WO2021203850A1 - 操作模式的协商方法、发起端、接收端、芯片系统、介质 - Google Patents

操作模式的协商方法、发起端、接收端、芯片系统、介质 Download PDF

Info

Publication number
WO2021203850A1
WO2021203850A1 PCT/CN2021/077313 CN2021077313W WO2021203850A1 WO 2021203850 A1 WO2021203850 A1 WO 2021203850A1 CN 2021077313 W CN2021077313 W CN 2021077313W WO 2021203850 A1 WO2021203850 A1 WO 2021203850A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
indication information
channel bandwidth
streams
time stream
Prior art date
Application number
PCT/CN2021/077313
Other languages
English (en)
French (fr)
Inventor
于健
李云波
郭宇宸
淦明
狐梦实
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21785424.9A priority Critical patent/EP4132189B1/en
Priority to BR112022020265A priority patent/BR112022020265A2/pt
Publication of WO2021203850A1 publication Critical patent/WO2021203850A1/zh
Priority to US17/960,168 priority patent/US20230042842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to the negotiation method, the initiating end, the receiving end, the chip system, and the computer-readable storage medium of the operation mode in the WiFi field.
  • WLAN Wireless Local Area Network
  • 802.11a/g goes through 802.11n, 802.11ac, and 802.11ax.
  • the allowable transmission channel bandwidth and number of space-time streams are as follows:
  • the name of the 802.11n standard is also called High Throughput (HT)
  • the 802.11ac standard is called Very High Throughput (VHT)
  • the 802.11ax standard is called High Efficient (HE).
  • HT High Throughput
  • VHT Very High Throughput
  • HE High Efficient
  • 802.11a/b/g 802.11a/b/g
  • Non-HT non-high throughput
  • 802.11 series of standards also include 802.11b that adopts a non-OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) mode.
  • non-OFDM Orthogonal Frequency Division Multiplexing
  • an Operation Mode Indication (OMI) method is designed.
  • the initiator and the responder negotiate the operation mode (Operation Mode, OM) to reduce the channel bandwidth for normal operations and reduce the space supported by the normal operation.
  • OM Operation Mode
  • next-generation standards after 11ax such as the 802.11be standard, also known as the Extremely High Throughput (EHT) standard, have more channel bandwidth modes, and the number of space-time streams has expanded from a maximum of 8 streams to a maximum of 16 streams.
  • EHT Extremely High Throughput
  • the embodiment of the application provides an operation mode negotiation method, the initiator, the receiver, the chip system, and the computer readable storage medium applied to the operation mode negotiation, which can realize the increase in the channel bandwidth mode, and the number of space-time streams is doubled. Realize OM negotiation in additional scenarios.
  • This application mainly implements enhanced OM negotiation by extending the existing OM negotiation scheme in the 802.11ax standard and providing a new OM negotiation scheme.
  • this application discloses an operation mode negotiation method, which is applied to the initiator of operation mode negotiation, and includes:
  • the initiating end sends an operation mode indication OMI to the responding end, the OMI includes at least one of channel bandwidth indication information and space-time stream number indication information, and the channel bandwidth indicated by the channel bandwidth indication information has a capacity range greater than 160Mhz, The capacity range of the space-time stream number indicated by the space-time stream number indication information is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is less than or equal to 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than or equal to 8 streams;
  • the initiating end and the responding end perform transmission. Specifically, the initiating end uses at least one of the channel bandwidth and the number of space-time streams indicated by the OMI to transmit with the responding end.
  • the channel bandwidth range indicated by the channel bandwidth indication information and the space-time stream number range indicated by the space-time stream number indication information may have multiple combinations, for example:
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than 160Mhz, and the space-time stream number indicated by the space-time stream number indicator information is 1-8 streams (indicating that the number of space-time streams is 1-8 streams can use the enhanced space-time stream number in this application
  • the indication information can also be indicated by using the 802.11ax standard and the previous space-time stream number indication information);
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than or equal to 20Mhz and less than or equal to 160Mhz (indicating that the bandwidth range is less than or equal to 160Mhz, the enhanced channel bandwidth indicator information in this application can be used, or the 802.11ax standard and the channel bandwidth before it can be used
  • the instruction information indicates), and the number of space-time streams indicated by the space-time stream number indication information is 1-16 streams.
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than or equal to 20Mhz and less than or equal to 160Mhz (indicating that the bandwidth range is less than or equal to 160Mhz, the enhanced channel bandwidth indicator information in this application can be used, or the 802.11ax standard and the channel bandwidth before it can be used
  • the number of space-time streams indicated by the space-time stream number indication information is 1-8 streams (the number of space-time streams indicated by the number of space-time streams is 1-8 streams can use the enhanced space-time stream number indication information in this application, or it can be Use the 802.11ax standard and the previous space-time stream number indication information for indication).
  • the channel bandwidth indication information indicates that the bandwidth range is greater than 160Mhz, and the number of space-time streams indicated by the space-time stream number indication information is 1-16 streams.
  • the OMI is carried in the control information corresponding to the control subfield; the control information includes at least one of the channel bandwidth indication information and the space-time flow number indication information.
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information refers to the range of the maximum value of the channel bandwidth that it can indicate, but it does not rule out that the actual channel bandwidth indicated by the channel bandwidth indication information may be smaller than the actual channel bandwidth indicated by the channel bandwidth indication information. Range of capabilities.
  • the actual channel bandwidth indicated by the channel bandwidth indication information can be any of 20Mhz, 40Mhz, 80Mhz, 160Mhz, 240Mhz, 320Mhz, where the maximum value of the channel bandwidth is 320Mhz, then in this application, it is expressed as: Channel bandwidth
  • the capability range of the channel bandwidth indicated by the indication information is greater than 160Mhz.
  • the channel bandwidth may be continuous or non-continuous, for example, 320Mhz may be 160Mhz+160Mhz. 240Mhz can be 80Mhz+160Mhz or 160Mhz+80Mhz.
  • the capability range of the channel bandwidth that can be indicated by the channel bandwidth indication information provided in this application may be greater than 320Mhz, for example, 480MHz, 640Mhz, 800MHz, 960MHz, 1120MHz, 1280Mhz, and so on.
  • the capacity range of the space-time flow number indicated by the space-time flow number indication information refers to the range of the maximum value of the space-time flow number that it can indicate, but does not exclude the range indicated by the space-time flow number indication information
  • the actual number of space-time streams will be less than its capability range.
  • the actual space-time flow number indicated by the space-time flow number indication information is any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
  • the capability range of the space-time stream number indication information that can be indicated by the space-time stream number indication information provided in this application can also be greater than 16 streams, for example, 20 streams, 24 streams, and 32 streams. 48 streams, 64 streams and so on.
  • the number of space-time streams is twice the number of spatial streams. If not, the two are the same.
  • the space-time stream number indication information may indicate the space stream number, or the space-time stream number, or partly indicate the space-time stream number, and partly indicate the space stream number.
  • the sending end it indicates the number of space-time streams to be sent, and for the receiving end, it indicates the number of space-time streams to be received. vice versa.
  • the space-time flow number indication information includes at least one of sending space-time flow number indication information and receiving space-time flow number indication information.
  • the space-time stream number indication information is used to indicate the number of sent space-time streams and the number of received space-time streams at the same time.
  • the initiator and responder in this application are for the OM negotiation process.
  • the initiator that actively initiates the OM negotiation is called the initiator, and the responder that responds to the OM negotiation is called the responder.
  • the sending end and the receiving end are for the communication transmission process.
  • the party sending the data is the sending end, and the party receiving the data is the receiving end.
  • the initiating end of OM negotiation can be the sending end of communication transmission or the receiving end of communication transmission; the response end of OM negotiation can be the sending end of communication transmission or the responding end of communication transmission.
  • control subfield includes a first control subfield and a second control subfield
  • the first control subfield is an OMI basic indication subfield, that is, the first control subfield is a control subfield indicating OMI in the 802.11ax standard;
  • the second control subfield is an OMI extended indication subfield, That is, the second control subfield is a control subfield different from the control subfield indicating OMI in the 802.11ax standard;
  • the first control subfield and the second control subfield jointly indicate enhanced OMI.
  • the enhanced OMI can indicate a larger range of channel bandwidth and a larger number of space-time streams relative to the range that can be indicated by the OMI in the 802.11ax standard.
  • the value of the control identifier corresponding to the first control subfield is 1; the value of the control identifier corresponding to the second control subfield is 7 to Any of 15.
  • the number of bits of the first channel bandwidth indication information used to indicate the channel bandwidth is 2 bits, so In the control information corresponding to the second control subfield, the number of bits of the second channel bandwidth indication information used to indicate the channel bandwidth is 1 bit; the first channel bandwidth indication information and the second channel bandwidth indication information indicate jointly The range of channel bandwidth is 20Mhz ⁇ 320Mhz.
  • the channel bandwidth range jointly indicated by the first channel bandwidth indication information and the second channel bandwidth indication information may be larger, for example, 20Mhz ⁇ 640Mhz, or even 20Mhz ⁇ 1280Mhz.
  • the number of bits of the second channel bandwidth indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • the bits of the second channel bandwidth indicator information are composed of 2 bits of the first channel bandwidth indicator information and 1 bit of the second channel bandwidth indicator information. The least significant bit or the most significant bit among the 3 bits.
  • the number of bits of the first space-time stream number indication information used to indicate the number of space-time streams is 3 bits
  • the number of bits of the second space-time stream number indication information used to indicate the number of space-time streams is 1 bit; the first space-time stream number indication information and The range of the number of space-time streams jointly indicated by the second space-time stream number indication information is 1-16 streams.
  • the range of the number of space-time streams jointly indicated by the first space-time stream number indication information and the second space-time stream number indication information may be larger, for example, 1 to 32 streams, or even 1 to 64 streams.
  • the bit number of the second space-time stream number indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • 1 bit of the second space-time stream number indication information is 2 bits of the first space-time stream number indication information and the second space-time stream number indication information.
  • 3 bits composed of 1 bit the least significant bit or the most significant bit.
  • the number of space-time streams indicated jointly by the first space-time stream number indication information and the second space-time stream number indication information is less than or equal to a predetermined number of space-time streams. Set the number of space-time streams of the channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the first space-time stream number indication information is the same as the number of space-time streams jointly indicated by the second space-time stream number indication information.
  • the two control subfields provided by the first design of the first aspect of this application use another control subfield as the OMI extended indicator subfield on the basis of the OMI basic indicator subfield, which is compatible with the 802.11ax standard to the greatest extent. Smaller overhead realizes OM negotiation for larger channel bandwidth or more space-time streams.
  • control subfield is a control subfield, which is called a third control subfield
  • the OMI is carried in the control information corresponding to the third control subfield;
  • the control information includes at least one of the third channel bandwidth indication information and the third space-time flow number indication information;
  • the third channel bandwidth indication information is 3 bits, and is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz;
  • the third space-time stream number indication information is 4 bits , Used to indicate the range of space-time flow number is 1-16 flow.
  • the channel bandwidth range that can be indicated by the third channel bandwidth indication information can be larger, for example, 640Mhz.
  • the third space-time stream number indication information can indicate more space-time stream numbers, such as 1 to 32 streams, 1 to 64 streams, and so on.
  • the number of bits of the third channel bandwidth indication information may increase as the bandwidth range increases, for example, it may be 4 bits or 5 bits; the number of bits of the third space-time stream number indication information may also increase with the space-time stream
  • the number range increases as it increases, for example, it may be 5 bits or 6 bits.
  • the third control subfield is a control subfield located after the control subfield whose identifier is 15; the third control subfield The value of the field identifier is any one of 0-15.
  • the number of space-time streams indicated by the third space-time stream number indication information is the number of space-time streams less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the third space-time stream number indication information is the same.
  • control subfield with the identifier value of 15 is used as the identification point for indicating enhanced OMI, so that the responder of the OM negotiation can use this as a flag, and set the identifier value to 15.
  • the control subfield after the control subfield of is identified as the control subfield of the enhanced OM, which can support larger channel bandwidth and negotiation of more space-time streams.
  • the third channel bandwidth indication information includes first channel bandwidth sub-indication information and second channel bandwidth sub-indication information, and the first channel bandwidth sub-indication information
  • the indication information is 2 bits
  • the second channel bandwidth sub-indication information is 1 bit
  • the first channel bandwidth sub-indication information and the second channel bandwidth sub-indication information jointly indicate the channel bandwidth.
  • the third space-time stream number indication information includes first space-time stream number sub-indication information and second space-time stream number sub-indication information.
  • the time stream number sub-indication information is 3 bits
  • the second space-time stream number sub-indication information is 1 bit
  • the first space-time stream number sub-indication information and the second space-time stream number sub-indication information jointly indicate the space-time stream number.
  • the value of the identifier of the third control subfield is any one of 0-15.
  • the value of the identifier corresponding to the third control subfield is 1.
  • the third control subfield may be a control subfield located after the control subfield whose identifier value is 15.
  • the first space-time stream number indication information and the second space-time stream number indication information jointly indicate The number of space-time streams is the same.
  • the number of space-time streams jointly indicated by the first space-time stream number sub-indication information and the second space-time stream number sub-indication information is a space-time stream number that is less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • control subfield is a control subfield, and this control subfield is called the fourth control subfield.
  • the OMI is carried in control information corresponding to a fourth control subfield, and the control information includes at least one of fourth channel bandwidth indication information and fourth space-time flow number indication information;
  • the fourth channel bandwidth indication information is 2 bits and is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz; the fourth space-time stream number indication information is 3 bits and is used to indicate that the space-time stream number range is 1 ⁇ 16 streams.
  • both the initiator and the responder support standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is 1. Any value of ⁇ 16 streams; optionally, the fourth space-time stream number indication information is used to indicate any 8 values of 1-16 streams.
  • any one of the initiator and the responder does not support standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is any value from 1 to 8 streams.
  • both the initiator and the responder support standards after 802.11ax, and the channel bandwidth indicated by the fourth channel bandwidth indication information ranges from 20Mhz to 320Mhz;
  • any one of the initiator and the responder does not support standards after 802.11ax, and the channel bandwidth indicated by the fourth channel bandwidth indication information is in the range of 20Mhz to 160Mhz.
  • the channel bandwidth range that can be indicated by the fourth channel bandwidth indication information can be larger, such as 480 MHz, 640 MHz, 800 MHz, 960 MHz, 1120 MHz, and so on.
  • the fourth space-time stream number indication information can indicate a range of the number of space-time streams, such as 1 to 32 streams, 1 to 64 streams, etc.
  • the specific number of space-time streams is 20 streams, 24 streams, and 32 streams. , 48 streams, 64 streams, etc.
  • the fourth channel bandwidth indication information is used to indicate any one of the following four:
  • the channel bandwidth is 20Mhz, the channel bandwidth is 40Mhz, and the channel bandwidth is 80Mhz, all capabilities are supported.
  • the number of space-time streams indicated by the fourth space-time stream number indication information is a number of space-time streams less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the fourth space-time stream number indication information is the same.
  • the same OMI information can be parsed into different meanings for the case of whether the standard after 802.11ax is supported. Therefore, with minimal overhead, On the basis of maximum compatibility with the 802.11ax standard, the negotiation of enhanced OM has been realized.
  • this application discloses an operation mode negotiation method, which is applied to the responding end of operation mode negotiation, and includes:
  • the responding end receives an operation mode indication OMI sent from the initiator, where the OMI includes at least one of channel bandwidth indication information and space-time flow number indication information;
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is less than or equal to 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than or equal to 8 streams;
  • transmission is performed with the initiator.
  • the initiating end and the responding end perform transmission. Specifically, the responding end uses at least one of the channel bandwidth and the number of space-time streams indicated by the OMI to transmit with the initiating end.
  • control subfield includes a first control subfield and a second control subfield
  • the first control subfield is an OMI basic indication subfield, that is, the first control subfield is a control subfield indicating OMI in the 802.11ax standard;
  • the second control subfield is an OMI extended indication subfield, That is, the second control subfield is a control subfield different from the control subfield indicating OMI in the 802.11ax standard;
  • the first control subfield and the second control subfield jointly indicate enhanced OMI.
  • the enhanced OMI can indicate at least one of a larger range of channel bandwidth and a larger number of space-time streams relative to the range that can be indicated by the OMI in the 802.11ax standard.
  • the value of the control identifier corresponding to the first control subfield is 1; the value of the control identifier corresponding to the second control subfield is 7 to Any of 15.
  • the number of bits of the first channel bandwidth indication information used to indicate the channel bandwidth is 2 bits, so In the control information corresponding to the second control subfield, the number of bits of the second channel bandwidth indication information used to indicate the channel bandwidth is 1 bit; the first channel bandwidth indication information and the second channel bandwidth indication information indicate jointly The range of channel bandwidth is 20Mhz ⁇ 320Mhz.
  • the responding end jointly analyzes the first channel bandwidth indication information and the second channel bandwidth indication information to obtain the indicated channel bandwidth.
  • the channel bandwidth range jointly indicated by the first channel bandwidth indication information and the second channel bandwidth indication information may be larger, for example, 20Mhz ⁇ 640Mhz, or even 20Mhz ⁇ 1280Mhz.
  • the number of bits of the second channel bandwidth indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • the bits of the second channel bandwidth indicator information are composed of 2 bits of the first channel bandwidth indicator information and 1 bit of the second channel bandwidth indicator information. The least significant bit or the most significant bit among the 3 bits.
  • the number of bits of the first space-time stream number indication information for indicating the number of space-time streams is 3 bits
  • the number of bits of the second space-time stream number indication information used to indicate the number of space-time streams is 1 bit; the first space-time stream number indication information and The range of the number of space-time streams jointly indicated by the second space-time stream number indication information is 1-16 streams.
  • the range of the number of space-time streams jointly indicated by the first space-time stream number indication information and the second space-time stream number indication information can be larger, for example, 1 to 32 streams, or even 1 to 64 streams.
  • the bit number of the second space-time stream number indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • the responding terminal jointly parses the first space-time flow number indication information and the second space-time flow number indication information to obtain the indicated space-time flow number.
  • 1 bit of the second space-time stream number indication information is 2 bits of the first space-time stream number indication information and the second space-time stream number indication information.
  • 3 bits composed of 1 bit the least significant bit or the most significant bit.
  • the number of space-time streams indicated jointly by the first space-time stream number indication information and the second space-time stream number indication information is less than or equal to the predetermined number of space-time streams.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the first space-time stream number indication information is the same as the number of space-time streams jointly indicated by the second space-time stream number indication information.
  • the two control subfields provided by the first design of the second aspect of this application use another control subfield as the OMI extended indicator subfield on the basis of the OMI basic indicator subfield, which is compatible with the 802.11ax standard to the greatest extent. Smaller overhead realizes OM negotiation for larger channel bandwidth or more space-time streams.
  • control subfield is a control subfield, which is called a third control subfield
  • the OMI is carried in the control information corresponding to the third control subfield;
  • the control information includes at least one of the third channel bandwidth indication information and the third space-time flow number indication information;
  • the third channel bandwidth indication information is 3 bits, and is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz;
  • the third space-time stream number indication information is 4 bits , Used to indicate the range of space-time flow number is 1-16 flow.
  • the channel bandwidth range that can be indicated by the third channel bandwidth indication information can be larger, for example, 640Mhz.
  • the third space-time stream number indication information can indicate more space-time stream numbers, such as 1 to 32 streams, 1 to 64 streams, and so on.
  • the number of bits of the third channel bandwidth indication information may increase as the bandwidth range increases, for example, it may be 4 bits or 5 bits; the number of bits of the third space-time stream number indication information may also increase with the space-time stream
  • the number range increases as it increases, for example, it may be 5 bits or 6 bits.
  • the third control subfield is a control subfield located after the control subfield whose identifier is 15; the third control subfield The value of the field identifier is any one of 0-15.
  • the number of space-time streams indicated by the third space-time stream number indication information is the number of space-time streams less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the third space-time stream number indication information is the same.
  • control subfield with the identifier value of 15 is used as the identification point for indicating enhanced OMI, so that the responder of the OM negotiation can use this as a flag, and set the identifier value to 15.
  • the control subfield after the control subfield of is identified as the control subfield of the enhanced OM, which can support larger channel bandwidth and negotiation of more space-time streams.
  • the third channel bandwidth indication information includes first channel bandwidth sub-indication information and second channel bandwidth sub-indication information, and the first channel bandwidth sub-indication information
  • the indication information is 2 bits
  • the second channel bandwidth sub-indication information is 1 bit
  • the first channel bandwidth sub-indication information and the second channel bandwidth sub-indication information jointly indicate the channel bandwidth.
  • the responding end jointly analyzes the first channel bandwidth sub-indication information and the second channel bandwidth sub-indication information to obtain the indicated channel bandwidth.
  • the third space-time stream number indication information includes first space-time stream number sub-indication information and second space-time stream number sub-indication information.
  • the time stream number sub-indication information is 3 bits
  • the second space-time stream number sub-indication information is 1 bit
  • the first space-time stream number sub-indication information and the second space-time stream number sub-indication information jointly indicate the space-time stream number.
  • the responding terminal jointly parses the first space-time stream number sub-indication information and the second space-time stream number sub-indication information to obtain the indicated space-time stream number.
  • the value of the identifier of the third control subfield is any one of 0-15.
  • the value of the identifier corresponding to the third control subfield is 1.
  • the third control subfield may be a control subfield located after the control subfield whose identifier value is 15.
  • the first space-time stream number indication information and the second space-time stream number indication information jointly indicate The number of space-time streams is the same.
  • the number of space-time streams jointly indicated by the first space-time stream number sub-indication information and the second space-time stream number sub-indication information is a space-time stream number that is less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • control subfield is a control subfield, and this control subfield is called the fourth control subfield.
  • the OMI is carried in control information corresponding to a fourth control subfield, and the control information includes at least one of fourth channel bandwidth indication information and fourth space-time flow number indication information;
  • the fourth channel bandwidth indication information is 2 bits and is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz; the fourth space-time stream number indication information is 3 bits and is used to indicate that the space-time stream number range is 1 ⁇ 16 streams.
  • the responding end supports standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is 1 to 16 streams.
  • the fourth space-time stream number indication information is used to indicate any 8 values from 1 to 16 streams.
  • the responder does not support standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is any value from 1 to 8 streams.
  • the responding end supports standards after 802.11ax, and the channel bandwidth range indicated by the fourth channel bandwidth indication information is 20Mhz-320Mhz;
  • the responding end does not support standards after 802.11ax, and the channel bandwidth range indicated by the fourth channel bandwidth indication information is 20Mhz ⁇ 160Mhz.
  • the channel bandwidth range that can be indicated by the fourth channel bandwidth indication information can be larger, such as 480 MHz, 640 MHz, 800 MHz, 960 MHz, 1120 MHz, and so on.
  • the fourth space-time stream number indication information can indicate a range of the number of space-time streams, such as 1 to 32 streams, 1 to 64 streams, etc.
  • the specific number of space-time streams is 20 streams, 24 streams, and 32 streams. , 48 streams, 64 streams, etc.
  • the fourth channel bandwidth indication information is used to indicate any one of the following four:
  • the channel bandwidth is 20Mhz, the channel bandwidth is 40Mhz, and the channel bandwidth is 80Mhz, all capabilities are supported.
  • the number of space-time streams indicated by the fourth space-time stream number indication information is the number of space-time streams that is less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the fourth space-time stream number indication information is the same.
  • the same OMI information can be parsed into different meanings for the case of whether the standard after 802.11ax is supported. Therefore, with minimal overhead, On the basis of maximum compatibility with the 802.11ax standard, the negotiation of enhanced OM has been realized.
  • the present application provides a communication device, which serves as the initiator of the operation mode negotiation.
  • the communication device has some or all of the functions in the method example described in the first aspect.
  • the function of the communication device can be Some or all of the functions in the embodiments in the application may also have the function of independently implementing any of the embodiments in the application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the initiator to perform the corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the initiator and other devices.
  • the initiating end may also include a storage unit, which is used for coupling with the processing unit and the sending unit, and stores the program instructions and data necessary for the communication device.
  • the communication device includes:
  • the communication unit is configured to send an operation mode indication OMI to the responding end, where the OMI includes at least one of channel bandwidth indication information and space-time flow number indication information;
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is less than or equal to 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than or equal to 8 streams;
  • the communication device further includes a processing unit for transmitting with the responding terminal.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a transceiver configured to send an operation mode indication OMI to the responding end, where the OMI includes at least one of channel bandwidth indication information and space-time flow number indication information;
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is less than or equal to 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than or equal to 8 streams;
  • the communication device further includes a processor, and the processor is configured to transmit with the responding end.
  • the present application provides a communication device, which serves as the responder end of the operation mode negotiation.
  • the communication device has some or all of the functions in the method example described in the second aspect.
  • the function of the communication device may have Some or all of the functions in the embodiments of the present application may also have the function of independently implementing any of the embodiments of the present application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the initiator to perform the corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the initiator and other devices.
  • the initiating end may also include a storage unit, which is used for coupling with the processing unit and the sending unit, and stores the program instructions and data necessary for the communication device.
  • the communication device includes:
  • the communication unit is configured to receive an operation mode indication OMI sent from the initiator, the OMI including at least one of channel bandwidth indication information and space-time flow number indication information, and the channel bandwidth indication information indicates that the capability range of the channel bandwidth is greater than 160Mhz, the capacity range of the space-time stream number indicated by the space-time stream number indication information is greater than 8 streams;
  • the communication device further includes a processing unit, configured to transmit with the initiator according to the OMI.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • the transceiver is configured to receive an operation mode indication OMI sent from the initiator, the OMI including at least one of channel bandwidth indication information and space-time flow number indication information, and the channel bandwidth indication information indicates that the capability range of the channel bandwidth is greater than 160Mhz, the capacity range of the space-time stream number indicated by the space-time stream number indication information is greater than 8 streams;
  • the communication device further includes a processor, and the processor is configured to perform transmission with the initiator according to the OMI.
  • the communication device in this application can serve as the initiator and responder of OM negotiation. This is for the OM negotiation process.
  • the initiator that actively initiates the OM negotiation is called the initiator, and the device that responds to the OM negotiation is called the responder.
  • the sending end and the receiving end are for the transmission process.
  • the party sending the data is the sending end, and the party receiving the data is the receiving end.
  • the initiating end of OM negotiation can be the sending end of communication transmission or the receiving end of communication transmission; the response end of OM negotiation can be the sending end of communication transmission or the responding end of communication transmission.
  • the communication device in this application may be an access point (access point, AP) type of station, or a non-access point type of station (none access point station, non-AP STA);
  • the access point or station in this application may be a multi-link device (MLD).
  • MLD multi-link device
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or fully arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design.
  • this application also provides a processor configured to execute various methods in the first aspect or the second aspect.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input information of the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. Furthermore, after the above-mentioned information is output by the processor, other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the receiving OMI mentioned in the foregoing method can be understood as the processor inputting OMI.
  • sending OMI can be understood as the processor outputting OMI.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending, and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • the present invention The embodiment does not limit the type of the memory and the setting mode of the memory and the processor.
  • an embodiment of the present invention provides a computer-readable storage medium for storing a computer program used by the above-mentioned communication device, which includes a computer program used to execute the first aspect or the second aspect of the above-mentioned method .
  • the present application also provides a computer program product including a computer program, which when running on a computer, causes the computer to execute the method described in the first aspect or the second aspect.
  • the present application provides a chip system that includes a processor and an interface, and is used to support a communication transmission device to implement the functions involved in the first or second aspect, for example, to determine or process the functions mentioned in the above method. At least one of the data and information involved.
  • the chip system further includes a memory, and the memory is used to store necessary information and data of the aforementioned communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a functional entity, which is used to implement the method described in the first or second aspect.
  • FIG. 1 is a schematic structural diagram of a network system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a chip system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a MAC frame provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of the A-control field in the 802.11ax standard provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the structure of a control subfield in the 802.11ax standard provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a control subfield provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another control subfield provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another control subfield provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another control subfield provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another control subfield provided by an embodiment of the present application.
  • FIG. 1 Take Fig. 1 as an example to illustrate the applicable network structure of the OM negotiation method described in this application.
  • FIG. 1 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • the network structure may include one or more access point (AP)-type sites and one or more non-access point-type sites ( none access point station, non-AP STA).
  • AP access point
  • non-AP STA non-access point-type sites
  • this article refers to the access point type of station as an access point (AP), and the non-access point type of station as a station (STA).
  • AP access point
  • STA station
  • both AP and STA can serve as the initiator and responder of OM negotiation.
  • the initiator and responder of OM negotiation are for the OM negotiation process.
  • the initiator that initiates OM negotiation actively is called the initiator and responds.
  • the OM negotiated is called the responder.
  • the sending end and the receiving end are for the transmission process.
  • the party sending the data is the sending end, and the party receiving the data is the receiving end.
  • the initiating end of OM negotiation can be the sending end of communication transmission or the receiving end of communication transmission; the response end of OM negotiation can be the sending end of communication transmission or the responding end of communication transmission.
  • AP acts as the initiator of OM negotiation
  • STA1 or STA2 acts as the responder of OM negotiation
  • AP serves as the initiator of OM negotiation, and another AP serves as the responder of OM negotiation;
  • STA1 serves as the initiator of the OM negotiation
  • STA2 serves as the responder of the OM negotiation.
  • both the initiator and the responder of the OM negotiation can be used as the sending end of the communication transmission, and can also be used as the receiving end of the communication transmission, which is not limited in this application.
  • the access point may be an access point for terminal devices (such as mobile phones) to enter a wired (or wireless) network. It is mainly deployed in homes, buildings, and parks. The typical coverage radius is from tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. The main function is to connect each wireless network client together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (WiFi) chip.
  • WiFi wireless fidelity
  • the access point can be a device that supports the 802.11be standard.
  • the access point may also be a device supporting multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area networks
  • the access point in this application can be an HE-AP or EHT-AP, or an access point that is applicable to a future generation of WiFi standards.
  • the site can be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and can also be referred to as a user.
  • the site can be a mobile phone that supports WiFi communication function, a tablet computer that supports WiFi communication function, a set-top box that supports WiFi communication function, a smart TV that supports WiFi communication function, a smart wearable device that supports WiFi communication function, and WiFi communication function is supported.
  • the station can support the 802.11be standard.
  • the site can also support multiple WLAN standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a.
  • the access point in the embodiment of the present application may be an HE-STA or EHT-STA, and may also be an STA applicable to a future generation of WiFi standard.
  • access points and sites can be devices used in the Internet of Vehicles, Internet of Things (IoT) nodes, sensors, etc., smart cameras, smart remote controls, smart water meters, and electricity meters in smart homes. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the AP site and non-AP site in this application may also be a wireless communication device that supports multiple links to transmit in parallel, for example, called a multi-link device or multi-link device.
  • Multi-band device multi-band device. Compared with devices that only support single link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • the multi-link device includes one or more affiliated STAs (affiliated STA).
  • the affiliated STA is a logical station and can work on a link.
  • the initiating end and the responding end of the OM negotiation involved in the embodiments of the present application can also be collectively referred to as a communication device, which can include a hardware structure and a software module, and is implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module The above functions.
  • a communication device can include a hardware structure and a software module, and is implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module The above functions.
  • One of the above-mentioned functions can be implemented in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device 200 may include a processor 201, a transceiver 205, and optionally a memory 202.
  • the transceiver 205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 205 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the memory 202 may store a computer program or software code or instruction 204, and the computer program or software code or instruction 204 may also be referred to as firmware.
  • the processor 201 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 203 therein, or by calling the computer program or software code or instruction 204 stored in the memory 202, so as to realize the following aspects of this application.
  • the OM negotiation method provided by the embodiment.
  • the processor 201 may be a central processing unit (CPU), and the memory 302 may be, for example, a read-only memory (ROM) or a random access memory (RAM).
  • the processor 201 and the transceiver 205 described in this application can be implemented in an integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit Printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit Printed circuit board
  • electronic equipment etc.
  • the above-mentioned communication device 200 may further include an antenna 206, and each module included in the communication device 200 is only an example for illustration, and this application is not limited thereto.
  • the communication device described in the above embodiment may be an access point or a station, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 2.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • the IC collection may also include storage for storing data and instructions Components; (3) Modules that can be embedded in other devices; (4) Receivers, smart terminals, wireless devices, handhelds, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.; (5) Others, etc. .
  • the implementation form of the communication device is a chip or a chip system
  • the chip shown in FIG. 3 includes a processor 301 and an interface 302.
  • the number of processors 301 may be one or more, and the number of interfaces 302 may be more than one.
  • the chip or chip system may include a memory 303.
  • an initiator who wants to change the operation mode (OM) sends a MAC frame with a control subfield with OMI to the responder (Responder) for OM negotiation.
  • the initiator and the responder perform transmission according to the negotiated OM.
  • the OM usually includes information such as channel bandwidth information or the number of space-time streams.
  • Access Point In WLAN, access points (Access Point, AP) and stations (Station, STA) use Media Access Control (Medium Access Control, abbreviation: MAC) Protocol Data Unit (MAC Protocol Data Unit, abbreviation: MPDU), or MAC for short Frames are used to transfer control signaling, management signaling or data.
  • MAC Media Access Control
  • MPDU Protocol Data Unit
  • the sender can transmit some control information.
  • the high-throughput control field of high-efficiency variants (currently including high-throughput variants, very high-throughput variants and high-efficiency variants) in the aggregate control (Aggregated Control, A-control) subfield uses one or more control flags
  • the structure of symbol plus control information can be used to carry 1 to N pieces of control information.
  • the structure of the A-control subfield is shown in Figure 5, where the control identifier is used to indicate the type of control information.
  • the types of control subfields supported in 802.11ax are shown in Table 2.
  • Control ID value meaning Length of control information subfield 0
  • Trigger response schedule 26
  • Operation mode 12 2
  • Efficient link adaptation 26
  • Cache status report 26
  • Uplink power headroom (headroom) 8
  • Channel bandwidth inquiry report 10
  • Command and status 7-14 Reserved To 15 All-in-one sequence for expansion 26
  • control information corresponding to the control subfield Included information such as: receiver number of spatial streams (Rx NSS), channel bandwidth (channel width, CW), prohibit uplink multi-user transmission (UL MU disable), transmit number of spatial streams (transmit number of spatial) streams and time streams, Tx NSTS), extended distance single-user transmission is prohibited (ER SU disable), it is recommended to perform downlink multi-user multiple-input multiple-output transmission channel detection (DL MU-MIMO response) again, and multi-user transmission of uplink data is prohibited ( UL MU Data disable) and so on.
  • Rx NSS receiver number of spatial streams
  • CW channel bandwidth
  • UL MU disable prohibit uplink multi-user transmission
  • Tx NSTS transmit number of spatial streams
  • Tx NSTS time streams
  • control subfield for the indication of the control subfield (control subfield), it is indicated that it includes two parts: a control identifier (control ID) and control information (control information), and then specifically indicates various information included in the control information.
  • control ID control identifier
  • control information control information
  • FIG. 7 A detailed illustration, such as Figure 7; in order to save space, the control subfield is simply illustrated as including a control identifier (control ID) and various specific control information, that is, the illustration of control information (control information) is omitted. , Such as Figure 6.
  • the OMI involved in the embodiments of this application mainly refers to the channel bandwidth and the number of space-time streams therein.
  • the channel bandwidth is used to indicate the channel bandwidth of the PPDU sent or received by the OM initiator (for bandwidth, a unified indication of sending and receiving).
  • the number of received space-time streams is used to indicate the number of received physical layer protocol data unit (PHY Protocol Data Unit, PPDU) space-time streams supported by the OM initiator. This value will be less than or equal to the maximum number of space-time streams supported by the OM initiator. .
  • the number of received space-time streams is the limit when the initiator is the receiving end in the data transmission process, and it is also the limit on the number of space-time streams of data sent by the sender on the other side, and cannot exceed the received space-time stream. The range of capabilities limited by the number.
  • the number of transmitted space-time streams is used to indicate the number of space-time streams of transmitted PPDUs supported by the OM initiator.
  • the number of sent space-time streams is limited when the initiator acts as the sender in the data transmission process, and it cannot exceed the capacity range limited by the number of sent space-time streams during the data transmission process.
  • the number of space-time streams considers space-time block coding (STBC).
  • STBC space-time block coding
  • the number of space-time streams is twice the number of spatial streams. If not, the two are the same. In the embodiments of the present application, the two are not clearly distinguished. In the description, if it is not clearly stated, it is usually expressed by the number of space-time flows.
  • the space-time stream number indication information may indicate the space stream number, or the space-time stream number, or partly indicate the space-time stream number, and partly indicate the space stream number. For example, for the sending end, it indicates the number of space-time streams to be sent, and for the receiving end, it indicates the number of space-time streams to be received. vice versa.
  • the technical solution for OM negotiation that is different from the 802.11ax standard can be extended by extending certain control subfields or their control information in the MAC frame in the 802.11ax standard, or This can be achieved by adding control sub-fields.
  • this application provides the initiator and responder of OM negotiation, and the related content of the OM negotiation method implemented in the network system as shown in FIG. 1 is further elaborated.
  • the initiating end sends an operation mode indication OMI to the responding end, where the OMI includes at least one of channel bandwidth indication information and space-time flow number indication information;
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams;
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is less than or equal to 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than 8 streams; or
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information is greater than 160Mhz, and the capability range of the number of space-time streams indicated by the number of space-time streams is greater than or equal to 8 streams;
  • the channel bandwidth range indicated by the channel bandwidth indication information and the space-time stream number range indicated by the space-time stream number indication information may be There are many combinations, such as:
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than 160Mhz, but the number of space-time streams indicated by the space-time stream number indicator information is 1 to 8 streams (the space-time stream that indicates that the number of space-time streams is 1 to 8 can use the enhanced space-time stream in this application
  • the number indication information can also be indicated by the 802.11ax standard and its previous space-time stream number indication information
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than or equal to 20Mhz and less than or equal to 160Mhz (indicating that the bandwidth range is less than or equal to 160Mhz, the enhanced channel bandwidth indicator information in this application can be used, or the 802.11ax standard and the channel bandwidth before it can be used
  • the instruction information indicates), and the number of space-time streams indicated by the space-time stream number indication information is 1-16 streams.
  • the channel bandwidth indicator information indicates that the bandwidth range is greater than or equal to 20Mhz and less than or equal to 160Mhz (indicating that the bandwidth range is less than or equal to 160Mhz, the enhanced channel bandwidth indicator information in this application can be used, or the 802.11ax standard and the channel bandwidth before it can be used
  • the number of space-time streams indicated by the space-time stream number indication information is 1-8 streams (the number of space-time streams indicated by the number of space-time streams is 1-8 streams can use the enhanced space-time stream number indication information in this application, or it can be Use the 802.11ax standard and the previous space-time stream number indication information for indication).
  • the channel bandwidth indication information indicates that the bandwidth range is greater than 160Mhz, and the number of space-time streams indicated by the space-time stream number indication information is 1-16 streams.
  • the responding end sends a confirmation message to the initiating end, and after receiving the confirmation message, the initiating end transmits with the responding end.
  • the initiating end and the responding end use data transmission within the range of the channel bandwidth indicated by the channel bandwidth indication information.
  • the number of received space-time streams is used to indicate the number of space-time streams of received PPDUs supported by the OM initiator, and this value will be less than or equal to the maximum number of space-time streams supported by it.
  • the number of received space-time streams is the limit when the initiator is the receiving end in the data transmission process, and it is also the limit on the number of space-time streams of data sent by the sender on the other side, and cannot exceed the received space-time stream. The range of capabilities limited by the number.
  • the number of transmitted space-time streams is used to indicate the number of space-time streams of transmitted PPDUs supported by the OM initiator.
  • the number of sent space-time streams is limited when the initiator acts as the sender in the data transmission process. During the data transmission process, it cannot exceed the capacity range limited by the number of sent space-time streams.
  • the enhanced OM negotiation technical solution provided by the embodiments of the present application is mainly implemented based on the control information carried in the MAC frame.
  • the control subfield is used to implement, that is, carried in In the control information corresponding to the control subfield; the control information includes at least one of the channel bandwidth indication information and the space-time flow number indication information.
  • the embodiment of the present application does not exclude the use of other subfields of the MAC frame to implement enhanced OM negotiation.
  • control subfield provided in the existing 802.11ax standard is used as the basic indicator subfield, and an extended indicator subfield is added to implement an enhanced OM negotiation technical solution.
  • the enhanced OM negotiation involved in the embodiments of this application refers to the capability range of OM negotiation compared to 802.11ax.
  • the capability range of the channel bandwidth that can be negotiated can be greater than 160Mhz
  • the space-time that can be negotiated The capacity range of the number of streams can be greater than 8 streams.
  • the capability range of the channel bandwidth indicated by the channel bandwidth indication information referred to in the embodiments of the present application refers to the range of the maximum value of the channel bandwidth that it can indicate, but does not exclude the range indicated by the channel bandwidth indication information
  • the actual channel bandwidth will be smaller than its capability range.
  • the actual channel bandwidth indicated by the channel bandwidth indication information can be any of 20Mhz, 40Mhz, 80Mhz, 160Mhz, 240Mhz, 320Mhz, where the maximum value of the channel bandwidth is 320Mhz, then in this application, it is expressed as: Channel bandwidth
  • the capability range of the channel bandwidth indicated by the indication information is greater than 160Mhz, which may also be referred to as an enhanced bandwidth indication, for example, an enhanced channel width indication.
  • the channel bandwidth may be continuous or non-continuous, for example, 320Mhz may be 160Mhz+160Mhz. 240Mhz can be 80Mhz+160Mhz or 160Mhz+80Mhz.
  • the capability range of the channel bandwidth that can be indicated by the channel bandwidth indication information provided in this application may be greater than 320Mhz, for example, 480MHz, 640Mhz, 800MHz, 960MHz, 1120MHz, 1280Mhz, and so on.
  • the capability range of the space-time flow number indicated by the space-time flow number indication information referred to in the embodiments of the present application refers to the range of the maximum value of the space-time flow number that it can indicate, but the space-time flow number indication is not excluded
  • the actual number of space-time streams indicated by the information will be less than its capability range.
  • the actual space-time flow number indicated by the space-time flow number indication information is any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
  • the maximum value of the number of space-time streams is 16, in this application, it is expressed as: the capacity range of the number of space-time streams indicated by the space-time stream number indication information is greater than 8 streams, which can also be referred to as enhanced in the following Space-time flow number indication, such as enhanced Rx NSS or Tx NSTS indication.
  • the capability range of the space-time stream number indication information that can be indicated by the space-time stream number indication information provided in this application can also be greater than 16 streams, for example, 20 streams, 24 streams, and 32 streams. 48 streams, 64 streams and so on.
  • the space-time stream number indication information includes at least one of sending space-time stream number indication information and receiving space-time stream number indication information. In this way, it can be flexibly instructed to use the same or different number of space-time streams for transmission as the sender and receiver of data transmission.
  • the space-time stream number indication information is used to simultaneously indicate the number of sent space-time streams and the number of received space-time streams. In this way, the minimum number of bits can be used to indicate the same number of space-time streams used by the sender and receiver as data transmission.
  • the number of space-time streams indicated by the space-time stream number indication information is the number of space-time streams that is less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams corresponding to other channel bandwidths can be derived according to preset conditions. For example, the larger the channel bandwidth, the smaller the number of space-time streams.
  • the following formula (1) is used to derive the number of space-time streams whose channel bandwidth of the PPDU is a certain value from the indicated number of space-time streams:
  • the control subfield indicates the NSS or NSTS in OMI* (the PPDU channel bandwidth is the maximum value of the NSS or NSTS supported by a certain value / the PPDU channel bandwidth is the NSS or the NSS supported by the preset channel bandwidth value The maximum value of NSTS))-formula (1)
  • the channel bandwidth of the PPDU is the maximum value of NSS or NSTS supported by a certain value, and the maximum value of the NSS or NSTS supported when the PPDU channel bandwidth is the preset channel bandwidth value can be obtained in advance through capability information.
  • control subfield indicates that the NSS or NSTS in the OMI is 4 streams, and when the channel bandwidth of the PPDU is 320Mhz, the maximum value of the NSS or NSTS supported by a certain STA is 2 streams, and the PPDU is the preset channel bandwidth value of 80Mhz. The maximum value of NSS or NSTS supported by the STA is 8 streams.
  • the PPDU channel bandwidth is 320Mhz
  • the number of space-time streams indicated by the space-time stream number indication information is the same.
  • the channel bandwidth indication information indicates any of 20Mhz, 40Mhz, 80Mhz, 160Mhz, 240Mhz, and 320Mhz
  • the number of space-time streams indicated by the space-time stream number indication information is always 8 streams.
  • the initiator and the responder can negotiate to always use the same space-time flow number.
  • the space-time flow number can be the same as the maximum supported control flow number or the minimum control flow reported earlier by the responder. The number is the same.
  • the space-time flow number indication information can also be omitted.
  • the initiator and the responder can also negotiate the channel bandwidth and the number of space-time streams after one OM negotiation, and when the channel bandwidth is changed in the subsequent negotiation, there is no need to send the number of space-time streams.
  • the number of subsequent space-time streams is equal to The number of space-time streams negotiated last time is the same.
  • the AP in FIG. 1 is used as the initiator of the OM negotiation, and STA1 is used as the responder of the OM negotiation as an example.
  • Other situations are similar to this, and examples are not given one by one.
  • the OMI sent by the AP to STA1 is jointly indicated by two or more control subfields to implement the technical solution of enhanced OM negotiation.
  • the AP sends OMI to STA1 through its transceiver (205 as shown in Figure 2), where the OMI is carried in the control information corresponding to the control subfield;
  • STA1 receives the OMI from the AP through its transceiver (similarly, 205 as shown in FIG. 2).
  • the control subfield carrying OMI includes a first control subfield and a second control subfield;
  • the first control subfield is an OMI basic indicator subfield, that is, the first control subfield
  • the field is the control subfield that indicates OMI in the 802.11ax standard;
  • the second control subfield is the OMI extension indicator subfield, that is, the second control subfield is different from the control subfield that indicates OMI in the 802.11ax standard Control subfield;
  • the first control subfield and the second control subfield jointly indicate enhanced OMI.
  • the enhanced OMI can indicate a larger range of channel bandwidth and a larger number of space-time streams relative to the range that can be indicated by the OMI in the 802.11ax standard.
  • the control information corresponding to the first control subfield and the second control subfield both include at least one of channel bandwidth indication information (channel width) and space-time stream number indication information (for example, Rx NSS/Tx NSTS).
  • the number of bits of the first channel bandwidth indication information used to indicate the channel bandwidth is 2 bits, which is used to indicate empty
  • the bit number of the first space-time stream number indication information of the hour stream number is 3 bits, for example, Rx NSS is 3 bits, and Tx NSTS is 3 bits.
  • the value of the control identifier corresponding to the second control subfield is any one of 7-15.
  • control identifier 7-15 is the control identifier of the reserved control subfield in the 802.11ax standard. In the embodiment of this application, one or two of them will be used for control.
  • the control subfield corresponding to the identifier is used as an extended control subfield, and it indicates the enhanced OM in conjunction with the first control subfield whose control identifier is 1.
  • the second control subfield here can be one control subfield, or it can be increased to two or more as appropriate.
  • the value of the control identifier corresponding to the second control subfield is 1, that is, the control identifier corresponding to the first control subfield adopts the same value.
  • the control identifier of the first control subfield is 1, by default, the following control subfield with a control identifier of 1 is combined with the first control subfield. OM with enhanced resolution.
  • the initiator and the responder continuously receive two control identifiers of 1 as the control subfield, which is an OM that requires joint analysis to be enhanced.
  • control identifier corresponding to the first control subfield is 15, and the control identifier corresponding to the second control subfield has a value of 1, or any value from 7 to 15.
  • control The first control subfield with an identifier of 15 is also similar to the function of the control subfield with an identifier of 1 in the 802.11ax standard, and can be used for OM negotiation.
  • the control identifier of the first control subfield is 15, it is assumed that the control subfield of the following one is an enhanced OM that is parsed jointly with the first control subfield.
  • Fig. 7 takes the second control subfield as one control subfield as an example.
  • the number of bits of the second channel bandwidth indication information used to indicate the channel bandwidth is 1 bit; for example, the channel width MSB in Fig. 7 It is 1 bit; in this way, the first channel bandwidth indication information and the second channel bandwidth indication information are 3 bits in total, and the enhanced channel bandwidth range that can be jointly indicated is 20Mhz-320Mhz.
  • Table 3 takes the bits of the second channel bandwidth indication information as the 2 bits of the first channel bandwidth indication information and 1 bit of the second channel bandwidth indication information. ) Is taken as an example. Similarly, the bits of the second channel bandwidth indication information are the least important or least significant of the 3 bits composed of 2 bits of the first channel bandwidth indication information and 1 bit of the second channel bandwidth indication information. Bit (Least Significant Bit, LSB), specifically, as shown in Table 4:
  • Tables 3 and 4 are only for illustration. In specific implementation, 3 bits composed of 2 bits of the first channel bandwidth indication information and 1 bit of the second channel bandwidth indication information can indicate the 8 values and the channel bandwidth. There are other combinations of the corresponding relationship, so I won’t repeat them here.
  • the channel bandwidth range jointly indicated by the first channel bandwidth indication information and the second channel bandwidth indication information may be larger, for example, 20Mhz ⁇ 640Mhz, or even 20Mhz ⁇ 1280Mhz.
  • the number of bits of the second channel bandwidth indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • the STA1 as the responding end receives the first control subfield and the second control subfield through its transceiver 205, its processor 201 can send the first channel bandwidth indication information and the second channel bandwidth indication information therein. Joint analysis to obtain the channel bandwidth indicated to it by the AP.
  • the number of bits of the first space-time stream number indication information used to indicate the number of space-time streams is 3 bits
  • the second control subfield corresponds to In the control information, the number of bits of the second space-time stream number indication information used to indicate the number of space-time streams is 1 bit; the first space-time stream number indication information and the second space-time stream number indication information total 4 Bit, the number of space-time streams that can be jointly indicated ranges from 1 to 16 streams.
  • Table 5 takes 1 bit of the second space-time stream number indication information as 2 bits of the first space-time stream number indication information and 1 bit of the second space-time stream number indication information.
  • the most significant bit of the 3 bits is:
  • the bits of the second channel bandwidth indicator information are the least important or least significant bit of the 3 bits composed of 2 bits of the first channel bandwidth indicator information and 1 bit of the second channel bandwidth indicator information ( LSB), specifically, as shown in Table 6:
  • Tables 5 and 6 are only for illustration. In specific implementation, the 16 values that can be represented by 4 bits composed of 3 bits of the first space-time stream number indication information and 1 bit of the second space-time stream number indication information are combined with There are other combinations of the correspondence between the number of space-time streams, which are not repeated here.
  • the range of the number of space-time streams jointly indicated by the first space-time stream number indication information and the second space-time stream number indication information can be larger, for example, 1 to 32 streams, or even 1 to 64 streams.
  • the bit number of the second space-time stream number indication information may remain 1 bit, or increase to 2 bits, or 3 bits and so on.
  • the number of space-time streams jointly indicated by the first space-time stream number indication information and the second space-time stream number indication information is a space-time stream number less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the first space-time stream number indication information and the second space-time stream number are the same.
  • the number of space-time streams indicated jointly by the first space-time stream number indication information and the second space-time stream number indication information may be the number of received space-time streams or the number of sent space-time streams.
  • the number of time streams that is, the number of received space-time streams and the number of transmitted space-time streams can be combined into one indication information.
  • Rx NSS and Tx NSTS shown in Figure 6 can be combined into one indication information, occupying a total of 3 bits, as shown in Figure 7.
  • the indicated Rx NSS MSB and Tx NSTS MSB can be combined into one indication information, occupying a total of 1 bit. In this way, indication overhead can be omitted.
  • the first space-time stream number indication information still separately indicates the number of received space-time streams and the number of sent space-time streams.
  • Rx NSS and Tx NSTS shown in FIG. 6 occupy 3 bits each.
  • the second space-time stream number indication information indicates the number of received space-time streams and the number of sent space-time streams.
  • the Rx NSS MSB and Tx NSTS MSB shown in Figure 7 can be combined into one indication information, occupying 1 bit in total.
  • One bit of the two space-time stream number indication information is respectively combined with two 3 bits in the first space-time stream number indication information to jointly indicate the space-time stream number. This way also saves indication overhead to a certain extent.
  • the OM negotiation technology implemented by the initiator AP and the responder STA1 uses another control subfield as the OMI extended indicator subfield on the basis of the OMI basic indicator subfield. It is compatible with the 802.11ax standard to the greatest extent, and realizes the OM negotiation of larger channel bandwidth or more space-time streams with less overhead.
  • the receiving end of the communication if it finds only the first control subfield (OMI basic indication subfield) in the A-control subfield, then obtain the OM indicated by the initiator of the OM negotiation in the OM control subfield; if it finds it at the same time If the OMI basic indication subfield and the OMI extended indication subfield are combined, the enhanced OM indicated by the OMI initiator is read jointly.
  • OMI basic indication subfield the first control subfield in the A-control subfield
  • the first embodiment above is an illustration of implementing enhanced OM negotiation through two control fields.
  • the OM negotiation technology provided in the embodiments of the present application can also be implemented through one control subfield, and the following multiple embodiments are described separately.
  • the OMI sent by the AP to STA1 implements an enhanced OM negotiation technical solution through a control subfield.
  • this control subfield is called the third control subfield; correspondingly, the OMI is carried in the control information corresponding to the third control subfield; the control information includes the third channel bandwidth indication information and the third control subfield; At least one of the three-space-time flow number indication information.
  • the third channel bandwidth indication information (channel width) in the control information corresponding to the third control subfield is 3 bits, which is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz;
  • third The space-time stream number indication information (indicating Rx NSS and Tx NSTS at the same time) is 4 bits, and is used to indicate the number of sent space-time streams and the number of received space-time streams in the range of 1 to 16 streams.
  • FIG. 8 takes the value of the control identifier of the third control subfield as an example for description.
  • a control subfield corresponding to the value of the control identifier can also be redefined to indicate the enhanced OM.
  • Rx NSS and Tx NSTS use a third space-time flow number indication information for unified indication.
  • the third control subfield does not increase the number of bits, but implements enhanced OM negotiation.
  • each sub-control information in the control information corresponding to the control sub-field as shown in FIG. 8 is only an example, and there may be other variations, and the number of bits of other control sub-information may also be changed adaptively.
  • the control sub-field shown in Figure 8 compared with the 802.11ax standard, the sequence of prohibiting uplink multi-user transmission (UL MU disable) has changed. Of course, in other implementations, it can also be followed by 802.11ax.
  • the control sub-fields in the standard are consistent.
  • the third channel bandwidth indication information (channel width) in the control information corresponding to the third control subfield (control subfield 1 in FIG. 9) is 3 bits and is used to indicate the channel
  • the bandwidth range is 20Mhz ⁇ 320Mhz
  • the third space-time stream number indication information (Rx NSS or Tx NSTS) is 4 bits, used to indicate the number of space-time streams in the range of 1 to 16 streams.
  • FIG. 9 illustrates an example by taking the control identifier value of the third control subfield from 7 to 14; for example, the control subfield corresponding to the value 8 of the control identifier is used to indicate the enhanced OM.
  • the third control subfield is a control subfield located after the control subfield whose identifier value is 15; the control subfield here (shown as control subfield1 in FIG. 10) It only includes the control ID.
  • control ID 1111 serves as an extended function, but does not include the corresponding control information (control information). Therefore, the following control ID can take any value, that is, the value of the identifier of the third control subfield. It is any one of 0-15.
  • the number of bits of Rx NSS, Channel Width, and Tx NSTS are at least 4 bits, 3 bits, and 4 bits respectively.
  • the control sub-fields of other functions are similar, which is helpful for aligning the 802.11ax standard with subsequent standards.
  • the channel bandwidth range that the third channel bandwidth indication information can indicate can be larger, such as 480Mhz, 640Mhz, 800Mhz, 960Mhz, 1120Mhz, and so on.
  • the third space-time stream number indication information can indicate a larger range of space-time stream numbers, such as 1 to 32 streams, 1 to 64 streams, and the specific space-time stream numbers are 20 streams, 24 streams, 32 streams, and 48 streams. Stream, 64 streams and so on.
  • the number of space-time streams indicated by the third space-time stream number indication information is the number of space-time streams less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the third space-time stream number indication information is the same.
  • the number of space-time streams indicated by the third space-time stream number indication information may be the number of received space-time streams, or the number of transmitted space-time streams, that is, the number of received space-time streams.
  • the number and the number of transmitted space-time streams can be combined into one indication information.
  • the Rx NSS and Tx NSTS shown in Figure 9 or Figure 10 can be combined into one indication information, occupying a total of 4 bits. In this way, indication overhead can be omitted.
  • the control subfield with the identifier value of 15 in the 802.11ax standard is used as the identification point for indicating enhanced OMI, so that the responder of the OM negotiation can use this as a flag, and set the value of the identifier
  • the control subfield after the control subfield of 15 is identified as the control subfield of the enhanced OM, which can support larger channel bandwidth and negotiation of more space-time streams.
  • the OMI sent by the AP to STA1 implements an enhanced OM negotiation technical solution through a control subfield.
  • this control subfield is still referred to as the third control subfield; correspondingly, the OMI is carried in the control information corresponding to the third control subfield; the control information includes the third channel bandwidth indication information and At least one of the third space-time flow number indication information.
  • the third channel bandwidth indication information in the control information corresponding to the third control subfield is 3 bits
  • the third channel bandwidth indication information includes the first channel bandwidth sub-indication information and the second channel bandwidth sub-indication information
  • the first channel bandwidth sub-indication information Information (channel width as shown in FIG. 11) is 2 bits
  • the second channel bandwidth sub-indication information (channel width MSB as shown in FIG. 11) is 1 bit
  • the first channel bandwidth sub-indication information and the first channel bandwidth sub-indication information The two-channel bandwidth sub-indication information jointly indicates the channel bandwidth.
  • the 1-bit second channel bandwidth sub-indication information is used as the 2-bit first channel bandwidth sub-indication information and the 1-bit second channel bandwidth sub-indication information in the 3-bit third channel bandwidth indication information.
  • the 1-bit second channel bandwidth sub-indication information can also be used as 2-bit first channel bandwidth sub-indication information and 1-bit second channel bandwidth sub-indication information LSB in the third channel bandwidth indication information composed of 3 bits.
  • the responding end jointly parses the first channel bandwidth sub-indication information and the second channel bandwidth sub-indication information to obtain the indicated channel bandwidth.
  • the third space-time stream number indication information includes the first space-time stream number sub-indication information and the second space-time stream number sub-indication information, and the first space-time stream number sub-indication information (as shown in FIG. 11)
  • the Tx/Rx NSTS shown is 3 bits
  • the second space-time stream number sub-indication information (Tx/Rx NSTS MSB shown in FIG. 11) is 1 bit
  • the first space-time stream number sub-indication information and the first The two space-time stream number sub-indication information jointly indicate the space-time stream number.
  • the 1-bit second space-time stream number sub-indicating information is used as the 3-bit first space-time stream number sub-indicating information and the 1-bit second space-time stream number sub-indicating information is composed of the 4-bit third space-time
  • the MSB in the stream number indication information is described as an example.
  • the 1-bit second space-time stream number sub-indication information can also be used as the 3-bit first space-time stream number sub-indication information and the 1-bit space-time stream number sub-indication information.
  • the LSB in the 4-bit third space-time stream number indication information composed of the second space-time stream number sub-indication information.
  • the responding terminal jointly parses the first space-time stream number sub-indication information and the second space-time stream number sub-indication information to obtain the indicated space-time stream number.
  • the value of the identifier of the third control subfield is any one of 0-15.
  • the value of the identifier corresponding to the third control subfield is 1.
  • the third control subfield may be a control subfield located after the control subfield whose identifier value is 15.
  • the number of space-time streams jointly indicated by the first space-time stream number sub-indication information and the second space-time stream number sub-indication information is a space-time stream number that is less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the first space-time stream number indication information and the second space-time stream number indication information jointly indicate The number of space-time streams is the same.
  • the realization is achieved on the basis of maximum compatibility with the 802.11ax standard.
  • Negotiations on enhanced OM are possible.
  • this control subfield is called the fourth control subfield; correspondingly, the OMI is carried in the control information corresponding to the fourth control subfield, and the control information includes fourth channel bandwidth indication information And at least one of the fourth space-time flow number indication information.
  • the fourth channel bandwidth indication information is 2 bits and is used to indicate that the channel bandwidth ranges from 20Mhz to 320Mhz;
  • the fourth control subfield indicates the channel bandwidth range of the fourth channel bandwidth indication information from 20Mhz to 320Mhz;
  • any one of the initiator and the responder does not support standards after 802.11ax, and the channel bandwidth indicated by the fourth channel bandwidth indication information is in the range of 20Mhz to 160Mhz.
  • the fourth channel bandwidth indication information indicates 2 bits, and its value is 11.
  • both the initiator and the responder support the standard after 802.11ax, for example, the 802.11be standard is supported, and the corresponding meaning of 11 is to initiate
  • the channel bandwidth negotiated between the end and the responder is 320Mhz, or 160+160Mhz; in the other case, either the initiator or the responder does not support the standard after 802.11ax.
  • the responder does not support the 802.11be standard.
  • the corresponding meaning of 11 is that the channel bandwidth negotiated between the initiator and the responder is 160Mhz, or 80+80Mhz.
  • the fourth channel bandwidth indication information is used to indicate any one of the following four types:
  • the channel bandwidth is 20Mhz, the channel bandwidth is 40Mhz, and the channel bandwidth is 80Mhz, all capabilities are supported.
  • the fourth channel bandwidth indication information is 2 bits and its value is 11.
  • both the initiator and the responder support standards after 802.11ax.
  • the 11 corresponds to The meaning is that the channel bandwidth negotiated between the initiator and the responder is fully supported within the capacity; the other case is that either the initiator or the responder does not support the standard after 802.11ax, for example, the responder does not support the 802.11be standard ,
  • the corresponding meaning of 11 is that the channel bandwidth negotiated between the initiator and the responder is 160Mhz, or 80+80Mhz.
  • the channel bandwidth indicated by the 2-bit fourth channel bandwidth indication information can also be other values, for example, it can also indicate 240Mhz or 160+80Mhz or 80+160Mhz, etc. ; As long as it meets: both the initiator and the responder support the standards after 802.11ax, the 2 bits indicate any four values from 20Mhz to 320Mhz; the initiator and responder do not support the standards after 802.11ax, and the 2 bits indicate 20Mhz ⁇ Any four values of 160Mhz are fine.
  • the channel bandwidth range that can be indicated by the fourth channel bandwidth indication information can be larger, for example, 640Mhz.
  • the fourth space-time stream number indication information is 3 bits and is used to indicate that the range of the space-time stream number is 1-16 streams.
  • both the initiator and the responder support standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is any value from 1 to 16 streams; optional Yes, the fourth space-time stream number indication information is used to indicate any 8 values from 1 to 16 streams.
  • any one of the initiator and the responder does not support standards after 802.11ax, and the number of space-time streams indicated by the fourth space-time stream number indication information is any value from 1 to 8 streams.
  • Tx NSTS/Rx NSS when the number of bits used to indicate Tx NSTS/Rx NSS remains unchanged at 3 bits, by reducing a certain mode supported by 11ax (for example, Tx NSTS/Rx NSS is 3, 5, 7), change to the new mode that needs to be supported (for example, Tx NSTS/Rx NSS in Table 9 is 10, 12, and 16).
  • the receiver of the OM control subfield the responder of the OM negotiation
  • the receiver of the OM control subfield needs to judge whether it supports the 802.11be standard (or a later standard).
  • the responder of the OM negotiation is an STA that only supports the 802.11ax standard, it does not know whether it supports 11be, and it will not judge whether the initiator of the OM negotiation supports 11be.
  • the STA will only parse the OMI in the manner specified in the 802.11ax standard.
  • the initiator of the OM negotiation if it supports the only standard version of the 802.11ax standard, such as the 802.11be standard, the initiator cannot send the enhanced OM indication information provided by this application to the STA.
  • the responder of the OM negotiation is a STA that supports the standard version after the 802.11ax standard, for example, it knows that it is a STA that supports 802.11be, and when it receives OMI, it must determine whether the initiator supports it (by sending the address to know that the initiator supports The standard type), and the default one must support the standard version after the 802.11ax standard. At this time, the OMI sent to it by the initiator is an enhanced OMI.
  • the range of the number of space-time streams that can be indicated by the fourth space-time stream number indication information may be more, such as 1 to 32 streams, 1 to 64 streams, and so on. While maintaining the existing number of bits unchanged, 3 bits can be used to indicate any 8 values from 1 to 32 streams, or to indicate any 8 values from 1 to 64; or to indicate 7 of them, and then Add a "all support within the scope of ability".
  • the number of space-time streams indicated by the fourth space-time stream number indication information is the number of space-time streams less than or equal to a preset channel bandwidth value.
  • the preset channel bandwidth value is 80Mhz or 160Mhz.
  • the number of space-time streams indicated by the fourth space-time stream number indication information is the same.
  • the same OMI information can be parsed into different meanings for the case of whether the standard after 802.11ax is supported. Therefore, with minimal overhead, On the basis of maximum compatibility with the 802.11ax standard, the negotiation of enhanced OM has been realized.
  • each sub-control information in the control information corresponding to the control sub-field in any one of the first to fourth embodiments is only an example, and there may be other modifications, such as other control sub-information
  • the number of bits can also be changed adaptively.
  • the embodiments of this application do not make limitations.
  • the enhanced OM negotiation method provided by the embodiments of this application is introduced from the perspective of AP as the initiator of OM negotiation and STA1 as the responder of OM negotiation.
  • the STA is the initiator of the OM negotiation, and the AP is the responder of the OM negotiation; or the OM negotiation between the AP and the AP, the OM negotiation between the STA and the STA is similar, and will not be repeated here.
  • the access point and the station may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters indicated in the titles in the above tables may also adopt other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种操作模式的协商方法、发起端、接收端、芯片系统和计算机可读存储介质、功能实体。OM协商的发起端向响应端发送操作模式指示OMI,OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;OM协商的响应端收到OMI之后,与发起端按照协商后的OM进行传输。本申请通过扩展现有的802.11ax标准中OM协商方案或者提供新的OM协商方案来实现增强的OM协商。本申请可应用于802.11ax,802.11be或极高吞吐量EHT以及未来的WiFi系统中。

Description

操作模式的协商方法、发起端、接收端、芯片系统、介质 技术领域
本申请涉及通信技术领域,尤其涉及WiFi领域中操作模式的协商方法、发起端、接收端、芯片系统和计算机可读存储介质等等。
背景技术
WLAN(Wireless Local Area Network,无线局域网)从802.11a/g开始,历经802.11n,802.11ac,802.11ax,其允许传输的信道带宽和空时流数分别如下:
表1允许传输最大信道带宽和空时流数
Figure PCTCN2021077313-appb-000001
其中802.11n标准的名称又叫做高吞吐率(High Throughput,HT),802.11ac标准叫做非常高吞吐率(Very High Throughput,VHT),802.11ax标准叫做高效(High Efficient,HE)。而对于HT之前的标准,如802.11a/b/g等统称叫做Non-HT(非高吞吐率)。另外,802.11系列标准还包括采用非OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)模式的802.11b。
随着信道带宽增大,MIMO(Multiple Input Multiple Output,多输入多输出)空时流数增加,数据传输的数据速率也随之增加(参考表1)。但是消耗的功率也会随之增加。更大的信道带宽意味着射频前端的信道带宽需要开放的更大;更多的流数,需要开放更多的射频链路,总体上单位时间需要处理的数据也更多,因此总体消耗的功率会随之增加。
在802.11ax标准中设计了操作模式指示(Operation Mode Indication,OMI)的方法,通过发起端与响应端协商操作模式(Operation Mode,OM),通过减小平时操作的信道带宽,减少平时支持的空时流数来减少功耗,等到有很大的业务量需要传输时,再恢复较大的信道带宽,较高的空时流数。
在11ax之后的下一代标准,例如802.11be标准,又称为极高吞吐率(Extremely High Throughput,EHT)标准,信道带宽的模式更多,空时流数也从最多8流扩展到最多16流,如何针对802.11be标准来协商增强的OMI,是亟待解决的技术问题。
发明内容
本申请实施例提供了一种操作模式的协商方法、应用于操作模式协商的发起端、接收端、芯片系统、以及计算机可读存储介质,能够实现在信道带宽模式增多,空时流数成倍增加的场景下实现OM协商。
本申请主要通过扩展现有的802.11ax标准中OM协商方案以及提供新的OM协商方案来实现增强的OM协商。
第一方面,本申请公开了一种操作模式的协商方法,应用于操作模式协商的发起端,包括:
发起端向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围小于或等于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大小于或等于8流;
所述发起端与所述响应端进行传输。具体的,所述发起端采用不超过所述OMI所指示的信道带宽和空时流数中的至少一种,与响应端进行传输。
本申请中,信道带宽指示信息所指示的信道带宽范围和空时流数指示信息所指示的空时流数范围可以有多种组合关系,例如:
信道带宽指示信息指示带宽范围为大于160Mhz,空时流数指示信息指示的空时流数为1~8流(指示空时流数为1~8流可以用本申请中增强的空时流数指示信息,也可以采用802.11ax标准及其之前的空时流数指示信息进行指示);
或者信道带宽指示信息指示带宽范围为大于或等于20Mhz而小于或等于160Mhz(指示带宽范围为小于等于160Mhz可以用本申请中增强的信道带宽指示信息,也可以采用802.11ax标准及其之前的信道带宽指示信息进行指示),空时流数指示信息指示的空时流数为1~16流。
或者信道带宽指示信息指示带宽范围为大于或等于20Mhz而小于或等于160Mhz(指示带宽范围为小于等于160Mhz可以用本申请中增强的信道带宽指示信息,也可以采用802.11ax标准及其之前的信道带宽指示信息进行指示),空时流数指示信息指示的空时流数为1~8流(指示空时流数为1~8流可以用本申请中增强的空时流数指示信息,也可以采用802.11ax标准及其之前的空时流数指示信息进行指示)。
或者信道带宽指示信息指示带宽范围为大于160Mhz,空时流数指示信息指示的空时流数为1~16流。
此处仅为举例,还有其他的组合,不一一赘述。
其中,所述OMI携带在控制子字段对应的控制信息中;所述控制信息包括所述信道带宽指示信息和空时流数指示信息中的至少一种。
应理解,所述的信道带宽指示信息所指示的信道带宽的能力范围,是指其可以指示的信道带宽的最大值的范围,但不排除该信道带宽指示信息所指示的实际信道带宽会小于其能力范围。
例如,信道带宽指示信息指示的实际信道带宽可以是20Mhz,40Mhz,80Mhz,160Mhz,240Mhz,320Mhz中的任一种,其中信道带宽的最大值为320Mhz,则在本申请中,表示为: 信道带宽指示信息指示的信道带宽的能力范围大于160Mhz。
还应理解,所述信道带宽可以是连续的,也可以是非连续的,例如320Mhz可以是160Mhz+160Mhz。240Mhz可以是80Mhz+160Mhz或者160Mhz+80Mhz。
还应理解,随着技术的发展,本申请提供的信道带宽指示信息所能指示的信道带宽的能力范围还可以大于320Mhz,例如为480MHz,640Mhz,800MHz,960MHz,1120MHz,1280Mhz等等。
同理,所述空时流数指示信息指示的空时流数的能力范围,是指其可以指示的空时流数的最大值的范围,但不排除该空时流数指示信息所指示的实际空时流数会小于其能力范围。
例如,空时流数指示信息指示的实际空时流数为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16中的任一种,其中空时流数的最大值为16,则在本申请中,表示为:空时流数指示信息指示的空时流数的能力范围大于8流。
还应理解,随着技术的发展,本申请提供的空时流数指示信息所能指示的空时流数指示信息的能力范围还可以大于16流,例如为20流,24流,32流,48流,64流等等。
还应理解,本申请所述的空时流数,也可以替换为空间流数。
需要说明的是,802.11ax标准中,当采用了空时块编码时(space-time block coding,STBC)时,空时流数为空间流数的2倍,若没采用,则两者相同。
应理解,本申请中,空时流数指示信息,可以指示空间流数,也可以指示空时流数,或者部分指示空时流数,部分指示空间流数。
例如,对于发送端,指示发送空时流数,对于接收端,指示接收空间流数。反之亦然。其中,所述空时流数指示信息包括发送空时流数指示信息和接收空时流数指示信息中的至少一种。
其中,所述空时流数指示信息用于同时指示发送空时流数和接收空时流数。
应理解,本申请中的发起端和响应端,是针对OM协商过程而言的,主动发起OM协商的称为发起端,响应OM协商的称为响应端。而发送端和接收端,是针对通信传输过程而言的,发送数据的一方为发送端,接收数据的一方为接收端。OM协商的发起端可以是通信传输的发送端,也可以是通信传输的接收端;OM协商的响应端,可以是通信传输的发送端,也可以是通信传输的响应端。
以上说明适用于本申请各个方面的各种设计和各种实现中,后续不再赘述。
在本申请第一方面的第一种设计中,所述控制子字段包括第一控制子字段和第二控制子字段;
所述第一控制子字段为OMI基本指示子字段,也即,所述第一控制子字段为802.11ax标准中指示OMI的控制子字段;所述第二控制子字段为OMI扩展指示子字段,也即所述第二控制子字段为不同于802.11ax标准中指示OMI的控制子字段的控制子字段;所述第一控制子字段与所述第二控制子字段联合指示增强的OMI。
应理解,所述增强的OMI,是相对于802.11ax标准中OMI所能指示的范围而言,能指示更大范围的信道带宽和更多的空时流数。
本申请第一方面第一设计的一种可能的实现中,所述第一控制子字段对应的控制标识符的值为1;所述第二控制子字段对应的控制标识符的值为7~15中的任一个。
本申请第一方面第一设计的又一种可能的实现中,所述第一控制子字段对应的控制信息中,用于指示信道带宽的第一信道带宽指示信息的比特数为2比特,所述第二控制子字段对 应的控制信息中,用于指示信道带宽的第二信道带宽指示信息的比特数为1比特;所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围为20Mhz~320Mhz。
应理解,随着技术的发展,所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围可以更大,例如为20Mhz~640Mhz,甚至20Mhz~1280Mhz。第二信道带宽指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。
本申请第一方面第一设计的又一种可能的实现中,所述第二信道带宽指示信息的比特为第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特中最低位比特或最高位比特。
本申请第一方面第一设计的又一种可能的实现中,所述第一控制子字段对应的控制信息中,用于指示空时流数的第一空时流数指示信息的比特数为3比特,所述第二控制子字段对应的控制信息中,用于指示空时流数的第二空时流数指示信息的比特数为1比特;所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围为1~16流。
应理解,随着技术的发展,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围可以更大,例如为1~32流,甚至1~64流。第二空时流数指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。
本申请第一方面第一设计的又一种可能的实现中,第二空时流数指示信息的1比特为第一空时流数指示信息的2比特和第二空时流数指示信息的1比特所组成的3比特中,最低位比特或最高位比特。
本申请第一方面第一设计的又一种可能的实现中,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请第一方面第一设计的又一种可能的实现中,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同的信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
本申请第一方面的第一种设计提供的两个控制子字段,在OMI基本指示子字段的基础上利用另一个控制子字段作为OMI扩展指示子字段,最大程度的兼容了802.11ax标准,以较小的开销,实现了对更大的信道带宽或更多空时流数的OM协商。
以上是通过两个控制字段实现增强OM协商的说明,本申请的OM协商还可以通过一个控制子字段实现,下面分别描述。
在本申请第一方面的第二种设计中,所述控制子字段为一个控制子字段,称为第三控制子字段;
本申请第二种设计中,所述OMI携带在第三控制子字段对应的控制信息中;所述控制信息包括第三信道带宽指示信息和第三空时流数指示信息中的至少一种;
本申请第二种设计的一种可能的实现中,所述第三信道带宽指示信息为3比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第三空时流数指示信息为4比特,用于指示空时流数范围为1~16流。
应理解,所述第三信道带宽指示信息可以指示的信道带宽范围可以更大,例如640Mhz。所述第三空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流等等。相应的,所述第三信道带宽指示信息的比特数可以随带宽范围增加而增加,例如可以为4比 特或5比特;所述第三空时流数指示信息的比特数也可以随空时流数范围增加而增加,例如可以为5比特或6比特。
本申请第一方面第二种设计的又一种可能的实现中,所述第三控制子字段为位于标识符的值为15的控制子字段之后的一个控制子字段;所述第三控制子字段的标识符的值为0~15中任一个。
可选的,所述第三空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
可选的,所述第三信道带宽指示信息指示不同的信道带宽时,所述第三空时流数指示信息指示的空时流数相同。
本申请实施例中,通过802.11ax标准中,标识符的值为15的控制子字段作为指示增强的OMI的标识点,让OM协商的响应端可以以此为标志,将标识符的值为15的控制子字段之后的控制子字段识别为增强OM的控制子字段,可以支持更大的信道带宽,更多空时流数的协商。
本申请第一方面第二种设计的又一种可能的实现中,所述第三信道带宽指示信息包括第一信道带宽子指示信息和第二信道带宽子指示信息,所述第一信道带宽子指示信息为2比特,所述第二信道带宽子指示信息为1比特,所述第一信道带宽子指示信息和第二信道带宽子指示信息联合指示信道带宽。
本申请第一方面第二种设计的又一种可能的实现中,所述第三空时流数指示信息包括第一空时流数子指示信息和第二空时流数子指示信息,第一空时流数子指示信息为3比特,所述第二空时流数子指示信息为1比特,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示空时流数。
本申请第一方面第二种设计的又一种可能的实现中,所述第三控制子字段的标识符的值为0~15中任一个。其中,所述第三控制子字段对应的标识符的值为1。可选的,所述第三控制子字段可以为位于标识符的值为15的控制子字段之后的一个控制子字段。
可选的,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
可选的,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请实施例,通过将802.11ax标准中的控制子字段中的信道带宽指示信息或空时流数指示信息离散为两个子指示字段,在最大程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
本申请第一方面第三种设计中,所述控制子字段为一个控制子字段,该一个控制子字段称为第四控制子字段。
第三种设计中,所述OMI携带在第四控制子字段对应的控制信息中,所述控制信息包括第四信道带宽指示信息和第四空时流数指示信息中的至少一种;
可选的,所述第四信道带宽指示信息为2比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第四空时流数指示信息为3比特,用于指示空时流数范围为1~16流。
本申请第一方面第三种设计的一种可能的实现中,所述发起端和响应端均支持802.11ax 之后的标准,所述第四空时流数指示信息指示的空时流数为1~16流中的任一值;可选的,所述第四空时流数指示信息用于指示1~16流中的任意8个值。
或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~8流中的任一值。
本申请第一方面第三种设计的一种可能的实现中,所述发起端和响应端均支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~320Mhz;
或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~160Mhz。
应理解,所述第四信道带宽指示信息可以指示的信道带宽范围可以更大,例如480MHz,640Mhz,800MHz,960MHz,1120MHz等。所述第四空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流等等,具体的空时流数为20流,24流,32流,48流,64流等。
本申请第一方面第三种设计的一种可能的实现中,所述第四信道带宽指示信息用于指示以下四种中的任一种:
信道带宽为20Mhz,信道带宽为40Mhz,信道带宽为80Mhz,能力范围全部支持。
本申请第一方面第三设计的又一种可能的实现中,所述第四空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请第一方面第三设计的又一种可能的实现中,所述第四信道带宽指示信息指示不同的信道带宽时,所述第四空时流数指示信息指示的空时流数相同。
本申请实施例,在不增加现有的控制子字段的比特数的基础上,针对是否支持802.11ax之后的标准的情况,相同的OMI信息可以解析为不同的含义,因此,以最小的开销,在最大程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
第二方面,本申请公开了一种操作模式的协商方法,应用于操作模式协商的响应端,包括:
响应端接收来自发起端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种;
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围小于或等于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大小于或等于8流;
根据所述OMI,与所述发起端进行传输。
所述发起端与所述响应端进行传输。具体的,所述响应端采用不超过所述OMI所指示的信道带宽和空时流数中的至少一种,与发起端进行传输。
在本申请第二方面的第一种设计中,所述控制子字段包括第一控制子字段和第二控制子字段;
所述第一控制子字段为OMI基本指示子字段,也即,所述第一控制子字段为802.11ax标准中指示OMI的控制子字段;所述第二控制子字段为OMI扩展指示子字段,也即所述第 二控制子字段为不同于802.11ax标准中指示OMI的控制子字段的控制子字段;所述第一控制子字段与所述第二控制子字段联合指示增强的OMI。
应理解,所述增强的OMI,是相对于802.11ax标准中OMI所能指示的范围而言,能指示更大范围的信道带宽和更多的空时流数中的至少一种。
本申请第二方面第一设计的一种可能的实现中,所述第一控制子字段对应的控制标识符的值为1;所述第二控制子字段对应的控制标识符的值为7~15中的任一个。
本申请第一方面第一设计的又一种可能的实现中,所述第一控制子字段对应的控制信息中,用于指示信道带宽的第一信道带宽指示信息的比特数为2比特,所述第二控制子字段对应的控制信息中,用于指示信道带宽的第二信道带宽指示信息的比特数为1比特;所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围为20Mhz~320Mhz。
所述响应端联合解析所述第一信道带宽指示信息和第二信道带宽指示信息,获得被指示的信道带宽。
应理解,随着技术的发展,所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围可以更大,例如为20Mhz~640Mhz,甚至20Mhz~1280Mhz。第二信道带宽指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。
本申请第二方面第一设计的又一种可能的实现中,所述第二信道带宽指示信息的比特为第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特中最低位比特或最高位比特。
本申请第二方面第一设计的又一种可能的实现中,所述第一控制子字段对应的控制信息中,用于指示空时流数的第一空时流数指示信息的比特数为3比特,所述第二控制子字段对应的控制信息中,用于指示空时流数的第二空时流数指示信息的比特数为1比特;所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围为1~16流。
应理解,随着技术的发展,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围可以更大,例如为1~32流,甚至1~64流。第二空时流数指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。
所述响应端联合解析所述第一空时流数指示信息和第二空时流数指示信息,获得被指示的空时流数。
本申请第二方面第一设计的又一种可能的实现中,第二空时流数指示信息的1比特为第一空时流数指示信息的2比特和第二空时流数指示信息的1比特所组成的3比特中,最低位比特或最高位比特。
本申请第二方面第一设计的又一种可能的实现中,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请第二方面第一设计的又一种可能的实现中,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同的信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
本申请第二方面的第一种设计提供的两个控制子字段,在OMI基本指示子字段的基础上利用另一个控制子字段作为OMI扩展指示子字段,最大程度的兼容了802.11ax标准,以较小 的开销,实现了对更大的信道带宽或更多空时流数的OM协商。
以上是通过两个控制字段实现增强OM协商的说明,本申请的OM协商还可以通过一个控制子字段实现,下面分别描述。
在本申请第二方面的第二种设计中,所述控制子字段为一个控制子字段,称为第三控制子字段;
本申请第二种设计中,所述OMI携带在第三控制子字段对应的控制信息中;所述控制信息包括第三信道带宽指示信息和第三空时流数指示信息中的至少一种;
本申请第二种设计的一种可能的实现中,所述第三信道带宽指示信息为3比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第三空时流数指示信息为4比特,用于指示空时流数范围为1~16流。
应理解,所述第三信道带宽指示信息可以指示的信道带宽范围可以更大,例如640Mhz。所述第三空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流等等。相应的,所述第三信道带宽指示信息的比特数可以随带宽范围增加而增加,例如可以为4比特或5比特;所述第三空时流数指示信息的比特数也可以随空时流数范围增加而增加,例如可以为5比特或6比特。
本申请第二方面第二种设计的又一种可能的实现中,所述第三控制子字段为位于标识符的值为15的控制子字段之后的一个控制子字段;所述第三控制子字段的标识符的值为0~15中任一个。
可选的,所述第三空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
可选的,所述第三信道带宽指示信息指示不同的信道带宽时,所述第三空时流数指示信息指示的空时流数相同。
本申请实施例中,通过802.11ax标准中,标识符的值为15的控制子字段作为指示增强的OMI的标识点,让OM协商的响应端可以以此为标志,将标识符的值为15的控制子字段之后的控制子字段识别为增强OM的控制子字段,可以支持更大的信道带宽,更多空时流数的协商。
本申请第二方面第二种设计的又一种可能的实现中,所述第三信道带宽指示信息包括第一信道带宽子指示信息和第二信道带宽子指示信息,所述第一信道带宽子指示信息为2比特,所述第二信道带宽子指示信息为1比特,所述第一信道带宽子指示信息和第二信道带宽子指示信息联合指示信道带宽。
所述响应端联合解析所述第一信道带宽子指示信息和第二信道带宽子指示信息,获得被指示的信道带宽。
本申请第二方面第二种设计的又一种可能的实现中,所述第三空时流数指示信息包括第一空时流数子指示信息和第二空时流数子指示信息,第一空时流数子指示信息为3比特,所述第二空时流数子指示信息为1比特,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示空时流数。
所述响应端联合解析所述第一空时流数子指示信息和第二空时流数子指示信息,获得被指示的空时流数。
本申请第二方面第二种设计的又一种可能的实现中,所述第三控制子字段的标识符的值 为0~15中任一个。其中,所述第三控制子字段对应的标识符的值为1。可选的,所述第三控制子字段可以为位于标识符的值为15的控制子字段之后的一个控制子字段。
可选的,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
可选的,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请实施例,通过将802.11ax标准中的控制子字段中的信道带宽指示信息或空时流数指示信息离散为两个子指示字段,在最大程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
本申请第二方面第三种设计中,所述控制子字段为一个控制子字段,该一个控制子字段称为第四控制子字段。
第三种设计中,所述OMI携带在第四控制子字段对应的控制信息中,所述控制信息包括第四信道带宽指示信息和第四空时流数指示信息中的至少一种;
可选的,所述第四信道带宽指示信息为2比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第四空时流数指示信息为3比特,用于指示空时流数范围为1~16流。
本申请第二方面第三种设计的一种可能的实现中,所述响应端支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~16流中的任一值;可选的,所述第四空时流数指示信息用于指示1~16流中的任意8个值。
或者,所述响应端不支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~8流中的任一值。
本申请第二方面第三种设计的一种可能的实现中,所述响应端支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~320Mhz;
或者,所述响应端不支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~160Mhz。
应理解,所述第四信道带宽指示信息可以指示的信道带宽范围可以更大,例如480MHz,640Mhz,800MHz,960MHz,1120MHz等。所述第四空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流等等,具体的空时流数为20流,24流,32流,48流,64流等。
本申请第二方面第三种设计的一种可能的实现中,所述第四信道带宽指示信息用于指示以下四种中的任一种:
信道带宽为20Mhz,信道带宽为40Mhz,信道带宽为80Mhz,能力范围全部支持。
本申请第二方面第三设计的又一种可能的实现中,所述第四空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
本申请第二方面第三设计的又一种可能的实现中,所述第四信道带宽指示信息指示不同的信道带宽时,所述第四空时流数指示信息指示的空时流数相同。
本申请实施例,在不增加现有的控制子字段的比特数的基础上,针对是否支持802.11ax之后的标准的情况,相同的OMI信息可以解析为不同的含义,因此,以最小的开销,在最大 程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
第三方面,本申请提供一种通信装置,其作为操作模式协商的发起端,该通信装置具有实现上述第一方面所述的方法示例中的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在第三方面的一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持发起端执行上述方法中相应的功能。所述通信单元用于支持发起端与其他设备之间的通信。所述发起端还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种;
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围小于或等于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大小于或等于8流;
可选的,通信装置还包括处理单元,用于与所述响应端进行传输。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
收发器,用于向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种;
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围小于或等于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大小于或等于8流;
可选的,通信装置还包括处理器,处理器用于与所述响应端进行传输。
第四方面,本申请提供一种通信装置,其作为操作模式协商的响应端端,该通信装置具有实现上述第二方面所述的方法示例中的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在第四方面的一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持发起端执行上述方法中相应的功能。所述通信单元用于支持发起端与其他设备之间的通信。所述发起端还可以包括存储单元,所述存储单元用于与处理单元和 发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于接收来自发起端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
可选的,通信装置还包括处理单元,用于根据所述OMI,与所述发起端进行传输。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
一种实施方式中,所述通信装置包括:
收发器,用于接收来自发起端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
可选的,通信装置还包括处理器,处理器用于根据所述OMI,与所述发起端进行传输。
应理解,本申请中通信装置,可以作为OM协商的发起端和响应端,这是针对OM协商过程而言的,主动发起OM协商的称为发起端,响应OM协商的称为响应端。而发送端和接收端,是针对传输过程而言的,发送数据的一方为发送端,接收数据的一方为接收端。OM协商的发起端可以是通信传输的发送端,也可以是通信传输的接收端;OM协商的响应端,可以是通信传输的发送端,也可以是通信传输的响应端。
应理解,本申请中的通信装置,可以是接入点(access point,AP)类的站点,还可以是非接入点类的站点(none access point station,non-AP STA);
本申请中的接入点或站点,可以是多链路设备(multi-link device,MLD)。
上述第三方面和第四方面提供的通信装置,在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。
本发明实施例对上述器件的具体实现形式不做限定。
第五方面,本申请还提供一种处理器,用于执行上述第一方面或第二方面的各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收OMI可以理解为处理器输入OMI。又 例如,发送OMI可以理解为处理器输出OMI。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述通信装置所用的计算机程序,其包括用于执行上述方法的第一方面或第二方面所涉及的计算机程序。
第七方面,本申请还提供了一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持通信传输设备实现第一方面或第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存前述通信装置的必要的信息和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供了一种功能实体,该功能实体用于实现上述第一方面或第二方面所述的方法。
附图说明
图1是本申请实施例提供的一种网络系统的结构示意图;
图2是本申请实施例提供的一种通信装置的结构示意图;
图3是本申请实施例提供的一种芯片系统的结构示意图;
图4是本申请实施例提供的一种MAC帧的结构示意图;
图5是本申请实施例提供的一种802.11ax标准中A-control字段的结构示意图;
图6是本申请实施例提供的一种802.11ax标准中控制子字段的结构示意图;
图7是本申请实施例提供的一种控制子字段的结构示意图;
图8是本申请实施例提供的又一控制子字段的结构示意图;
图9是本申请实施例提供的又一控制子字段的结构示意图;
图10是本申请实施例提供的又一控制子字段的结构示意图;
图11是本申请实施例提供的又一控制子字段的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
以图1为例阐述本申请所述的OM协商方法可适用的网络结构。
图1是本申请实施例提供的一种网络结构的示意图,该网络结构可包括一个或多个接入点(access point,AP)类的站点和一个或多个非接入点类的站点(none access point station, non-AP STA)。为便于描述,本文将接入点类型的站点称为接入点(AP),非接入点类的站点称为站点(STA)。
本申请实施例中,AP和STA均可以作为OM协商的发起端和响应端,OM协商的发起端和响应端这是针对OM协商过程而言的,主动发起OM协商的称为发起端,响应OM协商的称为响应端。而发送端和接收端,是针对传输过程而言的,发送数据的一方为发送端,接收数据的一方为接收端。OM协商的发起端可以是通信传输的发送端,也可以是通信传输的接收端;OM协商的响应端,可以是通信传输的发送端,也可以是通信传输的响应端。
以图1包括一个AP和六个站点(STA 1、STA 2、STA 3、STA 4、STA 5、STA 6)的网络结构为例进行说明。
举例来说,OM协商过程中,AP作为OM协商的发起端,则STA1或STA2作为OM协商的响应端;或者
AP作为OM协商的发起端,另一AP作为OM协商的响应端;或者
STA1作为OM协商的发起端,STA2作为OM协商的响应端。
至于在通信传输过程中,OM协商的发起端和响应端均可以作为通信传输的发送端,也可以作为通信传输的接收端,本申请不做限定。
本申请实施例中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有无线保真(wreless-fidelity,WiFi)芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area networks,WLAN)制式的设备。本申请中的接入点可以是HE-AP或EHT-AP,还可以是适用未来某代WiFi标准的接入点。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种WLAN制式。
本申请实施例中的接入点可以是HE-STA或EHT-STA,还可以是适用未来某代WiFi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
需要说明的是,本申请中的AP站点和non-AP站点还可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上 的站点,可以工作在一条链路上。
虽然本申请实施例主要以部署IEEE 802.11的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、无线局域网(wireless local area network,WLAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
本申请实施例中的所涉及的OM协商的发起端和响应端又可以统称为通信装置,其可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来实现。
图2为本申请实施例提供的一种通信装置的结构示意图。如图2所示,该通信装置200可包括:处理器201、收发器205,可选的还包括存储器202。
所述收发器205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器202中可存储计算机程序或软件代码或指令204,该计算机程序或软件代码或指令204还可称为固件。处理器201可通过运行其中的计算机程序或软件代码或指令203,或通过调用存储器202中存储的计算机程序或软件代码或指令204,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的OM协商方法。其中,处理器201可以为中央处理器(central processing unit,CPU),存储器302例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器201和收发器205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置200还可以包括天线206,该通信装置200所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置可以是接入点或者站点,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图2的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图3所示的芯片的结构示意图。图3所示的芯片包括处理器301和接口302。其中,处理器301的数量可以是一个或多个,接口302的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器303。
本申请实施例并且不限制权利要求书的保护范围和适用性。本领域技术人员可以在不脱离本申请实施例范围的情况下对本申请涉及的元件的功能和部署进行适应性更改,或酌情省 略、替代或添加各种过程或组件。
以下将结合图1所示的网络系统以及图2-图3所示的通信装置的结构,描述在该网络系统中,作为OM协商的发起端和响应端如何实现本申请提供的OM协商的技术方案。
为便于理解本申请实施例的相关内容,对本申请实施例涉及的一些概念进行阐述。
1、OM协商
如前所述,在通信传输过程或者通信传输开始之前,一个想变更操作模式(OM)的发起端(Initiator)向响应端(Responder)发送带有带有OMI的控制子字段的MAC帧进行OM协商,完成OM协商之后,发起端和响应端按照协商之后的OM进行传输。其中OM通常包括信道带宽信息或空时流数等信息。
2、MAC帧
在WLAN中,接入点(Access Point,AP)和站点(Station,STA)通过媒体介入控制(Medium Access Control,缩写:MAC)协议数据单元(MAC Protocol Data Unit,缩写:MPDU),或简称MAC帧来传递控制信令,管理信令或者数据。802.11标准中的MAC帧格式如图4所示。
3、控制子字段
在MAC帧头的高吞吐率控制字段,发送端可以传输一些控制信息。其中高吞吐率控制字段的高效变种(目前包括高吞吐率变种,非常高吞吐率变种和高效变种3种形态)中的聚合控制(Aggregated Control,A-control)子字段利用一个或多个控制标识符加控制信息的结构,可以用来承载1个到N个控制信息。A-control子字段的结构如图5所示,其中控制标识符用来指示控制信息的类型,目前802.11ax中支持的控制子字段的类型如表2所示。
表2目前支持的控制子字段的类型
控制ID值 含义 控制信息子字段的长度
0 触发响应调度 26
1 操作模式 12
2 高效链路自适应 26
3 缓存状态汇报 26
4 上行功率净空(headroom) 8
5 信道带宽询问报告 10
6 命令和状态 8
7-14 预留  
15 用于扩展的全一序列 26
其中,当控制子字段的控制标识符(control ID=0001)时,对应802.11ax标准中进行OM指示的控制子字段,其组成结构如图6所示,该控制子字段对应的控制信息中,包括的信息如:接收空间流数(receiver number of spatial streams,Rx NSS),信道带宽(channel width,CW),禁止上行多用户传输(UL MU disable),发送空时流数(transmit number of spatial streams and time streams,Tx NSTS),禁止扩展距离单用户传输(ER SU disable),推荐重新进行下行 多用户多输入多输出传输信道探测(DL MU-MIMO resound recommendation),禁止上行数据多用户传输(UL MU Data disable)等等。
本申请后续实施例中,对于控制子字段(control subfield)的示意,有示意其包括控制标识符(control ID)和控制信息(control information)两部分,再具体示意control information包括的各种信息的详细示意,例如图7;也有为了节约篇幅,将控制子字段(control subfield)简单示意为包括控制标识符(control ID)和具体的各种控制信息,即省略了控制信息(control information)的示意,例如图6。
4、信道带宽和空间流数/空时流数
本申请实施例中涉及的OMI,主要是指其中的信道带宽和空时流数。
其中,信道带宽用于指示该OM发起端所支持发送或者接收的PPDU的信道带宽(对于带宽,发送和接收统一指示)。
接收空时流数用于指示OM发起端所支持的接收的物理层协议数据单元(PHY Protocol Data Unit,PPDU)的空时流数,该值会小于等于其所支持的最大的空时流数。换句话说,接收空时流数是发起端作为数据传输过程中的接收端时的限制,也是对另外一侧的发送端发送的数据的空时流数的限制,不能超过该接收空时流数限制的能力范围。
发送空时流数用于指示OM发起端所支持的发送的PPDU的空时流数。换句话说,发送空时流数是发起端作为数据传输过程中的发送端时的限制,其在数据传输过程中,不能超过该发送空时流数所限制的能力范围。
需要指出,空时流数考虑了空时块编码(Space-Time Block Coding,STBC)。对于802.11ax标准,当采用了STBC时,空时流数为空间流数的2倍,若没采用,则两者相同。本申请实施例中不对二者做明显区分,在描述中,若未明显说明,通常用空时流数表示。应理解,本申请中,空时流数指示信息,可以指示空间流数,也可以指示空时流数,或者部分指示空时流数,部分指示空间流数。例如,对于发送端,指示发送空时流数,对于接收端,指示接收空间流数。反之亦然。
需要说明的是,本申请实施例中,提供的不同于802.11ax标准的OM协商的技术方案,可以通过对802.11ax标准中的MAC帧中的某些控制子字段或其控制信息进行扩展,或者增加控制子字段的方式来实现。
以下结合附图和上述相关概念的阐述本申请提供OM协商的发起端和响应端,在如图1所示的网络系统中实现OM协商方法的相关内容进行进一步的阐述。
本申请实施例提供的OM协商技术方案如下:
发起端向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种;
其中,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围小于或等于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;或者
所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大小于或等于8流;
换句话说,本申请中,当OMI包括信道带宽指示信息和空时流数指示信息时,信道带宽指示信息所指示的信道带宽范围和空时流数指示信息所指示的空时流数范围可以有多种组合 关系,例如:
信道带宽指示信息指示带宽范围为大于160Mhz,但空时流数指示信息指示的空时流数为1~8流(指示空时流数为1~8流可以用本申请中增强的空时流数指示信息,也可以采用802.11ax标准及其之前的空时流数指示信息进行指示);
或者信道带宽指示信息指示带宽范围为大于或等于20Mhz而小于或等于160Mhz(指示带宽范围为小于等于160Mhz可以用本申请中增强的信道带宽指示信息,也可以采用802.11ax标准及其之前的信道带宽指示信息进行指示),空时流数指示信息指示的空时流数为1~16流。
或者信道带宽指示信息指示带宽范围为大于或等于20Mhz而小于或等于160Mhz(指示带宽范围为小于等于160Mhz可以用本申请中增强的信道带宽指示信息,也可以采用802.11ax标准及其之前的信道带宽指示信息进行指示),空时流数指示信息指示的空时流数为1~8流(指示空时流数为1~8流可以用本申请中增强的空时流数指示信息,也可以采用802.11ax标准及其之前的空时流数指示信息进行指示)。
或者信道带宽指示信息指示带宽范围为大于160Mhz,空时流数指示信息指示的空时流数为1~16流。
响应端向发起端发送确认消息,发起端收到确认消息后,与所述响应端进行传输。
具体的,针对OMI所指示的信道带宽,发起端和响应端采用不超过所述信道带宽指示信息所指示的信道带宽范围内进行数据传输。
针对OMI所指示的空时流数,接收空时流数用于指示OM发起端所支持的接收的PPDU的空时流数,该值会小于等于其所支持的最大的空时流数。换句话说,接收空时流数是发起端作为数据传输过程中的接收端时的限制,也是对另外一侧的发送端发送的数据的空时流数的限制,不能超过该接收空时流数限制的能力范围。
发送空时流数用于指示OM发起端所支持的发送的PPDU的空时流数。换句话说,发送空时流数是发起端作为数据传输过程中的发送端时的限制,其在数据传输过程中,不能超过该发送空时流数所限制的能力范围。如前所述,本申请实施例提供的增强的OM协商的技术方案,主要基于MAC帧中携带的控制信息来实现,一种可能的实现方式中,采用控制子字段来实现,即,携带在控制子字段对应的控制信息中;所述控制信息包括所述信道带宽指示信息和空时流数指示信息中的至少一种。当然,本申请实施例不排除用MAC帧的其他子字段来实现增强的OM协商。
采用控制子字段来实现增强的OM协商,主要有两种方式:
第一,通过在现有的802.11ax标准提供的控制子字段作为基本指示子字段,另外新增扩展指示子字段,来实现增强的OM协商技术方案。
第二,通过扩展控制子字段所能指示的OM信息,来实现增强OM协商技术方案。
应理解本申请实施例中涉及的增强的OM协商,是指OM协商的能力范围较802.11ax而言的,具体的,其能协商的信道带宽的能力范围可以大于160Mhz,其能协商的空时流数的能力范围可以大于8流。
不失一般性的,本申请实施例所涉及的信道带宽指示信息所指示的信道带宽的能力范围,是指其可以指示的信道带宽的最大值的范围,但不排除该信道带宽指示信息所指示的实际信道带宽会小于其能力范围。
例如,信道带宽指示信息指示的实际信道带宽可以是20Mhz,40Mhz,80Mhz,160Mhz,240Mhz,320Mhz中的任一种,其中信道带宽的最大值为320Mhz,则在本申请中,表示为: 信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,后续也可以称之为增强的带宽指示,例如增强的channel width指示。
还应理解,所述信道带宽可以是连续的,也可以是非连续的,例如320Mhz可以是160Mhz+160Mhz。240Mhz可以是80Mhz+160Mhz或者160Mhz+80Mhz。
还应理解,随着技术的发展,本申请提供的信道带宽指示信息所能指示的信道带宽的能力范围还可以大于320Mhz,例如为480MHz,640Mhz,800MHz,960MHz,1120MHz,1280Mhz等等。
相应的,本申请实施例涉及的空时流数指示信息指示的空时流数的能力范围,是指其可以指示的空时流数的最大值的范围,但不排除该空时流数指示信息所指示的实际空时流数会小于其能力范围。
例如,空时流数指示信息指示的实际空时流数为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16中的任一种,其中空时流数的最大值为16,则在本申请中,表示为:空时流数指示信息指示的空时流数的能力范围大于8流,后续也可以称之为增强的空时流数指示,例如增强的Rx NSS或Tx NSTS指示。
还应理解,随着技术的发展,本申请提供的空时流数指示信息所能指示的空时流数指示信息的能力范围还可以大于16流,例如为20流,24流,32流,48流,64流等等。
一种可选的实施方式中,所述空时流数指示信息包括发送空时流数指示信息和接收空时流数指示信息中的至少一种。如此,可以灵活的指示作为数据传输的发送端和接收端采用相同或不同的空时流数进行传输。
另一种可选的实施方式中,所述空时流数指示信息用于同时指示发送空时流数和接收空时流数。如此,可以使用最少的比特数同时指示作为数据传输的发送端和接收端采用相同的空时流数。
又一种可选的实施方式中,所述空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。其中,所述预设信道带宽值为80Mhz或160Mhz。
其他信道带宽对应的空时流数,可以按照预设条件进行推导,例如,信道带宽越大,空时流数越小。再如,通过以下公式(1),由指示的空时流数,推导PPDU的信道带宽为某个值的空时流数:
向下取整(控制子字段指示OMI中的NSS或NSTS*(PPDU的信道带宽为某个值所支持的NSS或NSTS的最大值/PPDU信道带宽为预设信道带宽值时所支持的NSS或NSTS的最大值))——公式(1)
其中,PPDU的信道带宽为某个值所支持的NSS或NSTS的最大值,以及PPDU信道带宽为预设信道带宽值时所支持的NSS或NSTS的最大值,可以通过能力信息提前获取。
例如,控制子字段指示OMI中的NSS或NSTS为4流,PPDU的信道带宽为320Mhz时,某个STA其支持的NSS或NSTS的最大值为2流,PPDU为预设信道带宽值为80Mhz,该STA其支持的NSS或NSTS的最大值为8流,则根据公式(1),推导PPDU信道带宽为320Mhz时,该STA实际能支持的空时流数=向下取整(4*(2/8))=1流。
再如,控制子字段指示OMI中的NSS或NSTS为4流,PPDU的信道带宽为320Mhz时,某个STA其支持的NSS或NSTS的最大值为2流,PPDU为预设信道带宽值为160Mhz,该STA其支持的NSS或NSTS的最大值为4流,则根据公式(1),推导PPDU信道带宽为320Mhz时,该STA实际能支持的空时流数=向下取整(4*(2/4))=2流。
又一种可选的实施方式中,所述信道带宽指示信息指示不同的信道带宽时,所述空时流数指示信息指示的空时流数相同。例如,信道带宽指示信息指示20Mhz,40Mhz,80Mhz,160Mhz,240Mhz,320Mhz中的任一种的时候,空时流数指示信息指示的空时流数始终为8流。
另外,当发起端和响应端协商不同的信道带宽时,可以协商始终采用同一个空时流数,所述空时流数默认可以跟响应端前期上报的支持的最大控制流数或最小控制流数相同,此时,空时流数指示信息也可以省略。
另外,发起端和响应端也可以在一次OM协商完成信道带宽和空时流数的协商之后,后续协商变更信道带宽时,省去发送空时流数指示信息,默认后续的空时流数与前次协商的空时流数相同。
以上说明适用于本申请各个实施例中,为避免赘述,后续将适应性的省略描述。
下面将结合图1所示的网络系统,以及图2提供的作为发起端或响应端的通信装置的结构示意图,通过更为具体的实施例,说明本申请提供的OM协商技术方案。
以下的实施例,将图1中的AP作为OM协商的发起端,STA1作为OM协商的响应端为例,其他情况与之类似,不一一举例。
实施例一
本实施例一中,将说明AP与STA1进行OM协商时,AP向STA1发送的OMI通过两个或以上的控制子字段联合指示,实现增强的OM协商的技术方案。
AP作为OM协商的发起端,通过其收发器(如图2中所示的205)向STA1发送OMI,其中,OMI携带在控制子字段对应的控制信息中;
STA1作为OM协商的响应端,通过其收发器(同样,如图2中所示的205)接收来自AP的OMI。
参见图7,本实施例一中,携带OMI的控制子字段包括第一控制子字段和第二控制子字段;第一控制子字段为OMI基本指示子字段,也即,所述第一控制子字段为802.11ax标准中指示OMI的控制子字段;所述第二控制子字段为OMI扩展指示子字段,也即所述第二控制子字段为不同于802.11ax标准中指示OMI的控制子字段的控制子字段;所述第一控制子字段与所述第二控制子字段联合指示增强的OMI。应理解,所述增强的OMI,是相对于802.11ax标准中OMI所能指示的范围而言,能指示更大范围的信道带宽和更多的空时流数。
该第一控制子字段和第二控制子字段对应的控制信息中均包括信道带宽指示信息(channel width)和空时流数指示信息(例如:Rx NSS/Tx NSTS)中的至少一种。
一种实现方式中,第一控制子字段对应的控制标识符(control ID)的值为1(二进制表示为0001,图示意为control ID=0001),其在802.11ax标准中用作OM指示;其中,如图6和图7所示,control ID=0001的第一控制子字段对应的控制信息中,用于指示信道带宽的第一信道带宽指示信息的比特数为2比特,用于指示空时流数的第一空时流数指示信息的比特数为3比特,例如Rx NSS为3比特,Tx NSTS为3比特。
一种实现方式中,第二控制子字段对应的控制标识符的值为7~15中的任一个值。
需要说明的是,参见表2,控制标识符的值为7~15是802.11ax标准中,预留的控制子字段的控制标识符,本申请实施例中,将利用其中的一个或者两个控制标识符对应的控制子字段作为扩展的控制子字段,与控制标识符为1的第一控制子字段联合指示增强的OM。
这里的第二控制子字段,可以为一个控制子字段,也可以视情况增加至两个或者更多。
另一种实现方式中,第二控制子字段对应的控制标识符的值为1,也即与第一控制子字段对应的控制标识符采用相同的值。这种情况下,对于发起端和响应端而言,在第一控制子字段的控制标识符为1时,默认其后的一个控制标识符为1的控制子字段是与第一控制子字段联合解析得到增强的OM。或者发起端和响应端默认连续收到两个控制标识符为1为控制子字段,是需要联合解析得到增强的OM。
再一种实现方式中,第一控制子字段对应的控制标识符为15,第二控制子字段对应的控制标识符的值为1,或者7~15中任一个值,这种情况下,控制标识符为15的第一控制子字段,也类似于802.11ax标准中的控制标识符为1的控制子字段的功能一样,可以用于OM协商。对于发起端和响应端而言,在第一控制子字段的控制标识符为15时,默认其后的一个的控制子字段是与第一控制子字段联合解析得到增强的OM。
图7以第二控制子字段为一个控制子字段为例,其对应的控制信息中,用于指示信道带宽的第二信道带宽指示信息的比特数为1比特;例如图7中的channel width MSB为1比特;如此,第一信道带宽指示信息和第二信道带宽指示信息一共为3比特,可以联合指示的增强的信道带宽范围为20Mhz~320Mhz。
具体的,如表3所示:
表3增强Channel Width指示
Figure PCTCN2021077313-appb-000002
表3是以第二信道带宽指示信息的比特为第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特中最重要或最高位比特(Most Significant Bit,MSB)为例进行说明的,类似的,第二信道带宽指示信息的比特为第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特中最不重要或最低位比特(Least Significant Bit,LSB),具体的,如表4所示:
表4增强Channel Width指示
Figure PCTCN2021077313-appb-000003
Figure PCTCN2021077313-appb-000004
表3和表4仅为示意,具体实现中,第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特所能示意的8个取值与信道带宽之间的对应关系还有其他的组合,在此不一一赘述。
应理解,随着技术的发展,所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围可以更大,例如为20Mhz~640Mhz,甚至20Mhz~1280Mhz。第二信道带宽指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。或者,也可以在保持1比特的基础上,指示更大的信道带宽中的某些信道带宽,例如,指示20Mhz~640Mhz中的某16个信道带宽。
如此,作为响应端的STA1在通过其收发器205收到该第一控制子字段和第二控制子字段之后,其处理器201即可以将其中的第一信道带宽指示信息和第二信道带宽指示信息联合解析,得到AP向其指示的信道带宽。
针对空时流数指示信息,第一控制子字段对应的控制信息中,用于指示空时流数的第一空时流数指示信息的比特数为3比特,而第二控制子字段对应的控制信息中,用于指示空时流数的第二空时流数指示信息的比特数为1比特;所述第一空时流数指示信息和所述第二空时流数指示信息共计4比特,能够联合指示的空时流数范围为1~16流。
具体如表5所示:
表5增强Tx NSTS或者增强Rx NSS指示
Figure PCTCN2021077313-appb-000005
Figure PCTCN2021077313-appb-000006
表5是以第二空时流数指示信息的1比特为第一空时流数指示信息的2比特和第二空时流数指示信息的1比特所组成的3比特中的最高位比特为例进行说明的,类似的,第二信道带宽指示信息的比特为第一信道带宽指示信息的2比特和第二信道带宽指示信息的1比特所组成的3比特中最不重要或最低位比特(LSB),具体的,如表6所示:
表6增强Tx NSTS或者增强Rx NSS指示
Figure PCTCN2021077313-appb-000007
Figure PCTCN2021077313-appb-000008
表5和表6仅为示意,具体实现中,第一空时流数指示信息的3比特和第二空时流数指示信息的1比特所组成的4比特所能示意的16个取值与空时流数之间的对应关系还有其他的组合,在此不一一赘述。
应理解,随着技术的发展,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围可以更大,例如为1~32流,甚至1~64流。第二空时流数指示信息的比特数可以保持1比特,或者随之增加至2比特,或者3比特等等。或者,也可以在保持1比特的基础上,指示1~32流,1~64流中的某些流数,例如,指示1~32流中的某16个流数。
一种可能的实现中,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
其中,所述预设信道带宽值为80Mhz或160Mhz。
其他信道带宽对应的空时流数的推导方法和有益效果,实施例一之前的总述中已经详细描述,在此不再赘述。
又一种可能的实现中,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同的信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
也即,通过第一控制子字段和第二控制子字段,可以指示不同的信道带宽和相同的空时流数,指示相同的空时流数的有益效果在实施例一之前的总述中已经详细描述,在此不再赘述。
另外,又一种实现方式中,所述第一空时流数指示信息和第二空时流数指示信息联合指示的空时流数,既可以是接收空时流数,也可以是发送空时流数,也即接收空时流数和发送空时流数可以合为一个指示信息,例如图6所示的Rx NSS和Tx NSTS可以合为一个指示信息,一共占用3比特,图7所示的Rx NSS MSB和Tx NSTS MSB可以合为一个指示信息,一共占用1比特,如此,可以省去指示开销。
另外一种实现方式中,所述第一空时流数指示信息仍然分别指示接收空时流数和发送空时流数,例如图6所示的Rx NSS和Tx NSTS分别占用3比特。而第二空时流数指示信息即指示接收空时流数又指示发送空时流数,例如图7所示的Rx NSS MSB和Tx NSTS MSB可以合为一个指示信息,一共占用1比特,第二空时流数指示信息的1比特分别与第一空时流数指示信息中的两个3比特进行组合,联合指示空时流数,这种方式也在一定程度上节约了指示开销。
综上,实施例一提供的在wifi网络系统中,通过发起端AP和响应端STA1实施的OM协商技术,在OMI基本指示子字段的基础上利用另一个控制子字段作为OMI扩展指示子字段,最大程度的兼容了802.11ax标准,以较小的开销,实现了对更大的信道带宽或更多空时流数的OM协商。
对于通信的发送端,若其声称的Channel Width,Tx NSTS,Rx NSS的OM均不超过802.11ax标准所支持的最大值,则无需发送第二控制子字段(OMI扩展指示子字段),只发送第一控制子字段(即802.11ax标准中的control ID=0001的OMI基本指示子字段)。
对于通信的接收端,若其在A-control子字段只发现了第一控制子字段(OMI基本指示子字段),则在OM控制子字段获取OM协商的发起端指示的OM;若其同时发现了OMI基本 指示子字段和OMI扩展指示子字段,则联合读取OMI发起端指示的增强OM。
以上实施例一是通过两个控制字段实现增强OM协商的说明,本申请实施例提供的OM协商技术,还可以通过一个控制子字段实现,下面多个实施例分别描述。
实施例二
本实施例二中,将说明AP与STA1进行OM协商时,AP向STA1发送的OMI通过一个控制子字段,实现增强的OM协商的技术方案。
在实施例二中,将该一个控制子字段称为第三控制子字段;相应的,OMI携带在第三控制子字段对应的控制信息中;所述控制信息包括第三信道带宽指示信息和第三空时流数指示信息中的至少一种。
一种实现方式中,如图8所示,第三控制子字段对应的控制信息中的第三信道带宽指示信息(channel width)为3比特,用于指示信道带宽范围为20Mhz~320Mhz;第三空时流数指示信息(同时指示Rx NSS和Tx NSTS)为4比特,用于指示发送空时流数和接收空时流数范围为1~16流。图8以第三控制子字段的控制标识符的值为1为例进行说明的,当然,还可以重新定义一个控制标识符的值对应的控制子字段,用于指示增强的OM。
如图8所示的实施例,将Rx NSS和Tx NSTS采用一个第三空时流数指示信息进行统一指示,相比802.11ax标准中,Rx NSS和Tx NSTS分别采用3比特进行指示而言,节约了2*3-4=2比特。而3比特的第三信道带宽指示信息(channel width)相比于802.11ax标准中的channel width采用2比特而言,只增加了1比特。因此,而总体而言,与802.11ax标准相比,第三控制子字段未增加比特数,但实现了增强的OM协商。
如图8所示控制子字段对应的控制信息中各个子控制信息的顺序仅为举例,还可以有其他的变形方式,其他控制子信息的比特数也可以适应性的改变。如图8所示的控制子字段,其相比于802.11ax标准而言,禁止上行多用户传输(UL MU disable)的顺序有所改变,当然,在其他的实现方式中,也可以跟802.11ax标准中的控制子字段保持一致。
一种实现方式中,如图9所示,第三控制子字段(图9示意为control subfield 1)对应的控制信息中的第三信道带宽指示信息(channel width)为3比特,用于指示信道带宽范围为20Mhz~320Mhz;第三空时流数指示信息(Rx NSS或者Tx NSTS)为4比特,用于指示空时流数范围为1~16流。图9以第三控制子字段的控制标识符的值为7~14为例进行说明的;例如,控制标识符的值为8对应的控制子字段,用于指示增强的OM。
此实现方式中,将802.11ax标准中control ID=7~14中任一个对应的控制子字段对应的控制信息中的channel width设置为3比特,可以支持更大带宽范围的指示;另外,将Rx NSS或者Tx NSTS的3比特设置为4比特,可以支持更多空时流数范围的指示。
对于支持802.11ax的发起端和响应端,其仍然解析control ID=1对应的控制子字段对应的控制信息,获取channel width和Rx NSS或者Tx NSTS中的至少一种;而对于支持802.11ax标准之后的发起端和响应端,其解析control ID=8对应的控制子字段对应的控制信息,获取channel width和Rx NSS或者Tx NSTS中的至少一种。
又一种实现方式中,如图10所示,第三控制子字段为位于标识符的值为15的控制子字段之后的一个控制子字段;这里的控制子字段(图10示意为control subfield1)其只包括control ID,例如control ID=1111起到扩展功能,不包括对应的控制信息(control information),因此后边的控制ID可以采用任何值,即所述第三控制子字段的标识符的值为0~15中任一个。
举例来讲,该第三控制子字段的control ID可以同802.11ax标准中定义的用于OM协商 的控制子字段相同,即control ID=0001,其所对应的控制信息中承载着增强的OM,其中Rx NSS,Channel Width,Tx NSTS的比特数分别至少为4比特、3比特、4比特。其他功能的控制子字段类似,有利于将802.11ax标准和其后的标准对应起来。
应理解,所述第三信道带宽指示信息可以指示的信道带宽范围可以更大,例如480Mhz、640Mhz、800Mhz、960Mhz、1120Mhz等等。所述第三空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流,具体的空时流数为20流,24流,32流,48流,64流等等等。
可选的,所述第三空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。其中,所述预设信道带宽值为80Mhz或160Mhz。
其他信道带宽对应的空时流数的推导方法和有益效果,实施例一之前的总述中已经详细描述,在此不再赘述。
可选的,所述第三信道带宽指示信息指示不同的信道带宽时,所述第三空时流数指示信息指示的空时流数相同。
也即,通过第三控制子字段,可以指示不同的信道带宽和相同的空时流数,指示相同的空时流数的有益效果在实施例一之前的总述中已经详细描述,在此不再赘述。
另外,又一种实现方式中,所述第三空时流数指示信息指示的空时流数,既可以是接收空时流数,也可以是发送空时流数,也即接收空时流数和发送空时流数可以合为一个指示信息,例如图9或图10所示的Rx NSS和Tx NSTS可以合为一个指示信息,一共占用4比特,如此,可以省去指示开销。
本申请实施例二,通过将802.11ax标准中,标识符的值为15的控制子字段作为指示增强的OMI的标识点,让OM协商的响应端可以以此为标志,将标识符的值为15的控制子字段之后的控制子字段识别为增强OM的控制子字段,可以支持更大的信道带宽,更多空时流数的协商。另外,本实施例二还可以高度兼容802.11ax标准,对于支持或不支持802.11ax标准的发起端和响应端,均可以解析control ID=0001的控制子字段获得OM信息。
实施例三
本实施例三中,仍然说明AP与STA1进行OM协商时,AP向STA1发送的OMI通过一个控制子字段,实现增强的OM协商的技术方案。
在实施例三中,仍然将该一个控制子字段称为第三控制子字段;相应的,OMI携带在第三控制子字段对应的控制信息中;所述控制信息包括第三信道带宽指示信息和第三空时流数指示信息中的至少一种。
一种实现方式中,第三控制子字段对应的控制信息中的第三信道带宽指示信息为3比特,
与实施例二不同的是,第三控制子字段对应的控制信息中,第三信道带宽指示信息包括第一信道带宽子指示信息和第二信道带宽子指示信息,所述第一信道带宽子指示信息(如图11所示的channel width)为2比特,所述第二信道带宽子指示信息(如图11所示的channel width MSB)为1比特,所述第一信道带宽子指示信息和第二信道带宽子指示信息联合指示信道带宽。
图11中,是以1比特的第二信道带宽子指示信息作为2比特的第一信道带宽子指示信息和1比特的第二信道带宽子指示信息组成的3比特的第三信道带宽指示信息中的MSB为例进行说明的,在另一种实现中,1比特的第二信道带宽子指示信息,也可以作为2比特的第一信道带宽子指示信息和1比特的第二信道带宽子指示信息组成的3比特的第三信道带宽指示 信息中的LSB。
如此,响应端联合解析所述第一信道带宽子指示信息和第二信道带宽子指示信息,获得被指示的信道带宽。
与实施例二不同的是,所述第三空时流数指示信息包括第一空时流数子指示信息和第二空时流数子指示信息,第一空时流数子指示信息(如图11所示的Tx/Rx NSTS)为3比特,所述第二空时流数子指示信息(如图11所示的Tx/Rx NSTS MSB)为1比特,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示空时流数。
图11中,是以1比特的第二空时流数子指示信息作为3比特的第一空时流数子指示信息和1比特的第二空时流数子指示信息组成的4比特的第三空时流数指示信息中的MSB为例进行说明的,在另一种实现中,1比特的第二空时流数子指示信息,也可以作为3比特的第一空时流数子指示信息和1比特的第二空时流数子指示信息组成的4比特的第三空时流数指示信息中的LSB。
如此,响应端联合解析所述第一空时流数子指示信息和第二空时流数子指示信息,获得被指示的空时流数。
一种实现方式中,所述第三控制子字段的标识符的值为0~15中任一个。例如,所述第三控制子字段对应的标识符的值为1。
可选的,所述第三控制子字段可以为位于标识符的值为15的控制子字段之后的一个控制子字段。
可选的,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。其中,所述预设信道带宽值为80Mhz或160Mhz。
其他信道带宽对应的空时流数的推导方法和有益效果,实施例一之前的总述中已经详细描述,在此不再赘述。
可选的,所述第一信道带宽指示信息和第二信道带宽指示信息联合指示不同信道带宽时,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数相同。
也即,通过第三控制子字段,可以指示不同的信道带宽和相同的空时流数,指示相同的空时流数的有益效果在实施例一之前的总述中已经详细描述,在此不再赘述。
本申请实施例三,通过将802.11ax标准中的控制子字段中的信道带宽指示信息或空时流数指示信息离散为两个子指示字段,在最大程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
实施例四
本实施例四中,仍然说明AP与STA1进行OM协商时,AP向STA1发送的OMI通过一个控制子字段,实现增强的OM协商的技术方案。
在实施例四中,将该一个控制子字段称为第四控制子字段;相应的,所述OMI携带在第四控制子字段对应的控制信息中,所述控制信息包括第四信道带宽指示信息和第四空时流数指示信息中的至少一种。
可选的,所述第四信道带宽指示信息为2比特,用于指示信道带宽范围为20Mhz~320Mhz;
具体的,如表7所示:
表7重新定义的增强Channel Width指示–方式1
Figure PCTCN2021077313-appb-000009
Figure PCTCN2021077313-appb-000010
发起端和响应端均支持802.11ax之后的标准,所述第四控制子字段(即OMI控制子字段)第四信道带宽指示信息指示的信道带宽范围为20Mhz~320Mhz;
或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~160Mhz。
例如,第四信道带宽指示信息指示为2比特,其值为11,一种情况是,发起端和响应端均支持802.11ax之后的标准,例如支持802.11be标准,则该11对应的含义是发起端和响应端协商的信道带宽为320Mhz,或者160+160Mhz;另一种情况是,发起端和响应端中有任何一方不支持802.11ax之后的标准,例如响应端不支持802.11be标准,则该11对应的含义是发起端和响应端协商的信道带宽为160Mhz,或者80+80Mhz。
另一种可能的实现方式中,第四信道带宽指示信息用于指示以下四种中的任一种:
信道带宽为20Mhz,信道带宽为40Mhz,信道带宽为80Mhz,能力范围全部支持。
具体的,如表8所示:
表8重新定义的增强Channel Width指示–方式2
Figure PCTCN2021077313-appb-000011
如表8所示,第四信道带宽指示信息指示为2比特,其值为11,一种情况是,发起端和响应端均支持802.11ax之后的标准,例如支持802.11be标准,则该11对应的含义是发起端和响应端协商的信道带宽为能力范围内全部支持;另一种情况是,发起端和响应端中有任何一方不支持802.11ax之后的标准,例如响应端不支持802.11be标准,则该11对应的含义是发起端和响应端协商的信道带宽为160Mhz,或者80+80Mhz。
需要说明的是,表7和表8仅为示意,2比特的第四信道带宽指示信息指示的信道带宽还可以是其他的值,例如,还可以指示240Mhz或160+80Mhz或80+160Mhz等等;只要满足:发起端和响应端均支持802.11ax之后的标准,该2比特指示20Mhz~320Mhz任意四个值;发起端和响应端任何一方不支持802.11ax之后的标准,该2比特指示20Mhz~160Mhz任意四个值,即可。
应理解,所述第四信道带宽指示信息可以指示的信道带宽范围可以更大,例如640Mhz。
同理,第四控制子字段对应的控制信息中,所述第四空时流数指示信息为3比特,用于指示空时流数范围为1~16流。
一种实现方式中,所述发起端和响应端均支持802.11ax之后的标准,所述第四空时流数 指示信息指示的空时流数为1~16流中的任一值;可选的,所述第四空时流数指示信息用于指示1~16流中的任意8个值。
或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~8流中的任一值。
具体的,如表9所示:
表9重新定义的增强Tx NSTS或者增强Rx NSS指示–方式1
Figure PCTCN2021077313-appb-000012
简单来讲,在OMI控制子字段中,用于指示Tx NSTS/Rx NSS的比特数维持3比特不变的情况下,通过减少11ax支持的某一种模式(如Tx NSTS/Rx NSS为3,5,7),换成所需要支持的新的模式(如表9中的Tx NSTS/Rx NSS为10,12,16)。至于含义是对应哪一列,该OM控制子字段的接收方(OM协商的响应端)需要根据其是否支持802.11be标准(或者以后的标准)来判断。
另外一种实现方式是,不区分大的信道带宽或者空时流数,因此用一个预设值代表能力范围内的所有OM都支持,具体如表10所示:
表10重新定义的增强Tx NSTS或者增强Rx NSS指示–方式2
Figure PCTCN2021077313-appb-000013
如表9和表10所示的例子中,若OM控制子字段的接收方(OM协商的响应端)不支持802.11be的标准,其需要按照11ax定义的原有的OM子字段的含义来发送相应信息,不可以按照新的含义发送。
同理,一个只支持11ax标准的STA也不会懂如何按照新的含义去解读,会一直按11ax的含义去解读。
举例来讲,如果OM协商的响应端,是只支持802.11ax标准的STA,它不知道自己是否支持11be,也不会去判断OM协商的发起端是否支持11be。该STA只会按照802.11ax标准中规定的方式去解析OMI。这种情况下,作为OM协商的发起端,如果是支持802.11ax标准只有的标准版本,例如802.11be标准,那么该发起端不能向该STA发送本申请提供的增强OM指示信息。
如果OM协商的响应端,是支持802.11ax标准之后的标准版本的STA,例如其知道自己是支持802.11be的STA,在它接收OMI时,要判断发起端是否支持(通过发送地址知道发起端支持的标准类型),而默认自己肯定支持802.11ax标准之后的标准版本。此时,发起端向其发送的OMI是增强的OMI。
应理解,所述第四空时流数指示信息可以指示的空时流数范围可以更多,例如1~32流,1~64流等等。在维持现有的比特数不变的情况下,可以用3比特指示1~32流中的任意8个值,或者指示1~64中的任意8个值;或者指示其中的7个值,再加一个“能力范围内全部支持”。
一种实现方式中,所述第四空时流数指示信息指示的空时流数为小于或等于预设信道带宽值的空时流数。其中,所述预设信道带宽值为80Mhz或160Mhz。
一种实现方式中,所述第四信道带宽指示信息指示不同的信道带宽时,所述第四空时流数指示信息指示的空时流数相同。
本申请实施例,在不增加现有的控制子字段的比特数的基础上,针对是否支持802.11ax之后的标准的情况,相同的OMI信息可以解析为不同的含义,因此,以最小的开销,在最大程度的兼容802.11ax标准的基础上,实现了对增强OM的协商。
不失一般性的,实施例一至实施例四中任一个实施例中的控制子字段对应的控制信息中各个子控制信息的顺序仅为举例,还可以有其他的变形方式,其他控制子信息的比特数也可以适应性的改变。本申请实施例不做限定。
上述本申请提供的实施例一~实施例四中,分别以AP作为OM协商的发起端,STA1作为OM协商的响应端的角度对本申请实施例提供的增强OM协商方法进行了介绍。
STA作为OM协商的发起端,AP作为OM协商的响应端;或者AP与AP之间的OM协商,STA与STA之间的OM协商与之类似,在此不再赘述。
为了实现上述本申请实施例提供的增强OM协商技术方案,接入点、站点可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种操作模式的协商方法,应用于操作模式协商的发起端,其特征在于,包括:
    发起端向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种;所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
    所述发起端与所述响应端进行传输。
  2. 一种通信装置,其作为操作模式OM协商的发起端,其特征在于,包括:
    收发器,用于向响应端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
    处理器,用于与所述响应端进行传输。
  3. 如权利要求1所述的方法或2所述的发起端,其特征在于,所述OMI携带在控制子字段对应的控制信息中;所述控制信息包括所述信道带宽指示信息和空时流数指示信息中的至少一种。
  4. 如权利要求3所述的方法或发起端,其特征在于,所述控制子字段包括第一控制子字段和第二控制子字段;
    所述第一控制子字段为OMI基本指示子字段,所述第二控制子字段为OMI扩展指示子字段;所述第一控制子字段与所述第二控制子字段联合指示增强的OMI。
  5. 如权利要求4所述的方法或发起端,其特征在于,所述第一控制子字段对应的控制信息中,用于指示信道带宽的第一信道带宽指示信息的比特数为2比特,所述第二控制子字段对应的控制信息中,用于指示信道带宽的第二信道带宽指示信息的比特数为1比特;所述第一信道带宽指示信息和所述第二信道带宽指示信息联合指示的信道带宽范围为20Mhz~320Mhz。
  6. 如权利要求4或5所述的方法或装置,其特征在于,所述第一控制子字段对应的控制信息中,用于指示空时流数的第一空时流数指示信息的比特数为3比特,所述第二控制子字段对应的控制信息中,用于指示空时流数的第二空时流数指示信息的比特数为1比特;所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数范围为1~16流。
  7. 如权利要求6所述的方法或装置,其特征在于,所述第一空时流数指示信息和所述第二空时流数指示信息联合指示的空时流数为小于或等于预设信道带宽值的空时流数。
  8. 如权利要求1所述的方法或权利要求2所述的发起端,其特征在于,所述OMI携带在第三控制子字段对应的控制信息中;所述控制信息包括第三信道带宽指示信息和第三空时流数指示信息中的至少一种;其中,所述第三信道带宽指示信息为3比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第三空时流数指示信息为4比特,用于指示空时流数范围为1~16流。
  9. 如权利要求1所述的方法或权利要求2所述的发起端,其特征在于,所述第三控制子字段为位于标识符的值为15的控制子字段之后的一个控制子字段。
  10. 如权利要求9所述的方法或发起端,其特征在于,所述第三控制子字段的标识符的值为0~15中任一个。
  11. 如权利要求8所述的方法或发起端,其特征在于,所述第三信道带宽指示信息包括第一信道带宽子指示信息和第二信道带宽子指示信息,所述第一信道带宽子指示信息为2比特,所述第二信道带宽子指示信息为1比特,所述第一信道带宽子指示信息和第二信道带宽子指示信息联合指示信道带宽。
  12. 权利要求8所述的方法或发起端,其特征在于,所述第三空时流数指示信息包括第一空时流数子指示信息和第二空时流数子指示信息,第一空时流数子指示信息为3比特,所述第二空时流数子指示信息为1比特,所述第一空时流数子指示信息和第二空时流数子指示信息联合指示空时流数。
  13. 如权利要求11或12所述的方法或发起端,其特征在于,所述第三控制子字段对应的标识符的值为1。
  14. 如权利要求1所述的方法或权利要求2所述的发起端,其特征在于,所述OMI携带在第四控制子字段对应的控制信息中,所述控制信息包括第四信道带宽指示信息和第四空时流数指示信息中的至少一种;其中,所述第四信道带宽指示信息为2比特,用于指示信道带宽范围为20Mhz~320Mhz;所述第四空时流数指示信息为3比特,用于指示空时流数范围为1~16流。
  15. 如权利要求14所述的方法或发起端,其特征在于,所述发起端和响应端均支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~16流中的任一值;
    或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四空时流数指示信息指示的空时流数为1~8流中的任一值。
  16. 如权利要求15所述的方法或发起端,其特征在于,所述第四空时流数指示信息用于指示1~16流中的任意8个值。
  17. 如权利要求14所述的方法或发起端,其特征在于,所述发起端和响应端均支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~320Mhz;
    或者,所述发起端和响应端中任一端不支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~160Mhz。
  18. 如权利要求16所述的方法或发起端,其特征在于,所述第四信道带宽指示信息用于指示以下四种中的任一种:
    信道带宽为20Mhz,信道带宽为40Mhz,信道带宽为80Mhz,能力范围全部支持。
  19. 一种操作模式的协商方法,应用于操作模式协商的响应端,其特征在于,包括:
    接收来自发起端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
    根据所述OMI,与所述发起端进行传输。
  20. 一种通信装置,其作为操作模式OM协商的响应端,其特征在于,包括:
    收发器,用于接收来自发起端发送操作模式指示OMI,所述OMI包括信道带宽指示信息和空时流数指示信息中的至少一种,所述信道带宽指示信息指示的信道带宽的能力范围大于160Mhz,所述空时流数指示信息指示的空时流数的能力范围大于8流;
    处理器,用于根据所述OMI,与所述发起端进行传输。
  21. 如权利要求20所述的方法或响应端,其特征在于,所述OMI携带在控制子字段对应的控制信息中;所述控制信息包括所述信道带宽指示信息和空时流数指示信息中的至少一种。
  22. 如权利要求19所述的方法或权利要求20所述的响应端,其特征在于,所述控制子字段包括第一控制子字段和第二控制子字段;
    所述第一控制子字段为OMI基本指示子字段,所述第二控制子字段为OMI扩展指示子字段;所述第一控制子字段与所述第二控制子字段联合指示增强的OMI。
  23. 如权利要求22所述的方法或响应端,其特征在于,所述响应端联合解析所述第一控制子字段中的第一信道带宽指示信息和第二控制子字段中第二信道带宽指示信息,获得被指示的信道带宽。
  24. 如权利要求22所述的方法或响应端,其特征在于,所述响应端联合解析所述第一控制子字段中的第一空时流数指示信息和第二控制子字段中的第二空时流数指示信息,获得被指示的空时流数。
  25. 如权利要求19所述的方法或权利要求20所述的响应端,其特征在于,所述控制子字段为第三控制子字段,其包括第一信道带宽子指示信息和第二信道带宽子指示信息,所述响应端联合解析所述第一信道带宽子指示信息和第二信道带宽子指示信息,获得被指示的信道带宽。
  26. 如权利要求19所述的方法或权利要求20所述的响应端,其特征在于,所述控制子字段中包括第一空时流数子指示信息和第二空时流数子指示信息,所述响应端联合解析所述第一空时流数子指示信息和第二空时流数子指示信息,获得被指示的空时流数。
  27. 如权利要求19所述的方法或权利要求20所述的响应端,其特征在于,所述控制子 字段为第四控制子字段,所述响应端判断所述发起端不支持802.11ax之后的标准,所述第四控制子字段中的第四空时流数指示信息指示的空时流数范围为1-8流中的任一值;或所述响应端判断所述发起端支持802.11ax之后的标准,所述第四控制子字段中的第四空时流数指示信息指示的空时流数范围为1-16流中的任一值。
  28. 如权利要求19所述的方法或权利要求20所述的响应端,其特征在于,所述控制子字段为第四控制子字段,所述响应端判断所述发起端不支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~160Mhz;或所述响应端判断所述发起端支持802.11ax之后的标准,所述第四信道带宽指示信息指示的信道带宽范围为20Mhz~320Mhz。
  29. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    所述处理器用于运行计算机程序执行如权利要求1,3-18,19,21-28中任一项所述的方法。
  30. 如权利要求29中任一项所述的芯片系统,其特征在于,所述芯片系统还包括与所述处理器耦合的存储器,用于存储用于实现如权利要求1,3-18,19,21-28中任一项所述的方法的计算机程序。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序令被执行时,使得如权利要求1,3-18,19,21-28中任一项所述的方法被实现。
  32. 一种程序,其特征在于,所述程序令被执行时,使得如权利要求1,3-18,19,21-28中任一项所述的方法被实现。
  33. 一种通信装置,其作为操作模式OM协商的发起端,其特征在于,所述通信装置用于实现如权利要求1,3-18中任一项所述的方法。
  34. 一种通信装置,其作为操作模式OM协商的响应端,其特征在于,所述通信装置用于实现如权利要求19,21-28中任一项所述的方法。
PCT/CN2021/077313 2020-04-10 2021-02-22 操作模式的协商方法、发起端、接收端、芯片系统、介质 WO2021203850A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21785424.9A EP4132189B1 (en) 2020-04-10 2021-02-22 Negotiation method for operation mode, initiating end, receiving end, chip system, and medium
BR112022020265A BR112022020265A2 (pt) 2020-04-10 2021-02-22 Método de negociação para um modo de operação, iniciador, receptor, sistema de chip e meio
US17/960,168 US20230042842A1 (en) 2020-04-10 2022-10-05 Negotiation method for an operating mode, initiator, receiver, chip system, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281486.6A CN113518388A (zh) 2020-04-10 2020-04-10 操作模式的协商方法、发起端、接收端、芯片系统、介质
CN202010281486.6 2020-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/960,168 Continuation US20230042842A1 (en) 2020-04-10 2022-10-05 Negotiation method for an operating mode, initiator, receiver, chip system, and medium

Publications (1)

Publication Number Publication Date
WO2021203850A1 true WO2021203850A1 (zh) 2021-10-14

Family

ID=78022908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077313 WO2021203850A1 (zh) 2020-04-10 2021-02-22 操作模式的协商方法、发起端、接收端、芯片系统、介质

Country Status (5)

Country Link
US (1) US20230042842A1 (zh)
EP (1) EP4132189B1 (zh)
CN (2) CN113518388A (zh)
BR (1) BR112022020265A2 (zh)
WO (1) WO2021203850A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187992A1 (zh) * 2023-03-10 2024-09-19 华为技术有限公司 通信方法和通信装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562354B2 (ja) * 2020-09-28 2024-10-07 キヤノン株式会社 通信装置、制御方法、およびプログラム
WO2023087320A1 (zh) * 2021-11-22 2023-05-25 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
WO2023092499A1 (zh) * 2021-11-26 2023-06-01 北京小米移动软件有限公司 Wlan感知方法及装置、电子设备及存储介质
CN117769882A (zh) * 2022-07-25 2024-03-26 北京小米移动软件有限公司 通信方法及电子设备、存储介质
CN118202629A (zh) * 2022-10-13 2024-06-14 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
WO2024092438A1 (zh) * 2022-10-31 2024-05-10 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质
CN118102334A (zh) * 2022-11-26 2024-05-28 华为技术有限公司 一种通信方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106789761A (zh) * 2015-11-23 2017-05-31 华为技术有限公司 无线局域网数据传输方法和装置
US20180124746A1 (en) * 2015-08-21 2018-05-03 Lg Electronics Inc. Data transmission method and device in wireless communication system
US20180317128A1 (en) * 2015-10-23 2018-11-01 Lg Electronics Inc. Method for transmitting data in wireless communication system and device therefor
US20200112408A1 (en) * 2018-10-04 2020-04-09 Qualcomm Incorporated Multi-user preamble format for a wireless local area network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10623133B2 (en) * 2016-06-21 2020-04-14 Lg Electronics Inc. Method and apparatus for changing operating mode in wireless local area network system
US11632817B2 (en) * 2018-08-10 2023-04-18 Lg Electronics Inc. Method and device for transmitting information for operating station in wireless local area network system supporting multiple bands
SG10201808652UA (en) * 2018-10-01 2020-05-28 Panasonic Ip Corp America Communication Apparatus and Communication Method for Channel Estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180124746A1 (en) * 2015-08-21 2018-05-03 Lg Electronics Inc. Data transmission method and device in wireless communication system
US20180317128A1 (en) * 2015-10-23 2018-11-01 Lg Electronics Inc. Method for transmitting data in wireless communication system and device therefor
CN106789761A (zh) * 2015-11-23 2017-05-31 华为技术有限公司 无线局域网数据传输方法和装置
US20200112408A1 (en) * 2018-10-04 2020-04-09 Qualcomm Incorporated Multi-user preamble format for a wireless local area network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187992A1 (zh) * 2023-03-10 2024-09-19 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
EP4132189A4 (en) 2023-08-09
CN117014966A (zh) 2023-11-07
BR112022020265A2 (pt) 2022-12-20
CN113518388A (zh) 2021-10-19
US20230042842A1 (en) 2023-02-09
EP4132189B1 (en) 2024-10-23
EP4132189A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
WO2021203850A1 (zh) 操作模式的协商方法、发起端、接收端、芯片系统、介质
US11218845B2 (en) Method and apparatus of transmitting a spatial stream for MU-MIMO in a wireless local area network system
JP7086925B2 (ja) 送信装置、送信方法および集積回路
CN113411831B (zh) 数据传输的方法和装置
CN118338462A (zh) 一种适用于多链路的通信方法及相关设备
CN108886712B (zh) 支持多用户级联传输的无线通信方法和使用该方法的无线通信终端
CN114158140A (zh) 无线通信系统中的多链路建立方法及通信装置
CN103873202A (zh) 确定可预测的调制和编码方案的系统和方法
US11082923B2 (en) Method for direct communication between stations in wireless local area network and related device
KR20170134458A (ko) 제어 프레임 어그리게이션 프레임
CN113873645A (zh) 一种多资源单元传输的指示方法及相关设备
WO2021228046A1 (zh) 操作模式的协商方法、装置及芯片
CN117042045A (zh) 数据传输方法及装置
CN116707591A (zh) 一种天线模式切换方法及相关装置
CN118102423A (zh) 信息指示方法及设备
CN115462153A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785424

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022020265

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202237060949

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785424

Country of ref document: EP

Effective date: 20221104

ENP Entry into the national phase

Ref document number: 112022020265

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221006