WO2021205535A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021205535A1
WO2021205535A1 PCT/JP2020/015649 JP2020015649W WO2021205535A1 WO 2021205535 A1 WO2021205535 A1 WO 2021205535A1 JP 2020015649 W JP2020015649 W JP 2020015649W WO 2021205535 A1 WO2021205535 A1 WO 2021205535A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
time
units
heat medium
refrigeration cycle
Prior art date
Application number
PCT/JP2020/015649
Other languages
French (fr)
Japanese (ja)
Inventor
正紘 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022513737A priority Critical patent/JP7258230B2/en
Priority to PCT/JP2020/015649 priority patent/WO2021205535A1/en
Publication of WO2021205535A1 publication Critical patent/WO2021205535A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • an indirect air conditioner that generates cold water or hot water by a heat source machine such as a heat pump and conveys it to an indoor unit by a water pump and piping to cool and heat the room.
  • Japanese Patent Application Laid-Open No. 06-307726 describes a plurality of chilled water supply modules that supply chilled water cooled by an evaporator, a temperature sensor that detects the temperature of chilled water supplied from the chilled water supply module, and outputs of the temperature sensors.
  • Cold water supply including a controller including a manual setting means for controlling the number of chilled water supply modules and controlling the capacity of the refrigerating cycle of each chilled water supply module and setting the number of operating chilled water supply modules at the time of starting the device in advance. The device is disclosed.
  • the number of chilled water supply modules in operation is adjusted, but if the number of chilled water supply modules to be started is not set, after starting all the chilled water supply modules, Since the number of vehicles in operation will be reduced, there will be a period of excessive number of vehicles in operation, and there is room for improvement. In addition, since the number of operating units is changed one by one, it may take time to reach the optimum number.
  • the apparatus of the present disclosure is made to solve the above-mentioned problems, and in a refrigeration cycle apparatus having a plurality of refrigeration cycle units for controlling the temperature of a heat medium such as water or brine, an excessive number of operating units and It is an object of the present invention to provide a refrigeration cycle apparatus capable of setting the temperature of the heat medium to the target temperature accurately at the target time while avoiding the above.
  • the refrigeration cycle apparatus of the present disclosure includes a plurality of refrigeration cycle units each having independent refrigerant circuits using a refrigerant, arranged in a common heat medium circulation path, and controlling the temperature of the heat medium, and a heat medium. It is provided with a temperature sensor that detects the temperature of the heat medium in the circulation path of the above and a control device that controls the number of operating units of a plurality of refrigeration cycle units.
  • the control device sets the number of operating units to the initial number of operating units at the first time when the refrigerating cycle device starts the cooling operation or the heating operation.
  • the control device determines the intermediate target change amount of the temperature of the heat medium at the second time after the first time based on the difference between the temperature of the heat medium detected by the temperature sensor at the first time and the target temperature. do.
  • the control device generates heat from the first time to the second time detected by the temperature sensor so that the temperature of the heat medium detected by the temperature sensor approaches the target temperature at the third time after the second time.
  • the number of operating units is adjusted according to the difference between the amount of change in the temperature of the medium and the amount of change in the intermediate target.
  • the temperature of the heat medium can be set to the target temperature accurately at the target time while avoiding the number of operating refrigeration cycle units becoming excessive.
  • FIG. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure of the control device which controls an air conditioner, and the remote control which controls a control device remotely. It is a figure for demonstrating the occurrence of thermo-off at the time of starting a refrigerating cycle apparatus.
  • FIG. It is a figure which shows the adjustment example of the number of units when the cooling operation is executed in Embodiment 1.
  • FIG. It is a figure which shows the adjustment example of the number of units when the heating operation is executed in Embodiment 1.
  • FIG. It is a flowchart for demonstrating the operation number determination process which the control device 100 executes in Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device according to the first embodiment.
  • the refrigeration cycle device 1 includes a heat source machine 2, a load device 3, pipes 4 and 5, a pump 6, and a temperature sensor 8.
  • the heat source machine 2 includes a control device 100 and n units (n is an integer of 2 or more) of refrigeration cycle units 200-1 to 200-n.
  • n 2
  • the heat source machine 2 includes a first refrigeration cycle unit 200-1 and a second refrigeration cycle unit 200-2.
  • Refrigerant circulation paths are formed in each of the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2. Further, the heat medium is circulated between the heat source machine 2 and the load device 3 by the pipes 4 and 5 and the pump 6.
  • the temperature sensor 8 detects the temperature of the heat medium passing through the pipe 4.
  • water will be illustrated as a heat medium.
  • the heat medium may be brine or the like. Further, for the sake of simplicity, the temperature of the heat medium may be described as the water temperature.
  • the nth refrigeration cycle unit 200-n is connected in series with the water circulation path so that both act as a heat source or a cold heat source for water. It is composed of.
  • the first refrigeration cycle unit 200-1 includes a compressor 11, a four-way valve 12, a heat exchanger 13, a fan 14, an electronic expansion valve 15, and a heat exchanger 16.
  • the second refrigeration cycle unit 200-2 includes a compressor 21, a four-way valve 22, a heat exchanger 23, a fan 24, an electronic expansion valve 25, and a heat exchanger 26.
  • Compressors 11 and 21 compress the refrigerant.
  • the compressors 11 and 21 are inverter-controlled by each control unit, and the operating frequency is variable.
  • the heat exchangers 13 and 23 exchange heat between the refrigerant and the outside air blown by the fans 14 and 24.
  • the heat exchangers 16 and 26 exchange heat between the refrigerant and water.
  • plate heat exchangers can be used as the heat exchangers 16 and 26, for example.
  • FIG. 1 shows a case where the four-way valves 12 and 22 are set to perform heating.
  • the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2 act as heat sources. If the four-way valves 12 and 22 are switched to reverse the circulation direction of the refrigerant, cooling or defrosting is performed, and the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2 act as cold heat sources. do.
  • the heat source machine 2 and the load device 3 are connected by pipes 4 and 5 for circulating water.
  • the load device 3 includes an indoor unit 30, an indoor unit 40, and an indoor unit 50.
  • the indoor units 30, 40, and 50 are connected between the pipe 4 and the pipe 5 in parallel with each other.
  • the indoor unit 30 includes a heat exchanger 31, a fan 32 for sending indoor air to the heat exchanger 31, and a flow rate adjusting valve 33 for adjusting the flow rate of water.
  • the heat exchanger 31 exchanges heat between water and indoor air.
  • the indoor unit 40 includes a heat exchanger 41, a fan 42 for sending indoor air to the heat exchanger 41, and a flow rate adjusting valve 43 for adjusting the flow rate of water.
  • the heat exchanger 41 exchanges heat between water and indoor air.
  • the indoor unit 50 includes a heat exchanger 51, a fan 52 for sending indoor air to the heat exchanger 51, and a flow rate adjusting valve 53 for adjusting the flow rate of water.
  • the heat exchanger 51 exchanges heat between water and indoor air.
  • Water is provided by the pump 6, n heat exchangers including heat exchangers 16 and 26 connected in series, and heat exchangers 31, heat exchangers 41, and heat exchangers 51 connected in parallel to each other.
  • a water circuit is formed using.
  • an air conditioner having two refrigeration cycle units and three indoor units is taken as an example. However, the number of indoor units may be three or more, or one.
  • the control units 7-1 to 7-n distributed and arranged in the refrigeration cycle units 200-1 to 200-n operate in cooperation with the control device 100.
  • the control device 100 has compressors 11 and 21, four-way valves 12, 22 and fans 14 through control units 7-1 to 7-n according to settings from a remote controller or the like (not shown) and outputs of pressure sensors and temperature sensors. 24. Controls the electronic expansion valves 15 and 25.
  • the load device 3 includes control units 34, 44, 54 corresponding to the indoor units 30, 40, 50, respectively.
  • the control units 34, 44, 54 control the flow rate adjusting valves 33, 43, 53 and the fans 32, 42, 52, respectively.
  • control device 100 has compressors 11, 21, four-way valves 12, 22, fans 14, 24, electronic expansion valves 15, 25, pumps 6, and flow rate adjusting valves 33, based on data detected by other control units. 43, 53 and fans 32, 42, 52 may be controlled.
  • FIG. 2 is a diagram showing a configuration of a control device that controls an air conditioner and a remote controller that remotely controls the control device.
  • the remote controller 300 includes an input device 301, a processor 302, and a transmitter 303.
  • the input device 301 includes a push button for the user to switch ON / OFF of the indoor unit, a button for inputting a set temperature, and the like.
  • the transmission device 303 is for communicating with the control device 100.
  • the processor 302 controls the transmission device 303 according to the input signal given by the input device 301.
  • the control device 100 includes a receiving device 101 that receives a signal from the remote controller, a processor 102, and a memory 103.
  • the memory 103 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the flash memory stores the operating system, application programs, and various types of data.
  • the processor 102 controls the overall operation of the refrigeration cycle device 1.
  • the control device 100 shown in FIG. 1 is realized by the processor 102 executing the operating system and the application program stored in the memory 103. When executing the application program, various data stored in the memory 103 are referred to.
  • the receiving device 101 is for communicating with the remote controller 300. When there are a plurality of indoor units, the receiving device 101 is provided in each of the plurality of indoor units.
  • each of the plurality of control units includes a processor.
  • a plurality of processors cooperate to perform overall control of the refrigeration cycle device 1.
  • FIG. 3 is a diagram for explaining the occurrence of thermo-off when the refrigeration cycle device is started.
  • the time is shown on the horizontal axis, and the water temperature, the total frequency of the compressor, and the number of operating units are shown in order from the top.
  • the refrigeration cycle unit that starts operation gradually increases the operating frequency from 0. If the compressor is suddenly turned at the upper limit frequency fmax per unit, when the refrigerant accumulated in the compressor is discharged at the start of operation, the refrigerating machine oil is also discharged from the compressor, and the compressor subsequently becomes insufficiently lubricated. This is because there is a risk of falling. Therefore, it is necessary to gradually increase the frequency at the start of operation of the compressor. Increasing the operating frequency increases the ability of the refrigeration cycle unit to cool the heat medium.
  • the water temperature is brought to reach the target water temperature by additionally starting the refrigerating cycle unit.
  • the water temperature T52 is still higher than the target water temperature at the time t52, the operation of two more units is added, and the number of operating refrigeration cycle units in operation is three at the time t52 to t53.
  • Two of the three units in operation gradually increase the operating frequency of the compressor from 0 after the time t52 at the start of operation.
  • the total capacity of the three refrigeration cycle devices to cool the heat medium is determined by the total operating frequencies of the three compressors.
  • the number of refrigerating cycle units in operation is not increased until the compressor frequency of the refrigerating cycle unit that first started operation is maximized, so it takes time to reach the target water temperature.
  • the number of units to be additionally activated is determined in advance to two without considering the change in water temperature up to that point. As a result, after time t52, it is fixed to three-unit operation. Therefore, the number of units in operation becomes excessive, and thermo-off occurs due to excessive cooling at time t53. When the compressor is stopped due to thermo-off, the water temperature rises sharply. Such fluctuations in water temperature impair user comfort during cooling.
  • control device 100 determines the number of operating refrigeration cycle units to be additionally activated by looking at the difference between the water temperature detected by the temperature sensor 8 and the target water temperature at time t52.
  • FIG. 4 is a flowchart for explaining the operation number determination process executed by the control device 100 in the first embodiment.
  • the control device 100 receives a start command from a remote controller or the like, or when the refrigeration cycle device 1 is started (YES in S1), such as when the start time set by the timer is reached, the refrigeration cycle is performed in step S2.
  • Set the number of units in operation to the initial number of units in operation.
  • the initial number of operating units may be any number as long as it is a part of n refrigeration cycle units, but in the examples after FIG. 5, a case of one unit is shown.
  • the control device determines whether or not the elapsed time from the time of startup is ⁇ TP1.
  • the control device 100 calculates the required number of units N in step S4. Then, in step S5, the control device 100 adjusts the number of operating refrigeration cycle units so that the number of operating units is N.
  • the control device 100 When the elapsed time is not ⁇ TP1 (NO in S3), that is, before the elapsed time reaches ⁇ TP1 from the start-up and when the elapsed time is longer than ⁇ TP1, the control device 100 is the refrigerating cycle unit currently in operation. Maintain the number of operating units.
  • FIG. 5 is a diagram showing an example of adjusting the number of units when the cooling operation is executed in the first embodiment.
  • FIG. 5 shows the total frequency ⁇ f of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
  • the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t).
  • the water temperatures Tw (t1), Tw (t2), and Tw (t3) at each time t1, t2, t3 are described as Tw1, Tw2, Tw3, respectively.
  • each of the refrigeration cycle devices 1 has a plurality of independent refrigerant circuits that use a refrigerant, are arranged in a common heat medium circulation path, and control the temperature of the heat medium.
  • the refrigeration cycle unit 200-1 to 200-n of the above is provided.
  • the refrigeration cycle device 1 further includes a temperature sensor 8 that detects the temperature of the heat medium in the heat medium circulation path, and a control device 100 that controls the number of operating units of the plurality of refrigeration cycle units 200-1 to 200-n. ..
  • the control device 100 sets the number of operating units to the initial number of operating units at the first time t1 when the refrigerating cycle device 1 starts the cooling operation.
  • the initial number of operating units is one.
  • the control device 100 determines the temperature of the heat medium at the second time t2 after the first time t1 based on the difference between the temperature Tw1 of the heat medium detected by the temperature sensor 8 at the first time t1 and the target temperature TwO.
  • the first time t1 detected by the temperature sensor 8 so that the temperature Tw3 of the heat medium detected by the temperature sensor 8 approaches the target temperature TwO at the third time t3 after the second time t2.
  • the control device 100 determines the number of operating units of the refrigeration cycle unit to be changed at the second time t2 based on the difference between the temperature change amount ⁇ T and the intermediate target change amount ⁇ TmO.
  • the control device 100 determines whether or not the refrigeration cycle unit can be additionally activated based on the following equation (1).
  • the control device 100 freezes. Judge that additional start of the cycle unit is possible.
  • the target temperature TwmO (t) is indicated by a broken straight line in FIG. Tw2> (TwO-Tw1) / (t3-t1) ⁇ (t2-t1) + Tw1 ... (1) In other words, the following relationship can be said.
  • the temperature sensor 8 detects the first temperature Tw1 at the first time t1 and detects the second temperature Tw2 at the second time t2 when the first time ⁇ TP1 has elapsed from the first time t1.
  • the control device 100 calculates the magnitude
  • of the temperature change amount ⁇ T is smaller than the intermediate target change amount ⁇ TmO (indicated by the arrow A1), the control device 100 increases the number of operating units from the initial operating number.
  • the number of operating units is set to be larger than the initial operating number, if possible. Also reduce.
  • of the temperature change amount ⁇ T is larger than the intermediate target change amount ⁇ TmO (indicated by the arrow B1)
  • the number of operating units is set to be larger than the initial operating number, if possible. Also reduce.
  • > ⁇ TmO the water temperature Tw2 is located below TwmO (t2) indicated by a straight line. ..
  • the initial number of operating units is one, the number of operating units cannot be reduced, but when the initial number of operating units is set to a plurality of units, the number of operating units can be reduced. ..
  • the intermediate target change amount ⁇ TmO is the second case where the temperature of the heat medium changes with a constant temperature gradient from the first temperature Tw1 to the target temperature TwO from the first time t1 to the third time t3. It is the amount of change in the temperature of the heat medium from the first temperature Tw1 up to the temperature TwO (t2) of the heat medium at time t2.
  • the above relationship is derived from FIG.
  • the amount of temperature change of the heat medium (water) from time t1 to t2 is indicated by (Tw2-Tw1). It is considered that this change is due to the energy used in the compressor at times t1 to t2.
  • the energy used in the compressor at times t1 to t2 is considered to be proportional to the integrated value of the operating frequency of the compressor.
  • N ⁇ f (t1 to t2) ⁇ (Tw3-Tw2) / (Tw2-Tw1) / (t3-t2) / fm... (6)
  • N is an integer, the numbers after the decimal point are rounded up.
  • the maximum frequency fm of one unit the number of units N required to reach the target water temperature TwO at the target time t3 can be obtained.
  • FIG. 6 is a diagram showing an example of adjusting the number of units when the heating operation is executed in the first embodiment.
  • FIG. 6 shows the total frequency ⁇ f of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
  • the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t).
  • the water temperatures Tw (t11), Tw (t12), and Tw (t13) at each time t11, t12, and t13 are described as Tw11, Tw12, and Tw13, respectively.
  • control device 100 sets the number of operating units to the initial number of operating units at the first time t11 when the refrigerating cycle device 1 starts the heating operation.
  • the initial number of operating units is one.
  • the control device 100 determines the temperature of the heat medium at the second time t12 after the first time t11 based on the difference between the temperature Tw11 of the heat medium detected by the temperature sensor 8 at the first time t11 and the target temperature TwO.
  • the intermediate target change amount ⁇ TmO of is determined.
  • the control device 100 determines whether or not the refrigeration cycle unit can be additionally started based on the following equation (7).
  • the control device 100 freezes. Judge that additional start of the cycle unit is possible.
  • the target temperature TwmO (t) is indicated by a broken straight line in FIG.
  • the temperature sensor 8 detects the first temperature Tw11 at the first time t11, and detects the second temperature Tw12 at the second time t12 when the first time ⁇ TP1 has elapsed from the first time t11.
  • the control device 100 increases the number of operating units from the initial operating number.
  • the control device 100 operates when the magnitude
  • > ⁇ TmO the water temperature Tw12 is located above TwmO (t2) indicated by a straight line. ..
  • the initial number of operating units since the initial number of operating units is one, the number of operating units cannot be reduced, but when the initial number of operating units is set to a plurality of units, the number of operating units can be reduced. ..
  • the intermediate target change amount ⁇ TmO is the second case where the temperature of the heat medium changes with a constant temperature gradient from the first temperature Tw11 to the target temperature TwO from the first time t11 to the third time t13. It is the amount of change in the temperature of the heat medium from the first temperature Tw11 up to the temperature TwO (t12) of the heat medium at time t12.
  • the above relationship is derived from FIG.
  • the amount of temperature change of the heat medium (water) from time t11 to t12 is indicated by (Tw12-Tw11). It is considered that this change is due to the energy used in the compressor at times t11 to t12. It is considered that the energy used in the compressor at times t11 to t12 is proportional to the integrated value of the operating frequency of the compressor.
  • N ⁇ f (t11 to t12) ⁇ (Tw13-Tw12) / (Tw12-Tw11) / (t13-t12) / fm... (12) However, since N is an integer, the numbers after the decimal point are rounded up.
  • the maximum frequency fm of one unit the number of units N required to reach the target water temperature TwO at the target time t13 can be obtained.
  • the refrigerating cycle device determines the suitability of the number of operating units once at the intermediate time, and the number of operating units is excessive. If there is a shortage, adjust the number of units in operation. For this reason, it is possible to avoid the temperature fluctuation of the heat medium due to the thermo-off occurring in the middle due to the excess capacity while avoiding the non-achievement of the target temperature due to the insufficient capacity.
  • Embodiment 2 In the first embodiment, an example in which the number of operating units is reviewed once by the target time has been described. As a result, the number of operating units can be adjusted by reflecting the state of the load device, and the occurrence of thermo-off can be suppressed. In the second embodiment, the first adjustment is executed in the same manner, but an example in which the adjustment of the number of operating units is executed thereafter will be described. Since the configuration of the refrigeration cycle device of the second embodiment is the same as the configuration shown in FIG. 1, the description will not be repeated.
  • FIG. 7 is a flowchart for explaining the operation number determination process executed by the control device 100 in the second embodiment.
  • the processes of steps S6 to S8 are added to the flowchart of FIG. 4 showing the process of the first embodiment. Since the processes of steps S1 to S5 have been described with reference to FIG. 4, the description will not be repeated here.
  • step S6 determines in step S6 whether the elapsed time is longer than ⁇ TP1.
  • the control device 100 determines whether or not the water temperature has reached the target temperature TwO even once in step S7.
  • step S7 If the water temperature has reached the target temperature TwO even once (YES in S7), the control device 100 proceeds to step S8 to complete the adjustment of the number of operating refrigeration cycle devices. In this case, after this timing, the operation until the target time is executed with the fixed number of units for which the adjustment has been completed.
  • step S7 when the water temperature has never reached the target temperature TwO (NO in S7), the control device 100 proceeds to step S4, recalculates the required number of units N, and in step S5, N. Adjust the number of units in operation so that the refrigeration cycle unit of the unit is in operation.
  • step S6 if the elapsed time has not yet reached ⁇ TP2 (NO in S6), the number of operating units is not adjusted, and the operating state of the refrigeration cycle device is maintained with the initial number of operating units.
  • FIG. 8 is a diagram showing an example of adjusting the number of units when the cooling operation is executed in the second embodiment.
  • FIG. 8 shows the total frequency ⁇ f of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
  • the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t).
  • the water temperatures Tw (t21) to Tw (t25) at each time t21 to t25 are described as Tw21 to Tw25, respectively.
  • the control device 100 sets the number of operating units to the initial number of operating units at the first time t21 when the refrigerating cycle device 1 starts the cooling operation.
  • the initial number of operating units is one.
  • the control device 100 determines the temperature of the heat medium at the second time t22 after the first time based on the difference between the temperature Tw21 of the heat medium detected by the temperature sensor 8 at the first time t21 and the target temperature TwO.
  • the intermediate target change amount ⁇ TmO is determined.
  • the control device 100 has the first time t21 detected by the temperature sensor 8 so that the temperature Tw of the heat medium detected by the temperature sensor 8 approaches the target temperature TwO at the third time t25 after the second time t22.
  • the temperature sensor 8 detects the first temperature Tw21 at the first time t21, and detects the second temperature Tw22 at the second time t22 when the first time ⁇ TP1 has elapsed from the first time t21.
  • of the temperature change amount ⁇ T is smaller than the intermediate target change amount ⁇ TmO, the control device 100 increases the number of operating units from the initial operating number.
  • the control device 100 calculates the intermediate target change amount TwO (t23) corresponding to the intermediate time t23 at the intermediate time t23 between the second time t22 and the third time t25. Then, the number of operating units is adjusted based on the calculated intermediate target change amount ⁇ TmO (t23) and the temperature Tw23 of the heat medium at the intermediate time t23. At this time, the intermediate target water temperature TwmO indicated by the broken line is updated, and when the point is indicated by (time, water temperature) on the graph, it is changed to the broken line connecting (t22, Tw22) and (t25, TwO). Will be done.
  • FIG. 5 an example in which the number of operating units is changed one by one is shown, but according to the present embodiment, the cooling load or the heating load is large, and the times t2, t12, t22.
  • the difference between the temperature change amount ⁇ T and the intermediate target change amount ⁇ TmO is widened, the number of units increased is further increased according to the difference, and the amount of increase in the number of operating units changes to two or more.
  • the water temperature change occurs when the difference between the cooling capacity or heating capacity of the heat source machine and the water side load is given to the water. Whether or not the target water temperature is reached in the target time cannot be known unless these complicated calorific value balances are solved.
  • the required number of units can be calculated by indirectly considering the calorific value balance by using the integrated value of the water temperature change amount and the compressor frequency total value.
  • the number of activated refrigeration cycle units required to reach the target water temperature in the target time is known, it is possible to bring the water temperature closer to the target water temperature in the target time.
  • the number of additional units that can be started can be set to an appropriate number, preventing excessive cooling of water and ensuring comfort.
  • the heat source machine 2, the load device 3, the pump 6, and the temperature sensor 8 are separated, but the heat exchangers 16 and 26 of the heat source machine 2 are separated. It may be used as a repeater together with the pump 6 and the temperature sensor 8. Further, the main part of the control device 100 may be arranged in either the heat source machine 2 or the load device 3. Further, although the example in which the heat medium is water has been described, the heat medium may be any other material as long as it is a medium that carries heat. For example, brine may be used instead of water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration cycle device (1) comprises a plurality of refrigeration cycle units (200-1 to 200-n) each of which has a mutually independent refrigerant circuit that uses a refrigerant, the refrigeration cycle units (200-1 to 200-n) being positioned in a circulation path of a shared heat medium and controlling the temperature of the heat medium. A control device (100) sets the number of operating units to an initial number of operating units at a first time at which the refrigeration cycle device (1) has started a cooling operation. The control device (100) determines an intermediate target change amount for the temperature of the heat medium at a second time on the basis of the difference between the temperature of the heat medium at the first time and a target temperature. The control device (100) adjusts the number of operating units among the plurality of refrigeration cycle units in accordance with the difference between the intermediate target change amount and a temperature change amount of the heat medium arising from the first time to the second time so that the temperature of the heat medium at a third time approaches the target temperature.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 従来、ヒートポンプなどの熱源機により冷水または温水を生成し、送水ポンプおよび配管で室内機へ搬送して室内の冷暖房を行なう間接式の空気調和装置が知られている。 Conventionally, there is known an indirect air conditioner that generates cold water or hot water by a heat source machine such as a heat pump and conveys it to an indoor unit by a water pump and piping to cool and heat the room.
 このような間接式の空気調和装置は、利用側の熱媒体として水またはブラインを使用するので、近年、使用冷媒量を削減するために注目されている。 Since such an indirect air conditioner uses water or brine as a heat medium on the user side, it has been attracting attention in recent years in order to reduce the amount of refrigerant used.
 特開平06-307726号公報には、蒸発器により冷却された冷水を供給する複数台の冷水供給モジュールと、冷水供給モジュールから供給された冷水の温度を検出する温度センサと、該温度センサの出力を受けて冷水供給モジュールの台数制御および各冷水供給モジュールの冷凍サイクルの容量制御を行なうとともに予め装置起動時の冷水供給モジュールの運転台数を設定する手動設定手段を含んでなるコントローラとを含む冷水供給装置が開示されている。 Japanese Patent Application Laid-Open No. 06-307726 describes a plurality of chilled water supply modules that supply chilled water cooled by an evaporator, a temperature sensor that detects the temperature of chilled water supplied from the chilled water supply module, and outputs of the temperature sensors. Cold water supply including a controller including a manual setting means for controlling the number of chilled water supply modules and controlling the capacity of the refrigerating cycle of each chilled water supply module and setting the number of operating chilled water supply modules at the time of starting the device in advance. The device is disclosed.
特開平06-307726号公報Japanese Unexamined Patent Publication No. 06-307726
 特開平06-307726号公報においては、冷水供給モジュールの運転台数が調整されているが、冷水供給モジュールの始動台数が設定済みで無い場合には、全数の冷水供給モジュールを始動させた後で、運転台数を減少させていくため、過剰な運転台数となる期間があり、改善の余地がある。また、運転台数を1台ずつ変更していくため、最適台数となるために時間がかかる場合がある。 In Japanese Patent Application Laid-Open No. 06-307726, the number of chilled water supply modules in operation is adjusted, but if the number of chilled water supply modules to be started is not set, after starting all the chilled water supply modules, Since the number of vehicles in operation will be reduced, there will be a period of excessive number of vehicles in operation, and there is room for improvement. In addition, since the number of operating units is changed one by one, it may take time to reach the optimum number.
 本開示の装置は、上記課題を解決するためになされたものであって、水又はブラインなどの熱媒体の温度を制御する複数台の冷凍サイクルユニットを有する冷凍サイクル装置において、過剰な運転台数となることを避けつつ目標時間に精度良く熱媒体の温度を目標温度に設定することができる冷凍サイクル装置を提供することを目的とする。 The apparatus of the present disclosure is made to solve the above-mentioned problems, and in a refrigeration cycle apparatus having a plurality of refrigeration cycle units for controlling the temperature of a heat medium such as water or brine, an excessive number of operating units and It is an object of the present invention to provide a refrigeration cycle apparatus capable of setting the temperature of the heat medium to the target temperature accurately at the target time while avoiding the above.
 本開示の冷凍サイクル装置は、それぞれが冷媒を使用する互いに独立した冷媒回路を有し、共通する熱媒体の循環路に配置され、熱媒体の温度を制御する複数の冷凍サイクルユニットと、熱媒体の循環路における熱媒体の温度を検出する温度センサと、複数の冷凍サイクルユニットの運転台数を制御する制御装置とを備える。 The refrigeration cycle apparatus of the present disclosure includes a plurality of refrigeration cycle units each having independent refrigerant circuits using a refrigerant, arranged in a common heat medium circulation path, and controlling the temperature of the heat medium, and a heat medium. It is provided with a temperature sensor that detects the temperature of the heat medium in the circulation path of the above and a control device that controls the number of operating units of a plurality of refrigeration cycle units.
 制御装置は、冷凍サイクル装置が冷房運転または暖房運転を開始した第1時刻において運転台数を初期運転台数に設定する。 The control device sets the number of operating units to the initial number of operating units at the first time when the refrigerating cycle device starts the cooling operation or the heating operation.
 制御装置は、第1時刻において温度センサによって検出される熱媒体の温度と目標温度との差に基づいて、第1時刻よりも後の第2時刻における熱媒体の温度の中間目標変化量を決定する。 The control device determines the intermediate target change amount of the temperature of the heat medium at the second time after the first time based on the difference between the temperature of the heat medium detected by the temperature sensor at the first time and the target temperature. do.
 制御装置は、第2時刻よりも後の第3時刻において温度センサで検出される熱媒体の温度が目標温度に近づくように、温度センサで検出された第1時刻から第2時刻までに生じる熱媒体の温度変化量と中間目標変化量との差に応じて運転台数を調整する。 The control device generates heat from the first time to the second time detected by the temperature sensor so that the temperature of the heat medium detected by the temperature sensor approaches the target temperature at the third time after the second time. The number of operating units is adjusted according to the difference between the amount of change in the temperature of the medium and the amount of change in the intermediate target.
 本開示の冷凍サイクル装置によれば、冷凍サイクルユニットの運転台数が過剰な運転台数となることを避けつつ目標時間に精度良く熱媒体の温度を目標温度に設定することができる。 According to the refrigeration cycle apparatus of the present disclosure, the temperature of the heat medium can be set to the target temperature accurately at the target time while avoiding the number of operating refrigeration cycle units becoming excessive.
実施の形態1に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。It is a figure which shows the structure of the control device which controls an air conditioner, and the remote control which controls a control device remotely. 冷凍サイクル装置の起動時のサーモオフの発生について説明するための図である。It is a figure for demonstrating the occurrence of thermo-off at the time of starting a refrigerating cycle apparatus. 実施の形態1において制御装置100が実行する運転台数決定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the operation number determination process which the control device 100 executes in Embodiment 1. FIG. 実施の形態1において冷房運転が実行される場合におけるユニット台数の調整例を示す図である。It is a figure which shows the adjustment example of the number of units when the cooling operation is executed in Embodiment 1. FIG. 実施の形態1において暖房運転が実行される場合におけるユニット台数の調整例を示す図である。It is a figure which shows the adjustment example of the number of units when the heating operation is executed in Embodiment 1. FIG. 実施の形態2において制御装置100が実行する運転台数決定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the operation number determination process which the control device 100 executes in Embodiment 2. 実施の形態2において冷房運転が実行される場合におけるユニット台数の調整例を示す図である。It is a figure which shows the adjustment example of the number of units when the cooling operation is executed in Embodiment 2. FIG.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application that the configurations described in the respective embodiments are appropriately combined. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置の構成を示す図である。図1を参照して、冷凍サイクル装置1は、熱源機2と、負荷装置3と、配管4,5と、ポンプ6と、温度センサ8とを備える。熱源機2は、制御装置100と、n台(nは2以上の整数)の冷凍サイクルユニット200-1~200-nとを備える。n=2の場合には、熱源機2は、第1冷凍サイクルユニット200-1と第2冷凍サイクルユニット200-2とを備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle device according to the first embodiment. With reference to FIG. 1, the refrigeration cycle device 1 includes a heat source machine 2, a load device 3, pipes 4 and 5, a pump 6, and a temperature sensor 8. The heat source machine 2 includes a control device 100 and n units (n is an integer of 2 or more) of refrigeration cycle units 200-1 to 200-n. When n = 2, the heat source machine 2 includes a first refrigeration cycle unit 200-1 and a second refrigeration cycle unit 200-2.
 第1冷凍サイクルユニット200-1と第2冷凍サイクルユニット200-2の各々においては、冷媒の循環経路が形成されている。また、配管4,5およびポンプ6によって熱源機2と負荷装置3との間において熱媒体が循環する。温度センサ8は、配管4を通過する熱媒体の温度を検出する。以下の説明において、熱媒体として水を例示する。なお、熱媒体はブラインなどであっても良い。また、説明の簡単のため、熱媒体の温度を水温と記載することもある。 Refrigerant circulation paths are formed in each of the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2. Further, the heat medium is circulated between the heat source machine 2 and the load device 3 by the pipes 4 and 5 and the pump 6. The temperature sensor 8 detects the temperature of the heat medium passing through the pipe 4. In the following description, water will be illustrated as a heat medium. The heat medium may be brine or the like. Further, for the sake of simplicity, the temperature of the heat medium may be described as the water temperature.
 第1冷凍サイクルユニット200-1、第2冷凍サイクルユニット200-2、…第n冷凍サイクルユニット200-nは、水の循環経路に直列に接続され、ともに水に対する熱源または冷熱源として作動するように構成される。 The first refrigeration cycle unit 200-1, the second refrigeration cycle unit 200-2, ... The nth refrigeration cycle unit 200-n is connected in series with the water circulation path so that both act as a heat source or a cold heat source for water. It is composed of.
 第1冷凍サイクルユニット200-1は、圧縮機11と、四方弁12と、熱交換器13と、ファン14と電子膨張弁15と、熱交換器16とを含む。第2冷凍サイクルユニット200-2は、圧縮機21と、四方弁22と、熱交換器23と、ファン24と電子膨張弁25と、熱交換器26とを含む。 The first refrigeration cycle unit 200-1 includes a compressor 11, a four-way valve 12, a heat exchanger 13, a fan 14, an electronic expansion valve 15, and a heat exchanger 16. The second refrigeration cycle unit 200-2 includes a compressor 21, a four-way valve 22, a heat exchanger 23, a fan 24, an electronic expansion valve 25, and a heat exchanger 26.
 圧縮機11,21は、冷媒を圧縮する。圧縮機11,21は、各制御部によってインバータ制御されており、運転周波数が可変である。熱交換器13,23は、冷媒とファン14,24で送風される外気との間で熱交換を行なう。熱交換器16,26は、冷媒と水との間で熱交換を行なう。熱交換器16,26として、たとえば、プレート熱交換器を用いることができる。 Compressors 11 and 21 compress the refrigerant. The compressors 11 and 21 are inverter-controlled by each control unit, and the operating frequency is variable. The heat exchangers 13 and 23 exchange heat between the refrigerant and the outside air blown by the fans 14 and 24. The heat exchangers 16 and 26 exchange heat between the refrigerant and water. As the heat exchangers 16 and 26, for example, plate heat exchangers can be used.
 図1には、四方弁12,22が暖房を行なうように設定されている場合が示される。この場合、第1冷凍サイクルユニット200-1および第2冷凍サイクルユニット200-2は、熱源として作用する。四方弁12,22を切替えて冷媒の循環方向を逆向きにすれば、冷房または除霜を行なう場合となり、第1冷凍サイクルユニット200-1および第2冷凍サイクルユニット200-2は冷熱源として作用する。 FIG. 1 shows a case where the four- way valves 12 and 22 are set to perform heating. In this case, the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2 act as heat sources. If the four- way valves 12 and 22 are switched to reverse the circulation direction of the refrigerant, cooling or defrosting is performed, and the first refrigeration cycle unit 200-1 and the second refrigeration cycle unit 200-2 act as cold heat sources. do.
 なお、冷凍サイクルユニット200-nも冷凍サイクルユニット200-1,200-2と同様な構成であるので、説明は繰返さない。 Since the refrigeration cycle unit 200-n has the same configuration as the refrigeration cycle units 200-1 and 200-2, the description will not be repeated.
 熱源機2と負荷装置3とは、水を流通させる配管4,5によって接続されている。負荷装置3は、室内機30と、室内機40と、室内機50とを含む。室内機30,40,50は、互いに並列的に配管4と配管5との間に接続されている。 The heat source machine 2 and the load device 3 are connected by pipes 4 and 5 for circulating water. The load device 3 includes an indoor unit 30, an indoor unit 40, and an indoor unit 50. The indoor units 30, 40, and 50 are connected between the pipe 4 and the pipe 5 in parallel with each other.
 室内機30は、熱交換器31と、室内空気を熱交換器31に送るためのファン32と、水の流量を調整する流量調整弁33とを含む。熱交換器31は、水と室内空気との熱交換を行なう。 The indoor unit 30 includes a heat exchanger 31, a fan 32 for sending indoor air to the heat exchanger 31, and a flow rate adjusting valve 33 for adjusting the flow rate of water. The heat exchanger 31 exchanges heat between water and indoor air.
 室内機40は、熱交換器41と、室内空気を熱交換器41に送るためのファン42と、水の流量を調整する流量調整弁43とを含む。熱交換器41は、水と室内空気との熱交換を行なう。 The indoor unit 40 includes a heat exchanger 41, a fan 42 for sending indoor air to the heat exchanger 41, and a flow rate adjusting valve 43 for adjusting the flow rate of water. The heat exchanger 41 exchanges heat between water and indoor air.
 室内機50は、熱交換器51と、室内空気を熱交換器51に送るためのファン52と、水の流量を調整する流量調整弁53とを含む。熱交換器51は、水と室内空気との熱交換を行なう。 The indoor unit 50 includes a heat exchanger 51, a fan 52 for sending indoor air to the heat exchanger 51, and a flow rate adjusting valve 53 for adjusting the flow rate of water. The heat exchanger 51 exchanges heat between water and indoor air.
 なお、ポンプ6と、直列接続された熱交換器16,26などを含むn台の熱交換器と、互いに並列接続された熱交換器31、熱交換器41、熱交換器51と、によって水を利用した水回路が形成されている。また、本実施の形態においては2台の冷凍サイクルユニットと3台の室内機を有する空気調和装置を例に挙げている。ただし、室内機の数は3台以上であっても良く、1台であってもよい。 Water is provided by the pump 6, n heat exchangers including heat exchangers 16 and 26 connected in series, and heat exchangers 31, heat exchangers 41, and heat exchangers 51 connected in parallel to each other. A water circuit is formed using. Further, in the present embodiment, an air conditioner having two refrigeration cycle units and three indoor units is taken as an example. However, the number of indoor units may be three or more, or one.
 冷凍サイクルユニット200-1~200-nに分散配置された制御部7-1~7-nは、制御装置100と連携して動作する。制御装置100は、図示しないリモコン等からの設定と、圧力センサおよび温度センサの出力とに応じて制御部7-1~7-nを通じて圧縮機11,21、四方弁12,22、ファン14,24、電子膨張弁15,25を制御する。 The control units 7-1 to 7-n distributed and arranged in the refrigeration cycle units 200-1 to 200-n operate in cooperation with the control device 100. The control device 100 has compressors 11 and 21, four- way valves 12, 22 and fans 14 through control units 7-1 to 7-n according to settings from a remote controller or the like (not shown) and outputs of pressure sensors and temperature sensors. 24. Controls the electronic expansion valves 15 and 25.
 また、負荷装置3は、室内機30,40,50にそれぞれ対応する制御部34,44,54を備える。制御部34,44,54は、流量調整弁33,43,53およびファン32,42,52をそれぞれ制御する。 Further, the load device 3 includes control units 34, 44, 54 corresponding to the indoor units 30, 40, 50, respectively. The control units 34, 44, 54 control the flow rate adjusting valves 33, 43, 53 and the fans 32, 42, 52, respectively.
 なお、制御部7-1,7-2,34,44,54のいずれか1つが制御装置100として制御を行なっても良い。その場合制御装置100は、他の制御部が検出したデータに基づいて圧縮機11,21、四方弁12,22、ファン14,24、電子膨張弁15,25,ポンプ6、流量調整弁33,43,53およびファン32,42,52を制御してもよい。 Note that any one of the control units 7-1, 7-2, 34, 44, 54 may perform control as the control device 100. In that case, the control device 100 has compressors 11, 21, four- way valves 12, 22, fans 14, 24, electronic expansion valves 15, 25, pumps 6, and flow rate adjusting valves 33, based on data detected by other control units. 43, 53 and fans 32, 42, 52 may be controlled.
 図2は、空気調和装置の制御を行なう制御装置と制御装置を遠隔制御するリモコンの構成を示す図である。図2を参照して、リモコン300は、入力装置301と、プロセッサ302と、送信装置303とを含む。入力装置301は、ユーザーが室内機のON/OFFを切り替える押しボタン、設定温度を入力するボタン等を含む。送信装置303は、制御装置100と通信を行なうためのものである。プロセッサ302は、入力装置301から与えられた入力信号に従って、送信装置303を制御する。 FIG. 2 is a diagram showing a configuration of a control device that controls an air conditioner and a remote controller that remotely controls the control device. With reference to FIG. 2, the remote controller 300 includes an input device 301, a processor 302, and a transmitter 303. The input device 301 includes a push button for the user to switch ON / OFF of the indoor unit, a button for inputting a set temperature, and the like. The transmission device 303 is for communicating with the control device 100. The processor 302 controls the transmission device 303 according to the input signal given by the input device 301.
 制御装置100は、リモコンからの信号を受信する受信装置101と、プロセッサ102と、メモリ103とを含む。 The control device 100 includes a receiving device 101 that receives a signal from the remote controller, a processor 102, and a memory 103.
 メモリ103は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。なお、フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。 The memory 103 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory. The flash memory stores the operating system, application programs, and various types of data.
 プロセッサ102は、冷凍サイクル装置1の全体の動作を制御する。なお、図1に示した制御装置100は、プロセッサ102がメモリ103に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ103に記憶されている各種のデータが参照される。受信装置101は、リモコン300との通信を行なうためのものである。複数の室内機がある場合には、受信装置101は複数の室内機の各々に設けられる。 The processor 102 controls the overall operation of the refrigeration cycle device 1. The control device 100 shown in FIG. 1 is realized by the processor 102 executing the operating system and the application program stored in the memory 103. When executing the application program, various data stored in the memory 103 are referred to. The receiving device 101 is for communicating with the remote controller 300. When there are a plurality of indoor units, the receiving device 101 is provided in each of the plurality of indoor units.
 なお、図1に示すように制御装置が複数の制御部に分割されている場合には、複数の制御部の各々にプロセッサが含まれる。このような場合には、複数のプロセッサが連携して冷凍サイクル装置1の全体制御を行なう。 When the control device is divided into a plurality of control units as shown in FIG. 1, each of the plurality of control units includes a processor. In such a case, a plurality of processors cooperate to perform overall control of the refrigeration cycle device 1.
 図3は、冷凍サイクル装置の起動時のサーモオフの発生について説明するための図である。図3において、横軸には時間が示され、上から順に水温、圧縮機の合計周波数、ユニットの運転台数が示されている。 FIG. 3 is a diagram for explaining the occurrence of thermo-off when the refrigeration cycle device is started. In FIG. 3, the time is shown on the horizontal axis, and the water temperature, the total frequency of the compressor, and the number of operating units are shown in order from the top.
 冷凍サイクルユニットを図1に示すように複数台直列接続した連結設置条件において、冷房を行なうように冷凍サイクル装置1を起動すると、時刻t51において全体の冷凍サイクルユニットのうち予め定められた台数が運転を開始し、水温が低下し始める。予め定められた台数が1台である例が図3に示される。 When the refrigeration cycle device 1 is started to perform cooling under the connection installation condition in which a plurality of refrigeration cycle units are connected in series as shown in FIG. 1, a predetermined number of the total refrigeration cycle units are operated at time t51. And the water temperature begins to drop. An example in which the predetermined number of units is one is shown in FIG.
 時刻t51~t52においては、1台の冷凍サイクルユニットが運転し、他の冷凍サイクルユニットは停止している。運転開始する冷凍サイクルユニットは、運転周波数を0から徐々に増加させる。いきなり1台あたりの上限周波数fmaxで圧縮機を回すと、運転開始時に圧縮機内に溜まっている冷媒が排出される際に、冷凍機油も圧縮機から排出されてしまい、圧縮機がその後潤滑不足に陥るおそれあるからである。そこで、圧縮機の運転開始時には、徐々に周波数を上げていく必要がある。運転周波数を増加させると、冷凍サイクルユニットの熱媒体を冷却する能力は増加する。 From time t51 to t52, one refrigeration cycle unit is in operation and the other refrigeration cycle unit is stopped. The refrigeration cycle unit that starts operation gradually increases the operating frequency from 0. If the compressor is suddenly turned at the upper limit frequency fmax per unit, when the refrigerant accumulated in the compressor is discharged at the start of operation, the refrigerating machine oil is also discharged from the compressor, and the compressor subsequently becomes insufficiently lubricated. This is because there is a risk of falling. Therefore, it is necessary to gradually increase the frequency at the start of operation of the compressor. Increasing the operating frequency increases the ability of the refrigeration cycle unit to cool the heat medium.
 時刻t52において、運転中の冷凍サイクルユニットの圧縮機周波数が最大となっても目標水温に到達しない場合、冷凍サイクルユニットを追加で起動することによって、水温を目標水温に到達させる。図3の例では、時刻t52において水温T52は目標水温よりもまだ高いので、さらに2台運転が追加され時刻t52~t53では運転中の冷凍サイクルユニットの運転台数は3台となっている。 At time t52, if the target water temperature is not reached even if the compressor frequency of the refrigerating cycle unit during operation is maximized, the water temperature is brought to reach the target water temperature by additionally starting the refrigerating cycle unit. In the example of FIG. 3, since the water temperature T52 is still higher than the target water temperature at the time t52, the operation of two more units is added, and the number of operating refrigeration cycle units in operation is three at the time t52 to t53.
 運転中となった3台のうち2台は、運転開始時である時刻t52以降、圧縮機の運転周波数が0から次第に増加する。3台の冷凍サイクル装置の熱媒体を冷却する能力の合計は、3台の圧縮機の運転周波数の合計で決まる。 Two of the three units in operation gradually increase the operating frequency of the compressor from 0 after the time t52 at the start of operation. The total capacity of the three refrigeration cycle devices to cool the heat medium is determined by the total operating frequencies of the three compressors.
 時刻t53では、水温が目標水温まで低下し、サーモオフ状態となり、時刻t53以降は、運転台数がゼロになり、圧縮機の運転周波数の合計もゼロになっている。 At time t53, the water temperature dropped to the target water temperature and the thermo-off state was established. After time t53, the number of operating units became zero and the total operating frequency of the compressor became zero.
 このような起動方式では、最初に運転開始した冷凍サイクルユニットの圧縮機周波数が最大となるまでは、冷凍サイクルユニットの運転台数を増加しないので、目標水温に到達するまでの時間がかかる。また、追加で起動させるユニット台数は、それまでの水温変化を考慮せずに予め2台に決定されている。その結果、時刻t52以降は3台運転に固定されている。このため、ユニット運転台数が過剰となり、時刻t53において冷却しすぎによるサーモオフが発生してしまう。サーモオフにより圧縮機が停止されると水温が急激に上昇する。このような水温の変動は、冷房時のユーザーの快適性を損なう。 With such a start-up method, the number of refrigerating cycle units in operation is not increased until the compressor frequency of the refrigerating cycle unit that first started operation is maximized, so it takes time to reach the target water temperature. In addition, the number of units to be additionally activated is determined in advance to two without considering the change in water temperature up to that point. As a result, after time t52, it is fixed to three-unit operation. Therefore, the number of units in operation becomes excessive, and thermo-off occurs due to excessive cooling at time t53. When the compressor is stopped due to thermo-off, the water temperature rises sharply. Such fluctuations in water temperature impair user comfort during cooling.
 そこで、本実施の形態では、制御装置100は、時刻t52において温度センサ8が検出する水温と目標水温との差を見て、追加起動する冷凍サイクルユニットの運転台数を決める。 Therefore, in the present embodiment, the control device 100 determines the number of operating refrigeration cycle units to be additionally activated by looking at the difference between the water temperature detected by the temperature sensor 8 and the target water temperature at time t52.
 図4は、実施の形態1において制御装置100が実行する運転台数決定処理を説明するためのフローチャートである。制御装置100は、リモコン等から起動指令を受けた場合、タイマーで設定されている起動時刻になった場合などの冷凍サイクル装置1の起動時である場合(S1でYES)、ステップS2において冷凍サイクルユニットの運転台数を初期運転台数に設定する。初期運転台数は、n台の冷凍サイクルユニットの一部であれば何台でも良いが、図5以降の例では、1台である場合が示されている。 FIG. 4 is a flowchart for explaining the operation number determination process executed by the control device 100 in the first embodiment. When the control device 100 receives a start command from a remote controller or the like, or when the refrigeration cycle device 1 is started (YES in S1), such as when the start time set by the timer is reached, the refrigeration cycle is performed in step S2. Set the number of units in operation to the initial number of units in operation. The initial number of operating units may be any number as long as it is a part of n refrigeration cycle units, but in the examples after FIG. 5, a case of one unit is shown.
 起動時でない場合(S1でNO)、制御装置は、起動時からの経過時間がΔTP1であるか否かを判断する。経過時間がΔTP1である場合(S3でYES)、制御装置100は、ステップS4において、必要ユニット台数Nを算出する。そして、制御装置100は、ステップS5において、運転台数がN台となるように冷凍サイクルユニットの運転台数を調整する。 If it is not at the time of startup (NO in S1), the control device determines whether or not the elapsed time from the time of startup is ΔTP1. When the elapsed time is ΔTP1 (YES in S3), the control device 100 calculates the required number of units N in step S4. Then, in step S5, the control device 100 adjusts the number of operating refrigeration cycle units so that the number of operating units is N.
 経過時間がΔTP1ではない場合(S3でNO)、すなわち、起動時から経過時間がΔTP1に至る前と、経過時間がΔTP1よりも長い場合には、制御装置100は、現在運転中の冷凍サイクルユニットの運転台数を維持する。 When the elapsed time is not ΔTP1 (NO in S3), that is, before the elapsed time reaches ΔTP1 from the start-up and when the elapsed time is longer than ΔTP1, the control device 100 is the refrigerating cycle unit currently in operation. Maintain the number of operating units.
 図5は、実施の形態1において冷房運転が実行される場合におけるユニット台数の調整例を示す図である。図5には、上から圧縮機の運転周波数の合計の周波数Σf、水温Tw(t)、冷凍サイクルユニットの運転台数が示されている。 FIG. 5 is a diagram showing an example of adjusting the number of units when the cooling operation is executed in the first embodiment. FIG. 5 shows the total frequency Σf of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
 また中段の水温には、目標水温TwOと、その目標水温に至るまでの過程の各時刻における目標水温である中間目標水温TwmO(t)とが水温Tw(t)以外に示されている。なお、表記の簡単のために、各時刻t1,t2,t3における水温Tw(t1),Tw(t2),Tw(t3)をそれぞれTw1,Tw2,Tw3と記載している。 In the middle water temperature, the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t). For the sake of simplicity, the water temperatures Tw (t1), Tw (t2), and Tw (t3) at each time t1, t2, t3 are described as Tw1, Tw2, Tw3, respectively.
 図1、図5を参照して、冷凍サイクル装置1は、それぞれが冷媒を使用する互いに独立した冷媒回路を有し、共通する熱媒体の循環路に配置され、熱媒体の温度を制御する複数の冷凍サイクルユニット200-1~200-nを備える。冷凍サイクル装置1は、さらに、熱媒体の循環路における熱媒体の温度を検出する温度センサ8と、複数の冷凍サイクルユニット200-1~200-nの運転台数を制御する制御装置100とを備える。 With reference to FIGS. 1 and 5, each of the refrigeration cycle devices 1 has a plurality of independent refrigerant circuits that use a refrigerant, are arranged in a common heat medium circulation path, and control the temperature of the heat medium. The refrigeration cycle unit 200-1 to 200-n of the above is provided. The refrigeration cycle device 1 further includes a temperature sensor 8 that detects the temperature of the heat medium in the heat medium circulation path, and a control device 100 that controls the number of operating units of the plurality of refrigeration cycle units 200-1 to 200-n. ..
 制御装置100は、冷凍サイクル装置1が冷房運転を開始した第1時刻t1において、運転台数を初期運転台数に設定する。図5の例では、初期運転台数は1台である。 The control device 100 sets the number of operating units to the initial number of operating units at the first time t1 when the refrigerating cycle device 1 starts the cooling operation. In the example of FIG. 5, the initial number of operating units is one.
 制御装置100は、第1時刻t1において温度センサ8によって検出される熱媒体の温度Tw1と目標温度TwOとの差に基づいて、第1時刻t1よりも後の第2時刻t2における熱媒体の温度Twの中間目標変化量ΔTmO(=Tw2-TwmO)を決定する。 The control device 100 determines the temperature of the heat medium at the second time t2 after the first time t1 based on the difference between the temperature Tw1 of the heat medium detected by the temperature sensor 8 at the first time t1 and the target temperature TwO. The intermediate target change amount ΔTmO (= Tw2-TwmoO) of Tw is determined.
 制御装置100は、第2時刻t2よりも後の第3時刻t3において温度センサ8で検出される熱媒体の温度Tw3が目標温度TwOに近づくように、温度センサ8で検出された第1時刻t1から第2時刻t2までに生じる熱媒体の温度変化量ΔT(=Tw1-Tw2)と中間目標変化量ΔTmOとの差に応じて運転台数を調整する。 In the control device 100, the first time t1 detected by the temperature sensor 8 so that the temperature Tw3 of the heat medium detected by the temperature sensor 8 approaches the target temperature TwO at the third time t3 after the second time t2. The number of operating units is adjusted according to the difference between the temperature change amount ΔT (= Tw1-Tw2) of the heat medium generated from the second time to t2 and the intermediate target change amount ΔTmO.
 制御装置100は、温度変化量ΔTと中間目標変化量ΔTmOとの差に基づいて、第2時刻t2における冷凍サイクルユニットの運転台数の変更台数を決定する。 The control device 100 determines the number of operating units of the refrigeration cycle unit to be changed at the second time t2 based on the difference between the temperature change amount ΔT and the intermediate target change amount ΔTmO.
 制御装置100は、冷凍サイクルユニットの追加起動の可否判定を下式(1)に基づいて実施する。目標時間t3における目標水温TwOと起動前水温Tw1との差から求めた、経過時間に対応する目標温度TwmO(t)に対して、現在水温Tw2の方が高い場合は、制御装置100は、冷凍サイクルユニットの追加起動が可能と判断する。目標温度TwmO(t)は、図5では破線の直線で示されている。
Tw2>(TwO-Tw1)/(t3-t1)×(t2-t1)+Tw1 …(1)
 言い換えると、以下のような関係が言える。温度センサ8は、第1時刻t1において第1温度Tw1を検出し、第1時刻t1から第1時間ΔTP1が経過した第2時刻t2において第2温度Tw2を検出する。
The control device 100 determines whether or not the refrigeration cycle unit can be additionally activated based on the following equation (1). When the current water temperature Tw2 is higher than the target temperature TwmO (t) corresponding to the elapsed time obtained from the difference between the target water temperature TwO at the target time t3 and the pre-start water temperature Tw1, the control device 100 freezes. Judge that additional start of the cycle unit is possible. The target temperature TwmO (t) is indicated by a broken straight line in FIG.
Tw2> (TwO-Tw1) / (t3-t1) × (t2-t1) + Tw1 ... (1)
In other words, the following relationship can be said. The temperature sensor 8 detects the first temperature Tw1 at the first time t1 and detects the second temperature Tw2 at the second time t2 when the first time ΔTP1 has elapsed from the first time t1.
 制御装置100は、第2時刻t2において、第1時刻t1から第2時刻t2までに生じる熱媒体の温度変化量ΔTの大きさ|Tw2-Tw1|を算出する。制御装置100は、温度変化量ΔTの大きさ|Tw2-Tw1|が、中間目標変化量ΔTmOよりも小さい場合(矢印A1で示される)には、運転台数を初期運転台数よりも増加させる。 The control device 100 calculates the magnitude | Tw2-Tw1 | of the amount of temperature change ΔT of the heat medium generated from the first time t1 to the second time t2 at the second time t2. When the magnitude | Tw2-Tw1 | of the temperature change amount ΔT is smaller than the intermediate target change amount ΔTmO (indicated by the arrow A1), the control device 100 increases the number of operating units from the initial operating number.
 なお、図5においては|Tw2-Tw1|<ΔTmOの場合が示され、水温Tw2は直線で示されるTwmO(t2)よりも上に位置している。 Note that in FIG. 5, the case of | Tw2-Tw1 | <ΔTmO is shown, and the water temperature Tw2 is located above Twmo (t2) shown by a straight line.
 より好ましくは、温度変化量ΔTの大きさ|Tw2-Tw1|が、中間目標変化量ΔTmOよりも大きい場合(矢印B1で示される)には、可能な場合には、運転台数を初期運転台数よりも減少させる。なお、図5に示した例では、運転台数を増加させる例を示しているが、|Tw2-Tw1|>ΔTmOの場合は、水温Tw2は直線で示されるTwmO(t2)よりも下に位置する。また、図5の例では初期運転台数が1台であるので、運転台数を減少させることはできないが、初期運転台数が複数台に設定されている場合には、運転台数を減少させることができる。 More preferably, when the magnitude | Tw2-Tw1 | of the temperature change amount ΔT is larger than the intermediate target change amount ΔTmO (indicated by the arrow B1), the number of operating units is set to be larger than the initial operating number, if possible. Also reduce. In the example shown in FIG. 5, an example of increasing the number of operating units is shown, but in the case of | Tw2-Tw1 |> ΔTmO, the water temperature Tw2 is located below TwmO (t2) indicated by a straight line. .. Further, in the example of FIG. 5, since the initial number of operating units is one, the number of operating units cannot be reduced, but when the initial number of operating units is set to a plurality of units, the number of operating units can be reduced. ..
 より好ましくは、中間目標変化量ΔTmOは、第1時刻t1から第3時刻t3に至る間、第1温度Tw1から目標温度TwOまで一定の温度勾配で熱媒体の温度が変化するとした場合の第2時刻t2における熱媒体の温度TwO(t2)まで、熱媒体の温度が第1温度Tw1から変化した変化量である。 More preferably, the intermediate target change amount ΔTmO is the second case where the temperature of the heat medium changes with a constant temperature gradient from the first temperature Tw1 to the target temperature TwO from the first time t1 to the third time t3. It is the amount of change in the temperature of the heat medium from the first temperature Tw1 up to the temperature TwO (t2) of the heat medium at time t2.
 上記の関係を図5から導出する。時刻t1~t2における熱媒体(水)の温度変化量は、(Tw2-Tw1)で示される。この変化が時刻t1~t2において圧縮機で使用されたエネルギーによるものであると考える。時刻t1~t2において圧縮機で使用されたエネルギーは、圧縮機の運転周波数の積分値に比例すると考える。 The above relationship is derived from FIG. The amount of temperature change of the heat medium (water) from time t1 to t2 is indicated by (Tw2-Tw1). It is considered that this change is due to the energy used in the compressor at times t1 to t2. The energy used in the compressor at times t1 to t2 is considered to be proportional to the integrated value of the operating frequency of the compressor.
 また、時刻t2~t3における熱媒体(水)の温度変化量は、(Tw3-Tw2)で示される。この変化が時刻t2~t3において圧縮機で使用されたエネルギーによるものであると考える。時刻t2~t3において圧縮機で使用されたエネルギーは、圧縮機の運転周波数の積分値に比例すると考える。すると、以下の関係が成立する。
(Tw2-Tw1):∫f(t1~t2)=(Tw3-Tw2):∫f(t2~t3) …(2)
式(2)において、∫f(t1~t2)は、時刻t1から時刻t2までの周波数fの積分値を示す。∫f(t2~t3)は、時刻t2から時刻t3までの周波数fの積分値を示す。
The amount of temperature change of the heat medium (water) from time t2 to t3 is indicated by (Tw3-Tw2). It is considered that this change is due to the energy used in the compressor at times t2 to t3. It is considered that the energy used in the compressor at times t2 to t3 is proportional to the integrated value of the operating frequency of the compressor. Then, the following relationship is established.
(Tw2-Tw1): ∫f (t1 to t2) = (Tw3-Tw2): ∫f (t2 to t3) ... (2)
In the equation (2), ∫f (t1 to t2) indicates the integrated value of the frequency f from the time t1 to the time t2. ∫f (t2 to t3) indicates the integrated value of the frequency f from the time t2 to the time t3.
 式(2)を変形すると、以下の式(3)が得られる。
∫f(t2~t3)=∫f(t1~t2)×(Tw3-Tw2)/(Tw2-Tw1) …(3)
 また、時刻t2~t3における圧縮機周波数の平均値をfaveとすると、以下の式(4)の関係がある。
fave=∫f(t2~t3)/(t3-t2) …(4)
 ここで、時刻t2以降において運転すべき冷凍サイクルユニットの台数は下式(5)(6)に基づき算出できる。
N=fave/fm …(5)
 式(3)(4)(5)から下式(6)が導かれる。
N=∫f(t1~t2)×(Tw3-Tw2)/(Tw2-Tw1)/(t3-t2)/fm …(6)
ただし、Nは整数であるので、小数点以下は切り上げとする。
By transforming the equation (2), the following equation (3) is obtained.
∫f (t2 to t3) = ∫f (t1 to t2) × (Tw3-Tw2) / (Tw2-Tw1)… (3)
Further, assuming that the average value of the compressor frequencies at times t2 to t3 is fave, there is a relationship of the following equation (4).
fave = ∫f (t2 to t3) / (t3-t2) ... (4)
Here, the number of refrigeration cycle units to be operated after time t2 can be calculated based on the following equations (5) and (6).
N = fave / fm ... (5)
The following equation (6) is derived from the equations (3), (4) and (5).
N = ∫f (t1 to t2) × (Tw3-Tw2) / (Tw2-Tw1) / (t3-t2) / fm… (6)
However, since N is an integer, the numbers after the decimal point are rounded up.
 すなわち、目標水温差(=Tw3-Tw2)だけ水温を変化させるのに必要な起動ユニットの圧縮機周波数の合計値の積分値∫f(t2~t3)を時間で平均する。この平均した値を1ユニットの最大周波数fmで割ることで、目標時刻t3において目標水温TwOに到達させるために必要なユニット台数Nが求まる。 That is, the integral value ∫f (t2 to t3) of the total value of the compressor frequencies of the starting units required to change the water temperature by the target water temperature difference (= Tw3-Tw2) is averaged over time. By dividing this average value by the maximum frequency fm of one unit, the number of units N required to reach the target water temperature TwO at the target time t3 can be obtained.
 図6は、実施の形態1において暖房運転が実行される場合におけるユニット台数の調整例を示す図である。図6には、上から圧縮機の運転周波数の合計の周波数Σf、水温Tw(t)、冷凍サイクルユニットの運転台数が示されている。 FIG. 6 is a diagram showing an example of adjusting the number of units when the heating operation is executed in the first embodiment. FIG. 6 shows the total frequency Σf of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
 また中段の水温には、目標水温TwOと、その目標水温に至るまでの過程の各時刻における目標水温である中間目標水温TwmO(t)とが水温Tw(t)以外に示されている。なお、表記の簡単のために、各時刻t11,t12,t13における水温Tw(t11),Tw(t12),Tw(t13)をそれぞれTw11,Tw12,Tw13と記載している。 In the middle water temperature, the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t). For the sake of simplicity, the water temperatures Tw (t11), Tw (t12), and Tw (t13) at each time t11, t12, and t13 are described as Tw11, Tw12, and Tw13, respectively.
 図1、図6を参照して、制御装置100は、冷凍サイクル装置1が暖房運転を開始した第1時刻t11において運転台数を初期運転台数に設定する。図6の例では、初期運転台数は1台である。 With reference to FIGS. 1 and 6, the control device 100 sets the number of operating units to the initial number of operating units at the first time t11 when the refrigerating cycle device 1 starts the heating operation. In the example of FIG. 6, the initial number of operating units is one.
 制御装置100は、第1時刻t11において温度センサ8によって検出される熱媒体の温度Tw11と目標温度TwOとの差に基づいて、第1時刻t11よりも後の第2時刻t12における熱媒体の温度の中間目標変化量ΔTmOを決定する。 The control device 100 determines the temperature of the heat medium at the second time t12 after the first time t11 based on the difference between the temperature Tw11 of the heat medium detected by the temperature sensor 8 at the first time t11 and the target temperature TwO. The intermediate target change amount ΔTmO of is determined.
 制御装置100は、第2時刻t12よりも後の第3時刻t13において温度センサ8で検出される熱媒体の温度Twが目標温度TwOに近づくように、温度センサ8で検出された第1時刻t11から第2時刻t12までに生じる熱媒体の温度変化量ΔT(=Tw11-Tw12)と中間目標変化量ΔTmOとの差に応じて運転台数を調整する。 In the control device 100, the first time t11 detected by the temperature sensor 8 so that the temperature Tw of the heat medium detected by the temperature sensor 8 approaches the target temperature TwO at the third time t13 after the second time t12. The number of operating units is adjusted according to the difference between the temperature change amount ΔT (= Tw11-Tw12) of the heat medium generated from the second time to t12 and the intermediate target change amount ΔTmO.
 制御装置100は、温度変化量ΔT(=Tw11-Tw12)と図6に示す中間目標変化量ΔTmOとの差に基づいて、第2時刻t12における冷凍サイクルユニットの運転台数の変更台数を決定する。 The control device 100 determines the number of changed units of the refrigerating cycle unit in operation at the second time t12 based on the difference between the temperature change amount ΔT (= Tw11-Tw12) and the intermediate target change amount ΔTmO shown in FIG.
 制御装置100は、冷凍サイクルユニットの追加起動の可否判定を下式(7)に基づいて実施する。目標時間t13における目標水温TwOと起動前水温Tw11との差から求めた、経過時間に対応する目標温度TwmO(t)に対して、現在水温Tw12の方が低い場合は、制御装置100は、冷凍サイクルユニットの追加起動が可能と判断する。目標温度TwmO(t)は、図6では破線の直線で示されている。
Tw12<(TwO-Tw11)/(t13-t11)×(t12-t11)+Tw11 …(7)
 温度センサ8は、第1時刻t11において第1温度Tw11を検出し、第1時刻t11から第1時間ΔTP1が経過した第2時刻t12において第2温度Tw12を検出する。
The control device 100 determines whether or not the refrigeration cycle unit can be additionally started based on the following equation (7). When the current water temperature Tw12 is lower than the target temperature TwmO (t) corresponding to the elapsed time obtained from the difference between the target water temperature TwO at the target time t13 and the pre-startup water temperature Tw11, the control device 100 freezes. Judge that additional start of the cycle unit is possible. The target temperature TwmO (t) is indicated by a broken straight line in FIG.
Tw12 <(TwO-Tw11) / (t13-t11) × (t12-t11) + Tw11… (7)
The temperature sensor 8 detects the first temperature Tw11 at the first time t11, and detects the second temperature Tw12 at the second time t12 when the first time ΔTP1 has elapsed from the first time t11.
 制御装置100は、温度変化量ΔTの大きさ|Tw12-Tw11|が、中間目標変化量ΔTmOよりも小さい場合(矢印A2で示される)には、運転台数を初期運転台数よりも増加させる。 When the magnitude | Tw12-Tw11 | of the temperature change amount ΔT is smaller than the intermediate target change amount ΔTmO (indicated by the arrow A2), the control device 100 increases the number of operating units from the initial operating number.
 なお、図6においては|Tw12-Tw11|<ΔTmOの場合が示され、水温Tw12は直線で示されるTwmO(t2)よりも下に位置している。 Note that, in FIG. 6, the case of | Tw12-Tw11 | <ΔTmO is shown, and the water temperature Tw12 is located below Twmo (t2) shown by a straight line.
 より好ましくは、制御装置100は、温度変化量ΔTの大きさ|Tw12-Tw11|が、中間目標変化量ΔTmOよりも大きい場合(矢印B2で示される)には、可能な場合には、運転台数を初期運転台数よりも減少させる。なお、図6に示した例では、運転台数を増加させる例を示しているが、|Tw2-Tw1|>ΔTmOの場合は、水温Tw12は直線で示されるTwmO(t2)よりも上に位置する。また、図6の例では初期運転台数が1台であるので、運転台数を減少させることはできないが、初期運転台数が複数台に設定されている場合には、運転台数を減少させることができる。 More preferably, the control device 100 operates when the magnitude | Tw12-Tw11 | of the temperature change amount ΔT is larger than the intermediate target change amount ΔTmO (indicated by the arrow B2), if possible. Is reduced from the initial number of units in operation. In the example shown in FIG. 6, an example of increasing the number of operating units is shown, but in the case of | Tw2-Tw1 |> ΔTmO, the water temperature Tw12 is located above TwmO (t2) indicated by a straight line. .. Further, in the example of FIG. 6, since the initial number of operating units is one, the number of operating units cannot be reduced, but when the initial number of operating units is set to a plurality of units, the number of operating units can be reduced. ..
 より好ましくは、中間目標変化量ΔTmOは、第1時刻t11から第3時刻t13に至る間、第1温度Tw11から目標温度TwOまで一定の温度勾配で熱媒体の温度が変化するとした場合の第2時刻t12における熱媒体の温度TwO(t12)まで、熱媒体の温度が第1温度Tw11から変化した変化量である。 More preferably, the intermediate target change amount ΔTmO is the second case where the temperature of the heat medium changes with a constant temperature gradient from the first temperature Tw11 to the target temperature TwO from the first time t11 to the third time t13. It is the amount of change in the temperature of the heat medium from the first temperature Tw11 up to the temperature TwO (t12) of the heat medium at time t12.
 上記の関係を図6から導出する。時刻t11~t12における熱媒体(水)の温度変化量は、(Tw12-Tw11)で示される。この変化が時刻t11~t12において圧縮機で使用されたエネルギーによるものであると考える。時刻t11~t12において圧縮機で使用されたエネルギーは、圧縮機の運転周波数の積分値に比例すると考える。 The above relationship is derived from FIG. The amount of temperature change of the heat medium (water) from time t11 to t12 is indicated by (Tw12-Tw11). It is considered that this change is due to the energy used in the compressor at times t11 to t12. It is considered that the energy used in the compressor at times t11 to t12 is proportional to the integrated value of the operating frequency of the compressor.
 また、時刻t12~t13における熱媒体(水)の温度変化量は、(Tw13-Tw12)で示される。この変化が時刻t2~t3において圧縮機で使用されたエネルギーによるものであると考える。時刻t12~t13において圧縮機で使用されたエネルギーは、圧縮機の運転周波数の積分値に比例すると考える。すると、以下の関係が成立する。
(Tw12-Tw11):∫f(t11~t12)=(Tw13-Tw12):∫f(t12~t13) …(8)
式(8)において、∫f(t11~t12)は、時刻t1から時刻t2までの周波数fの積分値を示す。∫f(t12~t13)は、時刻t2から時刻t3までの周波数fの積分値を示す。
The amount of temperature change of the heat medium (water) from time t12 to t13 is indicated by (Tw13-Tw12). It is considered that this change is due to the energy used in the compressor at times t2 to t3. It is considered that the energy used in the compressor at times t12 to t13 is proportional to the integrated value of the operating frequency of the compressor. Then, the following relationship is established.
(Tw12-Tw11): ∫f (t11 to t12) = (Tw13-Tw12): ∫f (t12 to t13) ... (8)
In the formula (8), ∫f (t11 to t12) indicates the integrated value of the frequency f from the time t1 to the time t2. ∫f (t12 to t13) indicates the integrated value of the frequency f from the time t2 to the time t3.
 式(8)を変形すると、以下の式(9)が得られる。
∫f(t12~t13)=∫f(t11~t12)×(Tw13-Tw12)/(Tw12-Tw11) …(9)
 また、時刻t12~t13における圧縮機周波数の平均値をfaveとすると、以下の式(10)の関係がある。
fave=∫f(t12~t13)/(t13-t12) …(10)
 ここで、時刻t12以降において運転すべき冷凍サイクルユニットの台数は下式(11)(12)に基づき算出できる。
N=fave/fm …(11)
 式(9)(10)(11)から下式(12)が導かれる。
N=∫f(t11~t12)×(Tw13-Tw12)/(Tw12-Tw11)/(t13-t12)/fm …(12)
ただし、Nは整数であるので、小数点以下は切り上げとする。
By transforming the equation (8), the following equation (9) is obtained.
∫f (t12 to t13) = ∫f (t11 to t12) × (Tw13-Tw12) / (Tw12-Tw11)… (9)
Further, assuming that the average value of the compressor frequencies at times t12 to t13 is fave, there is a relationship of the following equation (10).
fave = ∫f (t12 to t13) / (t13-t12) ... (10)
Here, the number of refrigeration cycle units to be operated after time t12 can be calculated based on the following equations (11) and (12).
N = fave / fm ... (11)
The following equation (12) is derived from the equations (9), (10) and (11).
N = ∫f (t11 to t12) × (Tw13-Tw12) / (Tw12-Tw11) / (t13-t12) / fm… (12)
However, since N is an integer, the numbers after the decimal point are rounded up.
 すなわち、目標水温差(=Tw13-Tw12)だけ水温を変化させるのに必要な起動ユニットの圧縮機周波数の合計値の積分値∫f(t12~t13)を時間で平均する。この平均した値を1ユニットの最大周波数fmで割ることで、目標時刻t13において目標水温TwOに到達させるために必要なユニット台数Nが求まる。 That is, the integral value ∫f (t12 to t13) of the total value of the compressor frequencies of the starting units required to change the water temperature by the target water temperature difference (= Tw13-Tw12) is averaged over time. By dividing this average value by the maximum frequency fm of one unit, the number of units N required to reach the target water temperature TwO at the target time t13 can be obtained.
 以上説明したように、実施の形態1では、目標時刻に熱媒体の温度をちょうど目標温度にするために、中間時刻において1度、冷凍サイクル装置に運転台数の適否を判断し、運転台数に過不足がある場合には、運転台数を調整する。このために、能力不足による目標温度の未達を避けつつ、過剰能力によって途中でサーモオフが発生することによる熱媒体の温度変動も避けることができる。 As described above, in the first embodiment, in order to bring the temperature of the heat medium to the target temperature at the target time, the refrigerating cycle device determines the suitability of the number of operating units once at the intermediate time, and the number of operating units is excessive. If there is a shortage, adjust the number of units in operation. For this reason, it is possible to avoid the temperature fluctuation of the heat medium due to the thermo-off occurring in the middle due to the excess capacity while avoiding the non-achievement of the target temperature due to the insufficient capacity.
 実施の形態2.
 実施の形態1では、目標時間までに1度、運転台数の見直しを行なう例を説明した。これにより、負荷装置の状態を反映させて運転台数を調整し、サーモオフの発生を抑えることができる。実施の形態2では、初回の調整は同様に実行するが、その後も運転台数の調整を実行する例を説明する。なお、実施の形態2の冷凍サイクル装置の構成については、図1に示す構成と同様であるため、説明は繰返さない。
Embodiment 2.
In the first embodiment, an example in which the number of operating units is reviewed once by the target time has been described. As a result, the number of operating units can be adjusted by reflecting the state of the load device, and the occurrence of thermo-off can be suppressed. In the second embodiment, the first adjustment is executed in the same manner, but an example in which the adjustment of the number of operating units is executed thereafter will be described. Since the configuration of the refrigeration cycle device of the second embodiment is the same as the configuration shown in FIG. 1, the description will not be repeated.
 図7は、実施の形態2において制御装置100が実行する運転台数決定処理を説明するためのフローチャートである。図7のフローチャートは、実施の形態1の処理を示す図4のフローチャートに、ステップS6~S8の処理が追加されている。ステップS1~S5の処理については、図4で説明しているので、ここでは説明は繰り返さない。 FIG. 7 is a flowchart for explaining the operation number determination process executed by the control device 100 in the second embodiment. In the flowchart of FIG. 7, the processes of steps S6 to S8 are added to the flowchart of FIG. 4 showing the process of the first embodiment. Since the processes of steps S1 to S5 have been described with reference to FIG. 4, the description will not be repeated here.
 ステップS3において、経過時間がΔTP1と一致しない場合(S3でNO)、制御装置100は、ステップS6において、経過時間がΔTP1よりも長いか否かを判断する。経過時間>ΔTP1である場合(S6でYES)、制御装置100は、ステップS7において水温が目標温度TwOに一度でも到達したことがあるか否かを判断する。 If the elapsed time does not match ΔTP1 in step S3 (NO in S3), the control device 100 determines in step S6 whether the elapsed time is longer than ΔTP1. When the elapsed time> ΔTP1 (YES in S6), the control device 100 determines whether or not the water temperature has reached the target temperature TwO even once in step S7.
 水温が目標温度TwOに一度でも到達したことがある場合(S7でYES)、制御装置100は、ステップS8に処理を進め、冷凍サイクル装置の運転台数の調整を完了する。この場合、このタイミング以降は、調整完了した台数固定で、目標時刻までの運転が実行される。 If the water temperature has reached the target temperature TwO even once (YES in S7), the control device 100 proceeds to step S8 to complete the adjustment of the number of operating refrigeration cycle devices. In this case, after this timing, the operation until the target time is executed with the fixed number of units for which the adjustment has been completed.
 一方、水温が目標温度TwOに一度も到達したことがない場合(S7でNO)、制御装置100は、ステップS4に処理を進め、必要ユニット台数Nの算出を再び実行し、ステップS5において、N台の冷凍サイクルユニットが運転中となるように、運転台数を調整する。 On the other hand, when the water temperature has never reached the target temperature TwO (NO in S7), the control device 100 proceeds to step S4, recalculates the required number of units N, and in step S5, N. Adjust the number of units in operation so that the refrigeration cycle unit of the unit is in operation.
 なお、ステップS6において、経過時間がまだΔTP2に至る前であれば(S6でNO)、運転台数の調整は行なわれずに、初期運転台数のまま、冷凍サイクル装置の運転状態が維持される。 In step S6, if the elapsed time has not yet reached ΔTP2 (NO in S6), the number of operating units is not adjusted, and the operating state of the refrigeration cycle device is maintained with the initial number of operating units.
 図8は、実施の形態2において冷房運転が実行される場合におけるユニット台数の調整例を示す図である。図8には、上から圧縮機の運転周波数の合計の周波数Σf、水温Tw(t)、冷凍サイクルユニットの運転台数が示されている。 FIG. 8 is a diagram showing an example of adjusting the number of units when the cooling operation is executed in the second embodiment. FIG. 8 shows the total frequency Σf of the operating frequencies of the compressor, the water temperature Tw (t), and the number of operating refrigeration cycle units from the top.
 また中段の水温には、目標水温TwOと、その目標水温に至るまでの過程の各時刻における目標水温である中間目標水温TwmO(t)とが水温Tw(t)以外に示されている。なお、表記の簡単のために、各時刻t21~t25における水温Tw(t21)~Tw(t25)をそれぞれTw21~Tw25と記載している。 In the middle water temperature, the target water temperature TwO and the intermediate target water temperature TwmO (t), which is the target water temperature at each time in the process of reaching the target water temperature, are shown in addition to the water temperature Tw (t). For the sake of simplicity, the water temperatures Tw (t21) to Tw (t25) at each time t21 to t25 are described as Tw21 to Tw25, respectively.
 制御装置100は、冷凍サイクル装置1が冷房運転を開始した第1時刻t21において、運転台数を初期運転台数に設定する。図8の例では、初期運転台数は1台である。 The control device 100 sets the number of operating units to the initial number of operating units at the first time t21 when the refrigerating cycle device 1 starts the cooling operation. In the example of FIG. 8, the initial number of operating units is one.
 制御装置100は、第1時刻t21において温度センサ8によって検出される熱媒体の温度Tw21と目標温度TwOとの差に基づいて、第1時刻よりも後の第2時刻t22における熱媒体の温度の中間目標変化量ΔTmOを決定する。 The control device 100 determines the temperature of the heat medium at the second time t22 after the first time based on the difference between the temperature Tw21 of the heat medium detected by the temperature sensor 8 at the first time t21 and the target temperature TwO. The intermediate target change amount ΔTmO is determined.
 制御装置100は、第2時刻t22よりも後の第3時刻t25において温度センサ8で検出される熱媒体の温度Twが目標温度TwOに近づくように、温度センサ8で検出された第1時刻t21から第2時刻t22までに生じる熱媒体の温度変化量ΔT(=Tw21-Tw22)と中間目標変化量ΔTmOとの差に応じて運転台数を調整する。 The control device 100 has the first time t21 detected by the temperature sensor 8 so that the temperature Tw of the heat medium detected by the temperature sensor 8 approaches the target temperature TwO at the third time t25 after the second time t22. The number of operating units is adjusted according to the difference between the temperature change amount ΔT (= Tw21-Tw22) of the heat medium generated from the second time to t22 and the intermediate target change amount ΔTmO.
 制御装置100は、温度変化量ΔT(=Tw21-Tw22)と中間目標変化量ΔTmOとの差に基づいて、第2時刻t22における冷凍サイクルユニットの運転台数の変更台数を決定する。この場合も、変更台数は、図5の場合と同様な方法で決定される。 The control device 100 determines the number of operating units of the refrigeration cycle unit to be changed at the second time t22 based on the difference between the temperature change amount ΔT (= Tw21-Tw22) and the intermediate target change amount ΔTmO. In this case as well, the number of changed units is determined by the same method as in the case of FIG.
 言い換えると、以下のような関係が言える。温度センサ8は、第1時刻t21において第1温度Tw21を検出し、第1時刻t21から第1時間ΔTP1が経過した第2時刻t22において第2温度Tw22を検出する。制御装置100は、温度変化量ΔTの大きさ|Tw22-Tw21|が、中間目標変化量ΔTmOよりも小さい場合には、運転台数を初期運転台数よりも増加させる。 In other words, the following relationships can be said. The temperature sensor 8 detects the first temperature Tw21 at the first time t21, and detects the second temperature Tw22 at the second time t22 when the first time ΔTP1 has elapsed from the first time t21. When the magnitude | Tw22-Tw21 | of the temperature change amount ΔT is smaller than the intermediate target change amount ΔTmO, the control device 100 increases the number of operating units from the initial operating number.
 なお、図8においてはΔT=|Tw22-Tw21|<ΔTmOの場合が示され、水温Tw22は直線で示されるTwmO(t22)よりも上に位置している。 Note that in FIG. 8, the case of ΔT = | Tw22-Tw21 | <ΔTmO is shown, and the water temperature Tw22 is located above Twmo (t22) shown by a straight line.
 さらに好ましくは、図8に示すように、制御装置100は、第2時刻t22と第3時刻t25との間の中間時刻t23において、中間時刻t23に対応する中間目標変化量TwO(t23)を算出し、算出した中間目標変化量ΔTmO(t23)と中間時刻t23における熱媒体の温度Tw23とに基づいて運転台数を調整する。このとき、破線の直線で示された中間目標水温TwmOは更新され、グラフ上において点を(時刻,水温)で示すとき、(t22,Tw22)と(t25,TwO)を結ぶ破線の直線に変更される。 More preferably, as shown in FIG. 8, the control device 100 calculates the intermediate target change amount TwO (t23) corresponding to the intermediate time t23 at the intermediate time t23 between the second time t22 and the third time t25. Then, the number of operating units is adjusted based on the calculated intermediate target change amount ΔTmO (t23) and the temperature Tw23 of the heat medium at the intermediate time t23. At this time, the intermediate target water temperature TwmO indicated by the broken line is updated, and when the point is indicated by (time, water temperature) on the graph, it is changed to the broken line connecting (t22, Tw22) and (t25, TwO). Will be done.
 なお、図8においてはΔT=|Tw23-Tw22|<ΔTmO(t23)の場合が示され、水温Tw23は直線で示されるTwmO(t23)よりも上に位置している。その結果、制御装置100は、時刻t23において冷凍サイクルユニットの運転台数を2台から3台に増加させる。 Note that in FIG. 8, the case of ΔT = | Tw23-Tw22 | <ΔTmO (t23) is shown, and the water temperature Tw23 is located above Twmo (t23) shown by a straight line. As a result, the control device 100 increases the number of refrigerating cycle units in operation from two to three at time t23.
 また、次の更新時刻である時刻t24でも、破線の直線で示された中間目標水温TwmOは更新され、グラフ上において点を(時刻,水温)で示すとき、(t23,Tw23)と(t25,TwO)を結ぶ破線の直線に変更される。図8においては、ΔT=|Tw24-Tw23|=ΔTmO(t24)となっているため、ユニット台数は以降は3台に固定される。 Also, at time t24, which is the next update time, the intermediate target water temperature Twmo indicated by the broken line is updated, and when the points are indicated by (time, water temperature) on the graph, (t23, Tw23) and (t25, It is changed to a broken straight line connecting TwO). In FIG. 8, since ΔT = | Tw24-Tw23 | = ΔTmO (t24), the number of units is fixed to 3 thereafter.
 なお、図5、図6、図8においては、運転台数が1台ずつ変更される例を示したが、本実施の形態によれば、冷房負荷または暖房負荷が大きく、時刻t2,t12,t22において、温度変化量ΔTと中間目標変化量ΔTmOとの差が開いた場合には、差に応じて増加台数がさらに増加され、運転台数の増加量は2台以上に変化する。 In addition, in FIG. 5, FIG. 6, and FIG. 8, an example in which the number of operating units is changed one by one is shown, but according to the present embodiment, the cooling load or the heating load is large, and the times t2, t12, t22. When the difference between the temperature change amount ΔT and the intermediate target change amount ΔTmO is widened, the number of units increased is further increased according to the difference, and the amount of increase in the number of operating units changes to two or more.
 水温変化は、熱源機における冷却能力または暖房能力と水側負荷との差分が水に与えられることで生じる。目標時間で目標水温に到達するか否かは、本来これらの複雑な熱量バランスを解かないと分からない。しかし、実施の形態1および2では、水温変化量と圧縮機周波数合計値の積算値を用いることで、間接的に熱量バランスを考慮したうえで、必要なユニット台数を算出可能となる。 The water temperature change occurs when the difference between the cooling capacity or heating capacity of the heat source machine and the water side load is given to the water. Whether or not the target water temperature is reached in the target time cannot be known unless these complicated calorific value balances are solved. However, in the first and second embodiments, the required number of units can be calculated by indirectly considering the calorific value balance by using the integrated value of the water temperature change amount and the compressor frequency total value.
 実施の形態1および2では、目標時間で目標水温に到達するのに必要な冷凍サイクルユニットの起動台数が分かるため、目標時間において水温をより目標水温に近づけることが可能となる。また、追加のユニット起動台数を適正台数とすることができ、水の過剰な冷却を防止し、快適性を確保できる。 In the first and second embodiments, since the number of activated refrigeration cycle units required to reach the target water temperature in the target time is known, it is possible to bring the water temperature closer to the target water temperature in the target time. In addition, the number of additional units that can be started can be set to an appropriate number, preventing excessive cooling of water and ensuring comfort.
 なお、図1に示した構成では、熱源機2と負荷装置3とポンプ6と温度センサ8とに分かれている構成であるが、熱源機2のうち、熱交換器16,26を分離させ、ポンプ6および温度センサ8と合わせて中継機としてもよい。また、制御装置100は、熱源機2、負荷装置3のいずれにその主要部が配置されても良い。また、熱媒体が水である例を説明したが、熱媒体は熱を運ぶ媒体であれば他の物であっても良い。たとえば、水に変えてブラインなどを使用しても良い。 In the configuration shown in FIG. 1, the heat source machine 2, the load device 3, the pump 6, and the temperature sensor 8 are separated, but the heat exchangers 16 and 26 of the heat source machine 2 are separated. It may be used as a repeater together with the pump 6 and the temperature sensor 8. Further, the main part of the control device 100 may be arranged in either the heat source machine 2 or the load device 3. Further, although the example in which the heat medium is water has been described, the heat medium may be any other material as long as it is a medium that carries heat. For example, brine may be used instead of water.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 冷凍サイクル装置、2 熱源機、3 負荷装置、4,5 配管、6 ポンプ、7,34,44,54 制御部、8 温度センサ、11,21 圧縮機、12,22 四方弁、13,16,23,26,31,41,51 熱交換器、14,24,32,42,52 ファン、15,25 電子膨張弁、30,40,50 室内機、33,43,53 流量調整弁、100 制御装置、101 受信装置、102,302 プロセッサ、103 メモリ、200-1~200-n 冷凍サイクルユニット、300 リモコン、301 入力装置、303 送信装置。 1 refrigeration cycle device, 2 heat source machine, 3 load device, 4, 5 piping, 6 pump, 7, 34, 44, 54 control unit, 8 temperature sensor, 11,21 compressor, 12, 22 four-way valve, 13, 16 , 23,26,31,41,51 Heat exchanger, 14,24,32,42,52 Fan, 15,25 Electronic expansion valve, 30,40,50 Indoor unit, 33,43,53 Flow control valve, 100 Control device, 101 receiver, 102, 302 processor, 103 memory, 200-1 to 200-n refrigeration cycle unit, 300 remote controller, 301 input device, 303 transmitter.

Claims (6)

  1.  冷凍サイクル装置であって、
     それぞれが冷媒を使用する互いに独立した冷媒回路を有し、共通する熱媒体の循環路に配置され、前記熱媒体の温度を制御する複数の冷凍サイクルユニットと、
     前記熱媒体の循環路における前記熱媒体の温度を検出する温度センサと、
     前記複数の冷凍サイクルユニットの運転台数を制御する制御装置とを備え、
     前記制御装置は、前記冷凍サイクル装置が冷房運転または暖房運転を開始した第1時刻において前記運転台数を初期運転台数に設定し、
     前記制御装置は、前記第1時刻において前記温度センサによって検出される前記熱媒体の温度と目標温度との差に基づいて、前記第1時刻よりも後の第2時刻における前記熱媒体の温度の中間目標変化量を決定し、
     前記制御装置は、前記第2時刻よりも後の第3時刻において前記温度センサで検出される前記熱媒体の温度が前記目標温度に近づくように、前記温度センサで検出された前記第1時刻から前記第2時刻までに生じる前記熱媒体の温度変化量と前記中間目標変化量との差に応じて前記運転台数を調整する、冷凍サイクル装置。
    It is a refrigeration cycle device
    A plurality of refrigeration cycle units each having independent refrigerant circuits using a refrigerant, arranged in a common heat medium circulation path, and controlling the temperature of the heat medium, and a plurality of refrigeration cycle units.
    A temperature sensor that detects the temperature of the heat medium in the circulation path of the heat medium, and
    A control device for controlling the number of operating units of the plurality of refrigeration cycle units is provided.
    The control device sets the number of operating units to the initial number of operating units at the first time when the refrigerating cycle device starts the cooling operation or the heating operation.
    The control device determines the temperature of the heat medium at the second time after the first time based on the difference between the temperature of the heat medium detected by the temperature sensor at the first time and the target temperature. Determine the amount of change in the intermediate target
    The control device starts from the first time detected by the temperature sensor so that the temperature of the heat medium detected by the temperature sensor approaches the target temperature at the third time after the second time. A refrigeration cycle device that adjusts the number of operating units according to the difference between the amount of change in temperature of the heat medium and the amount of change in the intermediate target generated by the second time.
  2.  前記制御装置は、前記温度変化量と前記中間目標変化量との差に基づいて、前記第2時刻における前記運転台数の変更台数を決定する、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the control device determines the number of changed units of the number of operating units at the second time based on the difference between the amount of temperature change and the amount of intermediate target change.
  3.  前記制御装置は、前記温度変化量の大きさが、前記中間目標変化量よりも小さい場合には、前記運転台数を前記初期運転台数よりも増加させる、請求項2に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 2, wherein the control device increases the number of operating units to the initial operating number when the magnitude of the temperature change amount is smaller than the intermediate target change amount.
  4.  前記制御装置は、前記温度変化量の大きさが、前記中間目標変化量よりも大きい場合には、前記運転台数を前記初期運転台数よりも減少させる、請求項3に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 3, wherein the control device reduces the number of operating units to be smaller than the initial operating number when the magnitude of the temperature change amount is larger than the intermediate target change amount.
  5.  前記温度センサは、前記第1時刻において第1温度を検出し、
     前記中間目標変化量は、前記第1時刻から前記第3時刻に至る間、前記第1温度から前記目標温度まで一定の温度勾配で前記熱媒体の温度が変化するとした場合の前記第2時刻における前記熱媒体の温度まで、前記熱媒体の温度が前記第1温度から変化した変化量である、請求項1に記載の冷凍サイクル装置。
    The temperature sensor detects the first temperature at the first time and
    The intermediate target change amount is the second time when the temperature of the heat medium changes with a constant temperature gradient from the first temperature to the target temperature during the period from the first time to the third time. The refrigeration cycle apparatus according to claim 1, wherein the temperature of the heat medium is the amount of change from the first temperature up to the temperature of the heat medium.
  6.  前記制御装置は、前記第2時刻と前記第3時刻との間の中間時刻において、前記中間時刻に対応する中間目標変化量を算出し、算出した中間目標変化量と前記中間時刻における前記熱媒体の温度とに基づいて前記運転台数を調整する、請求項1に記載の冷凍サイクル装置。 The control device calculates an intermediate target change amount corresponding to the intermediate time at an intermediate time between the second time and the third time, and the calculated intermediate target change amount and the heat medium at the intermediate time. The refrigeration cycle apparatus according to claim 1, wherein the number of operating units is adjusted based on the temperature of the above.
PCT/JP2020/015649 2020-04-07 2020-04-07 Refrigeration cycle device WO2021205535A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022513737A JP7258230B2 (en) 2020-04-07 2020-04-07 refrigeration cycle equipment
PCT/JP2020/015649 WO2021205535A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015649 WO2021205535A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021205535A1 true WO2021205535A1 (en) 2021-10-14

Family

ID=78023027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015649 WO2021205535A1 (en) 2020-04-07 2020-04-07 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7258230B2 (en)
WO (1) WO2021205535A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341742B2 (en) * 1983-09-20 1991-06-25
JPH043859A (en) * 1990-04-20 1992-01-08 Hitachi Ltd Method of controlling number of operating device of small-sized absorbing type cold and hot water heater
JPH06307726A (en) * 1993-04-26 1994-11-01 Hitachi Ltd Cold water feeding device
JP2015190654A (en) * 2014-03-27 2015-11-02 荏原冷熱システム株式会社 heat source device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307726B1 (en) 2016-11-14 2018-04-11 ハタコー産業株式会社 Fall prevention device and freight vehicle equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341742B2 (en) * 1983-09-20 1991-06-25
JPH043859A (en) * 1990-04-20 1992-01-08 Hitachi Ltd Method of controlling number of operating device of small-sized absorbing type cold and hot water heater
JPH06307726A (en) * 1993-04-26 1994-11-01 Hitachi Ltd Cold water feeding device
JP2015190654A (en) * 2014-03-27 2015-11-02 荏原冷熱システム株式会社 heat source device

Also Published As

Publication number Publication date
JPWO2021205535A1 (en) 2021-10-14
JP7258230B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
CN111780362B (en) Air conditioner and control method thereof
AU2012392673B2 (en) Air conditioning apparatus
JP2010249452A (en) Air conditioner
JP6972368B2 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
JP5622859B2 (en) Heat source equipment
JP6950191B2 (en) Air conditioner
JPWO2019003306A1 (en) Air conditioner
KR20190016261A (en) Heat pump and Method for controlling the same
WO2020161805A1 (en) Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
CN109716033B (en) System for air conditioning and hot water supply
KR101995583B1 (en) Air conditioner and method for controlling the same
WO2021205535A1 (en) Refrigeration cycle device
JP7097989B2 (en) Air conditioner
JP6945741B2 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
US11493226B2 (en) Airconditioning apparatus
JP6719651B2 (en) Refrigeration cycle system and communication traffic adjustment method
KR102558826B1 (en) Air conditioner system and control method
JP2012247118A (en) Air-cooled heat pump chiller
JP6638426B2 (en) Air conditioner
WO2020246502A1 (en) Apparatus management device, heat source system, management device, and apparatus management system
CN109790984B (en) System for air conditioning and hot water supply
JP5954995B2 (en) Air conditioner
JP2021148390A (en) Heat source system
JP2021071248A (en) Heat pump-type hot water heating system
JP7150177B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930051

Country of ref document: EP

Kind code of ref document: A1