WO2021205558A1 - Receiver and automatic gain control method - Google Patents

Receiver and automatic gain control method Download PDF

Info

Publication number
WO2021205558A1
WO2021205558A1 PCT/JP2020/015774 JP2020015774W WO2021205558A1 WO 2021205558 A1 WO2021205558 A1 WO 2021205558A1 JP 2020015774 W JP2020015774 W JP 2020015774W WO 2021205558 A1 WO2021205558 A1 WO 2021205558A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
threshold value
saturation level
time
digital signal
Prior art date
Application number
PCT/JP2020/015774
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022513760A priority Critical patent/JP7275383B2/en
Priority to PCT/JP2020/015774 priority patent/WO2021205558A1/en
Publication of WO2021205558A1 publication Critical patent/WO2021205558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control

Definitions

  • This disclosure relates to a receiver and an automatic gain control method.
  • AGC Automatic Gain Control
  • AGC has a function of attenuating the signal level of the received signal when a high power signal is received and amplifying the signal level of the received signal when a low power signal is received. This function may be performed on a digital signal digitally converted by an A / D (Analog / Digital) converter.
  • the present disclosure has been made to solve such a problem, and an object of the present disclosure is to provide a receiver and an automatic gain control method that enable stable signal processing for each environment in which the signal is used. ..
  • the receiver of the present disclosure includes an A / D converter that converts a received signal into a digital signal, and an AGC circuit that adjusts the amplitude level of the digital signal.
  • the AGC circuit includes a saturation level detection unit, a gain setting unit, a gain adjustment unit, and a parameter setting unit.
  • the saturation level detection unit detects the saturation level of the digital signal output from the A / D converter.
  • the gain setting unit sets the gain used for adjusting the amplitude level of the digital signal based on the saturation level detected by the saturation level detection unit.
  • the gain adjusting unit adjusts the amplitude level of the digital signal according to the gain set by the gain setting unit.
  • the parameter setting unit sets the parameters used in the saturation level detection unit based on the amplitude level of the digital signal output from the A / D converter.
  • the automatic gain control method of the present disclosure is an automatic gain control method of a receiver, which includes a step of detecting a saturation level of a digital signal output from an A / D converter that converts a received signal into a digital signal. It is used to set the parameters used to detect the saturation level based on the amplitude level of the digital signal output from the A / D converter, and to adjust the amplitude level of the digital signal based on the detected saturation level. It includes a step of setting the gain and a step of adjusting the amplitude level of the digital signal according to the set gain.
  • the parameters used for detecting the saturation level of the digital signal are set based on the amplitude level of the digital signal output from the A / D converter. It is possible to detect the saturation level according to the nature of the received signal regardless of the environment in which it is used.
  • FIG. It is a timing chart which shows an example of the case where the threshold value of the amplitude determination part decreases. It is a figure which shows the structure of the parameter setting part in Embodiment 3.
  • FIG. It is a timing chart which shows the parameter setting example by the parameter setting part of Embodiment 3.
  • FIG. 1 is a block diagram showing a configuration of a receiver according to the first embodiment of the present disclosure.
  • the receiver 100 includes a receiving unit 30 and a demodulating unit 40.
  • the receiving unit 30 includes an A / D converter 10 and an AGC circuit 20.
  • the A / D converter 10 samples an analog received signal at a predetermined frequency and converts it into a discrete digital signal.
  • the AGC circuit 20 is configured to receive a digital signal output from the A / D converter 10 and automatically adjust the amplitude level of the digital signal.
  • the demodulation unit 40 demodulates the digital signal whose amplitude level has been adjusted by the reception unit 30, and restores the signal transmitted from the transmitter (not shown).
  • the AGC circuit 20 includes a gain adjusting unit 21, a gain setting unit 22, a saturation level detecting unit 23, and a parameter setting unit 24.
  • the gain adjusting unit 21 receives the digital signal output from the A / D converter 10 and follows the gain set by the gain setting unit 22 (sometimes referred to as “gain”, “amplification factor”, etc.). , Adjust the amplitude level of the received digital signal.
  • the digital signal output from the A / D converter 10 may be referred to as an "input signal" when viewed from the AGC circuit 20.
  • the digital signal whose amplitude level has been adjusted by the gain adjusting unit 21 is output to the demodulation unit 40.
  • the gain setting unit 22 receives the saturation level (described later) of the input signal detected by the saturation level detection unit 23 from the saturation level detection unit 23, and sets the gain of the gain adjustment unit 21 based on the saturation level. For example, the relationship between the saturation level of the input signal and the gain of the gain adjusting unit 21 is obtained in advance, and the gain setting unit 22 converts the saturation level received from the saturation level detecting unit 23 into a gain using this relationship. Output to the gain adjustment unit 21.
  • the relationship between the saturation level of the input signal and the gain is associated so that, for example, the higher the saturation level, the smaller the gain.
  • the saturation level detection unit 23 detects the saturation level of the digital signal (input signal) output from the A / D converter 10.
  • the saturation level is a signal level at which the receiver 100 is not saturated, and in the present embodiment, the moving average value of the digital signal (input signal) output from the A / D converter 10 is defined as the “saturation level”.
  • the AGC adjusts the gain so that the gain becomes small when the amplitude level of the input signal is high so that the receiver operates within the saturation level, but when a sudden amplitude fluctuation occurs due to disturbance or the like. , Excessive gain adjustment may occur. Therefore, in the present embodiment, the moving average value of the input signal is calculated, and this moving average value is used as the state value that characterizes the saturation level of the receiver 100. Then, the gain of the gain adjusting unit 21 is set by the gain setting unit 22 based on the saturation level detected by the saturation level detecting unit 23 so that the receiver 100 operates within the saturation level.
  • the receiver is required to realize stable signal processing for each environment (place, time, application, etc.) in which the receiver is used.
  • the parameters used for AGC processing are fixed, the signal amplitude adjustment by AGC may be insufficient depending on the environment in which the receiver is used, and stable signal processing may not be realized.
  • a parameter setting unit 24 for setting parameters used for AGC processing based on an input signal receives the digital signal (input signal) output from the A / D converter 10, and sets the parameter used for detecting the saturation level in the saturation level detection unit 23 to the amplitude level of the input signal. Set based on. More specifically, the parameter setting unit 24 sets the number of stages of the moving average filter for calculating the moving average value of the input signal in the saturation level detection unit 23 based on the amplitude level of the input signal. As a result, the saturation level can be appropriately detected according to the amplitude fluctuation characteristic of the received signal, and stable signal processing can be performed regardless of the environment in which the receiver is used.
  • the parameter setting unit 24 and the saturation level detection unit 23 will be described in detail.
  • FIG. 2 is a block diagram showing the configuration of the parameter setting unit 24 shown in FIG. With reference to FIG. 2, the parameter setting unit 24 includes an amplitude determination unit 50, a counter 52, and a selector 54.
  • the amplitude determination unit 50 receives the digital signal (input signal) output from the A / D converter 10 and determines whether or not the amplitude level of the input signal exceeds the threshold value Da.
  • the threshold value Da is appropriately preset to a level at which sudden fluctuations in the amplitude of the input signal due to disturbance or the like can be distinguished. This determination is performed in synchronization with the sampling of the A / D converter 10. Then, the amplitude determination unit 50 outputs the determination result to the counter 52.
  • the counter 52 counts the number of times the amplitude level of the input signal exceeds the threshold value Da based on the determination result of the amplitude determination unit 50.
  • the counter 52 can detect the length of time that the amplitude level of the input signal exceeds the threshold value Da, and the larger the count value of the counter 52, the more the amplitude level of the input signal exceeds the threshold value Da. The longer the time spent and the smaller the count value, the shorter the time the amplitude level exceeds the threshold value Da.
  • the count by the counter 52 is performed up to the parameter update timing, and when the parameter is set in the saturation level detection unit 23 at the parameter update timing, the count value is reset to 0.
  • the parameter update timing is generated, for example, every several samplings or a dozen or so samplings of the A / D converter 10. Then, the counter 52 outputs the count value (that is, the number of times the amplitude level of the input signal exceeds the threshold value) to the selector 54.
  • the selector 54 selects one of the parameters Pa, Pb, ... Pn based on the count value from the counter 52 at that time, and sets the selected parameter in the saturation level detection unit 23. Output to.
  • the parameters Pa, Pb, ... Pn specify the number of stages of the moving average filter used in the saturation level detection unit 23 to calculate the moving average of the input signal.
  • the relationship between the count value by the counter 52 and the parameters Pa, Pb, ... Pn is associated in advance, and the selector 54 uses the relationship to select a parameter corresponding to the count value received from the counter 52. Output to the saturation level detection unit 23.
  • FIG. 3 is a timing chart showing an example of parameter setting by the parameter setting unit 24.
  • Tb indicates the interval of the parameter update timing.
  • the parameter selected by the selector 54 based on the count value of the counter 52 is set in the saturation level detection unit 23.
  • the parameter of the saturation level detection unit 23 becomes the parameter Pa corresponding to the counter output "0".
  • the parameter Pa is also set as an initial value in the section from time T0 to T1.
  • the parameter of the saturation level detection unit 23 is set to the parameter Pb (Pb ⁇ Pa) corresponding to the counter output “2”.
  • FIG. 4 is a block diagram showing the configuration of the saturation level detection unit 23 shown in FIG.
  • the saturation level detection unit 23 includes a moving average calculation unit 60 and a selector 70.
  • the moving average calculation unit 60 includes a plurality of moving average filters 62, 64, ... 66, and each moving average filter 62, 64, ... 66 is a digital signal output from the A / D converter 10. (Input signal) is received.
  • the moving average filters 62, 64, ... 66 have different numbers of stages for calculating the moving average value of the input signal.
  • the moving average filter 62 is a filter having the number of stages A (for example, 3 stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the most recent A times.
  • the moving average filter 64 is a filter having the number of stages B (for example, 5 stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the most recent B times.
  • the moving average filter 66 is a filter having the number of stages X (for example, n stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the latest X times.
  • the amplitude fluctuation of the received signal due to disturbance or the like is large, and the amplitude level of the input signal is the threshold value. If Da is frequently exceeded, a moving average filter with a large number of stages can be selected according to the parameters corresponding to the large count values so as to suppress excessive gain adjustment. On the other hand, when the amplitude fluctuation of the received signal is small, a moving average filter having a small number of stages can be selected according to the parameter corresponding to the small count value in order to improve the convergence of the gain adjustment. As a result, the moving average processing according to the amplitude fluctuation characteristic of the received signal can be realized, and the saturation level can be detected to realize stable signal processing.
  • the parameter of the saturation level detection unit 23 is set to the parameter Pa in the section of the time T10 to T12 and the parameter Pb in the section of the time T12 to T14.
  • the saturation level at the sampling timing of # 4 is calculated based on the amplitude level of the input signals of # 0 to # 4, for example.
  • the saturation level at the time of the sampling timing of # 5 is calculated based on the amplitude level of the input signals of # 1 to # 5.
  • the saturation level at the sampling timing of # 10 is calculated based on the amplitude level of the input signals of # 4 to # 10.
  • the saturation level (moving average value of the input signal) is calculated using the parameters set for each parameter update timing, and based on the calculated saturation level.
  • the gain adjustment of AGC is performed. Therefore, it is possible to realize appropriate gain control according to the amplitude fluctuation characteristic of the received signal regardless of the environment in which the receiver 100 is used.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the AGC circuit 20.
  • the AGC circuit 20 is composed of, for example, a DSP (Digital Signal Processor), and includes a CPU (Central Processing Unit) 26 and a memory (ROM (Read Only Memory) and RAM (Random Access Memory)) 27. , Including an input / output port 28 for inputting / outputting various signals.
  • the CPU 26 expands the program stored in the ROM of the memory 27 into a RAM or the like and executes the program.
  • the processing of the AGC circuit 20 is described in the program stored in the ROM.
  • FIG. 7 is a flowchart showing an example of a processing procedure executed in the AGC circuit 20.
  • the series of processes shown in this flowchart are repeatedly executed at predetermined cycles (for example, sampling cycles).
  • the AGC circuit 20 inputs a digital signal output from the A / D converter 10 (step S10). This signal input is executed every time the received signal is sampled in the A / D converter 10.
  • the AGC circuit 20 determines whether or not the amplitude level of the input signal is larger than the threshold value Da (step S20).
  • a preset value is used for the threshold value Da.
  • the AGC circuit 20 adds the count value of the counter 52 (step S30).
  • the counter 52 is not added.
  • the AGC circuit 20 determines whether or not it is the parameter update timing (step S40). For example, as shown in FIGS. 3 and 5, the parameter update timing can be generated every 5 samplings in the A / D converter 10.
  • step S40 the AGC circuit 20 determines the parameter (number of stages of the moving average filter) used for detecting the saturation level based on the count value of the counter 52. Parameters) are set (step S50). When the parameter is set, the count value of the counter 52 is reset to 0 (step S60). If it is determined in step S40 that it is not the parameter update timing (NO in step S40), the processes of steps S50 and S60 are not executed and the process shifts to step S70.
  • the parameter number of stages of the moving average filter
  • the AGC circuit 20 calculates the moving average of the input signal using the moving average filter corresponding to the parameter set in step S50 (step S70). More precisely according to the configuration shown in FIG. 4, the AGC circuit 20 selects the output of the moving average filter corresponding to the parameter set in step S50.
  • the output of the moving average filter calculated (or selected) corresponds to the detected value of the saturation level.
  • the AGC circuit 20 sets the gain used for adjusting the amplitude level of the input signal based on the detected saturation level (step S80). Basically, the gain is set so that the higher the saturation level, the smaller the amplitude level after the amplitude adjustment, and the lower the saturation level, the larger the amplitude level after the amplitude adjustment. Then, the AGC circuit 20 adjusts the amplitude level of the input signal according to the set gain (step S90).
  • the parameter (number of stages of the moving average filter) used for detecting the saturation level of the digital signal based on the amplitude level of the digital signal output from the A / D converter 10. Is set.
  • the saturation level can be detected according to the nature of the received signal regardless of the environment in which the receiver 100 is used. Therefore, according to the first embodiment, stable signal processing can be realized for each environment in which the receiver 100 is used.
  • Embodiment 2 since the threshold value Da used in the amplitude determination unit 50 (FIG. 2) of the parameter setting unit 24 is a fixed value, for example, input signals exceeding the threshold value Da are continuous or threshold. In the case of a signal characteristic in which input signals lower than the value Da are continuous, the count value of the counter 52 becomes constant and the parameters are fixed. If the parameters are fixed, the gain adjustment may be stagnant in a situation where the gain adjustment has not progressed, such as immediately after the start of communication.
  • the threshold value Da used in the amplitude determination unit 50 (FIG. 2) of the parameter setting unit 24 is a fixed value, for example, input signals exceeding the threshold value Da are continuous or threshold. In the case of a signal characteristic in which input signals lower than the value Da are continuous, the count value of the counter 52 becomes constant and the parameters are fixed. If the parameters are fixed, the gain adjustment may be stagnant in a situation where the gain adjustment has not progressed, such as immediately after the start of communication.
  • the parameter is suppressed from being fixed by making the threshold value Da variable.
  • the threshold value Da is changed based on the count value of the counter 52.
  • the user measures the disturbance level of the received signal in advance before installing the receiver, and the measurement result is used. A procedure for setting the threshold value Da based on the above is required. In the second embodiment, since the threshold value Da is changed based on the count value of the counter 52, the above procedure by the user becomes unnecessary.
  • the configuration of the parameter setting unit is different from that of the receiver of the first embodiment.
  • FIG. 8 is a diagram showing a configuration of a parameter setting unit according to the second embodiment.
  • FIG. 8 corresponds to FIG. 2 described in the first embodiment.
  • the parameter setting unit 24A in the second embodiment further includes the threshold value setting unit 56 in the configuration of the parameter setting unit 24 in the first embodiment shown in FIG.
  • the threshold value setting unit 56 sets the threshold value used in the amplitude determination unit 50 based on the count value of the counter 52. Specifically, the threshold value setting unit 56 sets the initial value of the threshold value to Da, raises the threshold value when the count value of the counter 52 is large, and raises the threshold value when the count value is small. reduce. That is, when the amplitude level of the input signal exceeds the threshold value for a long time (the count value of the counter 52 is large), the threshold value setting unit 56 increases the threshold value in the amplitude determination unit 50. When the amplitude level of the input signal exceeds the threshold value for a short time (count value is small), the threshold value in the amplitude determination unit 50 is reduced.
  • the threshold value is the initial value Da in the section from time T20 to T21, and the input signal exceeds the threshold value Da at the sampling timings of # 0, # 1, # 2, and # 4. There is. Therefore, the counter output (count value of the counter 52) is relatively large, and the selector 54 outputs the parameter Pa corresponding to the counter output.
  • the threshold value setting unit 56 raises the threshold value by X (X> 0) because the counter output is large (Da + X).
  • the input signals exceeding the threshold value (Da + X) become # 6 and # 9, and the counter output (count value of the counter 52) decreases. Therefore, the selector 54 outputs the parameter Pb corresponding to this counter output. That is, in the section from time T20 to T21, the parameter Pa corresponding to the count value based on the threshold value Da is set, and in the section from time T21 to T22, the parameter Pb corresponding to the count value based on the threshold value (Da + X) is set. (Pb ⁇ Pa) is set.
  • the threshold value is the initial value Da in the section from time T30 to T31, and the input signal exceeds the threshold value Da at the sampling timings of # 2 and # 4.
  • the counter 52 counts this number of times, and the selector 54 outputs the parameter Pc corresponding to the count value.
  • the threshold value setting unit 56 determines that the counter output is relatively small, and lowers the threshold value by X (X> 0) (Da-X).
  • the selector 54 outputs the parameter Pd corresponding to this counter output. That is, in the section from time T30 to T31, the parameter Pc corresponding to the count value based on the threshold value Da is set, and in the section from time T23 to T32, it corresponds to the count value based on the threshold value (Da-X).
  • the parameter Pd (Pc ⁇ Pd) is set.
  • the threshold value in the amplitude determination unit 50 is variable. If the threshold value is fixed, the parameter change based on the amplitude determination by the amplitude determination unit 50 may not function. For example, when the input signals exceeding the threshold value are continuous, the count value of the counter 52 becomes constant, and the parameters set in the saturation level detection unit 23 are fixed. Similarly, the parameters are fixed even when the input signals below the threshold value are continuous. Therefore, when the parameters are fixed, it is necessary for the user to measure the disturbance level of the received signal in advance before installing the receiver and set the threshold value based on the measurement result. ..
  • the threshold value is changed based on the count value of the counter 52, it is possible to suppress the parameter from being fixed even if the above input signals are continuous. can. Therefore, it is possible to suppress the stagnation of the gain adjustment in a situation where the gain adjustment has not progressed, such as immediately after the start of communication. Further, the user does not need to measure the disturbance level of the received signal in advance and set the threshold value based on the measurement result before installing the receiver.
  • Embodiment 3 In the first embodiment, the parameters are set based on the count value of the counter 52 at the parameter update timing. In this case, regardless of whether the amplitude level of the input signal exceeds the threshold value continuously or intermittently, if the number of times the amplitude level exceeds the threshold value is the same in a predetermined period, The same parameters are set.
  • the amplitude level intermittently exceeds the threshold value (hereinafter sometimes referred to as “intermittent saturation”), it is the stage where the amplitude adjustment is approaching convergence to some extent, and the parameter is changed. The need is not high.
  • the amplitude level continuously exceeds the threshold value immediately after the start of communication (hereinafter, may be referred to as “continuous saturation”), the amplitude adjustment has not progressed and the above-mentioned As such, it is necessary to change the parameters in order to prevent the parameters from being fixed and the gain adjustment from becoming stagnant.
  • the parameter fixation is suppressed by changing the threshold value based on the count value of the counter 52.
  • a method different from that of the second embodiment is shown. That is, in the third embodiment, the number of consecutive updates of the count value of the counter 52 is counted, and the parameter is set based on the number of consecutive updates.
  • Whether or not continuous saturation has occurred can be detected by the number of consecutive updates of the count value of the counter 52. Then, when the number of continuous updates of the count value is large, that is, when continuous saturation occurs, the saturation level detection unit 23 sets the parameter so that the saturation level is detected by the moving average filter having a small number of stages. Therefore, the responsiveness of the gain adjustment can be improved. As a result, the amplitude adjustment can be completed at an early stage.
  • the configuration of the parameter setting unit is different from that of the receiver of the first embodiment.
  • FIG. 11 is a diagram showing a configuration of a parameter setting unit according to the third embodiment. This FIG. 11 also corresponds to FIG. 2 described in the first embodiment.
  • the parameter setting unit 24B in the third embodiment further includes the differential filter 58 in the configuration of the parameter setting unit 24 in the first embodiment shown in FIG.
  • the differential filter 58 calculates the difference between the count values of the counter 52, and counts the number of consecutive times when the difference occurs.
  • the count value by the differential filter 58 corresponds to the number of consecutive updates of the count value of the counter 52, that is, corresponds to the measured value of the time when the amplitude level of the input signal continuously exceeds the threshold value.
  • the count by the differential filter 58 is also performed up to the parameter update timing as in the counter 52, and when the parameter is set in the saturation level detection unit 23 at the parameter update timing, the count value is reset to 0.
  • the differential filter 58 outputs a count value corresponding to the number of consecutive updates of the count value of the counter 52 to the selector 54. Then, in the third embodiment, the selector 54 selects one of the parameters Pa, Pb, ... Pn based on the count value received from the differential filter 58 at the parameter update timing, and is selected. The parameter is output to the saturation level detection unit 23.
  • FIG. 12 is a timing chart showing an example of parameter setting by the parameter setting unit 24B of the third embodiment.
  • the parameter selected by the selector 54 is set in the saturation level detection unit 23.
  • the amplitude level of the input signal exceeds the threshold value Da at sampling timings # 1 and # 5 to # 9, and the counter output of the counter 52 at time T41 at the parameter update timing. (A9) becomes “6".
  • the amplitude level of the input signal exceeds the threshold value Da at sampling timings # 10, # 12, # 14, # 16, # 17, and # 19, and at time T42 of the parameter update timing.
  • the counter output (A19) of the counter 52 is also “6”. That is, when looking at the counter output of the counter 52, the same count value is obtained in the section from time T40 to T41 and the section from time T41 to T42.
  • the parameter of the saturation level detection unit 23 is set to the parameter Pb based on the output of the differential filter 58.
  • the parameter of the saturation level detection unit 23 is set to the parameter Pc (Pc ⁇ Pb) based on the output of the differential filter 58.
  • the parameters in the section from time T41 to T42 are set based on the counter output (A9) of the counter 52 in the section from time T40 to T41, and the time is set.
  • the parameters in the section from time T42 to T43 are set based on the counter output (A19) of the counter 52 in the section from T41 to T42. Therefore, the parameters are not updated.
  • the parameter in the section of time T41 to T42 is set to Pb based on the continuous output of the differential filter 58 in the section of time T40 to T41, and the time T41 to T42. Based on the intermittent output of the differential filter 58 in the interval, the parameter in the interval from time T42 to T43 is set to Pc.
  • the differential filter 58 by providing the differential filter 58, it is possible to set parameters by distinguishing between continuous saturation and intermittent saturation. Then, when continuous saturation occurs, the parameter is set so that the saturation level detection unit 23 detects the saturation level with a moving average filter having a small number of stages. As a result, the responsiveness of the gain adjustment can be improved and the amplitude adjustment can be completed at an early stage.
  • the parameter update timing is fixed (constant interval), but in the fourth embodiment, the parameter update timing is variable. Specifically, when the amplitude stabilizes after the gain adjustment converges, the parameter update frequency is reduced to suppress unnecessary parameter updates, and continuous saturation occurs immediately after the start of communication. In this situation, the convergence of gain adjustment can be improved by increasing the frequency of parameter updates.
  • FIG. 13 is a block diagram showing a configuration of a receiver according to the fourth embodiment.
  • the receiver 100A includes a receiving unit 30A and a demodulating unit 40.
  • the receiving unit 30A includes an A / D converter 10 and an AGC circuit 20A.
  • the AGC circuit 20A further includes a parameter update timing adjusting unit 25, and includes a parameter setting unit 24B instead of the parameter setting unit 24.
  • the parameter setting unit 24B is as described with reference to FIG. 11 in the third embodiment.
  • the parameter update timing adjustment unit 25 adjusts the parameter setting timing (update timing) output from the parameter setting unit 24B to the saturation level detection unit 23. Specifically, the parameter update timing adjusting unit 25 lengthens the interval of the parameter update timing when intermittent saturation occurs, and continuous saturation occurs immediately after the start of communication or the like. In that case, the interval of parameter update timing is shortened.
  • FIG. 14 is a diagram showing the configuration of the parameter setting unit 24B and the parameter update timing adjustment unit 25 in the AGC circuit 20A shown in FIG.
  • the parameter setting unit 24B includes the differential filter 58.
  • the differential filter 58 calculates the difference between the count values of the counter 52, and counts the number of consecutive times when the difference occurs.
  • the parameter update timing adjustment unit 25 includes a timing output counter 75.
  • the timing output counter 75 increments the counter at a predetermined cycle, and when the count value exceeds the maximum increment number, outputs the parameter update timing to the parameter setting unit 24B.
  • the timing output counter 75 resets the count value to 0 when the parameter update timing is output to the parameter setting unit 24B.
  • the timing output counter 75 receives the count value by the differential filter 58, and changes the maximum increment number of the counter in the timing output counter 75 based on the count value. Specifically, when the count value of the differential filter 58 is small and intermittent saturation occurs, the timing output counter 75 raises the maximum increment number. As a result, the interval of the parameter update timing becomes long, and the parameter update frequency is suppressed.
  • the timing output counter 75 lowers the maximum increment number. As a result, the interval of the parameter update timing is shortened, and the frequency of parameter update is increased.
  • FIG. 15 is a timing chart showing an example of changing the parameter update timing.
  • the output of the differential filter 58 is intermittent (intermittent saturation) in the interval between times T50 and T51. Therefore, the maximum increment number of the timing output counter 75 is added by Nx1 to the initial value N.
  • the interval of the parameter update timing is extended by the time Tn (Tb + Tn), and the next parameter update timing is extended from the time T52 to the time T53.
  • the output of the differential filter 58 is intermittent even in the section from time T51 to T53. Therefore, the maximum increment number of the timing output counter 75 is added by Nx2 (Nx2> Nx1) to the initial value N. As a result, the interval of the parameter update timing is longer than the initial time by 2 Tn (Tb + 2 Tn), and the next parameter update timing is extended to the time T55.
  • FIG. 16 is a diagram for explaining the effect of expanding the parameter update timing interval.
  • FIG. 16 shows a waveform when the gain adjustment is converged and the amplitude of the signal is stable.
  • the upper row shows the waveform when the parameter update timing is not changed as a reference example, and the lower row shows the waveform when the parameter update timing interval is extended by the receiver 100A according to the fourth embodiment. ing.
  • the parameter update timing is fixed (every 10 sample timings in this example), the time is set even though the gain adjustment is converged and the amplitude is stable.
  • the parameters are updated unnecessarily at T61, T62, T63, ....
  • the parameter update timing interval is extended by adjusting the parameter update timing (30 sample timing in this example), and unnecessary parameter update is suppressed. There is.
  • FIG. 17 is a timing chart showing another example of changing the parameter update timing.
  • the continuous output of the differential filter 58 is seen in the interval from time T70 to T71 (continuous saturation). Therefore, the maximum increment number of the timing output counter 75 is subtracted by Nx1 with respect to the initial value N.
  • the interval of the parameter update timing is shortened by the time Tn (Tb-Tn), and the next parameter update timing is changed from the time T73 to the time T72.
  • the continuous output of the differential filter 58 is also observed in the section from time T71 to T72. Therefore, the maximum increment number of the timing output counter 75 is subtracted by Nx2 (Nx2> Nx1) with respect to the initial value N. As a result, the interval of the parameter update timing is shortened by 2 Tn (Tb-2Tn) from the initial time, and the next parameter update timing is changed to the time T74.
  • FIG. 18 is a diagram illustrating the effect of shortening the parameter update timing interval.
  • FIG. 18 shows the waveform when the gain adjustment has not converged.
  • the upper row shows the waveform when the parameter update timing is not changed as a reference example, and the lower row shows the waveform when the parameter update timing interval is shortened by the receiver 100A according to the fourth embodiment. ing.
  • the amplitude level of the input signal is a threshold value at sampling timings # 4 to # 9 and the like.
  • the parameter setting that reflects that Da is continuously exceeded is after time T82. Therefore, the convergence of the gain adjustment is prolonged.
  • the parameter update timing interval is shortened by adjusting the parameter update timing (every 10 sample timings in this example), and the amplitude level of the input signal is set at time T81.
  • a parameter is set that reflects that the threshold value Da is continuously exceeded. Therefore, the gain adjustment converges early.
  • the parameter update timing is variable. Then, when the amplitude is stable after the gain adjustment and convergence, it is possible to suppress the parameter update from being unnecessarily performed by reducing the parameter update frequency. On the other hand, in a situation where continuous saturation occurs immediately after the start of communication or the like, the convergence of gain adjustment can be improved by increasing the frequency of parameter updates.
  • the values Nx1, Nx2, ... That define the change speed of the parameter update timing may be different values depending on whether the parameter update timing interval is expanded or shortened.
  • the value for shortening the parameter update timing interval may be larger than the value for increasing the interval.

Abstract

Provided is a receiver in which an AGC circuit (20) includes a saturation level detection unit (23), a gain setting unit (22), a gain adjustment unit (21), and a parameter setting unit (24). The saturation level detection unit (23) detects the saturation level of a digital signal output from an A/D converter (10). The gain setting unit (22) sets the gain used in adjustment of the amplitude level of the digital signal on the basis of the saturation level detected by the saturation level detection unit (23). The gain adjustment unit (21) adjusts the amplitude level of the digital signal in accordance with the gain set by the gain setting unit (22). The parameter setting unit (24) sets a parameter used in the saturation level detection unit (23) on the basis of the amplitude level of the digital signal output from the A/D converter (10).

Description

受信機及び自動利得制御方法Receiver and automatic gain control method
 本開示は、受信機及び自動利得制御方法に関する。 This disclosure relates to a receiver and an automatic gain control method.
 無線通信機器、レーダー、GPS(Global Positioning System)等で用いられる受信機では、受信機を構成する各回路(増幅器、ミキサ、ADC(Analog-Digital Converter)等)の性能により、信号受信のダイナミックレンジが制限される。そこで、高いダイナミックレンジを実現するために、受信信号の信号レベル(振幅)を調整する自動利得制御(以下「AGC(Automatic Gain Control)」と称する。)が行なわれる場合がある。 In receivers used in wireless communication equipment, radar, GPS (Global Positioning System), etc., the dynamic range of signal reception depends on the performance of each circuit (amplifier, mixer, ADC (Analog-Digital Converter), etc.) that composes the receiver. Is restricted. Therefore, in order to realize a high dynamic range, automatic gain control (hereinafter referred to as "AGC (Automatic Gain Control)") for adjusting the signal level (amplitude) of the received signal may be performed.
 AGCは、ハイパワーの信号が受信されている場合には、受信信号の信号レベルを減衰させ、ローパワーの信号が受信されている場合には、受信信号の信号レベルを増幅させる機能を有する。この機能は、A/D(Analog/Digital)変換器によってデジタル変換されたデジタル信号に対して行なわれ得る。 AGC has a function of attenuating the signal level of the received signal when a high power signal is received and amplifying the signal level of the received signal when a low power signal is received. This function may be performed on a digital signal digitally converted by an A / D (Analog / Digital) converter.
 特開2016-25561号公報には、AGC回路に相当する可変利得増幅器において、2つの測定タイミングで信号の振幅を求め、両者を比較することにより可変利得増幅器の飽和を検出して利得を設定する手法が開示されている(特許文献1参照)。 In Japanese Patent Application Laid-Open No. 2016-25561, in a variable gain amplifier corresponding to an AGC circuit, the amplitude of a signal is obtained at two measurement timings, and the saturation of the variable gain amplifier is detected and the gain is set by comparing the two. The method is disclosed (see Patent Document 1).
特開2016-25561号公報Japanese Unexamined Patent Publication No. 2016-25561
 AGC回路を備える受信機においては、受信機が使用される環境(場所、時間、用途等)毎に安定した信号処理を実現することが求められる。しかしながら、AGCの処理に用いられるパラメータが固定化されていると(たとえば、予め設定された固定値)、受信機が使用される環境によっては、AGCによる信号の振幅調整が不十分となり、安定した信号処理を実現できない可能性がある。 In a receiver equipped with an AGC circuit, it is required to realize stable signal processing for each environment (location, time, application, etc.) in which the receiver is used. However, if the parameters used for AGC processing are fixed (for example, preset fixed values), the signal amplitude adjustment by AGC becomes insufficient and stable depending on the environment in which the receiver is used. Signal processing may not be possible.
 本開示は、かかる問題を解決するためになされたものであり、本開示の目的は、使用される環境毎に安定した信号処理を可能とする受信機及び自動利得制御方法を提供することである。 The present disclosure has been made to solve such a problem, and an object of the present disclosure is to provide a receiver and an automatic gain control method that enable stable signal processing for each environment in which the signal is used. ..
 本開示の受信機は、受信信号をデジタル信号に変換するA/D変換器と、デジタル信号の振幅レベルを調整するAGC回路とを備える。AGC回路は、飽和レベル検出部と、利得設定部と、利得調整部と、パラメータ設定部とを含む。飽和レベル検出部は、A/D変換器から出力されたデジタル信号の飽和レベルを検出する。利得設定部は、飽和レベル検出部により検出される飽和レベルに基づいて、デジタル信号の振幅レベルの調整に用いる利得を設定する。利得調整部は、利得設定部により設定される利得に従って、デジタル信号の振幅レベルを調整する。パラメータ設定部は、A/D変換器から出力されたデジタル信号の振幅レベルに基づいて、飽和レベル検出部において用いられるパラメータを設定する。 The receiver of the present disclosure includes an A / D converter that converts a received signal into a digital signal, and an AGC circuit that adjusts the amplitude level of the digital signal. The AGC circuit includes a saturation level detection unit, a gain setting unit, a gain adjustment unit, and a parameter setting unit. The saturation level detection unit detects the saturation level of the digital signal output from the A / D converter. The gain setting unit sets the gain used for adjusting the amplitude level of the digital signal based on the saturation level detected by the saturation level detection unit. The gain adjusting unit adjusts the amplitude level of the digital signal according to the gain set by the gain setting unit. The parameter setting unit sets the parameters used in the saturation level detection unit based on the amplitude level of the digital signal output from the A / D converter.
 また、本開示の自動利得制御方法は、受信機の自動利得制御方法であって、受信信号をデジタル信号に変換するA/D変換器から出力されたデジタル信号の飽和レベルを検出するステップと、A/D変換器から出力されたデジタル信号の振幅レベルに基づいて、飽和レベルの検出に用いられるパラメータを設定するステップと、検出された飽和レベルに基づいて、デジタル信号の振幅レベルの調整に用いる利得を設定するステップと、設定された利得に従ってデジタル信号の振幅レベルを調整するステップとを含む。 Further, the automatic gain control method of the present disclosure is an automatic gain control method of a receiver, which includes a step of detecting a saturation level of a digital signal output from an A / D converter that converts a received signal into a digital signal. It is used to set the parameters used to detect the saturation level based on the amplitude level of the digital signal output from the A / D converter, and to adjust the amplitude level of the digital signal based on the detected saturation level. It includes a step of setting the gain and a step of adjusting the amplitude level of the digital signal according to the set gain.
 上記の受信機及び自動利得制御方法によれば、A/D変換器から出力されたデジタル信号の振幅レベルに基づいて、デジタル信号の飽和レベルの検出に用いられるパラメータが設定されるので、受信機が使用される環境によらず、受信信号の性質に合わせた飽和レベルの検出を行なうことができる。 According to the above receiver and automatic gain control method, the parameters used for detecting the saturation level of the digital signal are set based on the amplitude level of the digital signal output from the A / D converter. It is possible to detect the saturation level according to the nature of the received signal regardless of the environment in which it is used.
 したがって、本開示によれば、使用される環境毎に安定した信号処理を可能とする受信機及び自動利得制御方法を提供することができる。 Therefore, according to the present disclosure, it is possible to provide a receiver and an automatic gain control method that enable stable signal processing for each environment in which it is used.
本開示の実施の形態1に従う受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver according to Embodiment 1 of this disclosure. 図1に示すパラメータ設定部の構成を示すブロック図である。It is a block diagram which shows the structure of the parameter setting part shown in FIG. パラメータの設定例を示すタイミングチャートである。It is a timing chart which shows the setting example of a parameter. 図1に示す飽和レベル検出部の構成を示すブロック図である。It is a block diagram which shows the structure of the saturation level detection part shown in FIG. 飽和レベルの検出例を示すタイミングチャートである。It is a timing chart which shows the detection example of the saturation level. AGC回路のハード構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the AGC circuit. AGC回路において実行される処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the processing executed in the AGC circuit. 実施の形態2におけるパラメータ設定部の構成を示す図である。It is a figure which shows the structure of the parameter setting part in Embodiment 2. 振幅判定部のしきい値が上昇する場合の一例を示すタイミングチャートである。It is a timing chart which shows an example of the case where the threshold value of the amplitude determination part rises. 振幅判定部のしきい値が下降する場合の一例を示すタイミングチャートである。It is a timing chart which shows an example of the case where the threshold value of the amplitude determination part decreases. 実施の形態3におけるパラメータ設定部の構成を示す図である。It is a figure which shows the structure of the parameter setting part in Embodiment 3. FIG. 実施の形態3のパラメータ設定部によるパラメータの設定例を示すタイミングチャートである。It is a timing chart which shows the parameter setting example by the parameter setting part of Embodiment 3. 実施の形態4に従う受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver according to Embodiment 4. 図13に示すAGC回路におけるパラメータ設定部及びパラメータ更新タイミング調整部の構成を示す図である。It is a figure which shows the structure of the parameter setting part and the parameter update timing adjustment part in the AGC circuit shown in FIG. パラメータ更新タイミングの変更例を示すタイミングチャートである。It is a timing chart which shows the change example of a parameter update timing. パラメータ更新タイミングの間隔を拡張することによる効果を説明する図である。It is a figure explaining the effect by extending the interval of a parameter update timing. パラメータ更新タイミングの変更例を示すタイミングチャートである。It is a timing chart which shows the change example of a parameter update timing. パラメータ更新タイミングの間隔を短縮することによる効果を説明する図である。It is a figure explaining the effect by shortening the interval of a parameter update timing.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application that the configurations described in the respective embodiments are appropriately combined. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、本開示の実施の形態1に従う受信機の構成を示すブロック図である。図1を参照して、受信機100は、受信部30と、復調部40とを備える。受信部30は、A/D変換器10と、AGC回路20とを含む。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a receiver according to the first embodiment of the present disclosure. With reference to FIG. 1, the receiver 100 includes a receiving unit 30 and a demodulating unit 40. The receiving unit 30 includes an A / D converter 10 and an AGC circuit 20.
 A/D変換器10は、アナログの受信信号を所定の周波数でサンプリングし、離散的なデジタル信号に変換する。AGC回路20は、A/D変換器10から出力されたデジタル信号を受け、そのデジタル信号の振幅レベルを自動調整するように構成される。復調部40は、受信部30によって振幅レベルが調整されたデジタル信号を復調し、送信機(図示せず)から送信された信号を復元する。 The A / D converter 10 samples an analog received signal at a predetermined frequency and converts it into a discrete digital signal. The AGC circuit 20 is configured to receive a digital signal output from the A / D converter 10 and automatically adjust the amplitude level of the digital signal. The demodulation unit 40 demodulates the digital signal whose amplitude level has been adjusted by the reception unit 30, and restores the signal transmitted from the transmitter (not shown).
 AGC回路20は、利得調整部21と、利得設定部22と、飽和レベル検出部23と、パラメータ設定部24とを含む。利得調整部21は、A/D変換器10から出力されたデジタル信号を受け、利得設定部22により設定される利得(「ゲイン」、「増幅率」等と称される場合もある。)に従って、受けたデジタル信号の振幅レベルを調整する。なお、以下では、A/D変換器10から出力されたデジタル信号を、AGC回路20からみて「入力信号」と称する場合がある。利得調整部21により振幅レベルが調整されたデジタル信号は、復調部40へ出力される。 The AGC circuit 20 includes a gain adjusting unit 21, a gain setting unit 22, a saturation level detecting unit 23, and a parameter setting unit 24. The gain adjusting unit 21 receives the digital signal output from the A / D converter 10 and follows the gain set by the gain setting unit 22 (sometimes referred to as “gain”, “amplification factor”, etc.). , Adjust the amplitude level of the received digital signal. In the following, the digital signal output from the A / D converter 10 may be referred to as an "input signal" when viewed from the AGC circuit 20. The digital signal whose amplitude level has been adjusted by the gain adjusting unit 21 is output to the demodulation unit 40.
 利得設定部22は、飽和レベル検出部23において検出される入力信号の飽和レベル(後述)を飽和レベル検出部23から受け、その飽和レベルに基づいて利得調整部21の利得を設定する。たとえば、入力信号の飽和レベルと利得調整部21の利得との関係を予め求めておき、利得設定部22は、その関係を用いて、飽和レベル検出部23から受ける飽和レベルを利得に変換して利得調整部21へ出力する。入力信号の飽和レベルと利得との関係は、たとえば飽和レベルが高いほど利得が小さくなるように対応付けられている。 The gain setting unit 22 receives the saturation level (described later) of the input signal detected by the saturation level detection unit 23 from the saturation level detection unit 23, and sets the gain of the gain adjustment unit 21 based on the saturation level. For example, the relationship between the saturation level of the input signal and the gain of the gain adjusting unit 21 is obtained in advance, and the gain setting unit 22 converts the saturation level received from the saturation level detecting unit 23 into a gain using this relationship. Output to the gain adjustment unit 21. The relationship between the saturation level of the input signal and the gain is associated so that, for example, the higher the saturation level, the smaller the gain.
 飽和レベル検出部23は、A/D変換器10から出力されたデジタル信号(入力信号)の飽和レベルを検出する。飽和レベルとは、受信機100が飽和しない信号レベルであり、本実施の形態では、A/D変換器10から出力されたデジタル信号(入力信号)の移動平均値を「飽和レベル」としている。 The saturation level detection unit 23 detects the saturation level of the digital signal (input signal) output from the A / D converter 10. The saturation level is a signal level at which the receiver 100 is not saturated, and in the present embodiment, the moving average value of the digital signal (input signal) output from the A / D converter 10 is defined as the “saturation level”.
 すなわち、AGCは、受信機が飽和レベル内で作動するように、入力信号の振幅レベルが高い場合に利得が小さくなるように利得を調整するところ、外乱等により急激な振幅変動が発生した場合に、過剰な利得調整が行なわれる可能性がある。そこで、本実施の形態では、入力信号の移動平均値を算出し、この移動平均値を受信機100の飽和レベルを特徴付ける状態値として用いる。そして、受信機100が飽和レベル内で作動するように、飽和レベル検出部23によって検出される飽和レベルに基づいて、利得設定部22により利得調整部21の利得が設定される。 That is, the AGC adjusts the gain so that the gain becomes small when the amplitude level of the input signal is high so that the receiver operates within the saturation level, but when a sudden amplitude fluctuation occurs due to disturbance or the like. , Excessive gain adjustment may occur. Therefore, in the present embodiment, the moving average value of the input signal is calculated, and this moving average value is used as the state value that characterizes the saturation level of the receiver 100. Then, the gain of the gain adjusting unit 21 is set by the gain setting unit 22 based on the saturation level detected by the saturation level detecting unit 23 so that the receiver 100 operates within the saturation level.
 ここで、受信機に対しては、受信機が使用される環境(場所、時間、用途等)毎に安定した信号処理を実現することが求められる。しかしながら、AGCの処理に用いるパラメータが固定化されていると、受信機が使用される環境によっては、AGCによる信号の振幅調整が不十分となり、安定した信号処理を実現できない可能性がある。 Here, the receiver is required to realize stable signal processing for each environment (place, time, application, etc.) in which the receiver is used. However, if the parameters used for AGC processing are fixed, the signal amplitude adjustment by AGC may be insufficient depending on the environment in which the receiver is used, and stable signal processing may not be realized.
 そこで、本実施の形態1に従う受信機100では、AGCの処理に用いるパラメータを入力信号に基づいて設定するパラメータ設定部24が設けられる。具体的には、パラメータ設定部24は、A/D変換器10から出力されたデジタル信号(入力信号)を受け、飽和レベル検出部23において飽和レベルの検出に用いるパラメータを入力信号の振幅レベルに基づいて設定する。より詳しくは、パラメータ設定部24は、飽和レベル検出部23において入力信号の移動平均値を算出する移動平均フィルタの段数を入力信号の振幅レベルに基づいて設定する。これにより、受信信号の振幅変動特性に合わせて飽和レベルを適切に検出することができ、受信機が使用される環境によらず、安定した信号処理を行なうことが可能となる。以下、パラメータ設定部24及び飽和レベル検出部23について詳しく説明する。 Therefore, in the receiver 100 according to the first embodiment, a parameter setting unit 24 for setting parameters used for AGC processing based on an input signal is provided. Specifically, the parameter setting unit 24 receives the digital signal (input signal) output from the A / D converter 10, and sets the parameter used for detecting the saturation level in the saturation level detection unit 23 to the amplitude level of the input signal. Set based on. More specifically, the parameter setting unit 24 sets the number of stages of the moving average filter for calculating the moving average value of the input signal in the saturation level detection unit 23 based on the amplitude level of the input signal. As a result, the saturation level can be appropriately detected according to the amplitude fluctuation characteristic of the received signal, and stable signal processing can be performed regardless of the environment in which the receiver is used. Hereinafter, the parameter setting unit 24 and the saturation level detection unit 23 will be described in detail.
 図2は、図1に示したパラメータ設定部24の構成を示すブロック図である。図2を参照して、パラメータ設定部24は、振幅判定部50と、カウンタ52と、セレクタ54とを含む。 FIG. 2 is a block diagram showing the configuration of the parameter setting unit 24 shown in FIG. With reference to FIG. 2, the parameter setting unit 24 includes an amplitude determination unit 50, a counter 52, and a selector 54.
 振幅判定部50は、A/D変換器10から出力されたデジタル信号(入力信号)を受け、入力信号の振幅レベルがしきい値Daを超えているか否かを判定する。しきい値Daは、たとえば、外乱等による急激な入力信号の振幅変動を区別可能なレベルに適宜予め設定される。この判定は、A/D変換器10のサンプリングに同期して行なわれる。そして、振幅判定部50は、判定結果をカウンタ52へ出力する。 The amplitude determination unit 50 receives the digital signal (input signal) output from the A / D converter 10 and determines whether or not the amplitude level of the input signal exceeds the threshold value Da. The threshold value Da is appropriately preset to a level at which sudden fluctuations in the amplitude of the input signal due to disturbance or the like can be distinguished. This determination is performed in synchronization with the sampling of the A / D converter 10. Then, the amplitude determination unit 50 outputs the determination result to the counter 52.
 カウンタ52は、振幅判定部50の判定結果に基づいて、入力信号の振幅レベルがしきい値Daを超えた回数をカウントする。カウンタ52により、入力信号の振幅レベルがしきい値Daを超えている時間の長短を検出することができ、カウンタ52のカウント値が大きいほど、入力信号の振幅レベルがしきい値Daを超えている時間が長く、カウント値が小さいほど、振幅レベルがしきい値Daを超えている時間は短い。 The counter 52 counts the number of times the amplitude level of the input signal exceeds the threshold value Da based on the determination result of the amplitude determination unit 50. The counter 52 can detect the length of time that the amplitude level of the input signal exceeds the threshold value Da, and the larger the count value of the counter 52, the more the amplitude level of the input signal exceeds the threshold value Da. The longer the time spent and the smaller the count value, the shorter the time the amplitude level exceeds the threshold value Da.
 カウンタ52によるカウントは、パラメータ更新タイミングまで行なわれ、パラメータ更新タイミングにおいて飽和レベル検出部23へパラメータが設定されると、カウント値が0にリセットされる。パラメータ更新タイミングは、たとえば、A/D変換器10における数回分或いは十数回分のサンプリング毎に発生する。そして、カウンタ52は、カウント値(すなわち、入力信号の振幅レベルがしきい値を超えた回数)をセレクタ54へ出力する。 The count by the counter 52 is performed up to the parameter update timing, and when the parameter is set in the saturation level detection unit 23 at the parameter update timing, the count value is reset to 0. The parameter update timing is generated, for example, every several samplings or a dozen or so samplings of the A / D converter 10. Then, the counter 52 outputs the count value (that is, the number of times the amplitude level of the input signal exceeds the threshold value) to the selector 54.
 セレクタ54は、パラメータ更新タイミングになると、そのときのカウンタ52からのカウント値に基づいてパラメータPa,Pb,・・・Pnのうちの一つを選択し、選択されたパラメータを飽和レベル検出部23へ出力する。本実施の形態では、パラメータPa,Pb,・・・Pnは、飽和レベル検出部23において入力信号の移動平均を算出するのに用いられる移動平均フィルタの段数を特定するものである。カウンタ52によるカウント値とパラメータPa,Pb,・・・Pnとの関係が予め対応付けられており、セレクタ54は、当該関係を用いて、カウンタ52から受けるカウント値に対応するパラメータを選択して飽和レベル検出部23へ出力する。 When the parameter update timing comes, the selector 54 selects one of the parameters Pa, Pb, ... Pn based on the count value from the counter 52 at that time, and sets the selected parameter in the saturation level detection unit 23. Output to. In the present embodiment, the parameters Pa, Pb, ... Pn specify the number of stages of the moving average filter used in the saturation level detection unit 23 to calculate the moving average of the input signal. The relationship between the count value by the counter 52 and the parameters Pa, Pb, ... Pn is associated in advance, and the selector 54 uses the relationship to select a parameter corresponding to the count value received from the counter 52. Output to the saturation level detection unit 23.
 図3は、パラメータ設定部24によるパラメータの設定例を示すタイミングチャートである。図3を参照して、#i(i=0,1,2,・・・)は、A/D変換器10におけるサンプリングタイミングを示し、Tbは、パラメータ更新タイミングの間隔を示す。この例では、5回のサンプリング毎にパラメータ更新タイミングが発生し、時刻T0を初期時刻t=0とした場合に、時刻T1(t=Tb)、時刻T2(t=2Tb)、時刻T3(t=3Tb)、時刻T4(t=4Tb)・・・において、カウンタ52のカウント値に基づきセレクタ54により選択されたパラメータが飽和レベル検出部23に設定される。 FIG. 3 is a timing chart showing an example of parameter setting by the parameter setting unit 24. With reference to FIG. 3, # i (i = 0, 1, 2, ...) Indicates the sampling timing in the A / D converter 10, and Tb indicates the interval of the parameter update timing. In this example, the parameter update timing occurs every five samplings, and when the time T0 is set to the initial time t = 0, the time T1 (t = Tb), the time T2 (t = 2Tb), and the time T3 (t). = 3Tb), at time T4 (t = 4Tb) ..., The parameter selected by the selector 54 based on the count value of the counter 52 is set in the saturation level detection unit 23.
 この例では、時刻T0~T1及び時刻T1~T2の各区間では、入力信号の振幅レベルはしきい値Daよりも低いため、カウンタ出力(カウンタ52のカウント値)は「0」である。したがって、時刻T0~T1に続く時刻T1~T2の区間、及び時刻T1~T2に続く時刻T2~T3の区間において、飽和レベル検出部23のパラメータは、カウンタ出力「0」に対応するパラメータPaに設定される。なお、この例では、時刻T0~T1の区間においても、パラメータPaが初期値として設定されている。 In this example, in each section of time T0 to T1 and time T1 to T2, the amplitude level of the input signal is lower than the threshold value Da, so the counter output (count value of the counter 52) is "0". Therefore, in the section of the time T1 to T2 following the time T0 to T1 and the section of the time T2 to T3 following the time T1 to T2, the parameter of the saturation level detection unit 23 becomes the parameter Pa corresponding to the counter output "0". Set. In this example, the parameter Pa is also set as an initial value in the section from time T0 to T1.
 時刻T2~T3の区間では、サンプリングタイミング#12,#14において入力信号の振幅レベルがしきい値Daを超えており、パラメータ更新タイミングの時刻T3におけるカウンタ出力が「2」となる。したがって、時刻T2~T3に続く時刻T3~T4の区間において、飽和レベル検出部23のパラメータは、カウンタ出力「2」に対応するパラメータPb(Pb≠Pa)に設定される。 In the section between times T2 and T3, the amplitude level of the input signal exceeds the threshold value Da at sampling timings # 12 and # 14, and the counter output at time T3 at the parameter update timing becomes “2”. Therefore, in the section from time T3 to T4 following time T2 to T3, the parameter of the saturation level detection unit 23 is set to the parameter Pb (Pb ≠ Pa) corresponding to the counter output “2”.
 図4は、図1に示した飽和レベル検出部23の構成を示すブロック図である。図4を参照して、飽和レベル検出部23は、移動平均算出部60と、セレクタ70とを含む。移動平均算出部60は、複数の移動平均フィルタ62,64,・・・66を含み、各移動平均フィルタ62,64,・・・66は、A/D変換器10から出力されたデジタル信号(入力信号)を受ける。 FIG. 4 is a block diagram showing the configuration of the saturation level detection unit 23 shown in FIG. With reference to FIG. 4, the saturation level detection unit 23 includes a moving average calculation unit 60 and a selector 70. The moving average calculation unit 60 includes a plurality of moving average filters 62, 64, ... 66, and each moving average filter 62, 64, ... 66 is a digital signal output from the A / D converter 10. (Input signal) is received.
 移動平均フィルタ62,64,・・・66は、入力信号の移動平均値を算出する段数が互いに異なる。具体的には、移動平均フィルタ62は、段数A(たとえば3段)のフィルタであり、直近A回分のサンプリングデータ(振幅レベル)の移動平均値を算出して出力する。移動平均フィルタ64は、段数B(たとえば5段)のフィルタであり、直近B回分のサンプリングデータ(振幅レベル)の移動平均値を算出して出力する。移動平均フィルタ66は、段数X(たとえばn段)のフィルタであり、直近X回分のサンプリングデータ(振幅レベル)の移動平均値を算出して出力する。 The moving average filters 62, 64, ... 66 have different numbers of stages for calculating the moving average value of the input signal. Specifically, the moving average filter 62 is a filter having the number of stages A (for example, 3 stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the most recent A times. The moving average filter 64 is a filter having the number of stages B (for example, 5 stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the most recent B times. The moving average filter 66 is a filter having the number of stages X (for example, n stages), and calculates and outputs the moving average value of the sampling data (amplitude level) for the latest X times.
 セレクタ70は、移動平均算出部60の各移動平均フィルタ62,64,・・・66の出力を受ける。また、セレクタ70は、パラメータ設定部24からパラメータPi(i=1~nのいずれか)を受ける。そして、セレクタ70は、パラメータPiと移動平均フィルタ62,64,・・・66との予め対応付けられた関係に従って、パラメータ設定部24から受けるパラメータPiに対応する移動平均フィルタの出力を選択して利得設定部22へ出力する。 The selector 70 receives the output of each moving average filter 62, 64, ... 66 of the moving average calculation unit 60. Further, the selector 70 receives the parameter Pi (any of i = 1 to n) from the parameter setting unit 24. Then, the selector 70 selects the output of the moving average filter corresponding to the parameter Pi received from the parameter setting unit 24 according to the relationship of the parameter Pi and the moving average filters 62, 64, ... 66 in advance. Output to the gain setting unit 22.
 パラメータPa,Pb,・・・Pnと移動平均フィルタ62,64,・・・66との対応関係については、たとえば、外乱等による受信信号の振幅変動が大きく、入力信号の振幅レベルがしきい値Daを頻繁に超える場合には、過剰な利得調整を抑制するように、大きいカウント値に対応するパラメータに従って段数の大きい移動平均フィルタが選択されるものとすることができる。一方、受信信号の振幅変動が小さい場合には、利得調整の収束性を高めるために、小さいカウント値に対応するパラメータに従って段数の小さい移動平均フィルタが選択されるものとすることができる。これにより、受信信号の振幅変動特性に合わせた移動平均化処理を実現し、安定した信号処理を実現するための飽和レベルの検出を行なうことができる。 Regarding the correspondence between the parameters Pa, Pb, ... Pn and the moving average filters 62, 64, ... 66, for example, the amplitude fluctuation of the received signal due to disturbance or the like is large, and the amplitude level of the input signal is the threshold value. If Da is frequently exceeded, a moving average filter with a large number of stages can be selected according to the parameters corresponding to the large count values so as to suppress excessive gain adjustment. On the other hand, when the amplitude fluctuation of the received signal is small, a moving average filter having a small number of stages can be selected according to the parameter corresponding to the small count value in order to improve the convergence of the gain adjustment. As a result, the moving average processing according to the amplitude fluctuation characteristic of the received signal can be realized, and the saturation level can be detected to realize stable signal processing.
 図5は、飽和レベル検出部23による飽和レベルの検出例を示すタイミングチャートである。この図5においても、#i(i=0,1,2,・・・)は、A/D変換器10におけるサンプリングタイミングを示し、Tbは、パラメータ更新タイミングの間隔を示す。 FIG. 5 is a timing chart showing an example of detecting the saturation level by the saturation level detection unit 23. Also in FIG. 5, #i (i = 0, 1, 2, ...) Indicates the sampling timing in the A / D converter 10, and Tb indicates the interval of the parameter update timing.
 図5を参照して、飽和レベル検出部23のパラメータは、時刻T10~T12の区間ではパラメータPaに設定され、時刻T12~T14の区間ではパラメータPbに設定されているものとする。 With reference to FIG. 5, it is assumed that the parameter of the saturation level detection unit 23 is set to the parameter Pa in the section of the time T10 to T12 and the parameter Pb in the section of the time T12 to T14.
 たとえば、パラメータPaに対応する移動平均フィルタが5段のフィルタである場合、たとえば#4のサンプリングタイミングの時刻における飽和レベルは、#0~#4の入力信号の振幅レベルに基づいて算出され、たとえば#5のサンプリングタイミングの時刻における飽和レベルは、#1~#5の入力信号の振幅レベルに基づいて算出される。 For example, when the moving average filter corresponding to the parameter Pa is a five-stage filter, for example, the saturation level at the sampling timing of # 4 is calculated based on the amplitude level of the input signals of # 0 to # 4, for example. The saturation level at the time of the sampling timing of # 5 is calculated based on the amplitude level of the input signals of # 1 to # 5.
 また、たとえば、パラメータPbに対応する移動平均フィルタが7段のフィルタである場合、たとえば#10のサンプリングタイミングの時刻における飽和レベルは、#4~#10の入力信号の振幅レベルに基づいて算出される。 Further, for example, when the moving average filter corresponding to the parameter Pb is a 7-stage filter, for example, the saturation level at the sampling timing of # 10 is calculated based on the amplitude level of the input signals of # 4 to # 10. NS.
 このように、本実施の形態1に従う受信機100では、パラメータ更新タイミング毎に設定されるパラメータを用いて飽和レベル(入力信号の移動平均値)が算出され、その算出された飽和レベルに基づいてAGCの利得調整が行なわれる。したがって、受信機100が使用される環境によらず、受信信号の振幅変動特性に合わせた適切な利得制御を実現することができる。 As described above, in the receiver 100 according to the first embodiment, the saturation level (moving average value of the input signal) is calculated using the parameters set for each parameter update timing, and based on the calculated saturation level. The gain adjustment of AGC is performed. Therefore, it is possible to realize appropriate gain control according to the amplitude fluctuation characteristic of the received signal regardless of the environment in which the receiver 100 is used.
 図6は、AGC回路20のハード構成の一例を示す図である。図6を参照して、AGC回路20は、たとえばDSP(Digital Signal Processor)によって構成され、CPU(Central Processing Unit)26と、メモリ(ROM(Read Only Memory)及びRAM(Random Access Memory))27と、各種信号を入出力するための入出力ポート28とを含む。CPU26は、メモリ27のROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されているプログラムには、AGC回路20の処理が記されている。 FIG. 6 is a diagram showing an example of the hardware configuration of the AGC circuit 20. With reference to FIG. 6, the AGC circuit 20 is composed of, for example, a DSP (Digital Signal Processor), and includes a CPU (Central Processing Unit) 26 and a memory (ROM (Read Only Memory) and RAM (Random Access Memory)) 27. , Including an input / output port 28 for inputting / outputting various signals. The CPU 26 expands the program stored in the ROM of the memory 27 into a RAM or the like and executes the program. The processing of the AGC circuit 20 is described in the program stored in the ROM.
 図7は、AGC回路20において実行される処理の手順の一例を示すフローチャートである。このフローチャートに示される一連の処理は、所定の周期(たとえばサンプリング周期)毎に繰り返し実行される。 FIG. 7 is a flowchart showing an example of a processing procedure executed in the AGC circuit 20. The series of processes shown in this flowchart are repeatedly executed at predetermined cycles (for example, sampling cycles).
 図7を参照して、AGC回路20は、A/D変換器10から出力されるデジタル信号を入力する(ステップS10)。この信号入力は、A/D変換器10において受信信号のサンプリングが行なわれる毎に実行される。 With reference to FIG. 7, the AGC circuit 20 inputs a digital signal output from the A / D converter 10 (step S10). This signal input is executed every time the received signal is sampled in the A / D converter 10.
 次いで、AGC回路20は、入力信号の振幅レベルがしきい値Daよりも大きいか否かを判定する(ステップS20)。この実施の形態1では、しきい値Daには、予め設定された値が用いられる。入力信号の振幅レベルがしきい値Daよりも大きいと判定されると(ステップS20においてYES)、AGC回路20は、カウンタ52のカウント値を加算する(ステップS30)。なお、振幅レベルがしきい値Da以下であると判定されたときは(ステップS20においてNO)、カウンタ52の加算は行なわれない。 Next, the AGC circuit 20 determines whether or not the amplitude level of the input signal is larger than the threshold value Da (step S20). In the first embodiment, a preset value is used for the threshold value Da. When it is determined that the amplitude level of the input signal is larger than the threshold value Da (YES in step S20), the AGC circuit 20 adds the count value of the counter 52 (step S30). When it is determined that the amplitude level is equal to or less than the threshold value Da (NO in step S20), the counter 52 is not added.
 次いで、AGC回路20は、パラメータの更新タイミングであるか否かを判定する(ステップS40)。たとえば、図3,図5に示したように、A/D変換器10における5回のサンプリング毎にパラメータ更新タイミングが発生するものとすることができる。 Next, the AGC circuit 20 determines whether or not it is the parameter update timing (step S40). For example, as shown in FIGS. 3 and 5, the parameter update timing can be generated every 5 samplings in the A / D converter 10.
 そして、パラメータの更新タイミングであると判定されると(ステップS40においてYES)、AGC回路20は、カウンタ52のカウント値に基づいて、飽和レベルの検出に用いられるパラメータ(移動平均フィルタの段数を決めるパラメータ)を設定する(ステップS50)。パラメータが設定されると、カウンタ52のカウント値が0にリセットされる(ステップS60)。なお、ステップS40においてパラメータ更新タイミングではないと判定されると(ステップS40においてNO)、ステップS50,S60の処理は実行されずにステップS70へ処理が移行される。 Then, when it is determined that it is the parameter update timing (YES in step S40), the AGC circuit 20 determines the parameter (number of stages of the moving average filter) used for detecting the saturation level based on the count value of the counter 52. Parameters) are set (step S50). When the parameter is set, the count value of the counter 52 is reset to 0 (step S60). If it is determined in step S40 that it is not the parameter update timing (NO in step S40), the processes of steps S50 and S60 are not executed and the process shifts to step S70.
 次いで、AGC回路20は、ステップS50において設定されたパラメータに対応する移動平均フィルタを用いて、入力信号の移動平均を算出する(ステップS70)。図4に示した構成に沿ってより正確にいえば、AGC回路20は、ステップS50において設定されたパラメータに対応する移動平均フィルタの出力を選択する。ここで算出(或いは選択)された移動平均フィルタの出力が飽和レベルの検出値に相当する。 Next, the AGC circuit 20 calculates the moving average of the input signal using the moving average filter corresponding to the parameter set in step S50 (step S70). More precisely according to the configuration shown in FIG. 4, the AGC circuit 20 selects the output of the moving average filter corresponding to the parameter set in step S50. The output of the moving average filter calculated (or selected) here corresponds to the detected value of the saturation level.
 そして、AGC回路20は、検出された飽和レベルに基づいて、入力信号の振幅レベルの調整に用いる利得を設定する(ステップS80)。基本的には、飽和レベルが高いほど振幅調整後の振幅レベルが小さくなるように、また、飽和レベルが低いほど振幅調整後の振幅レベルが大きくなるように、利得が設定される。そして、AGC回路20は、設定された利得に従って入力信号の振幅レベルを調整する(ステップS90)。 Then, the AGC circuit 20 sets the gain used for adjusting the amplitude level of the input signal based on the detected saturation level (step S80). Basically, the gain is set so that the higher the saturation level, the smaller the amplitude level after the amplitude adjustment, and the lower the saturation level, the larger the amplitude level after the amplitude adjustment. Then, the AGC circuit 20 adjusts the amplitude level of the input signal according to the set gain (step S90).
 以上のように、この実施の形態1においては、A/D変換器10から出力されたデジタル信号の振幅レベルに基づいて、デジタル信号の飽和レベルの検出に用いられるパラメータ(移動平均フィルタの段数)が設定される。これにより、受信機100が使用される環境によらず、受信信号の性質に合わせた飽和レベルの検出を行なうことができる。したがって、この実施の形態1によれば、受信機100が使用される環境毎に安定した信号処理を実現することができる。 As described above, in the first embodiment, the parameter (number of stages of the moving average filter) used for detecting the saturation level of the digital signal based on the amplitude level of the digital signal output from the A / D converter 10. Is set. As a result, the saturation level can be detected according to the nature of the received signal regardless of the environment in which the receiver 100 is used. Therefore, according to the first embodiment, stable signal processing can be realized for each environment in which the receiver 100 is used.
 実施の形態2.
 実施の形態1では、パラメータ設定部24の振幅判定部50(図2)において用いられるしきい値Daは固定値であるため、たとえば、しきい値Daを超える入力信号が連続し、或いはしきい値Daを下回る入力信号が連続するような信号特性の場合、カウンタ52のカウント値が一定となり、パラメータが固定化される。パラメータが固定化されると、通信開始直後等の利得調整が進んでいない状況で利得調整が停滞する可能性がある。
Embodiment 2.
In the first embodiment, since the threshold value Da used in the amplitude determination unit 50 (FIG. 2) of the parameter setting unit 24 is a fixed value, for example, input signals exceeding the threshold value Da are continuous or threshold. In the case of a signal characteristic in which input signals lower than the value Da are continuous, the count value of the counter 52 becomes constant and the parameters are fixed. If the parameters are fixed, the gain adjustment may be stagnant in a situation where the gain adjustment has not progressed, such as immediately after the start of communication.
 そこで、この実施の形態2では、しきい値Daを可変とすることによって、パラメータが固定化されるのを抑制する。具体的には、カウンタ52のカウント値に基づいてしきい値Daが変更される。これにより、通信開始直後等の利得調整が進んでいない状況で利得調整が停滞するのを抑制する。 Therefore, in the second embodiment, the parameter is suppressed from being fixed by making the threshold value Da variable. Specifically, the threshold value Da is changed based on the count value of the counter 52. As a result, it is possible to prevent the gain adjustment from stagnation in a situation where the gain adjustment has not progressed, such as immediately after the start of communication.
 なお、実施の形態1では、外乱の大きい環境において受信機が使用されることを想定した場合に、利用者において、受信機の設置前に受信信号の外乱レベルを予め測定し、その測定結果に基づいてしきい値Daを設定する手順が必要となる。この実施の形態2では、カウンタ52のカウント値に基づいてしきい値Daが変更されるので、利用者による上記のような手順が不要となる。 In the first embodiment, assuming that the receiver is used in an environment with a large disturbance, the user measures the disturbance level of the received signal in advance before installing the receiver, and the measurement result is used. A procedure for setting the threshold value Da based on the above is required. In the second embodiment, since the threshold value Da is changed based on the count value of the counter 52, the above procedure by the user becomes unnecessary.
 この実施の形態2に従う受信機100では、パラメータ設定部の構成が実施の形態1の受信機と異なる。 In the receiver 100 according to the second embodiment, the configuration of the parameter setting unit is different from that of the receiver of the first embodiment.
 図8は、実施の形態2におけるパラメータ設定部の構成を示す図である。この図8は、実施の形態1で説明した図2に対応するものである。図8を参照して、実施の形態2におけるパラメータ設定部24Aは、図2に示した実施の形態1におけるパラメータ設定部24の構成において、しきい値設定部56をさらに含む。 FIG. 8 is a diagram showing a configuration of a parameter setting unit according to the second embodiment. FIG. 8 corresponds to FIG. 2 described in the first embodiment. With reference to FIG. 8, the parameter setting unit 24A in the second embodiment further includes the threshold value setting unit 56 in the configuration of the parameter setting unit 24 in the first embodiment shown in FIG.
 しきい値設定部56は、パラメータ更新タイミングになると、カウンタ52のカウント値に基づいて、振幅判定部50において用いられるしきい値を設定する。具体的には、しきい値設定部56は、しきい値の初期値をDaとし、カウンタ52のカウント値が大きい場合にはしきい値を引き上げ、カウント値が小さい場合にはしきい値を引き下げる。すなわち、しきい値設定部56は、入力信号の振幅レベルがしきい値を超えている時間が長い場合には(カウンタ52のカウント値大)、振幅判定部50におけるしきい値を大きくし、入力信号の振幅レベルがしきい値を超えている時間が短い場合には(カウント値小)、振幅判定部50におけるしきい値を小さくする。 When the parameter update timing comes, the threshold value setting unit 56 sets the threshold value used in the amplitude determination unit 50 based on the count value of the counter 52. Specifically, the threshold value setting unit 56 sets the initial value of the threshold value to Da, raises the threshold value when the count value of the counter 52 is large, and raises the threshold value when the count value is small. reduce. That is, when the amplitude level of the input signal exceeds the threshold value for a long time (the count value of the counter 52 is large), the threshold value setting unit 56 increases the threshold value in the amplitude determination unit 50. When the amplitude level of the input signal exceeds the threshold value for a short time (count value is small), the threshold value in the amplitude determination unit 50 is reduced.
 図9は、振幅判定部50のしきい値が上昇する場合の一例を示したタイミングチャートである。図9においても、#i(i=0,1,2,・・・)は、A/D変換器10におけるサンプリングタイミングを示し、Tbは、パラメータ更新タイミングの間隔を示す。 FIG. 9 is a timing chart showing an example when the threshold value of the amplitude determination unit 50 rises. Also in FIG. 9, #i (i = 0, 1, 2, ...) Indicates the sampling timing in the A / D converter 10, and Tb indicates the interval of the parameter update timing.
 図9を参照して、時刻T20~T21の区間において、しきい値は初期値Daであり、#0,#1,#2,#4のサンプリングタイミングにおいて入力信号がしきい値Daを超えている。そのため、カウンタ出力(カウンタ52のカウント値)は相対的に大きく、セレクタ54は、このカウンタ出力に対応するパラメータPaを出力している。 With reference to FIG. 9, the threshold value is the initial value Da in the section from time T20 to T21, and the input signal exceeds the threshold value Da at the sampling timings of # 0, # 1, # 2, and # 4. There is. Therefore, the counter output (count value of the counter 52) is relatively large, and the selector 54 outputs the parameter Pa corresponding to the counter output.
 パラメータ更新タイミング(時刻T21)において、しきい値設定部56は、カウンタ出力が大きいため、しきい値をX(X>0)上昇させる(Da+X)。これにより、時刻T21~T22の区間では、しきい値(Da+X)を超える入力信号は、#6,#9となり、カウンタ出力(カウンタ52のカウント値)は低下する。したがって、セレクタ54は、このカウンタ出力に対応するパラメータPbを出力する。すなわち、時刻T20~T21の区間では、しきい値Daに基づくカウント値に対応したパラメータPaが設定され、時刻T21~T22の区間では、しきい値(Da+X)に基づくカウント値に対応したパラメータPb(Pb≠Pa)が設定される。 At the parameter update timing (time T21), the threshold value setting unit 56 raises the threshold value by X (X> 0) because the counter output is large (Da + X). As a result, in the section from time T21 to T22, the input signals exceeding the threshold value (Da + X) become # 6 and # 9, and the counter output (count value of the counter 52) decreases. Therefore, the selector 54 outputs the parameter Pb corresponding to this counter output. That is, in the section from time T20 to T21, the parameter Pa corresponding to the count value based on the threshold value Da is set, and in the section from time T21 to T22, the parameter Pb corresponding to the count value based on the threshold value (Da + X) is set. (Pb ≠ Pa) is set.
 一方、図10は、振幅判定部50のしきい値が下降する場合の一例を示したタイミングチャートである。図10においても、#i(i=0,1,2,・・・)は、A/D変換器10におけるサンプリングタイミングを示し、Tbは、パラメータ更新タイミングの間隔を示す。 On the other hand, FIG. 10 is a timing chart showing an example in which the threshold value of the amplitude determination unit 50 decreases. Also in FIG. 10, #i (i = 0, 1, 2, ...) Indicates the sampling timing in the A / D converter 10, and Tb indicates the interval of the parameter update timing.
 図10を参照して、時刻T30~T31の区間において、しきい値は初期値Daであり、#2,#4のサンプリングタイミングにおいて入力信号がしきい値Daを超えている。カウンタ52は、この回数をカウントし、セレクタ54は、カウント値に対応するパラメータPcを出力している。 With reference to FIG. 10, the threshold value is the initial value Da in the section from time T30 to T31, and the input signal exceeds the threshold value Da at the sampling timings of # 2 and # 4. The counter 52 counts this number of times, and the selector 54 outputs the parameter Pc corresponding to the count value.
 パラメータ更新タイミング(時刻T31)において、しきい値設定部56は、カウンタ出力が相対的に小さいと判断し、しきい値をX(X>0)低下させる(Da-X)。これにより、時刻T31~T32の区間では、しきい値(Da-X)を超える入力信号は、#5,#7,#9となり、カウンタ出力が上昇する。したがって、セレクタ54は、このカウンタ出力に対応するパラメータPdを出力する。すなわち、時刻T30~T31の区間では、しきい値Daに基づくカウント値に対応したパラメータPcが設定され、時刻T23~T32の区間では、しきい値(Da-X)に基づくカウント値に対応したパラメータPd(Pc≠Pd)が設定される。 At the parameter update timing (time T31), the threshold value setting unit 56 determines that the counter output is relatively small, and lowers the threshold value by X (X> 0) (Da-X). As a result, in the section from time T31 to T32, the input signals exceeding the threshold value (Da-X) become # 5, # 7, and # 9, and the counter output increases. Therefore, the selector 54 outputs the parameter Pd corresponding to this counter output. That is, in the section from time T30 to T31, the parameter Pc corresponding to the count value based on the threshold value Da is set, and in the section from time T23 to T32, it corresponds to the count value based on the threshold value (Da-X). The parameter Pd (Pc ≠ Pd) is set.
 以上のように、この実施の形態2においては、振幅判定部50におけるしきい値を可変とする。しきい値が固定されている場合、振幅判定部50による振幅判定に基づくパラメータ変更が機能しなくなる可能性がある。たとえば、しきい値を超える入力信号が連続した場合に、カウンタ52のカウント値が一定となり、飽和レベル検出部23に設定されるパラメータが固定化される。同様に、しきい値以下の入力信号が連続した場合にも、パラメータが固定化される。そのため、パラメータが固定化されている場合には、利用者において、受信機の設置前に受信信号の外乱レベルを予め測定し、その測定結果に基づいてしきい値を設定する手順が必要となる。 As described above, in the second embodiment, the threshold value in the amplitude determination unit 50 is variable. If the threshold value is fixed, the parameter change based on the amplitude determination by the amplitude determination unit 50 may not function. For example, when the input signals exceeding the threshold value are continuous, the count value of the counter 52 becomes constant, and the parameters set in the saturation level detection unit 23 are fixed. Similarly, the parameters are fixed even when the input signals below the threshold value are continuous. Therefore, when the parameters are fixed, it is necessary for the user to measure the disturbance level of the received signal in advance before installing the receiver and set the threshold value based on the measurement result. ..
 この実施の形態2によれば、カウンタ52のカウント値に基づいてしきい値が変更されるので、上記のような入力信号が連続しても、パラメータが固定化されるのを抑制することができる。したがって、通信開始直後等の利得調整が進んでいない状況で利得調整が停滞するのを抑制することができる。また、利用者においては、受信機の設置前等に、受信信号の外乱レベルを予め測定し、その測定結果に基づいてしきい値を設定する手順が不要となる。 According to the second embodiment, since the threshold value is changed based on the count value of the counter 52, it is possible to suppress the parameter from being fixed even if the above input signals are continuous. can. Therefore, it is possible to suppress the stagnation of the gain adjustment in a situation where the gain adjustment has not progressed, such as immediately after the start of communication. Further, the user does not need to measure the disturbance level of the received signal in advance and set the threshold value based on the measurement result before installing the receiver.
 実施の形態3.
 実施の形態1では、パラメータ更新タイミングにおけるカウンタ52のカウント値に基づいてパラメータが設定されるものとした。この場合、入力信号の振幅レベルがしきい値を連続的に超えているか、それとも断続的に超えているかに拘わらず、所定期間に振幅レベルがしきい値を超えた回数が同じであれば、同じパラメータが設定される。
Embodiment 3.
In the first embodiment, the parameters are set based on the count value of the counter 52 at the parameter update timing. In this case, regardless of whether the amplitude level of the input signal exceeds the threshold value continuously or intermittently, if the number of times the amplitude level exceeds the threshold value is the same in a predetermined period, The same parameters are set.
 振幅レベルがしきい値を断続的に超えているような場合は(以下「断続的な飽和」と称する場合がある。)、振幅調整がある程度収束に近づいている段階であり、パラメータを変更する必要性は高くない。一方、通信開始直後等において振幅レベルがしきい値を連続的に超えているような場合は(以下「連続的な飽和」と称する場合がある。)、振幅調整が進んでおらず、上記のように、パラメータが固定化されて利得調整が停滞するのを抑制するためにパラメータを変更する必要がある。 If the amplitude level intermittently exceeds the threshold value (hereinafter sometimes referred to as "intermittent saturation"), it is the stage where the amplitude adjustment is approaching convergence to some extent, and the parameter is changed. The need is not high. On the other hand, if the amplitude level continuously exceeds the threshold value immediately after the start of communication (hereinafter, may be referred to as "continuous saturation"), the amplitude adjustment has not progressed and the above-mentioned As such, it is necessary to change the parameters in order to prevent the parameters from being fixed and the gain adjustment from becoming stagnant.
 実施の形態2では、カウンタ52のカウント値に基づいてしきい値を変更することにより、パラメータの固定化を抑制するものとした。この実施の形態3では、実施の形態2とは異なる手法が示される。すなわち、この実施の形態3では、カウンタ52のカウント値の更新連続回数がカウントされ、この更新連続回数に基づいてパラメータが設定される。 In the second embodiment, the parameter fixation is suppressed by changing the threshold value based on the count value of the counter 52. In the third embodiment, a method different from that of the second embodiment is shown. That is, in the third embodiment, the number of consecutive updates of the count value of the counter 52 is counted, and the parameter is set based on the number of consecutive updates.
 カウンタ52のカウント値の更新連続回数によって、連続的な飽和が生じているか否かを検出することができる。そして、カウント値の更新連続回数が大きい場合、すなわち、連続的な飽和が生じている場合には、飽和レベル検出部23において少ない段数の移動平均フィルタによって飽和レベルを検出するようにパラメータを設定することで、利得調整の応答性を高めることができる。その結果、振幅調整を早期に完了させることが可能となる。 Whether or not continuous saturation has occurred can be detected by the number of consecutive updates of the count value of the counter 52. Then, when the number of continuous updates of the count value is large, that is, when continuous saturation occurs, the saturation level detection unit 23 sets the parameter so that the saturation level is detected by the moving average filter having a small number of stages. Therefore, the responsiveness of the gain adjustment can be improved. As a result, the amplitude adjustment can be completed at an early stage.
 この実施の形態3に従う受信機100においても、パラメータ設定部の構成が実施の形態1の受信機と異なる。 Even in the receiver 100 according to the third embodiment, the configuration of the parameter setting unit is different from that of the receiver of the first embodiment.
 図11は、実施の形態3におけるパラメータ設定部の構成を示す図である。この図11も、実施の形態1で説明した図2に対応するものである。 FIG. 11 is a diagram showing a configuration of a parameter setting unit according to the third embodiment. This FIG. 11 also corresponds to FIG. 2 described in the first embodiment.
 図11を参照して、実施の形態3におけるパラメータ設定部24Bは、図2に示した実施の形態1におけるパラメータ設定部24の構成において、微分フィルタ58をさらに含む。微分フィルタ58は、カウンタ52のカウント値の差分を算出し、差分が生じた場合の連続回数をカウントする。この微分フィルタ58によるカウント値は、カウンタ52のカウント値の更新連続回数に相当し、すなわち、入力信号の振幅レベルがしきい値を連続的に超えている時間の計測値に相当する。 With reference to FIG. 11, the parameter setting unit 24B in the third embodiment further includes the differential filter 58 in the configuration of the parameter setting unit 24 in the first embodiment shown in FIG. The differential filter 58 calculates the difference between the count values of the counter 52, and counts the number of consecutive times when the difference occurs. The count value by the differential filter 58 corresponds to the number of consecutive updates of the count value of the counter 52, that is, corresponds to the measured value of the time when the amplitude level of the input signal continuously exceeds the threshold value.
 なお、微分フィルタ58によるカウントも、カウンタ52と同様に、パラメータ更新タイミングまで行なわれ、パラメータ更新タイミングにおいて飽和レベル検出部23へパラメータが設定されると、カウント値が0にリセットされる。 Note that the count by the differential filter 58 is also performed up to the parameter update timing as in the counter 52, and when the parameter is set in the saturation level detection unit 23 at the parameter update timing, the count value is reset to 0.
 微分フィルタ58は、カウンタ52のカウント値の更新連続回数に相当するカウント値をセレクタ54へ出力する。そして、この実施の形態3では、セレクタ54は、パラメータ更新タイミングになると、微分フィルタ58から受けるカウント値に基づいてパラメータPa,Pb,・・・Pnのうちの一つを選択し、選択されたパラメータを飽和レベル検出部23へ出力する。 The differential filter 58 outputs a count value corresponding to the number of consecutive updates of the count value of the counter 52 to the selector 54. Then, in the third embodiment, the selector 54 selects one of the parameters Pa, Pb, ... Pn based on the count value received from the differential filter 58 at the parameter update timing, and is selected. The parameter is output to the saturation level detection unit 23.
 図12は、実施の形態3のパラメータ設定部24Bによるパラメータの設定例を示すタイミングチャートである。図12を参照して、この例では、10回のサンプリング毎にパラメータ更新タイミングが発生し、時刻T40を初期時刻t=0とした場合に、時刻T41(t=Tb)、時刻T42(t=2Tb)、時刻T43(t=3Tb)・・・において、セレクタ54により選択されたパラメータが飽和レベル検出部23に設定される。 FIG. 12 is a timing chart showing an example of parameter setting by the parameter setting unit 24B of the third embodiment. With reference to FIG. 12, in this example, when the parameter update timing occurs every 10 samplings and the time T40 is set to the initial time t = 0, the time T41 (t = Tb) and the time T42 (t =) At 2Tb), time T43 (t = 3Tb) ..., The parameter selected by the selector 54 is set in the saturation level detection unit 23.
 この例では、時刻T40~T41の区間では、サンプリングタイミング#1,#5~#9において入力信号の振幅レベルがしきい値Daを超えており、パラメータ更新タイミングの時刻T41におけるカウンタ52のカウンタ出力(A9)は「6」となる。時刻T41~T42の区間では、サンプリングタイミング#10,#12,#14,#16,#17,#19において入力信号の振幅レベルがしきい値Daを超えており、パラメータ更新タイミングの時刻T42におけるカウンタ52のカウンタ出力(A19)も「6」となる。すなわち、カウンタ52のカウンタ出力でみると、時刻T40~T41の区間と時刻T41~T42の区間とでは同じカウント値となる。 In this example, in the section between times T40 and T41, the amplitude level of the input signal exceeds the threshold value Da at sampling timings # 1 and # 5 to # 9, and the counter output of the counter 52 at time T41 at the parameter update timing. (A9) becomes "6". In the section from time T41 to T42, the amplitude level of the input signal exceeds the threshold value Da at sampling timings # 10, # 12, # 14, # 16, # 17, and # 19, and at time T42 of the parameter update timing. The counter output (A19) of the counter 52 is also “6”. That is, when looking at the counter output of the counter 52, the same count value is obtained in the section from time T40 to T41 and the section from time T41 to T42.
 一方、微分フィルタ58の出力についてみると、時刻T40~T41の区間では、サンプリングタイミング#5~#9において入力信号の振幅レベルがしきい値Daを連続して超えており(5サンプル期間連続)、微分フィルタ58の出力から連続的な飽和が生じていることが分かる。そのため、時刻T41~T42の区間では、飽和レベル検出部23のパラメータは、この微分フィルタ58の出力に基づいてパラメータPbに設定される。 On the other hand, looking at the output of the differential filter 58, in the section from time T40 to T41, the amplitude level of the input signal continuously exceeds the threshold value Da at sampling timings # 5 to # 9 (continuously for 5 sample periods). , It can be seen from the output of the differential filter 58 that continuous saturation occurs. Therefore, in the section from time T41 to T42, the parameter of the saturation level detection unit 23 is set to the parameter Pb based on the output of the differential filter 58.
 時刻T41~T42の区間では、入力信号の振幅レベルがしきい値Daを連続して超えるのは、サンプリングタイミング#16,#17の2サンプル期間だけであり、微分フィルタ58の出力から断続的な飽和が生じていることが分かる。そのため、時刻T42~T43の区間では、飽和レベル検出部23のパラメータは、この微分フィルタ58の出力に基づいてパラメータPc(Pc≠Pb)に設定される。 In the section from time T41 to T42, the amplitude level of the input signal continuously exceeds the threshold value Da only during the two sample periods of sampling timings # 16 and # 17, and is intermittent from the output of the differential filter 58. It can be seen that saturation has occurred. Therefore, in the section from time T42 to T43, the parameter of the saturation level detection unit 23 is set to the parameter Pc (Pc ≠ Pb) based on the output of the differential filter 58.
 この例では、微分フィルタ58が設けられていない実施の形態1では、時刻T40~T41の区間におけるカウンタ52のカウンタ出力(A9)に基づいて、時刻T41~T42の区間におけるパラメータが設定され、時刻T41~T42の区間におけるカウンタ52のカウンタ出力(A19)に基づいて、時刻T42~T43の区間におけるパラメータが設定される。このため、パラメータは更新されない。 In this example, in the first embodiment in which the differential filter 58 is not provided, the parameters in the section from time T41 to T42 are set based on the counter output (A9) of the counter 52 in the section from time T40 to T41, and the time is set. The parameters in the section from time T42 to T43 are set based on the counter output (A19) of the counter 52 in the section from T41 to T42. Therefore, the parameters are not updated.
 これに対して、この実施の形態3では、時刻T40~T41の区間における微分フィルタ58の連続的な出力に基づいて、時刻T41~T42の区間におけるパラメータがPbに設定され、時刻T41~T42の区間における微分フィルタ58の断続的な出力に基づいて、時刻T42~T43の区間におけるパラメータがPcに設定される。 On the other hand, in the third embodiment, the parameter in the section of time T41 to T42 is set to Pb based on the continuous output of the differential filter 58 in the section of time T40 to T41, and the time T41 to T42. Based on the intermittent output of the differential filter 58 in the interval, the parameter in the interval from time T42 to T43 is set to Pc.
 このように、実施の形態3によれば、微分フィルタ58が設けられることによって、連続的な飽和と断続的な飽和とを区別してパラメータを設定することができる。そして、連続的な飽和が発生している場合に、飽和レベル検出部23において少ない段数の移動平均フィルタによって飽和レベルを検出するようにパラメータが設定される。これにより、利得調整の応答性を高めて振幅調整を早期に完了させることができる。 As described above, according to the third embodiment, by providing the differential filter 58, it is possible to set parameters by distinguishing between continuous saturation and intermittent saturation. Then, when continuous saturation occurs, the parameter is set so that the saturation level detection unit 23 detects the saturation level with a moving average filter having a small number of stages. As a result, the responsiveness of the gain adjustment can be improved and the amplitude adjustment can be completed at an early stage.
 実施の形態4.
 上記の各実施の形態では、パラメータの更新タイミングは固定(一定間隔)としているが、この実施の形態4では、パラメータ更新タイミングを可変とする。具体的には、利得調整収束後の振幅安定時には、パラメータの更新頻度を低くすることで、不必要にパラメータの更新が行なわれるのを抑制するとともに、通信開始直後等において連続的な飽和が生じている状況では、パラメータの更新頻度を高めることで、利得調整の収束性向上が図られる。
Embodiment 4.
In each of the above embodiments, the parameter update timing is fixed (constant interval), but in the fourth embodiment, the parameter update timing is variable. Specifically, when the amplitude stabilizes after the gain adjustment converges, the parameter update frequency is reduced to suppress unnecessary parameter updates, and continuous saturation occurs immediately after the start of communication. In this situation, the convergence of gain adjustment can be improved by increasing the frequency of parameter updates.
 図13は、実施の形態4に従う受信機の構成を示すブロック図である。図13を参照して、この受信機100Aは、受信部30Aと、復調部40とを備える。受信部30Aは、A/D変換器10と、AGC回路20Aとを含む。AGC回路20Aは、図1に示したAGC回路20の構成において、パラメータ更新タイミング調整部25をさらに含み、パラメータ設定部24に代えてパラメータ設定部24Bを含む。パラメータ設定部24Bは、実施の形態3において、図11で説明したとおりである。 FIG. 13 is a block diagram showing a configuration of a receiver according to the fourth embodiment. With reference to FIG. 13, the receiver 100A includes a receiving unit 30A and a demodulating unit 40. The receiving unit 30A includes an A / D converter 10 and an AGC circuit 20A. In the configuration of the AGC circuit 20 shown in FIG. 1, the AGC circuit 20A further includes a parameter update timing adjusting unit 25, and includes a parameter setting unit 24B instead of the parameter setting unit 24. The parameter setting unit 24B is as described with reference to FIG. 11 in the third embodiment.
 パラメータ更新タイミング調整部25は、パラメータ設定部24Bから飽和レベル検出部23へ出力されるパラメータの設定タイミング(更新タイミング)を調整する。具体的には、パラメータ更新タイミング調整部25は、断続的な飽和が発生している場合には、パラメータの更新タイミングの間隔を長くし、通信開始直後等の連続的な飽和が発生している場合には、パラメータの更新タイミングの間隔を短くする。 The parameter update timing adjustment unit 25 adjusts the parameter setting timing (update timing) output from the parameter setting unit 24B to the saturation level detection unit 23. Specifically, the parameter update timing adjusting unit 25 lengthens the interval of the parameter update timing when intermittent saturation occurs, and continuous saturation occurs immediately after the start of communication or the like. In that case, the interval of parameter update timing is shortened.
 図14は、図13に示したAGC回路20Aにおけるパラメータ設定部24B及びパラメータ更新タイミング調整部25の構成を示す図である。図14を参照して、図11で説明したように、パラメータ設定部24Bは、微分フィルタ58を含む。微分フィルタ58は、カウンタ52のカウント値の差分を算出し、差分が生じた場合の連続回数をカウントする。 FIG. 14 is a diagram showing the configuration of the parameter setting unit 24B and the parameter update timing adjustment unit 25 in the AGC circuit 20A shown in FIG. As described with reference to FIG. 14, the parameter setting unit 24B includes the differential filter 58. The differential filter 58 calculates the difference between the count values of the counter 52, and counts the number of consecutive times when the difference occurs.
 パラメータ更新タイミング調整部25は、タイミング出力用カウンタ75を含む。タイミング出力用カウンタ75は、所定の周期でカウンタをインクリメントし、カウント値が最大インクリメント数を超えると、パラメータ更新タイミングをパラメータ設定部24Bへ出力する。なお、タイミング出力用カウンタ75は、パラメータ更新タイミングをパラメータ設定部24Bへ出力すると、カウント値を0にリセットする。 The parameter update timing adjustment unit 25 includes a timing output counter 75. The timing output counter 75 increments the counter at a predetermined cycle, and when the count value exceeds the maximum increment number, outputs the parameter update timing to the parameter setting unit 24B. The timing output counter 75 resets the count value to 0 when the parameter update timing is output to the parameter setting unit 24B.
 ここで、タイミング出力用カウンタ75は、微分フィルタ58によるカウント値を受け、そのカウント値に基づいて、タイミング出力用カウンタ75内のカウンタの最大インクリメント数を変更する。具体的には、微分フィルタ58のカウント値が小さく、断続的な飽和が生じている場合には、タイミング出力用カウンタ75は、最大インクリメント数を引き上げる。これにより、パラメータ更新タイミングの間隔は長くなり、パラメータの更新頻度が抑制される。 Here, the timing output counter 75 receives the count value by the differential filter 58, and changes the maximum increment number of the counter in the timing output counter 75 based on the count value. Specifically, when the count value of the differential filter 58 is small and intermittent saturation occurs, the timing output counter 75 raises the maximum increment number. As a result, the interval of the parameter update timing becomes long, and the parameter update frequency is suppressed.
 一方、微分フィルタ58のカウント値が大きく、連続的な飽和が生じている場合には、タイミング出力用カウンタ75は、最大インクリメント数を引き下げる。これにより、パラメータ更新タイミングの間隔は短くなり、パラメータ更新の頻度が高くなる。 On the other hand, when the count value of the differential filter 58 is large and continuous saturation occurs, the timing output counter 75 lowers the maximum increment number. As a result, the interval of the parameter update timing is shortened, and the frequency of parameter update is increased.
 図15は、パラメータ更新タイミングの変更例を示すタイミングチャートである。図15を参照して、この例では、時刻T50~T51の区間では、微分フィルタ58の出力は断続的である(断続的な飽和)。そのため、タイミング出力用カウンタ75の最大インクリメント数が、初期値Nに対してNx1加算される。これにより、パラメータ更新タイミングの間隔が時間Tnだけ長くなり(Tb+Tn)、次のパラメータ更新タイミングが時刻T52から時刻T53へと延びている。 FIG. 15 is a timing chart showing an example of changing the parameter update timing. With reference to FIG. 15, in this example, the output of the differential filter 58 is intermittent (intermittent saturation) in the interval between times T50 and T51. Therefore, the maximum increment number of the timing output counter 75 is added by Nx1 to the initial value N. As a result, the interval of the parameter update timing is extended by the time Tn (Tb + Tn), and the next parameter update timing is extended from the time T52 to the time T53.
 時刻T51~T53の区間でも、微分フィルタ58の出力は断続的である。そのため、タイミング出力用カウンタ75の最大インクリメント数が、初期値Nに対してNx2(Nx2>Nx1)加算される。これにより、パラメータ更新タイミングの間隔が当初よりも時間2Tn長くなり(Tb+2Tn)、次のパラメータ更新タイミングが時刻T55へと延びている。 The output of the differential filter 58 is intermittent even in the section from time T51 to T53. Therefore, the maximum increment number of the timing output counter 75 is added by Nx2 (Nx2> Nx1) to the initial value N. As a result, the interval of the parameter update timing is longer than the initial time by 2 Tn (Tb + 2 Tn), and the next parameter update timing is extended to the time T55.
 図16は、パラメータ更新タイミングの間隔を拡張することによる効果を説明する図である。この図16には、利得調整が収束して信号の振幅が安定している場合の波形が示されている。上段には、パラメータ更新タイミングの変更がない場合の波形が参考例として示され、下段には、本実施の形態4に従う受信機100Aによりパラメータ更新タイミングの間隔が拡張された場合の波形が示されている。 FIG. 16 is a diagram for explaining the effect of expanding the parameter update timing interval. FIG. 16 shows a waveform when the gain adjustment is converged and the amplitude of the signal is stable. The upper row shows the waveform when the parameter update timing is not changed as a reference example, and the lower row shows the waveform when the parameter update timing interval is extended by the receiver 100A according to the fourth embodiment. ing.
 図16を参照して、上段の参考例では、パラメータ更新タイミングが固定されているため(この例では10サンプルタイミング毎)、利得調整が収束して振幅が安定しているにも拘わらず、時刻T61,T62,T63,・・・において不必要にパラメータの更新が行なわれる。 With reference to FIG. 16, in the upper reference example, since the parameter update timing is fixed (every 10 sample timings in this example), the time is set even though the gain adjustment is converged and the amplitude is stable. The parameters are updated unnecessarily at T61, T62, T63, ....
 一方、下段の本実施の形態4では、パラメータ更新タイミングが調整されることによって、パラメータ更新タイミングの間隔が拡張されており(この例では30サンプルタイミング)、不必要なパラメータの更新が抑制されている。 On the other hand, in the fourth embodiment of the lower stage, the parameter update timing interval is extended by adjusting the parameter update timing (30 sample timing in this example), and unnecessary parameter update is suppressed. There is.
 図17は、パラメータ更新タイミングの他の変更例を示すタイミングチャートである。図17を参照して、この例では、時刻T70~T71の区間において、微分フィルタ58の連続的な出力がみられる(連続的な飽和)。そのため、タイミング出力用カウンタ75の最大インクリメント数が、初期値Nに対してNx1減算される。これにより、パラメータ更新タイミングの間隔が時間Tnだけ短くなり(Tb-Tn)、次のパラメータ更新タイミングが時刻T73から時刻T72に変更されている。 FIG. 17 is a timing chart showing another example of changing the parameter update timing. With reference to FIG. 17, in this example, the continuous output of the differential filter 58 is seen in the interval from time T70 to T71 (continuous saturation). Therefore, the maximum increment number of the timing output counter 75 is subtracted by Nx1 with respect to the initial value N. As a result, the interval of the parameter update timing is shortened by the time Tn (Tb-Tn), and the next parameter update timing is changed from the time T73 to the time T72.
 時刻T71~T72の区間でも、微分フィルタ58の連続的な出力がみられている。そのため、タイミング出力用カウンタ75の最大インクリメント数が、初期値Nに対してNx2(Nx2>Nx1)減算される。これにより、パラメータ更新タイミングの間隔が当初よりも時間2Tn短くなり(Tb-2Tn)、次のパラメータ更新タイミングが時刻T74に変更されている。 The continuous output of the differential filter 58 is also observed in the section from time T71 to T72. Therefore, the maximum increment number of the timing output counter 75 is subtracted by Nx2 (Nx2> Nx1) with respect to the initial value N. As a result, the interval of the parameter update timing is shortened by 2 Tn (Tb-2Tn) from the initial time, and the next parameter update timing is changed to the time T74.
 図18は、パラメータ更新タイミングの間隔を短縮することによる効果を説明する図である。この図18には、利得調整が収束していないときの波形が示されている。上段には、パラメータ更新タイミングの変更がない場合の波形が参考例として示され、下段には、本実施の形態4に従う受信機100Aによりパラメータ更新タイミングの間隔が短縮された場合の波形が示されている。 FIG. 18 is a diagram illustrating the effect of shortening the parameter update timing interval. FIG. 18 shows the waveform when the gain adjustment has not converged. The upper row shows the waveform when the parameter update timing is not changed as a reference example, and the lower row shows the waveform when the parameter update timing interval is shortened by the receiver 100A according to the fourth embodiment. ing.
 図18を参照して、上段の参考例では、パラメータ更新タイミングが固定されているため(この例では20サンプルタイミング毎)、サンプリングタイミング#4~#9等において入力信号の振幅レベルがしきい値Daを連続的に超えていることを反映するパラメータ設定は、時刻T82以降となる。したがって、利得調整の収束が長期化する。 With reference to FIG. 18, in the upper reference example, since the parameter update timing is fixed (every 20 sample timings in this example), the amplitude level of the input signal is a threshold value at sampling timings # 4 to # 9 and the like. The parameter setting that reflects that Da is continuously exceeded is after time T82. Therefore, the convergence of the gain adjustment is prolonged.
 一方、下段の本実施の形態4では、パラメータ更新タイミングが調整されることによって、パラメータ更新タイミングの間隔が短縮されており(この例では10サンプルタイミング毎)、時刻T81において、入力信号の振幅レベルがしきい値Daを連続的に超えていることを反映したパラメータが設定される。したがって、利得調整が早期に収束する。 On the other hand, in the fourth embodiment of the lower stage, the parameter update timing interval is shortened by adjusting the parameter update timing (every 10 sample timings in this example), and the amplitude level of the input signal is set at time T81. A parameter is set that reflects that the threshold value Da is continuously exceeded. Therefore, the gain adjustment converges early.
 以上のように、この実施の形態4では、パラメータ更新タイミングが可変とされる。そして、利得調整収束後の振幅安定時には、パラメータの更新頻度を低くすることにより、不必要にパラメータの更新が行なわれるのを抑制することができる。一方、通信開始直後等において連続的な飽和が生じている状況では、パラメータの更新頻度を高めることにより、利得調整の収束性を向上させることができる。 As described above, in the fourth embodiment, the parameter update timing is variable. Then, when the amplitude is stable after the gain adjustment and convergence, it is possible to suppress the parameter update from being unnecessarily performed by reducing the parameter update frequency. On the other hand, in a situation where continuous saturation occurs immediately after the start of communication or the like, the convergence of gain adjustment can be improved by increasing the frequency of parameter updates.
 なお、上記の実施の形態4において、パラメータ更新タイミングの変更速度を規定する値Nx1,Nx2,・・・は、パラメータ更新タイミングの間隔を拡張する場合と短縮する場合とで異なる値としてもよい。たとえば、パラメータ更新タイミングの間隔を短縮する場合の値を、間隔を拡張する場合の値よりも大きくしてもよい。これにより、利得調整の収束性を効果的に向上させることができる。 Note that, in the above-described fourth embodiment, the values Nx1, Nx2, ... That define the change speed of the parameter update timing may be different values depending on whether the parameter update timing interval is expanded or shortened. For example, the value for shortening the parameter update timing interval may be larger than the value for increasing the interval. Thereby, the convergence of the gain adjustment can be effectively improved.
 今回開示された各実施の形態は、技術的に矛盾しない範囲で適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本開示により示される技術的範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It is also planned that the embodiments disclosed this time will be appropriately combined and implemented within a technically consistent range. And it should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The technical scope indicated by the present disclosure is indicated by the scope of claims rather than the description of the embodiment described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. ..
 10 A/D変換器、20,20A AGC回路、21 利得調整部、22 利得設定部、23 飽和レベル検出部、24,24A,24B パラメータ設定部、25 パラメータ更新タイミング調整部、26 CPU、27 メモリ、28 入出力ポート、30,30A 受信部、40 復調部、50 振幅判定部、52 カウンタ、54,70 セレクタ、56 しきい値設定部、58 微分フィルタ、60 移動平均算出部、62,64,66 移動平均フィルタ、75 タイミング出力用カウンタ、100,100A 受信機。 10 A / D converter, 20, 20A AGC circuit, 21 gain adjustment unit, 22 gain setting unit, 23 saturation level detection unit, 24, 24A, 24B parameter setting unit, 25 parameter update timing adjustment unit, 26 CPU, 27 memory , 28 I / O port, 30, 30A receiver, 40 demodulation unit, 50 amplitude determination unit, 52 counter, 54, 70 selector, 56 threshold setting unit, 58 differential filter, 60 moving average calculation unit, 62, 64, 66 moving average filter, 75 timing output counter, 100, 100A receiver.

Claims (13)

  1.  受信信号をデジタル信号に変換するA/D変換器と、
     前記デジタル信号の振幅レベルを調整する自動利得制御回路とを備え、
     前記自動利得制御回路は、
     前記A/D変換器から出力されたデジタル信号の飽和レベルを検出する飽和レベル検出部と、
     前記飽和レベル検出部により検出される飽和レベルに基づいて、前記振幅レベルの調整に用いる利得を設定する利得設定部と、
     前記利得設定部により設定される利得に従って前記振幅レベルを調整する利得調整部と、
     前記A/D変換器から出力されたデジタル信号の振幅レベルに基づいて、前記飽和レベル検出部において用いられるパラメータを設定するパラメータ設定部とを含む、受信機。
    An A / D converter that converts the received signal into a digital signal,
    It is equipped with an automatic gain control circuit that adjusts the amplitude level of the digital signal.
    The automatic gain control circuit
    A saturation level detector that detects the saturation level of the digital signal output from the A / D converter, and
    A gain setting unit that sets a gain used for adjusting the amplitude level based on the saturation level detected by the saturation level detection unit, and a gain setting unit.
    A gain adjusting unit that adjusts the amplitude level according to the gain set by the gain setting unit, and a gain adjusting unit.
    A receiver including a parameter setting unit that sets parameters used in the saturation level detection unit based on the amplitude level of the digital signal output from the A / D converter.
  2.  前記飽和レベル検出部は、前記A/D変換器から出力されたデジタル信号の移動平均を前記飽和レベルとして出力する移動平均フィルタを含み、
     前記パラメータは、前記移動平均フィルタの段数である、請求項1に記載の受信機。
    The saturation level detection unit includes a moving average filter that outputs the moving average of the digital signal output from the A / D converter as the saturation level.
    The receiver according to claim 1, wherein the parameter is the number of stages of the moving average filter.
  3.  前記パラメータ設定部は、前記A/D変換器から出力されたデジタル信号の振幅レベルがしきい値を超えている時間の長短に従って前記パラメータを設定する、請求項1又は請求項2に記載の受信機。 The reception according to claim 1 or 2, wherein the parameter setting unit sets the parameter according to the length of time during which the amplitude level of the digital signal output from the A / D converter exceeds the threshold value. Machine.
  4.  前記パラメータ設定部は、前記振幅レベルが前記しきい値を超えている時間の長短に従って前記しきい値をさらに変更する、請求項3に記載の受信機。 The receiver according to claim 3, wherein the parameter setting unit further changes the threshold value according to the length of time during which the amplitude level exceeds the threshold value.
  5.  前記パラメータ設定部は、前記振幅レベルが前記しきい値を超えている時間が長い場合に、前記時間が短い場合よりも前記しきい値を大きくする、請求項4に記載の受信機。 The receiver according to claim 4, wherein the parameter setting unit increases the threshold value when the amplitude level exceeds the threshold value for a long time as compared with the case where the time is short.
  6.  前記パラメータ設定部は、前記振幅レベルが前記しきい値を超えている時間が短い場合に、前記時間が長い場合よりも前記しきい値を小さくする、請求項4に記載の受信機。 The receiver according to claim 4, wherein the parameter setting unit makes the threshold value smaller when the time when the amplitude level exceeds the threshold value is short than when the time is long.
  7.  前記パラメータ設定部は、前記振幅レベルが前記しきい値を連続的に超えている時間の長短に従って前記パラメータを設定する、請求項3に記載の受信機。 The receiver according to claim 3, wherein the parameter setting unit sets the parameters according to the length of time during which the amplitude level continuously exceeds the threshold value.
  8.  前記パラメータ設定部において、前記飽和レベル検出部に設定される前記パラメータの更新タイミングを調整する更新タイミング調整部をさらに備え、
     前記更新タイミング調整部は、前記振幅レベルが前記しきい値を連続的に超えている時間の長短に従って前記更新タイミングを調整する、請求項7に記載の受信機。
    The parameter setting unit further includes an update timing adjusting unit for adjusting the update timing of the parameter set in the saturation level detecting unit.
    The receiver according to claim 7, wherein the update timing adjusting unit adjusts the update timing according to the length of time during which the amplitude level continuously exceeds the threshold value.
  9.  前記更新タイミング調整部は、前記振幅レベルが前記しきい値を連続的に超えている時間が短い場合に、前記時間が長い場合よりも前記更新タイミングの間隔を長くする、請求項8に記載の受信機。 The update timing adjusting unit according to claim 8, wherein when the time when the amplitude level continuously exceeds the threshold value is short, the interval between the update timings is longer than when the time is long. Receiving machine.
  10.  前記更新タイミング調整部は、前記振幅レベルが前記しきい値を連続的に超えている時間が長い場合に、前記時間が短い場合よりも前記更新タイミングの間隔を短くする、請求項8に記載の受信機。 The update timing adjusting unit according to claim 8, wherein when the amplitude level continuously exceeds the threshold value for a long time, the update timing interval is shorter than when the time is short. Receiving machine.
  11.  受信機の自動利得制御方法であって、
     受信信号をデジタル信号に変換するA/D変換器から出力されたデジタル信号の飽和レベルを検出するステップと、
     前記A/D変換器から出力されたデジタル信号の振幅レベルに基づいて、前記飽和レベルの検出に用いられるパラメータを設定するステップと、
     検出された前記飽和レベルに基づいて、前記デジタル信号の振幅レベルの調整に用いる利得を設定するステップと、
     設定された前記利得に従って前記振幅レベルを調整するステップとを含む、自動利得制御方法。
    It is an automatic gain control method for the receiver.
    A step of detecting the saturation level of the digital signal output from the A / D converter that converts the received signal into a digital signal, and
    A step of setting parameters used for detecting the saturation level based on the amplitude level of the digital signal output from the A / D converter, and a step of setting the parameters used for detecting the saturation level.
    A step of setting the gain used for adjusting the amplitude level of the digital signal based on the detected saturation level, and
    An automatic gain control method comprising the step of adjusting the amplitude level according to the set gain.
  12.  前記飽和レベルを検出するステップは、前記A/D変換器から出力されたデジタル信号の移動平均を算出して前記飽和レベルとして出力するステップを含み、
     前記パラメータは、前記移動平均の段数である、請求項11に記載の自動利得制御方法。
    The step of detecting the saturation level includes a step of calculating the moving average of the digital signal output from the A / D converter and outputting it as the saturation level.
    The automatic gain control method according to claim 11, wherein the parameter is the number of stages of the moving average.
  13.  前記パラメータを設定するステップは、
     前記A/D変換器から出力されたデジタル信号の振幅レベルがしきい値を超えているか否かを判定するステップと、
     前記振幅レベルが前記しきい値を超えている時間の長短に従って前記パラメータを設定するステップとを含む、請求項11又は請求項12に記載の自動利得制御方法。
    The step of setting the parameters is
    A step of determining whether or not the amplitude level of the digital signal output from the A / D converter exceeds the threshold value, and
    The automatic gain control method according to claim 11, further comprising the step of setting the parameter according to the length of time that the amplitude level exceeds the threshold value.
PCT/JP2020/015774 2020-04-08 2020-04-08 Receiver and automatic gain control method WO2021205558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022513760A JP7275383B2 (en) 2020-04-08 2020-04-08 Receiver and automatic gain control method
PCT/JP2020/015774 WO2021205558A1 (en) 2020-04-08 2020-04-08 Receiver and automatic gain control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015774 WO2021205558A1 (en) 2020-04-08 2020-04-08 Receiver and automatic gain control method

Publications (1)

Publication Number Publication Date
WO2021205558A1 true WO2021205558A1 (en) 2021-10-14

Family

ID=78023118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015774 WO2021205558A1 (en) 2020-04-08 2020-04-08 Receiver and automatic gain control method

Country Status (2)

Country Link
JP (1) JP7275383B2 (en)
WO (1) WO2021205558A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244765A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Automatic gain control method and automatic gain control processor, and demodulator
US20070287400A1 (en) * 2006-03-30 2007-12-13 Samsung Electronics Co., Ltd. Gain control method and apparatus in receiver of wireless communication system
WO2008139672A1 (en) * 2007-04-27 2008-11-20 Panasonic Corporation Receiving device and receiving method
JP2012186610A (en) * 2011-03-04 2012-09-27 Hitachi Kokusai Electric Inc Automatic gain controller
JP2013201600A (en) * 2012-03-26 2013-10-03 Nippon Telegr & Teleph Corp <Ntt> Automatic gain control circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244765A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Automatic gain control method and automatic gain control processor, and demodulator
US20070287400A1 (en) * 2006-03-30 2007-12-13 Samsung Electronics Co., Ltd. Gain control method and apparatus in receiver of wireless communication system
WO2008139672A1 (en) * 2007-04-27 2008-11-20 Panasonic Corporation Receiving device and receiving method
JP2012186610A (en) * 2011-03-04 2012-09-27 Hitachi Kokusai Electric Inc Automatic gain controller
JP2013201600A (en) * 2012-03-26 2013-10-03 Nippon Telegr & Teleph Corp <Ntt> Automatic gain control circuit

Also Published As

Publication number Publication date
JP7275383B2 (en) 2023-05-17
JPWO2021205558A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US8355687B2 (en) Receiver gain control
US10469112B2 (en) System, apparatus and method for performing automatic gain control in a receiver for a packet-based protocol
US8698572B2 (en) Delay line calibration
US8588348B2 (en) Receiver with automatic gain control
CN107994963B (en) Method and device for expanding detection range of power detector
JP6225041B2 (en) Receiver
US20150233981A1 (en) Automatic gain control apparatus, automatic gain control method, and receiver
US9544862B2 (en) Method and device for performing automatic gain control
JP2004512763A (en) Automatic gain control signal measuring device selectively activated
US7504884B2 (en) Automatic gain control apparatus of cable modem, and lock-time acquisition method using the same
WO2021205558A1 (en) Receiver and automatic gain control method
US8340230B2 (en) Receiving device, receiving method, and program
US20040242172A1 (en) Enhanced automatic gain control mechanism for time-slotted data transmissions
US11405813B2 (en) Radio link monitoring (RLM) procedures in new radio unlicensed bands (NR-U)
CN107919859B (en) Automatic Gain Control (AGC) circuit and method for controlling amplifier gain based on the duration of an overload condition
US7145490B2 (en) Automatic gain control system and method
JP2011510558A (en) Automatic gain control using state machine controller feedback
CN104703268B (en) filter power compensation method, device and user terminal
JP6466200B2 (en) Receiving device and adjusting method of receiving device
JP6394369B2 (en) Method of detecting filter characteristics in wireless communication device and wireless communication device having the function
US9813038B2 (en) Method and apparatus for automatic gain control
JP6290540B2 (en) Radar equipment
US9807529B2 (en) Wireless receiver
JP5076923B2 (en) Wireless receiver
JP5429913B2 (en) Automatic gain control using state machine controller feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929918

Country of ref document: EP

Kind code of ref document: A1