WO2021203686A1 - 一种墙面标定的方法以及一种边标定的方法 - Google Patents

一种墙面标定的方法以及一种边标定的方法 Download PDF

Info

Publication number
WO2021203686A1
WO2021203686A1 PCT/CN2020/125340 CN2020125340W WO2021203686A1 WO 2021203686 A1 WO2021203686 A1 WO 2021203686A1 CN 2020125340 W CN2020125340 W CN 2020125340W WO 2021203686 A1 WO2021203686 A1 WO 2021203686A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
rotation parameter
parameter
calibration device
wall
Prior art date
Application number
PCT/CN2020/125340
Other languages
English (en)
French (fr)
Inventor
李文祥
丁明内
杨伟樑
高志强
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Priority to US17/226,572 priority Critical patent/US20210318113A1/en
Publication of WO2021203686A1 publication Critical patent/WO2021203686A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the embodiments of the present application relate to the technical field of space calibration, in particular to a method for wall calibration and a method for side calibration.
  • Three-dimensional space calibration plays a very important role in many applications such as projection and stage lights, and is the basic step of these applications. For example, after the projection device obtains the spatial three-dimensional information parameters, it can determine the skew angle of the current projection position, and then geometrically correct the projection image to make the projection image square. After the stage light obtains the spatial parameters, it can adjust the light color and intensity according to the current irradiation position, thereby providing better lighting effects.
  • the embodiments of the present application aim to provide a method for wall calibration and a method for side calibration, which can calibrate the space and is very simple.
  • a technical solution adopted in the embodiments of the present application is to provide a method for wall calibration, which is applied to calibration equipment, including:
  • the surface calibration parameter of the wall surface relative to the calibration device is determined .
  • the step of determining the surface calibration parameters of the wall surface relative to the calibration device includes:
  • the first rotation parameter ( ⁇ 1 , ⁇ 1 ), the second rotation parameter ( ⁇ 2 , ⁇ 2 ), the third rotation parameter ( ⁇ 3 , ⁇ 3 ), and the fourth rotation parameter ( ⁇ 4 , ⁇ 4 ) Determine the horizontal rotation angle ⁇ L when the calibration device is calibrating the leftmost side of the wall, and determine the horizontal rotation angle ⁇ R when the calibration device is calibrating the rightmost side of the wall;
  • the calibration parameters of the first side ( ⁇ 0 , ⁇ T ) and the calibration parameters of the second side ( ⁇ 0 , ⁇ B ), determine the horizontal rotation angle ⁇ 0 when the calibration device is facing the wall surface.
  • ⁇ L , ⁇ R , ⁇ 0 , ⁇ T , ⁇ B ⁇ constitute the surface calibration parameters of the wall surface relative to the calibration device.
  • the calculation formula for determining the horizontal rotation angle ⁇ L when the calibration device calibrates the leftmost side of the wall surface is as follows:
  • the center of the projection screen of the calibration device is directly facing the top edge of the wall
  • the calculation formula of the first side calibration parameters ( ⁇ 0 , ⁇ T ) at the time is as follows:
  • a side calibration method applied to a calibration device including:
  • an edge calibration parameter when the center of the projection screen of the calibration device is directly facing the side to be calibrated is determined.
  • the side calibration parameter ⁇ 0 is as follows:
  • a wall calibration device applied to calibration equipment including:
  • the first acquisition module is configured to acquire the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the top edge of the wall;
  • a first determination module configured to determine, according to the first rotation parameter and the second rotation parameter, the first side calibration parameter when the center of the projection screen of the calibration device is directly on the top side of the wall;
  • the second acquisition module is configured to acquire the third rotation parameter and the fourth rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the bottom of the wall surface;
  • a second determining module configured to determine, according to the third rotation parameter and the fourth rotation parameter, the second side calibration parameter when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall surface;
  • the third determining module is configured to determine the relative position of the wall surface relative to the first side calibration parameter, the second side calibration parameter, the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter. Describe the face calibration parameters of the calibration equipment.
  • a side calibration device applied to calibration equipment including:
  • An acquiring module configured to acquire the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is respectively facing two points on the side to be calibrated;
  • the determining module is configured to determine the edge calibration parameter when the center of the projection screen of the calibration device is directly on the side to be calibrated according to the first rotation parameter and the second rotation parameter.
  • a calibration device including:
  • At least one processor At least one processor
  • a memory the memory is in communication connection with the at least one processor, and the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one The processor can execute the method described above.
  • another technical solution adopted in the embodiments of this application is to provide a computer program product containing program code, which when the computer program product runs on a calibration device, causes the calibration device to execute the above The method described.
  • the embodiment of the present application provides a method for wall calibration and a method for side calibration.
  • the method for wall calibration obtain the The first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the top edge of the wall; the calibration device is determined according to the first rotation parameter and the second rotation parameter The first side calibration parameter when the center of the projection screen is directly facing the top edge of the wall; acquiring the third rotation parameter when the center of the projection screen of the calibration device is directly facing the two boundary points of the bottom edge of the wall; and The fourth rotation parameter; according to the third rotation parameter and the fourth rotation parameter, determine the second side calibration parameter when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall; calibration according to the first side The parameters, the second side calibration parameter, the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter determine the surface calibration parameters of the wall surface relative to the calibration device.
  • the calibration of the wall surface and the ceiling and floor connected to the wall surface can be achieved through the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter. Since the space is composed of four walls, the ceiling and the floor connected with them, and there are only 8 boundary points, according to the above method, only 8 rotation parameters are needed to achieve the calibration of the space, which is very simple.
  • FIG. 1 is a schematic flowchart of an edge calibration method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the rotation angle of a point on the side to be calibrated according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for wall calibration provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the rotation angles of four points on the wall provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a standard cubic space provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of calibrating the ceiling of a standard space provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a wall calibration and an edge calibration device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the hardware structure of a calibration device for performing wall calibration and side calibration provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of an edge calibration method provided by an embodiment of the present application, and the method is applied to a calibration device.
  • the edge calibration method includes:
  • Step S101 Obtain the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is facing two points on the side to be calibrated, respectively.
  • the side to be calibrated is the horizontal line where the center of the projection screen of the calibration device is located when the calibration device is facing the wall.
  • Step S102 Determine an edge calibration parameter when the center of the projection screen of the calibration device is directly on the side to be calibrated according to the first rotation parameter and the second rotation parameter.
  • the point at which the calibration device faces the wall is the origin of coordinates, and the edge calibration parameters when the center of the projection screen of the calibration device is determined to face the side to be calibrated is when it is determined that the calibration device is facing the wall.
  • the vertical rotation angle ⁇ 0 of the side to be calibrated is not 0, it can be estimated from the two points on the side to be calibrated that the calibration device 10 is facing the wall and the center of the projection screen of the calibration device 10 is located at The rotation angle ( ⁇ 0 , ⁇ 0 ) of the calibration device 10 at the side to be calibrated.
  • the center of the projection screen of the calibration device obtained according to the above step S101 is the first rotation parameter ( ⁇ 1 , ⁇ 1 ) and the second rotation parameter ( ⁇ 2 , ⁇ 2 ) when the two points on the side are being calibrated, and according to From the above analysis, the following formula can be obtained:
  • tan ⁇ 1 tan ⁇ 0 cos( ⁇ 1 - ⁇ 0 )
  • the calibration of the side to be calibrated can be realized.
  • the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is respectively being calibrated at two points on the side are obtained, and according to the first rotation parameter and the second rotation Parameter, a method for determining the edge calibration parameter when the center of the projection screen of the calibration device is facing the side to be calibrated, which can calibrate the horizontal line on the wall.
  • FIG. 3 is a schematic flowchart of a method for wall calibration provided by an embodiment of the present application.
  • the method of wall calibration includes:
  • Step S103 Obtain the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points of the top edge of the wall.
  • the calibration device 10 is adjusted so that the center of the projection image is directly opposite to the two boundary points on the top edge of the wall W1, and the horizontal rotation angle and the vertical rotation angle of the calibration device at this time are obtained, thereby Obtain the first rotation parameter ( ⁇ 1 , ⁇ 1 ) and the second rotation angle ( ⁇ 2 , ⁇ 2 ).
  • Step S104 Determine the first side calibration parameter when the center of the projection screen of the calibration device is directly on the top side of the wall according to the first rotation parameter and the second rotation parameter.
  • the center of the projection screen of the calibration device is facing the wall according to the first rotation parameter ( ⁇ 1 , ⁇ 1 ) and the second rotation parameter ( ⁇ 2 , ⁇ 2)
  • the first side calibration parameter ( ⁇ 0 , ⁇ T ) when facing the top side.
  • ⁇ 0 is the horizontal rotation angle when the calibration device is directly facing the wall
  • ⁇ T is the vertical rotation angle when the center of the projection image of the calibration device is directly on the top edge of the wall.
  • Step S105 Obtain the third rotation parameter and the fourth rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points of the bottom edge of the wall.
  • Step S106 Determine, according to the third rotation parameter and the fourth rotation parameter, a second side calibration parameter when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall surface.
  • the second side calibration parameter ( ⁇ 0 , ⁇ B ) is the horizontal rotation angle ⁇ 0 when the calibration device is directly facing the wall surface, and when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall surface
  • the vertical rotation angle ⁇ B It is understandable that the horizontal rotation angle when the calibration device is directly facing the wall is always ⁇ 0 , and the vertical rotation angle ⁇ B when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall.
  • Step S107 according to the first side calibration parameter, the second side calibration parameter, the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter, determine the distance of the wall surface relative to the calibration device. Face calibration parameters.
  • the step of determining the calibration parameters of the wall surface relative to the calibration device is specifically based on the first rotation parameter ( ⁇ 1 , ⁇ 1 ), the second rotation parameter ( ⁇ 2 , ⁇ 2 ), and the second rotation parameter ( ⁇ 2, ⁇ 2 ).
  • the three rotation parameters ( ⁇ 3 , ⁇ 3 ) and the fourth rotation parameter ( ⁇ 4 , ⁇ 4 ) determine the horizontal rotation angle ⁇ L when the calibration device calibrates the leftmost side of the wall, and calibrate the wall
  • the vertical rotation angle ⁇ B at the bottom of
  • an average can be taken to reduce random errors, namely
  • the calibration of the vertical wall can be completed, and the calibration parameters are ⁇ L , ⁇ R , ⁇ 0 , ⁇ T , ⁇ B ⁇ .
  • the vertical wall can be decomposed into several areas and then calibrated separately.
  • the range of the horizontal rotation angle of the calibration device is [ ⁇ L , ⁇ R ]. Therefore, for a point ( ⁇ , ⁇ ) where the horizontal rotation angle is between [ ⁇ L , ⁇ R ], if tan ⁇ B cos( ⁇ - ⁇ 0 ) ⁇ tan ⁇ tan ⁇ T cos( ⁇ - ⁇ 0 ), then this The point is located on the wall W1; if tan ⁇ tan ⁇ B cos( ⁇ - ⁇ 0 ), then the point is located below the wall W1 (floor); if tan ⁇ >tan ⁇ T cos( ⁇ - ⁇ 0 ), then It shows that the point is located above the wall W1 (ceiling).
  • FIG. 5 is a schematic diagram of a standard cubic space provided by an embodiment of the application.
  • the four vertical walls are denoted as W1, W2, W3, and W4, the four vertices of the ceiling are denoted as A, B, C, and D, and the four vertices of the floor are denoted as E, F, G, and H.
  • the fourth rotation parameter ( ⁇ 4 , ⁇ 4 ) can realize the calibration of the wall W1, that is, the surface calibration parameters of the wall W1 relative to the calibration device can be obtained
  • the calibration of the wall W2 can be achieved, that is, the calibration parameters of the wall W2 relative to the calibration device can be obtained
  • the calibration of the four vertical walls can be achieved. It is understandable that this process only needs to use the rotation angle of the device corresponding to the eight boundary points to complete the calibration of the wall, and the operation is simple.
  • FIG. 6 is a schematic diagram of calibrating the ceiling of a standard space provided by an embodiment of the present application. Taking the position of the calibration device directly facing the ceiling as the center and connecting with the 4 boundary points of the ceiling, the ceiling can be divided into 4 parts, which are respectively connected to the closest vertical wall, so that the ceiling is The divided 4 parts can be respectively considered as part of the four vertical walls connected to it.
  • the bottom plate can also be divided into 4 parts in the above-mentioned manner, and they are respectively regarded as parts of the four vertical walls connected to it.
  • ⁇ , ⁇ on the wall (including the ceiling and the floor)
  • first determine which vertical wall it is located on according to the horizontal rotation angle ⁇ For example, if It means that it is located on the vertical wall W1 and its connected ceiling or floor.
  • judge its specific position according to the vertical rotation angle ⁇ if It means that the point is located at the vertical wall W1; if It means that the point is located in the floor area connected to W1; if It means that the point is located in the ceiling area connected to W1.
  • the first rotation parameter and the second rotation parameter are obtained when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the top edge of the wall; according to the first rotation Parameters and second rotation parameters, which determine the first side calibration parameters when the center of the projection screen of the calibration device is directly facing the top edge of the wall; acquiring the center of the projection screen of the calibration device is directly facing the bottom edge of the wall.
  • the third rotation parameter and the fourth rotation parameter at the two boundary points of, according to the third rotation parameter and the fourth rotation parameter, the second rotation parameter when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall is determined according to the third rotation parameter and the fourth rotation parameter Two-side calibration parameters; according to the first-side calibration parameters, second-side calibration parameters, first rotation parameters, second rotation parameters, third rotation parameters, and fourth rotation parameters, it is determined that the wall surface is relative to the calibration The face calibration parameters of the equipment.
  • the calibration of the wall surface and the ceiling and floor connected to the wall surface can be achieved through the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter. Since the space is composed of four walls, the ceiling and the floor connected with them, and there are only 8 boundary points, according to the above method, only 8 rotation parameters are needed to achieve the calibration of the space, which is very simple.
  • FIG. 7 is a schematic diagram of a wall calibration and an edge calibration device provided by an embodiment of the present application.
  • module used in the embodiments of the present application is a combination of software and/or hardware that can implement predetermined functions.
  • the devices described in the following embodiments can be implemented by software, implementation by hardware or a combination of software and hardware may also be conceived.
  • the device for wall calibration and side calibration includes:
  • the first obtaining module 301 is configured to obtain the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the top edge of the wall;
  • the first determining module 302 is configured to determine the first side calibration parameter when the center of the projection screen of the calibration device is directly on the top side of the wall according to the first rotation parameter and the second rotation parameter;
  • the second acquiring module 303 is configured to acquire the third rotation parameter and the fourth rotation parameter when the center of the projection screen of the calibration device is directly opposite to the two boundary points of the bottom edge of the wall surface;
  • the second determining module 304 is configured to determine, according to the third rotation parameter and the fourth rotation parameter, the second side calibration parameter when the center of the projection screen of the calibration device is directly on the bottom side of the wall surface;
  • the third determining module 305 is configured to determine that the wall surface is relative to the first side calibration parameter, the second side calibration parameter, the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter.
  • the face calibration parameters of the calibration equipment is configured to determine that the wall surface is relative to the first side calibration parameter, the second side calibration parameter, the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter.
  • the third determining module 305 is specifically configured to:
  • the first rotation parameter ( ⁇ 1 , ⁇ 1 ), the second rotation parameter ( ⁇ 2 , ⁇ 2 ), the third rotation parameter ( ⁇ 3 , ⁇ 3 ), and the fourth rotation parameter ( ⁇ 4 , ⁇ 4 ) Determine the horizontal rotation angle ⁇ L when the calibration device is calibrating the leftmost side of the wall, and determine the horizontal rotation angle ⁇ R when the calibration device is calibrating the rightmost side of the wall;
  • the calibration parameters of the first side ( ⁇ 0 , ⁇ T ) and the calibration parameters of the second side ( ⁇ 0 , ⁇ B ), determine the horizontal rotation angle ⁇ 0 when the calibration device is facing the wall surface.
  • ⁇ L , ⁇ R , ⁇ 0 , ⁇ T , ⁇ B ⁇ constitute the surface calibration parameters of the wall surface relative to the calibration device.
  • the first rotation parameter ( ⁇ 1 , ⁇ 1 ) and the second rotation parameter ( ⁇ 2 , ⁇ 2 ) the first side calibration when the center of the projection screen of the calibration device is directly facing the top edge of the wall is determined.
  • the calculation formula of the parameters ( ⁇ 0 , ⁇ T) is as follows:
  • the second side calibration when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall is determined.
  • the calculation formula of the parameters ( ⁇ 0 , ⁇ B) is as follows:
  • the device for wall calibration and side calibration further includes:
  • the acquiring module 306 is configured to acquire the first rotation parameter and the second rotation parameter when the center of the projection screen of the calibration device is respectively facing two points on the side to be calibrated;
  • the determining module 307 is configured to determine the edge calibration parameter when the center of the projection screen of the calibration device is directly on the side to be calibrated according to the first rotation parameter and the second rotation parameter.
  • the edge calibration parameter ⁇ 0 when the center of the projection screen of the calibration device is directly facing the side to be calibrated is determined.
  • the calculation formula is as follows:
  • the first rotation parameter and the second rotation parameter are obtained when the center of the projection screen of the calibration device is directly opposite to the two boundary points on the top edge of the wall; according to the first rotation Parameters and second rotation parameters, which determine the first side calibration parameters when the center of the projection screen of the calibration device is directly facing the top edge of the wall; acquiring the center of the projection screen of the calibration device is directly facing the bottom edge of the wall.
  • the third rotation parameter and the fourth rotation parameter at the two boundary points of, according to the third rotation parameter and the fourth rotation parameter, the second rotation parameter when the center of the projection screen of the calibration device is directly facing the bottom edge of the wall is determined according to the third rotation parameter and the fourth rotation parameter Two-side calibration parameters; according to the first-side calibration parameters, second-side calibration parameters, first rotation parameters, second rotation parameters, third rotation parameters, and fourth rotation parameters, it is determined that the wall surface is relative to the calibration The face calibration parameters of the equipment.
  • the calibration of the wall surface and the ceiling and floor connected to the wall surface can be achieved through the first rotation parameter, the second rotation parameter, the third rotation parameter, and the fourth rotation parameter. Since the space is composed of four walls, the ceiling and the floor connected with them, and there are only 8 boundary points, according to the above method, only 8 rotation parameters are needed to achieve the calibration of the space, which is very simple.
  • FIG. 8 is a schematic diagram of the hardware structure of a calibration device for performing wall calibration and side calibration provided by an embodiment of the present application.
  • the calibration device 10 includes:
  • processors 11 and memory 12 are taken as an example in FIG. 8.
  • the processor 11 and the memory 12 may be connected through a bus or in other ways. In FIG. 8, the connection through a bus is taken as an example.
  • the memory 12 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as wall calibration and side calibration in the above-mentioned embodiments of this application.
  • the program instructions corresponding to the method and the modules corresponding to a wall calibration and a side calibration device for example, the first acquisition module 301, the first determination module 302, the second acquisition module 303, the second determination module 304, the first Three determination module 305, acquisition module 306, determination module 307, etc.).
  • the processor 11 executes various functional applications and data processing of the wall calibration and side calibration methods by running the non-volatile software programs, instructions, and modules stored in the memory 12, that is, the wall in the above method embodiment is implemented.
  • the methods of face calibration and edge calibration and the functions of each module of the above-mentioned device embodiment are implemented.
  • the memory 12 may include a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; Use the created data, etc.
  • the memory 12 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 12 may optionally include memories remotely provided with respect to the processor 11, and these remote memories may be connected to the processor 11 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions and one or more modules are stored in the memory 12, and when executed by the one or more processors 11, each of the wall calibration and side calibration methods in any of the foregoing method embodiments is executed Steps, or, realize the functions of each module of a wall calibration and a side calibration device in any of the above-mentioned device embodiments.
  • the above-mentioned products can execute the methods provided in the above-mentioned embodiments of the present application, and have functional modules and beneficial effects corresponding to the execution methods.
  • functional modules and beneficial effects corresponding to the execution methods For technical details that are not described in detail in this embodiment, please refer to the method provided in the foregoing embodiment of this application.
  • the embodiment of the present application also provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, FIG. 8
  • a processor 11 in the computer can make the computer execute the steps of the wall calibration and side calibration methods in any of the above-mentioned method embodiments, or implement a wall calibration and a side calibration in any of the above-mentioned device embodiments
  • the functions of the various modules of the device are not limited to, the various modules of the device.
  • the embodiment of the present application also provides a computer program product containing program code.
  • the calibration device can perform wall calibration and side calibration in any of the foregoing method embodiments.
  • the device embodiments described above are merely illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer-readable storage medium, and the program can be executed during execution. At the time, it may include the flow of the implementation method of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种墙面标定的方法以及一种边标定的方法,涉及空间标定技术领域,其中,墙面标定的方法包括:获取标定设备的投影画面中心分别正对墙面顶边的两个边界点时的第一转动参数以及第二转动参数(S103);获取标定设备的投影画面中心分别正对墙面底边的两个边界点时的第三转动参数以及第四转动参数(S105);根据第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定墙面相对于标定设备的面标定参数。通过第一转动参数、第二转动参数、第三转动参数以及第四转动参数能够实现对墙面的标定。由于空间只有8个边界点,因此通过上述方法,只需要8个转动参数即可以实现对空间的标定,非常简单。

Description

一种墙面标定的方法以及一种边标定的方法 技术领域
本申请实施例涉及空间标定技术领域,特别是涉及一种墙面标定的方法以及一种边标定的方法。
背景技术
三维空间标定在投影、舞台灯等多种应用中起着非常重要的作用,是这些应用的基础步骤。例如:投影设备获取空间三维信息参数后,可以确定当前投影位置的偏斜角度,进而对投影图像进行几何校正,使投影图像方正。舞台灯获取空间参数后,可以根据当前照射位置调整光照颜色及强度,进而提供更好的灯光效果。但发明人在实现本申请的过程中发现:目前,现有的三维空间标定技术,大多依赖复杂的标定设备,如双目摄像头、红外摄像头以及3D深度摄像头等,需要增加一定的设备负担,而且空间标定的准确度往往不高。
发明内容
本申请实施例旨在提供一种墙面标定的方法以及一种边标定的方法,能够对空间进行标定,且非常简单。
为解决上述技术问题,本申请实施例采用的一个技术方案是:提供一种墙面标定的方法,应用于标定设备,包括:
获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;
根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;
获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;
根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;
根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
可选地,所述确定所述墙面相对于所述标定设备的面标定参数的步骤包括:
根据所述第一转动参数(α 1,β 1)、第二转动参数(α 2,β 2)、第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备标定所述墙面最左侧时的水平转动角度α L,以及,标定所述墙面最右侧时的水平转动角度α R
根据所述第一边标定参数(α 0,β T)以及第二边标定参数(α 0,β B),确定所述标定设备正对所述墙面时的水平转动角度α 0,所述标定设备的投影画面中心正对所述墙面顶边时的竖直转动角度β T,以及,所述标定设备的投影画面中心正对所述墙面底边时的竖直转动角度β B,其中,{α L,α R,α 0,β T,β B}构成所述墙面相对于所述标定设备的面标定参数。
可选地,所述确定所述标定设备标定所述墙面最左侧时的水平转动角度α L的计算公式如下:
Figure PCTCN2020125340-appb-000001
以及标定所述墙面最右侧时的水平转动角度α R的计算公式如下:
Figure PCTCN2020125340-appb-000002
可选地,所述根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数(α 0,β T)的计算公式如下:
β T=β 1=β 2
以及,
Figure PCTCN2020125340-appb-000003
可选地,所述根据所述第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数(α 0,β B)的计算公式如下:
β B=β 3=β 4
为解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种边标定的方法,应用于标定设备,包括:
获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数;
根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
可选地,所述根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数α 0的计算公式如下:
Figure PCTCN2020125340-appb-000004
可选地,由于水平转动角度的取值范围为[-π,π],而反正切函数的取值范围是
Figure PCTCN2020125340-appb-000005
因此:
Figure PCTCN2020125340-appb-000006
Figure PCTCN2020125340-appb-000007
Figure PCTCN2020125340-appb-000008
Figure PCTCN2020125340-appb-000009
为解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种墙面标定的装置,应用于标定设备,包括:
第一获取模块,用于获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;
第一确定模块,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;
第二获取模块,用于获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;
第二确定模块,用于根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;
第三确定模块,用于根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
为解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种边标定的装置,应用于标定设备,包括:
获取模块,用于获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数;
确定模块,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
为解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种标定设备,包括:
至少一个处理器;以及
存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行以上所述的方法。
为解决上述技术问题,本申请实施例采用的另一个技术方案是:提供一种包含程序代码的计算机程序产品,当所述计算机程序产品在标定设备上运行时,使得所述标定设备执行以上所述的方法。
本申请实施例的有益效果是:区别于现有技术的情况下,本申请实施例提供一种墙面标定的方法以及一种边标定的方法,在墙面标定的方法中,通过获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;根据所述第一边标定参数、 第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。通过所述第一转动参数、第二转动参数、第三转动参数以及第四转动参数能够实现对墙面以及与其相连的天花板和地板的标定。由于空间是由四个墙面以及与其相连的天花板和地板组成的且只有8个边界点,因此根据上述方法,只需要8个转动参数即可以实现对空间的标定,非常简单。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的一种边标定的方法的流程示意图;
图2是本申请实施例提供的待标定边上一点的转动角度示意图;
图3是本申请实施例提供的一种墙面标定的方法的流程示意图;
图4是本申请实施例提供的墙面上四点的转动角度示意图;
图5是本申请实施例提供的一个标准的立方体空间的示意图;
图6是本申请实施例提供的对标准空间的天花板进行标定的示意图;
图7是本申请实施例提供的一种墙面标定以及一种边标定的装置的示意图;
图8是本申请实施例提供的执行墙面标定以及边标定的标定设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元 件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,图1是本申请实施例提供的一种边标定的方法的流程示意图,该方法应用于标定设备。
具体地,该边标定的方法包括:
步骤S101,获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数。
所述待标定边为所述标定设备正对墙面时标定设备的投影画面中心所在的水平线。
步骤S102,根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
所述标定设备正对墙面的点为坐标原点,所述确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数即确定所述标定设备正对所述墙面时所述标定设备的水平转动角度α 0以及竖直转动角度β 0
请参阅图2,假设标定设备10与墙面的距离记为z,以标定设备10正对墙面的点为坐标原点(0,0),水平向右为x轴,竖直向上为y轴,建立笛卡尔坐标系。对于墙面上的所述待标定边,假设其y轴的坐标为y0,则所述待标定边上正对所述标定设备10的点的坐标为(0,y 0),所述标定设备10在该点的转动角度为(0,β 0),则有
Figure PCTCN2020125340-appb-000010
所述待标定边上的某点的坐标可以描述为(x,y 0),则所述标定设备10在该点的转动角度(α,β)可以由下式得到:
Figure PCTCN2020125340-appb-000011
Figure PCTCN2020125340-appb-000012
当所述待标定边的竖直转动角度β 0不为0时,可以根据所述待标定 边上的两个点估计所述标定设备10正对墙面、且标定设备10的投影画面中心位于所述待标定边时标定设备10的转动角度(α 0,β 0)。
根据上述步骤S101获取的所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2)以及根据上述分析,可以得到以下公式:
tanβ 1=tanβ 0cos(α 10)
tanβ 2=tanβ 0cos(α 20)
由于所述待标定边与标定设备10不处于同一高度,因此β 0≠0,上面两式相除可以得到:
Figure PCTCN2020125340-appb-000013
变形后得到:
(cosα 1 cosα 0+sinα 1 sinα 0)tanβ 2=(cosα 2 cosα 0+sinα 2 sinα 0)tanβ 1
合并包含α 0的项可以得到:
(cosα 1 tanβ 2-cosα 2 tanβ 1)cosα 0=(sinα 2 tanβ 1-sinα 1 tanβ 2)sinα 0
Figure PCTCN2020125340-appb-000014
之后可以得到:
Figure PCTCN2020125340-appb-000015
得到α 0以后,带入方程可得:
Figure PCTCN2020125340-appb-000016
由于水平转动角度的取值范围为[-π,π],而反正切函数的取值范围是
Figure PCTCN2020125340-appb-000017
因此需要根据α 1和α 2的值对α 0进行校正,方式如下:
如果
Figure PCTCN2020125340-appb-000018
Figure PCTCN2020125340-appb-000019
如果
Figure PCTCN2020125340-appb-000020
Figure PCTCN2020125340-appb-000021
由此,即可实现对所述待标定边的标定。在实际操作中,可以通过所述待标定边上多个点进行估计,得到若干组(α 0,β 0)估计值,最后将估计值取平均以便于提高估计的准确性。
可以理解的是,对于所述墙面上一点(α,β),若tanβ=tanβ 0cos(α-α 0),则说明该点位于所述待标定边(或其延长线)上;若tanβ<tanβ 0cos(α-α 0),则说明该点位于所述待标定边下方;若tanβ>tanβ 0cos(α-α 0),则说明该点位于所述待标定边上方。
在本申请上述实施例中,通过获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数以及根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数的方法,能够对墙面上的水平线进行标定。
进一步的,请参阅图3,图3是本申请实施例提供的一种墙面标定的方法的流程示意图。
具体地,该墙面标定的方法包括:
步骤S103,获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数。
请参阅图4,调整所述标定设备10,使其投影画面中心正对所述墙面W1顶边的两个边界点,获取此时所述标定设备的水平转动角度以及竖直转动角度,从而得到所述第一转动参数(α 1,β 1)以及第二转动角度(α 2,β 2)。
步骤S104,根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数。
通过上述实施例一中的方法,根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2)可以确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数(α 0,β T)。其中,α 0为所述标定设备正对所述墙面时的水平转动角度,β T为所述标定设备的投影画面中心正对所述墙面顶边时的竖直转动角度。
可以理解的是,
β T=β 1=β 2
以及,
Figure PCTCN2020125340-appb-000022
步骤S105,获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数。
请参阅图4,调整所述标定设备10,使其投影画面中心正对所述墙面W1底边的两个边界点,获取此时所述标定设备的水平转动角度以及竖直转动角度,从而得到所述第三转动参数(α 3,β 3)以及第四转动角度(α 4,β 4)。
步骤S106,根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数。
所述第二边标定参数(α 0,β B)为所述标定设备正对所述墙面时的水平转动角度α 0以及所述标定设备的投影画面中心正对所述墙面底边时的竖直转动角度β B。可以理解的是,所述标定设备正对所述墙面时的水平转动角度始终为α 0,所述标定设备的投影画面中心正对所述墙面底边 时的竖直转动角度β B的计算公式为:
β B=β 3=β 4
步骤S107,根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
所述确定所述墙面相对于所述标定设备的面标定参数的步骤具体的为根据所述第一转动参数(α 1,β 1)、第二转动参数(α 2,β 2)、第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备标定所述墙面最左侧时的水平转动角度α L,以及,标定所述墙面最右侧时的水平转动角度α R;根据所述第一边标定参数(α 0,β T)以及第二边标定参数(α 0,β B),确定所述标定设备正对所述墙面时的水平转动角度α 0,所述标定设备的投影画面中心正对所述墙面顶边时的竖直转动角度β T,以及,所述标定设备的投影画面中心正对所述墙面底边时的竖直转动角度β B,其中,{α L,α R,α 0,β T,β B}构成所述墙面相对于所述标定设备的面标定参数。
由于所述标定设备的水平转动角度仅与水平位置有关,与竖直高度无关,因此可以得到:
α L=α 1=α 3
α R=α 2=α 4
在一些实施例中,可以取平均以减小随机误差,即
Figure PCTCN2020125340-appb-000023
Figure PCTCN2020125340-appb-000024
至此,即可完成对竖直墙面的标定,标定参数为{α L,α R,α 0,β T,β B}。
需要说明的是,若所述墙面W1上存在需要规避的区域,例如门、窗、家具等,可以将竖直墙面进行分解为若干区域之后再分别进行标定。
可以理解的是,对于所述墙面W1,所述标定设备的投影画面中心位于所述墙面W1时,所述标定设备的水平转动角度的范围为[α L,α R]。因此,对于水平转动角度位于[α L,α R]之间的一点(α,β),若tanβ Bcos(α-α 0)≤tanβ≤tanβ Tcos(α-α 0),则说明该点位于所述墙面W1;若tanβ<tanβ Bcos(α-α 0),则说明该点位于所述墙面W1下方(地板);若tanβ>tanβ Tcos(α-α 0),则说明该点位于所述墙面W1上方(天花板)。
请参阅图5,图5为本申请实施例提供的一个标准的立方体空间的示意图。四个竖直墙面分别记为W1、W2、W3和W4,天花板四个顶点分别记为A、B、C和D,地板四个顶点分别记为E、F、G和H。根据四个点A、B、E和F所对应的所述第一转动参数(α 1,β 1)、第二转动参数(α 2,β 2)、第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4)可以实现对墙面W1的标定,即获取到墙面W1相对于所述标定设备的面标定参数
Figure PCTCN2020125340-appb-000025
根据四个点B、C、F和G可以实现对墙面W2的标定,即获取到墙面W2相对于所述标定设备的面标定参数
Figure PCTCN2020125340-appb-000026
以此类推,即可实现对四个竖直墙面的标定。可以理解的是,这一过程只需要使用8个边界点对应的设备转动角度即可完成对墙面的标定,操作简单。
请参阅图6,图6是本申请实施例提供的对标准空间的天花板进行标定的示意图。以所述标定设备正对天花板位置为中心,和所述天花板的4个边界点连线,可以将天花板划分为4部分,分别与最接近的竖直墙面相连,由此,所述天花板被划分的4部分可以分别被认为是与其相连的四个竖直墙面的一部分。
可以理解的是,底板也可以通过上述方式被分为4个部分,以及分别被认为是与其相连的四个竖直墙面的一部分。
值得说明的是,对于墙面(包括天花板和地板)上的一点(α,β),首先根据水平转动角度α判断其位于哪一个竖直墙面。例如,若
Figure PCTCN2020125340-appb-000027
则说明其位于竖直墙面W1及其相连的天花板或地板。接着,根据竖直转动角度β判断其具体位置,若
Figure PCTCN2020125340-appb-000028
则说明该点位于竖直墙壁W1;若
Figure PCTCN2020125340-appb-000029
则说明该点位于与W1相连的地板区域;若
Figure PCTCN2020125340-appb-000030
则说明该点位于与W1相连的天花板区域。
在本申请上述实施例中,通过获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。通过所述第一转动参数、第二转动参数、第三转动参数以及第四转动参数能够实现对墙面以及与其相连的天花板和地板的标定。由于空间是由四个墙面以及与其相连的天花板和地板组成的且只有8个边界点,因此根据上述方法,只需要8个转动参数即可以实现对空间的标定,非常简单。
进一步地,请参阅图7,图7是本申请实施例提供的一种墙面标定以及一种边标定的装置的示意图。
值得注意的是,本申请实施例所使用的术语“模块”为可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能被构想的。
具体地,该一种墙面标定以及一种边标定的装置包括:
第一获取模块301,用于获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;
第一确定模块302,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;
第二获取模块303,用于获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;
第二确定模块304,用于根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;
第三确定模块305,用于根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
在一些实施例中,第三确定模块305具体用于:
根据所述第一转动参数(α 1,β 1)、第二转动参数(α 2,β 2)、第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备标定所述墙面最左侧时的水平转动角度α L,以及,标定所述墙面最右侧时的水平转动角度α R
根据所述第一边标定参数(α 0,β T)以及第二边标定参数(α 0,β B),确定所述标定设备正对所述墙面时的水平转动角度α 0,所述标定设备的投影画面中心正对所述墙面顶边时的竖直转动角度β T,以及,所述标定设备的投影画面中心正对所述墙面底边时的竖直转动角度β B,其中,{α L,α R,α 0,β T,β B}构成所述墙面相对于所述标定设备的面标定参数。
确定所述标定设备标定所述墙面最左侧时的水平转动角度α L的计算公式如下:
Figure PCTCN2020125340-appb-000031
以及标定所述墙面最右侧时的水平转动角度α R的计算公式如下:
Figure PCTCN2020125340-appb-000032
根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数(α 0,β T)的计算公式如下:
β T=β 1=β 2
以及,
Figure PCTCN2020125340-appb-000033
根据所述第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数(α 0,β B)的计算公式如下:
β B=β 3=β 4
进一步的,该一种墙面标定以及一种边标定的装置还包括:
获取模块306,用于获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数;
确定模块307,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数α 0的计算公式如下:
Figure PCTCN2020125340-appb-000034
由于水平转动角度的取值范围为[-π,π],而反正切函数的取值范围是
Figure PCTCN2020125340-appb-000035
因此:
Figure PCTCN2020125340-appb-000036
Figure PCTCN2020125340-appb-000037
Figure PCTCN2020125340-appb-000038
Figure PCTCN2020125340-appb-000039
在本申请上述实施例中,通过获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。通过所述第一转动参数、第二转动参数、第三转动参数以及第四转动参数能够实现对墙面以及与其相连的天花板和地板的标定。由于空间是由四个墙面以及与其相连的天花板和地板组成的且只有8个边界点,因此根据上述方法,只需要8个转动参数即可以实现对空间的标定,非常简单。
进一步地,请参阅图8,图8是本申请实施例提供的执行墙面标定以及边标定的标定设备的硬件结构示意图,标定设备10包括:
一个或多个处理器11以及存储器12。其中,图8中以一个处理器11为例。
处理器11和存储器12可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器12作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请上述实施例中的墙面标定以及边标定的方法对应的程序指令以及一种墙面标定以及一种边标定的装置对应的模块(例如,第一获取模块301、第一确定模块302、第二获取模块303、第二确定模块304、第三确定模块305、获取模块306以及确定模块307等)。处理器11通过运行存储在 存储器12中的非易失性软件程序、指令以及模块,从而执行墙面标定以及边标定的方法的各种功能应用以及数据处理,即实现上述方法实施例中的墙面标定以及边标定的方法以及上述装置实施例的各个模块的功能。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据一种墙面标定以及一种边标定的装置的使用所创建的数据等。
此外,存储器12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器12可选包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至处理器11。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令以及一个或多个模块存储在所述存储器12中,当被所述一个或者多个处理器11执行时,执行上述任意方法实施例中的墙面标定以及边标定的方法的各个步骤,或者,实现上述任意装置实施例中的一种墙面标定以及一种边标定的装置的各个模块的功能。
上述产品可执行本申请上述实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请上述实施例所提供的方法。
本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图8中的一个处理器11,可使得计算机执行上述任意方法实施例中的墙面标定以及边标定的方法的各个步骤,或者,实现上述任意装置实施例中的一种墙面标定以及一种边标定的装置的各个模块的功能。
本申请实施例还提供了一种包含程序代码的计算机程序产品,当所述计算机程序产品在标定设备上运行时,所述标定设备能够执行上述任意方法实施例中的墙面标定以及边标定的方法的各个步骤,或者,实现上述任意装置实施例中的一种墙面标定以及一种边标定的装置的各个模块的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模 块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方法的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种墙面标定的方法,应用于标定设备,其特征在于,包括:
    获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;
    根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;
    获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;
    根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;
    根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述墙面相对于所述标定设备的面标定参数,具体包括:
    根据所述第一转动参数(α 1,β 1)、第二转动参数(α 2,β 2)、第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备标定所述墙面最左侧时的水平转动角度α L,以及,标定所述墙面最右侧时的水平转动角度α R
    根据所述第一边标定参数(α 0,β T)以及第二边标定参数(α 0,β B),确定所述标定设备正对所述墙面时的水平转动角度α 0,所述标定设备的投影画面中心正对所述墙面顶边时的竖直转动角度β T,以及,所述标定设备的投影画面中心正对所述墙面底边时的竖直转动角度β B,其中,{α L,α R,α 0,β T,β B}构成所述墙面相对于所述标定设备的面标定参数。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述标定设备标定所述墙面最左侧时的水平转动角度α L的计算公式如下:
    Figure PCTCN2020125340-appb-100001
    以及标定所述墙面最右侧时的水平转动角度α R的计算公式如下:
    Figure PCTCN2020125340-appb-100002
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数(α 0,β T)的计算公式如下:
    β T=β 1=β 2
    以及,
    Figure PCTCN2020125340-appb-100003
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述第三转动参数(α 3,β 3)以及第四转动参数(α 4,β 4),确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数(α 0,β B)的计算公式如下:
    β B=β 3=β 4
  6. 一种边标定的方法,应用于标定设备,其特征在于,包括:
    获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数;
    根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一转动参数(α 1,β 1)以及第二转动参数(α 2,β 2),确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数α 0的计算公式如下:
    Figure PCTCN2020125340-appb-100004
  8. 根据权利要求7所述的方法,其特征在于,
    由于水平转动角度的取值范围为[-π,π],而反正切函数的取值范围是
    Figure PCTCN2020125340-appb-100005
    因此:
    Figure PCTCN2020125340-appb-100006
    Figure PCTCN2020125340-appb-100007
    Figure PCTCN2020125340-appb-100008
    Figure PCTCN2020125340-appb-100009
  9. 一种墙面标定的装置,应用于标定设备,其特征在于,包括:
    第一获取模块,用于获取所述标定设备的投影画面中心分别正对所述墙面顶边的两个边界点时的第一转动参数以及第二转动参数;
    第一确定模块,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述墙面顶边时的第一边标定参数;
    第二获取模块,用于获取所述标定设备的投影画面中心分别正对所述墙面底边的两个边界点时的第三转动参数以及第四转动参数;
    第二确定模块,用于根据所述第三转动参数以及第四转动参数,确定所述标定设备的投影画面中心正对所述墙面底边时的第二边标定参数;
    第三确定模块,用于根据所述第一边标定参数、第二边标定参数、第一转动参数、第二转动参数、第三转动参数以及第四转动参数,确定所述墙面相对于所述标定设备的面标定参数。
  10. 一种边标定的装置,应用于标定设备,其特征在于,包括:
    获取模块,用于获取所述标定设备的投影画面中心分别正对待标定边上两个点时的第一转动参数以及第二转动参数;
    确定模块,用于根据所述第一转动参数以及第二转动参数,确定所述标定设备的投影画面中心正对所述待标定边时的边标定参数。
  11. 一种标定设备,其特征在于,包括:
    至少一个处理器,以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-8中任一项所述的方法。
  12. 一种包含程序代码的计算机程序产品,其特征在于,当所述计算机程序产品在标定设备上运行时,使得所述标定设备执行如权利要求1-8中任一项所述的方法。
PCT/CN2020/125340 2020-04-10 2020-10-30 一种墙面标定的方法以及一种边标定的方法 WO2021203686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/226,572 US20210318113A1 (en) 2020-04-10 2021-04-09 Method for wall surface calibration, method for edge calibration, calibration apparatus, and computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010278027.2 2020-04-10
CN202010278027.2A CN111322949B (zh) 2020-04-10 2020-04-10 一种墙面标定的方法以及一种边标定的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,572 Continuation US20210318113A1 (en) 2020-04-10 2021-04-09 Method for wall surface calibration, method for edge calibration, calibration apparatus, and computer program product

Publications (1)

Publication Number Publication Date
WO2021203686A1 true WO2021203686A1 (zh) 2021-10-14

Family

ID=71164416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125340 WO2021203686A1 (zh) 2020-04-10 2020-10-30 一种墙面标定的方法以及一种边标定的方法

Country Status (2)

Country Link
CN (1) CN111322949B (zh)
WO (1) WO2021203686A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322949B (zh) * 2020-04-10 2022-03-11 广景视睿科技(深圳)有限公司 一种墙面标定的方法以及一种边标定的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092166A1 (en) * 2013-10-01 2015-04-02 Pavel Jurik Automatic keystone correction in an automated luminaire
CN105227881A (zh) * 2015-09-15 2016-01-06 海信集团有限公司 一种投影画面校正方法及投影设备
CN106797456A (zh) * 2016-12-30 2017-05-31 深圳前海达闼云端智能科技有限公司 投影图像校正方法、校正装置及机器人
CN108289208A (zh) * 2018-01-24 2018-07-17 歌尔股份有限公司 一种投影画面自动校正方法和装置
CN110191328A (zh) * 2019-06-19 2019-08-30 广景视睿科技(深圳)有限公司 一种动向投影装置、方法及投影仪
CN111322949A (zh) * 2020-04-10 2020-06-23 广景视睿科技(深圳)有限公司 一种墙面标定的方法以及一种边标定的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015627B4 (de) * 2009-04-02 2013-02-21 Schott Ag Verfahren und Vorrichtung zu Bestimmung von Innendurchmesser, Außendurchmesser und der Wandstärke von Körpern
CN101667322B (zh) * 2009-09-24 2012-05-09 北京英特威视科技有限公司 救灾系统和救灾方法
CN102917171B (zh) * 2012-10-22 2015-11-18 中国南方电网有限责任公司超高压输电公司广州局 基于像素的小目标定位方法
CN105759435B (zh) * 2016-05-07 2018-07-24 杭州映墨科技有限公司 全景环带立体成像系统及其标定方法与成像方法
CN106770036A (zh) * 2017-01-11 2017-05-31 裴钊 折射率测量仪
CN107084809B (zh) * 2017-06-23 2019-11-12 郑清团 一种原位应力测试设备及方法
CN108235776B (zh) * 2017-12-29 2021-09-17 深圳市锐明技术股份有限公司 一种adas摄像头的标定方法、装置、存储介质及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150092166A1 (en) * 2013-10-01 2015-04-02 Pavel Jurik Automatic keystone correction in an automated luminaire
CN105227881A (zh) * 2015-09-15 2016-01-06 海信集团有限公司 一种投影画面校正方法及投影设备
CN106797456A (zh) * 2016-12-30 2017-05-31 深圳前海达闼云端智能科技有限公司 投影图像校正方法、校正装置及机器人
CN108289208A (zh) * 2018-01-24 2018-07-17 歌尔股份有限公司 一种投影画面自动校正方法和装置
CN110191328A (zh) * 2019-06-19 2019-08-30 广景视睿科技(深圳)有限公司 一种动向投影装置、方法及投影仪
CN111322949A (zh) * 2020-04-10 2020-06-23 广景视睿科技(深圳)有限公司 一种墙面标定的方法以及一种边标定的方法

Also Published As

Publication number Publication date
CN111322949B (zh) 2022-03-11
CN111322949A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
US11200734B2 (en) Method for reconstructing three-dimensional space scene based on photographing
US10242458B2 (en) Registration of range images using virtual gimbal information
US20190073792A1 (en) System and method for determining a camera pose
WO2021259151A1 (zh) 一种激光标定系统的标定方法、装置以及激光标定系统
US10148944B2 (en) Calibration method of an image capture system
US20150116691A1 (en) Indoor surveying apparatus and method
US20220092819A1 (en) Method and system for calibrating extrinsic parameters between depth camera and visible light camera
US10832471B2 (en) Fast T-spline fitting system and method
US20140240520A1 (en) System and method for calibration of machine vision cameras along at least three discrete planes
WO2019029991A1 (en) SYSTEM AND METHOD FOR RE-CALIBRATING A PROJECTOR SYSTEM
US11074719B2 (en) Calibration for vision system
US10663291B2 (en) Method and system for reproducing visual content
JP5633058B1 (ja) 3次元計測装置及び3次元計測方法
US20180131861A1 (en) Camera calibration with lenticular arrays
US11210811B2 (en) Real-time three-dimensional camera calibration
WO2023273108A1 (zh) 单目测距方法、装置及智能装置
WO2021203686A1 (zh) 一种墙面标定的方法以及一种边标定的方法
JP2016100698A (ja) 校正装置、校正方法、プログラム
CN111311682A (zh) 一种led屏校正过程中的位姿估计方法、装置及电子设备
US20200342583A1 (en) Method, apparatus and measurement device for measuring distortion parameters of a display device, and computer-readable medium
US8509522B2 (en) Camera translation using rotation from device
CN110232733B (zh) 三维模型建模方法与系统、存储介质和计算机
Portalés et al. An efficient projector calibration method for projecting virtual reality on cylindrical surfaces
CN111161350A (zh) 位置信息及位置关系确定方法、位置信息获取装置
US20210318113A1 (en) Method for wall surface calibration, method for edge calibration, calibration apparatus, and computer program product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930479

Country of ref document: EP

Kind code of ref document: A1