WO2021204237A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2021204237A1
WO2021204237A1 PCT/CN2021/086131 CN2021086131W WO2021204237A1 WO 2021204237 A1 WO2021204237 A1 WO 2021204237A1 CN 2021086131 W CN2021086131 W CN 2021086131W WO 2021204237 A1 WO2021204237 A1 WO 2021204237A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
panel
frame
available
data transmission
Prior art date
Application number
PCT/CN2021/086131
Other languages
English (en)
French (fr)
Inventor
杨懋
闫中江
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21785311.8A priority Critical patent/EP4131793A4/en
Publication of WO2021204237A1 publication Critical patent/WO2021204237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for data transmission.
  • Multi-Panel MIMO Multi-Panel MIMO, MP MIMO
  • MP MIMO technology means that a wireless device is composed of multiple panels connected to each other. Each panel is equipped with a series of transceiver antennas, that is, the antenna resources of a wireless device are scattered on multiple panels that are close to or farther away.
  • the use of MP MIMO technology reduces the cost and complexity of the deployment of many antennas, and improves the scalability, network coverage and MIMO channel gain. It can be seen that the MP MIMO technology provides a feasible solution for the next-generation WLAN to adopt more spatial streams or more antenna resources.
  • multiple panels are often located in different geographic locations, which leads to a different state of each panel at a specific moment. For example, on a particular 20MHz channel, some panels are serving a station (Station, STA), and some panels are not serving STA; on a particular 20MHz channel, the channel busy and idle states of different panels are different. The busy and idle status of different panels on different channels may also be different. Therefore, it is necessary to know the capability information of different panels of the wireless device during data transmission.
  • STA station
  • STA station
  • the channel busy and idle states of different panels are different.
  • the busy and idle status of different panels on different channels may also be different. Therefore, it is necessary to know the capability information of different panels of the wireless device during data transmission.
  • the present application provides a method and device for data transmission, which can improve the performance of data transmission.
  • a data transmission method receives first information sent by a first device.
  • the first information is used to indicate an available antenna panel of the first device; the second device is based on the first device.
  • a message is transmitted to the first device in data.
  • the sending end can know whether the different panels of the peer device are idle, and select the appropriate MIMO mode for data transmission with the peer device, so as to avoid selecting the MIMO mode that does not match the panel capabilities of the peer device for data transmission. Can improve the reliability of data transmission.
  • the first information is also used to indicate available sub-channels of the available antenna panel.
  • the method before the second device receives the first information sent by the first device, the method further includes: the second device sends the second information to the first device, so The second information is used to request the first device to send the first information.
  • the second information further includes an identifier of at least one target antenna panel, and the target panel is an antenna panel that the second device requests the first device to use.
  • the method before the second device receives the first information sent by the first device, the method further includes: receiving, by the second device, a clear to send CTS frame sent by the first device .
  • the second device performing data transmission with the first device based on the first information includes: the second device determines a multiple-input multiple-output MIMO based on the first information Mode; the second device uses the MIMO mode to perform data transmission with the first device.
  • that the second device uses the MIMO mode to perform data transmission with the first device includes: the second device sends third information to the first device, and the second device sends third information to the first device.
  • the three pieces of information are used to indicate the resource unit RU in which the available subchannel is divided, and the MIMO mode on the RU.
  • a communication device including: a transceiving unit, configured to receive first information sent by a first device, where the first information is used to indicate an available antenna panel of the first device; and a processing unit, configured to The first information is in data transmission with the first device.
  • the first information is also used to indicate available sub-channels of the available antenna panel.
  • the transceiver unit is further configured to send second information to the first device, and the second information is used to request the first device to send the first information.
  • the second information further includes an identification of at least one target antenna panel, and the target antenna panel is an antenna panel that the second device requests the first device to use.
  • the transceiver unit is further configured to receive a clear to send CTS frame sent by the first device.
  • the processing unit is specifically configured to determine a multiple-input multiple-output MIMO mode according to the first information; the transceiving unit is specifically configured to adopt the MIMO mode and the first The device performs data transmission.
  • the transceiving unit is further configured to send third information to the first device, where the third information is used to indicate the resource unit RU in which the available subchannel is divided, and The MIMO mode on the RU is described.
  • a network device including: a memory for storing executable instructions; a processor for calling and running the executable instructions in the memory to execute the first aspect or the first aspect Any possible implementation method.
  • a computer-readable storage medium stores a computer program; when the computer program runs on a computer, the computer executes the first aspect or any possible implementation manner of the first aspect In the method.
  • Figure 1 is a schematic diagram of a bandwidth negotiation process of 802.11ax.
  • Figure 2 is a schematic diagram of the BQRP frame structure.
  • Figure 3 is a schematic diagram of the BQR control subfield structure.
  • Figure 4 is a schematic diagram of another bandwidth negotiation process of 802.11ax.
  • Figure 5 is an example of the necessity of obtaining panel capability information.
  • FIG. 6 is a schematic diagram of an application system architecture according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a data transmission method according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a PNRP frame design according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of another PNRP frame design according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a PNR frame design according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of another PNR frame design according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of another PNR frame design according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of another PNR frame design according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of another PNR frame design according to an embodiment of the application.
  • FIG. 15 is a schematic diagram of a TF-PN frame design according to an embodiment of the application.
  • FIG. 16 is a schematic diagram of another TF-PN frame design according to an embodiment of the application.
  • FIG. 17 is a schematic diagram of another TF-PN frame design according to an embodiment of the application.
  • FIG. 18 is a schematic diagram of the design of an EHT-SU-H PPDU according to an embodiment of the application.
  • FIG. 19 is a schematic diagram of another EHT-SU-H PPDU design according to an embodiment of the application.
  • FIG. 20 is a schematic block diagram of a communication device according to an embodiment of the application.
  • FIG. 21 is a schematic block diagram of a network device according to an embodiment of the application.
  • the embodiments of this application can be applied to various communication systems, such as Wireless Local Area Network (WLAN), Narrow Band-Internet of Things (NB-IoT), and Global System for Mobile Communications, GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 (Code Division Multiple) Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), Satellite Communications, 5th Generation (5G) Systems or new communication systems that will appear in the future.
  • WLAN Wireless Local Area Network
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • Satellite Communications 5th Generation
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (Mobile Station, MS), subscriber unit (subscriber unit), user equipment (UE), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant ( Personal Digital Assistant (PDA) computers, tablet computers, wireless modems (modem), handheld devices (handsets), laptop computers (laptop computers), machine type communication (Machine Type Communication, MTC) terminals, etc.
  • the access point (Access Point, AP) and the station (Station, STA) obtain the busy and idle status of the different channels of the peer device through channel negotiation, and perform processing according to the learned channel information. data transmission.
  • bandwidth negotiation process based on the Bandwidth Query Report Poll (BQRP) frame and the Bandwidth Query Report (BQR) frame is shown in Figure 1.
  • the process is described as follows:
  • Step 1 AP sends a BQRP frame.
  • This frame is a type of trigger frame (Trigger Frame, TF) of 802.11ax.
  • Configuring the Trigger Type (Trigger Type) field in the TF frame to 6 represents a BRQP frame, and the structure of the BRQP frame is shown in FIG. 2.
  • Step 2 After receiving the BQRP frame, if the STA judges that the BQRP frame was sent by the associated AP, and the frame requires itself to feed back bandwidth information, it will be based on the short interframe space (SIFS)
  • the physical layer protocol data unit (Trigger based PHY Protocol Data Unit, TB PPDU) format of the trigger frame responds to the bandwidth query report (Bandwidth Query Report, BQR) on the corresponding Resource Unit (RU).
  • the structure of the BQR control subfield is shown in Figure 3.
  • the control subfield is one of the A-Control (A-Control) type control subfields of IEEE 802.11ax.
  • the value of the control identifier field is 8 for BQR.
  • the Available Channel Bitmap field in the information field contains 8 bits, each of which represents the busy/idle status of a 20MHz channel, a value of 1 means that the 20MHz channel is idle, and a value of 0 means that the 20MHz channel is busy .
  • the channel protection process based on Multi-user Request To Send (MU-RTS) and Clear to Send (CTS) frames is shown in Figure 4, and the process is described as follows :
  • Step 1 The AP sends a MU-RTS frame.
  • This frame is a type of 802.11ax TF frame, and the trigger type field in the TF frame is configured as 3 to represent the MU-RTS frame.
  • Step 2 After receiving the MU-RTS frame, if the STA judges that the MU-RTS frame is sent by the associated AP, and the frame requires itself to feed back the CTS frame, it will use the TB PPDU format on the corresponding 20MHz RU after SIFS Reply to CTS frame.
  • Multi-Panel MIMO Multi-Panel MIMO
  • MP MIMO multi-panel multiple-input multiple-output
  • MP MIMO technology means that a wireless device is composed of multiple panels connected to each other. Each panel is equipped with a series of transceiver antennas, that is, the antenna resources of a wireless device are scattered on multiple panels that are close to or farther away.
  • the use of MP MIMO technology reduces the cost and complexity of the deployment of many antennas, and improves the scalability, network coverage and MIMO channel gain. It can be seen that the MP MIMO technology provides a feasible solution for the next-generation WLAN to adopt more spatial streams or more antenna resources.
  • multiple panels are often located in different geographic locations, which leads to a different state of each panel at a specific moment.
  • some panels are serving stations (Station, STA), and some panels are not serving STAs, that is, on a particular 20MHz channel, the channel busy and idle states of different panels are different.
  • the busy and idle status of different panels on different channels may also be different. Therefore, it is necessary to know the capability information of different panels of the wireless device during data transmission.
  • the AP includes two panels, panel 1 and panel 2, and each panel has 4 antennas.
  • an STA with 8 antennas wants to perform 8 ⁇ 8 MIMO data transmission with the AP, it does not know whether both panels of the AP are available (that is, the channel is idle). If all are available, 8 ⁇ 8 MIMO can be used for data transmission at most; if only one panel is available, only 4 ⁇ 4 MIMO can be used for data transmission; if no panel is available, data cannot be transmitted.
  • Figure 5 is only an example for transmission under a bandwidth of 20MHz. In the case of a larger bandwidth (for example, 40/80/160/320MHz), the status difference of different panels under different 20MHz channels will become more obvious. It can be seen that the capability information of different panels is very important, but how to obtain this information requires special design.
  • the technical solution proposed in this application can be applied to one AP and one or more non-AP stations (non-Access Point Station, non-AP STA), one AP and one or more APs, and one non-AP STA and one Or an application scenario where multiple non-AP STAs perform data transmission.
  • non-AP STA Non-Access Point Station
  • the antenna of the AP is mounted on multiple panels, and each panel is composed of a part of the antenna.
  • multiple panels can be connected by wires, or data can be transmitted wirelessly.
  • Each STA can only receive the service of one panel and its antenna resource, or can receive the common service of multiple panels and its antenna resource.
  • an AP includes three panels, panel 1, panel 2, and panel 3.
  • each STA can only receive the service of one of the panels and its antenna resources, and can accept one of them.
  • the service of two panels and their antenna resources can also accept the common service of three panels and their antenna resources.
  • Fig. 7 shows a schematic diagram of a data transmission method according to an embodiment of the present application.
  • the method 700 of data transmission includes:
  • the second device receives first information sent by the first device, where the first information is used to indicate an available antenna panel of the first device.
  • the first information may only indicate which antenna panels are available, that is, only include information about available antenna panels; the first information may also indicate whether the antenna panel of the first device is available, that is, it includes available antenna panels. And information on unavailable antenna panels.
  • the first device includes four antenna panels, only antenna panel one and antenna panel three are usable, and antenna panel two and antenna panel four are not usable.
  • the first information may only include the information of the available antenna panel one and the antenna panel three, which is used to indicate that the antenna panel one and the antenna panel three are available.
  • the first information may also include information of antenna panel 1, antenna panel 2, antenna panel 3, and antenna panel 4, which is used to indicate that antenna panel 1 and antenna panel 3 are available, and antenna panel 2 and antenna panel 4 are not available.
  • the first information may be used to indicate whether all antenna panels of the first device are available, and may also be used to indicate whether part of the antenna panels of the first device are available.
  • the first device includes four antenna panels, and the first information can be used to indicate whether two of the antenna panels are available, or whether the four antenna panels are available.
  • the first information may also be used to indicate available sub-channels of the available antenna panel. If the available sub-channels of the available antenna panels are the same, the second device may determine a MIMO mode to perform data transmission with the first device. If the available sub-channels of the available antenna panels are different, the second device may determine at least one MIMO mode to perform data transmission with the first device.
  • the second device may send second information to the first device, where the second information is used to request the first information
  • a device sends the first information. It can be seen that the first information may be actively sent by the first device, or may be sent based on the request of the second device.
  • the second information may include an identifier of at least one target antenna panel, and the target antenna panel is an antenna panel that the second device requests the first device to use.
  • the target antenna panel may be at least one antenna panel closer to the second device, or at least one antenna panel that the second device tends to use by the first device.
  • the first information can be used to indicate the available antenna panel that the second device requests the first device to use, or it can be used to Indicate the available antenna panels among all the antenna panels of the first device, and may also be used to indicate the available antenna panels that the first device allows the second device to use.
  • the second information may not include the identification of the at least one target antenna panel.
  • the first information may be used to indicate available antenna panels among all antenna panels of the first device, It can also be used to indicate the available antenna panels that the first device allows the second device to use.
  • the first information may be carried in a panel negotiation report (Panel Negotiation Report, PNR) frame.
  • PNR Panel Negotiation Report
  • the second information may be carried in a Panel Negotiation Report Poll (PNRP) frame, or may be carried in a panel negotiation trigger (Trigger Frame for Panel Negotiation, TF-PN) frame.
  • PNRP Panel Negotiation Report Poll
  • TF-PN Panel negotiation trigger
  • the second device may also receive a Clear to Send (CTS) frame sent by the first device.
  • CTS Clear to Send
  • the second device performs data transmission with the first device based on the first information.
  • the second device determines a MIMO mode according to the first information; the second device uses the MIMO mode to perform data transmission with the first device.
  • the second device may adopt a MIMO mode compared with that of the first device.
  • a device performs data transmission. If the first information indicates that the available subchannels of the available antenna panels of the first device are different, the second device may use at least one MIMO mode to perform data transmission with the first device.
  • the second device When the second device uses the MIMO mode to perform data transmission with the first device, it may also send third information to the first device, where the third information is used to indicate that the available subchannels are divided The resource unit RU, and the MIMO mode on the RU. It should be understood that there may be one or more RUs. When the available sub-channels of the available antenna panels are different, the available sub-channels may be divided into at least two RUs. The at least two RUs include a first RU and a second RU. The MIMO mode is used for data transmission, and the second MIMO mode is used for data transmission on the second RU, and the subchannels included in the first RU are different from the subchannels included in the second RU.
  • the first device may be an AP or STA
  • the second device may also be an AP or STA.
  • the embodiment of the application does not limit this.
  • the sending end can know whether the different panels of the peer device are idle, and select the appropriate MIMO mode to transmit data with the peer device, thereby avoiding selecting MIMO that does not match the panel capabilities of the peer device.
  • Mode for data transmission can improve the reliability of data transmission.
  • the AP includes at least one antenna panel.
  • Step 1 The STA sends the second information to the AP.
  • the second information is carried in the Panel Negotiation Report Poll (PNRP) frame.
  • PNRP Panel Negotiation Report Poll
  • the PNRP frame is intended to request the AP to send the AP's currently available panel information or the AP Available sub-channel information of different panels.
  • Step 2 The AP receives the PNRP frame, and if the destination address of the PNRP frame is not itself, it will discard it; if the destination address of the PNRP frame is itself, it needs to send it to the STA after the Inter Frame Space (IFS)
  • the first information is carried in a panel negotiation report (Panel Negotiation Report, PNR) frame, and the PNR frame contains the information of the currently available panel of the AP or the available subchannel information of different panels of the AP.
  • PNR panel negotiation report
  • the PNR frame contains the information of the currently available panel of the AP or the available subchannel information of different panels of the AP.
  • Step 3 After receiving the PNR frame returned by the AP, the STA extracts the current available panel information of the AP or the available subchannel information of different panels of the AP, and then determines at least one MIMO mode for data transmission based on the information.
  • multi-panel negotiation frames (including PNRP frames and PNR frames) use the A-control field in IEEE 802.11ax. It should be understood that frames containing multi-panel negotiation control fields are collectively referred to as multi-panel negotiation frames.
  • the control identification field in the A-control field takes an existing reserved value (for example, 9) to indicate a multi-panel negotiation frame.
  • the control information field is composed of multiple sub-fields.
  • the multi-panel negotiation frame type field is used to indicate the type of the multi-panel negotiation frame. For example, a value of 0 represents a PNRP frame, and a value of 1 represents a PNR frame.
  • the allocation of the subsequent structure includes at least one of the following fields: the bandwidth field is used to indicate the bandwidth of this transmission; the preferred panel bitmap field indicates the panel used by the AP preferred by the STA, each A bit represents a panel, a value of 1 represents a preference for use, a value of 0 represents a preference for use; the carrier sense need indication field indicates whether each panel of the receiver needs to perform carrier sense to determine the availability of the panel or the available bandwidth of the panel information. It should be noted that the figure of the number of bits in each sub-domain in the control information domain is only an example, and the number of bits in each sub-domain can be increased or decreased as needed, and the total length of all sub-domains does not exceed 26 bits.
  • design method 1 uses the A-control field of IEEE 802.11ax to carry PNRP frames
  • design method 2 is designed in IEEE 802.11 specifically for multi-panel negotiation frames.
  • Media Access Control (MAC) frame type wherein, the type field (Type) in the frame control field (Frame Control) of the IEEE 802.11 MAC frame is 01, and the subtype field (SubType) takes the value 0010 or other reserved values.
  • the structure of the multi-panel negotiation control field (Panel Negotiation Control, PNC) is basically the same as the structure of the control information field in the design method 1, and the total length of the PNC field can be 16 bits.
  • design method 1 uses the A-control field of IEEE 802.11ax to carry the PNRP frame, while design method 3 directly multiplexes the BQRP frame in IEEE 802.11ax (see Figure 2) without modification.
  • the multi-panel negotiation frame (including PNRP frame and PNR frame) uses the A-control field in IEEE 802.11ax.
  • the control identification field in the A-control field takes an existing reserved value (for example, 9) to indicate a multi-panel negotiation frame.
  • the control information field is composed of multiple sub-fields.
  • the multi-panel negotiation frame type field is used to indicate the type of the multi-panel negotiation frame. For example, a value of 0 represents a PNRP frame, and a value of 1 represents a PNR frame.
  • the subsequent structure allocation is as follows: the available panel bitmap field represents the AP's available panel indication, each bit represents a panel, a value of 1 represents that the panel is available, and a value of 0 represents that the panel is not available. It should be noted that the figure for the number of bits in each sub-field in the control information domain is only an example. The number of bits in each sub-field can be increased or decreased as needed, and the total length of all sub-fields does not exceed 26 bits.
  • the difference lies in the composition of the control information field of the A-control field.
  • the multi-panel negotiation frame type field is the same as the design method 1.
  • the available bandwidth field of each panel consists of 4 bits. The meaning of these 4 bits is shown in Table 1.
  • Each bandwidth indicator bit in Table 1 has a value of 1 for available, and a value of 0 for unavailable.
  • design method 1 uses a new MAC frame.
  • the value of the type field in the frame control field is 01, and the value of the subtype field is other reserved values.
  • the structure of the PNC domain is basically the same as that of the control information domain in Design Method 2.
  • the difference is that the available bandwidth domain of each panel is 16 bits, so that each bit can represent the availability of a 20MHz channel and can represent the availability of a 320MHz channel. status information.
  • the PNC field in this design method is variable length, and its length is determined by the panel number field (Panel Num).
  • this design method is multiplexed on the basis of the IEEE802.11ax BQR frame.
  • one of the original 2 bits is designed as a multi-panel indicator bit. If the value of the multi-panel indicator bit is 0, it means a single panel, so the value and meaning of the available channel bitmap field are consistent with the original meaning. If the value of the multi-panel indicator bit is 1, it means multi-panel, so the value and meaning of the available channel bitmap field are inconsistent with the original meaning.
  • each bit represents the available information of a specific 20MHz channel of all panels; when the bandwidth is greater than 160MHz, each bit represents the available information of a specific 40MHz channel of all panels.
  • Step 1 The STA sends the second information to the AP.
  • the second information is carried in the panel negotiation trigger (Trigger Frame for Panel Negotiation, TF-PN) frame.
  • the TF-PN frame is modified on the basis of the IEEE 802.11ax trigger frame. Come, it is used to trigger AP to reply PNR frame or reply CTS and PNR frame. It is worth noting that IEEE802.11ax only allows APs to send TF frames, while this application allows STAs to send TF frames.
  • Step 2 AP receives the TF-PN frame, if the destination address of the TF-PN frame is not itself, it will discard it; if the destination address of the TF-PN frame is itself, it needs to be indicated in the TF-PN frame after SIFS Reply CTS frame on one or more 20MHz. It should be understood that the AP replying to the CTS frame is optional, that is, the AP may reply to the CTS frame or not.
  • Step 3 After sending the CTS frame and further waiting for the SIFS, the AP replies with the first information on the resource unit indicated by the TF-PN frame, and the first information is carried in the PNR frame.
  • the PNR frame contains information about the currently available panel of the AP or the available subchannel information of different panels of the AP.
  • PNR frame is copied and sent, that is, the content of each PNR frame on 20MHz is exactly the same, and the panel that carries the entire bandwidth is available information.
  • PNR frame differential transmission that is, the content of each PNR frame on 20MHz is different, and only the available information of the 20MHz panel is carried.
  • Step 4 After receiving the PNR frame replied by the AP, the STA extracts the current available panel information of the AP or the available subchannel information of different panels of the AP, and then determines at least one MIMO mode for data transmission based on the information.
  • any PNR frame design method in the first embodiment can be adopted.
  • the design method of the TF-PN frame is further described.
  • this design method is modified on the basis of the IEEE 802.11ax Multi-user-Request to Send (MU-RTS) frame.
  • the MU-RTS frame is a type of IEEE 802.11ax trigger frame, and the value of the trigger frame type field is 3 to indicate the MU-RTS frame.
  • the specific modification instructions are as follows: First, the 63rd bit (counting from 0) in the Common Info field of the MU-RTS frame is changed from the reserved bit (Reserved) of 802.11ax to the enhanced MU-RTS indicator bit (Improved MU-RTS), a value of 1 indicates enhanced MU-RTS, and a value of 0 indicates that 802.11ax is still used.
  • the panel negotiation information field is composed of the preferred panel bitmap field and the access type index bitmap field.
  • the preferred panel bitmap field is an optional field, which indicates the AP panel preferred by the STA. Each bit represents a panel, a value of 1 indicates a preference for use, and a value of 0 indicates no preference for use.
  • the access type index bitmap field is optional. Each bit represents an access type. A value of 1 represents the plan to transmit the service of that access type. The value 0 is the opposite.
  • the access type index bitmap field is in It has been defined in 802.11ax.
  • the only difference between this design method and design method 1 is that the 63rd bit (counting from 0) in the public information field of the MU-RTS frame used in design method 1 is reserved by 802.11ax (Reserved). ) Is modified to an enhanced MU-RTS indicator bit (Improved MU-RTS), and this design method does not use reserved bits, but extends the 53rd bit from the Doppler function of 802.11ax to Doppler and enhanced MU-RTS indication function.
  • this field indicates enhanced RTS indication, a value of 1 indicates enhanced MU-RTS, a value of 0 indicates that 802.11ax is still used; if the trigger frame is not MU-RTS, this The meaning of the domain is consistent with 802.11ax. It is worth noting that this design method can reuse the original Doppler bit of 802.11ax, and can also use other unused bits in the public information field of the MU-RTS frame.
  • the difference between this design method and design methods 1 and 2 is that there is no need to modify the public information field in the MU-RTS frame, only the user information field needs to be modified. Specifically, the 20th bit (counting from 0) in the user information field is extended from the uplink forward error correction coding type bit of 802.11ax to the uplink forward error correction coding type bit and the enhanced MU-RTS indication function. If the trigger frame is MU-RTS, this field indicates enhanced RTS indication, a value of 1 indicates enhanced MU-RTS, a value of 0 indicates that 802.11ax is still used; if the trigger frame is not MU-RTS, this The meaning of the domain is consistent with 802.11ax.
  • the original uplink forward error correction coding type bits of 802.11ax are multiplexed, and other unused bits in the user information field of the MU-RTS frame may also be used.
  • the modification of the remaining domain is consistent with design method 1 and design method 2.
  • this design method uses a new trigger frame type, that is, the value of the trigger frame type field in the public information field is 10 or other reserved values.
  • the meaning of other fields can continue to use the reference design method 1-3, the only difference is that the enhanced MU-RTS indicator bit is not required in this design method.
  • the STA After receiving the PNR frame replied by the AP, the STA extracts the current available panel information of the AP or the available subchannel information of different panels of the AP, and then determines at least one MIMO mode for data transmission based on the information. This process includes many situations.
  • the STA can use a MIMO mode to perform data transmission with the AP.
  • the orthogonal frequency division multiple access (Orthogonal Frequency Division Multiple Access, OFDMA) method is used to divide the available sub-channels into multiple RUs.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Different MIMO modes are used on different RUs, and the sub-channels included in different RUs are different. It should be understood that the difference in the MIMO mode refers to a different number of spatial streams or a different number of antennas.
  • the STA can send third information to the AP.
  • the third information can be carried in the high-throughput single-user hybrid physical layer protocol data unit EHT-SU-H-PPDU, EHT-SU-H-PPDU It includes a resource unit allocation field (RU Allocation) and a panel bitmap field, where the resource unit allocation field is used to indicate the RU where the available subchannel is divided, and the panel bitmap field is used to indicate the antenna of the second device Whether the panel is used in the RU, the AP uses this to instruct the STA to use different MIMO modes on different RUs.
  • the data transmitted by the second device to the first device may also be carried in the EHT-SU-H-PPDU, for example, the field carrying the third information comes first, and the field carrying the transmitted data comes after.
  • the STA sends an EHT-SU-H-PPDU to the AP in subsequent transmissions.
  • the EHT-SU-H-PPDU is used to indicate that different available sub-channels are divided into two RUs, each occupying 20 MHz.
  • the STA uses 8 ⁇ 8 MIMO to transmit data with the AP; on the second RU corresponding to 20MHz, the STA uses 4 ⁇ 4 MIMO to transmit data to the AP.
  • EHT-SU-H-PPDU The design methods of EHT-SU-H-PPDU include the following two, but are not limited to these.
  • third information can be carried not only in EHT-SU-H-PPDU, but also in other fields.
  • the very high throughput signal field in the EHT-SU-H-PPDU contains a resource unit allocation field, indicating that different channels are divided into several RUs. After that is the user domain by user.
  • Each user information field corresponds to a specific RU, and the corresponding relationship is designed in the resource unit allocation field, which has nothing to do with this application.
  • the associated identification, modulation and coding strategy, dual-carrier modulation, coding, and spatial stream number fields in each user-by-user information field are consistent with the meaning and function of 802.11ax.
  • the panel bitmap field is a newly introduced field in this application. The bit represents the usage of a panel of the STA on the RU, a value of 1 indicates that the panel is used, and a value of 0 indicates that the panel is not used.
  • the i-th panel bitmap information field indicates the usage of the i-th 20MHz panel. Each bit represents the usage of a panel on the RU. A value of 1 means that the panel is used, and a value of 0 means that the panel is not used. panel.
  • the user information field in this design method is consistent with 802.11ax.
  • FIG. 20 shows a schematic block diagram of a communication device 2000 according to an embodiment of the present application.
  • the communication device 2000 includes:
  • the transceiver unit 2010 is configured to receive first information sent by a first device, where the first information is used to indicate an available antenna panel of the first device;
  • the processing unit 2020 is configured to perform data transmission with the first device based on the first information.
  • the first information is also used to indicate available sub-channels of the available antenna panel.
  • the transceiving unit 2010 is further configured to send second information to the first device, where the second information is used to request the first device to send the first information.
  • the second information further includes an identifier of at least one target antenna panel, and the target antenna panel is an antenna panel that the second device requests the first device to use.
  • the transceiving unit 2010 is further configured to receive a clear to send CTS frame sent by the first device.
  • the processing unit 2020 is specifically configured to determine a multiple-input multiple-output MIMO mode according to the first information; the transceiving unit 2010 is specifically configured to use the MIMO mode to perform data with the first device transmission.
  • the transceiving unit 2010 is further configured to send third information to the first device, where the third information is used to indicate the resource unit RU in which the available subchannel is divided, and the resource unit RU on the RU MIMO mode.
  • FIG. 21 shows a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 2100 includes:
  • the memory 2110 is used to store executable instructions
  • the processor 2120 is configured to call and run the executable instructions in the memory 2110 to implement the method in the embodiment of the present application.
  • the aforementioned processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the aforementioned memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the foregoing memory may be integrated in a processor, or the foregoing processor and memory may also be integrated on the same chip, or may be located on different chips and connected through interface coupling.
  • the embodiment of the application does not limit this.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored a computer program for implementing the method in the foregoing method embodiment.
  • the computer program runs on a computer, the computer can implement the method in the foregoing method embodiment.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输的方法和装置,能够提高数据传输的可靠性。该方法包括:第二设备接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;所述第二设备基于所述第一信息与所述第一设备进行数据传输。

Description

数据传输的方法和装置
本申请要求于2020年04月09日提交中国专利局、申请号为202010275402.8、发明名称为“数据传输的方法和装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
目前,在下一代无线局域网(Wireless Local Area Network,WLAN)中采用多面板多输入多输出(Multi-Panel MIMO,MP MIMO)技术增加更多的空间流来提升吞吐量。
MP MIMO技术是指一个无线设备由多个面板相互连通构成,其中,每一个面板上装载了一系列收发天线,即一个无线设备的天线资源分散到多个距离接近或者拉远的面板之上。采用MP MIMO技术减小了众多天线部署的成本和复杂性,并且提升了可扩展性、网络覆盖能力以及MIMO的信道增益。可见,MP MIMO技术为下一代WLAN采用更多空间流数或更多天线资源提供了一种可行的解决思路。
为了提高覆盖能力以及空间分集增益,多个面板往往位于不同的地理位置,这导致在一个特定的时刻,每一个面板的状态不尽相同。例如,在一个特定的20MHz信道上,部分面板正在服务站点(Station,STA),部分面板并未服务STA;在一个特定的20MHz信道上,不同面板的信道忙闲状态不同。不同面板在不同的信道上的忙闲状态也可能不同。因此,在数据传输时获知无线设备的不同面板的能力信息具有必要性。
发明内容
本申请提供一种数据传输的方法和装置,能够提高数据传输的性能。
第一方面,提供一种数据传输的方法,第二设备接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;所述第二设备基于所述第一信息与所述第一设备进行数据传输。
基于上述技术方案,发送端可以获知对端设备的不同面板是否空闲,选择合适的MIMO模式与对端设备进行数据传输,从而避免选择与对端设备的面板能力不匹配的MIMO模式进行数据传输,能够提升数据传输的可靠性。
在一种可能的实现方式中,所述第一信息还用于指示所述可用天线面板的可用子信道。
在一种可能的实现方式中,所述第二设备接收所述第一设备发送的第一信息之前,所述方法还包括:所述第二设备向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。
在一种可能的实现方式中,所述第二信息还包括至少一个目标天线面板的标识,所述目标面板是所述第二设备请求所述第一设备使用的天线面板。
在一种可能的实现方式中,所述第二设备接收所述第一设备发送的第一信息之前,所述方法还包括:所述第二设备接收所述第一设备发送的清除发送CTS帧。
在一种可能的实现方式中,所述第二设备基于所述第一信息与所述第一设备进行数据传输,包括:所述第二设备根据所述第一信息,确定多输入多输出MIMO模式;所述第二设备采用所述MIMO模式与所述第一设备进行数据传输。
在一种可能的实现方式中,所述第二设备采用所述MIMO模式与所述第一设备进行数据传输,包括:所述第二设备向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。
第二方面,提供了一种通信装置,包括:收发单元,用于接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;处理单元,用于基于所述第一信息与所述第一设备进行数据传输。
在一种可能的实现方式中,所述第一信息还用于指示所述可用天线面板的可用子信道。
在一种可能的实现方式中,所述收发单元还用于,向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。
在一种可能的实现方式中,所述第二信息还包括至少一个目标天线面板的标识,所述目标天线面板是所述第二设备请求所述第一设备使用的天线面板。
在一种可能的实现方式中,所述收发单元还用于,接收所述第一设备发送的清除发送CTS帧。
在一种可能的实现方式中,所述处理单元具体用于,根据所述第一信息,确定多输入多输出MIMO模式;所述收发单元具体用于,采用所述MIMO模式与所述第一设备进行数据传输。
在一种可能的实现方式中,所述收发单元还用于,向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。
第三方面,提供了一种网络设备,包括:存储器,用于存储可执行指令;处理器,用于调用并运行所述存储器中的所述可执行指令,以执行第一方面或第一方面任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的实现方式中的方法。
附图说明
图1为802.11ax的一种带宽协商过程示意图。
图2为BQRP帧结构示意图。
图3为BQR控制子字段结构示意图。
图4为802.11ax的另一种带宽协商过程示意图。
图5为获取面板能力信息的必要性示例。
图6为本申请实施例的应用系统架构示意图。
图7为本申请实施例的数据传输方法的示意性流程图。
图8为本申请实施例的一种PNRP帧设计示意图。
图9为本申请实施例的另一种PNRP帧设计示意图。
图10为本申请实施例的一种PNR帧设计示意图。
图11为本申请实施例的另一种PNR帧设计示意图。
图12为本申请实施例的另一种PNR帧设计示意图。
图13为本申请实施例的另一种PNR帧设计示意图。
图14为本申请实施例的另一种PNR帧设计示意图。
图15为本申请实施例的一种TF-PN帧设计示意图。
图16为本申请实施例的另一种TF-PN帧设计示意图。
图17为本申请实施例的另一种TF-PN帧设计示意图。
图18为本申请实施例的一种EHT-SU-H PPDU的设计示意图。
图19为本申请实施例的另一种EHT-SU-H PPDU的设计示意图。
图20为本申请实施例的一种通信装置的示意性框图。
图21为本申请实施例的一种网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(Wireless Local Area Network,WLAN)、窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(Mobile Station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
在现有的IEEE802.11ax中,接入点(Access Point,AP)与站点(Station,STA)之间通过信道协商,来获知对端设备不同信道的忙闲状态,并根据获知的信道信息进行数据传输。
在一种实现方式中,基于带宽询问汇报轮询(Bandwidth Query Report Poll,BQRP)帧和带宽询问汇报(Bandwidth Query Report,BQR)帧的带宽协商流程,如图1所示,流 程描述如下:
步骤1:AP发送一个BQRP帧。该帧是802.11ax的触发帧(Trigger Frame,TF)的一种,将TF帧中的触发类型(Trigger Type)域配置为6即代表BRQP帧,其中BRQP帧的结构如图2所示。
步骤2:STA在收到BQRP帧后,如果判断该BQRP帧是由关联的AP发出的,并且帧中要求自己反馈带宽信息,则在短帧间间隔(Short Inter Frame Space,SIFS)后以基于触发帧的物理层协议数据单元(Trigger based PHY Protocol Data Unit,TB PPDU)格式在对应的资源单元(Resource Unit,RU)上回复带宽询问汇报(Bandwidth Query Report,BQR)。其中BQR控制子字段的结构如图3所示,该控制子字段为IEEE 802.11ax的A-控制(A-Control)类型控制子字段的一种,其中控制标识域取值为8表示BQR,控制信息域中的可用信道位图(Available Channel Bitmap)域含有8比特,其中每一个比特代表一个20MHz信道的忙闲状态,取值为1代表该20MHz信道空闲,取值为0代表该20MHz信道繁忙。
在另一实现方式中,基于多用户请求发送帧(Multi-user Request To Send,MU-RTS)和清除发送帧(Clear to Send,CTS)的信道保护流程,如图4所示,流程描述如下:
步骤1:AP发送一个MU-RTS帧。该帧是802.11ax的TF帧的一种,将TF帧中的触发类型域配置为3即代表MU-RTS帧。
步骤2:STA在收到MU-RTS帧后,如果判断该MU-RTS帧由关联AP发出,并且帧中要求自己反馈CTS帧,则在SIFS后以TB PPDU格式在对应的20MHz大小的RU上回复CTS帧。
目前,期望通过增加空间流来提升吞吐量,但是受限于设备能力,通常难以提供较多空间流(例如16空间流)。
因此,在下一代无线局域网(Wireless Local Area Network,WLAN)中采用多面板多输入多输出(Multi-Panel MIMO,MP MIMO)技术增加更多的空间流来提升吞吐量。
MP MIMO技术是指一个无线设备由多个面板相互连通构成,其中,每一个面板上装载了一系列收发天线,即一个无线设备的天线资源分散到多个距离接近或者拉远的面板之上。采用MP MIMO技术减小了众多天线部署的成本和复杂性,并且提升了可扩展性、网络覆盖能力以及MIMO的信道增益。可见,MP MIMO技术为下一代WLAN采用更多空间流数或更多天线资源提供了一种可行的解决思路。
为了提高覆盖能力以及空间分集增益,多个面板往往位于不同的地理位置,这导致在一个特定的时刻,每一个面板的状态不尽相同。例如,在一个特定的20MHz信道上,部分面板正在服务站点(Station,STA),部分面板并未服务STA,即在一个特定的20MHz信道上,不同面板的信道忙闲状态不同。不同面板在不同的信道上的忙闲状态也可能不同。因此,在数据传输时获知无线设备的不同面板的能力信息具有必要性。
如图5所示,例如,AP包括两个面板,分别为面板1和面板2,每一个面板上具有4根天线。当一个具有8根天线的STA希望和AP进行8×8MIMO数据传输时,它并不知道AP的两个面板是否都可用(即信道空闲)。如果都可用,则最多可以使用8×8MIMO进行数据传输;如果只有一个面板是可用的,则只能使用4×4MIMO进行数据传输;如果一个面板都不可用,则无法传输。图5仅针对在带宽为20MHz下的传输进行举例,在带 宽更大(例如40/80/160/320MHz)的情况下,不同面板在不同20MHz信道下的状态差异会愈发明显。可见,不同面板的能力信息至关重要,然而这个信息如何获知需要进行专门设计。
本申请提出的技术方案,可以适用于一个AP与一个或多个非AP的站点(non-Access Point Station,non-AP STA)、一个AP与一个或多个AP以及一个non-AP STA与一个或多个non-AP STA进行数据传输的应用场景。例如,如图6所示,其中,AP的天线装载在多个面板之上,每一个面板由一部分天线构成。其中多个面板之间可以是有线连接,也可以是通过无线进行数据传输。可以有一个non-AP STA,也可以有多个non-AP STA。每一个STA可以仅仅接受一个面板及其天线资源的服务,也可以接受多个面板及其天线资源共同服务。例如,一个AP包括三个面板,分别为面板1、面板2和面板3,该AP与STA1和STA2进行数据传输时,每一个STA可以仅接受其中一个面板及其天线资源的服务,可以接受其中两个面板及其天线资源的服务,也可以接受三个面板及其天线资源共同服务。
图7示出了本申请实施例的数据传输的方法的示意图。该数据传输的方法700,该方法700包括:
710,第二设备接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板。
应理解,所述第一信息可以仅指示具体哪些天线面板可用,即只包括可用天线面板的信息;所述第一信息也可以指示所述第一设备的天线面板是否可用,即包括可用天线面板和不可用天线面板的信息。例如,所述第一设备包括四个天线面板,只有天线面板一和天线面板三可用,天线面板二和天线面板四不可用。此时,所述第一信息可以只包括可用天线面板一和天线面板三的信息,用于指示天线面板一和天线面板三可用。所述第一信息也可以包括天线面板一、天线面板二、天线面板三和天线面板四的信息,用于指示天线面板一和天线面板三可用、天线面板二和天线面板四不可用。
可选的,所述第一信息可以用于指示所述第一设备的所有天线面板是否可用,也可以用于指示所述第一设备的部分天线面板是否可用。例如,所述第一设备包括四个天线面板,所述第一信息可以用于指示其中两个天线面板是否可用,也可以用于指示四个天线面板是否可用。
具体而言,可选的,所述第一信息还可以用于指示所述可用天线面板的可用子信道。若所述可用天线面板的可用子信道相同,所述第二设备可以确定一种MIMO模式与所述第一设备进行数据传输。若所述可用天线面板的可用子信道不同,所述第二设备可以确定至少一种MIMO模式与所述第一设备进行数据传输。
可选的,所述第二设备接收所述第一设备发送的第一信息之前,所述第二设备可以向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。由此可见,所述第一信息可以是所述第一设备主动发送的,也可以是基于所述第二设备的请求发送的。
可选的,所述第二信息可以包括至少一个目标天线面板的标识,所述目标天线面板是所述第二设备请求所述第一设备使用的天线面板。其中,所述目标天线面板可以是距离所述第二设备较近的至少一个天线面板,也可以是所述第二设备倾向所述第一设备使用的至 少一个天线面板。当所述第二信息中还包括所述至少一个目标天线面板的标识时,所述第一信息可以用于指示所述第二设备请求所述第一设备使用的可用天线面板,也可以用于指示所述第一设备的所有天线面板中的可用天线面板,还可以用于指示所述第一设备允许所述第二设备使用的可用天线面板。
可选的,所述第二信息也可以不包括所述至少一个目标天线面板的标识,此时,所述第一信息可以用于指示所述第一设备的所有天线面板中的可用天线面板,还可以用于指示所述第一设备允许所述第二设备使用的可用天线面板。
可选的,所述第一信息可以承载于面板协商汇报(Panel Negotiation Report,PNR)帧。
可选的,所述第二信息可以承载于面板协商汇报轮询(Panel Negotiation Report Poll,PNRP)帧,也可以承载于面板协商触发(Trigger Frame for Panel Negotiation,TF-PN)帧。所述第二设备接收到所述第一设备发送的第一信息之前,还可以接收到所述第一设备发送的清除发送(Clear to Send,CTS)帧。
720,所述第二设备基于所述第一信息与所述第一设备进行数据传输。
具体而言,可选的,所述第二设备根据所述第一信息,确定MIMO模式;所述第二设备采用所述MIMO模式与所述第一设备进行数据传输。
MIMO模式可以为一种或多种。若所述第一信息仅指示所述第一设备的可用天线面板,或指示所述第一设备的可用天线面板的可用子信道相同,所述第二设备可以采用一种MIMO模式与所述第一设备进行数据传输。若所述第一信息指示所述第一设备的可用天线面板的可用子信道不同,所述第二设备可以采用至少一种MIMO模式与所述第一设备进行数据传输。
所述第二设备采用所述MIMO模式与所述第一设备进行数据传输过程中,还可以向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。应理解,所述RU可以为一个,也可以为多个。当可用天线面板的可用子信道不同时,所述可用子信道可以被划分为至少两个RU,所述至少两个RU包括第一RU和第二RU,在所述第一RU上采用第一MIMO模式进行数据传输,在所述第二RU上采用第二MIMO模式进行数据传输,所述第一RU包括的子信道与所述第二RU包括的子信道不同。
可选的,所述第一设备可以为AP或者STA,所述第二设备也可以为AP或者STA。本申请实施例对此不做限定。
本申请实施例提供的技术方案中,发送端可以获知对端设备的不同面板是否空闲,选择合适的MIMO模式与对端设备进行数据传输,从而避免选择与对端设备的面板能力不匹配的MIMO模式进行数据传输,能够提升数据传输的可靠性。
为了更具体地对本申请实施例提出的数据传输的方法进行说明,通过具体的实施方式进行详细的说明。以所述第一设备为AP,所述第二设备为STA为例,其中,所述AP包括至少一个天线面板。
实施方式一:
总体流程描述如下:
步骤1:STA向AP发送第二信息,该第二信息承载于面板协商汇报轮询(Panel Negotiation Report Poll,PNRP)帧,该PNRP帧旨在请求该AP发送该AP当前可用面板 信息或者该AP的不同面板的可用子信道信息。
步骤2:AP接收到PNRP帧,如果该PNRP帧的目的地址不是自己,则丢弃;如果该PNRP帧的目的地址是自己,则需要在帧间间隔(Inter Frame Space,IFS)后向该STA发送第一信息,该第一信息承载于面板协商汇报(Panel Negotiation Report,PNR)帧,该PNR帧中含有该AP当前可用面板信息或者该AP的不同面板的可用子信道信息。应理解,在AP向STA回复PNR帧之前,还可以向STA回复CTS帧。本申请实施例对此不做限定。
步骤3:STA在接收到AP回复的PNR帧之后,提取出该AP当前可用面板信息或者该AP的不同面板的可用子信道信息,进而基于该信息确定至少一个MIMO模式进行数据传输。
对PNRP帧和PNR帧的设计方法进行进一步的描述。
PNRP帧的设计方法1:
如图8所示,多面板协商帧(包括PNRP帧和PNR帧)采用IEEE 802.11ax中的A-控制字段,应理解,包含多面板协商控制字段的帧,统称为多面板协商帧。其中A-控制字段中的控制标识域取现有预留值(例如9)表示多面板协商帧。控制信息域由多个子域构成,其中多面板协商帧类型域用来表示该多面板协商帧的类型,例如取值0代表PNRP帧,取值1代表PNR帧。当取值为0时,后续结构的分配包括以下字段中的至少一种:带宽域用来指示本次传输的带宽;倾向的面板位图域,表示STA所倾向的AP采用的面板,每一个比特代表一个面板,取值1代表倾向使用,取值0代表不倾向使用;载波侦听需要指示域表示接收方的各个面板是否需要通过做载波侦听来判断面板可用情况信息或者面板的可用带宽信息。需要说明的是,控制信息域中上述各个子域的比特数图中仅为示例,每个子域的比特数可以根据需要增加或者减少,所有子域的总长度不超过26比特即可。
PNRP帧的设计方法2:
如图9所示,与设计方法1的区别在于设计方法1采用IEEE 802.11ax的A-控制字段来承载PNRP帧,而设计方法2是在IEEE 802.11中专门为多面板协商帧设计一种新的媒介接入控制(Media Access Control,MAC)帧类型。其中,IEEE 802.11的MAC帧中的帧控制域(Frame Control)中的类型域(Type)取值为01,子类型域(SubType)取值为0010或其他预留值。多面板协商控制域(Panel Negotiation Control,PNC)的结构与设计方法1中的控制信息域的结构基本相同,该PNC域的总长度可以为16比特。
PNRP帧的设计方法3:
与设计方法1的区别在于设计方法1采用IEEE 802.11ax的A-控制字段来承载PNRP帧,而设计方法3直接复用在IEEE 802.11ax中的BQRP帧(参见图2),不进行改动。
PNR帧的设计方法1:
如图10所示,多面板协商帧(包括PNRP帧和PNR帧)采用IEEE 802.11ax中的A-控制字段。其中A-控制字段中的控制标识域取现有预留值(例如9)则表示多面板协商帧。控制信息域由多个子域构成,多面板协商帧类型域用来表示该多面板协商帧的类型,例如取值0代表PNRP帧,取值1代表PNR帧。当取值为1时,后续结构的分配如下:可用面板位图域表示AP的可用面板指示,每一个比特代表一个面板,取值1代表该面板可用,取值0代表面板不可用。需要说明的是控制信息域中上述各个子域的比特数图中仅为示 例,每个子域的比特数可以根据需要增加或者减少,所有子域的总长度不超过26比特即可。
PNR帧的设计方法2:
如图11所示,与设计方法1类似,区别在于A-控制字段的控制信息域的组成。其中,多面板协商帧类型域与设计方法1相同。当该域取值为1时,其后跟随四个面板的可用带宽域,每一个面板的可用带宽域由4比特构成,这4比特的含义如表1所示。表1中的每一个带宽指示比特取值1代表可用,取值0代表不可用。
表1面板可用带宽域的含义
Figure PCTCN2021086131-appb-000001
PNR帧的设计方法3:
如图12所示,与设计方法1的区别在于本设计方法采用一种新的MAC帧。其中,帧控制域中的类型域取值为01,子类型域取值为其他预留值。PNC域的结构与设计方法2中的控制信息域的结构基本相同,区别在于每一个面板可用带宽域为16比特,从而每一个比特可以代表一个20MHz信道的可用状态,且能够表征320MHz的信道可用状态信息。
PNR帧的设计方法4:
如图13所示,与设计方法3类似,区别在于本设计方法中的PNC域是可变长的,其长度由面板个数域(Panel Num)决定。
PNR帧的设计方法5:
如图14所示,本设计方法在IEEE 802.11ax的BQR帧基础上进行复用。在BQR帧的控制信息域中的可用信道位图域之后,将原有的2比特中的一位设计为多面板指示位。如果多面板指示位取值为0,表示单面板,从而可用信道位图域的取值及含义与原有含义一致。如果多面板指示位取值为1,表示多面板,从而可用信道位图域的取值及含义与原有含义不一致。具体而言,当带宽小于或等于160MHz时,每一个比特代表所有面板的特定20MHz信道的可用信息;当带宽大于160MHz时,每一个比特代表所有面板的特定40MHz信道的可用信息。
实施方式二:
总体流程描述如下:
步骤1:STA向AP发送第二信息,该第二信息承载于面板协商触发(Trigger Frame for Panel Negotiation,TF-PN)帧,该TF-PN帧是在IEEE 802.11ax的触发帧基础上修改而来,用来触发AP回复PNR帧或者回复CTS和PNR帧。值得注意的是,IEEE 802.11ax只允许AP发送TF帧,而本申请则允许STA发送TF帧。
步骤2:AP接收到TF-PN帧,如果该TF-PN帧的目的地址不是自己,则丢弃;如果该TF-PN帧的目的地址是自己,则需要在SIFS后在TF-PN帧所指示的一个或多个20MHz上回复CTS帧。应理解,AP回复CTS帧是可选的,即AP可以回复CTS帧,也可以不回复CTS帧。
步骤3:AP在发送完毕CTS帧且进一步等待SIFS后,在TF-PN帧所指示的资源单元上回复第一信息,该第一信息承载于PNR帧。该PNR帧中含有该AP当前可用面板信息或者该AP的不同面板的可用子信道信息。在本步骤中,如果在多于1个20MHz上回复PNR帧,有两种方法:1)PNR帧复制发送,即每一个20MHz上的PNR帧的内容是完全相同的,携带整个带宽的面板可用信息。2)PNR帧差异发送,即每一个20MHz上的PNR帧的内容是不相同的,只携带本20MHz的面板可用信息。
步骤4:STA在接收到AP回复的PNR帧之后,提取出该AP当前可用面板信息或者该AP的不同面板的可用子信道信息,进而基于该信息确定至少一个MIMO模式进行数据传输。
本实施方式可以采用实施方式一中任一种PNR帧的设计方法。接下来,对TF-PN帧的设计方法进行进一步的描述。
TF-PN帧的设计方法1:
如图15所示,本设计方法在IEEE 802.11ax的多用户请求接入(Multi-user-Request to Send,MU-RTS)帧基础上修改而来。其中MU-RTS帧是IEEE 802.11ax的触发帧的一种类型,触发帧类型域取值为3表示MU-RTS帧。具体修改说明如下:首先,将MU-RTS帧的公共信息域(Common Info)中的第63比特(从0开始计数)由802.11ax的预留位(Reserved)修改为增强的MU-RTS指示位(Improved MU-RTS),取值为1表示增强的MU-RTS,取值为0表示仍采用802.11ax的含义。其次,将MU-RTS帧的用户信息域(User Info)中的第32-39比特(从0开始计数)修改为面板协商信息域。面板协商信息域由倾向的面板位图域和接入类型索引位图域构成。其中,倾向的面板位图域为可选域,表示STA所倾向的AP面板,每一个比特代表一个面板,取值1代表倾向使用,取值0代表不倾向使用。接入类型索引位图域为可选域,其中每一个比特代表一种接入类型,取值1代表计划传输该接入类型的业务,取值0则相反,接入类型索引位图域在802.11ax中已有定义。
TFPN帧的设计方法2:
如图16所示,本设计方法与设计方法1的唯一区别在于设计方法1中使用MU-RTS帧的公共信息域中的第63比特(从0开始计数)由802.11ax的预留位(Reserved)修改为增强的MU-RTS指示位(Improved MU-RTS),而本设计方法并不使用预留位,而是将第53比特由802.11ax的多普勒功能扩展为多普勒和增强的MU-RTS指示功能。如果触发帧是MU-RTS,则该域表示增强的RTS指示,取值为1表示增强的MU-RTS,取值为0表示仍采用802.11ax的含义;如果触发帧不是MU-RTS,则该域的含义与802.11ax一致。值得说明的是,本设计方法可以复用802.11ax原有的多普勒位,还可以使用MU-RTS帧 的公共信息域中的其他已有并不使用的比特位。
TF-PN帧的设计方法3:
如图17所示,本设计方法与设计方法1和2的区别在于不需要修改MU-RTS帧中的公共信息域,只需要修改用户信息域。具体而言,将用户信息域中的第20比特(从0开始计数)由802.11ax的上行前向纠错编码类型位扩展为上行前向纠错编码类型位和增强的MU-RTS指示功能。如果触发帧是MU-RTS,则该域表示增强的RTS指示,取值为1表示增强的MU-RTS,取值为0表示仍采用802.11ax的含义;如果触发帧不是MU-RTS,则该域的含义与802.11ax一致。值得说明的是,本实施例复用802.11ax原有的上行前向纠错编码类型位,还可以MU-RTS帧的用户信息域中的其他已有并不使用的比特。剩余域的修改与设计方法1和设计方法2一致。
TF-PN帧的设计方法4:
本设计方法与设计方法1-3的区别在于本设计方法使用一种新的触发帧类型,即公共信息域中的触发帧类型域取值为10或者其他预留值。其他域的含义可以继续使用参考设计方法1-3,唯一的区别在于本设计方法中不需要增强的MU-RTS指示比特。
需要指出,本设计方法中各个字段的位置,长度不做限制,是否重用了之前字段的某些比特不做限制。
STA在接收到AP回复的PNR帧之后,提取出该AP当前可用面板信息或者该AP的不同面板的可用子信道信息,进而基于该信息确定至少一个MIMO模式进行数据传输。此过程包括多种情况。
如果该PNR帧指示AP当前可用面板或当前可用面板的可用子信道相同,则STA可以采用一种MIMO模式与该AP进行数据传输。
如果该PNR帧指示AP的不同面板在不同子信道上的可用情况有差异,则采用正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)的方式将可用子信道划分为多个RU,在不同RU上采用不同的MIMO模式,且不同RU包括的子信道不同。应理解,MIMO模式的不同指的是采用的空间流数不同或者天线数量不同。
在数据传输过程中,STA可以向AP发送第三信息,该第三信息可以承载于极高吞吐率单用户混合物理层协议数据单元EHT-SU-H-PPDU,EHT-SU-H-PPDU中包括资源单元分配域(RU Allocation)和面板位图域,所述资源单元分配域用于指示所述可用子信道被划分的RU,所述面板位图域用于指示所述第二设备的天线面板是否在所述RU使用,AP以此来指示STA在不同RU上采用不同的MIMO模式。应理解,第二设备向第一设备传输的数据也可以承载于EHT-SU-H-PPDU中,例如,承载第三信息的字段在前,承载传输的数据的字段在后。
例如,在AP回复的PNR帧中携带了AP的面板1和面板2在第一个20MHz的信道上均可用,而仅有面板1在第二个20MHz的信道上可用。从而STA在后续的传输中向AP发送EHT-SU-H-PPDU,该EHT-SU-H-PPDU用于指示将不同可用子信道划分为两个RU,各占20MHz。在第一个20MHz对应的RU上,STA使用8×8MIMO与AP进行数据传输;再第二个20MHz对应的RU上,STA使用4×4MIMO与AP进行数据传输。
EHT-SU-H-PPDU的设计方法包括以下两种,但不限于此。此外,所述第三信息不仅可以承载于EHT-SU-H-PPDU,也可以承载于其他字段。
EHT-SU-H-PPDU的设计方法1:
如图18所示,在EHT-SU-H-PPDU中的极高吞吐率信号域中含有资源单元分配域,指示将不同信道划分为若干RU。在其之后是逐个用户域。每一个逐个用户信息域与特定的RU对应,对应关系在资源单元分配域中设计,与本申请无关。每一个逐个用户信息域中的关联标识、调制编码策略、双载波调制、编码以及空间流数等域与802.11ax的含义和功能一致,而面板位图域是本申请新引入的域,每一个比特代表STA的一个面板的在该RU上的使用情况,取值1表示使用了该面板,取值0代表不使用该面板。
EHT-SU-H-PPDU的设计方法2:
如图19所示,与EHT-SU-H-PPDU的设计方法1类似,区别在于在资源单元分配域之后存在若干面板位图信息域。第i个面板位图信息域表示第i个20MHz的面板使用情况,其中每一个比特代表一个面板的在该RU上的使用情况,取值1表示使用了该面板,取值0代表不使用该面板。本设计方法中的用户信息域与802.11ax保持一致。
本申请实施例中的“0”、“1”代表的含义仅仅是一种示例。例如,“取值0代表PNRP帧,取值1代表PNR帧”,也可以是“取值1代表PNRP帧,取值0代表PNR帧”。又例如,“取值1代表倾向使用,取值0代表不倾向使用”,也可以是“取值0代表倾向使用,取值1代表不倾向使用”。所述“0”、“1”值也可以用其他可用的数值替换,不仅限于此。
本申请实施例提供了一种通信装置2000,图20示出了本申请实施例的一种通信装置2000的示意性框图。该通信装置2000包括:
收发单元2010,用于接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;
处理单元2020,用于基于所述第一信息与所述第一设备进行数据传输。
可选的,所述第一信息还用于指示所述可用天线面板的可用子信道。
可选的,所述收发单元2010还用于,向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。
可选的,所述第二信息还包括至少一个目标天线面板的标识,所述目标天线面板是所述第二设备请求所述第一设备使用的天线面板。
可选的,所述收发单元2010还用于,接收所述第一设备发送的清除发送CTS帧。
可选的,所述处理单元2020具体用于,根据所述第一信息,确定多输入多输出MIMO模式;所述收发单元2010具体用于,采用所述MIMO模式与所述第一设备进行数据传输。
可选的,所述收发单元2010还用于,向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。
本申请实施例提供了一种网络设备2100,图21示出了本申请实施例的一种网络设备的示意性框图。该网络设备2100包括:
存储器2110,用于存储可执行指令;
处理器2120,用于调用并运行所述存储器2110中的所述可执行指令,以实现本申请实施例中的方法。
上述的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专 用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应理解,上述存储器可以集成于处理器中,或者,上述处理器和存储器也可以集成在同一芯片上,也可以分别处于不同的芯片上并通过接口耦合的方式连接。本申请实施例对此不做限定。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    第二设备接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;
    所述第二设备基于所述第一信息与所述第一设备进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息还用于指示所述可用天线面板的可用子信道。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二设备接收所述第一设备发送的第一信息之前,所述方法还包括:
    所述第二设备向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第二信息还包括至少一个目标天线面板的标识,所述目标天线面板是所述第二设备请求所述第一设备使用的天线面板。
  5. 根据权利要求4所述的方法,其特征在于,所述第二设备接收所述第一设备发送的第一信息之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的清除发送CTS帧。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第二设备基于所述第一信息与所述第一设备进行数据传输,包括:
    所述第二设备根据所述第一信息,确定多输入多输出MIMO模式;
    所述第二设备采用所述MIMO模式与所述第一设备进行数据传输。
  7. 根据权利要求6所述的方法,其特征在于,所述第二设备采用所述MIMO模式与所述第一设备进行数据传输,包括:
    所述第二设备向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。
  8. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一设备发送的第一信息,所述第一信息用于指示第一设备的可用天线面板;
    处理单元,用于基于所述第一信息与所述第一设备进行数据传输。
  9. 根据权利要求8所述的装置,其特征在于,所述第一信息还用于指示所述可用天线面板的可用子信道。
  10. 根据权利要求8或9所述的装置,其特征在于,所述收发单元还用于,向所述第一设备发送第二信息,所述第二信息用于请求所述第一设备发送所述第一信息。
  11. 根据权利要求10所述的装置,其特征在于,所述第二信息还包括至少一个目标天线面板的标识,所述目标天线面板是所述第二设备请求所述第一设备使用的天线面板。
  12. 根据权利要求11所述的装置,其特征在于,所述收发单元还用于,接收所述第一设备发送的清除发送CTS帧。
  13. 根据权利要求8至12中任一项所述的装置,其特征在于,
    所述处理单元具体用于,根据所述第一信息,确定多输入多输出MIMO模式;
    所述收发单元具体用于,采用所述MIMO模式与所述第一设备进行数据传输。
  14. 根据权利要求13所述的装置,其特征在于,所述收发单元还用于,向所述第一设备发送第三信息,所述第三信息用于指示所述可用子信道被划分的资源单元RU,及所述RU上的MIMO模式。
  15. 一种网络设备,其特征在于,包括:
    存储器,用于存储可执行指令;
    处理器,用于调用并运行所述存储器中的所述可执行指令,以执行权利要求1至7中任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1-7中任一项所述的方法。
PCT/CN2021/086131 2020-04-09 2021-04-09 数据传输的方法和装置 WO2021204237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21785311.8A EP4131793A4 (en) 2020-04-09 2021-04-09 DATA TRANSMISSION METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010275402.8A CN113517912B (zh) 2020-04-09 2020-04-09 数据传输的方法和装置
CN202010275402.8 2020-04-09

Publications (1)

Publication Number Publication Date
WO2021204237A1 true WO2021204237A1 (zh) 2021-10-14

Family

ID=78022408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086131 WO2021204237A1 (zh) 2020-04-09 2021-04-09 数据传输的方法和装置

Country Status (3)

Country Link
EP (1) EP4131793A4 (zh)
CN (1) CN113517912B (zh)
WO (1) WO2021204237A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391296A (zh) * 2017-08-11 2019-02-26 索尼公司 用于无线通信的电子设备、方法和介质
CN110169101A (zh) * 2019-03-26 2019-08-23 北京小米移动软件有限公司 数据传输方法及装置
CN110521273A (zh) * 2019-07-11 2019-11-29 北京小米移动软件有限公司 非授权频谱上的信道状态指示方法、装置及存储介质
US20200067615A1 (en) * 2018-08-21 2020-02-27 Futurewei Technologies, Inc. System and Method for Communications with Multi-Antenna Panel Devices
US20200107327A1 (en) * 2017-06-16 2020-04-02 Intel IP Corporation Beam management with multi-transmission reception point multi-panel operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192889A1 (en) * 2016-05-04 2017-11-09 Intel Corporation Antenna panel switching and beam indication
AU2017300666A1 (en) * 2016-07-21 2019-02-14 Interdigital Patent Holdings, Inc. Adaptation of MIMO mode in mmW WLAN systems
JP6898997B2 (ja) * 2017-03-17 2021-07-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてリソースバンドルに基づくプリコーダの適用方法及びそのための装置
KR20220034825A (ko) * 2019-07-11 2022-03-18 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 비면허 스펙트럼에서의 bwp 전환 지시 방법, 장치 및 저장 매체
CN110537388B (zh) * 2019-07-16 2023-09-29 北京小米移动软件有限公司 数据传输方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107327A1 (en) * 2017-06-16 2020-04-02 Intel IP Corporation Beam management with multi-transmission reception point multi-panel operation
CN109391296A (zh) * 2017-08-11 2019-02-26 索尼公司 用于无线通信的电子设备、方法和介质
US20200067615A1 (en) * 2018-08-21 2020-02-27 Futurewei Technologies, Inc. System and Method for Communications with Multi-Antenna Panel Devices
CN110169101A (zh) * 2019-03-26 2019-08-23 北京小米移动软件有限公司 数据传输方法及装置
CN110521273A (zh) * 2019-07-11 2019-11-29 北京小米移动软件有限公司 非授权频谱上的信道状态指示方法、装置及存储介质

Also Published As

Publication number Publication date
EP4131793A1 (en) 2023-02-08
CN113517912A (zh) 2021-10-19
CN113517912B (zh) 2023-06-20
EP4131793A4 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US10405301B2 (en) Method and apparatus for allocating transmission channel in wireless local area network system
US9191174B2 (en) Method of performing link adaptation procedure
US9974098B2 (en) Method and apparatus for space division multiple access for wireless local area network system
CN113273308B (zh) 基于分组的链路聚集架构
WO2010143894A2 (en) Method and apparatus for transmitting frame in wireless local area network (wlan) system
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
US20120106531A1 (en) Method and apparatus for indicating destination stations in wlan system supporting multi-user multiple input multiple output
US11324046B2 (en) Method and device for transmitting data in wireless LAN system
WO2010120090A2 (en) Method and apparatus for processing multicast frame
EP3713122B1 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
US11197164B2 (en) Protocols for flexible channel utilization
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
JP2013519331A (ja) 無線lanにおけるチャネル接近要求方法及び装置
WO2020221321A1 (zh) 通信方法以及通信装置
CN113411831A (zh) 数据传输的方法和装置
US11510156B2 (en) Apparatus and method for dynamic power management in wireless communication system
US20210328741A1 (en) Method and device for transceiving frame in wireless lan system
WO2022267690A1 (zh) Ofdma频域资源调度方法、sta、ap及通信系统
US20230007630A1 (en) System and method for sidelink configuration
CN109996339B (zh) 一种通信方法及装置
US20180176789A1 (en) Spatial reuse ppdu indication
US20220360409A1 (en) System and method for sidelink configuration
WO2021204237A1 (zh) 数据传输的方法和装置
CN113645697A (zh) 通信方法及通信装置
WO2022252954A1 (zh) 资源配置的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021785311

Country of ref document: EP

Effective date: 20221024

NENP Non-entry into the national phase

Ref country code: DE