WO2021203873A1 - 资源配置方法、装置、通信节点及存储介质 - Google Patents

资源配置方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2021203873A1
WO2021203873A1 PCT/CN2021/078821 CN2021078821W WO2021203873A1 WO 2021203873 A1 WO2021203873 A1 WO 2021203873A1 CN 2021078821 W CN2021078821 W CN 2021078821W WO 2021203873 A1 WO2021203873 A1 WO 2021203873A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
multiplexing
frequency
configuration information
domain resource
Prior art date
Application number
PCT/CN2021/078821
Other languages
English (en)
French (fr)
Inventor
苗婷
邢卫民
毕峰
卢有雄
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021203873A1 publication Critical patent/WO2021203873A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communications, for example, to a resource configuration method, device, communication node, and storage medium.
  • nodes with wired backhaul links with the core network are self-access backhaul (Integrated Access and Backhaul, IAB) donors.
  • the node that is wirelessly connected to the donor IAB (or upper IAB node) is the IAB node, and there is no direct connection between the IAB node and the core network.
  • the interaction between the IAB node and the core network needs to be forwarded one or more times, and the interaction is finally realized with the help of the IAB donor.
  • Both IAB donors and IAB nodes support terminal access.
  • the IAB node can perform parent backhaul link and child backhaul link (or child access link) multiplexing in the time domain, frequency domain, or space domain.
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • This application provides a resource configuration method, device, communication node, and storage medium.
  • an embodiment of the present application provides a resource configuration method applied to a first communication node, including:
  • Data transmission is performed based on the multiplexing resource configuration information.
  • an embodiment of the present application provides a resource configuration method applied to a second communication node, including:
  • an embodiment of the present application provides a resource configuration device configured on a first communication node, including:
  • An obtaining module configured to obtain at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource;
  • the transmission module is configured to perform data transmission based on the multiplexing resource configuration information.
  • an embodiment of the present application provides a resource configuration device configured on a second communication node, including:
  • a determining module configured to determine at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource;
  • the sending module is configured to send the multiplexing resource configuration information.
  • an embodiment of the present application provides a communication node, including:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement any one of the methods in the embodiments of the present application.
  • an embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • Figure 1 is a schematic flow diagram of a resource allocation method provided by this application.
  • Figure 1a is a schematic diagram of the relationship between nodes in an IAB network provided by this application.
  • Figure 2 is a schematic flow diagram of a resource allocation method provided by this application.
  • FIG. 2a is a schematic diagram of a frequency unit for RB time-frequency domain resource attribute configuration provided by this application;
  • FIG. 2b is a schematic diagram of a frequency unit for RBG time-frequency domain resource attribute configuration provided by this application;
  • FIG. 2c is a schematic diagram of indicating the availability of soft frequency resources in the manner of soft frequency domain resource RBG numbers and bitmaps when the frequency unit provided by this application is an RBG;
  • FIG. 3 is a schematic structural diagram of a resource configuration device provided by this application.
  • FIG. 4 is a schematic structural diagram of a resource configuration device provided by this application.
  • FIG. 5 is a schematic structural diagram of a communication node provided by this application.
  • FIG. 6 is a schematic diagram of a conversion position provided by this application.
  • FIG. 7 is a schematic diagram of another conversion position provided by this application.
  • FIG. 8 is a schematic diagram of another conversion position provided by this application.
  • FIG. 1 is a schematic flowchart of a resource configuration method provided by this application, and the method may be applicable to the situation of resource configuration.
  • the method can be executed by the resource configuration device provided in the present application, and the resource configuration device can be implemented by software and/or hardware and integrated on the first communication node.
  • the first communication node may be an IAB node or an IAB donor.
  • the IAB donor consists of a centralized unit (Central Unit, CU) and one or more distributed units (Distributed Unit, DU), and the IAB donor can obtain downlink data or send uplink data to the core network.
  • Central Unit CU
  • Distributed Unit DU
  • the IAB node has two functions: 1) Distributed unit DU function (i.e. base station), that is, IAB node provides wireless access function for child nodes or User Equipment (UE) like a base station; 2) Mobile terminal (Mobile- Termination (MT) function (namely, terminal), that is, the IAB node is controlled and scheduled by the parent node (IAB node or IAB donor) like the UE.
  • Distributed unit DU function i.e. base station
  • UE User Equipment
  • MT Mobile- Termination
  • Figure 1a is a schematic diagram of the relationship between nodes in an IAB network provided by this application.
  • the IAB node is the current node as a reference, and its upper level node is called the parent node.
  • the parent node can be an IAB node or an IAB donor; the next level node of an IAB node can be an IAB node (child Node), or UE.
  • the link between the IAB node and the upper-level node is called the parent link, and the link between the IAB node and the next-level node (or UE) is called the child link.
  • the link between the IAB node and its parent node is called the parent backhaul link (ie Parent backhaul link), and is divided into a downlink parent backhaul link (ie DL Parent Backhaul) and an uplink parent backhaul link (I.e. UL Parent Backhaul);
  • the link between the IAB node and its next-level node i.e. child node
  • child backhaul link i.e. Child backhaul link
  • downlink child backhaul link i.e. DL Child Backhaul
  • the uplink child backhaul link i.e. UL Child Backhaul
  • the link between the IAB node and the UE is called the child access link (i.e. Child access link), and is divided into the downlink child access link (i.e. DL Child access) and uplink child access link (ie UL Child access).
  • the multiplexing method used by the IAB node depends on the multiplexing capability of the IAB node. Considering that when the IAB node adopts Time Division Multiplexing (TDM), the parent backhaul link and the child backhaul link (or child access link) ) Data cannot be transmitted at the same time, the utilization of spectrum resources is low, and the transmission delay is large. Therefore, Frequency Division Multiplexing (FDM) or Space Division Multiplexing (SDM) can improve the utilization of spectrum resources. , It is very important to reduce the transmission delay.
  • TDM Time Division Multiplexing
  • SDM Space Division Multiplexing
  • the IAB node can send data to the parent node and the child node (or terminal) at the same time using FDM/SDM, and can also receive the data sent by the parent node and child node (or terminal) at the same time to improve resource utilization. , To reduce the transmission delay. In order to make the IAB node more effectively use FDM/SDM to transmit signals at the same time, it is necessary to consider the allocation of resources in FDM/SDM.
  • this application provides a resource configuration method. As shown in FIG. 1, the resource configuration method provided by this application includes S110-S120.
  • Reuse resources include, but are not limited to, frequency domain resources and time domain resources.
  • the first communication node may receive at least one piece of multiplexing resource configuration information sent by the second communication node to perform resource configuration.
  • frequency domain resource attribute configuration Based on the multiplexing resource configuration information in this embodiment, one or more of frequency domain resource attribute configuration, frequency domain resource configuration, and time domain resource configuration can be implemented.
  • the first communication node may obtain at least one piece of multiplexing resource configuration information sent by the CU, where the multiplexing resource configuration information may include frequency domain resource attribute configuration information.
  • the first communication node may also obtain at least one piece of multiplexing resource configuration information of the parent node or the serving cell, where the multiplexing resource configuration information may include frequency domain resource configuration information.
  • the CU, the parent node, and the serving cell may be the second communication node.
  • the frequency domain resource attribute configuration information can be used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency domain resource attributes include one or more of the following: hard, soft, and unavailable.
  • the frequency domain resource configuration information is used to indicate the availability of frequency domain resources.
  • the multiplexing resource configuration information may also include time domain resource configuration information.
  • Time domain resource configuration information can be used to configure the availability of time domain resources.
  • the availability includes at least one of the following: it can be reused, it can not be reused, or whether it is available is determined according to the usage of the MT of the first communication node.
  • Each multiplexing resource configuration information in the at least one multiplexing resource configuration information obtained in this application may correspond to a cell, a carrier, or at least one resource type.
  • the first communication node in the present application may also report desired multiplexing resource configuration information. For example, report the desired multiplexing resource configuration information to the parent node of the first communication node (or the serving cell of the MT of the first communication node).
  • the reporting time is not limited, and it can be before, after, or when acquiring at least one piece of multiplexing resource configuration information.
  • Reporting the desired multiplexing resource configuration information before acquiring at least one piece of multiplexing resource configuration information may allow the parent node to determine the multiplexing resource configuration information sent to the first communication node.
  • the parent node may determine the multiplexing resource configuration sent to the first communication node based on the desired multiplexing resource configuration information; it may also directly determine the multiplexing resource configuration information sent to the first communication node.
  • the desired multiplexing resource configuration information After acquiring at least one piece of multiplexing resource configuration information, the desired multiplexing resource configuration information is reported, which can be used by the parent node when determining the multiplexing resource configuration information next time.
  • the desired multiplexing resource configuration information can be considered as the multiplexing resource configuration information that the first communication node expects the parent node to send.
  • the present application may obtain at least one multiplexing resource configuration information of the child node of the first communication node from the CU, to determine the frequency domain resources that can be used by the child link of the child node based on the multiplexing resource configuration information and/or indicating the child node’s Availability of soft frequency domain resources.
  • the specific content of the multiplexing resource configuration information and the multiplexing resource configuration information of the first communication node expected in this application can refer to at least one multiplexing resource configuration information obtained by the first communication node (ie, the first communication node The corresponding content of the multiplexing resource configuration information) will not be repeated here.
  • S120 Perform data transmission based on the multiplexing resource configuration information.
  • the resource used for data transmission can be determined, and then data transmission can be performed on the determined resource.
  • the resource configuration method provided by the present application first obtains at least one piece of multiplexed resource configuration information, where the multiplexed resource configuration information is used to indicate the configuration of multiplexed resources; then, data transmission is performed based on the multiplexed resource configuration information. Using this method effectively solves the problem of resource allocation and improves resource utilization.
  • the method further includes one or more of the following:
  • the multiplexing resource configuration information includes one or more of the following: reference subcarrier interval; frequency domain resource attribute configuration information; time domain resource configuration information; or, the multiplexing resource configuration information includes one or more of the following: Reference subcarrier spacing; frequency domain resource configuration information; time domain resource configuration information.
  • the frequency domain resource attribute configuration information is used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency unit includes any one of the following: resource blocks; resource block groups; subbands; subband groups; subcarriers; subcarrier groups; frequency resource groups, the number of frequency resource groups is the result of dividing the bandwidth by m and taking upwards Where m is an integer greater than or equal to 1.
  • m is an integer greater than or equal to 1.
  • the size of each frequency resource group is m resource blocks, and the result of dividing the bandwidth by m is not an integer
  • the size of one frequency resource group is bandwidth mod m
  • the size of the other frequency resource groups is m
  • mod is a modulo operation.
  • the frequency domain resource attribute includes one or more of the following: hard; soft; unavailable.
  • the sub-link of the node corresponding to the frequency domain resource may use the frequency domain resource
  • the frequency domain resource is configured as soft, whether the child link of the node corresponding to the frequency domain resource can use the frequency domain resource is indicated by the parent node or the serving cell of the node;
  • the sub-link of the node corresponding to the frequency domain resource cannot use the frequency domain resource.
  • the frequency domain resources are configured as soft, the frequency domain resources can be considered sharable, and the parent node or serving cell can determine the sub-link of the node corresponding to the frequency domain resource to the frequency domain resource according to the actual situation. Availability.
  • the frequency domain resource when configured as soft, it includes one of the following:
  • each frequency unit of the frequency domain resource is indicated by a bitmap, each bit in the bitmap corresponds to a frequency unit, the size of the bitmap is a fixed value, or the bandwidth corresponding to the reference subcarrier interval There is a correspondence, or, the total number of frequency units or soft frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the availability or availability of each frequency unit of the frequency domain resource is indicated by the index indicating the unavailable frequency unit, and the availability or availability of the unindicated frequency unit is determined according to the usage of the mobile terminal resource of the first communication node.
  • This application uses a bitmap to indicate the availability of each frequency unit of the soft frequency domain resource.
  • the number of bits in the bitmap is greater than the total number of soft frequency units contained in the bandwidth corresponding to the reference subcarrier interval, only the bits corresponding to the soft frequency units in the bitmap are valid, and the remaining bits are invalid, or a part of the bitmap is used (For example, the first X bits, where X is the total number of soft frequency units included in the bandwidth corresponding to the reference subcarrier interval) indicates the availability of each frequency unit of the soft frequency domain resource.
  • the index of the frequency unit can uniquely identify the frequency unit, for example, by numbering the soft frequency resource according to the frequency unit, or the bandwidth corresponding to the soft frequency resource is numbered according to the frequency unit, and using the number as the index of the frequency unit.
  • the determination may be based on the conflict between the frequency unit and the resources used by the mobile terminal.
  • Conflict includes conflict and non-conflict.
  • the frequency domain resource configuration information indicates the available frequency domain resources in one of the following ways:
  • bitmap where each bit in the bitmap corresponds to a frequency unit, and the size of the bitmap is a fixed value or the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the index of the available frequency unit is the index of the available frequency unit.
  • the frequency unit includes any one of the following: resource block; resource block group; subband; subband group; subcarrier; subcarrier group; frequency resource group, the number of frequency resource groups is divided by bandwidth Round up the result of m, where m is an integer greater than or equal to 1.
  • the size of each frequency resource group is m resource blocks, and the bandwidth is divided by m
  • the size of one frequency resource group is bandwidth mod m
  • the size of the remaining frequency resource groups is m
  • mod is a modulo operation.
  • the frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the node's parent link and child link adopt frequency division multiplexing; or,
  • Frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the parent link and child link of the node adopt frequency division multiplexing and space division multiplexing; or,
  • the frequency domain resource attribute configuration information or the frequency domain resource configuration information is valid when the parent link and the child link of the node adopt all multiplexing modes.
  • the time domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource time slot set; multiplexing resource symbol; multiplexing mode.
  • the resource reuse cycle can be regarded as the resource reuse cycle.
  • the availability is determined according to the cycle.
  • the set of multiplexed resource time slots may indicate the time slots that can be multiplexed in the multiplexed resource period.
  • the reused resource symbol may indicate the reusability of the symbols in the reusable time slot in the reused resource period; or the reusability of the symbols in the reused resource period.
  • Reusability includes at least one of the following: reusable and non-reusable, and whether it is reusable is indicated according to the remaining information. The rest of the information is not limited here.
  • the set of multiplexed resource time slots is indicated by one of the following methods: a bitmap, one bit in the bitmap corresponds to one time slot in the multiplexed resource period, and the bit value of the bitmap is used to indicate the corresponding Whether the time slot is a reused resource; the index of the reusable time slot in the reuse resource period; the reusable start time slot index and the number of reusable time slots in the reuse resource period; the reusable time slot index in the reuse resource period The start slot index and end slot index of the multiplexing.
  • the starting time slot index can be considered as the index of the starting time slot.
  • the end time slot index can be regarded as the index of the end time slot.
  • the multiplexed resource symbol indicates the reusability of the symbols in the reusable time slot in the set of multiplexed resource time slots; or, the reusability of the symbols in the multiplexed resource period.
  • the multiplexed resource symbols are configured in one of the following ways: each time slot is individually configured with reusable symbols; all time slots are uniformly configured with reusable symbols.
  • the symbols not included in the multiplexed resource symbol are not reusable; or the reusability of the symbols not included in the multiplexed resource symbol is determined according to the resource usage of the mobile terminal of the first communication node.
  • the time-domain resource configuration information includes one or more sub-time-domain resource configuration information
  • the sub-time-domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource offset; multiplexing Resource duration; multiplexing method.
  • the multiplexing resource offset may indicate the starting position of the multiplexing resource in the multiplexing period.
  • the unit of multiplexing resource offset or multiplexing resource duration is one of the following: subframe; time slot; orthogonal frequency division multiplexing symbol.
  • the multiplexing mode includes one or more of the following: frequency division multiplexing; space division multiplexing.
  • the time domain resource configuration information configures the time domain resource in one of the following ways:
  • a set of first time slot multiplexing resource combinations is provided through the first indication information.
  • Each first time slot multiplexing resource combination indicates the reusability of each time slot in a plurality of consecutive time slots, and each first time slot The multiplexing resource combination is identified by a different first combination index, and the first combination index is indicated by the second indication information.
  • the first combination index indicated by the second indication information indicates continuous L1 from the time slot where the second indication information is received. The reusability of each time slot in the time slots, where L1 is the number of time slots corresponding to the first time slot multiplexing resource combination identified by the first combination index;
  • the third indication information provides a set of second time slot multiplexing resource combinations.
  • Each second time slot multiplexing resource combination indicates the reusability of symbols in each of multiple consecutive time slots.
  • the time slot multiplexing resource combination is identified by a different second combination index, and the second combination index is indicated by the fourth indication information.
  • the second combination index indicated by the fourth indication information is used to indicate the time when the fourth indication information is received.
  • the reusability of the corresponding time slot resource is indicated by the reusability of the signal or channel.
  • the first indication information and the third indication information may be radio resource control (Radio Resource Control, RRC) signaling or medium access control control element (Medium Access Control Control Element, MAC CE).
  • RRC Radio Resource Control
  • MAC CE Medium Access Control Control Element
  • the second indication information and the fourth indication information may be Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • first and second in this application are only used to distinguish the corresponding content.
  • first time slot multiplexing resource combination and the second time slot multiplexing resource combination are only used to distinguish different time slot multiplexing resource combinations.
  • “Multiple" of the multiple consecutive time slots indicated by the first time slot multiplexing resource combination is not limited, and those skilled in the art can set at least one time slot for the first time slot multiplexing resource combination according to actual conditions.
  • the “multiple” of the multiple time slots indicated by the second time slot multiplexing resource combination is also not limited.
  • This application can indicate the reusability of time slot resources through different types of signals or channels. All time slot resources occupied by the signal as indicated can be multiplexed or none can be multiplexed.
  • each multiplexing resource configuration information corresponds to a cell, a carrier, or at least one resource type.
  • the frequency domain resource configuration information is used to indicate one of the following: frequency resources available to the mobile terminal of the first communication node; frequency resources available to the distributed unit of the first communication node.
  • the time domain resource configuration information is used to indicate one of the following: the time domain resources that can be reused by the mobile terminal of the first communication node; the time domain resources that can be reused by the distributed unit of the first communication node Domain resources.
  • FIG. 2 is a schematic flowchart of a resource configuration method provided in this application, and the method may be suitable for resource configuration.
  • the method can be executed by the resource configuration device provided in the present application, and the resource configuration device can be implemented by software and/or hardware and integrated on the second communication node.
  • the second communication node may be a CU or DU or a donor IAB or IAB node or any node that supports a relay function.
  • the details of this example please refer to the above-mentioned embodiment, which will not be repeated here.
  • a resource configuration method provided by this application includes the following steps:
  • S210 Determine at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource.
  • At least one piece of multiplexing resource configuration information of the first communication node can be determined based on the expected multiplexing resource configuration information sent by the first communication node; or at least one piece of multiplexing resource configuration information of the first communication node can be directly determined.
  • the multiplexing resource configuration information may be determined based on the availability and reusability of the resources by the first communication node, which is not limited here.
  • the second communication node may be a CU, and the multiplexing resource configuration information may include frequency domain resource attribute configuration information.
  • the second communication node may also be a DU or a parent node of the first communication node, and the multiplexing resource configuration information may include frequency domain resource configuration information.
  • the multiplexing resource configuration information may also include time domain resource configuration information.
  • the content included in the frequency domain resource attribute information may be determined based on whether the sub-link of the node corresponding to the frequency domain resource can use the frequency domain resource; it may also be based on the frequency domain resource Whether the child link and the parent link of the corresponding node can share frequency domain resources determines the content included in the frequency domain resource attribute information.
  • S220 Send the multiplexing resource configuration information.
  • this step may send the determined multiplexing resource configuration information to the first communication node for the first communication node to determine the resource used for data transmission.
  • At least one piece of multiplexing resource configuration information is first determined, and the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource; then, the multiplexing resource configuration information is sent. Using this method effectively solves the problem of resource allocation and improves resource utilization.
  • the method further includes: one or more of the following:
  • the multiplexing resource configuration information includes one or more of the following: reference subcarrier interval; frequency domain resource attribute configuration information; time domain resource configuration information; or, the multiplexing resource configuration information includes one or more of the following: Reference subcarrier spacing; frequency domain resource configuration information; time domain resource configuration information.
  • the frequency domain resource attribute configuration information is used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency domain resource attributes include one or more of the following: hard; soft; unavailable.
  • determining the multiplexing resource configuration information includes one or more of the following:
  • the frequency domain resource attribute of the frequency domain resource that cannot be used by the sub-link of the node corresponding to the frequency domain resource is configured as unavailable.
  • the availability is indicated in one of the following ways:
  • each frequency unit of the frequency domain resource is indicated by a bitmap, each bit in the bitmap corresponds to a frequency unit, the size of the bitmap is a fixed value, or the bandwidth corresponding to the reference subcarrier interval There is a correspondence, or, the total number of frequency units or soft frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • a part indicates the availability of each frequency unit of the soft frequency domain resource.
  • the availability or availability of each frequency unit of the frequency domain resource is indicated by the index indicating the unavailable frequency unit, and the availability or availability of the unindicated frequency unit is determined according to the usage of the mobile terminal resource of the first communication node.
  • the frequency domain resource configuration information indicates the available frequency domain resources in one of the following ways:
  • bitmap where each bit in the bitmap corresponds to a frequency unit, and the size of the bitmap is a fixed value or the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the index of the available frequency unit is the index of the available frequency unit.
  • the frequency unit includes any one of the following: resource block; resource block group; subband; subband group; subcarrier; subcarrier group; frequency resource group, the number of frequency resource groups is divided by bandwidth Round up the result of m, where m is an integer greater than or equal to 1.
  • the size of each frequency resource group is m resource blocks, and the bandwidth is divided by m
  • the size of one frequency resource group is bandwidth mod m
  • the size of the remaining frequency resource groups is m
  • mod is a modulo operation.
  • the frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the node's parent link and child link adopt frequency division multiplexing; or,
  • Frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the parent link and child link of the node adopt frequency division multiplexing and space division multiplexing; or,
  • the frequency domain resource attribute configuration information or the frequency domain resource configuration information is valid when the parent link and the child link of the node adopt all multiplexing modes.
  • the time domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource time slot set; multiplexing resource symbol; multiplexing mode.
  • the set of multiplexed resource time slots is indicated by one of the following methods: a bitmap, one bit in the bitmap corresponds to one time slot in the multiplexed resource period, and the bit value of the bitmap is used to indicate the corresponding Whether the time slot is a reused resource; the index of the reusable time slot in the reuse resource period; the reusable start time slot index and the number of reusable time slots in the reuse resource period; the reusable time slot index in the reuse resource period The start slot index and end slot index of the multiplexing.
  • the multiplexed resource symbol indicates the reusability of the symbols in the reusable time slot in the set of multiplexed resource time slots; or, the reusability of the symbols in the multiplexed resource period.
  • the multiplexed resource symbols are configured in one of the following ways: each time slot is individually configured with reusable symbols; all time slots are uniformly configured with reusable symbols.
  • the symbols not included in the multiplexed resource symbol are not reusable; or the reusability of the symbols not included in the multiplexed resource symbol is determined according to the resource usage of the mobile terminal of the first communication node.
  • the time-domain resource configuration information includes one or more sub-time-domain resource configuration information
  • the sub-time-domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource offset; multiplexing Resource duration; multiplexing method.
  • the unit of multiplexing resource offset or multiplexing resource duration is one of the following: subframe; time slot; orthogonal frequency division multiplexing symbol.
  • the multiplexing mode includes one or more of the following: frequency division multiplexing; space division multiplexing.
  • the time domain resource configuration information configures the time domain resource in one of the following ways:
  • a set of first time slot multiplexing resource combinations is provided through the first indication information.
  • Each first time slot multiplexing resource combination indicates the reusability of each time slot in a plurality of consecutive time slots, and each first time slot The multiplexing resource combination is identified by a different first combination index, and the first combination index is indicated by the second indication information.
  • the first combination index indicated by the second indication information indicates continuous L1 from the time slot where the second indication information is received. The reusability of each time slot in the time slots, where L1 is the number of time slots corresponding to the first time slot multiplexing resource combination identified by the first combination index;
  • the third indication information provides a set of second time slot multiplexing resource combinations.
  • Each second time slot multiplexing resource combination indicates the reusability of symbols in each of multiple consecutive time slots.
  • the time slot multiplexing resource combination is identified by a different second combination index, and the second combination index is indicated by the fourth indication information.
  • the second combination index indicated by the fourth indication information is used to indicate the time when the fourth indication information is received.
  • the reusability of the corresponding time slot resource is indicated by the reusability of the signal or channel.
  • each multiplexing resource configuration information corresponds to a cell, a carrier, or at least one resource type.
  • the frequency domain resource configuration information is used to indicate one of the following: frequency resources available to the mobile terminal of the first communication node; frequency resources available to the distributed unit of the first communication node.
  • the time domain resource configuration information is used to indicate one of the following: the time domain resources that can be reused by the mobile terminal of the first communication node; the time domain resources that can be reused by the distributed unit of the first communication node Domain resources.
  • the new radio allows to compare the specifications of the second-generation mobile phone communication technology (2-Generation wireless telephone technology, 2G), the third-generation mobile communication technology (3rd-Generation, 3G), and the fourth-generation communication technology (4rd-generation).
  • Generation, 4G) system more flexible network networking mode and the existence of new types of network nodes.
  • a new type of node that integrates the backhaul link (ie backhaul link) and the normal NR access link (ie access link), that is, the IAB node can provide more flexible coverage and networking methods than a single cellular coverage, which will be An important part of the future mobile communication network.
  • the CU in this example provides hard, soft, and unavailable attributes in the frequency domain.
  • the first node that is, the first communication node, receives resource configuration information;
  • the resource configuration information includes at least one of the following: a multiplexing resource configuration set of the first node, that is, at least one multiplexing resource configuration information, the first The multiplexing resource configuration set of the node's child nodes.
  • Each multiplexing resource configuration corresponds to a cell or one carrier or at least one resource type, and the multiplexing resource configuration includes at least one of the following: reference subcarrier interval, frequency domain resource attribute configuration (ie, frequency domain resource attribute information ), time domain resource configuration (real-time domain resource configuration information).
  • the frequency domain resource attribute configuration is used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency domain resource attribute includes at least one of the following: hard, soft, and unavailable.
  • the sub-link of the node can use the frequency domain resource.
  • whether the child link of the node can use the frequency domain resource is indicated by the parent node in an explicit or implicit manner.
  • the sub-link of the node cannot use the frequency domain resource.
  • the node may be the first node or a child node of the first node.
  • the soft frequency domain resource may indicate its availability in the following manner: a bitmap is used to indicate whether each frequency unit of the soft frequency resource is available, where each bit corresponds to a frequency unit, and the size of the bitmap is a reference The total number of frequency units or soft frequency units contained in the bandwidth corresponding to the subcarrier spacing or is a fixed value, and the bit value is used to indicate the availability of the corresponding frequency unit; or, to indicate the location of the available frequency unit; or, to indicate the index of the available frequency unit gather.
  • the frequency unit is any one of the following: resource block, resource block group, subband, subband group, subcarrier, subcarrier group, frequency resource group (for example, the number of frequency resource groups is the bandwidth divided by m and rounded up , Or the maximum number of frequency resource groups is c, and the actual number is the minimum of bandwidths N and c, that is, min ⁇ N,c ⁇ ); where m or c is an integer greater than or equal to 1.
  • the validity of the frequency domain resource attribute configuration is one of the following: only valid when FDM multiplexing is used for the parent link and child link; only valid when FDM and SDM are used for the parent link and child link ; All multiplexing methods are valid for the parent link and the child link.
  • the time domain resource configuration includes at least one of the following: a multiplexing resource period, a set of multiplexing resource time slots, a multiplexing resource symbol in each multiplexing resource time slot, and a multiplexing mode indication.
  • the time-domain resource configuration includes at least one sub-time-domain resource configuration, wherein the sub-time-domain resource configuration includes at least one of the following: multiplexing resource period, multiplexing resource offset, multiplexing Resource duration, multiplexing mode indication.
  • the multiplexing mode indication is used to indicate the multiplexing mode adopted by the multiplexing resource.
  • the multiplexing mode includes at least one of the following: FDM and SDM.
  • the second node that is, the second communication node, sends resource configuration information.
  • the first node may be an IAB node
  • the second node may be a CU.
  • Example 1 shows how to configure the frequency domain resource attributes of an IAB node (ie IAB node) DU:
  • the frequency domain resource attributes of the IAB node DU are configured through the CU.
  • the CU configures frequency domain resource attributes for each carrier of each cell of the IAB node DU. For example, for a cell of IAB node DU, it is assumed that the cell adopts Time Division Duplexing (TDD) and a carrier is configured, and the CU configures frequency domain resource attributes for the carrier. If the cell is also configured with a supplementary uplink (SUL) carrier, the CU also needs to configure frequency domain resource attributes for the SUL carrier. For another example, for a cell of IAB node DU, assuming that the cell adopts Frequency Division Duplexing (FDD), the CU configures frequency domain resource attributes for the UL carrier and DL carrier of the cell respectively.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the CU configures frequency domain resource attributes for each carrier. For example, if IAB node DU configures a carrier, then configure a frequency domain resource attribute for the carrier, and all cells using the carrier have the same frequency domain resources Attributes. If multiple carriers are configured on the IAB node DU, a frequency domain resource attribute is configured for each carrier.
  • the CU configures frequency domain resource attributes for each carrier according to the time resource type.
  • different time resource types ie, resource types, such as uplink, downlink, and flexible
  • different frequency domain resource attributes For a TDD carrier, configure frequency domain resource attributes for downlink resources, uplink resources, and flexible resources; or for downlink Resources and flexible resources are configured with a frequency domain resource attribute, and uplink resources are configured with a frequency domain resource attribute; or, uplink resources and flexible resources are configured with a frequency domain resource attribute, and downlink resources are configured with a frequency domain resource attribute.
  • the bandwidth corresponding to the reference subcarrier interval is N resource blocks (Resource Block, RB)
  • the frequency domain resource attributes of the carrier can be configured as follows:
  • the attributes can be as follows One: hard, soft, unusable.
  • the frequency unit includes but is not limited to any of the following: resource block, resource block group (Resource Block Group, RBG), subband, subband group, subcarrier, subcarrier group, frequency resource group.
  • the IAB node DU (or sub-link of the IAB node) can use the frequency domain resource.
  • the frequency domain resource is configured as soft, whether the IAB node DU (or sub-link of the IAB node) can use the frequency domain resource is indicated by its parent node in an explicit or implicit manner.
  • the IAB node DU (or sub-link of the IAB node) cannot use the frequency domain resource.
  • Fig. 2a is a schematic diagram of a frequency unit provided by this application for RB time-frequency resource attribute configuration
  • Fig. 2b is a schematic diagram of a frequency unit provided by this application for RBG time-frequency resource attribute configuration.
  • Figure 2a shows the configuration of frequency domain resources when the frequency unit is an RB.
  • Figure 2b shows the configuration of frequency domain resources when the frequency unit is an RBG. Assuming that the RBG size is k RBs, the total number of RBGs is ceil(N/k), where ceil() means rounding up.
  • the size of all RBGs is k RBs; if N/k is not an integer, the size of the last or first RBG is N mod k RBs, and the size of the remaining RBGs is k, where mod means take Modular operation, as shown in Figure 2b, the last RBG contains 3 RBs.
  • the method for determining the number and size of the subband is similar to that of the RBG, and the RBG can be replaced with a subband.
  • the method for determining the number and size of the sub-band group is similar to that of the RBG, and just replace the RB/RBG with the sub-band/sub-band group.
  • the schematic diagrams of the frequency unit for subcarrier and subcarrier group time-frequency domain resource attribute configuration are similar to Fig. 2a and Fig. 2b respectively.
  • the CU provides one of the following: RBG size, subband size, m.
  • the number of frequency resource groups is ceil(N/m), where m is an integer greater than or equal to 1. If N/m is an integer, the size of each frequency resource group is m RBs, if If N/m is not an integer, then one of the frequency resource groups (for example, the last or the first frequency resource group) has a size of N mod m RBs, and the remaining frequency resource groups have a size of m RBs.
  • the maximum number of frequency resource groups is c.
  • the reference subcarrier interval is configured by the CU or determined by a default method.
  • the default mode may be: the largest subcarrier interval among the multiple subcarrier intervals corresponding to the carrier is used as the reference subcarrier interval; or the smallest subcarrier interval among the multiple subcarrier intervals corresponding to the carrier is used as the reference subcarrier interval; or
  • the frequency range of the carrier determines the reference subcarrier interval. For example, different frequency ranges correspond to different reference subcarrier intervals.
  • the carrier belongs to frequency range 1 (Frequency range 1, FR1), and the reference subcarrier interval is 60kHz; the carrier belongs to frequency range 2, reference The subcarrier spacing is 120kHz.
  • the frequency domain resource attribute configuration of the IAB node is only valid when the child link and the parent link of the IAB node are multiplexed by FDM.
  • the frequency domain resource attribute configuration of the IAB node is effective for both FDM and SDM multiplexing of the child link and the parent link of the IAB node.
  • the frequency unit can be regarded as a hard frequency unit.
  • Example 2 shows the indication method of the soft frequency domain resource availability of the IAB node DU.
  • the availability of the soft frequency domain resource of the IAB node DU cell is indicated by the parent node of the IAB node (or the serving cell of the IAB node MT).
  • the indication method is one of the following:
  • Method 1 All frequency-domain resources configured as soft are numbered according to frequency units, for example, numbered in ascending or descending order of frequency, and the availability of each frequency unit is indicated by a bitmap (ie bitmap), and the size of the bitmap is the reference subcarrier The total number of soft frequency units contained in the bandwidth corresponding to the interval.
  • bitmap ie bitmap
  • Figure 2c is a schematic diagram of indicating the availability of soft frequency resources in the form of soft frequency domain resource RBG numbers and bitmaps when the frequency unit provided by this application is RBG.
  • a bit value of 1 indicates that the corresponding soft frequency unit is available, and the bit value is 0 means unavailable
  • M is the total number of RBGs
  • X is the total number of soft RBGs.
  • Method 2 The bandwidth corresponding to the reference subcarrier interval is numbered according to the frequency unit, for example, it is numbered in ascending or descending order of frequency, and the availability of each frequency unit is indicated by a bitmap.
  • the size of the bitmap is the frequency contained in the bandwidth corresponding to the reference subcarrier interval
  • the total number of units, the bit value represents the availability of the corresponding frequency unit.
  • the bitmap is only valid for soft frequency resources, and is invalid for other resources.
  • the bandwidth corresponding to the reference subcarrier interval is numbered according to frequency units, for example, numbered in ascending or descending order of frequency, indicating available frequency unit indexes, soft frequency units that are not indicated are unavailable; or indicating unavailable frequency unit indexes , Soft frequency units that are not indicated are available.
  • the bandwidth corresponding to the reference subcarrier interval is numbered according to the frequency unit, for example, numbered in ascending or descending order of frequency to indicate the available frequency unit index.
  • the availability of the unindicated soft frequency unit is determined according to the usage of IAB node MT.
  • the IAB node DU can be determined according to whether it conflicts with the IAB node MT when the frequency unit is used. If there is no conflict, it is available, otherwise it is not available. Or the index of the frequency unit indicating that it is unavailable, and the availability of the soft frequency unit that is not indicated is determined according to the usage of the IAB node MT.
  • Manner 5 Use X bits in the bitmap (for example, the least significant X bits, or the most significant X bits) to indicate the availability of X soft frequency units correspondingly.
  • the size of the bitmap is the total number of frequency units contained in the bandwidth corresponding to the reference subcarrier interval, or is a fixed value (for example, 275), or has a corresponding relationship with the bandwidth corresponding to the reference subcarrier interval, X is the reference subcarrier interval corresponding The total number of soft frequency units contained in the bandwidth of, or the total number of frequency units contained in the bandwidth corresponding to the reference subcarrier interval.
  • Mode 6 Indicate the location of the available frequency unit. For example, in the bandwidth corresponding to the reference subcarrier interval, the Resource Indication Value (RIV) is used to indicate the start frequency unit and the number of frequency units available for the IAB node DU, or to indicate the start frequency unit and the end frequency available for the IAB node DU Unit (that is, the start frequency unit and the stop frequency unit and all soft frequency units between them are available). In one embodiment, the indication is only valid for soft frequency resources and invalid for other resources.
  • the Resource Indication Value is used to indicate the start frequency unit and the number of frequency units available for the IAB node DU, or to indicate the start frequency unit and the end frequency available for the IAB node DU Unit (that is, the start frequency unit and the stop frequency unit and all soft frequency units between them are available).
  • the indication is only valid for soft frequency resources and invalid for other resources.
  • Manner 7 Indicate the location of the available frequency unit. For example, all frequency domain resources configured as soft are numbered according to the frequency unit, and the resource indicator value indicates the start frequency unit and the number of frequency units available for IAB node DU, or the start frequency unit and stop frequency available for IAB node DU. Unit (that is, the start frequency unit and the stop frequency unit and all soft frequency units between them are available).
  • bit values are used to indicate the availability of soft frequency units. For example, a bit value of 1 means available, and a bit value of 0 means unavailable.
  • bit values are used to indicate the availability of soft frequency units. For example, a bit value of 1 indicates that it is available, and a bit value of 0 indicates that the availability of the frequency unit can be determined according to the usage of IAB node MT. For example, IAB node DU can be determined according to whether the frequency unit conflicts with IAB node MT. Conflict, it is available, otherwise it is not available.
  • the frequency unit includes but is not limited to one of the following: RB, RBG, subband, subband group, subcarrier, subcarrier group, frequency resource group (for example, the number of frequency resource groups is the bandwidth divided by m and rounded up, Or the maximum number of frequency resource groups is c, and the actual number is the minimum of bandwidths N and c, that is, min ⁇ N,c ⁇ ).
  • the CU provides one of the following: RBG size, subband size, m, c.
  • Example 3 shows the semi-static, per-slot and per-symbol time domain resource configuration:
  • This example shows how to configure the time domain resources of the IAB node DU.
  • the CU provides time domain resource configuration for each cell or each carrier or at least one type of time resource of the IAB node DU.
  • the CU provides time domain resource configuration for each cell of the IAB node DU. For example, all carriers of the cell use the same time domain resource configuration.
  • the CU provides time domain resource configuration for each carrier of each cell of the IAB node DU. For example, for a cell of the IAB node DU, assuming that the cell adopts time division duplexing and configures a carrier, the CU is This carrier provides time domain resource configuration. For another example, suppose that the cell adopts frequency division duplexing, and the CU provides time domain resource configuration for the UL carrier and DL carrier of the cell respectively.
  • the CU provides time domain resource configuration for each carrier. For example, if the IAB node DU configures a carrier, it provides a time domain resource configuration for the carrier. All cells that use the carrier have the same time domain resource configuration. If the IAB node DU configures multiple carriers, each carrier is configured. Provide a time domain resource configuration.
  • the CU provides time domain resource configuration according to the time resource type for each carrier.
  • different time resource types correspond to different time domain resource configurations.
  • For a TDD carrier provide time domain resource configuration for downlink resources, uplink resources, and flexible resources; or provide a time domain resource configuration for downlink resources and flexible resources, and provide a time domain resource configuration for uplink resources; or provide a time domain resource configuration for uplink resources and Flexible resources provide a time domain resource configuration, and provide a time domain resource configuration for downlink resources.
  • the time domain resource configuration includes at least one of the following: multiplexing resource period, multiplexing resource time slot set, multiplexing resource symbol, and multiplexing mode indication.
  • the set of multiplexed resource time slots can be configured in any of the following ways:
  • Manner 1 Indicate the set of time slots in a bitmap manner. One bit corresponds to a time slot in the multiplexing resource period, and the bit value is used to indicate whether the corresponding time slot is a multiplexing resource. For example, if the bit value is 1, the time slot is a multiplexing resource, otherwise it is not a multiplexing resource.
  • Manner 2 Indicate the index set of reusable time slots in the resource reuse period.
  • Manner 3 Indicate the reusable start timeslot index and the number of reusable timeslots in the reuse resource period.
  • Method 4 Indicate the reusable start time slot index and end time slot index in the multiplexing resource period (that is, the time slot corresponding to the start time slot index and the end time slot index and all the time slot indexes between them are available ).
  • the multiplexed resource time slot set is only valid for the corresponding time resource type. For example, for the time domain resource configuration provided for downlink resources and flexible resources, it is only valid for downlink resources and flexible resources, that is, for uplink resources. Resources, ignore the available time slots indicated by the multiplexing resource time slot set configuration.
  • the reusable resource symbol configuration can provide the reusability of the symbols in the reusable time slot in the reusable resource time slot set, and can also provide the reusability of the symbols in the multiplexing resource period.
  • the reused resource symbols can be Configure in any of the following ways:
  • Method 1 Each time slot is individually configured with reusable symbols. For example, according to the resource type of the symbol, it is indicated that the reusability of the symbol in the slot is any configuration in a specific configuration set.
  • Method 2 Reusable symbols are uniformly configured for all time slots. For example, according to the resource type of the symbol, the reusability of the symbol is indicated as any configuration in a specific configuration set.
  • Resource types include: uplink (Uplink, UL), downlink (Downlink, DL), and flexible (Flexible, F).
  • the specific configuration set consists of at least one of the following configurations: all symbols (ie All symbols) can be multiplexed, only downlink symbols (ie Only DL symbols) can be multiplexed, and only uplink symbols (ie Only UL symbols) can be multiplexed, only flexible Symbols (ie Only flexible symbols) can be multiplexed, only downlink and flexible symbols (ie Only DL and flexible symbols) can be multiplexed, only uplink and flexible symbols (ie Only UL and flexible symbols) can be multiplexed, only downlink and uplink symbols (That is, Only DL and UL symbols) can be reused, and all symbols (that is, All symbols) cannot be reused.
  • symbols that are not indicated as reusable for a specific configuration set are not reusable.
  • symbols that are not indicated as reusable for a specific configuration set are determined whether they are reusable according to the resource usage of the IAB node MT.
  • Each configuration in the specific configuration set corresponds to an index, and the index is used to indicate which symbol of the resource type is a reusable symbol.
  • the multiplexing mode indication is used to indicate the multiplexing mode adopted by the multiplexing resource.
  • the multiplexing mode includes at least one of the following: FDM, SDM.
  • the time domain resource configuration is used to configure time domain resources that can potentially be sent or received at the same time when the child link and the parent link of the IAB node adopt the FDM or SDM mode.
  • Example 4 shows a semi-static, time domain resource configuration of period + offset (ie offset) + duration (ie duration):
  • This example shows how to configure the time domain resources of the IAB node DU.
  • the CU provides time domain resource configuration for each cell or each carrier or at least one type of time resource of the IAB node DU.
  • the CU provides time domain resource configuration for each cell of the IAB node DU. For example, all carriers of the cell use the same time domain resource configuration.
  • the CU provides time domain resource configuration for each carrier of each cell of the IAB node DU.
  • the CU provides time domain resource configuration for each carrier.
  • the CU provides time domain resource configurations for each carrier according to the time resource type, for example, different time resource types correspond to different time domain resource configurations.
  • the time-domain resource configuration includes at least one sub-time-domain resource configuration.
  • the sub-time domain resource configuration includes at least one of the following: multiplexing resource period, multiplexing resource offset, multiplexing resource duration, and multiplexing mode indication.
  • the multiplexed resource offset indicates the starting position of the multiplexed resource in the multiplexed resource period.
  • the unit of the multiplexing resource offset is any one of the following: subframes, time slots, and orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the unit of the duration of the multiplexing resource is any one of the following: subframe, time slot, and OFDM symbol.
  • the reused resource is the union of resources provided by all sub-time domain resource configurations of the cell.
  • the multiplexing mode indication is used to indicate the multiplexing mode adopted by the multiplexing resource.
  • the multiplexing mode includes at least one of the following: FDM and SDM.
  • the radio frame n f where the resource is located and the start time slot satisfy in Configure the number of time slots in each radio frame when the subcarrier spacing is ⁇ , Configure the subcarrier interval as the slot number in the radio frame when ⁇ , O s is the multiplexing resource offset, and k s is the multiplexing resource period. That is to say, the multiplexed resource is in the radio frame n f It is the consecutive T s time slots of the starting time slot. T s is the duration of the reused resource.
  • the unit of the multiplexing resource period and the multiplexing resource offset is the time slot when the subcarrier interval is configured as ⁇ . If the unit is not a time slot, it can be converted to the time slot when the subcarrier interval is configured as ⁇ .
  • the unit of the multiplexing resource offset is the time slot.
  • a similar formula can be used.
  • the unit of each parameter of the sub-time domain resource configuration can be converted into a unified unit, and the time slot of each radio frame number Also converted into a unified unit.
  • the parent node in this embodiment provides resource allocation to the IAB node, and the parent node in this embodiment is the third node.
  • the parent node of IAB node provides multiplexing resource configuration for IAB node MT or DU:
  • BWP Bandwidth Part
  • the configuration of reusable resources can adopt: time slot granularity, time slot + symbol granularity, or configuration according to signal or channel type.
  • the first node receives at least one multiplexing resource configuration; the multiplexing resource configuration is at least one of the following: reference subcarrier interval, frequency domain resource configuration, and time domain resource configuration.
  • the frequency domain resource configuration may indicate the available frequency resources in the following manner: a bitmap (bitmap) is used to indicate the available frequency units, where each bit corresponds to a frequency unit, and the size of the bitmap is a reference sub-unit.
  • bitmap is used to indicate the available frequency units, where each bit corresponds to a frequency unit, and the size of the bitmap is a reference sub-unit.
  • the total number of frequency units contained in the bandwidth corresponding to the carrier interval, and the bit value represents the availability of the corresponding frequency unit; or, it indicates the set of available frequency unit indexes in the frequency resource.
  • the frequency unit is any one of the following: resource block, resource block group, subband, subband group, subcarrier, subcarrier group, bandwidth/m is a group of frequency resources; where m is an integer greater than or equal to 1 ;
  • the frequency domain resource configuration is used for one of the following: indicating frequency resources available to the MT of the first node; or, indicating frequency resources available to the DU of the first node;
  • the time domain resource configuration is used for one of the following: indicating the reusable time domain resource of the MT of the first node; or indicating the reusable time domain resource of the DU of the first node;
  • the at least one multiplexing resource configuration may be transmitted through RRC signaling or MAC CE.
  • Example 1 This example indicates the frequency resources available to IAB node MT:
  • the serving cell of the IAB node MT (or the parent node of the IAB node) provides frequency domain resource configuration for each carrier of the IAB node MT.
  • the serving cell of the IAB node MT provides frequency domain resource configuration for each carrier according to the time resource type.
  • different time resource types correspond to different frequency domain resource configurations.
  • the specific example is similar to Example 1 in the first embodiment, and will not be repeated here.
  • the frequency domain resource configuration is used to indicate the frequency resources available to the IAB node MT.
  • the serving cell of the IAB node MT (or the parent node of the IAB node) indicates the frequency resources available to the IAB node MT in one of the following ways:
  • Method 1 Use a bitmap to indicate the available frequency units, where each bit corresponds to a frequency unit, the size of the bitmap is the bandwidth corresponding to the reference subcarrier interval or the total number of frequency units contained in the BWP, and the bit value represents the corresponding
  • the availability of the frequency unit for example, a bit value of 1 indicates that the corresponding frequency unit is available, and a bit value of 0 indicates that the corresponding frequency unit is not available.
  • Method 2 Indicate the location of the frequency unit available to the IAB node MT. For example, it indicates the bandwidth corresponding to the reference subcarrier interval or the start frequency unit and the number of frequency units available for the IAB node MT in the BWP, for example, indicated by the resource indicator value; or indicates the start frequency unit and stop frequency available for the IAB node MT unit.
  • Manner 3 Indicate the set of available frequency unit indexes in the bandwidth corresponding to the reference subcarrier interval.
  • Manner 4 Use X bits in the bitmap (for example, the least significant X bits, or the most significant X bits) to correspondingly indicate the availability of the frequency unit.
  • the size of the bitmap is a fixed value
  • X is the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval, or the total number of frequency units included in the bandwidth part (Bandwidth Part, BWP) corresponding to the reference subcarrier interval.
  • the fixed value may be predefined or have a corresponding relationship with the bandwidth corresponding to the reference subcarrier interval.
  • the frequency unit includes but is not limited to one of the following: RB, RBG, subband, subband group, subcarrier, subcarrier group, bandwidth/m is a group of frequency resources; where m is an integer greater than or equal to 1.
  • the parent node provides one of the following: RBG size, subband size, m.
  • the related configuration of the frequency resource with the bandwidth/m as a group is similar to the above example, and will not be repeated here.
  • the reference subcarrier interval is configured by the parent node or determined by a default method.
  • the default mode is the same as the default mode for determining the subcarrier spacing in Example 1 of Embodiment 1, and will not be repeated here.
  • Example 2 This example indicates the frequency resources available to IAB node DU:
  • the serving cell of the IAB node MT (or the parent node of the IAB node) provides frequency domain resource configuration for each carrier of the IAB node DU.
  • frequency domain resource configuration is provided for each carrier of each cell of the IAB node DU.
  • frequency domain resource configuration is provided for each carrier of the IAB node DU.
  • the frequency domain resource configuration is provided for each carrier of the IAB node DU according to the time resource type.
  • the frequency domain resource configuration is used to indicate the frequency resources available to the IAB node DU.
  • the configuration method of the available frequency resources is similar to the method of indicating the available frequency resources of the IAB node MT, and will not be repeated here.
  • Example 3 This example shows dynamic time domain resource configuration:
  • the serving cell of the IAB node MT (or the parent node of the IAB node) provides time domain resource configuration for the IAB node MT.
  • the IAB node MT is provided with time domain resource configuration.
  • the IAB node MT is provided with time domain resource configuration.
  • the IAB node MT is provided with time domain resource configuration.
  • a time domain resource configuration is provided for downlink resources, uplink resources, and flexible resources; or a time domain resource configuration is provided for downlink resources and flexible resources, and a time domain resource configuration is provided for uplink resources; Or a time domain resource configuration is provided for uplink resources and flexible resources, and a time domain resource configuration is provided for downlink resources.
  • the time domain resource configuration method is any of the following:
  • Method 1 (time slot granularity): Provide a collection of time-domain multiplexing resource combinations through RRC signaling or MAC CE, where each combination is used to indicate whether each of multiple consecutive time slots is reusable, and Each combination is uniquely identified by a combination index.
  • the combination index is indicated by the PDCCH, and the combination index in the PDCCH indicates whether each of the consecutive multiple time slots can be reused from the time slot in which the PDCCH is received from the IAB node MT.
  • Manner 2 (time slot + symbol granularity): Provide a set of time-domain multiplexing resource combinations through RRC signaling or MAC CE, where each combination is used to indicate the availability of symbols in each of multiple consecutive time slots. Reusability, and each combination is uniquely identified by a combination index.
  • the combination index is indicated by the PDCCH, and the combination index in the PDCCH indicates the reusability of the symbols in each of the consecutive multiple time slots starting from the time slot in which the PDCCH is received from the IAB node MT.
  • the reusability of symbols in each slot is any configuration in a specific configuration set.
  • the specific configuration set consists of at least one of the following configurations: all symbols can be multiplexed, only downlink symbols can be multiplexed, only uplink symbols can be multiplexed, only zero active symbols can be multiplexed, only downlink and flexible symbols can be multiplexed, only uplink and Flexible symbols can be multiplexed, only downlink and uplink symbols can be multiplexed, and all symbols cannot be multiplexed.
  • symbols that are not indicated are determined whether they can be reused according to the resource usage of the IAB node MT.
  • Each configuration in the specific configuration set corresponds to an index, and the index is used to indicate which symbol of the resource type is a reusable symbol.
  • Manner 3 Indicate whether different types of signals or channels can be multiplexed separately, for example, using RRC signaling or MAC CE to indicate a set of multiplexable signals or channels.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • 1 bit is used in the downlink control signaling (Downlink Control Information, DCI) Indicates whether the resource corresponding to the PDSCH/PUSCH can be multiplexed with the sub-link of the IAB node.
  • the configuration can override the configuration provided by RRC signaling or MAC CE.
  • Example 4 shows dynamic time domain resource configuration:
  • IAB node DU assumes that all time domain resources are reusable resources except for the configured time domain unavailable resources.
  • Example 5 shows a semi-static time domain resource configuration:
  • the parent node of the IAB node can also use the method similar to Example 3 and Example 4 in the first embodiment to provide time domain resource configuration for IAB node MT, replace CU with the parent node of IAB node, and replace IAB node DU with IAB node MT. But, I won’t repeat it here.
  • Example 6 shows the time domain resource configuration:
  • the parent node of the IAB node provides at least one time domain resource configuration for the IAB node DU, where the time domain resource configuration is used to indicate the reusable time domain resources of the IAB node DU, that is, for each cell or each cell of the IAB node DU
  • Each carrier or each carrier or at least one time resource type provides time domain resource configuration, that is, provides time domain resources that can be used for the IAB node's parent link and child link to send or receive at the same time.
  • Example 3 and Example 5 are indicated according to the serving cell or carrier of IAB node MT, that is, one used to indicate IAB node MT
  • the serving cell or carrier and one or more cells of the IAB node DU send or receive time domain resources at the same time
  • example 6 is in accordance with the cell or carrier indication of the IAB node DU, that is, it is used to indicate a cell of the IAB node DU or The time domain resources that the carrier and one or more serving cells of the IAB node MT send or receive at the same time.
  • the third embodiment shows that the IAB node reports the resource configuration to the parent node:
  • the first node reports resource configuration information; the resource configuration information provides a multiplexing resource configuration for each cell or carrier or at least one time resource type of the first node, and the multiplexing resource configuration includes at least one of the following: Refer to subcarrier spacing, frequency domain resource configuration, and time domain resource configuration.
  • the frequency domain resource configuration may indicate the available frequency resources in the following manner: a bitmap (bitmap) is used to indicate the available frequency units, where each bit corresponds to a frequency unit, and the size of the bitmap is a reference sub-unit.
  • bitmap is used to indicate the available frequency units, where each bit corresponds to a frequency unit, and the size of the bitmap is a reference sub-unit.
  • the total number of frequency units contained in the bandwidth corresponding to the carrier interval, and the bit value indicates the availability of the corresponding frequency unit; or, indicates the location of the available frequency unit, or indicates the set of available frequency unit indexes in the bandwidth corresponding to the reference subcarrier interval.
  • the frequency unit is any one of the following: resource block, resource block group, subband, subband group, subcarrier, subcarrier group, bandwidth/m is a group of frequency resources; where m is an integer greater than or equal to 1 .
  • the time domain resource configuration is used for one of the following: indicating the reusable time domain resources of each cell or carrier of the first node;
  • the multiplexing resource configuration may be transmitted through RRC signaling or MAC CE.
  • Example 1 This example indicates the frequency resources available to IAB node DU:
  • the IAB node reports that the frequency domain resources of the IAB node DU are allocated to the parent node of the IAB node (or the service cell of the IAB node MT).
  • the frequency domain resource configuration of each carrier of each cell of the IAB node DU is reported.
  • the frequency domain resource configuration of each carrier of the IAB node DU is reported.
  • the frequency domain resource configuration of the IAB node DU is reported according to the time resource type.
  • the frequency domain resource configuration is used to indicate the frequency resources available to the IAB node DU.
  • the frequency domain resource configuration indicates the frequency resources available to the IAB node DU.
  • IAB node instructs frequency domain resource configuration in one of the following ways:
  • Method 1 Use a bitmap to indicate the available frequency units, where each bit corresponds to a frequency unit, the size of the bitmap is the total number of frequency units contained in the bandwidth corresponding to the reference subcarrier interval, and the bit value represents the corresponding frequency unit For example, a bit value of 1 indicates that the corresponding frequency unit is available, and a bit value of 0 indicates that the corresponding frequency unit is not available.
  • Method 2 Indicate the location of the available frequency unit. For example, indicating the available start frequency unit and the number of frequency units in the IAB node DU within the bandwidth corresponding to the reference subcarrier interval, for example, indicated by the resource indicator value; or indicating the available start frequency unit and end frequency unit.
  • Manner 3 Indicate the set of available frequency unit indexes in the bandwidth corresponding to the reference subcarrier interval.
  • Manner 4 Use X bits in the bitmap (for example, the least significant X bits, or the most significant X bits) to correspondingly indicate the availability of the frequency unit.
  • the size of the bitmap is a fixed value
  • X is the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval.
  • the fixed value may be predefined or have a corresponding relationship with the bandwidth corresponding to the reference subcarrier interval.
  • the frequency unit includes but is not limited to one of the following: RB, RBG, subband, subband group, subcarrier, subcarrier group, bandwidth/m is a group of frequency resources; where m is an integer greater than or equal to 1.
  • the IAB node reports one of the following: RBG size, subband size, m.
  • the related configuration of the frequency resource with the bandwidth/m as a group is similar to the above example, and will not be repeated here.
  • Example 2 This example shows a semi-static time domain resource configuration:
  • the IAB node reports the time domain resource allocation of the IAB node DU to the parent node of the IAB node (or the service cell of the IAB node MT).
  • the IAB node DU reports the time domain resource configuration of each carrier of each cell. For example, assuming that the cell adopts time division duplexing and configures a carrier, the time domain resource configuration of the carrier is reported. For another example, assuming that the cell adopts frequency division duplexing, the time domain resource configuration of the UL carrier and the DL carrier of the cell is reported.
  • the IAB node DU reports the time domain resource configuration of each carrier. For example, if the IAB node DU configures a carrier, it reports the time domain resource configuration of the carrier. All cells using the carrier have the same time domain. Resource allocation. If multiple carriers are configured on the IAB node DU, the time domain resource configuration of each carrier is reported.
  • the IAB node DU reports the time domain resource configuration for each carrier according to the time resource type. For example, different time resource types correspond to different time domain resource configurations.
  • the time domain resource configuration is similar to Example 3 and Example 4 in the first embodiment, and will not be repeated here.
  • the time domain resources provided by the time domain resource configuration are potentially reusable resources, that is, for each cell of the IAB node DU, Whether the configured time domain resources can be used for simultaneous transmission or simultaneous reception of the child link and the parent link depends on the transmission direction of the child link and the parent link, and the transmission direction of the child link and the parent link on the time resource Different (for example, one is uplink and the other is downlink), the IAB node can send or receive at the same time on the child link and the parent link.
  • the half-duplex IAB node cannot send or receive at the same time on the child link and the parent link.
  • the time resources are respectively the uplink resource and the downlink resource, then the IAB node can receive on the child link and the parent link at the same time; for another example, for the child link and the parent link, The time resources are downlink resources and uplink resources respectively, and the IAB node can be sent on the child link and the parent link at the same time.
  • the second node for example, CU
  • the third node for example, the parent node of the IAB node
  • the IAB node reports the start frequency or stop frequency or center frequency of the bandwidth corresponding to the reference subcarrier interval (for example, the start frequency or stop frequency or center frequency can be indicated in any of the following ways: the frequency difference between the report and point A , Or report the absolute radio frequency channel number (Absolute Radio Frequency Channel Number, ARFCN)) to at least one of the second node and the third node.
  • point A is the common reference point of the resource grid.
  • the frequency domain resource configuration and the time domain resource configuration may adopt different reference subcarrier intervals.
  • reference subcarrier interval 1 is used for frequency domain resource configuration
  • reference subcarrier interval 2 is used for time domain resource configuration.
  • the CU or the parent node provides the frequency domain resource attribute configuration or the first reference subcarrier interval used for the frequency domain resource configuration
  • the CU or the parent node provides the second reference subcarrier interval used for time domain resource configuration
  • the IAB node reports the third reference subcarrier interval used for frequency domain resource configuration
  • the IAB node reports the fourth reference subcarrier interval used for time domain resource configuration.
  • the reference subcarrier interval includes one or more of the following: a first reference subcarrier interval; a second reference subcarrier interval; a third reference subcarrier interval; and a fourth reference subcarrier interval.
  • the time domain resource configuration is invalid for the time domain unavailable resources (ie, Not Available (NA) resources) of the first node.
  • NA Not Available
  • the default multiplexing resource can be used for both FDM and SDM.
  • FIG. 3 is a schematic structural diagram of a resource configuration device provided by this application.
  • the device is configured in a first communication node, as shown in FIG.
  • the device includes: an acquiring module 31, configured to acquire at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of multiplexing resources; and a transmission module 32, configured to perform operations based on the multiplexing resource configuration information data transmission.
  • the resource configuration device provided in this embodiment is used to implement the resource configuration method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the resource configuration device provided in this embodiment are similar to the resource configuration method of the embodiment shown in FIG. I won't repeat it here.
  • the device further includes a communication module, which is set to one or more of the following:
  • the multiplexing resource configuration information includes one or more of the following: reference subcarrier interval; frequency domain resource attribute configuration information; time domain resource configuration information; or, the multiplexing resource configuration information includes one or more of the following: Reference subcarrier spacing; frequency domain resource configuration information; time domain resource configuration information.
  • the frequency domain resource attribute configuration information is used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency domain resource attribute includes one or more of the following: hard; soft; unavailable.
  • the sub-link of the node corresponding to the frequency domain resource may use the frequency domain resource
  • the frequency domain resource is configured as soft, whether the child link of the node corresponding to the frequency domain resource can use the frequency domain resource is indicated by the parent node or the serving cell of the node;
  • the sub-link of the node corresponding to the frequency domain resource cannot use the frequency domain resource.
  • the frequency domain resource when configured as soft, it includes one of the following:
  • each frequency unit of the frequency domain resource is indicated by a bitmap, each bit in the bitmap corresponds to a frequency unit, the size of the bitmap is a fixed value, or the bandwidth corresponding to the reference subcarrier interval There is a correspondence, or, the total number of frequency units or soft frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the availability or availability of each frequency unit of the frequency domain resource is indicated by the index indicating the unavailable frequency unit, and the availability or availability of the unindicated frequency unit is determined according to the usage of the mobile terminal resource of the first communication node.
  • the frequency domain resource configuration information indicates the available frequency domain resources in one of the following ways:
  • bitmap where each bit in the bitmap corresponds to a frequency unit, and the size of the bitmap is a fixed value or the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the index of the available frequency unit is the index of the available frequency unit.
  • the frequency unit includes any one of the following: resource block; resource block group; subband; subband group; subcarrier; subcarrier group; frequency resource group, the number of frequency resource groups is divided by bandwidth Round up the result of m, where m is an integer greater than or equal to 1.
  • the size of each frequency resource group is m resource blocks, and the bandwidth is divided by m
  • the size of one frequency resource group is bandwidth mod m
  • the size of the remaining frequency resource groups is m
  • mod is a modulo operation.
  • the frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the node's parent link and child link adopt frequency division multiplexing; or,
  • Frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the parent link and child link of the node adopt frequency division multiplexing and space division multiplexing; or,
  • the frequency domain resource attribute configuration information or the frequency domain resource configuration information is valid when the parent link and the child link of the node adopt all multiplexing modes.
  • the time domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource time slot set; multiplexing resource symbol; multiplexing mode.
  • the set of multiplexed resource time slots is indicated by one of the following methods: a bitmap, one bit in the bitmap corresponds to one time slot in the multiplexed resource period, and the bit value of the bitmap is used to indicate the corresponding Whether the time slot is a reused resource; the index of the reusable time slot in the reuse resource period; the reusable start time slot index and the number of reusable time slots in the reuse resource period; the reusable time slot index in the reuse resource period The start slot index and end slot index of the multiplexing.
  • the multiplexed resource symbol indicates the reusability of the symbols in the reusable time slot in the set of multiplexed resource time slots; or, the reusability of the symbols in the multiplexed resource period.
  • the multiplexed resource symbols are configured in one of the following ways: each time slot is individually configured with reusable symbols; all time slots are uniformly configured with reusable symbols.
  • the symbols not included in the multiplexed resource symbol are not reusable; or the reusability of the symbols not included in the multiplexed resource symbol is determined according to the usage of the mobile terminal resources of the first communication node.
  • the time-domain resource configuration information includes one or more sub-time-domain resource configuration information
  • the sub-time-domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource offset; multiplexing Resource duration; multiplexing method.
  • the unit of multiplexing resource offset or multiplexing resource duration is one of the following: subframe; time slot; orthogonal frequency division multiplexing symbol.
  • the multiplexing mode includes one or more of the following: frequency division multiplexing; space division multiplexing.
  • the time domain resource configuration information configures the time domain resource in one of the following ways:
  • a set of first time slot multiplexing resource combinations is provided through the first indication information.
  • Each first time slot multiplexing resource combination indicates the reusability of each time slot in a plurality of consecutive time slots, and each first time slot The multiplexing resource combination is identified by a different first combination index, and the first combination index is indicated by the second indication information.
  • the first combination index indicated by the second indication information indicates continuous L1 from the time slot where the second indication information is received. The reusability of each time slot in the time slots, where L1 is the number of time slots corresponding to the first time slot multiplexing resource combination identified by the first combination index;
  • the third indication information provides a set of second time slot multiplexing resource combinations.
  • Each second time slot multiplexing resource combination indicates the reusability of symbols in each of multiple consecutive time slots.
  • the time slot multiplexing resource combination is identified by a different second combination index, and the second combination index is indicated by the fourth indication information.
  • the second combination index indicated by the fourth indication information is used to indicate the time when the fourth indication information is received.
  • the reusability of the corresponding time slot resource is indicated by the reusability of the signal or channel.
  • each multiplexing resource configuration information corresponds to a cell, a carrier, or at least one resource type.
  • the frequency domain resource configuration information is used to indicate one of the following: frequency resources available to the mobile terminal of the first communication node; frequency resources available to the distributed unit of the first communication node.
  • the time domain resource configuration information is used to indicate one of the following: the time domain resources that can be reused by the mobile terminal of the first communication node; the time domain resources that can be reused by the distributed unit of the first communication node Domain resources.
  • FIG. 4 is a schematic structural diagram of a resource configuration device provided in this application.
  • the device is configured at a second communication node, and the device includes: a determining module 41 , Set to determine at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource; the sending module 42 is set to send the multiplexing resource configuration information.
  • the resource configuration device provided in this embodiment is used to implement the resource configuration method in the embodiment shown in FIG. 2.
  • the implementation principle and technical effect of the resource configuration device provided in this embodiment are similar to the resource configuration method in the embodiment shown in FIG. I won't repeat it here.
  • the device further includes a transmission module configured to include one or more of the following:
  • the multiplexing resource configuration information includes one or more of the following: reference subcarrier interval; frequency domain resource attribute configuration information; time domain resource configuration information; or, the multiplexing resource configuration information includes one or more of the following: Reference subcarrier spacing; frequency domain resource configuration information; time domain resource configuration information.
  • the frequency domain resource attribute configuration information is used to configure the frequency domain resource attribute of each frequency unit.
  • the frequency domain resource attribute includes one or more of the following: hard; soft; unavailable.
  • the determining module 41 is configured to include one or more of the following:
  • the frequency domain resource attribute of the frequency domain resource that cannot be used by the sub-link of the node corresponding to the frequency domain resource is configured as unavailable.
  • the availability is indicated in one of the following ways:
  • each frequency unit of the frequency domain resource is indicated by a bitmap, each bit in the bitmap corresponds to a frequency unit, the size of the bitmap is a fixed value, or the bandwidth corresponding to the reference subcarrier interval There is a correspondence, or, the total number of frequency units or soft frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the availability or availability of each frequency unit of the frequency domain resource is indicated by the index indicating the unavailable frequency unit, and the availability or availability of the unindicated frequency unit is determined according to the usage of the mobile terminal resource of the first communication node.
  • the frequency domain resource configuration information indicates the available frequency domain resources in one of the following ways:
  • bitmap where each bit in the bitmap corresponds to a frequency unit, and the size of the bitmap is a fixed value or the total number of frequency units included in the bandwidth corresponding to the reference subcarrier interval;
  • the index of the available frequency unit is the index of the available frequency unit.
  • the frequency unit includes any one of the following: resource block; resource block group; subband; subband group; subcarrier; subcarrier group; frequency resource group, the number of frequency resource groups is divided by bandwidth Round up the result of m, where m is an integer greater than or equal to 1.
  • the size of each frequency resource group is m resource blocks, and the bandwidth is divided by m
  • the size of one frequency resource group is bandwidth mod m
  • the size of the remaining frequency resource groups is m
  • mod is a modulo operation.
  • the frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the node's parent link and child link adopt frequency division multiplexing; or,
  • Frequency domain resource attribute configuration information or frequency domain resource configuration information is valid when the parent link and child link of the node adopt frequency division multiplexing and space division multiplexing; or,
  • the frequency domain resource attribute configuration information or the frequency domain resource configuration information is valid when the parent link and the child link of the node adopt all multiplexing modes.
  • the time domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource time slot set; multiplexing resource symbol; multiplexing mode.
  • the set of multiplexed resource time slots is indicated by one of the following methods: a bitmap, one bit in the bitmap corresponds to one time slot in the multiplexed resource period, and the bit value of the bitmap is used to indicate the corresponding Whether the time slot is a reused resource; the index of the reusable time slot in the reuse resource period; the reusable start time slot index and the number of reusable time slots in the reuse resource period; the reusable time slot index in the reuse resource period The start slot index and end slot index of the multiplexing.
  • the multiplexed resource symbol indicates the reusability of the symbols in the reusable time slot in the set of multiplexed resource time slots; or, the reusability of the symbols in the multiplexed resource period.
  • the multiplexed resource symbols are configured in one of the following ways: each time slot is individually configured with reusable symbols; all time slots are uniformly configured with reusable symbols.
  • the symbols not included in the multiplexed resource symbol are not reusable; or the reusability of the symbols not included in the multiplexed resource symbol is determined according to the usage of the mobile terminal resources of the first communication node.
  • the time-domain resource configuration information includes one or more sub-time-domain resource configuration information
  • the sub-time-domain resource configuration information includes one or more of the following: multiplexing resource period; multiplexing resource offset; multiplexing Resource duration; multiplexing method.
  • the unit of multiplexing resource offset or multiplexing resource duration is one of the following: subframe; time slot; orthogonal frequency division multiplexing symbol.
  • the multiplexing mode includes one or more of the following: frequency division multiplexing; space division multiplexing.
  • the time domain resource configuration information configures the time domain resource in one of the following ways:
  • a set of first time slot multiplexing resource combinations is provided through the first indication information.
  • Each first time slot multiplexing resource combination indicates the reusability of each time slot in a plurality of consecutive time slots, and each first time slot The multiplexing resource combination is identified by a different first combination index, and the first combination index is indicated by the second indication information.
  • the first combination index indicated by the second indication information indicates continuous L1 from the time slot where the second indication information is received. The reusability of each time slot in the time slots, where L1 is the number of time slots corresponding to the first time slot multiplexing resource combination identified by the first combination index;
  • the third indication information provides a set of second time slot multiplexing resource combinations.
  • Each second time slot multiplexing resource combination indicates the reusability of symbols in each of multiple consecutive time slots.
  • the time slot multiplexing resource combination is identified by a different second combination index, and the second combination index is indicated by the fourth indication information.
  • the second combination index indicated by the fourth indication information is used to indicate the time when the fourth indication information is received.
  • the reusability of the corresponding time slot resource is indicated by the reusability of the signal or channel.
  • each multiplexing resource configuration information corresponds to a cell, a carrier, or at least one resource type.
  • the frequency domain resource configuration information is used to indicate one of the following: frequency resources available to the mobile terminal of the first communication node; frequency resources available to the distributed unit of the first communication node.
  • the time domain resource configuration information is used to indicate one of the following: the time domain resources that can be reused by the mobile terminal of the first communication node; the time domain resources that can be reused by the distributed unit of the first communication node Domain resources.
  • FIG. 5 is a schematic structural diagram of a communication node provided in this application.
  • the communication node provided by the present application includes one or more processors 51 and a storage device 52; there may be one or more processors 51 in the communication node.
  • one processor 51 is used as Example; the storage device 52 is used to store one or more programs; the one or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement as in the embodiments of the present application The described resource configuration method.
  • one or more processors 51 implement the resource configuration method as described in FIG. 1 of the present application.
  • one or more processors 51 implement the resource configuration method as described in FIG. 2 of the present application.
  • the communication node further includes: a communication device 53, an input device 54 and an output device 55.
  • the processor 51, the storage device 52, the communication device 53, the input device 54 and the output device 55 in the communication node may be connected by a bus or other means.
  • the connection by a bus is taken as an example.
  • the input device 54 can be used to receive input digital or character information, and generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to perform information transceiving and communication under the control of the processor 51.
  • the information includes, but is not limited to, multiplexing resource configuration information.
  • the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the resource configuration method shown in FIG.
  • the storage device 52 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the communication node, and the like.
  • the storage device 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 52 may further include a memory remotely provided with respect to the processor 51, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • An embodiment of the present application further provides a storage medium that stores a computer program that, when executed by a processor, implements the resource configuration method described in any of the embodiments of the present application.
  • the resource configuration method applied to the first communication node and the resource configuration method applied to the second communication node wherein the method applied to the first communication node includes: acquiring at least one piece of multiplexing resource configuration information, the multiplexing resource configuration Information is used to indicate the configuration of multiplexing resources;
  • Data transmission is performed based on the multiplexing resource configuration information.
  • the resource configuration method applied to the second communication node includes: determining at least one piece of multiplexing resource configuration information, where the multiplexing resource configuration information is used to indicate the configuration of the multiplexing resource;
  • the computer storage medium of the embodiment of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above.
  • Computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read Only Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read Only Memory, CD-ROM), optical storage Components, magnetic storage devices, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or, it can be connected to an external computer (For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • this application also provides a method for determining the conversion position, including:
  • the switching position of the mobile terminal and the distributed unit of the IAB node is determined based on the first or last symbol.
  • the switching position of the mobile terminal of the IAB node and the distributed unit is determined based on the first or last symbol, including one of the following:
  • the transition position of the mobile terminal of the IAB node to the distributed unit is the last of the uplink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position of the mobile terminal of the IAB node to the distributed unit is the last of the uplink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position of the mobile terminal of the IAB node to the distributed unit is the last of the downlink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position of the mobile terminal of the IAB node to the distributed unit is the last of the downlink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position from the distributed unit of the IAB node to the mobile terminal is the first uplink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position from the distributed unit of the IAB node to the mobile terminal is the first uplink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position from the distributed unit of the IAB node to the mobile terminal is the first downlink resource on the hard resource of the distributed unit of the IAB node.
  • the transition position from the distributed unit of the IAB node to the mobile terminal is the first downlink resource on the hard resource of the distributed unit of the IAB node.
  • this application also provides a method for determining the protection symbol, including:
  • the number of protection symbols is one of the following: a default value; a configurable value; a value determined according to the conversion type.
  • the number of protection symbols is that the distributed unit of the IAB node at the conversion position corresponds to the conversion type when the downlink transmission and the uplink transmission are The minimum or maximum value of the number of protection symbols;
  • the number of protection symbols is the minimum or maximum value of the number of protection symbols corresponding to the conversion type of the IAB node
  • the number of protection symbols is the minimum value of the number of protection symbols corresponding to the switching type when the mobile terminal of the IAB node at the switching position is downlink transmission and uplink transmission.
  • the number of protection symbols is the minimum or maximum value of the number of protection symbols of the conversion type corresponding to the same conversion direction.
  • This embodiment shows the determination of the transmission switching position and the number of switching symbols between MT and DU.
  • the IAB node has the dual identities of the terminal (MT) and the base station (DU), and different identities have their own transceiver timings. This makes the MT and DU of the IAB node use different symbols in the time domain, but they may also exist in the time domain. Overlapping, especially in the case of half-duplex restrictions, the sending and receiving conversion time or the sending and receiving conversion time may be required between the MT and the DU of the IAB node. These problems may cause conflicts between the resources used by the MT and the DU of the IAB node. .
  • IAB node MT and DU there are 8 possible conversion types between IAB node MT and DU, including 4 conversion types from MT to DU (MT send (Transport, Tx)/Receive (Receive, Rx) to DU Tx/Rx, namely MT Tx to DU Tx, MT Tx to DU Rx, MT Rx to DU Tx, MT Rx to DU Rx), and 4 conversion types from DU to MT (DU Tx/Rx to MT Tx/Rx, namely DU Tx to MT Tx, DU Tx to MT Rx, DU Rx to MT Tx, DU Rx to MT Rx), the IAB node provides its parent node (or IAB node MT’s serving cell) with symbols that the parent node is expected to not use at each transition position The parent node provides the IAB node with the number of protection symbols it can provide at each conversion position. In order to ensure that the IAB node's parent link
  • IAB node DU its time resources include 7 types: hard (i.e. Hard) DL, hard F, hard UL, soft (i.e. Soft) DL, soft F, soft UL, and unavailable.
  • hard resources including DL, UL, and F
  • soft resources including DL, UL, and F
  • the DU can directly schedule its sub-links without considering the resource allocation of the MT.
  • NA resources are unavailable resources of the DU.
  • the availability of Soft resources can be determined by the indication of the parent node or the usage of the MT.
  • the cell-level signal or channel of the IAB node DU can be transmitted on NA resources or soft resources (for example, it can send synchronization channel block and PDCCH of SIB1, receive PRACH, etc.). At this time, transmit the cell-level signal or NA of the channel.
  • NA resources or soft resources for example, it can send synchronization channel block and PDCCH of SIB1, receive PRACH, etc.
  • the IAB node can send on the parent link and the child link at the same time, or receive on the parent link and the child link at the same time. That is to say, on the Hard resources of the IAB node DU cell, the parent node of the IAB node can schedule the IAB node MT (corresponding to the parent link). Therefore, on the Hard resources of the IAB node DU cell, when the IAB node receives or transmits at the same time on the parent link and the child link, when the transmission direction of the IAB node DU child link changes, IAB node will also occur. Transmission conversion between MT and IAB node DU. To ensure that the IAB node and the parent node have the same understanding of the conversion location, the conversion location can be determined as follows.
  • the possible conversion position from IAB node MT to IAB node DU is: on the Hard resource of the IAB node DU cell, the last UL symbol of the UL resource of the IAB node DU Or, the end position of the first symbol after the last UL symbol of the UL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • FIG. 6 is a schematic diagram of a conversion position provided by this application.
  • the conversion position may be the end position of the last UL symbol of the UL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • the possible conversion position from IAB node MT to IAB node DU is: the last DL symbol of the DL resource of the IAB node DU on the Hard resource of the IAB node DU cell Or, the end position of the first symbol after the last DL symbol of the DL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • FIG. 7 is a schematic diagram of another conversion position provided by this application.
  • the conversion position may be the end position of the last DL symbol of the DL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • the possible conversion position from IAB node DU to IAB node MT is: the first UL of the UL resource of the IAB node DU on the Hard resource of the IAB node DU cell The starting position of the symbol; or, the starting position of the first symbol before the first UL symbol of the UL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • FIG. 8 is a schematic diagram of another conversion position provided by this application.
  • the conversion position may be: the start position of the first UL symbol of the UL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • the possible conversion position from IAB node DU to IAB node MT is: on the hard resource of the IAB node DU cell, the first one of the DL resources of the IAB node DU The starting position of the DL symbol; or, the starting position of the first symbol before the first DL symbol of the DL resource of the IAB node DU on the Hard resource of the IAB node DU cell.
  • the parent node of the IAB node may not be able to determine the transmission direction (Rx or Tx) of the IAB node DU. Therefore, it is necessary to consider how to determine the protection symbols provided by the parent node in this case number.
  • the method for determining the number of protection symbols provided by the parent node includes:
  • Method 1 When the IAB node DU at the conversion position is a flexible symbol, the number of protection symbols is determined to be the minimum or maximum value of the number of protection symbols corresponding to the two conversions when the IAB node DU at the conversion position is UL and DL.
  • the number of protection symbols corresponding to the conversion from MT DL Rx to DU DL Tx is X1
  • the number of protection symbols corresponding to the conversion from MT DL Rx to The number of protection symbols corresponding to the DU UL Rx conversion is X2
  • the number of protection symbols corresponding to the MT DL Rx to DU Flexible conversion is determined to be min ⁇ X1, X2 ⁇ , that is, the minimum value of X1 and X2.
  • Method 2 When the IAB node DU at the conversion position is a flexible symbol, determine that the number of protection symbols is a configurable value or a default value. For example, when the IAB node DU at the conversion position is a flexible symbol, the IAB node assumes that the number of protection symbols provided by the parent node is 0.
  • the number of protection symbols is determined to be the minimum or maximum value of the number of protection symbols corresponding to the eight conversions of the IAB node. For example, assuming that the number of protection symbols corresponding to 8 conversions is Y1,..., Y8, IAB node assumes min ⁇ Y1,...,Y8 ⁇ of the number of protection symbols corresponding to MT to DU flexibly.
  • Method 4 When the IAB node MT at the conversion position is a flexible symbol, the number of protection symbols is determined to be the minimum or maximum value of the protection symbols corresponding to the two conversions when the IAB node MT at the conversion position is UL and DL.
  • Method 5 When the IAB node MT at the conversion position is a flexible symbol, determine that the number of protection symbols is a configurable value or a default value.
  • Method 6 When the IAB node MT at the conversion position is a flexible symbol, the number of protection symbols is determined to be the minimum or maximum value of the number of protection symbols corresponding to the eight conversions of the IAB node.
  • Method 7 When at least one of IAB node MT and IAB node DU at the conversion position is a flexible symbol, the number of protection symbols is determined to be the minimum or maximum value of the number of protection symbols corresponding to the eight conversions of IAB node.
  • Method 8 When at least one of IAB node MT and IAB node DU at the conversion position is a flexible symbol, determine that the number of protection symbols is a configurable value or a default value.
  • Method 9 When at least one of IAB node MT and IAB node DU at the conversion position is a flexible symbol, the number of protection symbols is determined to be the minimum or maximum value of the number of protection symbols of the 4 types of conversions corresponding to the same conversion direction. For example, IAB node assumes that the number of protection symbols corresponding to MT DL Rx to DU flexibly is the minimum value of the number of protection symbols corresponding to the four conversions from MT to DU.
  • the IAB node assumes that the number of protection symbols corresponding to the conversion is the default value. In an embodiment, it is converted to at least one of the following: MT DL to DU DL, MT DL to DU UL, MT DL to DU Flexible, MT UL to DU DL, MT UL to DU UL, MT UL to DU flexible, MT Flexible to DU DL, MT flexible to DU UL, MT flexible to DU flexible, DU DL to MT DL, DU DL to MT UL, DU DL to MT flexible, DU UL to MT flexible, DU UL to MT DL, DU UL to MT UL, DU UL to MT is flexible, DU is flexible to MT DL, DU is flexible to MT UL, and DU is flexible to MT.
  • Manner 12 When at least one of the IAB node MT and DU at the conversion position is a flexible symbol, the DU assumes that the parent node determines the number of protection symbols according to the DL symbol of the DU at the conversion position; or, the DU assumes that The hard DL determines the resource usage.
  • the protected symbol refers to a symbol that cannot be used by IAB node MT.
  • the default value is 0.
  • the default value is a predefined positive integer.
  • hard resources, soft resources, and NA resources all refer to the time domain resources of the DU of the IAB node.
  • Hard resources include configured hard resources and equivalent hard resources (for example, in the case of transmitting cell-specific signals on soft or NA resources, the soft or NA resources are equivalent hard resources).
  • MT DL is equivalent to MT Rx
  • MT UL is equivalent to MT Tx
  • DU DL is equivalent to DU Tx
  • DU UL and DU Rx are equivalent.
  • IAB node is only an example, and the above scheme is also applicable to other nodes, such as relay nodes, base stations and other wireless communication devices of any type. Replace IAB node with corresponding devices. Corresponding solutions can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源配置方法、装置、通信节点及存储介质,该资源配置方法包括:获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;基于所述至少一个复用资源配置信息,进行数据传输。

Description

资源配置方法、装置、通信节点及存储介质 技术领域
本申请涉及通信领域,例如涉及一种资源配置方法、装置、通信节点及存储介质。
背景技术
对于新一代移动通信系统来说,与核心网之间存在有线回传链路的节点是自接入回传(Integrated Access and Backhaul,IAB)施主。通过无线与施主IAB(或上层IAB节点)相连的节点为IAB节点,IAB节点与核心网之间不存在直接连接。IAB节点与核心网的交互需要通过一次或多次转发,并最终借助IAB施主实现交互。无论是IAB施主还是IAB节点均支持终端的接入。
IAB节点可以在时域、频域或空域进行父回程链路和子回程链路(或者子接入链路)复用。然而,在采用频分复用(Frequency Division Multiplexing,FDM)或空分复用(Space Division Multiplexing,SDM)同时传输数据时,资源的配置问题是亟待解决的技术问题。
发明内容
本申请提供一种资源配置方法、装置、通信节点及存储介质。
第一方面,本申请实施例提供一种资源配置方法,应用于第一通信节点,包括:
获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
基于所述复用资源配置信息,进行数据传输。
第二方面,本申请实施例提供了一种资源配置方法,应用于第二通信节点,包括:
确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
发送所述复用资源配置信息。
第三方面,本申请实施例提供了一种资源配置装置,配置于第一通信节点,包括:
获取模块,设置为获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
传输模块,设置为基于所述复用资源配置信息,进行数据传输。
第四方面,本申请实施例提供了一种资源配置装置,配置于第二通信节点,包括:
确定模块,设置为确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
发送模块,设置为发送所述复用资源配置信息。
第五方面,本申请实施例提供了一种通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本申请实施例中的任意一种方法。
第六方面,本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
附图说明
图1为本申请提供的一种资源配置方法的流程示意图;
图1a为本申请提供的一种IAB网络中各节点的关系示意图;
图2为本申请提供的一种资源配置方法的流程示意图;
图2a为本申请提供的一种频率单元为RB时频域资源属性配置的示意图;
图2b为本申请提供的一种频率单元为RBG时频域资源属性配置的示意图;
图2c为本申请提供的频率单元为RBG时以软频域资源RBG编号以及位图方式指示软频率资源可用性的示意图;
图3为本申请提供的一种资源配置装置的结构示意图;
图4为本申请提供的一种资源配置装置的结构示意图;
图5为本申请提供的一种通信节点的结构示意图;
图6为本申请提供的一种转换位置示意图;
图7为本申请提供的又一种转换位置的示意图;
图8为本申请提供的另一种转换位置的示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请提供的一种资源配置方法的流程示意图,该方法可以适用于进行资源配置的情况。该方法可以由本申请提供的资源配置装置执行,该资源配置装置可以由软件和/或硬件实现,并集成在第一通信节点上。第一通信节点可以为IAB节点或者IAB施主。
IAB施主由一个集中式单元(Central Unit,CU)和一个或多个分布式单元(Distributed Unit,DU)组成,IAB施主可以获得下行数据或者将上行数据发送给核心网。
IAB节点有两个功能:1)分布式单元DU功能(即基站),即IAB节点像基站一样为子节点或者用户终端(User Equipment,UE)提供无线接入功能;2)移动终端(Mobile-Termination,MT)功能(即终端),即IAB节点像UE一样被父节点(IAB节点或者IAB施主)控制和调度。
图1a为本申请提供的一种IAB网络中各节点的关系示意图。参见图1a,IAB节点是作为参照的当前节点,其上一级节点称之为父节点,父节点可以为IAB节点,也可以为IAB施主;IAB节点的下一级节点可以为IAB节点(子节点),也可以为UE。IAB节点与上一级节点之间的链路称为父链路,与其下一级节点(或者UE)之间的链路称为子链路。更在一个实施例中,IAB节点与其父节点之间的链路称为父回程链路(即Parent backhaul link),并分为下行父回程链路(即DL Parent Backhaul)和上行父回程链路(即UL Parent Backhaul);IAB节点与其下一级节点(即子节点)之间的链路称为子回程链路(即Child backhaul link),并分为下行子回程链路(即DL Child Backhaul)和上行子回程链路(即UL Child Backhaul);IAB节点与UE之间的链路称为子接入链路(即Child access link),并分为下行子接入链路(即DL Child access)和上行子接入链路(即UL Child access)。
IAB节点采用哪种复用方式取决于IAB节点的复用能力,考虑到IAB节点 采用时分复用(Time Division Multiplexing,TDM)方式时,父回程链路和子回程链路(或者子接入链路)不能同时进行数据传输,频谱资源利用率较低,且传输时延大,因此频分复用(Frequency Division Multiplexing,FDM)或者空分复用(Space Division Multiplexing,SDM)对提高频谱资源利用率、降低传输时延至关重要,IAB节点采用FDM/SDM方式可以同时向父节点和子节点(或者终端)发送数据,也可以同时接收父节点和子节点(或者终端)发送的数据,以提高资源利用率,降低传输时延。为使IAB节点更有效地采用FDM/SDM方式同时传输信号,需要考虑FDM/SDM时资源的配置问题。
本申请为了使IAB节点更有效地采用FDM/SDM方式同时传输信号,提供了一种资源配置方法,如图1所示,本申请提供的一种资源配置方法,包括S110-S120。
S110、获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置。
复用资源包括但不限于频域资源和时域资源。第一通信节点可以接收第二通信节点发送的至少一个复用资源配置信息,以进行资源配置。
基于本实施例中的复用资源配置信息可以实现频域资源属性配置、频域资源配置和时域资源配置中的一个或多个。
第一通信节点可以获取CU发送的至少一个复用资源配置信息,其中,复用资源配置信息可以包括频域资源属性配置信息。
第一通信节点也可以获取父节点或服务小区的至少一个复用资源配置信息,其中,复用资源配置信息可以包括频域资源配置信息。
其中,CU、父节点和服务小区可以为第二通信节点。
频域资源属性配置信息可以用于配置每个频率单元的频域资源属性。频域资源属性包括如下一个或多个:硬的、软的和不可用的。频域资源配置信息用于指示频域资源的可用性。
本实施例中,复用资源配置信息还可以包括时域资源配置信息。时域资源配置信息可以用于配置时域资源的可用性。
其中,可用性包括如下至少之一:可以复用、不可以复用或根据第一通信节点的MT的使用情况确定是否可用。
本申请获取的至少一个复用资源配置信息中的每个复用资源配置信息可以对应一个小区、一个载波或者至少一种资源类型。
本申请中的第一通信节点还可以上报期望的复用资源配置信息。如向第一 通信节点的父节点(或者第一通信节点的MT的服务小区)上报期望的复用资源配置信息。上报的时机不作限定,可以在获取到至少一个复用资源配置信息之前、之后或在获取至少一个复用资源配置信息时。
在获取至少一个复用资源配置信息之前上报期望的复用资源配置信息,可以供父节点确定发送至第一通信节点的复用资源配置信息。父节点可以基于期望的复用资源配置信息确定发送至第一通信节点的复用资源配置;也可以直接确定发送至第一通信节点的复用资源配置信息。
在获取至少一个复用资源配置信息之后上报期望的复用资源配置信息,可以供父节点下次确定复用资源配置信息时使用。其中,期望的复用资源配置信息可以认为是第一通信节点期望父节点发送的复用资源配置信息。
本申请可以从CU获取第一通信节点的子节点的至少一个复用资源配置信息,以基于该复用资源配置信息确定子节点的子链路可以使用的频域资源和/或指示子节点的软的频域资源的可用性。
需要注意的是,本申请中期望的复用资源配置信息和第一通信节点的复用资源配置信息的具体内容可以参见第一通信节点获取的至少一个复用资源配置信息(即第一通信节点的复用资源配置信息)的对应内容,此处不作赘述。
S120、基于所述复用资源配置信息,进行数据传输。
获取到至少一个复用资源配置信息后,可以确定进行数据传输所使用的资源,然后在确定的资源上进行数据传输。
本申请提供的一种资源配置方法,首先获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;然后基于所述复用资源配置信息,进行数据传输。利用该方法有效的解决了资源的配置问题,提升了资源利用率。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,该方法还包括如下一个或多个:
上报期望的复用资源配置信息;
获取所述第一通信节点的子节点的至少一个复用资源配置信息。
在一个实施例中,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源属性配置信息;时域资源配置信息;或者,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源配置信息;时域资源配置信息。
在一个实施例中,频域资源属性配置信息用于配置每个频率单元的频域资 源属性。
所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,其中,m为大于或等于1的整数,在带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在带宽除以m的结果不为整数的情况下,一个频率资源组的大小为带宽mod m,其余频率资源组的大小为m,mod为取模运算。
在一个实施例中,频域资源属性包括如下一个或多个:硬的;软的;不可用的。
在一个实施例中,在频域资源被配置为硬的的情况下,所述频域资源对应的节点的子链路可以使用所述频域资源;
在频域资源被配置为软的的情况下,所述频域资源对应的节点的子链路是否可以使用所述频域资源由所述节点的父节点或服务小区指示;
在频域资源被配置为不可用的的情况下,所述频域资源对应的节点的子链路不可以使用该频域资源。
在频域资源被配置为软的的情况下,该频域资源可以认为是可共享的,父节点或服务小区可以根据实际情况确定频域资源对应的节点的子链路对于该频域资源的可用性。
在一个实施例中,在频域资源被配置为软的的情况下,包括如下之一:
通过位图指示所述频域资源的每个频率单元的可用性,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值,或者,与参考子载波间隔对应的带宽存在对应关系,或者,为参考子载波间隔对应的带宽包含的频率单元或软的频率单元的总数;
通过指示可用的频率单元的位置指示所述频域资源的每个频率单元的可用性;
通过指示可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元不可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定;
通过指示不可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定。
本申请通过位图指示软的频域资源的每个频率单元的可用性。其中,当位 图的比特数大于参考子载波间隔对应的带宽包含的软的频率单元的总数时,则位图中仅仅软的频率单元对应的比特有效,其余比特无效,或者用位图的一部分(例如前X个比特,其中X为参考子载波间隔对应的带宽包含的软的频率单元的总数)指示所述软频域资源的每个频率单元的可用性。
频率单元的索引可以唯一标识该频率单元,如通过对软的频率资源按照频率单元编号,或软的频率资源对应的带宽按照频率单元编号,将编号作为频率单元的索引。
在根据第一通信节点的移动终端的资源使用情况确定可用性的情况下,可以基于频率单元与移动端使用资源的冲突性确定。冲突性包括冲突和不冲突。
在一个实施例中,频域资源配置信息通过如下之一方式指示可用的频域资源:
位图,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值或为参考子载波间隔对应的带宽包含的频率单元的总数;
可用的频率单元的位置;
可用的频率单元的索引。
在一个实施例中,所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,所述m为大于或等于1的整数,在带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在带宽除以m的结果不为整数的情况下,一个频率资源组的大小为带宽mod m,其余频率资源组的大小为m,mod为取模运算。
在一个实施例中,频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用和空分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用所有复用方式的情况下有效。
在一个实施例中,时域资源配置信息包括如下一个或多个:复用资源周期;复用资源时隙集合;复用资源符号;复用方式。
复用资源周期可以认为是复用资源的周期。本实施例按照周期确定可用性。
复用资源时隙集合可以指示在复用资源周期内可复用的时隙。复用资源符号可以指示复用资源周期内可复用时隙中的符号的可复用性;或复用资源周期 内的符号的可复用性。可复用性包括如下至少之一:可复用、不可复用,根据其余信息指示是否可复用。其余信息此处不限定。
在一个实施例中,复用资源时隙集合通过如下之一方式指示:位图,所述位图中一个比特对应复用资源周期内一个时隙,所述位图的比特值用于指示对应时隙是否是复用资源;复用资源周期内可复用时隙的索引;复用资源周期内可复用的起始时隙索引和可复用的时隙数目;复用资源周期内可复用的起始时隙索引和终止时隙索引。
起始时隙索引可以认为是起始时隙的索引。终止时隙索引可以认为是终止时隙的索引。
在一个实施例中,复用资源符号指示复用资源时隙集合中可复用时隙中的符号的可复用性;或者,复用资源周期内符号的可复用性。
在一个实施例中,复用资源符号通过如下之一方式配置:对每个时隙单独配置可复用符号;对所有时隙统一配置可复用符号。
在一个实施例中,复用资源符号中未包括的符号不可复用;或者复用资源符号中未包括的符号的可复用性根据所述第一通信节点的移动终端的资源使用情况确定。
在一个实施例中,时域资源配置信息包括一个或多个子时域资源配置信息,所述子时域资源配置信息包括如下一个或多个:复用资源周期;复用资源偏移;复用资源持续时间;复用方式。
复用资源偏移可以表示复用资源在复用周期内的起始位置。
在一个实施例中,复用资源偏移或复用资源持续时间的单位为如下之一:子帧;时隙;正交频分复用符号。
在一个实施例中,复用方式包括如下一个或多个:频分复用;空分复用。
在一个实施例中,时域资源配置信息通过如下之一方式配置时域资源:
通过第一指示信息提供第一时隙复用资源组合的集合,每个第一时隙复用资源组合指示多个连续时隙中每个时隙的可复用性,每个第一时隙复用资源组合通过不同的第一组合索引标识,通过第二指示信息指示第一组合索引,所述第二指示信息指示的第一组合索引指示从接收到第二指示信息的时隙开始连续L1个时隙中每个时隙的可复用性,其中L1为所述第一组合索引标识的第一时隙复用资源组合对应的时隙数目;
通过第三指示信息提供第二时隙复用资源组合的集合,每个第二时隙复用资源组合指示多个连续时隙中每个时隙中符号的可复用性,每个第二时隙复用 资源组合通过不同的第二组合索引标识,通过第四指示信息指示第二组合索引,所述第四指示信息指示的第二组合索引用于指示从接收到第四指示信息的时隙开始连续L2个时隙中每个时隙中符号的可复用性,其中L2为所述第二组合索引标识的第二时隙复用资源组合对应的时隙数目;
通过信号或信道的可复用性指示对应的时隙资源的可复用性。
第一指示信息和第三指示信息可以为无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)。第二指示信息和第四指示信息可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
本申请中的“第一”和“第二”等仅用于区分对应内容。示例性的,第一时隙复用资源组合和第二时隙复用资源组合仅用于区分不同的时隙复用资源组合。第一时隙复用资源组合指示的多个连续时隙中的“多个”不作限定,本领域技术人员可以根据实际情况为第一时隙复用资源组合设置至少一个时隙。第二时隙复用资源组合指示的多个时隙中的“多个”也不作限定。
本申请可以通过不同类型的信号或信道指示时隙资源的可复用性。如在所指示的信号占用的所有时隙资源均可以复用或均不可复用。
在一个实施例中,每个复用资源配置信息对应一个小区、一个载波或至少一种资源类型。
在一个实施例中,频域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可用的频率资源;所述第一通信节点的分布式单元可用的频率资源。
在一个实施例中,时域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可复用的时域资源;所述第一通信节点的分布式单元可复用的时域资源。
在一个示例性实施方式中,本申请提供了一种资源配置方法,图2为本申请提供的一种资源配置方法的流程示意图,该方法可以适用于进行资源配置的情况。该方法可以由本申请提供的资源配置装置执行,该资源配置装置可以由软件和/或硬件实现,并集成在第二通信节点上。第二通信节点可以为CU或DU或施主IAB或IAB节点或任何支持中继功能的节点。本示例尚未详尽之处可参见上述实施例,此处不作赘述。
如图2所示,本申请提供的一种资源配置方法,包括如下步骤:
S210、确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置。
本步骤可以基于第一通信节点发送的期望的复用资源配置信息确定第一通信节点的至少一个复用资源配置信息;也可以直接确定第一通信节点的至少一个复用资源配置信息。
本步骤可以基于第一通信节点对资源的可用性和可复用性确定复用资源配置信息,此处不作限定。
在一个实施例中,第二通信节点可以为CU,复用资源配置信息可以包括频域资源属性配置信息。第二通信节点也可以为DU或者第一通信节点的父节点,复用资源配置信息可以包括频域资源配置信息。复用资源配置信息还可以包括时域资源配置信息。
示例性的,在配置频域资源属性信息的情况下,可以基于频域资源对应的节点的子链路是否可以使用频域资源确定频域资源属性信息所包括的内容;也可以基于频域资源对应的节点的子链路和父链路是否可以共享频域资源确定频域资源属性信息所包括的内容。
S220、发送所述复用资源配置信息。
确定复用资源配置信息后,本步骤可以发送确定的复用资源配置信息至第一通信节点,以供第一通信节点确定进行数据传输所使用的资源。
本申请提供的资源配置方法,首先确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;然后发送所述复用资源配置信息。利用该方法有效的解决了资源的配置问题,提升了资源利用率。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,该方法还包括:如下一个或多个:
接收第一通信节点发送的期望的复用资源配置信息;
确定并发送第一通信节点的子节点的至少一个复用资源配置信息。
在一个实施例中,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源属性配置信息;时域资源配置信息;或者,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源配置信息;时域资源配置信息。
在一个实施例中,频域资源属性配置信息用于配置每个频率单元的频域资源属性。
在一个实施例中,频域资源属性包括如下一个或多个:硬的;软的;不可 用的。
在一个实施例中,确定复用资源配置信息包括如下一个或多个:
将频域资源对应的节点的子链路可以使用的频域资源的频域资源属性配置为硬的;
将频域资源对应的节点的子链路和父链路可以共享的频域资源的频域资源属性配置为软的;
将频域资源对应的节点的子链路不可以使用的频域资源的频域资源属性配置为不可用的。
在一个实施例中,对于被配置为软的频率资源,通过如下之一方式指示可用性:
通过位图指示所述频域资源的每个频率单元的可用性,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值,或者,与参考子载波间隔对应的带宽存在对应关系,或者,为参考子载波间隔对应的带宽包含的频率单元或软的频率单元的总数;
其中,当位图的比特数大于参考子载波间隔对应的带宽包含的软的频率单元的总数的情况下,位图中仅仅软的频率单元对应的比特有效,其余比特无效;或者用位图的一部分(例如前X个比特,其中X为参考子载波间隔对应的带宽包含的软的频率单元的总数)指示所述软频域资源的每个频率单元的可用性。
通过指示可用的频率单元的位置指示所述频域资源的每个频率单元的可用性;
通过指示可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元不可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定;
通过指示不可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定。
在一个实施例中,频域资源配置信息通过如下之一方式指示可用的频域资源:
位图,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值或为参考子载波间隔对应的带宽包含的频率单元的总数;
可用的频率单元的位置;
可用的频率单元的索引。
在一个实施例中,所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,所述m为大于或等于1的整数,在带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在带宽除以m的结果不为整数的情况下,一个频率资源组的大小为带宽mod m,其余频率资源组的大小为m,mod为取模运算。
在一个实施例中,频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用和空分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用所有复用方式的情况下有效。
在一个实施例中,时域资源配置信息包括如下一个或多个:复用资源周期;复用资源时隙集合;复用资源符号;复用方式。
在一个实施例中,复用资源时隙集合通过如下之一方式指示:位图,所述位图中一个比特对应复用资源周期内一个时隙,所述位图的比特值用于指示对应时隙是否是复用资源;复用资源周期内可复用时隙的索引;复用资源周期内可复用的起始时隙索引和可复用的时隙数目;复用资源周期内可复用的起始时隙索引和终止时隙索引。
在一个实施例中,复用资源符号指示复用资源时隙集合中可复用时隙中的符号的可复用性;或者,复用资源周期内符号的可复用性。
在一个实施例中,复用资源符号通过如下之一方式配置:对每个时隙单独配置可复用符号;对所有时隙统一配置可复用符号。
在一个实施例中,复用资源符号中未包括的符号不可复用;或者复用资源符号中未包括的符号的可复用性根据所述第一通信节点的移动终端的资源使用情况确定。
在一个实施例中,时域资源配置信息包括一个或多个子时域资源配置信息,所述子时域资源配置信息包括如下一个或多个:复用资源周期;复用资源偏移;复用资源持续时间;复用方式。
在一个实施例中,复用资源偏移或复用资源持续时间的单位为如下之一:子帧;时隙;正交频分复用符号。
在一个实施例中,复用方式包括如下一个或多个:频分复用;空分复用。
在一个实施例中,时域资源配置信息通过如下之一方式配置时域资源:
通过第一指示信息提供第一时隙复用资源组合的集合,每个第一时隙复用资源组合指示多个连续时隙中每个时隙的可复用性,每个第一时隙复用资源组合通过不同的第一组合索引标识,通过第二指示信息指示第一组合索引,所述第二指示信息指示的第一组合索引指示从接收到第二指示信息的时隙开始连续L1个时隙中每个时隙的可复用性,其中L1为所述第一组合索引标识的第一时隙复用资源组合对应的时隙数目;
通过第三指示信息提供第二时隙复用资源组合的集合,每个第二时隙复用资源组合指示多个连续时隙中每个时隙中符号的可复用性,每个第二时隙复用资源组合通过不同的第二组合索引标识,通过第四指示信息指示第二组合索引,所述第四指示信息指示的第二组合索引用于指示从接收到第四指示信息的时隙开始连续L2个时隙中每个时隙中符号的可复用性,其中L2为所述第二组合索引标识的第二时隙复用资源组合对应的时隙数目;
通过信号或信道的可复用性指示对应的时隙资源的可复用性。
在一个实施例中,每个复用资源配置信息对应一个小区、一个载波或至少一种资源类型。
在一个实施例中,频域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可用的频率资源;所述第一通信节点的分布式单元可用的频率资源。
在一个实施例中,时域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可复用的时域资源;所述第一通信节点的分布式单元可复用的时域资源。
以下对本申请进行示例性的描述:
新无线(new radio,NR)允许比第二代手机通信技术规格(2-Generation wireless telephone technology,2G)、第三代移动通信技术(3rd-Generation,3G)、第四代通讯技术(4rd-Generation,4G)系统更灵活的网络组网方式以及新类型网络节点的存在。目前整合了回程链路(即backhaul link)和正常的NR接入链路(即access link)的新类型节点即IAB节点可以提供比单一的蜂窝覆盖更为灵活的覆盖和组网方式,将是未来移动通讯网络中重要的组成部分。
实施例一,本示例中CU提供了频域硬的、软的和不可用的属性。
第一节点,即第一通信节点接收资源配置信息;所述资源配置信息包括如下至少之一:所述第一节点的复用资源配置集,即至少一个复用资源配置信息,所述第一节点的子节点的复用资源配置集。所述每个复用资源配置对应一个小 区或者一个载波或者至少一种资源类型,所述复用资源配置包括如下至少之一:参考子载波间隔,频域资源属性配置(即频域资源属性信息),时域资源配置(即时域资源配置信息)。所述频域资源属性配置用于配置每个频率单元的频域资源属性。
所述频域资源属性包括如下至少之一:硬的,软的,不可用的。
在一个实施例中,当一个节点的频域资源被配置为硬的时,则所述节点的子链路可以使用该频域资源。
在一个实施例中,当一个节点的频域资源被配置为软的时,则所述节点的子链路是否可以使用该频域资源由其父节点通过显式或者隐式方式指示。
在一个实施例中,当一个节点的频域资源被配置为不可用的时,则所述节点的子链路不可以使用该频域资源。
其中,节点可以为第一节点或第一节点的子节点。
在一个实施例中,所述软频域资源可以通过如下方式指示其可用性:用位图指示软频率资源的每个频率单元是否可用,其中每个比特对应一个频率单元,位图的大小为参考子载波间隔对应的带宽包含的频率单元或者软频率单元的总数或者为固定值,用比特值表示对应频率单元的可用性;或者,指示可用的频率单元的位置;或者,指示可用的频率单元索引的集合。
所述频率单元为如下任意一项:资源块,资源块组,子带,子带组,子载波,子载波组,频率资源组(例如,频率资源组的数量为带宽除以m向上取整,或者频率资源组的最大数量为c,实际数量为带宽N和c中的最小值,即min{N,c});其中m或c为大于或等于1的整数。
在一个实施例中,所述频域资源属性配置的有效性为如下之一:仅对父链路和子链路采用FDM复用时有效;仅对父链路和子链路采用FDM和SDM时有效;对父链路和子链路采用所有复用方式都有效。
在一个实施例中,所述时域资源配置包括如下至少之一:复用资源周期,复用资源时隙集合,每个复用资源时隙中复用资源符号,复用方式指示。
在一个实施例中,所述时域资源配置包括包含至少一个子时域资源配置,其中,所述子时域资源配置包括如下至少之一:复用资源周期,复用资源偏移,复用资源持续时间,复用方式指示。
所述复用方式指示用于指示所述复用资源采用的复用方式。其中,所述复用方式包括如下至少之一:FDM,SDM。
第二节点,即第二通信节点发送资源配置信息。本实施例中第一节点可以 为IAB节点,第二节点可以为CU。
示例1,本示例示出了配置IAB节点(即IAB node)DU的频域资源属性的方式:
本示例中,通过CU配置IAB node DU的频域资源属性。
在一个实施例中,CU为IAB node DU的每个小区的每个载波配置频域资源属性。例如,对于IAB node DU的一个小区,假设该小区采用时分双工(Time Division Duplexing,TDD),配置了一个载波,CU为该载波配置频域资源属性。如果该小区还配置了补充上行(supplementary uplink,SUL)载波,那么CU还要为SUL载波配置频域资源属性。再比如,对于IAB node DU的一个小区,假设该小区采用频分双工(Frequency Division Duplexing,FDD),CU为小区的UL载波和DL载波分别配置频域资源属性。
在一个实施例中,CU为每个载波配置频域资源属性,例如,IAB node DU配置了一个载波,则为该载波配置一个频域资源属性,使用该载波的所有小区有相同的频域资源属性,如果IAB node DU配置了多个载波,则为每个载波配置一个频域资源属性。
在一个实施例中,CU为每个载波按照时间资源类型配置频域资源属性。例如,不同时间资源类型(即资源类型,例如上行,下行,灵活)对应不同的频域资源属性,对于一个TDD载波,为下行资源、上行资源和灵活资源分别配置频域资源属性;或者为下行资源和灵活资源配置一个频域资源属性,为上行资源配置一个频域资源属性;或者为上行资源和灵活资源配置一个频域资源属性,为下行资源配置一个频域资源属性。
对于IAB node DU的一个载波,参考子载波间隔对应的带宽为N个资源块(Resource Block,RB),则可以采用如下方式配置该载波的频域资源属性:对于频率单元,其属性可以为如下之一:硬的,软的,不可用的。其中,频率单元包括但不限于如下任意一项:资源块,资源块组(Resource Block Group,RBG),子带,子带组,子载波,子载波组,频率资源组。
当频域资源被配置为硬的时,则IAB node DU(或者IAB node的子链路)可以使用该频域资源。
当频域资源被配置为软的时,则IAB node DU(或者IAB node的子链路)是否可以使用该频域资源由其父节点通过显式或者隐式方式指示。
当频域资源被配置为不可用的时,则IAB node DU(或者IAB node的子链路)不能使用该频域资源。
图2a为本申请提供的一种频率单元为RB时频域资源属性配置的示意图, 图2b为本申请提供的一种频率单元为RBG时频域资源属性配置的示意图。图2a示出了频率单元为RB时,频域资源配置的情况。图2b示出了频率单元为RBG时,频域资源配置的情况。假设RBG大小为k个RBs,则RBG总数为ceil(N/k),其中ceil()表示向上取整。如果N/k是整数,则所有RBG大小都是k个RBs;如果N/k不是整数,则最后一个或者第一个RBG大小为N mod k个RBs,其余RBG大小为k,其中mod表示取模运算,如图2b中最后一个RBG包含3个RBs。
频率单元为子带时子带的数目和大小的确定方式与RBG类似,将RBG替换成子带即可。
频率单元为子带组时子带组的数目和大小的确定方式与RBG类似,将RB/RBG替换成子带/子带组即可。
频率单元为子载波、子载波组时频域资源属性配置的示意图分别与图2a和图2b类似,将RB/RBG替换成子载波/子载波组即可,子载波总数为12N,且子载波组数目和大小的计算方式也类似。
在一个实施例中,CU提供如下之一:RBG大小,子带的大小,m。
在一个实施例中,频率资源组的数目为ceil(N/m),其中m为大于或等于1的整数,如果N/m是整数,则每个频率资源组大小均为m个RBs,如果N/m不是整数,则其中一个频率资源组(例如最后一个或者第一个频率资源组)大小为N mod m个RBs,其余频率资源组大小为m个RBs。
在一个实施例中,频率资源组的最大数目为c。实际频率资源组的个数为带宽N和频率资源组的最大数目c中的最小值x,即x=min{N,c},如果x=N,则频率资源组即资源块RB,如果x=c且N/x为整数,则每个频率资源组大小为N/x个RB,如果x=c且N/x不为整数,则其中N mod x个频率资源组大小为ceil(N/x)个RB,其余的频率资源组大小为floor(N/x)个RBs。其中ceil()和floor()分别表示向上取整和向下取整。
后面示例中频率单元的大小和数目的确定方法也是类似的,之后不再赘述。
其中,参考子载波间隔由CU配置,或者由默认方式确定。
例如,默认方式可以是:载波对应的多个子载波间隔中最大的子载波间隔作为参考子载波间隔;或者,载波对应的多个子载波间隔中最小的子载波间隔作为参考子载波间隔;或者,根据载波的频率范围确定参考子载波间隔,例如不同的频率范围对应不同的参考子载波间隔,载波属于频率范围1(Frequency range 1,FR1),参考子载波间隔为60kHz;载波属于频率范围2,参考子载波间隔为120kHz。
在一个实施例中,所述IAB node的频域资源属性配置仅仅对IAB node的子链路和父链路采用FDM复用时有效。
在一个实施例中,所述IAB node的频域资源属性配置对IAB node的子链路和父链路采用FDM和SDM复用都有效。
在一个实施例中,如果IAB node的小区级(即小区特定)的信号或者信道,例如同步信号块(Synchronization Signal Block,SSB),物理随机接入信道(Physical Random Access Channel,PRACH),系统信息块(system information block,SIB)中的SIB1等。在频率单元上传输,则该频率单元可以看作硬的频率单元。
示例2,本示例示出了IAB node DU的软频域资源可用性的指示方式,IAB node DU小区的软频域资源的可用性由IAB node的父节点(或者IAB node MT的服务小区)指示。指示方式为如下之一:
方式1:将所有的配置为软的频域资源按照频率单元编号,例如,按照频率升序或者降序编号,以位图(即bitmap)方式指示每个频率单元的可用性,bitmap的大小为参考子载波间隔对应的带宽包含的软频率单元的总数。
图2c为本申请提供的频率单元为RBG时以软频域资源RBG编号以及位图方式指示软频率资源可用性的示意图,参见图2c,比特值为1表示对应软频率单元为可用,比特值为0表示不可用,M为RBG的总数,X为软RBG的总数。
方式2:将参考子载波间隔对应的带宽按照频率单元编号,例如按照频率升序或者降序编号,以位图方式指示每个频率单元的可用性,bitmap的大小为参考子载波间隔对应的带宽包含的频率单元的总数,用比特值表示对应频率单元的可用性。在一个实施例中,bitmap仅对软频率资源有效,对其他资源无效。
方式3:将参考子载波间隔对应的带宽按照频率单元编号,例如按照频率升序或者降序编号,指示可用的频率单元索引,没有被指示的软频率单元为不可用;或者指示不可用的频率单元索引,没有被指示的软频率单元为可用。
方式4:将参考子载波间隔对应的带宽按照频率单元编号,例如按照频率升序或者降序编号,指示可用的频率单元索引,没有被指示的软频率单元的可用性根据IAB node MT的使用情况确定。例如IAB node DU可以根据使用该频率单元时是否与IAB node MT冲突来确定。如果不冲突,则可用,否则不可用。或者指示不可用的频率单元索引,没有被指示的软频率单元的可用性根据IAB node MT的使用情况确定。
方式5:用bitmap中的X个比特(例如最低有效X位,或者最高有效X位)对应指示X个软频率单元的可用性。其中,bitmap的大小为参考子载波间隔对应的带宽包含的频率单元的总数,或者为固定值(如,275),或者与参考子载波 间隔对应的带宽有对应关系,X为参考子载波间隔对应的带宽包含的软频率单元的总数,或者参考子载波间隔对应的带宽包含的频率单元的总数。
方式6:指示可用的频率单元的位置。例如在参考子载波间隔对应的带宽内通过资源指示值(Resource Indication Value,RIV)指示IAB node DU可用的起始频率单元和频率单元数,或者指示IAB node DU可用的起始频率单元和终止频率单元(即起始频率单元和终止频率单元以及它们之间的所有软频率单元为可用)。在一个实施例中,指示仅对软频率资源有效,对其他资源无效。
方式7:指示可用的频率单元的位置。例如,将所有的配置为软的频域资源按照频率单元编号,通过资源指示值指示IAB node DU可用的起始频率单元和频率单元数,或者指示IAB node DU可用的起始频率单元和终止频率单元(即起始频率单元和终止频率单元以及它们之间的所有软频率单元为可用)。
在一个实施例中,用不同的比特值指示软频率单元的可用性。例如,比特值为1表示可用,比特值为0表示不可用。
在一个实施例中,用不同的比特值指示软频率单元的可用性。例如,比特值为1表示可用,比特值为0表示该频率单元的可用性可以根据IAB node MT的使用情况确定,例如IAB node DU根据使用该频率单元时是否与IAB node MT冲突来确定,如果不冲突,则可用,否则不可用。
其中,频率单元包括但不限于如下之一:RB,RBG,子带,子带组,子载波,子载波组,频率资源组(例如,频率资源组的数量为带宽除以m向上取整,或者频率资源组的最大数量为c,实际数量为带宽N和c中的最小值,即min{N,c})。
在一个实施例中,CU提供如下之一:RBG大小,子带的大小,m,c。
示例3,本示例示出了半静态、每时隙和每符号的时域资源配置:
本示例给出了配置IAB node DU的时域资源的方式。
CU为IAB node DU的每个小区或者每个载波或者至少一种时间资源类型提供时域资源配置。
在一个实施例中,CU为IAB node DU的每个小区提供时域资源配置,例如,小区的所有载波使用相同的时域资源配置。
在一个实施例中,CU为IAB node DU的每个小区的每个载波提供时域资源配置,例如,对于IAB node DU的一个小区,假设该小区采用时分双工,配置了一个载波,CU为该载波提供时域资源配置。再比如,假设该小区采用频分双工,CU为小区的UL载波和DL载波分别提供时域资源配置。
在一个实施例中,CU为每个载波提供时域资源配置。例如,IAB node DU配置了一个载波,则为该载波提供一个时域资源配置,使用该载波的所有小区有相同的时域资源配置,如果IAB node DU配置了多个载波,则为每个载波提供一个时域资源配置。
在一个实施例中,CU为每个载波按照时间资源类型提供时域资源配置。例如,不同时间资源类型对应不同的时域资源配置。对于一个TDD载波,为下行资源、上行资源和灵活资源分别提供时域资源配置;或者为下行资源和灵活资源提供一个时域资源配置,为上行资源提供一个时域资源配置;或者为上行资源和灵活资源提供一个时域资源配置,为下行资源提供一个时域资源配置。
其中,时域资源配置包括如下至少之一:复用资源周期,复用资源时隙集合,复用资源符号,复用方式指示。
复用资源时隙集合可以通过如下任一方式配置:
方式1:以位图(bitmap)方式指示时隙集合。一个比特对应复用资源周期内的一个时隙,比特值用于指示对应时隙是否是复用资源,例如,比特值为1则时隙是复用资源,否则不是复用资源。
方式2:指示复用资源周期内可复用时隙的索引集合。
方式3:指示复用资源周期内可复用的起始时隙索引以及可复用的时隙数目。
方式4:指示复用资源周期内可复用的起始时隙索引和终止时隙索引(即起始时隙索引和终止时隙索引以及它们之间的所有时隙索引对应的时隙为可用)。
在一个实施例中,复用资源时隙集合仅对对应的时间资源类型有效,例如,对于为下行资源和灵活资源提供的时域资源配置,仅仅对下行资源和灵活资源有效,即,对于上行资源,忽略复用资源时隙集合配置指示的可用时隙。
复用资源符号配置可以提供复用资源时隙集合中的可复用时隙中的符号的可复用性,也可以提供复用资源周期内的符号的可复用性,复用资源符号可以通过如下任一方式配置:
方式1:对每个时隙单独配置可复用符号。例如,根据符号的资源类型指示时隙中符号的可复用性为特定配置集合中的任意一种配置。
方式2:对所有时隙统一配置可复用符号。例如,根据符号的资源类型指示符号的可复用性为特定配置集合中的任意一种配置。
资源类型包括:上行链路(Uplink,UL),下行链路(Downlink,DL),灵活(Flexible,F)。
特定配置集合由如下至少一种配置组成:所有符号(即All symbols)可复用,仅下行符号(即Only DL symbols)可复用,仅上行符号(即Only UL symbols)可复用,仅灵活符号(即Only flexible symbols)可复用,仅下行和灵活符号(即Only DL and flexible symbols)可复用,仅上行和灵活符号(即Only UL and flexible symbols)可复用,仅下行和上行符号(即Only DL and UL symbols)可复用,所有符号(即All symbols)都不可复用。
在一个实施例中,对于特定配置集合没有指示为可复用的符号为不可复用。
在一个实施例中,对于特定配置集合没有指示为可复用的符号根据IAB node MT的资源使用情况确定是否可复用。
特定配置集合中的每个配置对应一个索引,通过指示索引来指示哪种资源类型的符号是可复用符号。
在一个实施例中,对于按照时间资源类型提供时域资源配置,不必提供复用资源符号配置。
所述复用方式指示用于指示所述复用资源采用的复用方式。其中,所述复用方式括如下至少之一:FDM,SDM。
所述时域资源配置用于配置IAB node的子链路和父链路采用FDM或者SDM方式时潜在可以同时发送或者接收的时域资源。
示例4,本示例示出了半静态,周期+偏移(即offset)+持续时间(即duration)的时域资源配置:
本示例给出了配置IAB node DU的时域资源的方式。
CU为IAB node DU的每个小区或者每个载波或者至少一种时间资源类型提供时域资源配置。
在一个实施例中,CU为IAB node DU的每个小区提供时域资源配置,例如,小区的所有载波使用相同的时域资源配置。
在一个实施例中,CU为IAB node DU的每个小区的每个载波提供时域资源配置。
在一个实施例中,CU为每个载波提供时域资源配置。
在一个实施例中,CU为每个载波按照时间资源类型提供时域资源配置,例如,不同时间资源类型对应不同的时域资源配置。
上述可选项的具体例子与实施例一中的示例3类似,这里不再赘述。
在一个实施例中,时域资源配置包含至少一个子时域资源配置。
其中,子时域资源配置包括如下至少之一:复用资源周期,复用资源偏移,复用资源持续时间,复用方式指示。
在一个实施例中,复用资源偏移表示复用资源在复用资源周期内的起始位置。
在一个实施例中,复用资源偏移的单位为如下任意一项:子帧,时隙,正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。
在一个实施例中,复用资源持续时间的单位为如下任意一项:子帧,时隙,OFDM符号。
在一个实施例中,对于IAB node DU的每个小区或者载波或者资源类型,复用资源为该小区所有子时域资源配置提供的资源并集。
所述复用方式指示用于指示所述复用资源采用的复用方式。其中,所述复用方式包括如下至少之一:FDM,SDM。
例如,根据子时域资源配置参数,则复用资源所在的无线帧n f和起始时隙
Figure PCTCN2021078821-appb-000001
满足
Figure PCTCN2021078821-appb-000002
其中
Figure PCTCN2021078821-appb-000003
为子载波间隔配置为μ时每个无线帧的时隙数,
Figure PCTCN2021078821-appb-000004
为子载波间隔配置为μ时无线帧内的时隙编号,O s为复用资源偏移,k s为复用资源周期。也就是说,复用资源为无线帧n f中以
Figure PCTCN2021078821-appb-000005
为起始时隙的连续T s个时隙。T s为复用资源持续时间。
在本例中,复用资源周期、复用资源偏移的单位为子载波间隔配置为μ时的时隙,如果单位不是时隙,可以换算成子载波间隔配置为μ时的时隙。
上述例子中复用资源偏移的单位为时隙,其它单位时也可以采用类似的公式,对应将子时域资源配置各参数的单位转换成统一单位即可,且每个无线帧的时隙数
Figure PCTCN2021078821-appb-000006
也转换成统一单位。
实施例二,本实施例中父节点提供资源配置给IAB节点,本实施例中的父节点即第三节点。
IAB node的父节点为IAB node MT或DU提供复用资源配置:
频域上:1)在传输带宽或者带宽部分(Bandwidth Part,BWP)内用位图指示;2)在传输带宽或者BWP内用RIV指示。
时域上,可复用资源配置可以采用:时隙粒度,时隙+符号粒度,或者按照信号或者信道类型配置。
第一节点接收至少一个复用资源配置;所述复用资源配置为如下至少之一:参考子载波间隔,频域资源配置,时域资源配置。
在一个实施例中,所述频域资源配置可以通过如下方式指示可用的频率资源:用位图(bitmap)指示可用的频率单元,其中,每个比特对应一个频率单元,bitmap的大小为参考子载波间隔对应的带宽包含的频率单元的总数,用比特值表示对应频率单元的可用性;或者,指示频率资源中可用的频率单元索引的集合。
所述频率单元为如下任意一项:资源块,资源块组,子带,子带组,子载波,子载波组,带宽/m为一组的频率资源;其中m为大于或等于1的整数;
所述频域资源配置用于如下之一:指示所述第一节点的MT可用的频率资源;或者,指示所述第一节点的DU可用的频率资源;
所述时域资源配置用于如下之一:指示所述第一节点的MT可复用的时域资源;或者指示所述第一节点的DU可复用的时域资源;
所述至少一个复用资源配置可以通过RRC信令或者MAC CE传输。
示例1,本示例指示IAB node MT可用的频率资源:
在一个实施例中,IAB node MT的服务小区(或者IAB node的父节点)为IAB node MT的每个载波提供频域资源配置。
在一个实施例中,IAB node MT的服务小区为每个载波按照时间资源类型提供频域资源配置。例如,不同时间资源类型对应不同的频域资源配置。具体例子与实施例一中的示例1类似,这里不再赘述。
其中,频域资源配置用于指示IAB node MT可用的频率资源。
IAB node MT的服务小区(或者IAB node的父节点)通过如下方式之一指示IAB node MT可用的频率资源:
方式1:用位图(bitmap)指示可用的频率单元,其中,每个比特对应一个频率单元,bitmap的大小为参考子载波间隔对应的带宽或者BWP包含的频率单元的总数,用比特值表示对应频率单元的可用性,例如,比特值为1表示对应的频率单元可用,比特值为0表示对应的频率单元不可用。
方式2:指示IAB node MT可用的频率单元位置。例如,指示在参考子载波间隔对应的带宽或者BWP内IAB node MT可用的起始频率单元和频率单元数,例如,通过资源指示值指示;或者指示IAB node MT可用的起始频率单元和终 止频率单元。
方式3:指示参考子载波间隔对应的带宽内可用频率单元索引的集合。
方式4:用bitmap中的X个比特(例如最低有效X位,或者最高有效X位)对应指示频率单元的可用性。其中,bitmap的大小为固定值,X为参考子载波间隔对应的带宽包含的频率单元的总数,或者参考子载波间隔对应的带宽部分(Bandwidth Part,BWP)包括的频率单元的总数。
其中,固定值可以预定义,或者与参考子载波间隔对应的带宽有对应关系。
其中,频率单元包括但不限于如下之一:RB,RBG,子带,子带组,子载波,子载波组,带宽/m为一组的频率资源;其中m为大于或等于1的整数。
在一个实施例中,父节点提供如下之一:RBG大小,子带的大小,m。
在一个实施例中,带宽/m为一组的频率资源相关配置与上述示例类似,这里不再赘述。
在一个实施例中,参考子载波间隔由父节点配置,或者由默认方式确定。
其中,默认方式与实施例一的示例1中确定子载波间隔的默认方式相同,这里不再赘述。
示例2,本示例指示IAB node DU可用的频率资源:
在一个实施例中,IAB node MT的服务小区(或者IAB node的父节点)为IAB node DU的每个载波提供频域资源配置。
在一个实施例中,为IAB node DU的每个小区的每个载波提供频域资源配置。
在一个实施例中,为IAB node DU的每个载波提供频域资源配置。
在一个实施例中,为IAB node DU的每个载波按照时间资源类型提供频域资源配置。
其中,频域资源配置用于指示IAB node DU可用的频率资源。
上述可选项的具体例子与实施例一中的示例1类似,这里不再赘述。
可用的频率资源的配置方式与指示IAB node MT可用的频率资源的方式类似,这里不再赘述。
示例3,本示例示出动态的时域资源配置:
IAB node MT的服务小区(或者IAB node的父节点)为IAB node MT提供时域资源配置。
在一个实施例中,对于每个服务小区,IAB node MT被提供时域资源配置。
在一个实施例中,对于每个服务小区的每个载波,IAB node MT被提供时域资源配置。
在一个实施例中,对于每个载波,按照时间资源类型,IAB node MT被提供时域资源配置。例如,对于一个TDD载波,对于下行资源、上行资源和灵活资源分别被提供时域资源配置;或者对于下行资源和灵活资源被提供一个时域资源配置,对于上行资源被提供一个时域资源配置;或者对于上行资源和灵活资源被提供一个时域资源配置,对于下行资源被提供一个时域资源配置。
时域资源配置方式为如下任意一种:
方式1(时隙粒度):通过RRC信令或者MAC CE提供时域复用资源组合的集合,其中,每个组合用于指示多个连续时隙中的每个时隙是否可复用,且每个组合用一个组合索引唯一标识。通过PDCCH指示组合索引,PDCCH中的组合索引指示了从IAB node MT接收到PDCCH的时隙开始连续多个时隙中每个时隙是否可复用。
方式2(时隙+符号粒度):通过RRC信令或者MAC CE提供时域复用资源组合的集合,其中,每个组合用于指示多个连续时隙中的每个时隙中符号的可复用性,且每个组合用一个组合索引唯一标识。通过PDCCH指示组合索引,PDCCH中的组合索引指示了从IAB node MT接收到PDCCH的时隙开始连续多个时隙中每个时隙中符号的可复用性。其中,每个时隙中符号的可复用性为特定配置集合中的任意一种配置。
特定配置集合由如下至少一种配置组成:所有符号可复用,仅下行符号可复用,仅上行符号可复用,仅零活符号可复用,仅下行和灵活符号可复用,仅上行和灵活符号可复用,仅下行和上行符号可复用,所有符号都不可复用。
在一个实施例中,对于特定配置集合的每个配置,没有被指示的符号为不可复用。
在一个实施例中,对于特定配置集合的每个配置,没有被指示的符号根据IAB node MT的资源使用情况确定是否可复用。
特定配置集合中的每个配置对应一个索引,通过指示索引来指示哪种资源类型的符号是可复用符号。
方式3:分别指示不同类型的信号或者信道是否可复用,例如,采用RRC信令或者MAC CE指示可复用的信号或者信道的集合。在一个实施例中,对于PDCCH调度的物理下行共享信道(Physical downlink shared channel,PDSCH)/物理上行共享信道(Physical uplink shared channel,PUSCH)在下行控制信令 (Downlink Control Information,DCI)中用1bit指示该PDSCH/PUSCH对应的资源是否可以和IAB node的子链路复用。在一个实施例中,该配置可以改写RRC信令或者MAC CE提供的配置。
示例4,本示例示出动态的时域资源配置:
IAB node DU假定除了被配置的时域不可用资源外,所有时域资源都是可复用资源。
示例5,本示例示出半静态的时域资源配置:
IAB node的父节点也可以采用实施例一中示例3、示例4类似的方法为IAB node MT提供时域资源配置,将CU替换为IAB node的父节点,将IAB node DU替换为IAB node MT即可,这里不再赘述。
示例6,本示例示出时域资源配置:
IAB node的父节点为IAB node DU提供至少一个时域资源配置,其中,时域资源配置用于指示IAB node DU可复用的时域资源,即对于IAB node DU的每个小区或者每个小区的每个载波或者每个载波或者至少一种时间资源类型提供时域资源配置,即提供可以用于IAB node的父链路和子链路同时发送或者同时接收的时域资源。
指示方式与实施例二的示例3、示例5类似,这里不再赘述,区别仅在于:示例3和示例5是按照IAB node MT的服务小区或者载波指示的,即用于指示IAB node MT的一个服务小区或者载波与IAB node DU的一个或多个小区同时发送或者同时接收的时域资源;而示例6是按照IAB node DU的小区或者载波指示的,即用于指示IAB node DU的一个小区或者载波与IAB node MT的一个或者多个服务小区同时发送或者同时接收的时域资源。
实施例三,本实施例示出IAB节点上报资源配置给父节点:
第一节点上报资源配置信息;所述资源配置信息提供了所述第一节点每个小区或者载波或者至少一种时间资源类型的复用资源配置,所述复用资源配置包括如下至少之一:参考子载波间隔,频域资源配置,时域资源配置。
在一个实施例中,所述频域资源配置可以通过如下方式指示可用的频率资源:用位图(bitmap)指示可用的频率单元,其中,每个比特对应一个频率单元,bitmap的大小为参考子载波间隔对应的带宽包含的频率单元的总数,用比特值表示对应频率单元的可用性;或者,指示可用的频率单元的位置,或者,指示参考子载波间隔对应的带宽内可用频率单元索引的集合。
所述频率单元为如下任意一项:资源块,资源块组,子带,子带组,子载 波,子载波组,带宽/m为一组的频率资源;其中m为大于或等于1的整数。
所述时域资源配置用于如下之一:指示所述第一节点的每个小区或者载波可复用的时域资源;
所述复用资源配置可以通过RRC信令或者MAC CE传输。
示例1,本示例指示IAB node DU可用的频率资源:
IAB node上报IAB node DU的频域资源配置给IAB node的父节点(或者IAB node MT的服务小区)。
在一个实施例中,上报IAB node DU的每个小区的每个载波的频域资源配置。
在一个实施例中,上报IAB node DU的每个载波的频域资源配置。
在一个实施例中,对于每个载波,按照时间资源类型上报IAB node DU的频域资源配置。
其中,频域资源配置用于指示IAB node DU可用的频率资源。
上述可选项的具体例子与实施例一中的示例1类似,这里不再赘述。
在一个实施例中,频域资源配置指示了IAB node DU可用的频率资源。
IAB node通过如下方式之一指示频域资源配置:
方式1:用位图(bitmap)指示可用的频率单元,其中,每个比特对应一个频率单元,bitmap的大小为参考子载波间隔对应的带宽包含的频率单元的总数,用比特值表示对应频率单元的可用性,例如,比特值为1表示对应的频率单元可用,比特值为0表示对应的频率单元不可用。
方式2:指示可用的频率单元位置。例如,指示在参考子载波间隔对应的带宽内IAB node DU可用的起始频率单元和频率单元数,例如,通过资源指示值指示;或者指示可用的起始频率单元和终止频率单元。
方式3:指示参考子载波间隔对应的带宽内可用的频率单元索引的集合。
方式4:用bitmap中的X个比特(例如最低有效X位,或者最高有效X位)对应指示频率单元的可用性。其中,bitmap的大小为固定值,X为参考子载波间隔对应的带宽包含的频率单元的总数。
其中,固定值可以预定义,或者与参考子载波间隔对应的带宽有对应关系。
其中,频率单元包括但不限于如下之一:RB,RBG,子带,子带组,子载波,子载波组,带宽/m为一组的频率资源;其中m为大于或等于1的整数。
在一个实施例中,IAB node上报如下之一:RBG大小,子带的大小,m。
在一个实施例中,带宽/m为一组的频率资源相关配置与上述示例类似,这里不再赘述。
示例2,本示例示出半静态的时域资源配置:
IAB node上报IAB node DU的时域资源配置给IAB node的父节点(或者IAB node MT的服务小区)。
在一个实施例中,IAB node DU上报每个小区的每个载波的时域资源配置。例如,假设小区采用时分双工,配置了一个载波,则上报该载波的时域资源配置。再比如,假设小区采用频分双工,则上报小区的UL载波和DL载波的时域资源配置。
在一个实施例中,IAB node DU上报每个载波的时域资源配置,例如,IAB node DU配置了一个载波,则上报该载波的时域资源配置,使用该载波的所有小区有相同的时域资源配置。如果IAB node DU配置了多个载波,则上报每个载波的时域资源配置。
在一个实施例中,IAB node DU对于每个载波按照时间资源类型上报时域资源配置。例如,不同时间资源类型对应不同的时域资源配置。
时域资源配置与实施例一中的示例3,示例4类似,这里不再赘述。
在一个实施例中,在上述所有实施例和示例中,对于IAB node DU的每个小区,时域资源配置提供的时域资源是潜在可复用资源,即对于IAB node DU的每个小区,被配置的时域资源是否可以用于子链路和父链路同时发送或者同时接收,取决于子链路和父链路的传输方向,子链路和父链路在该时间资源上传输方向不同(比如一个是上行,另一个是下行),则IAB node可以在子链路和父链路上同时发送或者同时接收,如果子链路和父链路传输方向相同(比如都是上行或者都是下行),则半双工IAB node不能在子链路和父链路上同时发送或者同时接收。例如,对于子链路和父链路,该时间资源分别是上行资源和下行资源,则IAB node可以在子链路和父链路上同时接收;又如,对于子链路和父链路,该时间资源分别是下行资源和上行资源,则IAB node可以在子链路和父链路上同时发送。
在一个实施例中,在上述所有实施例和示例中,第二节点(例如CU)或者第三节点(例如IAB node的父节点)需要知道IAB node的参考子载波间隔对应的带宽的频率位置。即IAB node上报参考子载波间隔对应的带宽的起始频率或者终止频率或者中心频率(例如,起始频率或者终止频率或者中心频率可以用如下任一方式指示:上报与点A之间的频率差,或者上报绝对无线频道编号 (Absolute Radio Frequency Channel Number,ARFCN))给第二节点、第三节点至少之一。其中,点A为资源栅格的公共参考点。
在一个实施例中,在上述所有实施例和示例中,频域资源配置和时域资源配置可以采用不同的参考子载波间隔。例如,频域资源配置采用参考子载波间隔1,时域资源配置采用参考子载波间隔2。
在一个实施例中,CU或者父节点提供频域资源属性配置或者频域资源配置采用的第一参考子载波间隔;
在一个实施例中,CU或者父节点提供时域资源配置采用的第二参考子载波间隔;
在一个实施例中,IAB节点上报频域资源配置采用的第三参考子载波间隔;
在一个实施例中,IAB节点上报时域资源配置采用的第四参考子载波间隔。
参考子载波间隔包括如下一个或多个:第一参考子载波间隔;第二参考子载波间隔;第三参考子载波间隔;第四参考子载波间隔。
在一个实施例中,在上述所有实施例和示例中,时域资源配置对第一节点的时域不可用资源(即不可用(Not Available,NA)资源)无效。
在一个实施例中,在上述所有实施例和示例中,如果没有提供复用方式指示,默认复用资源既可用于FDM也可以用于SDM。
在一个示例性实施方式中,本申请提供了一种资源配置装置,图3为本申请提供的一种资源配置装置的结构示意图,该装置配置于第一通信节点,如图3所示,该装置包括:获取模块31,设置为获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;传输模块32,设置为基于所述复用资源配置信息,进行数据传输。
本实施例提供的资源配置装置用于实现如图1所示实施例的资源配置方法,本实施例提供的资源配置装置实现原理和技术效果与图1所示实施例的资源配置方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,该装置还包括通讯模块,设置为如下一个或多个:
上报期望的复用资源配置信息;
获取所述第一通信节点的子节点的至少一个复用资源配置信息。
在一个实施例中,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源属性配置信息;时域资源配置信息;或者,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源配置信息;时域资源配置信息。
在一个实施例中,频域资源属性配置信息用于配置每个频率单元的频域资源属性。
在一个实施例中,频域资源属性包括如下一个或多个:硬的;软的;不可用的。
在一个实施例中,在频域资源被配置为硬的的情况下,所述频域资源对应的节点的子链路可以使用所述频域资源;
在频域资源被配置为软的的情况下,所述频域资源对应的节点的子链路是否可以使用所述频域资源由所述节点的父节点或服务小区指示;
在频域资源被配置为不可用的的情况下,所述频域资源对应的节点的子链路不可以使用该频域资源。
在一个实施例中,在频域资源被配置为软的的情况下,包括如下之一:
通过位图指示所述频域资源的每个频率单元的可用性,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值,或者,与参考子载波间隔对应的带宽存在对应关系,或者,为参考子载波间隔对应的带宽包含的频率单元或软的频率单元的总数;
通过指示可用的频率单元的位置指示所述频域资源的每个频率单元的可用性;
通过指示可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元不可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定;
通过指示不可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定。
在一个实施例中,频域资源配置信息通过如下之一方式指示可用的频域资源:
位图,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值或为参考子载波间隔对应的带宽包含的频率单元的总数;
可用的频率单元的位置;
可用的频率单元的索引。
在一个实施例中,所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,所述m为大于或等于1的整数,在带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在带宽除以m的结果不为整数的情况下,一个频率资源组的大小为带宽mod m,其余频率资源组的大小为m,mod为取模运算。
在一个实施例中,频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用和空分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用所有复用方式的情况下有效。
在一个实施例中,时域资源配置信息包括如下一个或多个:复用资源周期;复用资源时隙集合;复用资源符号;复用方式。
在一个实施例中,复用资源时隙集合通过如下之一方式指示:位图,所述位图中一个比特对应复用资源周期内一个时隙,所述位图的比特值用于指示对应时隙是否是复用资源;复用资源周期内可复用时隙的索引;复用资源周期内可复用的起始时隙索引和可复用的时隙数目;复用资源周期内可复用的起始时隙索引和终止时隙索引。
在一个实施例中,复用资源符号指示复用资源时隙集合中可复用时隙中的符号的可复用性;或者,复用资源周期内符号的可复用性。
在一个实施例中,复用资源符号通过如下之一方式配置:对每个时隙单独配置可复用符号;对所有时隙统一配置可复用符号。
在一个实施例中,复用资源符号中未包括的符号不可复用;或者复用资源符号中未包括的符号的可复用性根据所述第一通信节点的移动终端资源的使用情况确定。
在一个实施例中,时域资源配置信息包括一个或多个子时域资源配置信息,所述子时域资源配置信息包括如下一个或多个:复用资源周期;复用资源偏移;复用资源持续时间;复用方式。
在一个实施例中,复用资源偏移或复用资源持续时间的单位为如下之一:子帧;时隙;正交频分复用符号。
在一个实施例中,复用方式包括如下一个或多个:频分复用;空分复用。
在一个实施例中,时域资源配置信息通过如下之一方式配置时域资源:
通过第一指示信息提供第一时隙复用资源组合的集合,每个第一时隙复用资源组合指示多个连续时隙中每个时隙的可复用性,每个第一时隙复用资源组合通过不同的第一组合索引标识,通过第二指示信息指示第一组合索引,所述第二指示信息指示的第一组合索引指示从接收到第二指示信息的时隙开始连续L1个时隙中每个时隙的可复用性,其中L1为所述第一组合索引标识的第一时隙复用资源组合对应的时隙数目;
通过第三指示信息提供第二时隙复用资源组合的集合,每个第二时隙复用资源组合指示多个连续时隙中每个时隙中符号的可复用性,每个第二时隙复用资源组合通过不同的第二组合索引标识,通过第四指示信息指示第二组合索引,所述第四指示信息指示的第二组合索引用于指示从接收到第四指示信息的时隙开始连续L2个时隙中每个时隙中符号的可复用性,其中L2为所述第二组合索引标识的第二时隙复用资源组合对应的时隙数目;
通过信号或信道的可复用性指示对应的时隙资源的可复用性。
在一个实施例中,每个复用资源配置信息对应一个小区、一个载波或至少一种资源类型。
在一个实施例中,频域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可用的频率资源;所述第一通信节点的分布式单元可用的频率资源。
在一个实施例中,时域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可复用的时域资源;所述第一通信节点的分布式单元可复用的时域资源。
在一个示例性实施方式中,本申请提供了一种资源配置装置,图4为本申请提供的一种资源配置装置的结构示意图,该装置配置于第二通信节点,该装置包括:确定模块41,设置为确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;发送模块42,设置为发送所述复用资源配置信息。
本实施例提供的资源配置装置用于实现如图2所示实施例的资源配置方法,本实施例提供的资源配置装置实现原理和技术效果与图2所示实施例的资源配置方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,该装置还包括传输模块,设置为:包括如下一个或多个:
接收第一通信节点发送的期望的复用资源配置信息;
确定并发送第一通信节点的子节点的至少一个复用资源配置信息。
在一个实施例中,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源属性配置信息;时域资源配置信息;或者,复用资源配置信息包括如下一个或多个:参考子载波间隔;频域资源配置信息;时域资源配置信息。
在一个实施例中,频域资源属性配置信息用于配置每个频率单元的频域资源属性。
在一个实施例中,频域资源属性包括如下一个或多个:硬的;软的;不可用的。
在一个实施例中,确定模块41设置为:包括如下一个或多个:
将频域资源对应的节点的子链路可以使用的频域资源的频域资源属性配置为硬的;
将频域资源对应的节点的子链路和父链路可以共享的频域资源的频域资源属性配置为软的;
将频域资源对应的节点的子链路不可以使用的频域资源的频域资源属性配置为不可用的。
在一个实施例中,对于被配置为软的频率资源,通过如下之一方式指示可用性:
通过位图指示所述频域资源的每个频率单元的可用性,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值,或者,与参考子载波间隔对应的带宽存在对应关系,或者,为参考子载波间隔对应的带宽包含的频率单元或软的频率单元的总数;
通过指示可用的频率单元的位置指示所述频域资源的每个频率单元的可用性;
通过指示可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元不可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定;
通过指示不可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定。
在一个实施例中,频域资源配置信息通过如下之一方式指示可用的频域资源:
位图,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值或为参考子载波间隔对应的带宽包含的频率单元的总数;
可用的频率单元的位置;
可用的频率单元的索引。
在一个实施例中,所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,所述m为大于或等于1的整数,在带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在带宽除以m的结果不为整数的情况下,一个频率资源组的大小为带宽mod m,其余频率资源组的大小为m,mod为取模运算。
在一个实施例中,频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用频分复用和空分复用的情况下有效;或者,
频域资源属性配置信息或者频域资源配置信息在节点的父链路和子链路采用所有复用方式的情况下有效。
在一个实施例中,时域资源配置信息包括如下一个或多个:复用资源周期;复用资源时隙集合;复用资源符号;复用方式。
在一个实施例中,复用资源时隙集合通过如下之一方式指示:位图,所述位图中一个比特对应复用资源周期内一个时隙,所述位图的比特值用于指示对应时隙是否是复用资源;复用资源周期内可复用时隙的索引;复用资源周期内可复用的起始时隙索引和可复用的时隙数目;复用资源周期内可复用的起始时隙索引和终止时隙索引。
在一个实施例中,复用资源符号指示复用资源时隙集合中可复用时隙中的符号的可复用性;或者,复用资源周期内符号的可复用性。
在一个实施例中,复用资源符号通过如下之一方式配置:对每个时隙单独配置可复用符号;对所有时隙统一配置可复用符号。
在一个实施例中,复用资源符号中未包括的符号不可复用;或者复用资源符号中未包括的符号的可复用性根据所述第一通信节点的移动终端资源的使用情况确定。
在一个实施例中,时域资源配置信息包括一个或多个子时域资源配置信息,所述子时域资源配置信息包括如下一个或多个:复用资源周期;复用资源偏移;复用资源持续时间;复用方式。
在一个实施例中,复用资源偏移或复用资源持续时间的单位为如下之一:子帧;时隙;正交频分复用符号。
在一个实施例中,复用方式包括如下一个或多个:频分复用;空分复用。
在一个实施例中,时域资源配置信息通过如下之一方式配置时域资源:
通过第一指示信息提供第一时隙复用资源组合的集合,每个第一时隙复用资源组合指示多个连续时隙中每个时隙的可复用性,每个第一时隙复用资源组合通过不同的第一组合索引标识,通过第二指示信息指示第一组合索引,所述第二指示信息指示的第一组合索引指示从接收到第二指示信息的时隙开始连续L1个时隙中每个时隙的可复用性,其中L1为所述第一组合索引标识的第一时隙复用资源组合对应的时隙数目;
通过第三指示信息提供第二时隙复用资源组合的集合,每个第二时隙复用资源组合指示多个连续时隙中每个时隙中符号的可复用性,每个第二时隙复用资源组合通过不同的第二组合索引标识,通过第四指示信息指示第二组合索引,所述第四指示信息指示的第二组合索引用于指示从接收到第四指示信息的时隙开始连续L2个时隙中每个时隙中符号的可复用性,其中L2为所述第二组合索引标识的第二时隙复用资源组合对应的时隙数目;
通过信号或信道的可复用性指示对应的时隙资源的可复用性。
在一个实施例中,每个复用资源配置信息对应一个小区、一个载波或至少一种资源类型。
在一个实施例中,频域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可用的频率资源;所述第一通信节点的分布式单元可用的频率资源。
在一个实施例中,时域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可复用的时域资源;所述第一通信节点的分布式单元可复用的时域资源。
在一个示例性实施方式中,本申请实施例还提供了一种通信节点,图5为本申请提供的一种通信节点的结构示意图。如图5所示,本申请提供的通信节点,包括一个或多个处理器51和存储装置52;该通信节点中的处理器51可以 是一个或多个,图5中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的资源配置方法。
当通信节点为第一通信节点的情况下,一个或多个处理器51实现如本申请图1所述的资源配置方法。当通信节点为第二通信节点的情况下,一个或多个处理器51实现如本申请图2所述的资源配置方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图5中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。信息包括但不限于复用资源配置信息。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1所示资源配置方法对应的程序指令/模块(例如,资源配置装置中的获取模块31和传输模块32);又如本申请图2所示资源配置方法对应的程序指令/模块(例如,资源配置装置中的确定模块41和发送模块42)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可进一步包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的资源配置方法。如应用于第一通信节点的资源配置方法和应用于第二通信节点的资源配置方法,其中,应用于第一通信节点的方法包括:获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
基于所述复用资源配置信息,进行数据传输。
应用于第二通信节点的资源配置方法包括:确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
发送所述复用资源配置信息。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。
IAB node MT和DU之间FDM/SDM复用时,本申请还提供了一种转换位置确定方法,包括:
在IAB节点的父链路和子链路同时传输的情况下,所述IAB节点的移动终端和分布式单元的转换位置基于第一个或最后一个符号确定。
在一个实施例中,所述IAB节点的移动终端和分布式单元的转换位置基于第一个或最后一个符号确定,包括如下之一:
在IAB节点在父链路和子链路上同时接收的情况下,所述IAB节点的移动终端到分布式单元的转换位置为所述IAB节点的分布式单元的硬的资源上的上行资源的最后一个上行符号的结束位置;
在IAB节点在父链路和子链路上同时接收的情况下,所述IAB节点的移动 终端到分布式单元的转换位置为所述IAB节点的分布式单元的硬的资源上的上行资源的最后一个上行符号之后的第一个符号的结束位置;
在IAB节点在父链路和子链路上同时发送的情况下,所述IAB节点的移动终端到分布式单元的转换位置为所述IAB节点的分布式单元的硬的资源上的下行资源的最后一个下行符号的结束位置;
在IAB节点在父链路和子链路上同时发送的情况下,所述IAB节点的移动终端到分布式单元的转换位置为所述IAB节点的分布式单元的硬的资源上的下行资源的最后一个下行符号之后的第一个符号的结束位置;
在IAB节点在父链路和子链路上同时接收的情况下,所述IAB节点的分布式单元到移动终端的转换位置为所述IAB节点的分布式单元的硬的资源上的上行资源的第一个上行符号的开始位置;
在IAB节点在父链路和子链路上同时接收的情况下,所述IAB节点的分布式单元到移动终端的转换位置为所述IAB节点的分布式单元的硬的资源上的上行资源的第一个上行符号之前的第一个符号的开始位置;
在IAB节点在父链路和子链路上同时发送的情况下,所述IAB节点的分布式单元到移动终端的转换位置为所述IAB节点的分布式单元的硬的资源上的下行资源的第一个下行符号的开始位置;
在IAB节点在父链路和子链路上同时发送的情况下,所述IAB节点的分布式单元到移动终端的转换位置为所述IAB节点的分布式单元的硬的资源上的下行资源的第一个下行符号之前的第一个符号的开始位置。
IAB node MT和DU之间FDM/SDM复用时,在转换位置处IAB node MT/DU为灵活符号时,本申请还提供了一种保护符号确定方法,包括:
在转换位置处IAB节点的移动终端和分布式单元中的至少之一为灵活符号的情况下,保护符号数为如下之一:默认值;可配置的值;根据转换类型确定的值。
在一个实施例中,在转换位置处IAB节点的分布式单元为灵活符号的情况下,保护符号数为转换位置处IAB节点的分布式单元为下行链路传输和上行链路传输时转换类型对应的保护符号数的最小值或最大值;
在转换位置处IAB节点的分布式单元和移动终端中的至少一个为灵活符号的情况下,保护符号数为所述IAB节点转换类型对应的保护符号数的最小值或最大值;
在转换位置处IAB节点的移动终端为灵活符号的情况下,保护符号数为转 换位置处IAB节点的移动终端为下行链路传输和上行链路传输时转换类型对应的保护符号数的最小值或最大值;
在转换位置处IAB节点的分布式单元和移动终端中的至少一个为灵活符号的情况下,保护符号数为相同转换方向对应的转换类型的保护符号数的最小值或最大值。
实施例四
本实施例示出了MT和DU之间传输转换位置、转换符号数的确定。
IAB节点具有终端(MT)和基站(DU)双重身份,且不同身份有各自的收发定时,这使得IAB节点的MT与DU虽然在时域上使用不同的符号,但在时域上也可能存在交叠,特别是受半双工限制的情况下,IAB节点的MT和DU之间可能需要收发转换时间或发收转换时间,这些问题都可能导致IAB节点的MT和DU所使用的资源产生冲突。
相关技术中,IAB node MT和DU之间有8种可能的转换类型,包括MT到DU的4种转换类型(MT发送(Transport,Tx)/接收(Receive,Rx)到DU Tx/Rx,即MT Tx到DU Tx,MT Tx到DU Rx,MT Rx到DU Tx,MT Rx到DU Rx),以及DU到MT的4种转换类型(DU Tx/Rx到MT Tx/Rx,即DU Tx到MT Tx,DU Tx到MT Rx,DU Rx到MT Tx,DU Rx到MT Rx),IAB node向它的父节点(或者IAB node MT的服务小区)提供在每个转换位置期望父节点不使用的符号数(即保护符号数),父节点向IAB node提供在每个转换位置它可以提供的保护符号数。为保证IAB node的父链路和子链路资源不冲突,IAB node和它的父节点需要对转换位置以及转换类型有相同的理解。
对于IAB node DU,其时间资源包括7种类型:硬的(即Hard)DL、硬的F、硬的UL、软的(即Soft)DL、软的F、软的UL、不可用。其中,在硬的资源(包括DL,UL,F)上,DU可以直接调度其子链路,不用考虑MT的资源分配情况。NA资源是DU不可用资源,对于DU来说Soft资源(包括DL,UL,F)的可用性可以通过父节点指示或者MT的使用情况来确定。另外,IAB node DU的小区级信号或信道可以在NA资源或者软的资源上传输(例如,可以发送同步信道块和SIB1的PDCCH,接收PRACH等),此时,传输小区级信号或者信道的NA资源或者软的资源等同于硬的资源(为描述简单,记为等效硬的资源)。
示例1
对于支持FDM/SDM的IAB node,在传输方向满足条件的情况下,IAB node 可以同时在父链路和子链路上发送,或者同时在父链路和子链路上接收。也就是说在IAB node DU小区的Hard资源上,IAB node的父节点可以调度IAB node MT(对应父链路)。因此,在IAB node DU小区的Hard资源上,在IAB node在父链路和子链路同时接收或者发送的情况下,当IAB node DU的子链路的传输方向发生转换时,也会发生IAB node MT和IAB node DU之间的传输转换。为保证IAB node和父节点对转换位置理解一致,可按如下方式确定转换位置。
对于IAB node在父链路和子链路上同时接收的情况,IAB node MT到IAB node DU的可能的转换位置为:在IAB node DU小区的Hard资源上IAB node DU的UL资源的最后一个UL符号的结束位置;或者,在IAB node DU小区的Hard资源上IAB node DU的UL资源的最后一个UL符号之后第一个符号的结束位置。
图6为本申请提供的一种转换位置示意图。参见图6,转换位置可以为在IAB node DU小区的Hard资源上IAB node DU的UL资源的最后一个UL符号的结束位置。
对于IAB node在父链路和子链路上同时发送的情况,IAB node MT到IAB node DU的可能的转换位置为:在IAB node DU小区的Hard资源上IAB node DU的DL资源的最后一个DL符号的结束位置;或者,在IAB node DU小区的Hard资源上IAB node DU的DL资源的最后一个DL符号之后第一个符号的结束位置。
图7为本申请提供的又一种转换位置的示意图。参见图7,转换位置可以为在IAB node DU小区的Hard资源上IAB node DU的DL资源的最后一个DL符号的结束位置。
对于IAB node在父链路和子链路上同时接收的情况,IAB node DU到IAB node MT的可能的转换位置为:在IAB node DU小区的Hard资源上IAB node DU的UL资源的第一个UL符号的开始位置;或者,在IAB node DU小区的Hard资源上IAB node DU的UL资源的第一个UL符号之前第一个符号的开始位置。
图8为本申请提供的另一种转换位置的示意图,参见图8,转换位置可以为:在IAB node DU小区的Hard资源上IAB node DU的UL资源的第一个UL符号的开始位置。
对于IAB node在父链路和子链路上同时发送的情况,IAB node DU到IAB node MT的可能的转换位置为:在IAB node DU小区的硬的资源上IAB node DU的DL资源的第一个DL符号的开始位置;或者,在IAB node DU小区的Hard资源上IAB node DU的DL资源的第一个DL符号之前第一个符号的开始位置。
示例2
对于转换位置处IAB node DU小区被配置的灵活符号,IAB node的父节点可能无法确定IAB node DU的传输方向(Rx或者Tx),因此,需要考虑这种情况下如何确定父节点提供的保护符号数。
在一个实施例中,确定父节点提供的保护符号数的方法包括:
方法1:当在转换位置处IAB node DU为灵活符号时,确定保护符号数为转换位置处IAB node DU为UL和DL时两种转换对应的保护符号数的最小值或者最大值。在一个实施例中,以MT到DU的转换和取最小值为例,假设在转换位置处IAB node MT为DL,MT DL Rx到DU DL Tx转换对应的保护符号数为X1,MT DL Rx到DU UL Rx转换对应的保护符号数为X2,则确定MT DL Rx到DU Flexible转换对应的保护符号数为min{X1,X2},即X1和X2的最小值。
方法2:当在转换位置处IAB node DU为灵活符号时,确定保护符号数为可配置的值,或者默认值。例如,当在转换位置处IAB node DU为灵活符号时,IAB node假定父节点提供的保护符号数为0。
方法3:当在转换位置处IAB node DU为灵活符号时,确定保护符号数为IAB node的8种转换对应的保护符号数的最小值或者最大值。例如,假设8种转换对应的保护符号数为Y1,...,Y8,则IAB node假定MT到DU灵活对应的保护符号数的min{Y1,...,Y8}。
方法4:当在转换位置处IAB node MT为灵活符号时,确定保护符号数为转换位置处IAB node MT为UL和DL时两种转换对应的保护符号数的最小值或者最大值。
方法5:当在转换位置处IAB node MT为灵活符号时,确定保护符号数为可配置的值,或者默认值。
方法6:当在转换位置处IAB node MT为灵活符号时,确定保护符号数为IAB node的8种转换对应的保护符号数的最小值或者最大值。
方法7:当在转换位置处IAB node MT和IAB node DU至少之一为灵活符号时,确定保护符号数为IAB node的8种转换对应的保护符号数的最小值或者最大值。
方法8:当在转换位置处IAB node MT和IAB node DU至少之一为灵活符号时,确定保护符号数为可配置的值,或者默认值。
方法9:当在转换位置处IAB node MT和IAB node DU至少之一为灵活符号时,确定保护符号数为相同转换方向对应的4种转换的保护符号数的最小值 或者最大值。例如IAB node假定MT DL Rx到DU灵活对应的保护符号数为MT到DU的4种转换对应的保护符号数的最小值。
方式10:当父节点没有提供IAB node的MT和DU之间的转换对应的保护符号数时,IAB node假定该转换对应的保护符号数为默认值。在一个实施例中,转换为如下至少之一:MT DL到DU DL,MT DL到DU UL,MT DL到DU Flexible,MT UL到DU DL,MT UL到DU UL,MT UL到DU灵活,MT灵活到DU DL,MT灵活到DU UL,MT灵活到DU灵活,DU DL到MT DL,DU DL到MT UL,DU DL到MT灵活,DU UL到MT DL,DU UL到MT UL,DU UL到MT灵活,DU灵活到MT DL,DU灵活到MT UL,DU灵活到MT灵活。
方式11:当IAB node MT的多个服务小区的载波属于相同的频段或存在交叠的情况下,IAB node期望这些服务小区提供的保护符号数相同。
方式12:当在转换位置处IAB node MT和DU中至少之一为灵活符号的情况下,DU假定父节点按照在转换位置处DU的DL符号可以使用来确定保护符号数;或者,DU假定按照硬的DL确定的资源使用。
在一个实施例中,保护符号指IAB node MT不能使用的符号。
在一个实施例中,默认值为0。
在一个实施例中,默认值为预定义的正整数。
在不冲突的情况下,上述方法可以结合。
值得注意的是,在本实施例和所有示例中,硬的资源,软的资源,NA资源都是指IAB node的DU的时域资源。硬的资源包括配置的硬的资源以及等效Hard资源(例如在软的或者NA资源上传输小区特定信号的情况下,该软的或者NA资源即为等效硬的资源)。
值得注意的是,对于上述实施例和示例中IAB node MT和DU之间的转换类型定义中,MT DL与MT Rx等价,MT UL与MT Tx等价,DU DL与DU Tx等价,DU UL与DU Rx等价。
值得注意的是,在上述所有实施例和示例中,IAB node仅仅是示例,上述方案也适用于其他节点,例如,中继节点,基站等任意类型的无线通信设备,用相应设备替换IAB node即可得到相应的方案。

Claims (25)

  1. 一种资源配置方法,应用于第一通信节点,包括:
    获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
    基于所述至少一个复用资源配置信息,进行数据传输。
  2. 根据权利要求1所述的方法,还包括如下至少之一:
    上报期望的复用资源配置信息;
    获取所述第一通信节点的子节点的至少一个复用资源配置信息。
  3. 根据权利要求1或2所述的方法,其中,所述复用资源配置信息包括如下至少一个:参考子载波间隔;频域资源属性配置信息;时域资源配置信息;或者,所述复用资源配置信息包括如下至少一个:参考子载波间隔;频域资源配置信息;时域资源配置信息。
  4. 根据权利要求3所述的方法,其中,所述频域资源属性配置信息用于配置每个频率单元的频域资源属性。
  5. 根据权利要求4所述的方法,其中,所述频域资源属性包括如下至少一个:硬的;软的;不可用的。
  6. 根据权利要求5所述的方法,其中,
    在频域资源被配置为硬的的情况下,所述频域资源对应的节点的子链路可以使用所述频域资源;
    在频域资源被配置为软的的情况下,所述频域资源对应的节点的子链路是否可以使用所述频域资源由所述节点的父节点或服务小区指示;
    在频域资源被配置为不可用的的情况下,所述频域资源对应的节点的子链路不可以使用所述频域资源。
  7. 根据权利要求5所述的方法,其中,在频域资源被配置为软的的情况下,包括如下之一:
    通过位图指示所述频域资源的每个频率单元的可用性,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值,或者,所述位图的大小与参考子载波间隔对应的带宽存在对应关系,或者,所述位图的大小为参考子载波间隔对应的带宽包含的频率单元或软的频率单元的总数;
    通过指示可用的频率单元的位置指示所述频域资源的每个频率单元的可用性;
    通过指示可用的频率单元的索引指示所述频域资源的每个频率单元的可用 性,未被指示的频率单元不可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定;
    通过指示不可用的频率单元的索引指示所述频域资源的每个频率单元的可用性,未被指示的频率单元可用或可用性根据所述第一通信节点的移动终端资源的使用情况确定。
  8. 根据权利要求3所述的方法,其中,所述频域资源配置信息通过如下之一方式指示可用的频域资源:
    位图,所述位图中每个比特对应一个频率单元,所述位图的大小为固定值或为参考子载波间隔对应的带宽包含的频率单元的总数;
    可用的频率单元的位置;
    可用的频率单元的索引。
  9. 根据权利要求8所述的方法,其中,所述频率单元包括如下任意一个:资源块;资源块组;子带;子带组;子载波;子载波组;频率资源组,所述频率资源组的数量为带宽除以m的结果向上取整,其中,m为大于或等于1的整数,在所述带宽除以m的结果为整数的情况下,每个频率资源组的大小为m个资源块,在所述带宽除以m的结果不为整数的情况下,一个频率资源组的大小为所述带宽mod m,其余频率资源组的大小为m,mod为取模运算。
  10. 根据权利要求3所述的方法,其中,
    所述频域资源属性配置信息或者所述频域资源配置信息在节点的父链路和子链路采用频分复用的情况下有效;或者,
    所述频域资源属性配置信息或者所述频域资源配置信息在节点的父链路和子链路采用频分复用和空分复用的情况下有效;或者,
    所述频域资源属性配置信息或者所述频域资源配置信息在节点的父链路和子链路采用所有复用方式的情况下有效。
  11. 根据权利要求3所述的方法,其中,所述时域资源配置信息包括如下至少一个:复用资源周期;复用资源时隙集合;复用资源符号;复用方式。
  12. 根据权利要求11所述的方法,其中,所述复用资源时隙集合通过如下之一方式指示:位图,所述位图中一个比特对应复用资源周期内一个时隙,所述位图的比特值用于指示对应时隙是否是复用资源;复用资源周期内可复用时隙的索引;复用资源周期内可复用的起始时隙索引和可复用的时隙数目;复用资源周期内可复用的起始时隙索引和终止时隙索引。
  13. 根据权利要求11所述的方法,其中,所述复用资源符号指示所述复用资 源时隙集合中可复用时隙中的符号的可复用性;或者,复用资源周期内符号的可复用性。
  14. 根据权利要求11所述的方法,其中,所述复用资源符号通过如下之一方式配置:对每个时隙单独配置可复用符号;对所有时隙统一配置可复用符号。
  15. 根据权利要求11所述的方法,其中,所述复用资源符号中未包括的符号不可复用;或者所述复用资源符号中未包括的符号的可复用性根据所述第一通信节点的移动终端资源的使用情况确定。
  16. 根据权利要求3所述的方法,其中,所述时域资源配置信息包括至少一个子时域资源配置信息,所述子时域资源配置信息包括如下至少一个:复用资源周期;复用资源偏移;复用资源持续时间;复用方式。
  17. 根据权利要求3所述的方法,其中,所述时域资源配置信息通过如下之一方式配置时域资源:
    通过第一指示信息提供第一时隙复用资源组合的集合,每个第一时隙复用资源组合指示多个连续时隙中每个时隙的可复用性,每个第一时隙复用资源组合通过不同的第一组合索引标识,通过第二指示信息指示第一组合索引,所述第二指示信息指示的第一组合索引指示从接收到所述第二指示信息的时隙开始连续L1个时隙中每个时隙的可复用性,其中L1为所述第一组合索引标识的第一时隙复用资源组合对应的时隙数目;
    通过第三指示信息提供第二时隙复用资源组合的集合,每个第二时隙复用资源组合指示多个连续时隙中每个时隙中符号的可复用性,每个第二时隙复用资源组合通过不同的第二组合索引标识,通过第四指示信息指示第二组合索引,所述第四指示信息指示的第二组合索引用于指示从接收到所述第四指示信息的时隙开始连续L2个时隙中每个时隙中符号的可复用性,其中L2为所述第二组合索引标识的第二时隙复用资源组合对应的时隙数目;
    通过信号或信道的可复用性指示所述信号或信道对应的时隙资源的可复用性。
  18. 根据权利要求1或2所述的方法,其中,每个复用资源配置信息对应一个小区、一个载波或至少一种资源类型。
  19. 根据权利要求3所述的方法,其中,所述频域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可用的频率资源;所述第一通信节点的分布式单元可用的频率资源。
  20. 根据权利要求3所述的方法,其中,所述时域资源配置信息用于指示如下之一:所述第一通信节点的移动终端可复用的时域资源;所述第一通信节点 的分布式单元可复用的时域资源。
  21. 一种资源配置方法,应用于第二通信节点,包括:
    确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
    发送所述至少一个复用资源配置信息。
  22. 一种资源配置装置,配置于第一通信节点,包括:
    获取模块,设置为获取至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
    传输模块,设置为基于所述至少一个复用资源配置信息,进行数据传输。
  23. 一种资源配置装置,配置于第二通信节点,包括:
    确定模块,设置为确定至少一个复用资源配置信息,所述复用资源配置信息用于指示复用资源的配置;
    发送模块,设置为发送所述至少一个复用资源配置信息。
  24. 一种通信节点,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-21中任一项所述的资源配置方法。
  25. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-21中任一项所述的资源配置方法。
PCT/CN2021/078821 2020-04-09 2021-03-03 资源配置方法、装置、通信节点及存储介质 WO2021203873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010275711.5 2020-04-09
CN202010275711.5A CN111901871A (zh) 2020-04-09 2020-04-09 一种资源配置方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2021203873A1 true WO2021203873A1 (zh) 2021-10-14

Family

ID=73206182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078821 WO2021203873A1 (zh) 2020-04-09 2021-03-03 资源配置方法、装置、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN111901871A (zh)
WO (1) WO2021203873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094135A1 (zh) * 2022-11-03 2024-05-10 中兴通讯股份有限公司 资源配置方法、设备和存储介质

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115443628A (zh) * 2020-04-02 2022-12-06 联想(新加坡)私人有限公司 资源属性配置
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质
CN114531697A (zh) * 2020-11-23 2022-05-24 维沃移动通信有限公司 传输处理方法、装置及通信设备
CN114650548A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质
CN114650599A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 信息传输方法、装置、iab节点及网络设备
CN114650600A (zh) * 2020-12-18 2022-06-21 维沃移动通信有限公司 资源配置方法、装置、网络节点和存储介质
WO2022152726A1 (en) * 2021-01-12 2022-07-21 Ericsson Configure iab frequency-domain resource utilization
CN112867161A (zh) * 2021-01-13 2021-05-28 中兴通讯股份有限公司 资源可用性确定、资源配置方法、通信节点及存储介质
CN115175209A (zh) * 2021-04-01 2022-10-11 中兴通讯股份有限公司 资源属性配置、确定方法、通信节点及存储介质
CN115175319A (zh) * 2021-04-01 2022-10-11 中兴通讯股份有限公司 频域资源确定方法、装置、节点和存储介质
CN115190606A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 无线通信方法和装置
WO2022232974A1 (en) * 2021-05-06 2022-11-10 Zte Corporation Resource coordination schemes in wireless communications
CN115347991A (zh) * 2021-05-14 2022-11-15 维沃移动通信有限公司 资源处理方法、装置、通信设备及可读存储介质
CN115347990A (zh) * 2021-05-14 2022-11-15 维沃移动通信有限公司 传输处理方法、装置、通信设备及可读存储介质
WO2023284598A1 (zh) * 2021-07-13 2023-01-19 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
WO2023283936A1 (en) * 2021-07-16 2023-01-19 Lenovo (Beijing) Limited Methods and apparatuses for resource multiplexing
CN115701731A (zh) * 2021-08-02 2023-02-10 维沃移动通信有限公司 干扰处理方法、相关设备及可读存储介质
CN115884390A (zh) * 2021-08-06 2023-03-31 华为技术有限公司 资源配置方法和通信装置
CN115811750A (zh) * 2021-09-15 2023-03-17 维沃软件技术有限公司 数据传输方法、节点、终端及网络侧设备
WO2023050073A1 (en) * 2021-09-28 2023-04-06 Lenovo (Beijing) Limited Methods and apparatuses for determining frequency domain resource
WO2023050457A1 (en) * 2021-10-02 2023-04-06 Lenovo (Beijing) Limited Methods and apparatuses for determining frequency or spatial domain configurations
CN116846445A (zh) * 2022-03-25 2023-10-03 华为技术有限公司 小区信息的配置方法、装置、可读存储介质及芯片系统
CN115915429A (zh) * 2022-09-08 2023-04-04 中兴通讯股份有限公司 一种资源块集合的确定方法、通信节点及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190319774A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Scheduling over multiplexed resources under half-duplex constraint
CN110351836A (zh) * 2018-04-03 2019-10-18 维沃移动通信有限公司 中继资源的配置方法和设备
WO2020032580A1 (ko) * 2018-08-07 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351836A (zh) * 2018-04-03 2019-10-18 维沃移动通信有限公司 中继资源的配置方法和设备
US20190319774A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Scheduling over multiplexed resources under half-duplex constraint
WO2020032580A1 (ko) * 2018-08-07 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치
CN111901871A (zh) * 2020-04-09 2020-11-06 中兴通讯股份有限公司 一种资源配置方法、装置、通信节点及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Mechanisms for resource multiplexing among backhaul and access links", 3GPP DRAFT; R1-1904642_IAB RESOURCE ALLOCATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051699851 *
ZTE, SANECHIPS: "Resource multiplexing between backhaul and access links", 3GPP DRAFT; R1-1906491 RESOURCE MULTIPLEXING BETWEEN BACKHAUL AND ACCESS LINKS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727941 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094135A1 (zh) * 2022-11-03 2024-05-10 中兴通讯股份有限公司 资源配置方法、设备和存储介质

Also Published As

Publication number Publication date
CN111901871A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021203873A1 (zh) 资源配置方法、装置、通信节点及存储介质
RU2645879C2 (ru) Система и способ для совместимости адаптивного tti с lte
CN102356612B (zh) 支持多载波的设备和方法
JP2020522961A (ja) 信号送信方法、関連装置、及びシステム
US20210250159A1 (en) Resource configuration method and apparatus
RU2556883C2 (ru) Способ и устройство для реконфигурирования отображения поля указателя несущей на компонентную несущую
US20220022185A1 (en) Terminal, apparatus, and system
US20210274494A1 (en) Uplink control information transmission method and apparatus
WO2020224306A1 (zh) 一种通信的方法和装置
US11251912B2 (en) Signal transmission method, related apparatus, and system
WO2021227755A1 (zh) 一种切换方法及装置
US20230361814A1 (en) Transmission of NR Control Information in an LTE Downlink Subframe
US20220225333A1 (en) Resource dynamic indication method and apparatus
CN112399585B (zh) 一种资源复用方法及装置
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
WO2020048481A1 (zh) 通信方法及装置
US10980047B2 (en) User terminal and radio communication method
US20230318798A1 (en) Reporting, configuration and transmission method for iab node
CN110611938B (zh) 通信方法和装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
US20230041809A1 (en) Terminal and communication method
JP7488368B2 (ja) リソース多重化方法及び装置
EP3413614A1 (en) User terminal, wireless base station, and wireless communication method
EP4175381A1 (en) Wireless communication node
CN115701195A (zh) 资源分配方法、通信装置以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21784460

Country of ref document: EP

Kind code of ref document: A1