WO2021201444A1 - Thermoplastic resin composition and molded article formed therefrom - Google Patents

Thermoplastic resin composition and molded article formed therefrom Download PDF

Info

Publication number
WO2021201444A1
WO2021201444A1 PCT/KR2021/002578 KR2021002578W WO2021201444A1 WO 2021201444 A1 WO2021201444 A1 WO 2021201444A1 KR 2021002578 W KR2021002578 W KR 2021002578W WO 2021201444 A1 WO2021201444 A1 WO 2021201444A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
parts
aromatic vinyl
Prior art date
Application number
PCT/KR2021/002578
Other languages
French (fr)
Korean (ko)
Inventor
양천석
이승환
김주성
박강열
이윤규
정현문
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2021201444A1 publication Critical patent/WO2021201444A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent flame retardancy, impact resistance, appearance characteristics, processability, and the like, and a molded article formed therefrom.
  • Thermoplastic resins such as polyolefin resins and aromatic vinyl resins have excellent mechanical, thermal, and electrical properties, and excellent chemical resistance and moldability, and are widely used in various fields.
  • the polyolefin resin belongs to one of the highly flammable resins, and it is a difficult task to make the polyolefin resin have excellent flame retardancy, etc., and the aromatic vinyl resin has no resistance to flame, When the flame is ignited, there is a problem in that the resin itself decomposes and provides raw materials to expand and sustain combustion.
  • metal hydroxides As an eco-friendly flame retardant system applicable to polyolefin resins, metal hydroxides, phosphorus-based flame retardants, etc. can be considered.
  • metal hydroxides a large amount of flame retardant is required to be input, so there is a problem in that moldability, water resistance, mechanical properties, etc. are deteriorated.
  • phosphorus-based flame retardants even if a relatively small amount is added compared to metal hydroxide, it is advantageous to implement flame retardancy without including halogens and heavy metals. It has limitations in terms of flame retardancy and appearance characteristics.
  • thermoplastic resin composition excellent in flame retardancy, impact resistance, appearance characteristics, processability, and the like, without these problems.
  • thermoplastic resin composition having excellent flame retardancy, impact resistance, appearance characteristics, processability, and the like.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition comprises about 100 parts by weight of a thermoplastic resin; about 4 to about 10 parts by weight of melamine polyphosphate; about 2 to about 7 parts by weight of melamine phosphate; and about 10 to about 20 parts by weight of piperazine pyrophosphate; wherein, the mixture of melamine polyphosphate, melamine phosphate and piperazine pyrophosphate has an average particle diameter D50 of about 6 ⁇ m or less by particle size analysis, and a cumulative content of 90 It is characterized in that the particle diameter D90 of % is about 11 ⁇ m or less.
  • the thermoplastic resin may include at least one of a polyolefin resin and an aromatic vinyl-based resin.
  • the polyolefin resin may include at least one of polypropylene, polyethylene, and a propylene-ethylene copolymer.
  • the aromatic vinyl-based resin may include at least one of an aromatic vinyl-based polymer resin, an aromatic vinyl-based copolymer resin, a rubber-modified polystyrene resin, and a rubber-modified aromatic vinyl-based copolymer resin.
  • the weight ratio of the melamine polyphosphate and the melamine phosphate may be about 1:1 to about 4:1.
  • the weight ratio of the melamine polyphosphate and the piperazine pyrophosphate may be about 0.2:1 to about 0.8:1.
  • thermoplastic resin composition may have a flame retardancy of V-0 or more of a 1.5 mm thick specimen measured according to UL-94 standards.
  • thermoplastic resin composition may have a notch Izod impact strength of about 3 to about 10 kgf ⁇ cm/cm of a 1/8′′ thick specimen measured according to ASTM D256.
  • thermoplastic resin composition may have a surface roughness (Ra) of about 2 to about 15 ⁇ m of the specimen measured using a surface roughness meter.
  • Another aspect of the present invention relates to a molded article.
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of 1 to 9.
  • the present invention has the effect of providing a thermoplastic resin composition excellent in flame retardancy, impact resistance, appearance characteristics, workability, and the like, and a molded article formed therefrom.
  • thermoplastic resin composition according to the present invention comprises (A) a thermoplastic resin; (B) melamine polyphosphate; (C) melamine phosphate; and (D) piperazine pyrophosphate.
  • thermoplastic resin according to an embodiment of the present invention may include at least one of (A1) a polyolefin resin and (A2) an aromatic vinyl-based resin.
  • the polyolefin resin according to an embodiment of the present invention can improve mechanical properties, processability, and appearance characteristics of the thermoplastic resin composition, and a conventional polyolefin resin can be used.
  • polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylate copolymer , polyethylene-based resins such as mixtures thereof; polypropylene resins such as polypropylene, propylene-ethylene copolymer, propylene-1-butene copolymer, and mixtures thereof; polymers obtained by crosslinking them; blends comprising polyisobutene; A combination of these and the like can be used.
  • polypropylene, polyethylene, propylene-ethylene copolymer, combinations thereof, and the like can be used.
  • the polyolefin resin has a melt-flow index of about 1 to about 50 g/10 min, for example, about 5 to about 30 g/10 min.
  • the thermoplastic resin composition may have excellent mechanical strength, molding processability, and the like.
  • the aromatic vinyl-based resin according to an embodiment of the present invention can improve mechanical properties, processability, and appearance characteristics of the thermoplastic resin composition, and a conventional aromatic vinyl-based resin can be used.
  • a conventional aromatic vinyl-based resin can be used.
  • at least one of an aromatic vinyl-based polymer resin, an aromatic vinyl-based copolymer resin, a rubber-modified polystyrene resin, and a rubber-modified aromatic vinyl-based copolymer resin may be used.
  • a rubber-modified polystyrene resin, a rubber-modified aromatic vinyl-based copolymer resin, a combination thereof, and the like can be used.
  • the rubber-modified polystyrene resin of the present invention is prepared by polymerizing a rubbery polymer and an aromatic vinyl monomer, and a general impact-resistant polystyrene (HIPS) resin may be used.
  • HIPS general impact-resistant polystyrene
  • the rubbery polymer includes a diene-based rubber such as polybutadiene and poly(acrylonitrile-butadiene), and a saturated rubber hydrogenated to the diene-based rubber, isoprene rubber, and alkyl (meth)acryl having 2 to 10 carbon atoms.
  • Late rubber a copolymer of an alkyl (meth)acrylate having 2 to 10 carbon atoms and styrene, an ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more.
  • a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
  • the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 ⁇ m, for example, about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
  • a light scattering particle size analyzer malvern, nano-zs
  • the content of the rubbery polymer may be from about 3 to about 30% by weight, for example from about 5 to about 15% by weight, based on 100% by weight of the total rubber-modified polystyrene resin.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the aromatic vinyl-based monomer includes styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, and dibromostyrene.
  • vinyl naphthalene, and the like can be exemplified. These can be used individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl-based monomer may be about 70 to about 97% by weight, for example, about 85 to about 95% by weight of the total 100% by weight of the rubber-modified polystyrene resin. In the above range, molding processability, impact resistance, and appearance characteristics of the thermoplastic resin composition may be excellent.
  • the rubber-modified polystyrene resin is acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, N- during polymerization of the rubber-modified polystyrene resin in order to impart properties such as chemical resistance, processability, and heat resistance to the thermoplastic resin composition. It can polymerize by adding monomers, such as a substituted maleimide. In this case, the amount of the monomer added may be about 40% by weight or less based on 100% by weight of the total rubber-modified polystyrene resin. Chemical resistance, processability, heat resistance, etc. can be imparted to the thermoplastic resin composition without lowering other physical properties within the above range.
  • the rubber-modified polystyrene resin may be polymerized by thermal polymerization without the presence of an initiator, or may be polymerized in the presence of an initiator.
  • an initiator at least one of a peroxide-based initiator such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, and cumene hydroperoxide, and an azo-based initiator such as azobis isobutyronitrile may be exemplified.
  • the rubber-modified polystyrene resin may be prepared by known polymerization methods such as bulk polymerization, suspension polymerization, and emulsion polymerization.
  • the rubber-modified aromatic vinyl-based copolymer resin of the present invention may include (a1) a rubber-modified vinyl-based graft copolymer and (a2) an aromatic vinyl-based copolymer resin.
  • the rubber-modified vinyl-based graft copolymer according to an embodiment of the present invention may be graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer.
  • the rubber-modified vinyl-based graft copolymer can be obtained by graft polymerization of a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer. Graft polymerization may be performed by further including a monomer that imparts heat resistance. The polymerization may be performed by a known polymerization method such as emulsion polymerization or suspension polymerization.
  • the rubber-modified vinyl-based graft copolymer may form a core (rubber polymer)-shell (copolymer of a monomer mixture) structure, but is not limited thereto.
  • the rubbery polymer includes a diene rubber such as polybutadiene, poly(styrene-butadiene), poly(acrylonitrile-butadiene), and a saturated rubber hydrogenated to the diene rubber, isoprene rubber, carbon number 2 to alkyl (meth)acrylate rubber of 10, a copolymer of alkyl (meth)acrylate and styrene having 2 to 10 carbon atoms, ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more. For example, a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
  • a diene rubber such as polybutadiene, poly(styrene-butadiene), poly(acrylonitrile-buta
  • the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 ⁇ m, for example, about 0.15 to about 4 ⁇ m, specifically about 0.25 to about 3.5 ⁇ m.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state.
  • the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
  • a light scattering particle size analyzer malvern, nano-zs
  • the content of the rubbery polymer may be about 20 to about 70% by weight, for example, about 25 to about 60% by weight, of the total 100% by weight of the rubber-modified vinyl-based graft copolymer, and the monomer mixture (aromatic The content of the vinyl-based monomer and the cyanide-based monomer) may be about 30 to about 80% by weight, for example, about 40 to about 75% by weight of the total 100% by weight of the rubber-modified vinyl-based graft copolymer.
  • the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
  • the aromatic vinyl-based monomer may be graft copolymerized to the rubber polymer, and may include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl naphthalene, etc. can be illustrated. These can be used individually or in mixture of 2 or more types.
  • the content of the aromatic vinyl-based monomer may be about 10 to about 90% by weight, for example, about 40 to about 90% by weight of 100% by weight of the monomer mixture. In the above range, the processability and impact resistance of the thermoplastic resin composition may be excellent.
  • the vinyl cyanide-based monomer is copolymerizable with the aromatic vinyl-based monomer, and includes acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like.
  • acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. can be exemplified. These can be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide monomer may be about 10 to about 90 wt%, for example, about 10 to about 60 wt%, based on 100 wt% of the monomer mixture. In the above range, the thermoplastic resin composition may have excellent chemical resistance, mechanical properties, and the like.
  • the monomer for imparting the processability and heat resistance may include (meth)acrylic acid, maleic anhydride, N-substituted maleimide, and the like, but is not limited thereto.
  • the content thereof may be 15% by weight or less, for example, about 0.1 to about 10% by weight based on 100% by weight of the monomer mixture.
  • processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
  • g-ASA acrylate-styrene-acrylonitrile graft copolymer
  • the rubber-modified vinyl-based graft copolymer (a1) is included in an amount of about 10 to about 50% by weight, for example, about 15 to about 45% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin.
  • the thermoplastic resin composition may have excellent impact resistance, molding processability, and the like.
  • the aromatic vinyl-based copolymer resin according to an embodiment of the present invention may be an aromatic vinyl-based copolymer resin used in a conventional rubber-modified aromatic vinyl-based copolymer resin.
  • the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
  • the aromatic vinyl-based copolymer resin may be obtained by mixing an aromatic vinyl-based monomer, a vinyl cyanide-based monomer, etc., and then polymerizing it, and the polymerization is a known polymerization such as emulsion polymerization, suspension polymerization, and bulk polymerization. method can be carried out.
  • the aromatic vinyl-based monomer includes styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, and dibromostyrene. , vinyl naphthalene, etc. can be used. These may be applied alone or in mixture of two or more.
  • the content of the aromatic vinyl-based monomer may be about 20 to about 90% by weight, for example, about 30 to about 80% by weight, based on 100% by weight of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, appearance characteristics, and the like.
  • the vinyl cyanide-based monomer may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, ⁇ -chloroacrylonitrile, fumaronitrile, and the like. These can be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used.
  • the content of the vinyl cyanide-based monomer may be about 10 to about 80 wt%, for example, about 20 to about 70 wt%, based on 100 wt% of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, heat resistance, and appearance.
  • the aromatic vinyl-based copolymer resin may be polymerized by further including a monomer for imparting processability and heat resistance to the monomer mixture.
  • a monomer for imparting processability and heat resistance (meth)acrylic acid, N-substituted maleimide, and the like may be exemplified, but the present invention is not limited thereto.
  • the content thereof may be about 15% by weight or less, for example, about 0.1 to about 10% by weight based on 100% by weight of the monomer mixture.
  • processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
  • the aromatic vinyl-based copolymer resin has a weight average molecular weight (Mw) of about 10,000 to about 300,000 g/mol, for example, about 15,000 to about 150,000 g/mol, measured by gel permeation chromatography (GPC).
  • Mw weight average molecular weight
  • the thermoplastic resin composition may have excellent mechanical strength, molding processability, and the like.
  • the aromatic vinyl-based copolymer resin (a2) is from about 50 to about 90% by weight, for example, from about 55 to about 85% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin (A) may be included.
  • the thermoplastic resin composition may have excellent impact resistance, molding processability, and appearance characteristics.
  • the melamine polyphosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine phosphate and piperazine pyrophosphate, so that even with a small content, flame retardancy, impact resistance, and appearance characteristics of the thermoplastic resin composition are improved.
  • melamine polyphosphate used in conventional flame-retardant thermoplastic resin compositions may be used.
  • the melamine polyphosphate may have a polymerization degree of about 100 to about 600, for example, about 200 to about 500, and a weight average molecular weight of about 20,000 to about 110,000 g/mol.
  • the melamine polyphosphate may have a weight loss measured by TGA (Thermal Gravimetric Analysis, heating rate 20° C./min in air) of about 2% or less at 260° C., and at 300° C. , may be about 3% or less.
  • TGA Thermal Gravimetric Analysis, heating rate 20° C./min in air
  • the melamine polyphosphate may be included in an amount of about 4 to about 10 parts by weight, for example, about 5 to about 9 parts by weight, based on 100 parts by weight of the thermoplastic resin.
  • the content of the melamine polyphosphate is less than about 4 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a risk that the flame retardancy of the thermoplastic resin composition may be lowered, and when it exceeds about 10 parts by weight, the resistance of the thermoplastic resin composition There exists a possibility that impact property etc. may fall.
  • the melamine phosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine polyphosphate and piperazine pyrophosphate, so that even with a small content, flame retardancy, impact resistance, and appearance characteristics of the thermoplastic resin composition are improved.
  • melamine phosphate (monomer) used in conventional flame-retardant thermoplastic resin compositions can be used.
  • the melamine phosphate may be included in an amount of about 2 to about 7 parts by weight, for example, about 3 to about 6 parts by weight based on about 100 parts by weight of the thermoplastic resin.
  • the content of the melamine phosphate is less than about 2 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a fear that the flame retardancy of the thermoplastic resin composition may be lowered, and when it exceeds about 7 parts by weight, the (extrusion) of the thermoplastic resin composition ), there is a possibility that the workability may be deteriorated.
  • the weight ratio (B:C) of the melamine polyphosphate (B) and the melamine phosphate (C) is from about 1:1 to about 4:1, for example from about 1:1 to about 3:1.
  • the thermoplastic resin composition may have excellent flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and the like.
  • Piperazine pyrophosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine polyphosphate and melamine phosphate, so that char is easy to form even with a small amount, and the composition of the thermoplastic resin composition
  • piperazine pyrophosphate used in conventional flame-retardant thermoplastic resin compositions may be used.
  • the piperazine pyrophosphate may be included in an amount of about 10 to about 20 parts by weight, for example, about 12 to about 18 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
  • the content of the piperazine pyrophosphate is less than about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a risk that the flame retardancy of the thermoplastic resin composition may be deteriorated, and when it exceeds about 20 parts by weight, the amount of the thermoplastic resin composition There exists a possibility that impact resistance etc. may fall.
  • the weight ratio (B:D) of the melamine polyphosphate (B) and the piperazine pyrophosphate (D) is from about 0.2:1 to about 0.8:1, for example from about 0.3:1 to about 0.7:1.
  • the thermoplastic resin composition may have excellent flame retardancy, impact resistance, and appearance characteristics.
  • thermoplastic resin composition of the present invention may be applied after mixing the melamine polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate (D), pulverizing and separating to have a specific particle size and particle size distribution.
  • the mixture containing the melamine polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate (D) is a particle size analysis method (of the particle size analysis method by laser diffraction and scattering, the dry method Mastersizer 2000E series (Malvern) equipment
  • the average particle diameter D50 by the measurement using) is about 6 ⁇ m or less, for example, about 2 to about 5 ⁇ m
  • the particle diameter D90 of 90% of the cumulative frequency is about 11 ⁇ m or less, for example, about 5 to about 10 ⁇ m. have.
  • the average particle diameter D50 of the mixture exceeds about 5 ⁇ m, there is a fear that the appearance properties of the thermoplastic resin composition may be deteriorated, and when the D90 of the mixture exceeds about 11 ⁇ m, the appearance properties of the thermoplastic resin composition, etc. There is a risk of deterioration.
  • the thermoplastic resin composition according to an embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition.
  • the additives may include, but are not limited to, impact modifiers, antioxidants, anti-drip agents, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, and mixtures thereof.
  • its content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition according to an embodiment of the present invention is in the form of pellets that are melt-extruded at about 180 to about 250° C., for example, about 200 to about 230° C., by mixing the above components and using a conventional twin-screw extruder.
  • thermoplastic resin composition may have a flame retardancy (V-test) of 1.5 mm thick specimen measured according to UL-94 standards of V-0 or more.
  • the thermoplastic resin composition has a surface roughness (Ra) of about 2 to about 15 ⁇ m, for example, using a surface profiler (manufacturer: Kosaka laboratory, device name: Surfcorder SE3500) For example, it may be about 2 to about 10 ⁇ m.
  • the thermoplastic resin composition has a notch Izod impact strength of about 3 to about 10 kgf ⁇ cm/cm, for example about 4 to about 9 kgf ⁇ of a 1/8′′ thick specimen measured according to ASTM D256. cm/cm.
  • the molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be prepared in the form of pellets, and the manufactured pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known by those of ordinary skill in the art to which the present invention pertains.
  • the molded article is eco-friendly because it does not apply a halogen-based flame retardant, and has excellent flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and balance of these properties, so it is useful as interior and exterior materials for electrical and electronic products.
  • g-ABS in which 55 wt% of styrene and acrylonitrile (weight ratio: 75/25) was graft-copolymerized on 45 wt% of butadiene rubber having a Z-average of 310 nm was used.
  • a SAN resin (weight average molecular weight: 130,000 g/mol) in which 75% by weight of styrene and 25% by weight of acrylonitrile were polymerized was used.
  • HIPS Impact-resistant polystyrene
  • Piperazine pyrophosphate (manufacturer: Henan Chemical) was used.
  • the polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate were mixed in the amounts as shown in Tables 1, 2 and 3 below, and then pulverized and separated to have the following mixtures D50 and D90 (unit: ⁇ m)
  • Pellets were prepared by treatment, addition to the thermoplastic resin (A), and extrusion at 200°C to 230°C.
  • a specimen was prepared.
  • the prepared specimens were evaluated for physical properties by the following method, and the results are shown in Tables 1, 2 and 3 below.
  • V-test In accordance with UL-94 standards, the flame retardancy of a 1.5 mm thick specimen was measured.
  • Notched Izod impact strength (unit: kgf ⁇ cm/cm): According to ASTM D256, the notched Izod impact strength of a 1/8′′ thick specimen was measured.
  • thermoplastic resin compositions (Examples 1 to 11) of the present invention are excellent in flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and the like.
  • thermoplastic resin composition when the melamine polyphosphate is applied below the content range of the present invention (Comparative Example 1), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered, and when the melamine polyphosphate is applied in excess of the content range of the present invention (Comparative Example 2), it can be seen that the impact resistance of the thermoplastic resin composition is lowered, and when applying the oligomeric bisphenol-A diphosphate (B2) instead of the melamine polyphosphate (Comparative Example 3), the thermoplastic resin composition It can be seen that the flame retardancy is reduced.

Abstract

The thermoplastic resin composition of the present invention comprises: about 100 parts by weight of a thermoplastic resin; about 4 to about 10 parts by weight of melamine polyphosphate; about 2 to about 7 parts by weight of melamine phosphate; and about 10 to about 20 parts by weight of piperazine pyrophosphate, wherein a mixture of the melamine polyphosphate, melamine phosphate and piperazine pyrophosphate is characterized by having, as measured by a particle size analysis method, an average particle diameter D50 of about 6 μm or less and a particle diameter D90 of 90% of cumulative content is about 11 μm or less. The thermoplastic resin composition has excellent flame retardancy, impact resistance, external appearance characteristics, processability, and the like.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품Thermoplastic resin composition and molded article formed therefrom
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 난연성, 내충격성, 외관 특성, 가공성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.The present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent flame retardancy, impact resistance, appearance characteristics, processability, and the like, and a molded article formed therefrom.
폴리올레핀 수지, 방향족 비닐계 수지 등의 열가소성 수지는 기계적, 열적, 전기적 특성이 우수하고, 내약품성, 성형성 등이 우수하여, 다양한 분야에 광범위하게 사용되고 있다. 그러나, 폴레올레핀 수지는 가연성이 매우 높은 수지 중의 하나에 속하며, 폴리올레핀 수지가 우수한 난연성 등을 갖도록 하는 것은 해결하기 힘든 과제이고, 방향족 비닐계 수지는 불꽃에 대한 저항성이 없고, 외부의 점화 요인에 의해 불꽃이 점화되면 수지 자체가 분해하면서 원료를 제공하여 연소를 확대 지속시키는 역할을 하게 되는 문제점이 있다.Thermoplastic resins such as polyolefin resins and aromatic vinyl resins have excellent mechanical, thermal, and electrical properties, and excellent chemical resistance and moldability, and are widely used in various fields. However, the polyolefin resin belongs to one of the highly flammable resins, and it is a difficult task to make the polyolefin resin have excellent flame retardancy, etc., and the aromatic vinyl resin has no resistance to flame, When the flame is ignited, there is a problem in that the resin itself decomposes and provides raw materials to expand and sustain combustion.
폴리올레핀 수지에 적용 가능한 친환경 난연 시스템은 금속 수산화물, 인계 난연제 등이 고려될 수 있는데, 금속 수산화물의 경우, 다량의 난연제 투입을 필요로 하여, 성형성, 내수성, 기계적 물성 등이 저하되는 문제가 있다. 인계 난연제의 경우, 금속 수산화물에 비해 상대적으로 적은 양을 투입하여도, 할로겐, 중금속 등을 포함하지 않고 난연성을 구현하기에 유리하나, 기존 할로겐계 난연제에 비하여 여전히 투입량이 많으며, 효과적인 난연제 분산이 어려워 난연성, 외관 특성 등의 측면에서 한계를 보이고 있다.As an eco-friendly flame retardant system applicable to polyolefin resins, metal hydroxides, phosphorus-based flame retardants, etc. can be considered. In the case of metal hydroxides, a large amount of flame retardant is required to be input, so there is a problem in that moldability, water resistance, mechanical properties, etc. are deteriorated. In the case of phosphorus-based flame retardants, even if a relatively small amount is added compared to metal hydroxide, it is advantageous to implement flame retardancy without including halogens and heavy metals. It has limitations in terms of flame retardancy and appearance characteristics.
방향족 비닐계 수지에 난연성을 부여하는 방법으로는 난연제와 난연 보조제를 첨가하는 첨가형 난연화법이 있으며, 통상적으로, 비활성 원소인 할로겐 또는 인 등을 함유한 난연제를 첨가하여 난연화를 달성한다. 다만, 할로겐계 난연제의 경우, 유해성 가스 방출 및 환경적인 이슈로 점차 사용이 제한되고 있으며, 비할로겐계 난연제만 첨가한 수지 조성물 개발을 진행 중이나, 현재는 난연도 V-2 수준이 한계이며, 할로겐계 첨가물 대비 난연 성능이 저하된다는 문제점이 있다.As a method of imparting flame retardancy to the aromatic vinyl-based resin, there is an additive-type flame retardant method in which a flame retardant and a flame retardant auxiliary are added, and in general, flame retardancy is achieved by adding a flame retardant containing an inert element, such as halogen or phosphorus. However, in the case of halogen-based flame retardants, their use is gradually restricted due to the emission of harmful gases and environmental issues. There is a problem that the flame retardant performance is lowered compared to the additive-based additive.
따라서, 이러한 문제 없이, 난연성, 내충격성, 외관 특성, 가공성 등이 우수한 열가소성 수지 조성물의 개발이 필요한 실정이다.Therefore, there is a need for the development of a thermoplastic resin composition excellent in flame retardancy, impact resistance, appearance characteristics, processability, and the like, without these problems.
본 발명의 배경기술은 대한민국 공개특허 10-2013-0048426호, 대한민국 공개특허 10-2010-0068954호 등에 개시되어 있다.Background art of the present invention is disclosed in Korean Patent Application Laid-Open No. 10-2013-0048426, Korean Patent Publication No. 10-2010-0068954, and the like.
본 발명의 목적은 난연성, 내충격성, 외관 특성, 가공성 등이 우수한 열가소성 수지 조성물을 제공하기 위한 것이다.It is an object of the present invention to provide a thermoplastic resin composition having excellent flame retardancy, impact resistance, appearance characteristics, processability, and the like.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.All of the above and other objects of the present invention can be achieved by the present invention described below.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 열가소성 수지 약 100 중량부; 멜라민 폴리포스페이트 약 4 내지 약 10 중량부; 멜라민 포스페이트 약 2 내지 약 7 중량부; 및 피페라진 피로포스페이트 약 10 내지 약 20 중량부;를 포함하며, 상기 멜라민 폴리포스페이트, 멜라민 포스페이트 및 피페라진 피로포스페이트의 혼합물은 입도 분석 측정법에 의한 평균 입경 D50이 약 6 ㎛ 이하고, 누적 도수 90%의 입경 D90이 약 11 ㎛ 이하인 것을 특징으로 한다.1. One aspect of the present invention relates to a thermoplastic resin composition. The thermoplastic resin composition comprises about 100 parts by weight of a thermoplastic resin; about 4 to about 10 parts by weight of melamine polyphosphate; about 2 to about 7 parts by weight of melamine phosphate; and about 10 to about 20 parts by weight of piperazine pyrophosphate; wherein, the mixture of melamine polyphosphate, melamine phosphate and piperazine pyrophosphate has an average particle diameter D50 of about 6 μm or less by particle size analysis, and a cumulative content of 90 It is characterized in that the particle diameter D90 of % is about 11 μm or less.
2. 상기 1 구체예에서, 상기 열가소성 수지는 폴리올레핀 수지 및 방향족 비닐계 수지 중 1종 이상을 포함할 수 있다.2. In the first embodiment, the thermoplastic resin may include at least one of a polyolefin resin and an aromatic vinyl-based resin.
3. 상기 2 구체예에서, 상기 폴리올레핀 수지는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체 중 1종 이상을 포함할 수 있다.3. In the second embodiment, the polyolefin resin may include at least one of polypropylene, polyethylene, and a propylene-ethylene copolymer.
4. 상기 2 구체예에서, 상기 방향족 비닐계 수지는 방향족 비닐계 중합체 수지, 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 고무변성 방향족 비닐계 공중합체 수지 중 1종 이상을 포함할 수 있다.4. In the second embodiment, the aromatic vinyl-based resin may include at least one of an aromatic vinyl-based polymer resin, an aromatic vinyl-based copolymer resin, a rubber-modified polystyrene resin, and a rubber-modified aromatic vinyl-based copolymer resin.
5. 상기 1 내지 4 구체예에서, 상기 멜라민 폴리포스페이트 및 상기 멜라민 포스페이트의 중량비는 약 1 : 1 내지 약 4 : 1일 수 있다.5. In the above 1 to 4 embodiments, the weight ratio of the melamine polyphosphate and the melamine phosphate may be about 1:1 to about 4:1.
6. 상기 1 내지 5 구체예에서, 상기 멜라민 폴리포스페이트 및 상기 피페라진 피로포스페이트의 중량비는 약 0.2 : 1 내지 약 0.8 : 1일 수 있다.6. In the above 1 to 5 embodiments, the weight ratio of the melamine polyphosphate and the piperazine pyrophosphate may be about 0.2:1 to about 0.8:1.
7. 상기 1 내지 6 구체예에서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 1.5 mm 두께 시편의 난연도가 V-0 이상일 수 있다.7. In the above 1 to 6 embodiments, the thermoplastic resin composition may have a flame retardancy of V-0 or more of a 1.5 mm thick specimen measured according to UL-94 standards.
8. 상기 1 내지 7 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 3 내지 약 10 kgf·cm/cm일 수 있다.8. In the above embodiments 1 to 7, the thermoplastic resin composition may have a notch Izod impact strength of about 3 to about 10 kgf·cm/cm of a 1/8″ thick specimen measured according to ASTM D256.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 표면 조도 측정기를 사용하여 측정한 시편의 표면 조도(Ra)가 약 2 내지 약 15 ㎛일 수 있다.9. In the above embodiments 1 to 8, the thermoplastic resin composition may have a surface roughness (Ra) of about 2 to about 15 μm of the specimen measured using a surface roughness meter.
10. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 9 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.10. Another aspect of the present invention relates to a molded article. The molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of 1 to 9.
본 발명은 난연성, 내충격성, 외관 특성, 가공성 등이 우수한 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.The present invention has the effect of providing a thermoplastic resin composition excellent in flame retardancy, impact resistance, appearance characteristics, workability, and the like, and a molded article formed therefrom.
이하, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, the present invention will be described in detail as follows.
본 발명에 따른 열가소성 수지 조성물은 (A) 열가소성 수지; (B) 멜라민 폴리포스페이트; (C) 멜라민 포스페이트; 및 (D) 피페라진 피로포스페이트;를 포함한다.The thermoplastic resin composition according to the present invention comprises (A) a thermoplastic resin; (B) melamine polyphosphate; (C) melamine phosphate; and (D) piperazine pyrophosphate.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.In the present specification, "a to b" representing a numerical range is defined as "≥a and ≤b".
(A) 열가소성 수지(A) Thermoplastic resin
본 발명의 일 구체예에 따른 열가소성 수지는 (A1) 폴리올레핀 수지 및 (A2) 방향족 비닐계 수지 중 1종 이상을 포함할 수 있다.The thermoplastic resin according to an embodiment of the present invention may include at least one of (A1) a polyolefin resin and (A2) an aromatic vinyl-based resin.
(A1) 폴리올레핀 수지(A1) polyolefin resin
본 발명의 일 구체예 따른 폴리올레핀 수지는 열가소성 수지 조성물의 기계적 물성, 가공성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 폴리올레핀 수지를 사용할 수 있다. 예를 들면, 저밀도 폴리에틸렌(LDPE), 중밀도 폴리에틸렌(MDPE), 고밀도 폴리에틸렌(HDPE), 직쇄상 저밀도 폴리에틸렌(LLDPE) 등의 폴리에틸렌, 에틸렌-초산비닐 공중합체(EVA), 에틸렌-아크릴레이트 공중합체, 이들의 혼합물 등의 폴리에틸렌계 수지; 폴리프로필렌, 프로필렌-에틸렌 공중합체, 프로필렌-1-부텐 공중합체, 이들의 혼합물 등의 폴리프로필렌계 수지; 이들을 가교시킨 중합체; 폴리이소부텐을 포함하는 블렌드; 이들의 조합 등을 사용할 수 있다. 구체적으로는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체, 이들의 조합 등을 사용할 수 있다.The polyolefin resin according to an embodiment of the present invention can improve mechanical properties, processability, and appearance characteristics of the thermoplastic resin composition, and a conventional polyolefin resin can be used. For example, polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylate copolymer , polyethylene-based resins such as mixtures thereof; polypropylene resins such as polypropylene, propylene-ethylene copolymer, propylene-1-butene copolymer, and mixtures thereof; polymers obtained by crosslinking them; blends comprising polyisobutene; A combination of these and the like can be used. Specifically, polypropylene, polyethylene, propylene-ethylene copolymer, combinations thereof, and the like can be used.
구체예에서, 상기 폴리올레핀 수지는 ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 유동흐름지수(Melt-flow index)가 약 1 내지 약 50 g/10분, 예를 들면 약 5 내지 약 30 g/10분일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형 가공성 등이 우수할 수 있다.In an embodiment, the polyolefin resin has a melt-flow index of about 1 to about 50 g/10 min, for example, about 5 to about 30 g/10 min. In the above range, the thermoplastic resin composition may have excellent mechanical strength, molding processability, and the like.
(A2) 방향족 비닐계 수지(A2) Aromatic vinyl resin
본 발명의 일 구체예에 따른 방향족 비닐계 수지는 열가소성 수지 조성물의 기계적 물성, 가공성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 방향족 비닐계 수지를 사용할 수 있다. 예를 들면, 방향족 비닐계 중합체 수지, 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 고무변성 방향족 비닐계 공중합체 수지 중 1종 이상을 사용할 수 있다. 구체적으로는, 고무변성 폴리스티렌 수지, 고무변성 방향족 비닐계 공중합체 수지, 이들의 조합 등을 사용할 수 있다.The aromatic vinyl-based resin according to an embodiment of the present invention can improve mechanical properties, processability, and appearance characteristics of the thermoplastic resin composition, and a conventional aromatic vinyl-based resin can be used. For example, at least one of an aromatic vinyl-based polymer resin, an aromatic vinyl-based copolymer resin, a rubber-modified polystyrene resin, and a rubber-modified aromatic vinyl-based copolymer resin may be used. Specifically, a rubber-modified polystyrene resin, a rubber-modified aromatic vinyl-based copolymer resin, a combination thereof, and the like can be used.
고무변성 폴리스티렌 수지Rubber-modified polystyrene resin
본 발명의 고무변성 폴리스티렌 수지는 고무질 중합체와 방향족 비닐 단량체를 중합하여 제조된 것으로서, 통상의 내충격 폴리스티렌(HIPS) 수지를 사용할 수 있다.The rubber-modified polystyrene resin of the present invention is prepared by polymerizing a rubbery polymer and an aromatic vinyl monomer, and a general impact-resistant polystyrene (HIPS) resin may be used.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.In an embodiment, the rubbery polymer includes a diene-based rubber such as polybutadiene and poly(acrylonitrile-butadiene), and a saturated rubber hydrogenated to the diene-based rubber, isoprene rubber, and alkyl (meth)acryl having 2 to 10 carbon atoms. Late rubber, a copolymer of an alkyl (meth)acrylate having 2 to 10 carbon atoms and styrene, an ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more. For example, a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.In an embodiment, the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 μm, for example, about 0.15 to about 4 μm, specifically about 0.25 to about 3.5 μm. In the above range, the thermoplastic resin composition may have excellent impact resistance and appearance characteristics. Here, the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state. Specifically, the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
구체예에서, 상기 고무질 중합체의 함량은 고무변성 폴리스티렌 수지 전체 100 중량% 중 약 3 내지 약 30 중량%, 예를 들면 약 5 내지 약 15 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.In an embodiment, the content of the rubbery polymer may be from about 3 to about 30% by weight, for example from about 5 to about 15% by weight, based on 100% by weight of the total rubber-modified polystyrene resin. In the above range, the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 고무변성 폴리스티렌 수지 전체 100 중량% 중 약 70 내지 약 97 중량%, 예를 들면 약 85 내지 약 95 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 성형 가공성, 내충격성, 외관 특성 등이 우수할 수 있다.In an embodiment, the aromatic vinyl-based monomer includes styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, and dibromostyrene. , vinyl naphthalene, and the like can be exemplified. These can be used individually or in mixture of 2 or more types. The content of the aromatic vinyl-based monomer may be about 70 to about 97% by weight, for example, about 85 to about 95% by weight of the total 100% by weight of the rubber-modified polystyrene resin. In the above range, molding processability, impact resistance, and appearance characteristics of the thermoplastic resin composition may be excellent.
구체예에서, 상기 고무변성 폴리스티렌 수지는 열가소성 수지 조성물에 내화학성, 가공성, 내열성과 같은 특성을 부여하기 위해, 고무변성 폴리스티렌 수지 중합 시, 아크릴로니트릴, 아크릴산, 메타크릴산, 무수말레인산, N-치환말레이미드 등의 단량체를 부가하여 중합할 수 있다. 이 경우, 상기 단량체의 첨가량은 고무변성 폴리스티렌 수지 전체 100 중량%에 대하여, 약 40 중량% 이하일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 내화학성, 가공성 및 내열성 등을 부여할 수 있다.In an embodiment, the rubber-modified polystyrene resin is acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, N- during polymerization of the rubber-modified polystyrene resin in order to impart properties such as chemical resistance, processability, and heat resistance to the thermoplastic resin composition. It can polymerize by adding monomers, such as a substituted maleimide. In this case, the amount of the monomer added may be about 40% by weight or less based on 100% by weight of the total rubber-modified polystyrene resin. Chemical resistance, processability, heat resistance, etc. can be imparted to the thermoplastic resin composition without lowering other physical properties within the above range.
구체예에서, 상기 고무변성 폴리스티렌 수지는 개시제의 존재 없이 열중합에 의해 중합되거나, 개시제의 존재 하에 중합될 수 있다. 상기 개시제로는 벤조일 퍼옥사이드, t-부틸 하이드로 퍼옥사이드, 아세틸 퍼옥사이드, 큐멘하이드로 퍼옥사이드 등의 과산화물계 개시제와 아조비스 이소부티로니트릴 같은 아조계 개시제 중 1종 이상을 예시할 수 있다. 상기 고무변성 폴리스티렌 수지는 괴상중합, 현탁중합, 유화중합 등의 공지의 중합방법에 의하여 수행될 수 있다.In an embodiment, the rubber-modified polystyrene resin may be polymerized by thermal polymerization without the presence of an initiator, or may be polymerized in the presence of an initiator. As the initiator, at least one of a peroxide-based initiator such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, and cumene hydroperoxide, and an azo-based initiator such as azobis isobutyronitrile may be exemplified. The rubber-modified polystyrene resin may be prepared by known polymerization methods such as bulk polymerization, suspension polymerization, and emulsion polymerization.
고무변성 방향족 비닐계 공중합체 수지Rubber-modified aromatic vinyl-based copolymer resin
본 발명의 고무변성 방향족 비닐계 공중합체 수지는 (a1) 고무변성 비닐계 그라프트 공중합체 및 (a2) 방향족 비닐계 공중합체 수지를 포함할 수 있다.The rubber-modified aromatic vinyl-based copolymer resin of the present invention may include (a1) a rubber-modified vinyl-based graft copolymer and (a2) an aromatic vinyl-based copolymer resin.
(a1) 고무변성 비닐계 그라프트 공중합체(a1) rubber-modified vinyl-based graft copolymer
본 발명의 일 구체예에 따른 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물이 그라프트 중합된 것일 수 있다. 예를 들면, 상기 고무변성 비닐계 그라프트 공중합체는 고무질 중합체에 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물을 그라프트 중합하여 얻을 수 있으며, 필요에 따라, 상기 단량체 혼합물에 가공성 및 내열성을 부여하는 단량체를 더욱 포함시켜 그라프트 중합할 수 있다. 상기 중합은 유화중합, 현탁중합 등의 공지의 중합방법에 의하여 수행될 수 있다. 또한, 상기 고무변성 비닐계 그라프트 공중합체는 코어(고무질 중합체)-쉘(단량체 혼합물의 공중합체) 구조를 형성할 수 있으나, 이에 제한되지 않는다.The rubber-modified vinyl-based graft copolymer according to an embodiment of the present invention may be graft polymerization of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer. For example, the rubber-modified vinyl-based graft copolymer can be obtained by graft polymerization of a monomer mixture containing an aromatic vinyl-based monomer and a vinyl cyanide-based monomer to a rubbery polymer. Graft polymerization may be performed by further including a monomer that imparts heat resistance. The polymerization may be performed by a known polymerization method such as emulsion polymerization or suspension polymerization. In addition, the rubber-modified vinyl-based graft copolymer may form a core (rubber polymer)-shell (copolymer of a monomer mixture) structure, but is not limited thereto.
구체예에서, 상기 고무질 중합체로는 폴리부타디엔, 폴리(스티렌-부타디엔), 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무에 수소 첨가한 포화고무, 이소프렌고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 고무, 탄소수 2 내지 10의 알킬 (메타)아크릴레이트 및 스티렌의 공중합체, 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 예를 들면, 디엔계 고무, (메타)아크릴레이트 고무 등을 사용할 수 있고, 구체적으로, 부타디엔계 고무, 부틸아크릴레이트 고무 등을 사용할 수 있다.In an embodiment, the rubbery polymer includes a diene rubber such as polybutadiene, poly(styrene-butadiene), poly(acrylonitrile-butadiene), and a saturated rubber hydrogenated to the diene rubber, isoprene rubber, carbon number 2 to alkyl (meth)acrylate rubber of 10, a copolymer of alkyl (meth)acrylate and styrene having 2 to 10 carbon atoms, ethylene-propylene-diene monomer terpolymer (EPDM), and the like can be exemplified. These may be applied alone or in mixture of two or more. For example, a diene-based rubber, a (meth)acrylate rubber, etc. may be used, and specifically, a butadiene-based rubber, a butyl acrylate rubber, or the like may be used.
구체예에서, 상기 고무질 중합체(고무 입자)는 평균 입자 크기가 약 0.05 내지 약 6 ㎛, 예를 들면 약 0.15 내지 약 4 ㎛, 구체적으로 약 0.25 내지 약 3.5 ㎛일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다. 여기서, 상기 고무질 중합체(고무 입자)의 평균 입자 크기(z-평균)는 라텍스(latex) 상태에서 광 산란(light scattering) 방법을 이용하여 측정할 수 있다. 구체적으로, 고무질 중합체 라텍스를 메쉬(mesh)에 걸러서, 고무질 중합체 중합 중 발생하는 응고물 제거하고, 라텍스 0.5 g 및 증류수 30 ml를 혼합한 용액을 1,000 ml 플라스크에 따르고 증류수를 채워 시료를 제조한 다음, 시료 10 ml를 석영 셀(cell)로 옮기고, 이에 대하여, 광 산란 입도 측정기(malvern社, nano-zs)로 고무질 중합체의 평균 입자 크기를 측정할 수 있다.In an embodiment, the rubbery polymer (rubber particles) may have an average particle size of about 0.05 to about 6 μm, for example, about 0.15 to about 4 μm, specifically about 0.25 to about 3.5 μm. In the above range, the thermoplastic resin composition may have excellent impact resistance and appearance characteristics. Here, the average particle size (z-average) of the rubbery polymer (rubber particles) may be measured using a light scattering method in a latex state. Specifically, the rubbery polymer latex is filtered through a mesh to remove coagulation generated during polymerization of the rubbery polymer, and a solution of 0.5 g of latex and 30 ml of distilled water is poured into a 1,000 ml flask and distilled water is filled to prepare a sample. , 10 ml of the sample is transferred to a quartz cell, and the average particle size of the rubbery polymer can be measured with a light scattering particle size analyzer (malvern, nano-zs).
구체예에서, 상기 고무질 중합체의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 20 내지 약 70 중량%, 예를 들면 약 25 내지 약 60 중량%일 수 있고, 상기 단량체 혼합물(방향족 비닐계 단량체 및 시안화 비닐계 단량체 포함)의 함량은 고무변성 비닐계 그라프트 공중합체 전체 100 중량% 중 약 30 내지 약 80 중량%, 예를 들면 약 40 내지 약 75 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 외관 특성 등이 우수할 수 있다.In an embodiment, the content of the rubbery polymer may be about 20 to about 70% by weight, for example, about 25 to about 60% by weight, of the total 100% by weight of the rubber-modified vinyl-based graft copolymer, and the monomer mixture (aromatic The content of the vinyl-based monomer and the cyanide-based monomer) may be about 30 to about 80% by weight, for example, about 40 to about 75% by weight of the total 100% by weight of the rubber-modified vinyl-based graft copolymer. In the above range, the thermoplastic resin composition may have excellent impact resistance and appearance characteristics.
구체예에서, 상기 방향족 비닐계 단량체는 상기 고무질 중합체에 그라프트 공중합될 수 있는 것으로서, 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 상기 방향족 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 40 내지 약 90 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 가공성, 내충격성 등이 우수할 수 있다.In an embodiment, the aromatic vinyl-based monomer may be graft copolymerized to the rubber polymer, and may include styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, Monochlorostyrene, dichlorostyrene, dibromostyrene, vinyl naphthalene, etc. can be illustrated. These can be used individually or in mixture of 2 or more types. The content of the aromatic vinyl-based monomer may be about 10 to about 90% by weight, for example, about 40 to about 90% by weight of 100% by weight of the monomer mixture. In the above range, the processability and impact resistance of the thermoplastic resin composition may be excellent.
구체예에서, 상기 시안화 비닐계 단량체는 상기 방향족 비닐계와 공중합 가능한 것으로서, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 상기 단량체 혼합물 100 중량% 중 약 10 내지 약 90 중량%, 예를 들면 약 10 내지 약 60 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내화학성, 기계적 특성 등이 우수할 수 있다.In a specific embodiment, the vinyl cyanide-based monomer is copolymerizable with the aromatic vinyl-based monomer, and includes acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and the like. can be exemplified. These can be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used. The content of the vinyl cyanide monomer may be about 10 to about 90 wt%, for example, about 10 to about 60 wt%, based on 100 wt% of the monomer mixture. In the above range, the thermoplastic resin composition may have excellent chemical resistance, mechanical properties, and the like.
구체예에서, 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, 말레산 무수물, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.In an embodiment, the monomer for imparting the processability and heat resistance may include (meth)acrylic acid, maleic anhydride, N-substituted maleimide, and the like, but is not limited thereto. When the monomer for imparting the processability and heat resistance is used, the content thereof may be 15% by weight or less, for example, about 0.1 to about 10% by weight based on 100% by weight of the monomer mixture. Within the above range, processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체로는 부타디엔계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체(g-ABS), 부틸 아크릴레이트계 고무질 중합체에 방향족 비닐계 화합물인 스티렌 단량체와 시안화 비닐계 화합물인 아크릴로니트릴 단량체가 그라프트된 공중합체인 아크릴레이트-스티렌-아크릴로니트릴 그라프트 공중합체(g-ASA) 등을 예시할 수 있다.In a specific embodiment, as the rubber-modified vinyl-based graft copolymer, a copolymer (g-ABS) in which a styrene monomer as an aromatic vinyl compound and an acrylonitrile monomer as a vinyl cyanide compound are grafted onto a butadiene-based rubber polymer (g-ABS), butyl acryl An acrylate-styrene-acrylonitrile graft copolymer (g-ASA), which is a copolymer in which a styrene monomer, which is an aromatic vinyl-based compound, and an acrylonitrile monomer, which is a vinyl cyanide-based compound, is grafted onto a rate-based rubbery polymer can be exemplified. have.
구체예에서, 상기 고무변성 비닐계 그라프트 공중합체(a1)는 전체 고무변성 방향족 비닐계 공중합체 수지 100 중량% 중 약 10 내지 약 50 중량%, 예를 들면 약 15 내지 약 45 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 성형 가공성 등이 우수할 수 있다.In an embodiment, the rubber-modified vinyl-based graft copolymer (a1) is included in an amount of about 10 to about 50% by weight, for example, about 15 to about 45% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin. can In the above range, the thermoplastic resin composition may have excellent impact resistance, molding processability, and the like.
(a2) 방향족 비닐계 공중합체 수지(a2) Aromatic vinyl-based copolymer resin
본 발명의 일 구체예에 따른 방향족 비닐계 공중합체 수지는 통상의 고무변성 방향족 비닐계 공중합체 수지에 사용되는 방향족 비닐계 공중합체 수지일 수 있다. 예를 들면, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체 및 시안화 비닐계 단량체를 포함하는 단량체 혼합물의 중합체일 수 있다.The aromatic vinyl-based copolymer resin according to an embodiment of the present invention may be an aromatic vinyl-based copolymer resin used in a conventional rubber-modified aromatic vinyl-based copolymer resin. For example, the aromatic vinyl-based copolymer resin may be a polymer of a monomer mixture including an aromatic vinyl-based monomer and a vinyl cyanide-based monomer.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 방향족 비닐계 단량체, 시안화 비닐계 단량체 등을 혼합한 후, 이를 중합하여 얻을 수 있으며, 상기 중합은 유화중합, 현탁중합, 괴상중합 등의 공지의 중합방법에 의하여 수행될 수 있다.In a specific embodiment, the aromatic vinyl-based copolymer resin may be obtained by mixing an aromatic vinyl-based monomer, a vinyl cyanide-based monomer, etc., and then polymerizing it, and the polymerization is a known polymerization such as emulsion polymerization, suspension polymerization, and bulk polymerization. method can be carried out.
구체예에서, 상기 방향족 비닐계 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, p-t-부틸스티렌, 에틸스티렌, 비닐크실렌, 모노클로로스티렌, 디클로로스티렌, 디브로모스티렌, 비닐나프탈렌 등을 사용할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다. 상기 방향족 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 20 내지 약 90 중량%, 예를 들면 약 30 내지 약 80 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등이 우수할 수 있다.In an embodiment, the aromatic vinyl-based monomer includes styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, pt-butylstyrene, ethylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, and dibromostyrene. , vinyl naphthalene, etc. can be used. These may be applied alone or in mixture of two or more. The content of the aromatic vinyl-based monomer may be about 20 to about 90% by weight, for example, about 30 to about 80% by weight, based on 100% by weight of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, appearance characteristics, and the like.
구체예에서, 상기 시안화 비닐계 단량체로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴, α-클로로아크릴로니트릴, 푸마로니트릴 등을 예시할 수 있다. 이들은 단독으로 사용하거나, 2종 이상 혼합하여 사용할 수 있다. 예를 들면, 아크릴로니트릴, 메타크릴로니트릴 등을 사용할 수 있다. 상기 시안화 비닐계 단량체의 함량은 방향족 비닐계 공중합체 수지 전체 100 중량% 중, 약 10 내지 약 80 중량%, 예를 들면 약 20 내지 약 70 중량%일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 내열성, 외관 등이 우수할 수 있다.In an embodiment, the vinyl cyanide-based monomer may include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, α-chloroacrylonitrile, fumaronitrile, and the like. These can be used individually or in mixture of 2 or more types. For example, acrylonitrile, methacrylonitrile, etc. can be used. The content of the vinyl cyanide-based monomer may be about 10 to about 80 wt%, for example, about 20 to about 70 wt%, based on 100 wt% of the total aromatic vinyl-based copolymer resin. In the above range, the thermoplastic resin composition may have excellent impact resistance, fluidity, heat resistance, and appearance.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 상기 단량체 혼합물에 가공성 및 내열성을 부여하기 위한 단량체를 더 포함하여 중합한 것일 수 있다. 상기 가공성 및 내열성을 부여하기 위한 단량체로는 (메타)아크릴산, N-치환말레이미드 등을 예시할 수 있으나, 이에 한정되지 않는다. 상기 가공성 및 내열성을 부여하기 위한 단량체 사용 시, 그 함량은 상기 단량체 혼합물 100 중량% 중 약 15 중량% 이하, 예를 들면 약 0.1 내지 약 10 중량%일 수 있다. 상기 범위에서 다른 물성의 저하 없이, 열가소성 수지 조성물에 가공성 및 내열성을 부여할 수 있다.In an embodiment, the aromatic vinyl-based copolymer resin may be polymerized by further including a monomer for imparting processability and heat resistance to the monomer mixture. As the monomer for imparting the processability and heat resistance, (meth)acrylic acid, N-substituted maleimide, and the like may be exemplified, but the present invention is not limited thereto. When the monomer for imparting the processability and heat resistance is used, the content thereof may be about 15% by weight or less, for example, about 0.1 to about 10% by weight based on 100% by weight of the monomer mixture. Within the above range, processability and heat resistance may be imparted to the thermoplastic resin composition without deterioration of other physical properties.
구체예에서, 상기 방향족 비닐계 공중합체 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 300,000 g/mol, 예를 들면, 약 15,000 내지 약 150,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 기계적 강도, 성형 가공성 등이 우수할 수 있다.In an embodiment, the aromatic vinyl-based copolymer resin has a weight average molecular weight (Mw) of about 10,000 to about 300,000 g/mol, for example, about 15,000 to about 150,000 g/mol, measured by gel permeation chromatography (GPC). can In the above range, the thermoplastic resin composition may have excellent mechanical strength, molding processability, and the like.
구체예에서, 상기 방향족 비닐계 공중합체 수지(a2)는 전체 고무변성 방향족 비닐계 공중합체 수지(A) 100 중량% 중 약 50 내지 약 90 중량%, 예를 들면 약 55 내지 약 85 중량%로 포함될 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 성형 가공성, 외관 특성 등이 우수할 수 있다.In an embodiment, the aromatic vinyl-based copolymer resin (a2) is from about 50 to about 90% by weight, for example, from about 55 to about 85% by weight of 100% by weight of the total rubber-modified aromatic vinyl-based copolymer resin (A) may be included. Within the above range, the thermoplastic resin composition may have excellent impact resistance, molding processability, and appearance characteristics.
(B) 멜라민 폴리포스페이트(B) Melamine polyphosphate
본 발명의 멜라민 폴리포스페이트(melamine polyphosphate)는 멜라민 포스페이트 및 피페라진 피로포스페이트와 함께 특정 입경 및 입경 분포를 갖는 혼합물 형태로 적용되어, 적은 함량으로도 열가소성 수지 조성물의 난연성, 내충격성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 난연성 열가소성 수지 조성물에 사용되는 멜라민 폴리포스페이트를 사용할 수 있다.The melamine polyphosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine phosphate and piperazine pyrophosphate, so that even with a small content, flame retardancy, impact resistance, and appearance characteristics of the thermoplastic resin composition are improved. As one that can be improved, melamine polyphosphate used in conventional flame-retardant thermoplastic resin compositions may be used.
구체예에서, 상기 멜라민 폴리포스페이트는 중합도가 약 100 내지 약 600, 예를 들면 약 200 내지 약 500일 수 있으며, 중량평균분자량이 약 20,000 내지 약 110,000 g/mol일 수 있다.In an embodiment, the melamine polyphosphate may have a polymerization degree of about 100 to about 600, for example, about 200 to about 500, and a weight average molecular weight of about 20,000 to about 110,000 g/mol.
구체예에서, 상기 멜라민 폴리포스페이트는 TGA(Thermal Gravimetric Analysis, heating rate 20℃/min in air)로 측정한 중량 감소(weight loss)가 260℃ 조건에서, 약 2% 이하일 수 있고, 300℃ 조건에서, 약 3% 이하일 수 있다.In an embodiment, the melamine polyphosphate may have a weight loss measured by TGA (Thermal Gravimetric Analysis, heating rate 20° C./min in air) of about 2% or less at 260° C., and at 300° C. , may be about 3% or less.
구체예에서, 상기 멜라민 폴리포스페이트는 상기 열가소성 수지 약 100 중량부에 대하여, 약 4 내지 약 10 중량부, 예를 들면 약 5 내지 약 9 중량부로 포함될 수 있다. 상기 멜라민 폴리포스페이트의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 4 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 10 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.In an embodiment, the melamine polyphosphate may be included in an amount of about 4 to about 10 parts by weight, for example, about 5 to about 9 parts by weight, based on 100 parts by weight of the thermoplastic resin. When the content of the melamine polyphosphate is less than about 4 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a risk that the flame retardancy of the thermoplastic resin composition may be lowered, and when it exceeds about 10 parts by weight, the resistance of the thermoplastic resin composition There exists a possibility that impact property etc. may fall.
(C) 멜라민 포스페이트(C) melamine phosphate
본 발명의 멜라민 포스페이트(melamine phosphate)는 멜라민 폴리포스페이트 및 피페라진 피로포스페이트와 함께 특정 입경 및 입경 분포를 갖는 혼합물 형태로 적용되어, 적은 함량으로도 열가소성 수지 조성물의 난연성, 내충격성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 난연성 열가소성 수지 조성물에 사용되는 멜라민 포스페이트(단량체)를 사용할 수 있다.The melamine phosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine polyphosphate and piperazine pyrophosphate, so that even with a small content, flame retardancy, impact resistance, and appearance characteristics of the thermoplastic resin composition are improved. As one that can be improved, melamine phosphate (monomer) used in conventional flame-retardant thermoplastic resin compositions can be used.
구체예에서, 상기 멜라민 포스페이트는 상기 열가소성 수지 약 100 중량부에 대하여, 약 2 내지 약 7 중량부, 예를 들면 약 3 내지 약 6 중량부로 포함될 수 있다. 상기 멜라민 포스페이트의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 2 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 7 중량부를 초과할 경우, 열가소성 수지 조성물의 (압출) 가공성 등이 저하될 우려가 있다.In an embodiment, the melamine phosphate may be included in an amount of about 2 to about 7 parts by weight, for example, about 3 to about 6 parts by weight based on about 100 parts by weight of the thermoplastic resin. When the content of the melamine phosphate is less than about 2 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a fear that the flame retardancy of the thermoplastic resin composition may be lowered, and when it exceeds about 7 parts by weight, the (extrusion) of the thermoplastic resin composition ), there is a possibility that the workability may be deteriorated.
구체예에서, 상기 멜라민 폴리포스페이트(B) 및 상기 멜라민 포스페이트(C)의 중량비(B:C)는 약 1 : 1 내지 약 4 : 1, 예를 들면 약 1 : 1 내지 약 3 : 1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 내충격성, 외관 특성, (압출) 가공성 등이 우수할 수 있다.In an embodiment, the weight ratio (B:C) of the melamine polyphosphate (B) and the melamine phosphate (C) is from about 1:1 to about 4:1, for example from about 1:1 to about 3:1. have. In the above range, the thermoplastic resin composition may have excellent flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and the like.
(D) 피페라진 피로포스페이트(D) piperazine pyrophosphate
본 발명의 피페라진 피로포스페이트(piperazine pyrophosphate)는 멜라민 폴리포스페이트 및 멜라민 포스페이트와 함께 특정 입경 및 입경 분포를 갖는 혼합물 형태로 적용되어, 적은 함량으로도 차르(char) 형성이 용이하고, 열가소성 수지 조성물의 난연성, 내충격성, 외관 특성 등을 향상시킬 수 있는 것으로서, 통상의 난연성 열가소성 수지 조성물에 사용되는 피페라진 피로포스페이트를 사용할 수 있다.Piperazine pyrophosphate of the present invention is applied in the form of a mixture having a specific particle size and particle size distribution together with melamine polyphosphate and melamine phosphate, so that char is easy to form even with a small amount, and the composition of the thermoplastic resin composition As one capable of improving flame retardancy, impact resistance, and appearance characteristics, piperazine pyrophosphate used in conventional flame-retardant thermoplastic resin compositions may be used.
구체예에서, 상기 피페라진 피로포스페이트는 상기 열가소성 수지 약 100 중량부에 대하여, 약 10 내지 약 20 중량부, 예를 들면 약 12 내지 약 18 중량부로 포함될 수 있다. 상기 피페라진 피로포스페이트의 함량이 상기 열가소성 수지 약 100 중량부에 대하여, 약 10 중량부 미만일 경우, 열가소성 수지 조성물의 난연성 등이 저하될 우려가 있고, 약 20 중량부를 초과할 경우, 열가소성 수지 조성물의 내충격성 등이 저하될 우려가 있다.In an embodiment, the piperazine pyrophosphate may be included in an amount of about 10 to about 20 parts by weight, for example, about 12 to about 18 parts by weight, based on about 100 parts by weight of the thermoplastic resin. When the content of the piperazine pyrophosphate is less than about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin, there is a risk that the flame retardancy of the thermoplastic resin composition may be deteriorated, and when it exceeds about 20 parts by weight, the amount of the thermoplastic resin composition There exists a possibility that impact resistance etc. may fall.
구체예에서, 상기 멜라민 폴리포스페이트(B) 및 상기 피페라진 피로포스페이트(D)의 중량비(B:D)는 약 0.2 : 1 내지 약 0.8 : 1, 예를 들면 약 0.3 : 1 내지 약 0.7 : 1일 수 있다. 상기 범위에서 열가소성 수지 조성물의 난연성, 내충격성, 외관 특성 등이 우수할 수 있다.In an embodiment, the weight ratio (B:D) of the melamine polyphosphate (B) and the piperazine pyrophosphate (D) is from about 0.2:1 to about 0.8:1, for example from about 0.3:1 to about 0.7:1. can be In the above range, the thermoplastic resin composition may have excellent flame retardancy, impact resistance, and appearance characteristics.
본 발명의 열가소성 수지 조성물은 상기 멜라민 폴리포스페이트(B), 멜라민 포스페이트(C) 및 피페라진 피로포스페이트(D)을 혼합 후, 특정 입경 및 입경 분포를 갖도록 분쇄 및 분리하여 적용할 수 있다. 상기 멜라민 폴리포스페이트(B), 멜라민 포스페이트(C) 및 피페라진 피로포스페이트(D)을 포함하는 혼합물은 입도 분석 측정법(레이저회절 및 산란에 의한 입도분석법 중, 건식법으로 Mastersizer 2000E series (Malvern) 장비를 사용하여 측정)에 의한 평균 입경 D50이 약 6 ㎛ 이하, 예를 들면 약 2 내지 약 5 ㎛이고, 누적 도수 90%의 입경 D90이 약 11 ㎛ 이하, 예를 들면 약 5 내지 약 10 ㎛일 수 있다. 상기 혼합물의 평균 입경 D50이 약 5 ㎛를 초과할 경우, 열가소성 수지 조성물의 외관 특성 등이 저하될 우려가 있으며, 상기 혼합물의 D90이 약 11 ㎛를 초과할 경우, 열가소성 수지 조성물의 외관 특성 등이 저하될 우려가 있다.The thermoplastic resin composition of the present invention may be applied after mixing the melamine polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate (D), pulverizing and separating to have a specific particle size and particle size distribution. The mixture containing the melamine polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate (D) is a particle size analysis method (of the particle size analysis method by laser diffraction and scattering, the dry method Mastersizer 2000E series (Malvern) equipment The average particle diameter D50 by the measurement using) is about 6 μm or less, for example, about 2 to about 5 μm, and the particle diameter D90 of 90% of the cumulative frequency is about 11 μm or less, for example, about 5 to about 10 μm. have. When the average particle diameter D50 of the mixture exceeds about 5 μm, there is a fear that the appearance properties of the thermoplastic resin composition may be deteriorated, and when the D90 of the mixture exceeds about 11 μm, the appearance properties of the thermoplastic resin composition, etc. There is a risk of deterioration.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 충격보강제, 산화방지제, 적하방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 열가소성 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.The thermoplastic resin composition according to an embodiment of the present invention may further include an additive included in a conventional thermoplastic resin composition. The additives may include, but are not limited to, impact modifiers, antioxidants, anti-drip agents, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, and mixtures thereof. When the additive is used, its content may be about 0.001 to about 40 parts by weight, for example, about 0.1 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic resin.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 180 내지 약 250℃, 예를 들면 약 200 내지 약 230℃에서 용융 압출한 펠렛 형태일 수 있다.The thermoplastic resin composition according to an embodiment of the present invention is in the form of pellets that are melt-extruded at about 180 to about 250° C., for example, about 200 to about 230° C., by mixing the above components and using a conventional twin-screw extruder. can
구체예에서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 1.5 mm 두께 시편의 난연도(V-test)가 V-0 이상일 수 있다.In an embodiment, the thermoplastic resin composition may have a flame retardancy (V-test) of 1.5 mm thick specimen measured according to UL-94 standards of V-0 or more.
구체예에서, 상기 열가소성 수지 조성물은 표면 조도 측정기(surface profiler, 제조사: Kosaka laboratory社, 장치명: Surfcorder SE3500)를 사용하여 시편의 표면 조도(surface roughness, Ra)가 약 2 내지 약 15 ㎛, 예를 들면 약 2 내지 약 10 ㎛일 수 있다.In an embodiment, the thermoplastic resin composition has a surface roughness (Ra) of about 2 to about 15 μm, for example, using a surface profiler (manufacturer: Kosaka laboratory, device name: Surfcorder SE3500) For example, it may be about 2 to about 10 μm.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여, 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 3 내지 약 10 kgf·cm/cm, 예를 들면 약 4 내지 약 9 kgf·cm/cm일 수 있다.In an embodiment, the thermoplastic resin composition has a notch Izod impact strength of about 3 to about 10 kgf·cm/cm, for example about 4 to about 9 kgf·· of a 1/8″ thick specimen measured according to ASTM D256. cm/cm.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 할로겐계 난연제를 적용하지 않아 친환경적이며, 난연성, 내충격성, 외관 특성, (압출) 가공성, 이들의 물성 발란스 등이 우수하므로, 전기 전자 제품의 내외장재 등으로 유용하다.The molded article according to the present invention is formed from the thermoplastic resin composition. The thermoplastic resin composition may be prepared in the form of pellets, and the manufactured pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known by those of ordinary skill in the art to which the present invention pertains. The molded article is eco-friendly because it does not apply a halogen-based flame retardant, and has excellent flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and balance of these properties, so it is useful as interior and exterior materials for electrical and electronic products.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail through examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예Example
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.Hereinafter, the specifications of each component used in Examples and Comparative Examples are as follows.
(A) 열가소성 수지(A) Thermoplastic resin
(A1) 폴리올레핀 수지(A1) polyolefin resin
ASTM D1238에 의거하여, 230℃, 2.16 kg 하중 조건에서 측정한 유동흐름지수(MI)가 12 g/10분인 폴리프로필렌 수지(제조사: 롯데케미칼)를 사용하였다.Based on ASTM D1238, a polypropylene resin (manufacturer: Lotte Chemical) having a flow index (MI) of 12 g/10 min measured at 230°C and a load of 2.16 kg was used.
(A2) 고무변성 방향족 비닐계 공중합체 수지(A2) Rubber-modified aromatic vinyl-based copolymer resin
하기 (a1) 고무변성 방향족 비닐계 그라프트 공중합체 25 중량% 및 (a2) 방향족 비닐계 공중합체 수지 75 중량%를 혼합하여 사용하였다.25% by weight of the following (a1) rubber-modified aromatic vinyl-based graft copolymer and (a2) 75% by weight of the aromatic vinyl-based copolymer resin were mixed and used.
(a1) 고무변성 방향족 비닐계 그라프트 공중합체(a1) rubber-modified aromatic vinyl-based graft copolymer
45 중량%의 Z-평균이 310 nm인 부타디엔 고무에 55 중량%의 스티렌 및 아크릴로니트릴(중량비: 75/25)가 그라프트 공중합된 g-ABS를 사용하였다.g-ABS in which 55 wt% of styrene and acrylonitrile (weight ratio: 75/25) was graft-copolymerized on 45 wt% of butadiene rubber having a Z-average of 310 nm was used.
(a2) 방향족 비닐계 공중합체 수지(a2) Aromatic vinyl-based copolymer resin
스티렌 75 중량% 및 아크릴로니트릴 25 중량%가 중합된 SAN 수지(중량평균분자량: 130,000 g/mol)를 사용하였다.A SAN resin (weight average molecular weight: 130,000 g/mol) in which 75% by weight of styrene and 25% by weight of acrylonitrile were polymerized was used.
(A3) 고무변성 폴리스티렌 수지(A3) Rubber-modified polystyrene resin
내충격 폴리스티렌(HIPS, 제조사: IDEMITSU, 제품명: PSI060)를 사용하였다.Impact-resistant polystyrene (HIPS, manufacturer: IDEMITSU, product name: PSI060) was used.
(B) 폴리포스페이트(B) polyphosphate
(B1) 멜라민 폴리포스페이트(제조사: BASF, 제품명: Melarpur 200)를 사용하였다.(B1) Melamine polyphosphate (manufacturer: BASF, product name: Melarpur 200) was used.
(B2) 올리고머형 비스페놀-A 디포스페이트(bisphenol-A diphosphate, 제조사: Yoke Chemical, 제품명: YOKE BDP)를 사용하였다.(B2) oligomeric bisphenol-A diphosphate (manufacturer: Yoke Chemical, product name: YOKE BDP) was used.
(C) 멜라민 포스페이트(C) melamine phosphate
멜라민 포스페이트(제조사: BASF, 제품명: Melarpur MP) 를 사용하였다.Melamine phosphate (manufacturer: BASF, product name: Melarpur MP) was used.
(D) 피페라진 피로포스페이트(D) piperazine pyrophosphate
피페라진 피로포스페이트(제조사: Henan Chemical)를 사용하였다.Piperazine pyrophosphate (manufacturer: Henan Chemical) was used.
실시예 1 내지 11 및 비교예 1 내지 9Examples 1 to 11 and Comparative Examples 1 to 9
상기 폴리포스페이트(B), 멜라민 포스페이트(C) 및 피페라진 피로포스페이트를 하기 표 1, 2 및 3에 기재된 바와 같은 함량으로 혼합한 후, 하기 혼합물 D50 및 D90(단위: ㎛)을 갖도록 분쇄 및 분리 처리하고, 열가소성 수지(A)에 첨가한 다음, 200℃ 내지 230℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=44, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 4시간 이상 건조 후, 6 oz 사출기(성형 온도: 230℃, 금형 온도: 70℃)에서 사출 성형하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1, 2 및 3에 나타내었다.The polyphosphate (B), melamine phosphate (C) and piperazine pyrophosphate were mixed in the amounts as shown in Tables 1, 2 and 3 below, and then pulverized and separated to have the following mixtures D50 and D90 (unit: μm) Pellets were prepared by treatment, addition to the thermoplastic resin (A), and extrusion at 200°C to 230°C. For extrusion, a twin-screw extruder with L/D=44 and a diameter of 45 mm was used, and the manufactured pellets were dried at 80°C for 4 hours or more, and then injection molded in a 6 oz injection machine (molding temperature: 230°C, mold temperature: 70°C). Thus, a specimen was prepared. The prepared specimens were evaluated for physical properties by the following method, and the results are shown in Tables 1, 2 and 3 below.
물성 측정 방법How to measure physical properties
(1) 난연도(V-test): UL-94 기준에 따라, 1.5 mm 두께 시편의 난연도를 측정하였다. (B/O (Burn Out): 난연도 시험 중, 1차 연소 후 다시 불 붙였을 때 불이 붙어 꺼지지 않는 것을 의미)(1) Flame retardancy (V-test): In accordance with UL-94 standards, the flame retardancy of a 1.5 mm thick specimen was measured. (B/O (Burn Out): During the flame retardancy test, it means that the fire is lit and does not go out when it is lit again after the first combustion)
(2) 노치 아이조드 충격강도(단위: kgf·cm/cm): ASTM D256에 의거하여, 1/8" 두께 시편의 노치 아이조드 충격 강도를 측정하였다.(2) Notched Izod impact strength (unit: kgf·cm/cm): According to ASTM D256, the notched Izod impact strength of a 1/8″ thick specimen was measured.
(3) 표면 조도(Ra, 단위: ㎛): 표면 조도 측정기(surface profiler, 제조사: Kosaka laboratory社, 장치명: Surfcorder SE3500)를 사용하여 시편의 표면 조도(surface roughness, Ra)를 측정하였다.(3) Surface roughness (Ra, unit: μm): The surface roughness (Ra) of the specimen was measured using a surface profiler (manufacturer: Kosaka laboratory, device name: Surfcorder SE3500).
(4) 압출 가공성: 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 200 내지 230℃에서 용융 압출한 펠렛의 단면(절단면)에 기공(지름 0.5 mm 이상)의 유무를 측정하였다. 기공이 1개 이하일 경우 미발포(○), 2개 이상일 경우는 발포(×)로 평가하였다.(4) Extrusion processability: The presence or absence of pores (diameter 0.5 mm or more) in the cross section (cut surface) of the pellets melt-extruded at 200 to 230 ° C. by mixing the components and using a conventional twin screw extruder was measured. When the number of pores is less than 1, it is evaluated as non-foaming (○), and when there are more than 2 pores, it was evaluated as foaming (x).
실시예Example
1One 22 33 44 55
(A1) (중량부)(A1) (parts by weight) 100100 100100 100100 100100 100100
(A2) (중량부)(A2) (parts by weight) -- -- -- -- --
(A3) (중량부)(A3) (parts by weight) -- -- -- -- --
(B1) (중량부)(B1) (parts by weight) 55 77 99 77 77
(B2) (중량부)(B2) (parts by weight) -- -- -- -- --
(C) (중량부)(C) (parts by weight) 55 55 55 33 66
(D) (중량부)(D) (parts by weight) 1515 1515 1515 1515 1515
혼합물 D50 (㎛)Mixture D50 (μm) 3.53.5 3.53.5 3.53.5 3.53.5 3.53.5
혼합물 D90 (㎛)Mixture D90 (μm) 77 77 77 77 77
난연도Flame retardancy V-0V-0 V-0V-0 V-0V-0 V-0V-0 V-0V-0
노치 아이조드 충격강도Notched Izod Impact Strength 6.46.4 6.16.1 5.25.2 6.36.3 5.85.8
표면 조도surface roughness 44 66 77 33 55
압출 가공성Extrusion Processability
실시예Example
66 77 88 99 1010 1111
(A1) (중량부)(A1) (parts by weight) 100100 100100 -- -- 100100 100100
(A2) (중량부)(A2) (parts by weight) -- -- 100100 -- -- --
(A3) (중량부)(A3) (parts by weight) -- -- -- 100100 -- --
(B1) (중량부)(B1) (parts by weight) 77 77 77 77 77 77
(B2) (중량부)(B2) (parts by weight) -- -- -- -- -- --
(C) (중량부)(C) (parts by weight) 55 55 55 55 55 55
(D) (중량부)(D) (parts by weight) 1212 1818 1515 1515 1515 1515
혼합물 D50 (㎛)Mixture D50 (μm) 3.53.5 3.53.5 3.53.5 3.53.5 55 3.53.5
혼합물 D90 (㎛)Mixture D90 (μm) 77 77 77 77 77 1010
난연도Flame retardancy V-0V-0 V-0V-0 V-0V-0 V-0V-0 V-0V-0 V-0V-0
노치 아이조드 충격강도Notched Izod Impact Strength 6.56.5 4.54.5 8.38.3 5.55.5 6.36.3 5.95.9
표면 조도surface roughness 55 77 66 66 1010 99
압출 가공성Extrusion Processability
비교예comparative example
1One 22 33 44 55 66 77 88 99
(A1) (중량부)(A1) (parts by weight) 100100 100100 100100 100100 100100 100100 100100 100100 100100
(A2) (중량부)(A2) (parts by weight) -- -- -- -- -- -- -- -- --
(A3) (중량부)(A3) (parts by weight) -- -- -- -- -- -- -- -- --
(B1) (중량부)(B1) (parts by weight) 1One 1515 -- 77 77 77 77 77 77
(B2) (중량부)(B2) (parts by weight) -- -- 77 -- -- -- -- -- --
(C) (중량부)(C) (parts by weight) 55 55 55 0.50.5 1010 55 55 55 55
(D) (중량부)(D) (parts by weight) 1515 1515 1515 1515 1515 55 2525 1515 1515
혼합물 D50 (㎛)Mixture D50 (μm) 44 44 44 44 44 44 44 2020 44
혼합물 D90 (㎛)Mixture D90 (μm) 77 77 77 77 77 77 77 77 4040
난연도Flame retardancy B/OB/O V-0V-0 V-1V-1 B/OB/O -- B/OB/O V-0V-0 V-0V-0 V-0V-0
노치 아이조드 충격강도Notched Izod Impact Strength 6.96.9 2.42.4 6.26.2 6.86.8 -- 7.27.2 2.12.1 5.95.9 6.06.0
표면 조도surface roughness 55 66 77 66 -- 55 99 1818 2424
압출 가공성Extrusion Processability ××
상기 결과로부터, 본 발명의 열가소성 수지 조성물(실시예 1 내지 11)은 난연성, 내충격성, 외관 특성, (압출) 가공성 등이 모두 우수함을 알 수 있다.From the above results, it can be seen that the thermoplastic resin compositions (Examples 1 to 11) of the present invention are excellent in flame retardancy, impact resistance, appearance characteristics, (extrusion) processability, and the like.
반면, 멜라민 폴리포스페이트를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 1), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 멜라민 폴리포스페이트를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 2), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있으며, 멜라민 폴리포스페이트 대신에, 올리고머형 비스페놀-A 디포스페이트 (B2)를 적용할 경우(비교예 3), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있다. 멜라민 포스페이트를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 4), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 멜라민 포스페이트를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 5), 열가소성 수지 조성물의 압출 가공성 등이 저하되고, 기타 물성 측정이 불가함을 알 수 있다. 피페라진 피로포스페이트를 본 발명의 함량 범위 미만으로 적용할 경우(비교예 6), 열가소성 수지 조성물의 난연성 등이 저하됨을 알 수 있고, 피페라진 피로포스페이트를 본 발명의 함량 범위 보다 초과하여 적용할 경우(비교예 7), 열가소성 수지 조성물의 내충격성 등이 저하됨을 알 수 있다. 또한, 혼합물의 평균 입경 D50이 본 발명의 범위를 초과할 경우(비교예 8), 열가소성 수지 조성물의 외관 특성 등이 저하됨을 알 수 있으며, 혼합물의 누적 도수 90%의 입경 D90이 본 발명의 범위를 초과할 경우(비교예 9), 열가소성 수지 조성물의 외관 특성 등이 저하됨을 알 수 있다.On the other hand, when the melamine polyphosphate is applied below the content range of the present invention (Comparative Example 1), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered, and when the melamine polyphosphate is applied in excess of the content range of the present invention (Comparative Example 2), it can be seen that the impact resistance of the thermoplastic resin composition is lowered, and when applying the oligomeric bisphenol-A diphosphate (B2) instead of the melamine polyphosphate (Comparative Example 3), the thermoplastic resin composition It can be seen that the flame retardancy is reduced. When the melamine phosphate is applied below the content range of the present invention (Comparative Example 4), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered, and when the melamine phosphate is applied in excess of the content range of the present invention (Comparative Example 5) ), the extrusion processability of the thermoplastic resin composition is reduced, and it can be seen that the measurement of other physical properties is impossible. When piperazine pyrophosphate is applied below the content range of the present invention (Comparative Example 6), it can be seen that the flame retardancy of the thermoplastic resin composition is lowered, and when piperazine pyrophosphate is applied in excess of the content range of the present invention (Comparative example 7), it turns out that the impact resistance of a thermoplastic resin composition, etc. fall. In addition, when the average particle diameter D50 of the mixture exceeds the range of the present invention (Comparative Example 8), it can be seen that the appearance characteristics of the thermoplastic resin composition are deteriorated, and the particle diameter D90 of the cumulative degree of 90% of the mixture is within the range of the present invention. When it exceeds (Comparative Example 9), it can be seen that the appearance characteristics of the thermoplastic resin composition are deteriorated.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Up to now, the present invention has been looked at mainly with respect to the embodiments. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

Claims (10)

  1. 열가소성 수지 약 100 중량부;about 100 parts by weight of a thermoplastic resin;
    멜라민 폴리포스페이트 약 4 내지 약 10 중량부;about 4 to about 10 parts by weight of melamine polyphosphate;
    멜라민 포스페이트 약 2 내지 약 7 중량부; 및about 2 to about 7 parts by weight of melamine phosphate; and
    피페라진 피로포스페이트 약 10 내지 약 20 중량부;를 포함하며,about 10 to about 20 parts by weight of piperazine pyrophosphate;
    상기 멜라민 폴리포스페이트, 멜라민 포스페이트 및 피페라진 피로포스페이트의 혼합물은 입도 분석 측정법에 의한 평균 입경 D50이 약 6 ㎛ 이하이고, 누적 도수 90%의 입경 D90이 약 11 ㎛ 이하인 것을 특징으로 하는 열가소성 수지 조성물.The mixture of melamine polyphosphate, melamine phosphate and piperazine pyrophosphate has an average particle diameter D50 of about 6 μm or less by particle size analysis, and a particle diameter D90 of 90% of the cumulative frequency of about 11 μm or less.
  2. 제1항에 있어서, 상기 열가소성 수지는 폴리올레핀 수지 및 방향족 비닐계 수지 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin comprises at least one of a polyolefin resin and an aromatic vinyl-based resin.
  3. 제2항에 있어서, 상기 폴리올레핀 수지는 폴리프로필렌, 폴리에틸렌, 프로필렌-에틸렌 공중합체 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.The thermoplastic resin composition according to claim 2, wherein the polyolefin resin comprises at least one of polypropylene, polyethylene, and a propylene-ethylene copolymer.
  4. 제2항에 있어서 상기 방향족 비닐계 수지는 방향족 비닐계 중합체 수지, 방향족 비닐계 공중합체 수지, 고무변성 폴리스티렌 수지 및 고무변성 방향족 비닐계 공중합체 수지 중 1종 이상을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.The thermoplastic resin according to claim 2, wherein the aromatic vinyl-based resin comprises at least one of an aromatic vinyl-based polymer resin, an aromatic vinyl-based copolymer resin, a rubber-modified polystyrene resin, and a rubber-modified aromatic vinyl-based copolymer resin. composition.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 멜라민 폴리포스페이트 및 상기 멜라민 포스페이트의 중량비는 약 1 : 1 내지 약 4 : 1인 것을 특징으로 하는 열가소성 수지 조성물.5. The thermoplastic resin composition of any one of claims 1 to 4, wherein the weight ratio of the melamine polyphosphate and the melamine phosphate is from about 1:1 to about 4:1.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 멜라민 폴리포스페이트 및 상기 피페라진 피로포스페이트의 중량비는 약 0.2 : 1 내지 약 0.8 : 1인 것을 특징으로 하는 열가소성 수지 조성물.6. The thermoplastic resin composition according to any one of claims 1 to 5, wherein the weight ratio of the melamine polyphosphate and the piperazine pyrophosphate is from about 0.2:1 to about 0.8:1.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 UL-94 기준에 따라 측정한 1.5 mm 두께 시편의 난연도가 V-0 이상인 것을 특징으로 하는 열가소성 수지 조성물.The thermoplastic resin composition according to any one of claims 1 to 6, wherein the thermoplastic resin composition has a flame retardancy of 1.5 mm thick specimen measured according to UL-94 standards of V-0 or more.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 1/8" 두께 시편의 노치 아이조드 충격강도가 약 3 내지 약 10 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.The method according to any one of claims 1 to 7, wherein the thermoplastic resin composition has a notch Izod impact strength of about 3 to about 10 kgf·cm/cm of a 1/8″ thick specimen measured according to ASTM D256. Thermoplastic resin composition characterized in that.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 표면 조도 측정기를 사용하여 측정한 시편의 표면 조도(Ra)가 약 2 내지 약 15 ㎛인 것을 특징으로 하는 열가소성 수지 조성물.The thermoplastic resin composition according to any one of claims 1 to 8, wherein the thermoplastic resin composition has a surface roughness (Ra) of about 2 to about 15 µm of a specimen measured using a surface roughness meter.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.A molded article, characterized in that it is formed from the thermoplastic resin composition according to any one of claims 1 to 9.
PCT/KR2021/002578 2020-03-30 2021-03-02 Thermoplastic resin composition and molded article formed therefrom WO2021201444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0037926 2020-03-30
KR1020200037926A KR102435566B1 (en) 2020-03-30 2020-03-30 Thermoplastic resin composition and article produced therefrom

Publications (1)

Publication Number Publication Date
WO2021201444A1 true WO2021201444A1 (en) 2021-10-07

Family

ID=77929306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002578 WO2021201444A1 (en) 2020-03-30 2021-03-02 Thermoplastic resin composition and molded article formed therefrom

Country Status (2)

Country Link
KR (1) KR102435566B1 (en)
WO (1) WO2021201444A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316424A (en) * 2021-11-22 2022-04-12 金发科技股份有限公司 Transparent weather-resistant PP/PS composite material and preparation method thereof
CN115433399A (en) * 2022-10-09 2022-12-06 廊坊北化高分子材料有限公司 Flame-retardant waterproof thermoplastic elastomer material, preparation method thereof and waterproof roll

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286612A (en) * 1997-05-09 1999-10-19 Tokuyama Corp Flame-retardant resin composition
KR101162260B1 (en) * 2004-02-24 2012-07-04 가부시키가이샤 아데카 Flame retardant composition with enhanced fluidity, flame retardant resin composition and molding thereof
KR101407251B1 (en) * 2006-12-20 2014-06-13 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 Halogen-free flame retardant thermoplastic polyurethanes
KR20160045627A (en) * 2013-08-21 2016-04-27 가부시키가이샤 아데카 Flame-retardant composition and flame-retardant synthetic resin composition
CN107286563B (en) * 2017-07-06 2020-01-03 上海化工研究院有限公司 Intumescent flame retardant for ABS electrical switch outer cover and preparation and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286612A (en) * 1997-05-09 1999-10-19 Tokuyama Corp Flame-retardant resin composition
KR101162260B1 (en) * 2004-02-24 2012-07-04 가부시키가이샤 아데카 Flame retardant composition with enhanced fluidity, flame retardant resin composition and molding thereof
KR101407251B1 (en) * 2006-12-20 2014-06-13 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 Halogen-free flame retardant thermoplastic polyurethanes
KR20160045627A (en) * 2013-08-21 2016-04-27 가부시키가이샤 아데카 Flame-retardant composition and flame-retardant synthetic resin composition
CN107286563B (en) * 2017-07-06 2020-01-03 上海化工研究院有限公司 Intumescent flame retardant for ABS electrical switch outer cover and preparation and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316424A (en) * 2021-11-22 2022-04-12 金发科技股份有限公司 Transparent weather-resistant PP/PS composite material and preparation method thereof
CN114316424B (en) * 2021-11-22 2023-08-25 金发科技股份有限公司 Transparent weather-proof PP/PS composite material and preparation method thereof
CN115433399A (en) * 2022-10-09 2022-12-06 廊坊北化高分子材料有限公司 Flame-retardant waterproof thermoplastic elastomer material, preparation method thereof and waterproof roll
CN115433399B (en) * 2022-10-09 2024-01-30 廊坊北化高分子材料有限公司 Flame-retardant waterproof thermoplastic elastomer material, preparation method and waterproof coiled material

Also Published As

Publication number Publication date
KR20210121383A (en) 2021-10-08
KR102435566B1 (en) 2022-08-22

Similar Documents

Publication Publication Date Title
WO2018038573A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2017095060A1 (en) Thermoplastic resin composition and molded product produced therefrom
WO2021201444A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2019031694A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2020067681A1 (en) Thermoplastic resin composition and molded product using same
WO2013085090A1 (en) Thermoplastic resin composition, and molded product using same
WO2020111552A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2019132584A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2019103519A2 (en) Resin composition
WO2017057904A1 (en) Thermoplastic resin composition and molded product comprising same
WO2019132371A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2011052849A1 (en) Thermoplastic resin composition and moldings using same
WO2019132575A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2021020741A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2012091295A1 (en) Rubber-modified vinyl-based graft copolymer, and thermoplastic resin composition including same
WO2022025409A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2020138785A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2021137490A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2022139176A1 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2019132572A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2023038301A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2019124857A2 (en) Thermoplastic resin composition and molded product manufactured therefrom
WO2022124592A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2021085840A1 (en) Thermoplastic resin composition, and molded article therefrom
WO2020004830A1 (en) Thermoplastic resin composition and molded product manufactured therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779287

Country of ref document: EP

Kind code of ref document: A1