47 is in contact with the magnetic cylinder 40 and the second yoke 21. Specifically, the second non-magnetic spacer 47 is in surface contact with the end surface 42 of the magnetic cylinder 40 and the surface of the second yoke 21 facing the end surface 42.
  • the first non-magnetic spacer 46 can accurately define the second gap length G 2 of the second gap 43.
  • the second non-magnetic spacer 47 can accurately define the third gap length G 3 of the third gap 44.
  • the first non-magnetic spacer 46 and the second non-magnetic spacer 47 make it possible to accurately position the magnetic cylinder 40 with respect to the first magnetic core 10 and the second magnetic core 20.
  • the third non-magnetic spacer 48 is in contact with the inner surface 40b of the magnetic cylinder 40 and the side surface of the first central magnetic leg 12, and the inner surface 40b of the magnetic cylinder 40 and the second central magnetic leg 22. It is in contact with the side surface.
  • the third non-magnetic spacer 48 enables the magnetic cylinder 40 to be accurately positioned with respect to the first central magnetic leg 12 of the first magnetic core 10 and the second central magnetic leg 22 of the second magnetic core 20. ..
  • the third non-magnetic spacer 48 fills the first gap 17.
  • the third non-magnetic spacer 48 can accurately define the first gap length G 1 of the first gap 17.
  • the third non-magnetic spacer 48 enables the first magnetic core 10 (first central magnetic leg 12) and the second magnetic core 20 (second central magnetic leg 22) to be accurately positioned with each other.
  • the effect of the dual mode choke coil 1b of the present embodiment has the following effects in addition to the effect of the dual mode choke coil 1 of the first embodiment.
  • the dual mode choke coil 1b of the present embodiment further includes a first non-magnetic spacer 46 and a second non-magnetic spacer 47.
  • the first non-magnetic spacer 46 fills the second gap 43 and is in contact with the magnetic cylinder 40 and the first yoke 11.
  • the second non-magnetic spacer 47 fills the third gap 44 and is in contact with the magnetic cylinder 40 and the second yoke 21.
  • the magnetic cylinder 40 can be accurately positioned with respect to the first magnetic core 10 and the second magnetic core 20. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
  • the dual mode choke coil 1b of the present embodiment further includes a third non-magnetic spacer 48.
  • the third non-magnetic spacer 48 is in contact with the inner surface 40b of the magnetic cylinder 40 and the first side surface of the first central magnetic leg 12, and the inner surface 40b of the magnetic cylinder 40 and the second central magnetic leg 12 are in contact with each other. It is in contact with the second side surface of 22.
  • the magnetic cylinder 40 can be accurately positioned with respect to the first central magnetic leg 12 of the first magnetic core 10 and the second central magnetic leg 22 of the second magnetic core 20. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
  • the third non-magnetic spacer 48 fills the first gap 17.
  • the first magnetic core 10 (first central magnetic leg 12) and the second magnetic core 20 (second central magnetic leg 22) can be accurately positioned with each other. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
  • 1,1b dual mode choke coil 2 power converter, 3 DC power supply, 4a positive wire, 4b negative wire, 5, 6a, 6b capacitor, 7 earth, 8 inverter, 9 load, 10 first magnetic core, 11 1st yoke, 12 1st central magnetic leg, 12a end face, 13 1st side magnetic leg, 13a end face, 14 2nd side magnetic leg, 14a end face, 17 1st gap, 20 2nd magnetic core, 21 2nd yoke, 22 2nd central magnetic leg, 22a end face, 23 3rd side magnetic leg, 23a end face, 24 4th side magnetic leg, 24a end face, 30 1st coil, 31, 32 terminals, 35 2nd coil, 36, 37 terminals, 40 magnetic cylinder, 40a outer surface, 40b inner surface, 41, 42 end face, 43 second gap, 44 third gap, 46 first non-magnetic spacer, 47 second non-magnetic spacer, 48 third non-magnetic spacer, 50 , 51 1st AC magnetic flux, 53, 54 DC magnetic flux, 56

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A dual mode choke coil (1) comprises: a first magnetic core (10); a second magnetic core (20); a magnetic cylindrical body (40); a first coil (30); and a second coil (35). A first winding direction of the first coil (30) is opposite to a second winding direction of the second coil (35). A first magnetic resistance of a first center magnetic path against an alternating-current magnetic flux formed by a normal mode noise current is less than a second magnetic resistance of a second center magnetic path against the alternating current magnetic flux. A third magnetic resistance of the first center magnetic path against a direct-current magnetic flux formed by a direct current flowing through the first coil (30) and the second coil (35) is greater than a fourth magnetic resistance of a second center magnetic path against the direct current magnetic flux.

Description

デュアルモードチョークコイルDual mode choke coil
 本開示は、デュアルモードチョークコイルに関する。 This disclosure relates to a dual mode choke coil.
 特開2007-235580号公報(特許文献1)は、デュアルモードチョークコイルを開示している。デュアルモードチョークコイルは、第1磁性コアと、第2磁性コアと、第1コイルと、第2コイルとを含む。第1磁性コアと第2磁性コアとの間に、ギャップが設けられている。 Japanese Unexamined Patent Publication No. 2007-235580 (Patent Document 1) discloses a dual-mode choke coil. The dual mode choke coil includes a first magnetic core, a second magnetic core, a first coil, and a second coil. A gap is provided between the first magnetic core and the second magnetic core.
 デュアルモードチョークコイルは、例えば、電源と、負荷に接続されているインバータとを結ぶ電路に配置されている。インバータの高速スイッチング動作により、電磁干渉(EMI)ノイズが発生する。このEMIノイズは、ノーマルモードノイズとコモンモードノイズとを主に含む。ノーマルモードノイズは、ノーマルモードノイズ電流として、電源とインバータとの間に延在する正側電線と負側電線との間を伝搬する。そのため、ノーマルモードノイズ電流は、電源とインバータとの間に延在する正側電線と負側電線とを、互いに逆向きに伝搬する。コモンモードノイズは、コモンモードノイズ電流として、正側電線とアースとの間、並びに、負側電線とアースとの間を伝搬する。そのため、コモンモードノイズ電流は、電源とインバータとの間に延在する正側電線と負側電線とを、互いに同じ向きに伝搬する。 The dual mode choke coil is arranged in the electric circuit connecting the power supply and the inverter connected to the load, for example. Electromagnetic interference (EMI) noise is generated by the high-speed switching operation of the inverter. This EMI noise mainly includes normal mode noise and common mode noise. The normal mode noise propagates as a normal mode noise current between the positive side electric wire and the negative side electric wire extending between the power supply and the inverter. Therefore, the normal mode noise current propagates in the positive and negative electric wires extending between the power supply and the inverter in opposite directions. The common mode noise propagates as a common mode noise current between the positive wire and the ground and between the negative wire and the ground. Therefore, the common mode noise current propagates in the same direction between the positive side electric wire and the negative side electric wire extending between the power supply and the inverter.
 ノーマルモードノイズ電流によって形成される第1交流磁束が、第1磁性コア及び第2磁性コアを通る。コモンモードノイズ電流によって形成される第2交流磁束が、第1磁性コア及び第2磁性コアを通る。第1磁性コア及び第2磁性コアは、第1交流磁束と第2交流磁束とに対して高いインダクタンスを有しており、そのため、第1磁性コア及び第2磁性コアは、第1交流磁束と第2交流磁束とに対して高いインピーダンスを有している。デュアルモードチョークコイルは、ノーマルモードノイズ電流とコモンモードノイズ電流とを減衰させて、除去する。ノーマルモードノイズ電流とコモンモードノイズ電流とに対して、ノイズフィルタとして機能する。 The first AC magnetic flux formed by the normal mode noise current passes through the first magnetic core and the second magnetic core. The second AC magnetic flux formed by the common mode noise current passes through the first magnetic core and the second magnetic core. The first magnetic core and the second magnetic core have a high inductance with respect to the first AC magnetic flux and the second AC magnetic flux, so that the first magnetic core and the second magnetic core have the first AC magnetic flux. It has a high impedance with respect to the second AC magnetic flux. The dual mode choke coil attenuates and eliminates the normal mode noise current and the common mode noise current. It functions as a noise filter for normal mode noise current and common mode noise current.
特開2007-235580号公報Japanese Unexamined Patent Publication No. 2007-235580
 デュアルモードチョークコイルは直流電源に接続される場合、直流電源からデュアルモードチョークコイルに直流電流が流れる。この直流電流によって形成される直流磁束が、第1磁性コア及び第2磁性コアを通る。直流電流は、ノーマルモードノイズ電流と同様に、電源とインバータとの間に延在する正側電線と負側電線との間を伝搬する。そのため、デュアルモードチョークコイルにおける直流磁束の磁路は、デュアルモードチョークコイルにおける第1交流磁束の磁路と同じである。直流磁束は、より小さな第1交流磁束に対して、第1磁性コア及び第2磁性コアの磁気飽和を引き起こす。ノーマルモードノイズ電流に対するデュアルモードチョークコイルのインダクタンスが低下して、ノーマルモードノイズ電流に対するデュアルモードチョークコイルのインピーダンスも低下する。デュアルモードチョークコイルのノーマルモードノイズ電流の除去能力が低下する。 When the dual mode choke coil is connected to a DC power supply, a direct current flows from the DC power supply to the dual mode choke coil. The direct current magnetic flux formed by this direct current passes through the first magnetic core and the second magnetic core. The direct current propagates between the positive and negative wires extending between the power supply and the inverter, similar to the normal mode noise current. Therefore, the magnetic path of the DC magnetic flux in the dual mode choke coil is the same as the magnetic path of the first AC magnetic flux in the dual mode choke coil. The DC magnetic flux causes magnetic saturation of the first magnetic core and the second magnetic core with respect to the smaller first AC magnetic flux. The inductance of the dual-mode choke coil with respect to the normal-mode noise current decreases, and the impedance of the dual-mode choke coil with respect to the normal-mode noise current also decreases. The ability of the dual mode choke coil to remove normal mode noise current is reduced.
 デュアルモードチョークコイルのノーマルモードノイズ電流の除去能力の低下を防ぐためには、第1磁性コアと第2磁性コアとの間のギャップの長さを増加させて、第1磁性コア及び第2磁性コアの磁気飽和を防ぐ必要がある。しかし、第1磁性コアと第2磁性コアとの間のギャップの長さを増加させると、ノーマルモードノイズ電流に対するデュアルモードチョークコイルのインダクタンスが低下して、ノーマルモードノイズ電流に対するデュアルモードチョークコイルのインピーダンスも低下する。デュアルモードチョークコイルのノーマルモードノイズ電流の除去能力が低下する。 In order to prevent a decrease in the normal mode noise current removal ability of the dual mode choke coil, the length of the gap between the first magnetic core and the second magnetic core is increased to increase the length of the gap between the first magnetic core and the second magnetic core. It is necessary to prevent magnetic saturation of the. However, if the length of the gap between the first magnetic core and the second magnetic core is increased, the inductance of the dual mode choke coil with respect to the normal mode noise current decreases, and the dual mode choke coil with respect to the normal mode noise current decreases. Impedance also drops. The ability of the dual mode choke coil to remove normal mode noise current is reduced.
 本開示は、上記の課題を鑑みてなされたものであり、その目的は、デュアルモードチョークコイルのノーマルモードノイズ電流の除去能力の低下を抑制することである。 The present disclosure has been made in view of the above problems, and an object thereof is to suppress a decrease in the ability of a dual mode choke coil to remove a normal mode noise current.
 本開示のデュアルモードチョークコイルは、ノーマルモードノイズ電流とコモンモードノイズ電流とを除去し得る。デュアルモードチョークコイルは、第1磁性コアと、第2磁性コアと、磁性筒体と、第1コイルと、第2コイルとを備える。第1磁性コアは、第1ヨークと、第1サイド磁脚と、第2サイド磁脚と、第1中央磁脚とを含む。第1サイド磁脚と第2サイド磁脚と第1中央磁脚とは、第1ヨークから延在している。第1中央磁脚は、第1サイド磁脚と第2サイド磁脚との間に配置されている。第2磁性コアは、第2ヨークと、第3サイド磁脚と、第4サイド磁脚と、第2中央磁脚とを含む。第3サイド磁脚と第4サイド磁脚と第2中央磁脚とは、第2ヨークから延在している。第2中央磁脚は、第3サイド磁脚と第4サイド磁脚との間に配置されている。第1サイド磁脚と第3サイド磁脚とは、互いに接触している。第2サイド磁脚と第4サイド磁脚とは互いに接触している。第1中央磁脚と第2中央磁脚とは、第1ギャップを空けて、互いに離間されている。 The dual mode choke coil of the present disclosure can remove the normal mode noise current and the common mode noise current. The dual mode choke coil includes a first magnetic core, a second magnetic core, a magnetic cylinder, a first coil, and a second coil. The first magnetic core includes a first yoke, a first side magnetic leg, a second side magnetic leg, and a first central magnetic leg. The first side magnetic leg, the second side magnetic leg, and the first central magnetic leg extend from the first yoke. The first central magnetic leg is arranged between the first side magnetic leg and the second side magnetic leg. The second magnetic core includes a second yoke, a third side magnetic leg, a fourth side magnetic leg, and a second central magnetic leg. The third side magnetic leg, the fourth side magnetic leg, and the second central magnetic leg extend from the second yoke. The second central magnetic leg is arranged between the third side magnetic leg and the fourth side magnetic leg. The first side magnetic leg and the third side magnetic leg are in contact with each other. The second side magnetic leg and the fourth side magnetic leg are in contact with each other. The first central magnetic leg and the second central magnetic leg are separated from each other with a first gap.
 第1中央磁脚及び第2中央磁脚は、磁性筒体内に挿入されており、かつ、磁性筒体から離間されている。磁性筒体は、第2ギャップを空けて、第1ヨークから離間されている。磁性筒体は、第3ギャップを空けて、第2ヨークから離間されている。第1コイルは、第1サイド磁脚と第3サイド磁脚とに巻回されている。第2コイルは、第2サイド磁脚と第4サイド磁脚とに巻回されている。第1コイルの第1巻回方向は、第2コイルの第2巻回方向と反対である。交流磁束に対する第1中央磁路の第1磁気抵抗は、交流磁束に対する第2中央磁路の第2磁気抵抗より小さい。交流磁束は、第1コイル及び第2コイルを流れるノーマルモードノイズ電流によって形成される。直流磁束に対する第1中央磁路の第3磁気抵抗は、直流磁束に対する第2中央磁路の第4磁気抵抗より大きい。直流磁束は、第1コイル及び第2コイルを流れる直流電流によって形成される。第1中央磁路は、第1中央磁脚と第1ギャップと第2中央磁脚とによって形成される磁路である。第2中央磁路は、第2ギャップと磁性筒体と第3ギャップとによって形成される磁路である。 The first central magnetic leg and the second central magnetic leg are inserted into the magnetic cylinder and separated from the magnetic cylinder. The magnetic cylinder is separated from the first yoke with a second gap. The magnetic cylinder is separated from the second yoke with a third gap. The first coil is wound around a first side magnetic leg and a third side magnetic leg. The second coil is wound around a second side magnetic leg and a fourth side magnetic leg. The first winding direction of the first coil is opposite to the second winding direction of the second coil. The first reluctance of the first central magnetic path with respect to the AC magnetic flux is smaller than the second magnetic resistance of the second central magnetic path with respect to the AC magnetic flux. The AC magnetic flux is formed by the normal mode noise current flowing through the first coil and the second coil. The third reluctance of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux. The direct current magnetic flux is formed by the direct current flowing through the first coil and the second coil. The first central magnetic path is a magnetic path formed by the first central magnetic leg, the first gap, and the second central magnetic leg. The second central magnetic path is a magnetic path formed by the second gap, the magnetic cylinder, and the third gap.
 本開示のデュアルモードチョークコイルでは、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。第1中央磁脚と第2中央磁脚との間の第1ギャップの第1ギャップ長を増加させなくても、ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア及び第2磁性コアの磁気飽和が発生し難くなる。また、第1中央磁脚と第2中央磁脚との間の第1ギャップの第1ギャップ長を増加させないため、ノーマルモードノイズ電流に対するデュアルモードチョークコイルのインダクタンス及びインピーダンスの低下が抑制され得る。こうして、ノーマルモードノイズ電流に対するデュアルモードチョークコイルのノイズ除去能力の低下が抑制され得る。 In the dual mode choke coil of the present disclosure, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The first magnetic core and the second with respect to the AC magnetic flux formed by the normal mode noise current without increasing the first gap length of the first gap between the first central magnetic leg and the second central magnetic leg. Magnetic saturation of the magnetic core is less likely to occur. Further, since the length of the first gap of the first gap between the first central magnetic leg and the second central magnetic leg is not increased, the decrease in the inductance and impedance of the dual mode choke coil with respect to the normal mode noise current can be suppressed. In this way, it is possible to suppress a decrease in the noise removing ability of the dual mode choke coil with respect to the normal mode noise current.
実施の形態1の電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus of Embodiment 1. 実施の形態1のデュアルモードチョークコイルの概略図である。It is the schematic of the dual mode choke coil of Embodiment 1. FIG. 実施の形態1のデュアルモードチョークコイルの、図2に示される断面線III-IIIにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line III-III shown in FIG. 2 of the dual-mode choke coil of the first embodiment. 実施の形態1のデュアルモードチョークコイルの、図2に示される断面線IV-IVにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line IV-IV shown in FIG. 2 of the dual-mode choke coil of the first embodiment. 実施の形態1のデュアルモードチョークコイルの、図2に示される断面線V-Vにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line VV shown in FIG. 2 of the dual-mode choke coil of the first embodiment. 第1磁性コアの比透磁率の周波数特性、第2磁性コアの比透磁率の周波数特性及び磁性筒体の比透磁率の周波数特性を表すグラフを示す図である。It is a figure which shows the graph which shows the frequency characteristic of the specific magnetic permeability of a 1st magnetic core, the frequency characteristic of the specific magnetic permeability of a 2nd magnetic core, and the frequency characteristic of the specific magnetic permeability of a magnetic cylinder. 実施の形態1のデュアルモードチョークコイルにおいて、ノーマルモードノイズ電流によって形成される第1交流磁束の磁路を示す概略図である。It is the schematic which shows the magnetic path of the 1st AC magnetic flux formed by the normal mode noise current in the dual mode choke coil of Embodiment 1. FIG. 実施の形態1のデュアルモードチョークコイルにおいて、直流電流によって形成される直流磁束の磁路を示す概略図である。It is the schematic which shows the magnetic path of the direct current magnetic flux formed by the direct current in the dual mode choke coil of Embodiment 1. FIG. 実施の形態1のデュアルモードチョークコイルにおいて、コモンモードノイズ電流によって形成される第2交流磁束の磁路を示す概略図である。It is the schematic which shows the magnetic path of the 2nd AC magnetic flux formed by the common mode noise current in the dual mode choke coil of Embodiment 1. FIG. 実施の形態2のデュアルモードチョークコイルの概略図である。It is the schematic of the dual mode choke coil of Embodiment 2. 実施の形態2のデュアルモードチョークコイルの、図10に示される断面線XI-XIにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XI-XI shown in FIG. 10 of the dual-mode choke coil of the second embodiment. 実施の形態2のデュアルモードチョークコイルの、図10に示される断面線XII-XIIにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XII-XII shown in FIG. 10 of the dual-mode choke coil of the second embodiment. 実施の形態2のデュアルモードチョークコイルの、図10に示される断面線XIII-XIIIにおける概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the cross-sectional line XIII-XIII shown in FIG. 10 of the dual-mode choke coil of the second embodiment.
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described. The same reference number is assigned to the same configuration, and the description is not repeated.
 実施の形態1.
 図1を参照して、実施の形態1の電力変換装置2を説明する。電力変換装置2は、直流電源3と、負荷9とに接続されている。本実施の形態の変形例では、直流電源3は、交流電源(図示せず)と、交流電源からの交流電圧を潮流電圧に変換する整流器(図示せず)とを含んでもよい。負荷9は、例えば、モータである。
Embodiment 1.
The power conversion device 2 of the first embodiment will be described with reference to FIG. The power conversion device 2 is connected to the DC power supply 3 and the load 9. In a modified example of the present embodiment, the DC power supply 3 may include an AC power supply (not shown) and a rectifier (not shown) that converts an AC voltage from the AC power supply into a tidal current voltage. The load 9 is, for example, a motor.
 電力変換装置2は、正側電線4aと、負側電線4bと、コンデンサ5と、デュアルモードチョークコイル1と、コンデンサ6aと、コンデンサ6bと、インバータ8とを含む。 The power conversion device 2 includes a positive electric wire 4a, a negative electric wire 4b, a capacitor 5, a dual mode choke coil 1, a capacitor 6a, a capacitor 6b, and an inverter 8.
 正側電線4aは、直流電源3の正極に接続されている。正側電線4aは、直流電源3からインバータ8まで延在している。負側電線4bは、直流電源3の負極に接続されている。負側電線4bは、直流電源3からインバータ8まで延在している。 The positive side electric wire 4a is connected to the positive electrode of the DC power supply 3. The positive side electric wire 4a extends from the DC power supply 3 to the inverter 8. The negative side electric wire 4b is connected to the negative electrode of the DC power supply 3. The negative wire 4b extends from the DC power supply 3 to the inverter 8.
 コンデンサ5は、正側電線4aと、負側電線4bとに接続されている。コンデンサ5は、デュアルモードチョークコイル1の入力側(直流電源3側)に配置されている。デュアルモードチョークコイル1は、正側電線4aと、負側電線4bとに接続されている。 The capacitor 5 is connected to the positive side electric wire 4a and the negative side electric wire 4b. The capacitor 5 is arranged on the input side (DC power supply 3 side) of the dual mode choke coil 1. The dual mode choke coil 1 is connected to the positive side electric wire 4a and the negative side electric wire 4b.
 インバータ8は、正側電線4aと、負側電線4bとに接続されている。インバータ8は、デュアルモードチョークコイル1の出力側(負荷9側)に配置されている。インバータ8の出力側に、負荷9が接続されている。インバータ8は、金属酸化物半導体電界効果トランジスタ(MOSFET)または絶縁ゲート型バイポーラトランジスタ(IGBT)のような、複数のスイッチング素子(図示せず)を含む。インバータ8は、インバータ8に入力された直流電圧を交流電圧に変換して、交流電圧を負荷9に出力する。 The inverter 8 is connected to the positive side electric wire 4a and the negative side electric wire 4b. The inverter 8 is arranged on the output side (load 9 side) of the dual mode choke coil 1. A load 9 is connected to the output side of the inverter 8. The inverter 8 includes a plurality of switching elements (not shown) such as a metal oxide semiconductor field effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT). The inverter 8 converts the DC voltage input to the inverter 8 into an AC voltage, and outputs the AC voltage to the load 9.
 コンデンサ6aは、正側電線4aのうちデュアルモードチョークコイル1とインバータ8との間に延在する部分と、アース7とに接続されている。コンデンサ6bは、負側電線4bのうちデュアルモードチョークコイル1とインバータ8との間に延在する部分と、アース7とに接続されている。 The capacitor 6a is connected to the portion of the positive electric wire 4a extending between the dual mode choke coil 1 and the inverter 8 and the ground 7. The capacitor 6b is connected to a portion of the negative electric wire 4b extending between the dual mode choke coil 1 and the inverter 8 and the ground 7.
 インバータ8の高速スイッチング動作により、電磁干渉(EMI)ノイズが発生する。このEMIノイズは、ノーマルモードノイズとコモンモードノイズとを主に含む。ノーマルモードノイズは、ノーマルモードノイズ電流として、直流電源3とインバータ8との間に延在する正側電線4aと負側電線4bとの間を伝搬する。コモンモードノイズは、コモンモードノイズ電流として、正側電線4aとアースとの間、並びに、負側電線4bとアースとの間を伝搬する。ノーマルモードノイズ電流とコモンモードノイズ電流とは、インバータ8の高速スイッチング動作に起因して発生するため、交流電流である。デュアルモードチョークコイル1は、ノーマルモードノイズ電流とコモンモードノイズ電流とを減衰させて、ノーマルモードノイズ電流とコモンモードノイズ電流とを除去し得る。 Electromagnetic interference (EMI) noise is generated by the high-speed switching operation of the inverter 8. This EMI noise mainly includes normal mode noise and common mode noise. The normal mode noise propagates as a normal mode noise current between the positive side electric wire 4a and the negative side electric wire 4b extending between the DC power supply 3 and the inverter 8. The common mode noise propagates as a common mode noise current between the positive side electric wire 4a and the ground and between the negative side electric wire 4b and the ground. The normal mode noise current and the common mode noise current are alternating currents because they are generated due to the high-speed switching operation of the inverter 8. The dual mode choke coil 1 can attenuate the normal mode noise current and the common mode noise current to remove the normal mode noise current and the common mode noise current.
 図2から図6を参照して、実施の形態1のデュアルモードチョークコイル1を説明する。デュアルモードチョークコイル1は、第1磁性コア10と、第2磁性コア20と、第1コイル30と、第2コイル35と、磁性筒体40とを備える。 The dual mode choke coil 1 of the first embodiment will be described with reference to FIGS. 2 to 6. The dual mode choke coil 1 includes a first magnetic core 10, a second magnetic core 20, a first coil 30, a second coil 35, and a magnetic cylinder 40.
 第1磁性コア10は、第1ヨーク11と、第1サイド磁脚13と、第2サイド磁脚14と、第1中央磁脚12とを含む。第1ヨーク11の長手方向は、x方向である。第1サイド磁脚13と第2サイド磁脚14と第1中央磁脚12とは、第1ヨーク11から延在している。第1中央磁脚12は、第1サイド磁脚13と第2サイド磁脚14との間に配置されている。第1サイド磁脚13の長手方向は、例えば、第1ヨーク11の長手方向(x方向)に垂直なy方向である。第2サイド磁脚14の長手方向(y方向)は、例えば、第1ヨーク11の長手方向(x方向)に垂直なy方向である。第1中央磁脚12の長手方向は、例えば、第1ヨーク11の長手方向(x方向)に垂直なy方向である。第1磁性コア10は、E型コアである。 The first magnetic core 10 includes a first yoke 11, a first side magnetic leg 13, a second side magnetic leg 14, and a first central magnetic leg 12. The longitudinal direction of the first yoke 11 is the x direction. The first side magnetic leg 13, the second side magnetic leg 14, and the first central magnetic leg 12 extend from the first yoke 11. The first central magnetic leg 12 is arranged between the first side magnetic leg 13 and the second side magnetic leg 14. The longitudinal direction of the first side magnetic leg 13 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11. The longitudinal direction (y direction) of the second side magnetic leg 14 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11. The longitudinal direction of the first central magnetic leg 12 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the first yoke 11. The first magnetic core 10 is an E-type core.
 図3及び図4に示されるように、第1中央磁脚12は、長さL12と幅a1と高さb1とを有している。第1中央磁脚12の長さL12は、第1中央磁脚12の長手方向(y方向)における第1中央磁脚12の長さである。第1中央磁脚12の幅a1は、第1中央磁脚12の長手方向(y方向)に垂直でありかつ第1ヨーク11の長手方向(x方向)に沿う第1中央磁脚12の幅方向(x方向)おける、第1中央磁脚12の長さである。第1中央磁脚12の高さb1は、第1中央磁脚12の長手方向(y方向)と第1中央磁脚12の幅方向(x方向)とに垂直な第1中央磁脚12の高さ方向(z方向)における、第1中央磁脚12の長さである。 As shown in FIGS. 3 and 4, the first central magnetic leg 12 has a length L 12 , a width a 1, and a height b 1 . The length L 12 of the first central magnetic leg 12 is the length of the first central magnetic leg 12 in the longitudinal direction (y direction) of the first central magnetic leg 12. The width a 1 of the first central magnetic leg 12 is perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12 and is along the longitudinal direction (x direction) of the first yoke 11. It is the length of the first central magnetic leg 12 in the width direction (x direction). The height b 1 of the first central magnetic leg 12 is the first central magnetic leg 12 perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12 and the width direction (x direction) of the first central magnetic leg 12. It is the length of the first central magnetic leg 12 in the height direction (z direction) of.
 第1中央磁脚12の断面積S12は、幅a1と高さb1の積で与えられる。第1中央磁脚12の断面積S12は、第1中央磁脚12の長手方向(y方向)に垂直な断面における第1中央磁脚12の面積である。第1中央磁脚12の幅a1は第1中央磁脚12の高さb1に等しくてもよく、第1中央磁脚12の断面は正方形の形状を有してもよい。第1中央磁脚12の幅a1は第1中央磁脚12の高さb1と異なってもよく、第1中央磁脚12の断面は長方形の形状を有してもよい。 Sectional area S 12 of the first central magnetic leg 12 is given by the product of width a 1 and a height b 1. The cross-sectional area S 12 of the first central magnetic leg 12 is the area of the first central magnetic leg 12 in the cross section perpendicular to the longitudinal direction (y direction) of the first central magnetic leg 12. The width a 1 of the first central magnetic leg 12 may be equal to the height b 1 of the first central magnetic leg 12, and the cross section of the first central magnetic leg 12 may have a square shape. The width a 1 of the first central magnetic leg 12 may be different from the height b 1 of the first central magnetic leg 12, and the cross section of the first central magnetic leg 12 may have a rectangular shape.
 第1サイド磁脚13は、第1ヨーク11から遠位する端面13aを含む。第2サイド磁脚14は、第1ヨーク11から遠位する端面14aを含む。第1中央磁脚12は、第1ヨーク11から遠位する端面12aを含む。 The first side magnetic leg 13 includes an end face 13a distal to the first yoke 11. The second side magnetic leg 14 includes an end face 14a distal to the first yoke 11. The first central magnetic leg 12 includes an end face 12a distal to the first yoke 11.
 第2磁性コア20は、第2ヨーク21と、第3サイド磁脚23と、第4サイド磁脚24と、第2中央磁脚22とを含む。第2ヨーク21の長手方向は、x方向である。第3サイド磁脚23と第4サイド磁脚24と第2中央磁脚22とは、第2ヨーク21から延在している。第2中央磁脚22は、第3サイド磁脚23と第4サイド磁脚24との間に配置されている。第3サイド磁脚23の長手方向は、例えば、第2ヨーク21の長手方向(x方向)に垂直なy方向である。第4サイド磁脚24の長手方向(y方向)は、例えば、第2ヨーク21の長手方向(x方向)に垂直なy方向である。第2中央磁脚22の長手方向は、例えば、第2ヨーク21の長手方向(x方向)に垂直なy方向である。第2磁性コア20は、E型コアである。 The second magnetic core 20 includes a second yoke 21, a third side magnetic leg 23, a fourth side magnetic leg 24, and a second central magnetic leg 22. The longitudinal direction of the second yoke 21 is the x direction. The third side magnetic leg 23, the fourth side magnetic leg 24, and the second central magnetic leg 22 extend from the second yoke 21. The second central magnetic leg 22 is arranged between the third side magnetic leg 23 and the fourth side magnetic leg 24. The longitudinal direction of the third side magnetic leg 23 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21. The longitudinal direction (y direction) of the fourth side magnetic leg 24 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21. The longitudinal direction of the second central magnetic leg 22 is, for example, the y direction perpendicular to the longitudinal direction (x direction) of the second yoke 21. The second magnetic core 20 is an E-type core.
 図3及び図5に示されるように、第2中央磁脚22は、長さL22と幅a2と高さb2とを有している。第2中央磁脚22の長さL22は、第2中央磁脚22の長手方向(y方向)における第2中央磁脚22の長さである。第2中央磁脚22の幅a2は、第2中央磁脚22の長手方向(y方向)に垂直でありかつ第2ヨーク21の長手方向(x方向)に沿う第2中央磁脚22の幅方向(x方向)おける、第2中央磁脚22の長さである。第2中央磁脚22の高さb2は、第2中央磁脚22の長手方向(y方向)と第2中央磁脚22の幅方向(x方向)とに垂直な第2中央磁脚22の高さ方向(z方向)における、第2中央磁脚22の長さである。 As shown in FIGS. 3 and 5, the second central magnetic leg 22 has a length L 22 and a width a 2 and a height b 2 . The length L 22 of the second central magnetic leg 22 is the length of the second central magnetic leg 22 in the longitudinal direction (y direction) of the second central magnetic leg 22. The width a 2 of the second central magnetic leg 22 is perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22 and is along the longitudinal direction (x direction) of the second yoke 21. It is the length of the second central magnetic leg 22 in the width direction (x direction). The height b 2 of the second central magnetic leg 22 is the second central magnetic leg 22 perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22 and the width direction (x direction) of the second central magnetic leg 22. Is the length of the second central magnetic leg 22 in the height direction (z direction) of.
 第2中央磁脚22の断面積S22は、幅a2と高さb2の積で与えられる。第2中央磁脚22の断面積S22は、第2中央磁脚22の長手方向(y方向)に垂直な断面における第2中央磁脚22の面積である。第2中央磁脚22の幅a2は第2中央磁脚22の高さb2に等しくてもよく、第2中央磁脚22の断面は正方形の形状を有してもよい。第2中央磁脚22の幅a2は第2中央磁脚22の高さb2と異なってもよく、第2中央磁脚22の断面は長方形の形状を有してもよい。第2中央磁脚22の幅a2は第1中央磁脚12の幅a1に等しく、かつ、第2中央磁脚22の高さb2は第1中央磁脚12の高さb1に等しくてもよい。第2中央磁脚22の断面積S22は、第1中央磁脚12の断面積S12に等しくてもよい。 Sectional area S 22 of the second central magnetic leg 22 is given by the product of width a 2 and height b 2. The cross-sectional area S 22 of the second central magnetic leg 22 is the area of the second central magnetic leg 22 in the cross section perpendicular to the longitudinal direction (y direction) of the second central magnetic leg 22. The width a 2 of the second central magnetic leg 22 may be equal to the height b 2 of the second central magnetic leg 22, and the cross section of the second central magnetic leg 22 may have a square shape. The width a 2 of the second central magnetic leg 22 may be different from the height b 2 of the second central magnetic leg 22, and the cross section of the second central magnetic leg 22 may have a rectangular shape. Width a 2 of the second central magnetic leg 22 is equal to the width a 1 of the first central magnetic leg 12, and the height b 2 of the second center leg 22 to the height b 1 of the first central magnetic leg 12 May be equal. Sectional area S 22 of the second central magnetic leg 22 may be equal to the cross-sectional area S 12 of the first central magnetic leg 12.
 第3サイド磁脚23は、第2ヨーク21から遠位する端面23aを含む。第4サイド磁脚24は、第2ヨーク21から遠位する端面24aを含む。第2中央磁脚22は、第2ヨーク21から遠位する端面22aを含む。 The third side magnetic leg 23 includes an end face 23a distal to the second yoke 21. The fourth side magnetic leg 24 includes an end face 24a distal to the second yoke 21. The second central magnetic leg 22 includes an end face 22a distal to the second yoke 21.
 第1サイド磁脚13と第3サイド磁脚23とは、互いに接触している。具体的には、第1サイド磁脚13の端面13aは、第3サイド磁脚23の端面23aに面接触している。第2サイド磁脚14と第4サイド磁脚24とは互いに接触している。具体的には、第2サイド磁脚14の端面14aは、第4サイド磁脚24の端面24aに面接触している。第1中央磁脚12と第2中央磁脚22とは、第1ギャップ17を空けて、互いに離間されている。具体的には、第1中央磁脚12の端面12aと第2中央磁脚22の端面22aとは、第1ギャップ17を空けて、互いに離間されている。第1ギャップ17の第1ギャップ長G1は、第1中央磁脚12の長手方向(y方向)における、第1中央磁脚12(端面12a)と第2中央磁脚22(端面22a)との間の長さである。 The first side magnetic leg 13 and the third side magnetic leg 23 are in contact with each other. Specifically, the end surface 13a of the first side magnetic leg 13 is in surface contact with the end surface 23a of the third side magnetic leg 23. The second side magnetic leg 14 and the fourth side magnetic leg 24 are in contact with each other. Specifically, the end surface 14a of the second side magnetic leg 14 is in surface contact with the end surface 24a of the fourth side magnetic leg 24. The first central magnetic leg 12 and the second central magnetic leg 22 are separated from each other with a first gap 17. Specifically, the end surface 12a of the first central magnetic leg 12 and the end surface 22a of the second central magnetic leg 22 are separated from each other with a first gap 17. The first gap length G 1 of the first gap 17 includes the first central magnetic leg 12 (end face 12a) and the second central magnetic leg 22 (end face 22a) in the longitudinal direction (y direction) of the first central magnetic leg 12. Is the length between.
 第1磁性コア10及び第2磁性コア20は、軟磁性材料で形成されている。第1磁性コア10及び第2磁性コア20は、例えば、フェライトコア、アモルファスコアまたはアイアンダストコアである。フェライトコアは、例えば、マンガン亜鉛(Mn-Zn)系フェライトコアまたはニッケル亜鉛(Ni-Zn)系フェライトコアである。アモルファスコアは、例えば、鉄系アモルファス合金によって形成されている。アイアンダストコアは、鉄粉を加圧成形することによって形成された磁性コアである。アイアンダストコアは、例えば、純鉄、Fe-Si合金、Fe-Si-Al合金、Ni-Fe合金またはNi-Fe-Mo合金からなる群から選択されるいずれかの材料によって構成されている。 The first magnetic core 10 and the second magnetic core 20 are made of a soft magnetic material. The first magnetic core 10 and the second magnetic core 20 are, for example, a ferrite core, an amorphous core, or an iron dust core. The ferrite core is, for example, a manganese-zinc (Mn—Zn) -based ferrite core or a nickel-zinc (Ni—Zn) -based ferrite core. The amorphous core is formed of, for example, an iron-based amorphous alloy. The iron dust core is a magnetic core formed by pressure molding iron powder. The iron dust core is made of, for example, any material selected from the group consisting of pure iron, Fe—Si alloys, Fe—Si—Al alloys, Ni—Fe alloys or Ni—Fe—Mo alloys.
 第1コイル30は、例えば、銅のような金属材料で形成されている導線である。第1コイル30は、第1サイド磁脚13と第3サイド磁脚23とに巻回されている。第1コイル30は、正側電線4aの一部である。直流電源3に近位する第1コイル30の端部に、端子31が設けられている。インバータ8に近位する第1コイル30の端部に、端子32が設けられている。 The first coil 30 is a conducting wire made of a metal material such as copper, for example. The first coil 30 is wound around the first side magnetic leg 13 and the third side magnetic leg 23. The first coil 30 is a part of the positive electric wire 4a. A terminal 31 is provided at the end of the first coil 30 proximal to the DC power supply 3. A terminal 32 is provided at the end of the first coil 30 proximal to the inverter 8.
 第2コイル35は、例えば、銅のような金属材料で形成されている導線である。第2コイル35は、第2サイド磁脚14と第4サイド磁脚24とに巻回されている。第2コイル35は、負側電線4bの一部である。直流電源3に近位する第2コイル35の端部に、端子36が設けられている。インバータ8に近位する第2コイル35の端部に、端子37が設けられている。第1コイル30の第1巻回方向は、第2コイル35の第2巻回方向と反対である。 The second coil 35 is a conducting wire made of a metal material such as copper, for example. The second coil 35 is wound around the second side magnetic leg 14 and the fourth side magnetic leg 24. The second coil 35 is a part of the negative side electric wire 4b. A terminal 36 is provided at the end of the second coil 35 proximal to the DC power supply 3. A terminal 37 is provided at the end of the second coil 35 proximal to the inverter 8. The first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35.
 磁性筒体40の長手方向は、第1中央磁脚12の長手方向(y方向)であり、第2中央磁脚22の長手方向(y方向)である。図3に示されるように、磁性筒体40は、長さL40を有している。磁性筒体40の長さL40は、磁性筒体40の長手方向(y方向)における磁性筒体40の長さである。磁性筒体40は、第1ヨーク11に対向する端面41と、第2ヨーク21に対向する端面42とを含む。 The longitudinal direction of the magnetic cylinder 40 is the longitudinal direction (y direction) of the first central magnetic leg 12 and the longitudinal direction (y direction) of the second central magnetic leg 22. As shown in FIG. 3, the magnetic cylinder 40 has a length L 40 . The length L 40 of the magnetic cylinder 40 is the length of the magnetic cylinder 40 in the longitudinal direction (y direction) of the magnetic cylinder 40. The magnetic cylinder 40 includes an end face 41 facing the first yoke 11 and an end face 42 facing the second yoke 21.
 磁性筒体40は、第2ギャップ43を空けて、第1ヨーク11から離間されている。第2ギャップ43の第2ギャップ長G2は、磁性筒体40の長手方向(y方向)における、第1ヨーク11と磁性筒体40(端面41)との間の長さである。磁性筒体40は、第3ギャップ44を空けて、第2ヨーク21から離間されている。第3ギャップ44の第3ギャップ長G3は、磁性筒体40の長手方向(y方向)における、第2ヨーク21と磁性筒体40(端面42)との間の長さである。第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17の第1ギャップ長G1は、第2ギャップ43の第2ギャップ長G2と第3ギャップ44の第3ギャップ長G3との和より大きくてもよい。 The magnetic cylinder 40 is separated from the first yoke 11 with a second gap 43. The second gap length G 2 of the second gap 43 is the length between the first yoke 11 and the magnetic cylinder 40 (end surface 41) in the longitudinal direction (y direction) of the magnetic cylinder 40. The magnetic cylinder 40 is separated from the second yoke 21 with a third gap 44. The third gap length G 3 of the third gap 44 is the length between the second yoke 21 and the magnetic cylinder 40 (end surface 42) in the longitudinal direction (y direction) of the magnetic cylinder 40. The first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 is the second gap length G 2 of the second gap 43 and the third gap of the third gap 44. it may be greater than the sum of the length G 3.
 第1中央磁脚12及び第2中央磁脚22は、磁性筒体40内に挿入されている。第1中央磁脚12の端面12aと、第2中央磁脚22の端面22aと、第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17とは、磁性筒体40の内表面40bによって規定される磁性筒体40の空洞内にある。 The first central magnetic leg 12 and the second central magnetic leg 22 are inserted into the magnetic cylinder 40. The end surface 12a of the first central magnetic leg 12, the end surface 22a of the second central magnetic leg 22, and the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 are magnetic cylinders 40. It is in the cavity of the magnetic cylinder 40 defined by the inner surface 40b of the.
 磁性筒体40は、第1中央磁脚12と第2中央磁脚22とから離間されている。具体的には、磁性筒体40の内表面40bは、第1中央磁脚12及び第2中央磁脚22から離間されている。第1中央磁脚12の幅方向(x方向)における第1中央磁脚12と磁性筒体40の内表面40bとの間のギャップ長g11(図4を参照)は、第1中央磁脚12の高さ方向(z方向)における第1中央磁脚12と磁性筒体40の内表面40bとの間のギャップ長g12(図4を参照)に等しくてもよい。第2中央磁脚22の幅方向(x方向)における第2中央磁脚22と磁性筒体40の内表面40bとの間のギャップ長g21(図5を参照)は、第2中央磁脚22の高さ方向(z方向)における第2中央磁脚22と磁性筒体40の内表面40bとの間のギャップ長g22(図5を参照)に等しくてもよい。 The magnetic cylinder 40 is separated from the first central magnetic leg 12 and the second central magnetic leg 22. Specifically, the inner surface 40b of the magnetic cylinder 40 is separated from the first central magnetic leg 12 and the second central magnetic leg 22. The gap length g 11 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the first central magnetic leg 12 is the first central magnetic leg. It may be equal to the gap length g 12 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of 12. The gap length g 21 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the second central magnetic leg 22 is the second central magnetic leg 22. It may be equal to the gap length g 22 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of 22.
 第1中央磁脚12の幅方向(x方向)における第1中央磁脚12と磁性筒体40の内表面40bとの間のギャップ長g11(図4を参照)は、第2中央磁脚22の幅方向(x方向)における第2中央磁脚22と磁性筒体40の内表面40bとの間のギャップ長g21(図5を参照)に等しくてもよい。第1中央磁脚12の高さ方向(z方向)における第1中央磁脚12と磁性筒体40の内表面40bとの間のギャップ長g12(図4を参照)は、第2中央磁脚22の高さ方向(z方向)における第2中央磁脚22と磁性筒体40の内表面40bとの間のギャップ長g22(図5を参照)に等しくてもよい。 The gap length g 11 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of the first central magnetic leg 12 is the second central magnetic leg. It may be equal to the gap length g 21 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the width direction (x direction) of 22. The gap length g 12 (see FIG. 4) between the first central magnetic leg 12 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of the first central magnetic leg 12 is the second central magnetic leg. It may be equal to the gap length g 22 (see FIG. 5) between the second central magnetic leg 22 and the inner surface 40b of the magnetic cylinder 40 in the height direction (z direction) of the leg 22.
 図4及び図5に示されるように、磁性筒体40の外表面40aは、幅p1と高さp2とを有している。磁性筒体40の外表面40aの幅p1は、磁性筒体40の長手方向(y方向)に垂直でありかつ第1ヨーク11の長手方向(x方向)に沿う磁性筒体40の幅方向(x方向)おける、磁性筒体40の外表面40aの長さである。磁性筒体40の外表面40aの高さp2は、磁性筒体40の長手方向(y方向)と磁性筒体40の幅方向(x方向)とに垂直な磁性筒体40の高さ方向(z方向)おける、磁性筒体40の外表面40aの長さである。磁性筒体40の外表面40aの幅p1は、磁性筒体40の外表面40aの高さp2に等しくてもよいし、磁性筒体40の外表面40aの高さp2と異なってもよい。 As shown in FIGS. 4 and 5, the outer surface 40a of the magnetic cylinder 40 has a width p 1 and a height p 2 . The width p 1 of the outer surface 40a of the magnetic cylinder 40 is perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and is the width direction of the magnetic cylinder 40 along the longitudinal direction (x direction) of the first yoke 11. It is the length of the outer surface 40a of the magnetic cylinder 40 in the (x direction). The height p 2 of the outer surface 40a of the magnetic cylinder 40 is the height direction of the magnetic cylinder 40 perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and the width direction (x direction) of the magnetic cylinder 40. (Z direction) is the length of the outer surface 40a of the magnetic cylinder 40. The width p 1 of the outer surface 40a of the magnetic cylinder 40 may be equal to the height p 2 of the outer surface 40a of the magnetic cylinder 40, or different from the height p 2 of the outer surface 40a of the magnetic cylinder 40. May be good.
 図4及び図5に示されるように、磁性筒体40の内表面40bは、幅q1と高さq2とを有している。磁性筒体40の内表面40bの幅q1は、磁性筒体40の長手方向(y方向)に垂直でありかつ第1ヨーク11の長手方向(x方向)に沿う磁性筒体40の幅方向(x方向)おける、磁性筒体40の内表面40bの長さである。磁性筒体40の内表面40bの高さq2は、磁性筒体40の長手方向(y方向)と磁性筒体40の幅方向(x方向)とに垂直な磁性筒体40の高さ方向(z方向)おける、磁性筒体40の内表面40bの長さである。磁性筒体40の内表面40bの幅q1は磁性筒体40の内表面40bの高さq2に等しくてもよい。磁性筒体40の内表面40bの幅q1は、磁性筒体40の内表面40bの高さq2に等しくてもよいし、磁性筒体40の内表面40bの高さq2と異なってもよい。 As shown in FIGS. 4 and 5, the inner surface 40b of the magnetic cylinder 40 has a width q 1 and a height q 2 . The width q 1 of the inner surface 40b of the magnetic cylinder 40 is perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and is the width direction of the magnetic cylinder 40 along the longitudinal direction (x direction) of the first yoke 11. It is the length of the inner surface 40b of the magnetic cylinder 40 in the (x direction). The height q 2 of the inner surface 40b of the magnetic cylinder 40 is the height direction of the magnetic cylinder 40 perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40 and the width direction (x direction) of the magnetic cylinder 40. (Z direction) is the length of the inner surface 40b of the magnetic cylinder 40. The width q 1 of the inner surface 40b of the magnetic cylinder 40 may be equal to the height q 2 of the inner surface 40b of the magnetic cylinder 40. The width q 1 of the inner surface 40b of the magnetic cylinder 40 may be equal to the height q 2 of the inner surface 40b of the magnetic cylinder 40, or different from the height q 2 of the inner surface 40b of the magnetic cylinder 40. May be good.
 磁性筒体40の断面積S40は、式(1)によって与えられる。磁性筒体40の断面積S40は、磁性筒体40の長手方向(y方向)に垂直な断面における磁性筒体40の面積である。 The cross-sectional area S 40 of the magnetic cylinder 40 is given by the equation (1). The cross-sectional area S 40 of the magnetic cylinder 40 is the area of the magnetic cylinder 40 in a cross section perpendicular to the longitudinal direction (y direction) of the magnetic cylinder 40.
 S40=p1・p2-q1・q2 (1)
 磁性筒体40は、第1磁性コア10及び第2磁性コア20とは異なる材料で形成されている。磁性筒体40の飽和磁束密度は、第1磁性コア10の飽和磁束密度より大きく、かつ、第2磁性コア20の飽和磁束密度より大きい。磁性筒体40の飽和磁束密度は、例えば、1.5テスラ以上である。磁性筒体40は、例えば、一般構造用圧延鋼材(SS材)、珪素鋼板またはパーマロイで形成されている。
S 40 = p 1 · p 2 −q 1 · q 2 (1)
The magnetic cylinder 40 is made of a material different from that of the first magnetic core 10 and the second magnetic core 20. The saturation magnetic flux density of the magnetic cylinder 40 is larger than the saturation magnetic flux density of the first magnetic core 10 and larger than the saturation magnetic flux density of the second magnetic core 20. The saturation magnetic flux density of the magnetic cylinder 40 is, for example, 1.5 tesla or more. The magnetic cylinder 40 is made of, for example, a rolled steel material for general structure (SS material), a silicon steel plate, or a permalloy.
 磁性筒体40の比透磁率の周波数特性μr40(ω)は、第1磁性コア10の第1中央磁脚12の比透磁率の周波数特性とは異なっている。本実施の形態では、第1ヨーク11、第1中央磁脚12、第1サイド磁脚13及び第2サイド磁脚14は単一の磁性材料で形成されており、第1磁性コア10の第1中央磁脚12の比透磁率の周波数特性は、第1磁性コア10の比透磁率の周波数特性μr10(ω)に等しい。図6に示されるように、磁性筒体40の比透磁率の周波数特性μr40(ω)は、第1磁性コア10の比透磁率の周波数特性μr10(ω)とは異なっている。 The frequency characteristic μ r40 (ω) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic of the specific magnetic permeability of the first central magnetic leg 12 of the first magnetic core 10. In the present embodiment, the first yoke 11, the first central magnetic leg 12, the first side magnetic leg 13 and the second side magnetic leg 14 are formed of a single magnetic material, and the first magnetic core 10 is the first. 1 The frequency characteristic of the relative permeability of the central magnetic leg 12 is equal to the frequency characteristic μ r10 (ω) of the relative permeability of the first magnetic core 10. As shown in FIG. 6, the frequency characteristic μ r40 (ω) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic μ r10 (ω) of the specific magnetic permeability of the first magnetic core 10.
 磁性筒体40の比透磁率の周波数特性μr40(ω)は、第2磁性コア20の第2中央磁脚22の比透磁率の周波数特性とは異なっている。本実施の形態では、第2ヨーク21、第2中央磁脚22、第3サイド磁脚23及び第4サイド磁脚24は単一の磁性材料で形成されており、第2磁性コア20の第2中央磁脚22の比透磁率の周波数特性は、第2磁性コア20の比透磁率の周波数特性μr10(ω)に等しい。図6に示されるように、磁性筒体40の比透磁率の周波数特性μr40(ω)は、第2磁性コア20の比透磁率の周波数特性μr20(ω)とは異なっている。 The frequency characteristic μ r40 (ω) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic of the specific magnetic permeability of the second central magnetic leg 22 of the second magnetic core 20. In the present embodiment, the second yoke 21, the second central magnetic leg 22, the third side magnetic leg 23, and the fourth side magnetic leg 24 are formed of a single magnetic material, and the second magnetic core 20 is the second. 2. The frequency characteristic of the relative permeability of the central magnetic leg 22 is equal to the frequency characteristic μ r10 (ω) of the relative permeability of the second magnetic core 20. As shown in FIG. 6, the frequency characteristic μ r40 (ω) of the specific magnetic permeability of the magnetic cylinder 40 is different from the frequency characteristic μ r20 (ω) of the specific magnetic permeability of the second magnetic core 20.
 具体的には、第1交流磁場に対する第1中央磁脚12の比透磁率μr10(ω=ωn)は、第1交流磁場に対する磁性筒体40の比透磁率μr40(ω=ωn)より大きい。第1交流磁場に対する第2中央磁脚22の比透磁率μr20(ω=ωn)は、第1交流磁場に対する磁性筒体40の比透磁率μr40(ω=ωn)より大きい。ωnは、ノーマルモードノイズ電流によって形成される第1交流磁場の周波数である。第1交流磁場の周波数ωnは、ノーマルモードノイズ電流の周波数に等しい。 Specifically, the relative magnetic permeability μ r10 (ω = ω n ) of the first central magnetic leg 12 with respect to the first AC magnetic field is the relative magnetic permeability μ r40 (ω = ω n ) of the magnetic cylinder 40 with respect to the first AC magnetic field. ) Greater. The relative magnetic permeability μ r20 (ω = ω n ) of the second central magnetic leg 22 with respect to the first AC magnetic field is larger than the relative magnetic permeability μ r40 (ω = ω n ) of the magnetic cylinder 40 with respect to the first AC magnetic field. ω n is the frequency of the first alternating magnetic field formed by the normal mode noise current. The frequency ω n of the first AC magnetic field is equal to the frequency of the normal mode noise current.
 具体的には、第2交流磁場に対する第1中央磁脚12の比透磁率μr10(ω=ωc)は、第2交流磁場に対する磁性筒体40の比透磁率μr40(ω=ωc)より大きい。第2交流磁場に対する第2中央磁脚22の比透磁率μr20(ω=ωc)は、第2交流磁場に対する磁性筒体40の比透磁率μr40(ω=ωc)より大きい。ωcは、コモンモードノイズ電流によって形成される第2交流磁場の周波数である。第2交流磁場の周波数ωcは、コモンモードノイズ電流の周波数に等しい。 Specifically, the relative permeability μ r10 (ω = ω c ) of the first central magnetic leg 12 with respect to the second AC magnetic field is the relative permeability μ r40 (ω = ω c ) of the magnetic cylinder 40 with respect to the second AC magnetic field. ) Greater. The relative magnetic permeability μ r20 (ω = ω c ) of the second central magnetic leg 22 with respect to the second AC magnetic field is larger than the relative magnetic permeability μ r40 (ω = ω c ) of the magnetic cylinder 40 with respect to the second AC magnetic field. ω c is the frequency of the second AC magnetic field formed by the common mode noise current. The frequency ω c of the second AC magnetic field is equal to the frequency of the common mode noise current.
 ノーマルモードノイズ電流とコモンモードノイズ電流とは、インバータ8(図1を参照)の高速スイッチング動作に起因して発生する。そのため、コモンモードノイズ電流の周波数はノーマルモードノイズ電流の周波数に実質的に等しく、第2交流磁場の周波数ωcは第1交流磁場の周波数ωnに実質的に等しい。第1交流磁場の周波数ωnは、例えば、1kHz以上である。第1交流磁場の周波数ωnは、例えば、500kHz以下である。第1交流磁場の周波数ωnは、150kHz以下であってもよい。第2交流磁場の周波数ωcは、例えば、1kHz以上である。第2交流磁場の周波数ωcは、例えば、500kHz以下である。第2交流磁場の周波数ωcは、150kHz以下であってもよい。 The normal mode noise current and the common mode noise current are generated due to the high-speed switching operation of the inverter 8 (see FIG. 1). Therefore, the frequency of the common mode noise current is substantially equal to the frequency of the normal mode noise current, and the frequency ω c of the second AC magnetic field is substantially equal to the frequency ω n of the first AC magnetic field. The frequency ω n of the first AC magnetic field is, for example, 1 kHz or more. The frequency ω n of the first AC magnetic field is, for example, 500 kHz or less. The frequency ω n of the first AC magnetic field may be 150 kHz or less. The frequency ω c of the second AC magnetic field is, for example, 1 kHz or more. The frequency ω c of the second AC magnetic field is, for example, 500 kHz or less. The frequency ω c of the second AC magnetic field may be 150 kHz or less.
 ゼロの周波数を有する直流磁場に対する磁性筒体40の比透磁率μr40(ω=0)は、直流磁場に対する第1中央磁脚12の比透磁率μr10(ω=0)より大きく、かつ、直流磁場に対する第2中央磁脚22の比透磁率μr20(ω=0)より大きい。直流磁場は、直流電源3から、第1コイル30を含む正側電線4aと第2コイル35を含む負側電線4bとに流れる直流電流によって形成される。 The relative magnetic permeability μ r40 (ω = 0) of the magnetic cylinder 40 with respect to the DC magnetic field having a frequency of zero is larger than the relative magnetic permeability μ r10 (ω = 0) of the first central magnetic leg 12 with respect to the DC magnetic field, and The relative magnetic permeability of the second central magnetic leg 22 with respect to the DC magnetic field is larger than μ r20 (ω = 0). The direct current is formed by a direct current flowing from the direct current power source 3 to the positive electric wire 4a including the first coil 30 and the negative electric wire 4b including the second coil 35.
 比透磁率μr10(ω=ωn)は、例えば、100以上である。比透磁率μr10(ω=ωn)は、500以上であってよく、1000以上であってもよい。比透磁率μr20(ω=ωn)は、例えば、100以上である。比透磁率μr20(ω=ωn)は、500以上であってよく、1000以上であってもよい。比透磁率μr40(ω=ωn)は、例えば、1より大きく、かつ、100以下である。比透磁率μr40(ω=ωn)は、50以下であってもよく、10以下であってもよい。 The relative permeability μ r10 (ω = ω n ) is, for example, 100 or more. The relative magnetic permeability μ r10 (ω = ω n ) may be 500 or more, and may be 1000 or more. The relative permeability μ r20 (ω = ω n ) is, for example, 100 or more. The relative magnetic permeability μ r20 (ω = ω n ) may be 500 or more, and may be 1000 or more. The relative permeability μ r40 (ω = ω n ) is, for example, greater than 1 and less than or equal to 100. The relative magnetic permeability μ r40 (ω = ω n ) may be 50 or less, or 10 or less.
 比透磁率μr10(ω=ωc)は、例えば、100以上である。比透磁率μr10(ω=ωc)は、500以上であってよく、1000以上であってもよい。比透磁率μr20(ω=ωc)は、例えば、100以上である。比透磁率μr20(ω=ωc)は、500以上であってよく、1000以上であってもよい。比透磁率μr40(ω=ωc)は、例えば、1より大きく、かつ、100以下である。比透磁率μr40(ω=ωc)は、50以下であってもよく、10以下であってもよい。 The relative permeability μ r10 (ω = ω c ) is, for example, 100 or more. The relative magnetic permeability μ r10 (ω = ω c ) may be 500 or more, and may be 1000 or more. The relative permeability μ r20 (ω = ω c ) is, for example, 100 or more. The relative magnetic permeability μ r20 (ω = ω c ) may be 500 or more, and may be 1000 or more. The relative permeability μ r40 (ω = ω c ) is, for example, greater than 1 and less than or equal to 100. The relative magnetic permeability μ r40 (ω = ω c ) may be 50 or less, or 10 or less.
 比透磁率μr40(ω=0)は、例えば、1000以上である。比透磁率μr40(ω=0)は、例えば、5000以上であってもよく、10000以上であってもよい。比透磁率μr10(ω=0)は、例えば、100以上である。比透磁率μr10(ω=0)は、500以上であってもよく、1000以上であってもよい。比透磁率μr20(ω=0)は、例えば、100以上である。比透磁率μr20(ω=0)は、500以上であってもよく、1000以上であってもよい。 The relative magnetic permeability μ r40 (ω = 0) is, for example, 1000 or more. The relative magnetic permeability μ r40 (ω = 0) may be, for example, 5000 or more, or 10000 or more. The relative magnetic permeability μ r10 (ω = 0) is, for example, 100 or more. The relative magnetic permeability μ r10 (ω = 0) may be 500 or more, or 1000 or more. The relative magnetic permeability μ r20 (ω = 0) is, for example, 100 or more. The relative magnetic permeability μ r20 (ω = 0) may be 500 or more, or 1000 or more.
 例えば、比透磁率μr10(ω=ωn)は、比透磁率μr40(ω=ωn)の10倍以上であり、かつ、第1交流磁場に対する真空の比透磁率の10倍以上である。第1交流磁場に対する真空の比透磁率は、1に等しい。例えば、比透磁率μr10(ω=ωc)は、比透磁率μr40(ω=ωC)の10倍以上であり、かつ、第2交流磁場に対する真空の比透磁率の10倍以上である。第2交流磁場に対する真空の比透磁率は、1に等しい。例えば、比透磁率μr40(ω=0)は、比透磁率μr10(ω=0)の10倍以上であり、比透磁率μr20(ω=0)の10倍以上であり、かつ、直流磁場に対する真空の比透磁率の100倍以上である。直流磁場に対する真空の比透磁率は、1に等しい。例えば、比透磁率μr10(ω=0)は、直流磁場に対する真空の比透磁率の10倍以上である。比透磁率μr20(ω=0)は、直流磁場に対する真空の比透磁率の10倍以上である。 For example, the relative magnetic permeability μ r10 (ω = ω n ) is 10 times or more the specific magnetic permeability μ r40 (ω = ω n ), and is 10 times or more the specific magnetic permeability of the vacuum with respect to the first AC magnetic field. be. The relative magnetic permeability of the vacuum with respect to the first AC magnetic field is equal to 1. For example, the relative magnetic permeability μ r10 (ω = ω c ) is 10 times or more the specific magnetic permeability μ r40 (ω = ω C ), and is 10 times or more the specific magnetic permeability of the vacuum with respect to the second AC magnetic field. be. The relative permeability of the vacuum with respect to the second AC magnetic field is equal to 1. For example, the relative magnetic permeability μ r40 (ω = 0) is 10 times or more the specific magnetic permeability μ r10 (ω = 0), and is 10 times or more the specific magnetic permeability μ r20 (ω = 0). It is 100 times or more the relative magnetic permeability of vacuum with respect to a DC magnetic field. The relative magnetic permeability of a vacuum with respect to a DC magnetic field is equal to 1. For example, the relative magnetic permeability μ r10 (ω = 0) is 10 times or more the relative magnetic permeability of a vacuum with respect to a DC magnetic field. The relative magnetic permeability μ r20 (ω = 0) is 10 times or more the relative magnetic permeability of a vacuum with respect to a DC magnetic field.
 第1交流磁束に対する第1中央磁路の第1磁気抵抗Rmca(ω=ωn)は、第1交流磁束に対する第2中央磁路の第2磁気抵抗Rmcb(ω=ωn)より小さい。第1交流磁束は、ノーマルモードノイズ電流によって形成される。第1交流磁束の周波数ωnは、ノーマルモードノイズ電流の周波数に等しい。第1中央磁路は、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される磁路である。第2中央磁路は、第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される磁路である。 The first reluctance R mca (ω = ω n ) of the first central magnetic path with respect to the first AC magnetic flux is smaller than the second reluctance R mcb (ω = ω n) of the second central magnetic path with respect to the first AC magnetic flux. .. The first AC magnetic flux is formed by the normal mode noise current. The frequency ω n of the first AC magnetic flux is equal to the frequency of the normal mode noise current. The first central magnetic path is a magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22. The second central magnetic path is a magnetic path formed by the second gap 43, the magnetic cylinder 40, and the third gap 44.
 直流磁束に対する第1中央磁路の第3磁気抵抗Rmca(ω=0)は、直流磁束に対する第2中央磁路の第4磁気抵抗Rmcb(ω=0)より大きい。直流磁束は、第1コイル30を含む正側電線4aと第2コイル35を含む負側電線4bとを流れる直流電流によって形成される。磁性筒体40における直流磁束の磁束密度は、磁性筒体40の飽和磁束密度より小さい。 The third reluctance R mca (ω = 0) of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance R mcb (ω = 0) of the second central magnetic path with respect to the DC magnetic flux. The direct current magnetic flux is formed by a direct current flowing through the positive electric wire 4a including the first coil 30 and the negative electric wire 4b including the second coil 35. The magnetic flux density of the DC magnetic flux in the magnetic cylinder 40 is smaller than the saturation magnetic flux density of the magnetic cylinder 40.
 具体的には、第1中央磁路の第1磁気抵抗Rmca(ω)は、式(2)で与えられる。
 Rmca(ω)=Rm12(ω)+Rm17(ω)+Rm22(ω) (2)
 Rm12(ω)は第1中央磁脚12の磁気抵抗を表し、Rm17(ω)は第1ギャップ17の磁気抵抗を表し、Rm22(ω)は第2中央磁脚22の磁気抵抗を表す。第1中央磁脚12の幅a1が第2中央磁脚22の幅a2に等しく、第1中央磁脚12の高さb1が第2中央磁脚22の高さb2に等しく、第1中央磁脚12の断面積S12が第2中央磁脚22の断面積S22に等しい場合、Rm12(ω)は式(3)で与えられ、Rm17(ω)は式(4)で与えられ、Rm22(ω)は式(5)で与えられる。μ0は、真空の透磁率を表す。第1ギャップ17は空気で満たされているため、μr17(ω)は1に等しい。
Specifically, the first reluctance R mca (ω) of the first central magnetic path is given by the equation (2).
R mca (ω) = R m12 (ω) + R m17 (ω) + R m22 (ω) (2)
R m12 (ω) represents the reluctance of the first central magnetic leg 12, R m17 (ω) represents the reluctance of the first gap 17, and R m22 (ω) represents the reluctance of the second central magnetic leg 22. show. The width a 1 of the first central magnetic leg 12 is equal to the width a 2 of the second central magnetic leg 22, the height b 1 of the first central magnetic leg 12 is equal to the height b 2 of the second central magnetic leg 22. When the cross-sectional area S 12 of the first central magnetic leg 12 is equal to the cross-sectional area S 22 of the second central magnetic leg 22, R m12 (ω) is given by Eq. (3), and R m17 (ω) is given by Eq. (4). ), And R m22 (ω) is given by equation (5). μ 0 represents the magnetic permeability of vacuum. Since the first gap 17 is filled with air, μ r17 (ω) is equal to 1.
 Rm12(ω)=L12/(μ0・μr10(ω)・S12)=L12/(μ0・μr10(ω)・a1・b1) (3)
 Rm17(ω)=G1/(μ0・μr17(ω)・S12)=G1/(μ0・μr17(ω)・a1・b1) (4)
 Rm22(ω)=L22/(μ0・μr20(ω)・S22)=L22/(μ0・μr20(ω)・a2・b2) (5)
 第2中央磁路の第2磁気抵抗Rmcb(ω)は、式(6)で与えられる。
R m12 (ω) = L 12 / (μ 0・ μ r10 (ω) ・ S 12 ) = L 12 / (μ 0・ μ r10 (ω) ・ a 1・ b 1 ) (3)
R m17 (ω) = G 1 / (μ 0・ μ r17 (ω) ・ S 12 ) = G 1 / (μ 0・ μ r17 (ω) ・ a 1・ b 1 ) (4)
R m22 (ω) = L 22 / (μ 0・ μ r20 (ω) ・ S 22 ) = L 22 / (μ 0・ μ r20 (ω) ・ a 2・ b 2 ) (5)
The second reluctance R mcb (ω) of the second central magnetic path is given by Eq. (6).
 Rmcb(ω)=Rm43(ω)+Rm40(ω)+Rm44(ω) (6)
 Rm43(ω)は第2ギャップ43の磁気抵抗を表し、Rm40(ω)は磁性筒体40の磁気抵抗を表し、Rm44(ω)は第3ギャップ44の磁気抵抗を表す。Rm43(ω)は式(7)で与えられ、Rm40(ω)は式(8)で与えられ、Rm44(ω)は式(9)で与えられる。μr43(ω)は1に等しい。μr44(ω)は1に等しい。
R mcb (ω) = R m43 (ω) + R m40 (ω) + R m44 (ω) (6)
R m43 (ω) represents the reluctance of the second gap 43, R m40 (ω) represents the reluctance of the magnetic cylinder 40, and R m44 (ω) represents the reluctance of the third gap 44. R m43 (ω) is given by equation (7), R m40 (ω) is given by equation (8), and R m44 (ω) is given by equation (9). μ r43 (ω) is equal to 1. μ r44 (ω) is equal to 1.
 Rm43(ω)=G2/(μ0・μr43(ω)・S40)=G2/(μ0・μr43(ω)・(p1・p2-q1・q2)) (7)
 Rm40(ω)=L40/(μ0・μr40(ω)・S40)=L40/(μ0・μr40(ω)・(p1・p2-q1・q2)) (8)
 Rm44(ω)=G3/(μ0・μr44(ω)・S40)=G3/(μ0・μr44(ω)・(p1・p2-q1・q2)) (9)
 図6に示されるように、ノーマルモードノイズ電流によって形成される第1交流磁場に対する第1中央磁路を構成する物質の比透磁率の大小関係に関して、式(10)が成り立つ。
R m43 (ω) = G 2 / (μ 0・ μ r43 (ω) ・ S 40 ) = G 2 / (μ 0・ μ r43 (ω) ・ (p 1・ p 2- q 1・ q 2 )) (7)
R m40 (ω) = L 40 / (μ 0・ μ r40 (ω) ・ S 40 ) = L 40 / (μ 0・ μ r40 (ω) ・ (p 1・ p 2- q 1・ q 2 )) (8)
R m44 (ω) = G 3 / (μ 0・ μ r44 (ω) ・ S 40 ) = G 3 / (μ 0・ μ r44 (ω) ・ (p 1・ p 2- q 1・ q 2 )) (9)
As shown in FIG. 6, the equation (10) holds with respect to the magnitude relationship of the relative magnetic permeability of the substances constituting the first central magnetic path with respect to the first AC magnetic field formed by the normal mode noise current.
 μr10(ω=ωn)=μr20(ω=ωn)≫μr17(ω=ωn)=1 (10)
 そのため、Rm12(ω=ωn)とRm22(ω=ωn)とは、Rm17(ω=ωn)に対して非常に小さくなり、Rm12(ω=ωn)とRm22(ω=ωn)とは、Rm17(ω=ωn)に対して無視され得る。式(1)に照らして、Rmca(ω=ωn)は、実質的に、Rm17(ω=ωn)に等しいと見なすことができる。
μ r10 (ω = ω n ) = μ r20 (ω = ω n ) ≫ μ r17 (ω = ω n ) = 1 (10)
Therefore, R m12 (ω = ω n ) and R m22 and (ω = ω n) is very small relative to R m17 (ω = ω n) , R m12 (ω = ω n) and R m22 ( ω = ω n ) can be ignored for R m17 (ω = ω n). In light of the equation (1), R mca (ω = ω n) it is substantially can be regarded as equal to R m17 (ω = ω n) .
 図6を参照して、ノーマルモードノイズ電流によって形成される第1交流磁場に対する第2中央磁路を構成する物質の比透磁率の大小関係は、以下のとおりである。μr40(ω=ωn)は、1に等しいμr43(ω=ωn)と1に等しいμr44(ω=ωn)とに近い値を有する。Rm43(ω=ωn)及びRm44(ω=ωn)に対して、Rm40(ω=ωn)を無視することはできない。そのため、Rmcb(ω=ωn)は、式(6)で与えられる。 With reference to FIG. 6, the magnitude relationship of the relative magnetic permeability of the substances constituting the second central magnetic path with respect to the first AC magnetic field formed by the normal mode noise current is as follows. μ r40 (ω = ω n) has a value nearly equal to 1 μ r43 (ω = ω n ) is equal to 1 mu r44 and (ω = ω n). For R m43 (ω = ω n ) and R m44 (ω = ω n ), R m40 (ω = ω n ) cannot be ignored. Therefore, R mcb (ω = ω n ) is given by Eq. (6).
 式(11)、言い換えると式(12)が成り立つ場合、第1交流磁束に対する第1中央磁路の第1磁気抵抗Rmca(ω=ωn)を、第1交流磁束に対する第2中央磁路の第2磁気抵抗Rmcb(ω=ωn)より小さくすることができる。具体的には、第1交流磁束に対する第1中央磁路の第1磁気抵抗Rmca(ω=ωn)が第1交流磁束に対する第2中央磁路の第2磁気抵抗Rmcb(ω=ωn)より小さくなるように、G1、S12、G2、S40、L40、μr40(ω=ωn)またはG3などを設定する。 When equation (11), in other words, equation (12) holds, the first reluctance R mca (ω = ω n ) of the first central magnetic path with respect to the first AC magnetic flux is set to the second central magnetic path with respect to the first AC magnetic flux. It can be made smaller than the second magnetic resistance R mcb (ω = ω n). Specifically, the first magnetic resistor R mca the first central magnetic path for a first alternating magnetic flux (ω = ω n) and the second magnetoresistance R mcb of the second central magnetic path for the first alternating magnetic flux (omega = omega Set G 1 , S 12 , G 2 , S 40 , L 40 , μ r40 (ω = ω n ), G 3, etc. so that they are smaller than n).
 Rmca(ω=ωn)<Rmcb(ω=ωn) (11)
 Rm17(ω=ωn)<Rm43(ω=ωn)+Rm40(ω=ωn)+Rm44(ω=ωn) (12)
 図6に示されるように、ゼロの周波数ωを有する直流磁場に対する第1中央磁路を構成する物質の比透磁率の大小関係に関して、式(13)が成り立つ。
R mca (ω = ω n ) <R mcb (ω = ω n ) (11)
R m17 (ω = ω n ) <R m43 (ω = ω n ) + R m40 (ω = ω n ) + R m44 (ω = ω n ) (12)
As shown in FIG. 6, the equation (13) holds with respect to the magnitude relation of the relative magnetic permeability of the substances constituting the first central magnetic path with respect to the DC magnetic field having the frequency ω of zero.
 μr10(ω=0)=μr20(ω=0)≫μr17(ω=0)=1 (13)
 そのため、Rm12(ω=0)とRm22(ω=0)とは、Rm17(ω=0)に対して非常に小さくなり、Rm12(ω=0)とRm22(ω=0)とは、Rm17(ω=0)に対して無視され得る。式(1)に照らして、Rmca(ω=0)は、実質的に、Rm17(ω=0)に等しいと見なすことができる。
μ r10 (ω = 0) = μ r20 (ω = 0) ≫ μ r17 (ω = 0) = 1 (13)
Therefore, R m12 (ω = 0) and R m22 and (omega = 0) becomes very small relative to R m17 (ω = 0), R m12 (ω = 0) and R m22 (ω = 0) Can be ignored for R m17 (ω = 0). In light of the equation (1), R mca (ω = 0) it is substantially can be regarded as equal to R m17 (ω = 0).
 図6を参照して、直流磁場に対する第2中央磁路を構成する物質の比透磁率の大小関係に関して、式(14)が成り立つ。 With reference to FIG. 6, the equation (14) holds with respect to the magnitude relationship of the relative magnetic permeability of the substances constituting the second central magnetic path with respect to the DC magnetic field.
 μr40(ω=0)≫μr43(ω=0)=μr44(ω=0)=1 (14)
 そのため、Rm40(ω=0)は、Rm43(ω=0)及びRm44(ω=0)より非常に小さくなり、Rm40(ω=0)は、Rm43(ω=0)及びRm44(ω=0)に対して無視され得る。Rmcb(ω=0)は、式(15)で与えられる。
μ r40 (ω = 0) »μ r43 (ω = 0) = μ r44 (ω = 0) = 1 (14)
Therefore, R m40 (ω = 0) is much smaller than R m43 (ω = 0) and R m44 (ω = 0), and R m40 (ω = 0) is R m43 (ω = 0) and R. It can be ignored for m44 (ω = 0). R mcb (ω = 0) is given by Eq. (15).
 Rmcb(ω=0)=Rm43(ω=0)+Rm44(ω=0) (15)
 式(16)、言い換えると式(17)が成り立つ場合、直流磁束に対する第1中央磁路の第3磁気抵抗Rmca(ω=0)を、直流磁束に対する第2中央磁路の第4磁気抵抗Rmcb(ω=0)より大きくすることができる。具体的には、直流磁束に対する第1中央磁路の第3磁気抵抗Rmca(ω=0)が直流磁束に対する第2中央磁路の第4磁気抵抗Rmcb(ω=0)より大きくなるように、G1、S12、G2、S40またはG3などを設定する。
R mcb (ω = 0) = R m43 (ω = 0) + R m44 (ω = 0) (15)
When equation (16), in other words, equation (17) holds, the third magnetic resistance R mca (ω = 0) of the first central magnetic path with respect to the DC magnetic flux and the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux. It can be larger than R mcb (ω = 0). Specifically, the third magnetic resistance R mca (ω = 0) of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance R mcb (ω = 0) of the second central magnetic path with respect to the DC magnetic flux. Set to G 1 , S 12 , G 2 , S 40, G 3 , and so on.
 Rmca(ω=0)>Rmcb(ω=0) (16)
 Rm17(ω=0)>Rm43(ω=0)+Rm44(ω=0) (17)
 図7から図9を参照して、本実施の形態のデュアルモードチョークコイル1の作用を説明する。
R mca (ω = 0)> R mcb (ω = 0) (16)
R m17 (ω = 0)> R m43 (ω = 0) + R m44 (ω = 0) (17)
The operation of the dual mode choke coil 1 of the present embodiment will be described with reference to FIGS. 7 to 9.
 ノーマルモードノイズ電流Inは、直流電源3とインバータ8との間に延在する正側電線4aと負側電線4bとの間を伝搬する。第1コイル30の第1巻回方向は、第2コイル35の第2巻回方向と反対である。そのため、インバータ8(図1を参照)からのノーマルモードノイズ電流Inは、第1コイル30を含む正側電線4aと第2コイル35を含む負側電線4bとを互いに逆向きに流れる。直流電源3(図1を参照)からの直流電流Idcも、第1コイル30を含む正側電線4aと第2コイル35を含む負側電線4bとを互いに逆向きに流れる。ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51と、直流電流Idcによって形成される直流磁束53,54とは、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される第1中央磁路または第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される第2中央磁路を通る。 Normal mode noise current I n propagates between the positive side wire 4a and the negative wire 4b extending between the DC power source 3 and the inverter 8. The first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35. Therefore, the normal mode noise current I n from the inverter 8 (see FIG. 1) flows in opposite directions and a negative wire 4b which includes a positive-side wire 4a and the second coil 35 including the first coil 30. The DC current I dc from the DC power supply 3 (see FIG. 1) also flows in opposite directions to the positive side electric wire 4a including the first coil 30 and the negative side electric wire 4b including the second coil 35. A first alternating magnetic flux 50, 51 formed by the normal mode noise current I n, the DC magnetic flux 53 and 54 are formed by a DC current I dc is the first center leg 12 and the first gap 17 and the second central It passes through a first central magnetic path formed by the magnetic legs 22 or a second central magnetic path formed by a second gap 43, a magnetic cylinder 40, and a third gap 44.
 ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51に対する第1中央磁路の第1磁気抵抗Rmca(ω=ωn)は、第1交流磁束50,51に対する第2中央磁路の第2磁気抵抗Rmcb(ω=ωn)より小さい。そのため、図7に示されるように、ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51は、主に、第1中央磁路を通る。 Normal mode noise current first magnetoresistance R mca the first central magnetic path for a first alternating magnetic flux 50, 51 formed by I n (ω = ω n), the second central magnetic with respect to the first alternating magnetic flux 50, 51 It is smaller than the second magnetic resistance R mcb (ω = ω n ) of the road. Therefore, as shown in FIG. 7, the first alternating magnetic flux 50, 51 formed by the normal mode noise current I n is mainly through the first central magnetic path.
 具体的には、図7に示されるように、第1コイル30を流れるノーマルモードノイズ電流Inによって形成される第1交流磁束50は、第1ヨーク11、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される第1中央磁路、第2ヨーク21、第3サイド磁脚23及び第1サイド磁脚13によって形成される磁路を通る。第2コイル35を流れるノーマルモードノイズ電流Inによって形成される第1交流磁束51は、第1ヨーク11、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される第1中央磁路、第2ヨーク21、第4サイド磁脚24及び第2サイド磁脚14によって形成される磁路を通る。 Specifically, as shown in FIG. 7, the first alternating magnetic flux 50 formed by the normal mode noise current I n flowing in the first coil 30, the first yoke 11, the first center leg 12 first It passes through a magnetic path formed by a first central magnetic path formed by a gap 17 and a second central magnetic leg 22, a second yoke 21, a third side magnetic leg 23, and a first side magnetic leg 13. First AC magnetic flux 51 formed by the normal mode noise current I n flowing in the second coil 35, first yoke 11, formed by the first magnetic center leg 12 and the first gap 17 and the second magnetic center legs 22 It passes through a magnetic path formed by a first central magnetic path, a second yoke 21, a fourth side magnetic leg 24, and a second side magnetic leg 14.
 これに対し、直流電流Idcによって形成される直流磁束53,54に対する第1中央磁路の第3磁気抵抗Rmca(ω=0)は、直流磁束53,54に対する第2中央磁路の第4磁気抵抗Rmcb(ω=0)より大きい。そのため、図8に示されるように、直流電流Idcによって形成される直流磁束53,54は、主に、第2中央磁路を通る。 On the other hand, the third reluctance R mca (ω = 0) of the first central magnetic path with respect to the DC magnetic fluxes 53 and 54 formed by the DC current I dc is the second of the second central magnetic path with respect to the DC magnetic fluxes 53 and 54. 4 Magnetic resistance is larger than R mcb (ω = 0). Therefore, as shown in FIG. 8, the DC magnetic fluxes 53 and 54 formed by the DC current I dc mainly pass through the second central magnetic path.
 具体的には、図8に示されるように、第1コイル30を流れる直流電流Idcによって形成される直流磁束53は、第1ヨーク11、第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される第2中央磁路、第2ヨーク21、第3サイド磁脚23及び第1サイド磁脚13によって形成される磁路を通る。第2コイル35を流れる直流電流Idcによって形成される直流磁束54は、第1ヨーク11、第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される第2中央磁路、第2ヨーク21、第4サイド磁脚24及び第2サイド磁脚14によって形成される磁路を通る。 Specifically, as shown in FIG. 8, the DC magnetic flux 53 formed by the DC current I dc flowing through the first coil 30 includes the first yoke 11, the second gap 43, the magnetic cylinder 40, and the third gap. It passes through a second central magnetic path formed by 44 and a magnetic path formed by a second yoke 21, a third side magnetic leg 23, and a first side magnetic leg 13. The DC magnetic flux 54 formed by the DC current I dc flowing through the second coil 35 is a second central magnetic path formed by the first yoke 11, the second gap 43, the magnetic cylinder 40, and the third gap 44. 2 Passes through a magnetic path formed by a yoke 21, a fourth side magnetic leg 24, and a second side magnetic leg 14.
 このように、デュアルモードチョークコイル1では、ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51の磁路を、直流電流Idcによって形成される直流磁束53,54の磁路と異ならせることができる。そのため、第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17の第1ギャップ長G1を増加させなくても、ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51に対して第1磁性コア10(第1中央磁脚12)及び第2磁性コア20(第2中央磁脚22)の磁気飽和が発生し難くなる。第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17の第1ギャップ長G1を増加させないため、ノーマルモードノイズ電流Inに対するデュアルモードチョークコイル1のインダクタンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。 In this manner, in the dual-mode choke coil 1, the magnetic path of the first alternating magnetic flux 50 and 51 which are formed by the normal mode noise current I n, and the magnetic circuit of the DC magnetic flux 53 and 54 are formed by the DC current I dc Can be different. Therefore, even without increasing the first magnetic center leg 12 of the first gap length G 1 of the first gap 17 between the second center leg 22, a first alternating current formed by the normal mode noise current I n Magnetic saturation of the first magnetic core 10 (first central magnetic leg 12) and the second magnetic core 20 (second central magnetic leg 22) is less likely to occur with respect to the magnetic fluxes 50 and 51. Since the first magnetic center leg 12 does not increase the first gap length G 1 of the first gap 17 between the second central magnetic leg 22, reduction in the inductance of the dual-mode choke coil 1 is against the normal mode noise current I n Can be suppressed. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed.
 図6に示されるように、ノーマルモードノイズ電流Inによって形成される第1交流磁場の周波数ωnにおいて、第1磁性コア10の比透磁率μr10(ω=ωn)と第2磁性コア20の比透磁率μr20(ω=ωn)とは、ノーマルモードノイズ電流Inによって形成される第1交流磁場に対する真空の比透磁率(=1)より非常に大きい。一般に、磁性コアのインダクタンスは、当該磁性コアの比透磁率に比例する。そのため、ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51に対して、デュアルモードチョークコイル1は、大きなインダクタンスを有している。ノーマルモードノイズ電流Inによって形成される第1交流磁束50,51に対して、デュアルモードチョークコイル1は、大きなインピーダンスを有している。デュアルモードチョークコイル1は、ノーマルモードノイズ電流Inを減衰させて、ノーマルモードノイズ電流Inを除去することができる。 As shown in FIG. 6, the normal mode noise current at a frequency Omega n of the first alternating magnetic field formed by I n, relative permeability mu r10 of the first magnetic core 10 (ω = ω n) and the second magnetic cores the 20 of relative permeability μ r20 (ω = ω n) , much greater than the vacuum of the relative permeability (= 1) to the first alternating magnetic field formed by the normal mode noise current I n. Generally, the inductance of a magnetic core is proportional to the relative permeability of the magnetic core. Therefore, the first alternating magnetic flux 50, 51 formed by the normal mode noise current I n, the dual-mode choke coil 1 has a large inductance. The first alternating magnetic flux 50, 51 formed by the normal mode noise current I n, the dual-mode choke coil 1 has a large impedance. Dual-mode choke coil 1 attenuates the normal mode noise current I n, it is possible to remove the normal mode noise current I n.
 これに対し、コモンモードノイズ電流Icは、正側電線4aとアースとの間、並びに、負側電線4bとアースとの間を伝搬する。第1コイル30の第1巻回方向は、第2コイル35の第2巻回方向と反対である。そのため、インバータ8(図1を参照)からのコモンモードノイズ電流Icは、第1コイル30を含む正側電線4aと第2コイル35を含む負側電線4bとを同じ向きに流れる。図9に示されるように、コモンモードノイズ電流Icによって形成される第2交流磁束56は、第1ヨーク11、第2サイド磁脚14、第4サイド磁脚24、第2ヨーク21、第3サイド磁脚23及び第1サイド磁脚13によって形成される磁路を通る。しかし、第2交流磁束56は、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される第1中央磁路と、第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される第2中央磁路とを通らない。 In contrast, the common mode noise Denryu I c is between Tadashigawa wire 4a and the ground, and propagates between the negative wire 4b and ground. The first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35. Therefore, common-mode noise current I c from the inverter 8 (see FIG. 1) flows and a negative wire 4b which includes a positive-side wire 4a and the second coil 35 including the first coil 30 in the same direction. As shown in FIG. 9, the second alternating magnetic flux 56 formed by the common-mode noise current I c, the first yoke 11, second side magnetic lead 14, the fourth side magnetic lead 24, the second yoke 21, the It passes through a magnetic path formed by the three-side magnetic leg 23 and the first side magnetic leg 13. However, the second AC magnetic flux 56 includes a first central magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22, the second gap 43, the magnetic cylinder 40, and the second. It does not pass through the second central magnetic path formed by the three gaps 44.
 ノーマルモードノイズ電流Inとコモンモードノイズ電流Icとは、インバータ8(図1を参照)に含まれる複数のスイッチング素子のスイッチング動作によって発生する。そのため、コモンモードノイズ電流Icによって形成される第2交流磁場の周波数ωcは、ノーマルモードノイズ電流Inによって形成される第1交流磁場の周波数ωnに実質的に等しい。 The normal mode noise current I n and the common mode noise current I c are generated by the switching operation of a plurality of switching elements included in the inverter 8 (see FIG. 1). Therefore, the frequency ω c of the second AC magnetic field formed by the common mode noise current I c is substantially equal to the frequency ω n of the first AC magnetic field formed by the normal mode noise current I n.
 図6に示されるように、コモンモードノイズ電流Icによって形成される第2交流磁場の周波数ωcにおいて、第1磁性コア10の比透磁率μr10(ω=ωc)と第2磁性コア20の比透磁率μr20(ω=ωc)とは、コモンモードノイズ電流Icによって形成される第2交流磁場に対する真空の比透磁率(=1)より非常に大きい。一般に、磁性コアのインダクタンスは、当該磁性コアの比透磁率に比例する。そのため、コモンモードノイズ電流Icによって形成される第2交流磁束56に対して、デュアルモードチョークコイル1は、大きなインダクタンスを有している。コモンモードノイズ電流Icによって形成される第2交流磁束56に対して、デュアルモードチョークコイル1は、大きなインピーダンスを有している。そのため、デュアルモードチョークコイル1は、コモンモードノイズ電流Icを減衰させて、コモンモードノイズ電流Icを除去することができる。 As shown in FIG. 6, at the frequency ω c of the second AC magnetic field formed by the common mode noise current I c , the relative permeability μ r10 (ω = ω c ) of the first magnetic core 10 and the second magnetic core The relative magnetic permeability μ r20 (ω = ω c ) of 20 is much larger than the relative magnetic permeability (= 1) of the vacuum with respect to the second AC magnetic field formed by the common mode noise current I c. Generally, the inductance of a magnetic core is proportional to the relative permeability of the magnetic core. Therefore, the dual mode choke coil 1 has a large inductance with respect to the second AC magnetic flux 56 formed by the common mode noise current I c. The dual mode choke coil 1 has a large impedance with respect to the second AC magnetic flux 56 formed by the common mode noise current I c. Therefore, the dual-mode choke coil 1 attenuates the common mode noise current I c, can be removed common-mode noise current I c.
 本実施の形態のデュアルモードチョークコイル1の効果を説明する。
 本実施の形態のデュアルモードチョークコイル1は、ノーマルモードノイズ電流とコモンモードノイズ電流とを除去し得る。デュアルモードチョークコイル1は、第1磁性コア10と、第2磁性コア20と、磁性筒体40と、第1コイル30と、第2コイル35とを備える。第1磁性コア10は、第1ヨーク11と、第1サイド磁脚13と、第2サイド磁脚14と、第1中央磁脚12とを含む。第1サイド磁脚13と第2サイド磁脚14と第1中央磁脚12とは、第1ヨーク11から延在している。第1中央磁脚12は、第1サイド磁脚13と第2サイド磁脚14との間に配置されている。第2磁性コア20は、第2ヨーク21と、第3サイド磁脚23と、第4サイド磁脚24と、第2中央磁脚22とを含む。第3サイド磁脚23と第4サイド磁脚24と第2中央磁脚22とは、第2ヨーク21から延在している。第2中央磁脚22は、第3サイド磁脚23と第4サイド磁脚24との間に配置されている。第1サイド磁脚13と第3サイド磁脚23とは、互いに接触している。第2サイド磁脚14と第4サイド磁脚24とは互いに接触している。第1中央磁脚12と第2中央磁脚22とは、第1ギャップ17を空けて、互いに離間されている。
The effect of the dual mode choke coil 1 of this embodiment will be described.
The dual mode choke coil 1 of the present embodiment can remove the normal mode noise current and the common mode noise current. The dual mode choke coil 1 includes a first magnetic core 10, a second magnetic core 20, a magnetic cylinder 40, a first coil 30, and a second coil 35. The first magnetic core 10 includes a first yoke 11, a first side magnetic leg 13, a second side magnetic leg 14, and a first central magnetic leg 12. The first side magnetic leg 13, the second side magnetic leg 14, and the first central magnetic leg 12 extend from the first yoke 11. The first central magnetic leg 12 is arranged between the first side magnetic leg 13 and the second side magnetic leg 14. The second magnetic core 20 includes a second yoke 21, a third side magnetic leg 23, a fourth side magnetic leg 24, and a second central magnetic leg 22. The third side magnetic leg 23, the fourth side magnetic leg 24, and the second central magnetic leg 22 extend from the second yoke 21. The second central magnetic leg 22 is arranged between the third side magnetic leg 23 and the fourth side magnetic leg 24. The first side magnetic leg 13 and the third side magnetic leg 23 are in contact with each other. The second side magnetic leg 14 and the fourth side magnetic leg 24 are in contact with each other. The first central magnetic leg 12 and the second central magnetic leg 22 are separated from each other with a first gap 17.
 第1中央磁脚12及び第2中央磁脚22は、磁性筒体40内に挿入されており、かつ、磁性筒体40から離間されている。磁性筒体40は、第2ギャップ43を空けて、第1ヨーク11から離間されている。磁性筒体40は、第3ギャップ44を空けて、第2ヨーク21から離間されている。第1コイル30は、第1サイド磁脚13と第3サイド磁脚23とに巻回されている。第2コイル35は、第2サイド磁脚14と第4サイド磁脚24とに巻回されている。第1コイル30の第1巻回方向は、第2コイル35の第2巻回方向と反対である。交流磁束に対する第1中央磁路の第1磁気抵抗は、交流磁束に対する第2中央磁路の第2磁気抵抗より小さい。交流磁束は、第1コイル30及び第2コイル35を流れるノーマルモードノイズ電流によって形成される。直流磁束に対する第1中央磁路の第3磁気抵抗は、直流磁束に対する第2中央磁路の第4磁気抵抗より大きい。直流磁束は、第1コイル30及び第2コイル35を流れる直流電流によって形成される。第1中央磁路は、第1中央磁脚12と第1ギャップ17と第2中央磁脚22とによって形成される磁路である。第2中央磁路は、第2ギャップ43と磁性筒体40と第3ギャップ44とによって形成される磁路である。 The first central magnetic leg 12 and the second central magnetic leg 22 are inserted into the magnetic cylinder 40 and separated from the magnetic cylinder 40. The magnetic cylinder 40 is separated from the first yoke 11 with a second gap 43. The magnetic cylinder 40 is separated from the second yoke 21 with a third gap 44. The first coil 30 is wound around the first side magnetic leg 13 and the third side magnetic leg 23. The second coil 35 is wound around the second side magnetic leg 14 and the fourth side magnetic leg 24. The first winding direction of the first coil 30 is opposite to the second winding direction of the second coil 35. The first reluctance of the first central magnetic path with respect to the AC magnetic flux is smaller than the second magnetic resistance of the second central magnetic path with respect to the AC magnetic flux. The AC magnetic flux is formed by the normal mode noise current flowing through the first coil 30 and the second coil 35. The third reluctance of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux. The direct current magnetic flux is formed by the direct current flowing through the first coil 30 and the second coil 35. The first central magnetic path is a magnetic path formed by the first central magnetic leg 12, the first gap 17, and the second central magnetic leg 22. The second central magnetic path is a magnetic path formed by the second gap 43, the magnetic cylinder 40, and the third gap 44.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17の第1ギャップ長G1を増加させなくても、ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。第1中央磁脚12と第2中央磁脚22との間の第1ギャップ17の第1ギャップ長G1を増加させないため、ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインダクタンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The first with respect to the AC magnetic flux formed by the normal mode noise current without increasing the first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22. Magnetic saturation of the magnetic core 10 and the second magnetic core 20 is less likely to occur. Since the first gap length G 1 of the first gap 17 between the first central magnetic leg 12 and the second central magnetic leg 22 is not increased, the decrease in the inductance of the dual mode choke coil 1 with respect to the normal mode noise current is suppressed. obtain. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、ノーマルモードノイズ電流によって形成される交流磁場に対する第1中央磁脚12の第1比透磁率(比透磁率μr10(ω=ωn))と、交流磁場に対する第2中央磁脚22の第2比透磁率(比透磁率μr20(ω=ωn))とは、各々、交流磁場に対する磁性筒体40の第3比透磁率(比透磁率μr40(ω=ωn))より大きい。直流磁場に対する磁性筒体40の第4比透磁率(比透磁率μr40(ω=0))は、直流磁場に対する第1中央磁脚12の第5比透磁率(比透磁率μr10(ω=0))より大きく、かつ、直流磁場に対する第2中央磁脚22の第6比透磁率(比透磁率μr20(ω=0))より大きい。 In the dual mode choke coil 1 of the present embodiment, the first relative magnetic permeability (specific magnetic permeability μ r10 (ω = ω n )) of the first central magnetic leg 12 with respect to the AC magnetic field formed by the normal mode noise current, The second relative magnetic permeability (specific magnetic permeability μ r20 (ω = ω n )) of the second central magnetic leg 22 with respect to the AC magnetic field is the third relative magnetic permeability (specific magnetic permeability) of the magnetic cylinder 40 with respect to the AC magnetic field, respectively. Greater than μ r40 (ω = ω n )). The fourth specific magnetic permeability of the magnetic cylinder 40 with respect to the DC magnetic field (specific magnetic permeability μ r40 (ω = 0)) is the fifth specific magnetic permeability of the first central magnetic leg 12 with respect to the DC magnetic field (specific magnetic permeability μ r10 (ω = 0)). = 0)) and larger than the sixth relative magnetic permeability of the second central magnetic leg 22 with respect to the DC magnetic field (specific magnetic permeability μ r20 (ω = 0)).
 そのため、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、第1比透磁率(比透磁率μr10(ω=ωn))及び第2比透磁率(比透磁率μr20(ω=ωn))は、各々、第3比透磁率(比透磁率μr40(ω=ωn))の10倍以上であり、かつ、交流磁場に対する真空の第7比透磁率の10倍以上である。第4比透磁率(比透磁率μr40(ω=0))は、第5比透磁率(比透磁率μr10(ω=0))の10倍以上であり、第6比透磁率(比透磁率μr20(ω=0))の10倍以上であり、かつ、直流磁場に対する真空の第8比透磁率の100倍以上である。第5比透磁率μr10(ω=0)は、第8比透磁率の10倍以上である。第6比透磁率μr20(ω=0)は、第8比透磁率の10倍以上である。 In the dual mode choke coil 1 of the present embodiment, the first specific magnetic permeability (specific magnetic permeability μ r10 (ω = ω n )) and the second specific magnetic permeability (specific magnetic permeability μ r20 (ω = ω n )) are , Each is 10 times or more the third relative magnetic permeability (specific magnetic permeability μ r40 (ω = ω n )) and 10 times or more the seventh relative magnetic permeability of the vacuum with respect to the AC magnetic field. The 4th specific magnetic permeability (specific magnetic permeability μ r40 (ω = 0)) is 10 times or more the 5th specific magnetic permeability (specific magnetic permeability μ r10 (ω = 0)), and the 6th specific magnetic permeability (ratio). The magnetic permeability is 10 times or more of μ r20 (ω = 0)), and is 100 times or more of the eighth specific magnetic permeability of the vacuum with respect to the DC magnetic field. The fifth relative magnetic permeability μ r10 (ω = 0) is 10 times or more the eighth specific magnetic permeability. The sixth relative magnetic permeability μ r20 (ω = 0) is 10 times or more the eighth specific magnetic permeability.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、第4比透磁率(比透磁率μr40(ω=0))は、1000以上である。 In the dual mode choke coil 1 of the present embodiment, the fourth relative magnetic permeability (specific magnetic permeability μ r40 (ω = 0)) is 1000 or more.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、第1比透磁率(比透磁率μr10(ω=ωn))と第2比透磁率(比透磁率μr20(ω=ωn))とは、各々、100以上である。 In the dual mode choke coil 1 of the present embodiment, the first specific magnetic permeability (specific magnetic permeability μ r10 (ω = ω n )) and the second specific magnetic permeability (specific magnetic permeability μ r20 (ω = ω n )) Is 100 or more, respectively.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、第1ギャップ17の第1ギャップ長G1は、第2ギャップ43の第2ギャップ長G2と第3ギャップ44の第3ギャップ長G3との和より大きい。 In the dual mode choke coil 1 of the present embodiment, the first gap length G 1 of the first gap 17 is the second gap length G 2 of the second gap 43 and the third gap length G 3 of the third gap 44. Greater than the sum.
 そのため、式(17)が容易に実現され得る。ノーマルモードノイズ電流によって形成される交流磁束の磁路を、直流電流によって形成される直流磁束の磁路と異ならせることができる。ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, the equation (17) can be easily realized. The magnetic path of the AC magnetic flux formed by the normal mode noise current can be made different from the magnetic path of the DC magnetic flux formed by the DC current. The magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、磁性筒体40における直流磁束の磁束密度は、磁性筒体40の飽和磁束密度より小さい。 In the dual mode choke coil 1 of the present embodiment, the magnetic flux density of the DC magnetic flux in the magnetic cylinder 40 is smaller than the saturation magnetic flux density of the magnetic cylinder 40.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1では、磁性筒体40の飽和磁束密度は、1.5テスラ以上である。 In the dual mode choke coil 1 of the present embodiment, the saturation magnetic flux density of the magnetic cylinder 40 is 1.5 tesla or more.
 そのため、ノーマルモードノイズ電流によって形成される交流磁束に対して第1磁性コア10及び第2磁性コア20の磁気飽和が発生し難くなる。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のインピーダンスの低下が抑制され得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1のノイズ除去能力が低下することが抑制され得る。 Therefore, magnetic saturation of the first magnetic core 10 and the second magnetic core 20 is less likely to occur with respect to the AC magnetic flux formed by the normal mode noise current. The decrease in impedance of the dual mode choke coil 1 with respect to the normal mode noise current can be suppressed. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1 with respect to the normal mode noise current.
 実施の形態2.
 図10から図13を参照して、実施の形態2のデュアルモードチョークコイル1bを説明する。本実施の形態のデュアルモードチョークコイル1bは、実施の形態1のデュアルモードチョークコイル1と同様の構成を備えるが、主に以下の点で、実施の形態1のデュアルモードチョークコイル1と異なっている。
Embodiment 2.
The dual mode choke coil 1b of the second embodiment will be described with reference to FIGS. 10 to 13. The dual-mode choke coil 1b of the present embodiment has the same configuration as the dual-mode choke coil 1 of the first embodiment, but is different from the dual-mode choke coil 1 of the first embodiment mainly in the following points. There is.
 デュアルモードチョークコイル1bは、第1非磁性スペーサ46と、第2非磁性スペーサ47と、第3非磁性スペーサ48とをさらに備える。第1非磁性スペーサ46と第2非磁性スペーサ47と第3非磁性スペーサ48とは、エポキシ樹脂、シリコーン樹脂、アクリル樹脂もしくはアクリロニトリルブタジエンスチレン(ABS)共重合体樹脂のような樹脂、または、セラミックで形成されている。 The dual mode choke coil 1b further includes a first non-magnetic spacer 46, a second non-magnetic spacer 47, and a third non-magnetic spacer 48. The first non-magnetic spacer 46, the second non-magnetic spacer 47, and the third non-magnetic spacer 48 are a resin such as an epoxy resin, a silicone resin, an acrylic resin, or an acrylonitrile butadiene styrene (ABS) copolymer resin, or a ceramic. Is formed of.
 第1非磁性スペーサ46は、第2ギャップ43を充填している。第1非磁性スペーサ46は、磁性筒体40と第1ヨーク11とに接触している。具体的には、第1非磁性スペーサ46は、磁性筒体40の端面41と、端面41に対向する第1ヨーク11の表面とに面接触している。第2非磁性スペーサ47は、第3ギャップ44を充填している。第2非磁性スペーサ47は、磁性筒体40と第2ヨーク21とに接触している。具体的には、第2非磁性スペーサ47は、磁性筒体40の端面42と、端面42に対向する第2ヨーク21の表面とに面接触している。 The first non-magnetic spacer 46 fills the second gap 43. The first non-magnetic spacer 46 is in contact with the magnetic cylinder 40 and the first yoke 11. Specifically, the first non-magnetic spacer 46 is in surface contact with the end surface 41 of the magnetic cylinder 40 and the surface of the first yoke 11 facing the end surface 41. The second non-magnetic spacer 47 fills the third gap 44. The second non-magnetic spacer 47 is in contact with the magnetic cylinder 40 and the second yoke 21. Specifically, the second non-magnetic spacer 47 is in surface contact with the end surface 42 of the magnetic cylinder 40 and the surface of the second yoke 21 facing the end surface 42.
 第1非磁性スペーサ46は、第2ギャップ43の第2ギャップ長G2を正確に規定することができる。第2非磁性スペーサ47は、第3ギャップ44の第3ギャップ長G3を正確に規定することができる。第1非磁性スペーサ46と第2非磁性スペーサ47とは、第1磁性コア10及び第2磁性コア20に対して磁性筒体40を正確に位置決めすることを可能にする。 The first non-magnetic spacer 46 can accurately define the second gap length G 2 of the second gap 43. The second non-magnetic spacer 47 can accurately define the third gap length G 3 of the third gap 44. The first non-magnetic spacer 46 and the second non-magnetic spacer 47 make it possible to accurately position the magnetic cylinder 40 with respect to the first magnetic core 10 and the second magnetic core 20.
 第3非磁性スペーサ48は、磁性筒体40の内表面40bと第1中央磁脚12の側面とに接触しており、かつ、磁性筒体40の内表面40bと第2中央磁脚22の側面とに接触している。第3非磁性スペーサ48は、第1磁性コア10の第1中央磁脚12及び第2磁性コア20の第2中央磁脚22に対して磁性筒体40を正確に位置決めすることを可能にする。第3非磁性スペーサ48は、第1ギャップ17を充填している。第3非磁性スペーサ48は、第1ギャップ17の第1ギャップ長G1を正確に規定することができる。第3非磁性スペーサ48は、第1磁性コア10(第1中央磁脚12)と第2磁性コア20(第2中央磁脚22)とを互いに正確に位置決めすることを可能にする。 The third non-magnetic spacer 48 is in contact with the inner surface 40b of the magnetic cylinder 40 and the side surface of the first central magnetic leg 12, and the inner surface 40b of the magnetic cylinder 40 and the second central magnetic leg 22. It is in contact with the side surface. The third non-magnetic spacer 48 enables the magnetic cylinder 40 to be accurately positioned with respect to the first central magnetic leg 12 of the first magnetic core 10 and the second central magnetic leg 22 of the second magnetic core 20. .. The third non-magnetic spacer 48 fills the first gap 17. The third non-magnetic spacer 48 can accurately define the first gap length G 1 of the first gap 17. The third non-magnetic spacer 48 enables the first magnetic core 10 (first central magnetic leg 12) and the second magnetic core 20 (second central magnetic leg 22) to be accurately positioned with each other.
 本実施の形態のデュアルモードチョークコイル1bの効果は、実施の形態1のデュアルモードチョークコイル1の効果に加えて、以下の効果を奏する。 The effect of the dual mode choke coil 1b of the present embodiment has the following effects in addition to the effect of the dual mode choke coil 1 of the first embodiment.
 本実施の形態のデュアルモードチョークコイル1bは、第1非磁性スペーサ46と、第2非磁性スペーサ47とをさらに備える。第1非磁性スペーサ46は、第2ギャップ43を充填して、磁性筒体40と第1ヨーク11とに接触している。第2非磁性スペーサ47は、第3ギャップ44を充填して、磁性筒体40と第2ヨーク21とに接触している。 The dual mode choke coil 1b of the present embodiment further includes a first non-magnetic spacer 46 and a second non-magnetic spacer 47. The first non-magnetic spacer 46 fills the second gap 43 and is in contact with the magnetic cylinder 40 and the first yoke 11. The second non-magnetic spacer 47 fills the third gap 44 and is in contact with the magnetic cylinder 40 and the second yoke 21.
 そのため、磁性筒体40は、第1磁性コア10と第2磁性コア20とに対して正確に位置決めされ得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1bのノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic cylinder 40 can be accurately positioned with respect to the first magnetic core 10 and the second magnetic core 20. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1bは、第3非磁性スペーサ48をさらに備える。第3非磁性スペーサ48は、磁性筒体40の内表面40bと第1中央磁脚12の第1側面とに接触しており、かつ、磁性筒体40の内表面40bと第2中央磁脚22の第2側面とに接触している。 The dual mode choke coil 1b of the present embodiment further includes a third non-magnetic spacer 48. The third non-magnetic spacer 48 is in contact with the inner surface 40b of the magnetic cylinder 40 and the first side surface of the first central magnetic leg 12, and the inner surface 40b of the magnetic cylinder 40 and the second central magnetic leg 12 are in contact with each other. It is in contact with the second side surface of 22.
 そのため、磁性筒体40は、第1磁性コア10の第1中央磁脚12と第2磁性コア20の第2中央磁脚22とに対して正確に位置決めされ得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1bのノイズ除去能力が低下することが抑制され得る。 Therefore, the magnetic cylinder 40 can be accurately positioned with respect to the first central magnetic leg 12 of the first magnetic core 10 and the second central magnetic leg 22 of the second magnetic core 20. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
 本実施の形態のデュアルモードチョークコイル1bでは、第3非磁性スペーサ48は、第1ギャップ17を充填している。 In the dual mode choke coil 1b of the present embodiment, the third non-magnetic spacer 48 fills the first gap 17.
 そのため、第1磁性コア10(第1中央磁脚12)と第2磁性コア20(第2中央磁脚22)とは、互いに正確に位置決めされ得る。ノーマルモードノイズ電流に対するデュアルモードチョークコイル1bのノイズ除去能力が低下することが抑制され得る。 Therefore, the first magnetic core 10 (first central magnetic leg 12) and the second magnetic core 20 (second central magnetic leg 22) can be accurately positioned with each other. It is possible to suppress a decrease in the noise removing ability of the dual mode choke coil 1b with respect to the normal mode noise current.
 今回開示された実施の形態1及び実施の形態2はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be considered that the first and second embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,1b デュアルモードチョークコイル、2 電力変換装置、3 直流電源、4a 正側電線、4b 負側電線、5,6a,6b コンデンサ、7 アース、8 インバータ、9 負荷、10 第1磁性コア、11 第1ヨーク、12 第1中央磁脚、12a 端面、13 第1サイド磁脚、13a 端面、14 第2サイド磁脚、14a 端面、17 第1ギャップ、20 第2磁性コア、21 第2ヨーク、22 第2中央磁脚、22a 端面、23 第3サイド磁脚、23a 端面、24 第4サイド磁脚、24a 端面、30 第1コイル、31,32 端子、35 第2コイル、36,37 端子、40 磁性筒体、40a 外表面、40b 内表面、41,42 端面、43 第2ギャップ、44 第3ギャップ、46 第1非磁性スペーサ、47 第2非磁性スペーサ、48 第3非磁性スペーサ、50,51 第1交流磁束、53,54 直流磁束、56 第2交流磁束。 1,1b dual mode choke coil, 2 power converter, 3 DC power supply, 4a positive wire, 4b negative wire, 5, 6a, 6b capacitor, 7 earth, 8 inverter, 9 load, 10 first magnetic core, 11 1st yoke, 12 1st central magnetic leg, 12a end face, 13 1st side magnetic leg, 13a end face, 14 2nd side magnetic leg, 14a end face, 17 1st gap, 20 2nd magnetic core, 21 2nd yoke, 22 2nd central magnetic leg, 22a end face, 23 3rd side magnetic leg, 23a end face, 24 4th side magnetic leg, 24a end face, 30 1st coil, 31, 32 terminals, 35 2nd coil, 36, 37 terminals, 40 magnetic cylinder, 40a outer surface, 40b inner surface, 41, 42 end face, 43 second gap, 44 third gap, 46 first non-magnetic spacer, 47 second non-magnetic spacer, 48 third non-magnetic spacer, 50 , 51 1st AC magnetic flux, 53, 54 DC magnetic flux, 56 2nd AC magnetic flux.

Claims (14)

  1.  ノーマルモードノイズ電流とコモンモードノイズ電流とを除去し得るデュアルモードチョークコイルであって、前記デュアルモードチョークコイルは、
     第1磁性コアと、
     第2磁性コアと、
     磁性筒体と、
     第1コイルと、
     第2コイルとを備え、
     前記第1磁性コアは、第1ヨークと、第1サイド磁脚と、第2サイド磁脚と、第1中央磁脚とを含み、前記第1サイド磁脚と前記第2サイド磁脚と前記第1中央磁脚とは前記第1ヨークから延在しており、前記第1中央磁脚は前記第1サイド磁脚と前記第2サイド磁脚との間に配置されており、
     前記第2磁性コアは、第2ヨークと、第3サイド磁脚と、第4サイド磁脚と、第2中央磁脚とを含み、前記第3サイド磁脚と前記第4サイド磁脚と前記第2中央磁脚とは前記第2ヨークから延在しており、前記第2中央磁脚は前記第3サイド磁脚と前記第4サイド磁脚との間に配置されており、
     前記第1サイド磁脚と前記第3サイド磁脚とは互いに接触しており、
     前記第2サイド磁脚と前記第4サイド磁脚とは互いに接触しており、
     前記第1中央磁脚と前記第2中央磁脚とは、第1ギャップを空けて、互いに離間されており、
     前記第1中央磁脚及び前記第2中央磁脚は、前記磁性筒体内に挿入されており、かつ、前記磁性筒体から離間されており、
     前記磁性筒体は、第2ギャップを空けて、前記第1ヨークから離間されており、
     前記磁性筒体は、第3ギャップを空けて、前記第2ヨークから離間されており、
     前記第1コイルは、前記第1サイド磁脚と前記第3サイド磁脚とに巻回されており、
     前記第2コイルは、前記第2サイド磁脚と前記第4サイド磁脚とに巻回されており、
     前記第1コイルの第1巻回方向は、前記第2コイルの第2巻回方向と反対であり、
     交流磁束に対する第1中央磁路の第1磁気抵抗は、前記交流磁束に対する第2中央磁路の第2磁気抵抗より小さく、前記交流磁束は、前記第1コイル及び前記第2コイルを流れる前記ノーマルモードノイズ電流によって形成され、
     直流磁束に対する前記第1中央磁路の第3磁気抵抗は、前記直流磁束に対する前記第2中央磁路の第4磁気抵抗より大きく、前記直流磁束は、前記第1コイル及び前記第2コイルを流れる直流電流によって形成され、
     前記第1中央磁路は、前記第1中央磁脚と前記第1ギャップと前記第2中央磁脚とによって形成される磁路であり、
     前記第2中央磁路は、前記第2ギャップと前記磁性筒体と前記第3ギャップとによって形成される磁路である、デュアルモードチョークコイル。
    A dual mode choke coil capable of removing a normal mode noise current and a common mode noise current, wherein the dual mode choke coil is
    With the first magnetic core
    With the second magnetic core
    Magnetic cylinder and
    With the first coil
    Equipped with a second coil
    The first magnetic core includes a first yoke, a first side magnetic leg, a second side magnetic leg, and a first central magnetic leg, and the first side magnetic leg, the second side magnetic leg, and the above. The first central magnetic leg extends from the first yoke, and the first central magnetic leg is arranged between the first side magnetic leg and the second side magnetic leg.
    The second magnetic core includes a second yoke, a third side magnetic leg, a fourth side magnetic leg, and a second central magnetic leg, and the third side magnetic leg, the fourth side magnetic leg, and the above. The second central magnetic leg extends from the second yoke, and the second central magnetic leg is arranged between the third side magnetic leg and the fourth side magnetic leg.
    The first side magnetic leg and the third side magnetic leg are in contact with each other.
    The second side magnetic leg and the fourth side magnetic leg are in contact with each other.
    The first central magnetic leg and the second central magnetic leg are separated from each other with a first gap.
    The first central magnetic leg and the second central magnetic leg are inserted into the magnetic cylinder and separated from the magnetic cylinder.
    The magnetic cylinder is separated from the first yoke with a second gap.
    The magnetic cylinder is separated from the second yoke with a third gap.
    The first coil is wound around the first side magnetic leg and the third side magnetic leg.
    The second coil is wound around the second side magnetic leg and the fourth side magnetic leg.
    The first winding direction of the first coil is opposite to the second winding direction of the second coil.
    The first magnetic resistance of the first central magnetic path with respect to the AC magnetic flux is smaller than the second magnetic resistance of the second central magnetic path with respect to the AC magnetic flux, and the AC magnetic flux flows through the first coil and the second coil. Formed by modal noise current,
    The third magnetic resistance of the first central magnetic path with respect to the DC magnetic flux is larger than the fourth magnetic resistance of the second central magnetic path with respect to the DC magnetic flux, and the DC magnetic flux flows through the first coil and the second coil. Formed by DC current,
    The first central magnetic path is a magnetic path formed by the first central magnetic leg, the first gap, and the second central magnetic leg.
    The second central magnetic path is a dual mode choke coil which is a magnetic path formed by the second gap, the magnetic cylinder, and the third gap.
  2.  前記ノーマルモードノイズ電流によって形成される交流磁場に対する前記第1中央磁脚の第1比透磁率と、前記交流磁場に対する前記第2中央磁脚の第2比透磁率とは、各々、前記交流磁場に対する前記磁性筒体の第3比透磁率より大きく、
     直流磁場に対する前記磁性筒体の第4比透磁率は、前記直流磁場に対する前記第1中央磁脚の第5比透磁率より大きく、かつ、前記直流磁場に対する前記第2中央磁脚の第6比透磁率より大きい、請求項1に記載のデュアルモードチョークコイル。
    The first relative magnetic permeability of the first central magnetic leg with respect to the AC magnetic field formed by the normal mode noise current and the second relative magnetic permeability of the second central magnetic leg with respect to the AC magnetic field are the AC magnetic fields, respectively. Greater than the third relative magnetic permeability of the magnetic cylinder with respect to
    The fourth relative magnetic permeability of the magnetic cylinder with respect to the DC magnetic field is larger than the fifth relative magnetic permeability of the first central magnetic leg with respect to the DC magnetic field, and the sixth ratio of the second central magnetic leg with respect to the DC magnetic field. The dual mode choke coil according to claim 1, which is larger than the magnetic permeability.
  3.  前記第1比透磁率及び前記第2比透磁率は、各々、前記第3比透磁率の10倍以上であり、かつ、前記交流磁場に対する真空の第7比透磁率の10倍以上であり、
     前記第4比透磁率は、前記第5比透磁率の10倍以上であり、前記第6比透磁率の10倍以上であり、かつ、前記直流磁場に対する真空の第8比透磁率の100倍以上であり、
     前記第5比透磁率は、前記第8比透磁率の10倍以上であり、
     前記第6比透磁率は、前記第8比透磁率の10倍以上である、請求項2に記載のデュアルモードチョークコイル。
    The first specific magnetic permeability and the second specific magnetic permeability are each 10 times or more the third specific magnetic permeability and 10 times or more the seventh specific magnetic permeability of the vacuum with respect to the AC magnetic field.
    The 4th specific magnetic permeability is 10 times or more the 5th specific magnetic permeability, 10 times or more the 6th specific magnetic permeability, and 100 times the 8th specific magnetic permeability of the vacuum with respect to the DC magnetic field. That's it,
    The fifth relative magnetic permeability is 10 times or more the eighth specific magnetic permeability.
    The dual mode choke coil according to claim 2, wherein the sixth relative magnetic permeability is 10 times or more the eighth specific magnetic permeability.
  4.  前記第4比透磁率は、1000以上である、請求項2または請求項3に記載のデュアルモードチョークコイル。 The dual mode choke coil according to claim 2 or 3, wherein the fourth relative magnetic permeability is 1000 or more.
  5.  前記第1比透磁率と前記第2比透磁率とは、各々、100以上である、請求項2から請求項4のいずれか一項に記載のデュアルモードチョークコイル。 The dual mode choke coil according to any one of claims 2 to 4, wherein the first specific magnetic permeability and the second specific magnetic permeability are 100 or more, respectively.
  6.  前記第1ギャップの第1ギャップ長は、前記第2ギャップの第2ギャップ長と前記第3ギャップの第3ギャップ長との和より大きい、請求項1から請求項5のいずれか一項に記載のデュアルモードチョークコイル。 The first gap length of the first gap is larger than the sum of the second gap length of the second gap and the third gap length of the third gap, according to any one of claims 1 to 5. Dual mode choke coil.
  7.  前記磁性筒体における前記直流磁束の磁束密度は、前記磁性筒体の飽和磁束密度より小さい、請求項1から請求項6のいずれか一項に記載のデュアルモードチョークコイル。 The dual mode choke coil according to any one of claims 1 to 6, wherein the magnetic flux density of the DC magnetic flux in the magnetic cylinder is smaller than the saturation magnetic flux density of the magnetic cylinder.
  8.  前記飽和磁束密度は、1.5テスラ以上である、請求項7に記載のデュアルモードチョークコイル。 The dual mode choke coil according to claim 7, wherein the saturation magnetic flux density is 1.5 tesla or more.
  9.  前記磁性筒体は、一般構造用圧延鋼材、珪素鋼板またはパーマロイで形成されており、
     前記第1磁性コア及び前記第2磁性コアは、フェライトコア、アモルファスコアまたはアイアンダストコアである、請求項1から請求項8のいずれか一項に記載のデュアルモードチョークコイル。
    The magnetic cylinder is made of rolled steel for general structure, silicon steel plate or permalloy.
    The dual mode choke coil according to any one of claims 1 to 8, wherein the first magnetic core and the second magnetic core are a ferrite core, an amorphous core, or an iron dust core.
  10.  前記第2ギャップを充填して、前記磁性筒体と前記第1ヨークとに接触している第1非磁性スペーサと、
     前記第3ギャップを充填して、前記磁性筒体と前記第2ヨークとに接触している第2非磁性スペーサとをさらに備える、請求項1から請求項9のいずれか一項に記載のデュアルモードチョークコイル。
    A first non-magnetic spacer that fills the second gap and is in contact with the magnetic cylinder and the first yoke.
    The dual according to any one of claims 1 to 9, further comprising a second non-magnetic spacer in contact with the magnetic cylinder and the second yoke by filling the third gap. Mode choke coil.
  11.  前記第1非磁性スペーサと前記第2非磁性スペーサとは、樹脂またはセラミックで形成されている、請求項10に記載のデュアルモードチョークコイル。 The dual mode choke coil according to claim 10, wherein the first non-magnetic spacer and the second non-magnetic spacer are made of resin or ceramic.
  12.  前記磁性筒体の内表面と前記第1中央磁脚の第1側面とに接触しており、かつ、前記磁性筒体の前記内表面と前記第2中央磁脚の第2側面とに接触している第3非磁性スペーサをさらに備える、請求項1から請求項11のいずれか一項に記載のデュアルモードチョークコイル。 The inner surface of the magnetic cylinder is in contact with the first side surface of the first central magnetic leg, and the inner surface of the magnetic cylinder is in contact with the second side surface of the second central magnetic leg. The dual mode choke coil according to any one of claims 1 to 11, further comprising a third non-magnetic spacer.
  13.  前記第3非磁性スペーサは、前記第1ギャップを充填している、請求項12に記載のデュアルモードチョークコイル。 The dual mode choke coil according to claim 12, wherein the third non-magnetic spacer fills the first gap.
  14.  前記第3非磁性スペーサは、樹脂またはセラミックで形成されている、請求項12または請求項13に記載のデュアルモードチョークコイル。 The dual mode choke coil according to claim 12 or 13, wherein the third non-magnetic spacer is made of resin or ceramic.
PCT/JP2020/015816 2020-04-08 2020-04-08 Dual mode choke coil WO2021205565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015816 WO2021205565A1 (en) 2020-04-08 2020-04-08 Dual mode choke coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015816 WO2021205565A1 (en) 2020-04-08 2020-04-08 Dual mode choke coil

Publications (1)

Publication Number Publication Date
WO2021205565A1 true WO2021205565A1 (en) 2021-10-14

Family

ID=78023006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015816 WO2021205565A1 (en) 2020-04-08 2020-04-08 Dual mode choke coil

Country Status (1)

Country Link
WO (1) WO2021205565A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237722A (en) * 1996-02-28 1997-09-09 Tamura Seisakusho Co Ltd Composite coil
JP2001285005A (en) * 2000-03-31 2001-10-12 Soshin Electric Co Ltd Noise filter
JP2009206178A (en) * 2008-02-26 2009-09-10 Hitachi Ferrite Electronics Ltd Noise removing coil component for electric power steering
JP2015053464A (en) * 2013-09-09 2015-03-19 台達電子企業管理(上海)有限公司 Inductor, and switching circuit including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237722A (en) * 1996-02-28 1997-09-09 Tamura Seisakusho Co Ltd Composite coil
JP2001285005A (en) * 2000-03-31 2001-10-12 Soshin Electric Co Ltd Noise filter
JP2009206178A (en) * 2008-02-26 2009-09-10 Hitachi Ferrite Electronics Ltd Noise removing coil component for electric power steering
JP2015053464A (en) * 2013-09-09 2015-03-19 台達電子企業管理(上海)有限公司 Inductor, and switching circuit including the same

Similar Documents

Publication Publication Date Title
US20190322525A1 (en) Magnet core
US11587726B2 (en) Coupled inductor structure
EP1498915B1 (en) Power inductor with reduced DC current saturation
JP7133566B2 (en) inverter
CN102856036B (en) A kind of difference common mode integrated inductor, electromagnetic interface filter and Switching Power Supply
US20110080244A1 (en) Inductor topologies with substantial common-mode and differential-mode inductance
US8400250B2 (en) Composite transformer
JP2010016234A (en) Choke coil for interleave-controlled power factor correction circuit
TW200807459A (en) Wave-filtering inductor
TW200826123A (en) Noise filter and manufacturing method thereof
JP2022137082A (en) Magnetic component, resonant electrical circuit, electrical converter, and electrical system
WO2021205565A1 (en) Dual mode choke coil
JP6674726B2 (en) Reactor and DC voltage converter
CN106057395A (en) Permanent magnet biased magnetic element assembly and method for implementing same
CN112041949B (en) Inductor assembly
JP4193942B2 (en) Inductance parts
JP2011138939A (en) Reactor
JPH11214229A (en) Common mode choke coil
JP7126567B2 (en) Choke coil and noise filter using it
JP2017092071A (en) Inductance element and evaluation method for inductance element
TWI382432B (en) Inductor
CN205943635U (en) Magnetic element assembly with permanent magnetism bias magnetic
JP2020155733A (en) Thin-film magnetic device
US20220319761A1 (en) Reactor
JP6819901B2 (en) Zero-phase reactor and inverter device using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP