WO2021204311A1 - Immersion electrolysis cell - Google Patents

Immersion electrolysis cell Download PDF

Info

Publication number
WO2021204311A1
WO2021204311A1 PCT/DE2020/200026 DE2020200026W WO2021204311A1 WO 2021204311 A1 WO2021204311 A1 WO 2021204311A1 DE 2020200026 W DE2020200026 W DE 2020200026W WO 2021204311 A1 WO2021204311 A1 WO 2021204311A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electrolysis
voltage
immersion
conductance
Prior art date
Application number
PCT/DE2020/200026
Other languages
German (de)
French (fr)
Inventor
Maren ERNST
Original Assignee
Ernst Maren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ernst Maren filed Critical Ernst Maren
Priority to DE112020007033.6T priority Critical patent/DE112020007033A5/en
Priority to PCT/DE2020/200026 priority patent/WO2021204311A1/en
Publication of WO2021204311A1 publication Critical patent/WO2021204311A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/002Processes for the treatment of water whereby the filtration technique is of importance using small portable filters for producing potable water, e.g. personal travel or emergency equipment, survival kits, combat gear
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46171Cylindrical or tubular shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the invention relates to a transportable immersion electrolysis cell for a water container, with a cathode and anode and a microprocessor.
  • Such electrolysis cells are provided for the treatment of untreated water, namely in smaller quantities of 1 to 4 liters, which are for example in a pressureless storage container.
  • disinfection was often carried out with chlorine preparations in the form of tablets or powders. It has been found to be disadvantageous that the tablet or powder supply only has a limited shelf life and is not available everywhere abroad.
  • the present invention avoids the use of chlorine preparations and provides a transportable immersion electrolysis cell with the aid of which the water can be disinfected.
  • an electrolysis cell for disinfecting water with an anode and cathode pack is known.
  • the electrodes which intermesh in a comb shape.
  • a measuring device is provided for regulation, which controls the switching on and off of the electrolysis cell above a predetermined sodium hypoplorite limit value.
  • a device for disinfecting water is known from DE 34 10 489 A1, in which a hypochlorite solution is produced electrochemically by means of an electrolytic cell and is used to disinfect the water.
  • a method is also known from US Pat. No. 5,795,459 A in which a diaphragm electrolysis cell is immersed as an immersion electrode in the water to be treated.
  • a disadvantage of this type of electrolysis cell is that bleaching liquor (NaOH) is produced in the separate chambers and, with the arrangement described, reaches the drinking water to be treated directly. This results in a Increase in the natural pH value, which means that three to five times the amount of oxidizing agent is required to effectively disinfect the drinking water at, for example, an increased pH value of 7.8 or more.
  • the present invention is based on the object of showing a new type of transportable immersion electrolysis cell for a water container, which ensures an optimized final germination using a control unit.
  • the transportable immersion electrolysis cell is equipped with a microprocessor as the central element, which takes on at least the following functions:
  • Monitoring of the operating voltage Detection of the conductivity of the liquid by a sensor. Monitoring of the voltage and current of the anode. Monitoring of the electrolysis time depending on the conductivity. Monitoring of the maximum operating voltage and the maximum current flow
  • a major advantage of the regulated electrolysis cell compared to other conventional immersion electrolysis cells is that no unnecessarily dissolved table salt gets into the drinking water and thus adversely affects the quality and taste.
  • the microprocessor in particular making it possible to monitor all functions of the portable immersion electrolysis cell. For example, the operating voltage is monitored and the conductivity of the liquid is recorded by a sensor.
  • the maximum operating voltage and the maximum current flow can be monitored, with all functional sequences being able to be represented by optical display elements.
  • the operating voltage, the minimum conductance, the operating current and the voltage at the anode can be preset via a Bluetooth interface and the operating voltage, the conductance, the currents and the voltage can be displayed on the anode. It is also possible to log the electrolysis processes and to record possible errors in an error report. In this way, extensive functional monitoring of the immersion electrolysis line is created, which leads to an optimization of the electrolysis process.
  • a storage tank for NaCl is not necessary because the natural salt contained in the water is used for electrolysis.
  • the preselected and set electrolysis current in the electrolysis cell leads to a conversion of the sodium chloride (NaCl) into sodium hypochlorite (NaCIO), which is necessary for the sterilization and disinfection.
  • NaCIO sodium hypochlorite
  • the natural pH value of the drinking water to be disinfected is not changed.
  • the disinfection process makes biologically contaminated water absolutely germ-free, whereby the atomic oxygen (O) in the nescendi status, for the most part together with the chlorine (CI) produced, enables a very efficient oxidation of carbon chains (Cn).
  • the microprocessor is designed in such a way that when a defined conductance is reached, a defined voltage can automatically be applied to the electrodes and the current flow during the electrolysis process can be displayed via a light-emitting diode.
  • the cathode and anode are arranged running parallel to each other at a defined distance and lead to an efficient conversion of the sodium chloride (NaCl) into sodium hypochlorite (NaCIO).
  • the rod-shaped anode made of titanium Gr. II consists with a modified coating and the anode is designed in a spiral shape similar to an Archimedean screw.
  • Titan Gr. II there is a particularly long-lasting anode and the shape of the spiral anode, similar to an Archimedean screw, also ensures that an ascending flow is created during the electrolysis process, which results in better turbulence.
  • the helical anode has several advantages here.
  • the enlarged anode surface with a horizontal and vertical surface alignment enables a significantly better current yield.
  • the shape of the anode also creates more efficient turbulence, with sodium hydroxide solution (NaOH) and chlorine Cl 2 being formed in the first electrolysis stage and, when the hydrogen H 2 rises, reacting suddenly to form the new substance sodium hypochlorite (NaCIO) due to the turbulence.
  • NaOH sodium hydroxide solution
  • NaCIO sodium hypochlorite
  • the substances are swirled upwards faster and more efficiently due to the existing chimney effect.
  • the anode can serve as an antenna.
  • the electrolysis cell can be remotely controlled via mobile radio programming or all operating data can be queried and, if necessary, changed, for example the time intervals and disinfection periods.
  • the special feature of the present invention is that all functions for operating the immersion electrolysis cell are controlled by a microprocessor and in this way effective sterilization and disinfection of the contaminated water is achieved. At the same time, the regulation of the microprocessor ensures that the lowest possible energy consumption is required with minimal energy expenditure and maximum yield.
  • Fig. 1 is a sectional view of the immersion electrolytic cell according to the invention.
  • FIG. 1 shows, in a sectional representation, an immersion electrolysis cell 1, which consists of a preferably round housing jacket 2, which is used as a cathode.
  • An anode 3 is fastened in the housing jacket 2 and is held in the housing jacket 2 via an insulator 4 with sealing elements 5, 6.
  • the required voltage of 6 to 12 volts is supplied via a supply line 7 and a cable gland 8.
  • the anode 3 in the form of an Archimedean spiral is accommodated in the tubular housing jacket 2 via the insulator 4 with sealing earrings as a roof element 5, 6.
  • the housing jacket 2 is open at the bottom so that water can penetrate into the anode space 9.
  • the housing jacket 2 also has a plurality of bores 16 distributed around the circumference, through which the NaCl and the hydrogen H can escape from the anode space 9.
  • the tubular housing jacket 2 here forms the cathode, so that the electrolysis process can take place in the anode space 9.
  • the applied operating voltage is monitored via an electrical unit 11 with a microprocessor and the conductivity of the liquid is also determined by a sensor.
  • the voltage and the current at the anode are also monitored and the electrolysis time is determined as a function of the conductance, with a maximum operating voltage and a maximum current flow being maintained.
  • the various functional sequences can be represented by optical display elements of an operating device 12.
  • the operating voltage, the minimum conductance, the operating current and the voltage at the anode are set via a Bluetooth interface, and the operating voltage, the conductance, the currents and the voltage at the anode 3 can also be displayed.
  • the electrolysis processes are logged and, if necessary, an error report is created. If there is sufficient conductivity in the electrolytic chamber or in the anode space 9, an electric field is built up between the cathode and anode 3 when a voltage is applied.
  • the incoming electrolysis current leads to an electrolysis of table salt (NaCl) to sodium hypochlorite (NaCIO).
  • the resulting hydrogen H 2 in the first chemical reaction is simultaneously mixed with the resulting chlorine due to the turbulence that occurs in the anode space 9, whereby the desired sodium hypochlorite (NaCIO) is formed.
  • the hydrogen gas rising at the same time generates a light gas in the anode space 9 Overpressure, which ensures that the resulting disinfectant sodium hypochlorite (NaCIO) can escape through the lateral openings 10 and get into the drinking water to be disinfected and sterilized.
  • the electrolysis process is set in motion via the microprocessor, so that the electrolysis process can be ended after a total exposure time of approx. 15 to 20 minutes and the sterilization and disinfection of the water can be completed.
  • the water is therefore perfectly hygienic and can, if necessary, be poured over a separate activated charcoal filter so that the water is then safe for people
  • the microprocessor can be programmed using an operating device 12, which can be a smartphone or the like, for example.
  • FIG. 2 shows a side view of the anode 3, which has a cylindrical shaft 15 in the upper region, with a bore 16 in which, for example, an electrical connection for the supply lines can be accommodated.
  • the anode 3 has six filaments 17 which merge into a rounded end piece 18 at the end.
  • the anode 3 is placed in the housing shell 2 with the aid of the insulator 4 in such a way that there is a sufficient distance from the housing wall 2 so that no short circuit can occur. If the immersion electrolysis cell 1 is immersed in a container with water, the water can penetrate into the anode space 9 in which the anode 3 is located.
  • the electrolysis process is carried out by applying a supply voltage between the cathode and anode.
  • the container with contaminated water can be designed to be relatively small for 1 to 4 liters. However, there is also the possibility of providing a larger container while at the same time adapting the size of the immersion electrolysis cell. Small containers can also be designed in the form of a portable backpack. List of reference symbols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The invention relates to a transportable immersion electrolysis cell (1) for a water container, having a cathode and anode and also an electronics unit (11) and a microprocessor. For the electrolysis of contaminated water, a voltage potential, which converts the NaCl in the water to NaClO, is built up here between the cathode and the anode. The sodium hypochlorite in the container can pass out via openings (10) that are present, such that the water is disinfected. The control of the operating voltage and operating currents as well as the time period and measurement of the conductance is performed or regulated here by means of the microprocessor.

Description

Eintauch-Elektrolysezelle Immersion electrolytic cell
Die Erfindung betrifft eine transportable Eintauch-Elektrolysezelle für einen Wasserbe- hälter, mit einer Kathode und Anode sowie einem Mikroprozessor. The invention relates to a transportable immersion electrolysis cell for a water container, with a cathode and anode and a microprocessor.
Derartige Elektrolysezellen sind zur Aufbereitung von ungereinigtem Wasser vorgese- hen, und zwar in kleineren Mengen von 1 bis 4 Liter, die sich beispielsweise in einem drucklosen Vorratsbehälter befinden. Früher wurde häufig eine Desinfektion mit Chlorpräparaten in Form von Tabletten oder Pulvern durchgeführt. Als nachteilig hat sich herausgestellt, dass der Tabletten- oder Pulvervorrat nur begrenzt haltbar und im Ausland nicht überall erhältlich ist. Such electrolysis cells are provided for the treatment of untreated water, namely in smaller quantities of 1 to 4 liters, which are for example in a pressureless storage container. In the past, disinfection was often carried out with chlorine preparations in the form of tablets or powders. It has been found to be disadvantageous that the tablet or powder supply only has a limited shelf life and is not available everywhere abroad.
Die folgende Erfindung vermeidet die Verwendung von Chlorpräparaten und sieht eine transportable Eintauch-Elektrolysezelle vor, mithilfe derer eine Desinfektion des Wassers vorgenommen werden kann. The present invention avoids the use of chlorine preparations and provides a transportable immersion electrolysis cell with the aid of which the water can be disinfected.
Aus der DE 23 15 767 A1 ist beispielsweise eine Elektrolysezelle zur Entkeimung von Wasser mit einem Anoden- und Kathodenpaket bekannt. Bei diesem Stand der Technik liegt eine besondere Form der Elektroden vor, welche kammförmig ineinander greifen. Zur Regelung ist eine Messeinrichtung vorgesehen, welche ein Ein- und Ausschalten der Elektrolysezelle über einen vorbestimmten Natriumhypoplorit-Grenzwert vomimmt. From DE 23 15 767 A1, for example, an electrolysis cell for disinfecting water with an anode and cathode pack is known. In this prior art, there is a special shape of the electrodes, which intermesh in a comb shape. A measuring device is provided for regulation, which controls the switching on and off of the electrolysis cell above a predetermined sodium hypoplorite limit value.
Aus der DE 34 10 489 A1 ist eine Vorrichtung zur Desinfektion von Wasser bekannt, bei der eine Hypochloridlösung auf elektrochemischen Wege mittels einer Elektrolysezelle hergestellt wird und zur Desinfektion des Wassers dient. A device for disinfecting water is known from DE 34 10 489 A1, in which a hypochlorite solution is produced electrochemically by means of an electrolytic cell and is used to disinfect the water.
Aus der US 5,795,459 A ist ebenfalls ein Verfahren bekannt, bei dem eine Diaphrag- ma-Elektrolysezelle als Eintauchelektrode in das zu behandelnde Wasser eingetaucht wird. Als nachteilig ist bei dieser Form einer Elektrolysezelle anzusehen, dass in den abgetrennten Kammern Bleichlauge (NaOH) entsteht und bei der beschriebenen Anordnung direkt in das zu behandelnde Trinkwasser gelangt. Hierdurch erfolgt eine Erhöhung des natürlichen PH-Wertes, wodurch eine drei- bis fünffache Menge an Oxidationsmittel benötigt wird, um eine wirkungsvolle Entkeimungsleistung des Trinkwassers bei beispielsweise einem erhöhten PH-Wert von 7,8 oder mehr durchzu- führen. A method is also known from US Pat. No. 5,795,459 A in which a diaphragm electrolysis cell is immersed as an immersion electrode in the water to be treated. A disadvantage of this type of electrolysis cell is that bleaching liquor (NaOH) is produced in the separate chambers and, with the arrangement described, reaches the drinking water to be treated directly. This results in a Increase in the natural pH value, which means that three to five times the amount of oxidizing agent is required to effectively disinfect the drinking water at, for example, an increased pH value of 7.8 or more.
Alternativ ist es bekannt, durch Bestrahlung des Wassers mit UV-Licht eine Entkeimung vorzunehmen, wobei Mikroorganismen wirkungsvoll abgetötet werden. In diesem Fall wird aber kein Desinfektionsmittel mit einer entsprechenden Bevorratung gegen Nachverkeimung verwendet, sodass die gewünschte Desinfektion nicht im vollen Umfang möglich ist. Alternatively, it is known to disinfect the water by irradiating the water with UV light, whereby microorganisms are effectively killed. In this case, however, no disinfectant with an appropriate supply against re-germination is used, so that the desired disinfection is not possible to the full extent.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine neuartige transportable Eintauch-Elektroiysezelle für einen Wasserbehälter aufzuzeigen, welche unter Ausnutzung einer Regeleinheit für eine optimierte Endkeimung sorgt. The present invention is based on the object of showing a new type of transportable immersion electrolysis cell for a water container, which ensures an optimized final germination using a control unit.
Erfindungsgemäß ist vorgesehen, dass die transportable Eintauch-Elektroiysezelle mit einem Mikroprozessor als zentrales Element ausgestattet ist, welcher zumindest folgende Funktionen übernimmt: According to the invention it is provided that the transportable immersion electrolysis cell is equipped with a microprocessor as the central element, which takes on at least the following functions:
Überwachung der Betriebsspannung Erfassung des Leitwertes der Flüssigkeit durch einen Sensor Überwachung der Spannung und des Stromes der Anode Überwachung der Elektrolysedauer in Abhängigkeit vom Leitwert Überwachung der maximalen Betriebsspannung und des maximalen Strom- flusses Monitoring of the operating voltage. Detection of the conductivity of the liquid by a sensor. Monitoring of the voltage and current of the anode. Monitoring of the electrolysis time depending on the conductivity. Monitoring of the maximum operating voltage and the maximum current flow
Darstellung der Funktionsabläufe durch optische Anzeigeelemente, wobei eine Bluetooth-Schnittstelle vorhanden ist, welche eine Einstellung der Be- triebsspannung, des Mindestleitwertes, des Betriebsstromes und der Span- nung an der Anode vorsieht und eine Anzeige der Betriebsspannung, des Leitwertes, der Ströme und der Spannung an der Anode vomimmt, die Elekt- rolysevorgänge protokolliert und einen Fehlerbericht erstellt. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprü- chen. Representation of the functional processes through optical display elements, whereby a Bluetooth interface is available, which provides a setting of the operating voltage, the minimum conductance, the operating current and the voltage at the anode and a display of the operating voltage, the conductance, the currents and the The voltage at the anode decreases, the electrolysis processes are logged and an error report is created. Further advantageous refinements of the invention emerge from the subclaims.
Ein wesentlicher Vorteil der geregelten Elektrolysezelle gegenüber anderen herkömmli- chen Eintauch-Elektrolysezellen liegt darin, dass nicht unnötig aufgelöstes Kochsalz in das Trinkwasser gelangt und somit die Qualität und den Geschmack beeinträchtigt. Zudem besteht die Möglichkeit einer Energieeinsparung, wobei insbesondere mithilfe des Mikroprozessors eine Überwachung sämtlicher Funktionen der transportablen Eintauch-Elektrolysezeile möglich sind. Beispielsweise erfolgt eine Überwachung der Betriebsspannung sowie die Erfassung des Leitwertes der Flüssigkeit durch einen Sensor. Darüber hinaus die Überwachung der Spannung und des Stromes der Anode sowie der Elektrolysedauer in Abhängigkeit vom Leitwert. Ferner kann die maximale Betriebsspannung und der maximale Stromfluss überwacht werden, wobei sämtliche Funktionsabläufe durch optische Anzeigeelemente dargestellt werden können. Über eine Bluetooth Schnittstelle können die Betriebsspannung, der Mindestleitwert, der Betriebsstrom und die Spannung an der Anode voreingestellt werden und eine Anzeige der Betriebsspannung, des Leitwertes, der Ströme und der Spannung an der Anode angezeigt werden. Des weiteren besteht die Möglichkeit die Elektrolyse Vorgänge zu protokollieren und mögliche Fehler in einem Fehlerbericht zu erfassen. Auf diese Weise wird somit eine umfängliche Funktionsüberwachung der Eintauch-Elektrolysezeile geschaffen, die zu einer Optimierung des Elektrolysevorganges führen. A major advantage of the regulated electrolysis cell compared to other conventional immersion electrolysis cells is that no unnecessarily dissolved table salt gets into the drinking water and thus adversely affects the quality and taste. In addition, there is the possibility of saving energy, with the microprocessor in particular making it possible to monitor all functions of the portable immersion electrolysis cell. For example, the operating voltage is monitored and the conductivity of the liquid is recorded by a sensor. In addition, the monitoring of the voltage and the current of the anode as well as the duration of the electrolysis depending on the conductance. Furthermore, the maximum operating voltage and the maximum current flow can be monitored, with all functional sequences being able to be represented by optical display elements. The operating voltage, the minimum conductance, the operating current and the voltage at the anode can be preset via a Bluetooth interface and the operating voltage, the conductance, the currents and the voltage can be displayed on the anode. It is also possible to log the electrolysis processes and to record possible errors in an error report. In this way, extensive functional monitoring of the immersion electrolysis line is created, which leads to an optimization of the electrolysis process.
Ein Vorratsbehälter für NaCl ist nicht erforderlich, weil das im Wasser enthaltene natürliche Salz zur Elektrolyse verwendet wird. Der vorgewählte und eingestellte Elektrolysestrom in der Elektrolysezelle führt zu einer Umwandlung des Natriumchlorids (NaCl) in Natriumhypochlorid (NaCIO), welches für die Entkeimung und Desinfektion erforderlich ist. Der natürliche pH-Wert des zu desinfizierenden Trinkwassers wird hierbei nicht verändert. A storage tank for NaCl is not necessary because the natural salt contained in the water is used for electrolysis. The preselected and set electrolysis current in the electrolysis cell leads to a conversion of the sodium chloride (NaCl) into sodium hypochlorite (NaCIO), which is necessary for the sterilization and disinfection. The natural pH value of the drinking water to be disinfected is not changed.
Durch die gleichzeitige Entstehung von Wasserstoffgas (H2) entsteht in der Elektrolyse- zelle eine Verwirbelung unter Überdruck, sodass das erzeugte Oxidationsmittel NaCIO im oberen Bereich der Elektrolysezelle austreten kann. Gleichzeitig entsteht am Fußende der Elektrolysezelle ein Unterdrück, der das geregelte Nachströmen von Wasser in die Elektrolysezelle unterstützt. The simultaneous generation of hydrogen gas (H 2 ) creates a turbulence in the electrolysis cell under excess pressure, so that the generated oxidizing agent NaCIO can escape in the upper area of the electrolysis cell. At the same time arises on At the foot of the electrolysis cell there is a negative pressure that supports the regulated flow of water into the electrolysis cell.
Biologisch verseuchtes Wasser wird durch das Desinfektionsverfahren absolut keimfrei, wobei der atomare Sauerstoff (O) im Status nescendi zum größten Teil zusammen mit dem entstandenen Chlor (CI) eine sehr effiziente Oxidation von Kohlenstoffketten (Cn) ermöglicht. Der Mikroprozessor ist hierbei derart ausgestaltet, dass bei Erreichen eines definierten Leitwertes automatisch eine definierte Spannung an die Elektroden anlegbar ist und der Stromfluss während des Elektrolysevorganges über eine Leuchtdiode angezeigt werden kann. Die Kathode und Anode sind in einem definierten Abstand annähernd zueinander parallel verlaufend angeordnet und führen zu einer effizienten Umwandlung des Natriumchlorid (NaCI) in Natriumhypochlorid (NaCIO). The disinfection process makes biologically contaminated water absolutely germ-free, whereby the atomic oxygen (O) in the nescendi status, for the most part together with the chlorine (CI) produced, enables a very efficient oxidation of carbon chains (Cn). The microprocessor is designed in such a way that when a defined conductance is reached, a defined voltage can automatically be applied to the electrodes and the current flow during the electrolysis process can be displayed via a light-emitting diode. The cathode and anode are arranged running parallel to each other at a defined distance and lead to an efficient conversion of the sodium chloride (NaCl) into sodium hypochlorite (NaCIO).
In weiterer besonderer Ausgestaltung der Erfindung ist vorgesehen, dass die stabförmi- ge Anode aus Titan Gr. II mit modifizierter Beschichtung besteht und die Anode spiralförmig ähnlich einer archimedischen Schraube ausgebildet ist. Durch die Verwendung von Titan Gr. II liegt eine besonders langlebige Anode vor und durch die Form der spiralförmigen Anode ähnlich einer archimedischen Schraube wird zusätzlich erreicht, dass während des Elektrolyseprozesses eine aufsteigende Strömung entsteht, wodurch eine bessere Verwirbelung erzielt wird. In a further special embodiment of the invention it is provided that the rod-shaped anode made of titanium Gr. II consists with a modified coating and the anode is designed in a spiral shape similar to an Archimedean screw. By using Titan Gr. II there is a particularly long-lasting anode and the shape of the spiral anode, similar to an Archimedean screw, also ensures that an ascending flow is created during the electrolysis process, which results in better turbulence.
Die schraubenförmige Anode besitzt hierbei mehrere Vorteile. Die vergrößerte Anodenoberfläche mit einer horizontalen und vertikalen Flächenausrichtung ermöglicht eine deutliche bessere Stromausbeute. Ferner entsteht eine effizientere Verwirbelung durch die Formgebung der Anode, wobei in der ersten Elektrolysestufe Natronlauge (NaOH) und Chlor Cl2 entsteht und beim Aufsteigen des Wasserstoffs H2 aufgrund der Verwirbelung schlagartig zu dem neuen Stoff Natriumhypochlorid (NaCIO) reagieren. Speziell durch die spiralförmige Formgebung der Anode werden die Stoffe durch die vorhandene Kaminwirkung aufsteigend schneller und effizienter verwirbelt. Dadurch, dass nicht nur Energie in den elektrochemischen Prozess fließt, sondern auch in eine thermische Umsetzung wird der Vorteil erreicht, dass bei sehr harten Wässern durch die auftretende Erwärmung im Anodenraum der Aussfall von Kalzium in Form von Kesselsteinen beschleunigt wird. Dieser Kesselstein setzt sich an den Elektroden in Form eines ständig wachsenden Kalkmantels ab, der bei einer Rundstabanode horizontal wächst, während er bei der spiralförmigen Anodenoberfläche vertikal zunimmt. Beim Entkalken sei es durch Umkehrung der Polarität oder durch absäuem mittels Zitronensäure oder ähnlichem rutscht daher der Belag durch die nach unten geneigte Spiralform leichter ab, was für Wartungsarbeiten einen wesentlichen Vorteil darstellt. The helical anode has several advantages here. The enlarged anode surface with a horizontal and vertical surface alignment enables a significantly better current yield. The shape of the anode also creates more efficient turbulence, with sodium hydroxide solution (NaOH) and chlorine Cl 2 being formed in the first electrolysis stage and, when the hydrogen H 2 rises, reacting suddenly to form the new substance sodium hypochlorite (NaCIO) due to the turbulence. Especially due to the spiral shape of the anode, the substances are swirled upwards faster and more efficiently due to the existing chimney effect. Because energy not only flows into the electrochemical process, but also into a thermal conversion, the advantage is achieved that, in the case of very hard water, the heating that occurs in the anode compartment causes the precipitation of calcium in the form of Scale is accelerated. This scale is deposited on the electrodes in the form of a constantly growing lime coat, which grows horizontally in the case of a round rod anode, while it increases vertically in the case of the spiral-shaped anode surface. When decalcifying, be it by reversing the polarity or by acidifying with citric acid or the like, the coating slips off more easily due to the downwardly inclined spiral shape, which is a significant advantage for maintenance work.
Über eine Bluetooth Verbindung besteht ferner die Möglichkeit, die Strom- /Spannungsmessungen und Umrechnung in Leitfähigkeit (W=1/R) zur Anzeige auf einem Display eines Handsenders oder eines Mobilfunktelefons zu bringen. Hierbei kann die Anode als Antenne dienen. Über eine Mobilfunkprogrammierung kann die Elektrolysezelle alternativ ferngesteuert werden beziehungsweise alle Betriebsdaten können abgefragt und gegebenenfalls verändert werden, beispielsweise die Zeitinterval- le und Entkeimungsperioden. Via a Bluetooth connection there is also the option of displaying the current / voltage measurements and conversion into conductivity (W = 1 / R) on a display of a handheld transmitter or a mobile phone. The anode can serve as an antenna. Alternatively, the electrolysis cell can be remotely controlled via mobile radio programming or all operating data can be queried and, if necessary, changed, for example the time intervals and disinfection periods.
Die Besonderheit der vorliegenden Erfindung besteht darin, dass sämtliche Funktionen zum Betreiben der Eintauch-Elektrolysezelle durch einen Mikroprozessor gesteuert werden und auf diese Weise eine effektive Entkeimung und Desinfektion des verunrei- nigten Wassers erzielt wird. Gleichzeitig wird unter minimalen Energieaufwand mit maximaler Ausbeute durch die Regelung des Mikroprozessors gewährleistet, dass ein geringstmöglicher Energieverbrauch erforderlich ist. The special feature of the present invention is that all functions for operating the immersion electrolysis cell are controlled by a microprocessor and in this way effective sterilization and disinfection of the contaminated water is achieved. At the same time, the regulation of the microprocessor ensures that the lowest possible energy consumption is required with minimal energy expenditure and maximum yield.
Die Erfindung wird im Weiteren anhand der Figuren nochmals erläutert. The invention is explained again below with reference to the figures.
Es zeigt It shows
Fig. 1 eine Schnittansicht der erfindungsgemäßen Eintauch- Elektrolysezelle und Fig. 1 is a sectional view of the immersion electrolytic cell according to the invention and
Fig. 2 in einer Seitenansicht eine einzelne Anode. Figur 1 zeigt in einer Schnittdarsteilung eine Eintauch-Elektrolysezelle 1 , weiche aus einem vorzugsweise runden Gehäusemantel 2 besteht, weicher als Kathode verwendet wird. Im Gehäusemantel 2 ist eine Anode 3 befestigt, welche über einen Isolator 4 mit Dichtelementen 5, 6 im Gehäusemantel 2 gehalten wird. Die erforderliche Spannung von 6 bis 12 Voit wird über eine Zuleitung 7 und eine Kabelverschraubung 8 zugeführt. 2 shows a single anode in a side view. FIG. 1 shows, in a sectional representation, an immersion electrolysis cell 1, which consists of a preferably round housing jacket 2, which is used as a cathode. An anode 3 is fastened in the housing jacket 2 and is held in the housing jacket 2 via an insulator 4 with sealing elements 5, 6. The required voltage of 6 to 12 volts is supplied via a supply line 7 and a cable gland 8.
Die Anode 3 in Form einer archimedischen Spirale ist über den Isolator 4 mit abdich- tenden Ohrringen als Dlchteiement 5, 6 in dem rohrförmigen Gehäusemantel 2 aufgenommen. Der Gehäusemantel 2 ist unten geöffnet, sodass Wasser in den Anodenraum 9 eindringen kann. Der Gehäusemantel 2 weist ferner umfangsverteilt mehrere Bohrungen 16 auf, durch die das NaCI und der Wasserstoff H aus dem Anodenraum 9 entweichen kann. Der rohrförmige Gehäusemantel 2 bildet hierbei die Kathode, sodass in dem Anodenraum 9 der Elektrolysevorgang stattfinden kann. Über eine Elektroeinheit 11 mit Mikroprozessor wird die anliegende Betriebsspannung überwacht und ferner der Leitwert der Flüssigkeit durch einen Sensor ermittelt. Die Spannung und der Strom an der Anode wird ebenfalls überwacht und die Elektrolyse- dauer in Abhängigkeit vom Leitwert festgelegt, wobei eine maximale Betriebsspannung und ein maximaler Stromfluss eingehalten wird. Des weiteren können die verschiede- nen Funktionsabläufe durch optische Anzeigeelemente eines Bedienungsgerätes 12 dargestellt werden. Über eine Bluetooth Schnittstelle erfolgt eine Einstellung der Betriebsspannung, des Mindestleitwertes, des Betriebsstromes und der Spannung an der Anode, wobei ferner eine Anzeige der Betriebsspannung, des Leitwertes, der Ströme und der Spannung an der Anode 3 erfolgen kann. Des weiteren werden die Elektrolysevorgänge protokolliert und im Bedarfsfall ein Fehlerbericht erstellt. Wenn eine ausreichende Leitfähigkeit in der Elektnolysekammer beziehungsweise in dem Anodenraum 9 besteht, baut sich zwischen der Kathode und Anode 3 durch das Anlegen einer Spannung ein elektrisches Feld auf. Der eintretende Elektrolysestrom führt zu einer Elektrolyse von Kochsalz (NaCI) zu Natriumhypochlorid (NaCIO). Der entstehende Wasserstoff H2 bei der ersten chemischen Reaktion wird durch die auftretende Verwirbelung in dem Anodenraum 9 gleichzeitig mit dem entstehenden Chlor vermischt, wodurch das gewünschte Natriumhypochlorid (NaCIO) entsteht. Das gleichzeitig aufsteigende Wasserstoffgas erzeugt im Anodenraum 9 einen leichten Überdruck, der dafür sorgt, dass das entstandene Desinfektionsmittel Natriumhypochlo- rid (NaCIO) durch die seitlichen Öffnungen 10 austreten kann und in das zu desinfizie- rende und zu entkeimende Trinkwasser gelangt. Über den Mikroprozessor gesteuert wird der Elektrolyseprozess In Gang gesetzt, sodass nach einer Gesamteinwirkzeit von ca. 15 bis 20 Minuten der Elektrolysevorgang beendet und die Entkeimung und Desinfizierung des Wassers abgeschlossen werden kann. Das Wasser ist damit hygienisch einwandfrei und kann gegebenenfalls noch über einen separaten Aktivkohle- filter gegossen werden, sodass im Anschluss das Wasser für den Menschen unbedenk- lich ist. The anode 3 in the form of an Archimedean spiral is accommodated in the tubular housing jacket 2 via the insulator 4 with sealing earrings as a roof element 5, 6. The housing jacket 2 is open at the bottom so that water can penetrate into the anode space 9. The housing jacket 2 also has a plurality of bores 16 distributed around the circumference, through which the NaCl and the hydrogen H can escape from the anode space 9. The tubular housing jacket 2 here forms the cathode, so that the electrolysis process can take place in the anode space 9. The applied operating voltage is monitored via an electrical unit 11 with a microprocessor and the conductivity of the liquid is also determined by a sensor. The voltage and the current at the anode are also monitored and the electrolysis time is determined as a function of the conductance, with a maximum operating voltage and a maximum current flow being maintained. Furthermore, the various functional sequences can be represented by optical display elements of an operating device 12. The operating voltage, the minimum conductance, the operating current and the voltage at the anode are set via a Bluetooth interface, and the operating voltage, the conductance, the currents and the voltage at the anode 3 can also be displayed. Furthermore, the electrolysis processes are logged and, if necessary, an error report is created. If there is sufficient conductivity in the electrolytic chamber or in the anode space 9, an electric field is built up between the cathode and anode 3 when a voltage is applied. The incoming electrolysis current leads to an electrolysis of table salt (NaCl) to sodium hypochlorite (NaCIO). The resulting hydrogen H 2 in the first chemical reaction is simultaneously mixed with the resulting chlorine due to the turbulence that occurs in the anode space 9, whereby the desired sodium hypochlorite (NaCIO) is formed. The hydrogen gas rising at the same time generates a light gas in the anode space 9 Overpressure, which ensures that the resulting disinfectant sodium hypochlorite (NaCIO) can escape through the lateral openings 10 and get into the drinking water to be disinfected and sterilized. The electrolysis process is set in motion via the microprocessor, so that the electrolysis process can be ended after a total exposure time of approx. 15 to 20 minutes and the sterilization and disinfection of the water can be completed. The water is therefore perfectly hygienic and can, if necessary, be poured over a separate activated charcoal filter so that the water is then safe for people.
Über ein Bedienungsgerät 12 kann hierbei eine Programmierung des Mikroprozessors erfolgen, wobei es sich beispielsweise um ein Smartphone oder dergleichen handeln kann. The microprocessor can be programmed using an operating device 12, which can be a smartphone or the like, for example.
Figur 2 zeigt in einer Seitenansicht die Anode 3, weiche im oberen Bereich einen zylindrischen Schaft 15 aufweist, mit einer Bohrung 16 in der beispielsweise ein elektrischer Anschluss der Zuleitungen aufgenommen werden kann. Die Anode 3 besitzt bei dem gezeigten Ausführungsbeispiel sechs Wendel 17, die endseitig in ein abgerundetes Endstück 18 übergehen. Die Anode 3 wird hierbei in dem Gehäuseman- tel 2 mithilfe des Isolators 4 derart platziert, dass ein ausreichender Abstand zur Gehäusewandung 2 besteht, damit kein Kurzschluss entstehen kann. Soweit die Eintauch-Elektrolysezelle 1 in einem Behälter mit Wasser eingetaucht wird, kann das Wasser in den Anodenraum 9, in dem sich die Anode 3 befindet eindringen. Durch Anlegen einer Versorgungsspannung zwischen Kathode und Anode wird der Elektroly- sevorgang vorgenommen. Der Behälter mit verunreinigtem Wasser kann hierbei relativ klein für 1 bis 4 Liter ausgelegt sein. Es besteht aber auch die Möglichkeit einen größeren Behälter vorzusehen, bei gleichzeitiger Anpassung der Größe der Eintauch- Elektrolysezelle. Kleine Behälter können ferner in Form eines tragbaren Rucksack ausgebildet sein. Bezugszeichenliste FIG. 2 shows a side view of the anode 3, which has a cylindrical shaft 15 in the upper region, with a bore 16 in which, for example, an electrical connection for the supply lines can be accommodated. In the exemplary embodiment shown, the anode 3 has six filaments 17 which merge into a rounded end piece 18 at the end. The anode 3 is placed in the housing shell 2 with the aid of the insulator 4 in such a way that there is a sufficient distance from the housing wall 2 so that no short circuit can occur. If the immersion electrolysis cell 1 is immersed in a container with water, the water can penetrate into the anode space 9 in which the anode 3 is located. The electrolysis process is carried out by applying a supply voltage between the cathode and anode. The container with contaminated water can be designed to be relatively small for 1 to 4 liters. However, there is also the possibility of providing a larger container while at the same time adapting the size of the immersion electrolysis cell. Small containers can also be designed in the form of a portable backpack. List of reference symbols
1 Eintauch-Elektrolysezelle1 immersion electrolytic cell
2 Gehäusemantel 2 housing jacket
3 Anode 3 anode
4 Isolator 4 isolator
5 Dichtelement 5 sealing element
6 Dichtelement 6 sealing element
7 Zuleitung 7 supply line
8 Kabelverschraubung 8 cable gland
9 Anodenraum 9 anode compartment
10 Öffnung 10 opening
11 Elektronikeinheit 11 Electronics unit
12 Bedienungsgerät 12 Control unit
15 Schaft 15 shaft
16 Bohrung 16 bore
17 Wendel 17 helix
18 Endstück 18 end piece

Claims

Patentansprüche Claims
1. T ransportable Eintauch-Elektrolysezelle (1) für einen Wasserbehälter, mit einer1. Transportable immersion electrolytic cell (1) for a water tank, with a
Kathode und Anode (3) sowie einem Mikroprozessor, dadurch gekennzeichnet, dass der Mikroprozessor als zentrales Element zumindest folgende Funktionen übernimmt: Cathode and anode (3) and a microprocessor, characterized in that the microprocessor as a central element takes on at least the following functions:
Überwachung der Betriebsspannung Monitoring of the operating voltage
Erfassung des Leitwertes der Flüssigkeit durch einen SensorDetection of the conductivity of the liquid by a sensor
Überwachung der Spannung und des Stromes der Anode (3)Monitoring of the voltage and the current of the anode (3)
Überwachung der Elektrolysedauer in Abhängigkeit vom Leitwert Überwachung der maximalen Betriebsspannung und des maximalen Strom- flusses Monitoring of the electrolysis time depending on the conductance Monitoring of the maximum operating voltage and the maximum current flow
Darstellung der Funktionsabläufe durch optische Anzeigeelemente, wobei eine Bluetooth-Schnittstelle vorhanden ist, welche eine Einstellung der Betriebsspannung, des Mindestleitwertes, des Betriebsstromes und der Spannung an der Anode (3) vorsieht und eine Anzeige der Betriebsspannung, des Leitwertes, der Ströme und der Spannung an der Anode (3) vomimmt, die Elektrolysevorgänge protokolliert und einen Fehlerbericht erstellt. Representation of the functional processes by optical display elements, whereby a Bluetooth interface is available, which provides for setting the operating voltage, the minimum conductance, the operating current and the voltage at the anode (3) and a display of the operating voltage, the conductance, the currents and the voltage at the anode (3), the electrolysis processes are logged and an error report is created.
2. Eintauch-Elektrolysezelle (1) nach Anspruch 1 , dadurch gekennzeichnet, dass der Mikroprozessor derart ausgestaltet ist, dass bei Erreichen eines definier- ten Leitwertes automatisch eine definierte Spannung an die Elektroden anlegbar ist und der Stramfluss während des Elektrolysevorganges über eine Leuchtdiode anzeigbar ist. 2. Immersion electrolysis cell (1) according to claim 1, characterized in that the microprocessor is designed in such a way that when a defined conductance is reached, a defined voltage can automatically be applied to the electrodes and the current flow during the electrolysis process can be displayed via a light-emitting diode.
3. Eintauch-Elektrolysezelle (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kathode und Anode (3) in einem definierten Abstand annähernd zuei- nander parallel verlaufend angeordnet sind. 3. Immersion electrolysis cell (1) according to claim 1 or 2, characterized in that the cathode and anode (3) are arranged running parallel to each other at a defined distance.
4. Eintauch-Elektrolysezelle (1) nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass die stabförmige Anode (3) aus Titan Gr. II mit modifizierter Beschichtung besteht. 4. immersion electrolytic cell (1) according to one of claims 1, 2 or 3, characterized in that the rod-shaped anode (3) made of titanium Gr. II with a modified coating.
5. Eintauch-Elektrolysezelle (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Anode (3) spiralförmig ähnlich einer archimedischen Schraube ausgebil- det ist. 5. Immersion electrolysis cell (1) according to one of claims 1 to 4, characterized in that the anode (3) is designed in a spiral shape similar to an Archimedean screw.
PCT/DE2020/200026 2020-04-08 2020-04-08 Immersion electrolysis cell WO2021204311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020007033.6T DE112020007033A5 (en) 2020-04-08 2020-04-08 Immersion Electrolytic Cell
PCT/DE2020/200026 WO2021204311A1 (en) 2020-04-08 2020-04-08 Immersion electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2020/200026 WO2021204311A1 (en) 2020-04-08 2020-04-08 Immersion electrolysis cell

Publications (1)

Publication Number Publication Date
WO2021204311A1 true WO2021204311A1 (en) 2021-10-14

Family

ID=70616898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/200026 WO2021204311A1 (en) 2020-04-08 2020-04-08 Immersion electrolysis cell

Country Status (2)

Country Link
DE (1) DE112020007033A5 (en)
WO (1) WO2021204311A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071783A1 (en) * 1999-05-25 2000-11-30 Miox Corporation Portable disinfection and filtration system
DE102006037322A1 (en) * 2005-08-23 2007-07-05 Römer, Heinz G. Transportable immersing-electrolysis cell for treatment of biologically polluted drinking water, comprises a closed control loop controlled by an integrated microprocessor, and spherical magnetic valve controlled via conductance
DE102014015935A1 (en) * 2014-10-30 2016-05-04 Heinz Günther Römer Rod-shaped electrolysis device
WO2018083788A1 (en) * 2016-11-04 2018-05-11 ソマール株式会社 Electrolysis cell and device for ejecting ozone water in which same is used
US20180209050A1 (en) * 2015-07-21 2018-07-26 Seung Ho TAK Hydrogen generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071783A1 (en) * 1999-05-25 2000-11-30 Miox Corporation Portable disinfection and filtration system
DE102006037322A1 (en) * 2005-08-23 2007-07-05 Römer, Heinz G. Transportable immersing-electrolysis cell for treatment of biologically polluted drinking water, comprises a closed control loop controlled by an integrated microprocessor, and spherical magnetic valve controlled via conductance
DE102014015935A1 (en) * 2014-10-30 2016-05-04 Heinz Günther Römer Rod-shaped electrolysis device
US20180209050A1 (en) * 2015-07-21 2018-07-26 Seung Ho TAK Hydrogen generation apparatus
WO2018083788A1 (en) * 2016-11-04 2018-05-11 ソマール株式会社 Electrolysis cell and device for ejecting ozone water in which same is used

Also Published As

Publication number Publication date
DE112020007033A5 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US10232065B2 (en) Electrochemical device for biocide treatment in agricultural applications
EP1986959B1 (en) Process for producing a disinfectant by electrochemical activation (eca) of water
WO2002026636A1 (en) Device for electrolytic water disinfection without cathodic hydrogen evolution
DE10216860A1 (en) Electrolysis cell manufacturing hydrogen peroxide is fed with air and low concentration solution of salts
CH626408A5 (en)
DE102006007931A1 (en) Preparing a disinfectant, useful e.g. to disinfect water such as rain water, comprises adding an electrolytic solution to water, and subjecting the diluted water/electrolytic solution to an electric current
WO2010063433A1 (en) Disinfectant on the basis of hypochloric acid and the salts thereof and method for the production thereof by electrochemical activation
DE20318754U1 (en) Electrochemical ozone generator
WO1997011908A2 (en) Process and device for treating water contaminated with micro-organisms and/or harmful pollutants
DE102006058454B4 (en) Process for the electrolytic production of a weak sodium hypochlorite solution with differential pressure-controlled pH and redox control by means of electrolytic membrane cells of water (H2O) and common salt (NaCl)
DE102006043267A1 (en) Preparing a disinfectant, useful e.g. to disinfect water such as rain water, comprises adding an electrolytic solution to water, and subjecting the diluted water/electrolytic solution to an electric current
DE19739493A1 (en) Organic halogen compound removal from water
DE102006037322B4 (en) Transportable immersion electrolysis cell
WO2001055035A2 (en) Device for treating water
DE602004008584T2 (en) METHOD AND DEVICE FOR ELECTROCHEMICAL WATER DISINFECTION
DE102014010901A1 (en) ECA reactor for producing an activated hypochlorite-containing disinfectant
WO2021204311A1 (en) Immersion electrolysis cell
KR101054233B1 (en) Marine life attachment prevention device and seawater supply device using the same
DE2922275C2 (en) Process for chlorinating and brominating water in an electrolytic cell and apparatus therefor
DE102018009448A1 (en) Immersion electrolytic cell
EP1804971B1 (en) Method for the hygienic operation of an ion exchanger and ion exchange unit
DE19926159A1 (en) Mini-electrolysis cell for generating sodium hypochlorite from very dilute sodium chloride solution to protect water distribution systems against microbiological contamination.
DE102010044315B4 (en) Electrolysis cell in a compact form
EP1858810B1 (en) Device and method for the electrolytic treatment of water and aqueous solutions
CH697680B1 (en) Self-cleaning electrolyzer.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20724743

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020007033

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20724743

Country of ref document: EP

Kind code of ref document: A1