WO2021201268A1 - Novel gene expression unit - Google Patents

Novel gene expression unit Download PDF

Info

Publication number
WO2021201268A1
WO2021201268A1 PCT/JP2021/014287 JP2021014287W WO2021201268A1 WO 2021201268 A1 WO2021201268 A1 WO 2021201268A1 JP 2021014287 W JP2021014287 W JP 2021014287W WO 2021201268 A1 WO2021201268 A1 WO 2021201268A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gene
polynucleotide
utr
derived
Prior art date
Application number
PCT/JP2021/014287
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 酒井
真初 西尾
兼治 増田
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2021201268A1 publication Critical patent/WO2021201268A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention uses a mammalian transformed cell in which the expression level of a foreign protein is enhanced by using an expression unit designed by combining a promoter having high transcriptional activity and 5'-UTR having high translational activity, and the present invention.
  • the present invention relates to a method for producing the foreign protein.
  • protein drugs such as therapeutic proteins and antibody drugs are rapidly expanding their markets.
  • antibody drugs do not cause a harmful immune reaction even when administered to the human body, and are being actively developed due to their high specificity.
  • Non-Patent Document 1 When cultured mammalian cells are used as a host, there is a problem of high production cost due to low growth rate and low productivity as compared with microorganisms (Non-Patent Document 1). In addition, due to the recent development of antibody drugs and the large doses, the production capacity of antibody drugs is insufficient worldwide. Improvements are being made to each manufacturing process of protein pharmaceuticals with the aim of improving production capacity, and improvement of the mammalian cultured cell expression system is a promising means for achieving an increase in production volume (Patent Documents 1 to 3). , Non-Patent Documents 2, 3).
  • the promoter is present on the DNA and RNA polymerase transcribes RNA from the transcription start site within the promoter region. The sequence region upstream of the transcription initiation site is mainly involved in the efficiency of transcription, and a promoter with high transcription efficiency has a binding sequence of a plurality of transcription factors in the sequence region (Non-Patent Document 4).
  • mRNA messenger RNA
  • proteins are synthesized by translation.
  • mRNA has not only gene / protein information but also 5'-Untranslated Region (5'-UTR) and 3'-UTR which are untranslated regions that do not contain gene / protein information upstream and downstream thereof.
  • the untranslated region is involved in gene expression, and in particular, 5'-UTR controls translation efficiency (Non-Patent Document 5).
  • the amount of translation and the intracellular stability of mRNA vary depending on the presence or absence of AUG sequence, RNA-binding protein, and microRNA (miRNA) binding / target sequence in 5'-UTR.
  • splicing excludes introns and matures into mRNAs composed exclusively of exons.
  • Introns are present not only in untranslated regions but also in structural gene sequences, but their numbers and positions vary from mRNA to mRNA.
  • the mRNA transcribed in the nucleus is transported to the outside of the nucleus, that is, into the cytoplasm, and translation is initiated. Introns are involved in the export of this mRNA to the nucleus and polyadenylation at the 3'end (Non-Patent Document 6).
  • a hybrid promoter consisting of a virus-derived enhancer and TATA-box, a mammalian-derived intron (Patent Document 4), and a heat that improves the productivity of foreign proteins.
  • a promoter of a shock protein A5 (Hspa5 / GRP78) gene Patent Document 5
  • a foreign intron into or downstream of a structural gene
  • An object of the present invention is to design an expression unit that combines a promoter region with high transcriptional activity, 5'-UTR, and intron having high translational activity in a host cell such as cultured mammalian cells, and use this to design a protein drug. It is an object of the present invention to provide a means for increasing the production amount of a foreign protein. By combining the promoter region with a 5'-UTR, or by substituting a different intron for the intron in the combined 5'-UTR, the introns in the CHO cells and the like are equal to or higher than those in which only the promoter region is used.
  • the present inventors have different expression units consisting of polynucleotides in which a 5'-UTR is combined with a promoter region having transcriptional activity, or further, introns in the expression unit are different.
  • the present invention includes the following inventions. (1) A polynucleotide in which 5'-UTR contained in the same or different gene as the gene containing the promoter region is linked downstream of the promoter region.
  • (21) The transformed cell according to (20) above, wherein the cell is a cultured cell derived from a mammal.
  • (22) The transformed cell according to (21) above, wherein the cultured mammalian-derived cell is a COS-1 cell, a HEK293 cell, or a CHO cell.
  • a method for producing a protein which comprises culturing the transformed cell according to any one of (20) to (22) above and obtaining a protein derived from a foreign gene from the culture.
  • (24) Use of the polynucleotide according to any one of (1) and (13) above, for the purpose of expressing a foreign gene in transformed cells.
  • (25) Use of the foreign gene expression vector according to (19) above, for the purpose of expressing a foreign gene in transformed cells.
  • the expression unit of the present invention can significantly enhance the expression of foreign genes such as therapeutic proteins and antibodies by being incorporated into a foreign gene expression vector together with a gene and introduced into a mammalian host cell.
  • FIG. 4A shows the number of viable cells on each sampling day.
  • FIG. 4B shows the production volume on each sampling day.
  • the amount of antibody produced by the expression unit containing the mouse-derived Ubc promoter region is expressed by the promoter region of the human EF1 ⁇ gene and the 5'-UTR.
  • FIG. 5A shows the number of viable cells on each sampling day.
  • FIG. 5B shows the production volume on each sampling day.
  • Transient expression was performed using an expression unit consisting of a nucleotide sequence of about 3.0 kbp upstream from the start codon of mouse-derived Ubc and a promoter region of a nucleotide sequence of about 2.1 kbp upstream from the start codon and 5'-UTR.
  • the amount of antibody produced by the expression unit containing the Hspa5 promoter region and the 5'-UTR of Hspa8 was measured by the promoter region of the human EF1 ⁇ gene and the 5'-UTR.
  • the figure which compared with the expression unit composed of. The nucleotide length after the transcription start point is described in parentheses.
  • FIG. 7A shows the number of viable cells on each sampling day.
  • the amount of antibody produced by the expression unit containing the Hspa5 promoter region and the 5'-UTR of Hspa8 was measured by the promoter region of the human EF1 ⁇ gene and the 5'-UTR.
  • FIG. 7B shows the production volume on each sampling day.
  • a stable pool prepared using a humanized antibody Y expression vector containing or not containing DNA element A7 using an expression unit containing the mUbc promoter region and 5'-UTR as a promoter for antibody H chain and L chain genes.
  • FIG. 8A shows the number of viable cells on each sampling day.
  • a stable pool prepared using a humanized antibody Y expression vector containing or not containing DNA element A7 using an expression unit containing the mUbc promoter region and 5'-UTR as a promoter for antibody H chain and L chain genes.
  • FIG. 8B shows the production volume on each sampling day.
  • promoter region means a sequence having transcriptional activity in the sequence upstream of the transcription initiation site. Also referred to herein as a “promoter.”
  • 5'-UTR is an upstream sequence of the start codon of a gene present in transcribed mRNA, and means an untranslated region that does not contain gene / protein information.
  • upstream refers to the 5'terminal side of a gene, sequence region, or base
  • downstream refers to the 3'terminal side of a gene, sequence region, or base
  • an "intron” is a non-coding portion that is excised or removed when mature messenger RNA (mRNA) is produced from DNA by splicing in gene expression, and the DNA is combined with the coding portion (exon). Means the constituent array. Introns are also included in the 5'-UTR.
  • mRNA messenger RNA
  • the term "gene” means a portion that is transcribed into mRNA and translated into protein, and includes not only DNA but also its mRNA, cDNA and its RNA.
  • polynucleotide is used in the same meaning as nucleic acid, and includes DNA, RNA, probe, oligonucleotide, and primer.
  • SEQ ID NO: ⁇ is ⁇
  • [a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: ⁇ ] is abbreviated as [the polynucleotide described in SEQ ID NO: ⁇ ].
  • polypeptide and “protein” are used without distinction.
  • gene expression means a phenomenon in which a certain gene is transcribed into mRNA and a protein is translated from the mRNA.
  • the "foreign gene” means a gene artificially introduced into a host cell.
  • foreign protein means a protein encoded by a foreign gene.
  • gene expression cassette means a polynucleotide having at least a promoter region, a foreign gene, and a transcription terminator region (poly A addition signal) in the direction of the transcription reading frame.
  • transcriptional activity refers to the activity of initiating transcription from DNA by RNA polymerase and synthesizing mRNA.
  • transcriptional activity refers to the activity of synthesizing a protein from transcribed mRNA.
  • DNA element means a polynucleotide having a foreign gene expression-enhancing activity when placed in the vicinity of a gene expression cassette or on a foreign gene expression vector contained in the gene expression cassette. ..
  • the "antigen-binding fragment of an antibody” means a partial fragment of an antibody having an antigen-binding activity, including Fab, F (ab') 2, etc., but with an antigen. It is not limited to these molecules as long as it has a binding ability.
  • identity refers to the relationship between sequences of two or more nucleotide sequences or amino acid sequences, as is known in the art, determined by comparison of sequences. In the art, “identity” is also a sequence between nucleic acid molecules or polypeptides, as determined by matching between two or more nucleotide sequences in a row or between two or more amino acid sequences, as the case may be. Means the degree of relevance. “Identity” is the same match between the smaller of two or more arrays and the gap alignment (if any) addressed by a particular mathematical model or computer program (ie, "algorithm”). It can be evaluated by calculating the percentage of. Specifically, it can be evaluated by using software such as ClinicalW2 provided by European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), but it is limited to those used by those skilled in the art. Not done.
  • EBL-EBI European Molecular Biology Laboratory-European Bioinformatics Institute
  • hybridize under stringent conditions means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • a complementary strand of a nucleic acid consisting of a nucleotide sequence having an identity of 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more with respect to a certain nucleic acid hybridizes, and the identity is lower than that.
  • the condition that the complementary strand of the nucleic acid consisting of the nucleotide sequence does not hybridize can be mentioned.
  • the expression unit of the present invention is a polynucleotide in which a 5'-UTR is linked downstream of a promoter region, which is a sequence region essential for transcription and exists upstream of a gene. be.
  • the 5'-UTR may be a 5'-UTR existing upstream of the gene containing the promoter region, or may be a 5'-UTR existing upstream of a gene different from the gene containing the promoter region.
  • FIG. 1 shows an outline of an expression unit in which a 5'-UTR existing upstream of a gene different from the gene containing the promoter region is linked downstream of the promoter region.
  • the 5'-UTR contains an intron
  • the intron may be replaced with an intron contained in the 5'-UTR in a gene different from the gene containing the 5'-UTR.
  • FIG. 2 shows an outline of an expression unit in which the intron contained in the expression unit is replaced with the intron contained in 5'-UTR in a gene different from the gene containing the 5'-UTR.
  • the promoter region contained in the expression unit of the present invention is a sequence region having transcriptional activity in the sequence upstream from the transcription initiation site.
  • the transcription start site, or the 5'end of the 5'-UTR is a sequence published on a database such as NCBI, or a sequence position identified by an experimental method such as the 5'-RACE method.
  • the origin of the promoter region contained in the expression unit of the present invention is not particularly limited, but is preferably derived from cultured mammalian cells, and examples of the mammal include Chinese hamsters, humans, mice, rats, and the like. ..
  • the promoter region contained in the expression unit of the present invention include a promoter region contained in the Hspa5 gene derived from Chinese hamster and a promoter region contained in the Ubc gene derived from mouse. More preferably, the promoter region of the Hspa5 gene derived from the Chinese hamster consisting of the polynucleotide shown in SEQ ID NO: 1 in the sequence listing and the promoter region of the Ubc gene derived from the mouse consisting of the polynucleotides shown in SEQ ID NOs: 2 and 3 can be mentioned.
  • the nucleotide sequence of SEQ ID NO: 1 is a sequence consisting of a nucleotide at the transcription start site from a nucleotide of about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Hspa5 gene.
  • the nucleotide sequence of SEQ ID NO: 2 is a sequence consisting of nucleotides at the transcription start site from nucleotides about 3.0 kbp upstream of the start codon of the mouse-derived Ubc gene.
  • the promoter region of the mouse-derived Ubc gene may be a nucleotide sequence consisting of a partial sequence of the sequence shown in SEQ ID NO: 2, and the transcription initiation site is located at a nucleotide of about 2.1 kbp upstream of the start codon of the mouse-derived Ubc gene.
  • the polynucleotide set forth in SEQ ID NO: 3 consisting of nucleotides is preferred.
  • the nucleotide sequence of SEQ ID NO: 4 is a sequence consisting of 32 nucleotides downstream from the transcription start site of about 0.2 kbp upstream of the start codon of the Chinese hamster-derived Hspa5 gene.
  • the nucleotide sequence of SEQ ID NO: 5 is a polynucleotide consisting of a nucleotide sequence in which the nucleotide sequence of SEQ ID NO: 4 is linked to the 3'side of the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 4 may be contained in the promoter region in its entire length, or may be contained in a partially deleted state.
  • the origin of the 5'-UTR contained in the expression unit of the present invention is not particularly limited, but it is preferably derived from cultured mammalian cells, and examples of the mammal include Chinese hamsters, humans, mice, rats and the like. Can be mentioned.
  • the 5'-UTR derived from Chinese hamster as the 5'-UTR of the Hspa8 gene, Actb gene, Rpsa gene, and EF1 ⁇ gene is 5'-UTR of the Ubc gene.
  • UTRs include 5'-UTRs derived from Chinese hamsters and mice. More preferably, it is a 5'-UTR consisting of the polynucleotides set forth in SEQ ID NOs: 6-11.
  • the nucleotide sequence of SEQ ID NO: 6 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Hspa8 gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • the polynucleotide set forth in SEQ ID NO: 12 is an intron contained in the 5'-UTR composed of the polynucleotide set forth in SEQ ID NO: 6.
  • the nucleotide sequence of SEQ ID NO: 7 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.0 kbp upstream of the start codon of the Chinese hamster-derived Actb gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • SEQ ID NO: 13 is included in the 5'-UTR consisting of the polynucleotide shown in SEQ ID NO: 7, but is an intron.
  • the nucleotide sequence of SEQ ID NO: 8 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Rpsa gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • SEQ ID NO: 14 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 8.
  • the nucleotide sequence of SEQ ID NO: 9 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.7 kbp upstream of the start codon of Chinese hamster-derived Ubc and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • SEQ ID NO: 15 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 9.
  • the nucleotide sequence of SEQ ID NO: 10 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.0 kbp upstream of the start codon of the Chinese hamster-derived EF1 ⁇ gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • SEQ ID NO: 16 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 10.
  • the nucleotide sequence of SEQ ID NO: 11 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.5 kbp upstream of the start codon of the mouse-derived Ubc gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon.
  • SEQ ID NO: 17 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 11.
  • the intron contained in the expression unit of the present invention is a sequence published on a database such as NCBI or a sequence identified by an experimental method such as sequence analysis, and is a 5'-UTR in the expression unit of the present invention. Included in.
  • an intron in 5'-UTR contained in the expression unit of the present invention can be mentioned, and more preferably, the polynucleotide described in SEQ ID NOs: 12 to 17 described above can be mentioned.
  • the expression unit of the present invention is preferably 5'-UTR according to any one of SEQ ID NOs: 6 to 11 downstream of the promoter region set forth in any one of SEQ ID NOs: 1, 2, 3 and 5. It is a polynucleotide in which the above is linked.
  • the 5'-UTR includes an intron.
  • the intron may be replaced with an intron contained in a gene different from the gene containing the 5'-UTR.
  • the intron consisting of the polynucleotides set forth in SEQ ID NOs: 12 to 17 contained in each of the 5'-UTRs consisting of the polynucleotides set forth in SEQ ID NOs: 6 to 11 is different from the other introns set forth in SEQ ID NOs: 12 to 17. It may be replaced.
  • Preferred specific examples of the expression unit of the present invention include expression units composed of the polynucleotides set forth in SEQ ID NOs: 18 to 35 and 45 to 48.
  • more preferable specific examples include expression units consisting of the polynucleotides set forth in SEQ ID NOs: 18, 24-29, and 45-48.
  • the nucleotide sequences of SEQ ID NOs: 18 to 23 are downstream of the nucleotide sequence in which the 32 nucleotides of SEQ ID NO: 4 are linked to the promoter region of the Chinese hamster-derived Hspa5 gene consisting of the polynucleotides of SEQ ID NO: 1. It is a polynucleotide in which the 5'-UTR of the Hspa8 gene of origin, the Actb gene, the Rpsa gene, the Ubc gene, the EF1 ⁇ gene, or the Ubc gene of mouse origin is linked, respectively.
  • the nucleotide sequences of SEQ ID NOs: 24-29 are downstream of the promoter region of the mouse-derived Ubc gene consisting of the polynucleotide shown in SEQ ID NO: 2, the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1 ⁇ gene, or , 5'-UTR of the mouse-derived Ubc gene, respectively.
  • the nucleotide sequences of SEQ ID NOs: 30 to 35 are downstream of the promoter region of the mouse-derived Ubc gene consisting of the polynucleotide shown in SEQ ID NO: 3, the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1 ⁇ gene, or , 5'-UTR of the mouse-derived Ubc gene, respectively.
  • the nucleotide sequence of SEQ ID NO: 36 is a sequence from 33 nucleotides downstream to 48 nucleotides downstream of the transcription initiation site at about 0.2 kbp upstream of the start codon of Chinese hamster-derived Hspa5.
  • the sequence is a sequence that contributes to the maintenance or improvement of transcriptional activity or translational activity, and can be added to the nucleotide sequence of SEQ ID NO: 5.
  • the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1 ⁇ gene, or mouse-derived Ubc gene 5'-UTR are linked downstream of this, the polynucleotides shown in SEQ ID NOs: 18 to 23 are used. Has similar transcriptional or translational activity.
  • the 3'end of the promoter region used for the expression unit and the 5'end of the 5'-UTR are preferably the nucleotides immediately before the transcription initiation site or the nucleotide corresponding to the transcription initiation site. Nucleotides can be added to the promoter region and to the ends of the 5'-UTR if the transcriptional or translational activity can be maintained or improved in the.
  • the nucleotide sequence to be added is a nucleotide sequence upstream or downstream of the transcription initiation site, and the chain length and region can be selected and identified by evaluating the transcriptional activity and translational activity of the expression unit by an experimental method. ..
  • the nucleotide sequences of SEQ ID NOs: 45 to 47 are 5'-UTRs in the polynucleotide in which the 5'-UTR of mouse-derived Ubc is linked downstream of the mouse-derived Ubc gene promoter region consisting of the polynucleotide of SEQ ID NO: 29. It is a polynucleotide sequence in which the intron contained therein is replaced with the intron contained in the 5'-UTR of the Hspa8, Actb, and Rpsa genes derived from Chinese hamster, respectively.
  • the nucleotide sequence of SEQ ID NO: 48 is a Chinese hamster-derived Hspa8 containing the sequence after the 31st base of the polynucleotide sequence of SEQ ID NO: 6 downstream of the mouse-derived Ubc gene promoter region consisting of the polynucleotide shown in SEQ ID NO: 3. It is a polynucleotide in which the gene 5'-UTR is linked.
  • the combination of the promoter region and 5'-UTR used for each expression unit of the present invention is referred to as "gene name from which the promoter region is derived-5'-the gene name from which the UTR is derived".
  • the expression unit of the present invention sequences the nucleotide sequence corresponding to the intron in any one of the nucleotide sequences set forth in SEQ ID NOs: 18 to 35 and 45 to 48, or the nucleotide sequence set forth in SEQ ID NOs: 18 to 35. 80% or more, preferably 90% or more, more preferably 95% or more, particularly more than 80%, preferably 90% or more, particularly preferably 95% or more, with respect to the nucleotide sequence corresponding to any one of the other introns described in Nos.
  • Such an expression unit of the present invention has transcriptional activity and translational activity.
  • nucleotide sequence corresponding to the intron is represented by SEQ ID NOs: 12 to 17.
  • the combination of the promoter region used for each expression unit and the substituted intron is referred to as "gene name from which the promoter region is derived-gene name from which the intron is derived”.
  • gene name from which the promoter region is derived-gene name from which the intron is derived is referred to as "gene name from which the promoter region is derived-gene name from which the intron is derived”.
  • SEQ ID NO: 29 the nucleotide sequences in which the nucleotide sequence corresponding to the intron is replaced with the nucleotide corresponding to any one of the other introns set forth in SEQ ID NOs: 12 to 17 are shown in SEQ ID NOs: 45 to 47.
  • Such an expression unit of the present invention has transcriptional activity and translational activity.
  • the nucleotide sequence corresponding to the intron is set forth in any one of SEQ ID NOs: 12 to 17.
  • One or more, preferably 1 to 300, more preferably 1 to 30 nucleotides in any one nucleotide sequence selected from the group consisting of the nucleotide sequence corresponding to one other intron and the recombinant nucleotide sequence. May be a mutant polynucleotide consisting of a nucleotide sequence that is deleted, substituted, and / or added.
  • Such an expression unit of the present invention has transcriptional activity and translational activity.
  • the introduction of the nucleotide sequence mutation can be carried out by a method known in the art such as the Kunkel method or the Gapped duplex method, or a method similar thereto, for example, site-specific.
  • Mutagenesis kits for example, Mutant-K (manufactured by Takara Bio Co., Ltd.) or Mutant-G (manufactured by Takara Bio Co., Ltd.), LA PCR in vivo Mutagenesis series kit manufactured by Takara Bio Co., Ltd., etc. can be used.
  • Such mutant polynucleotides can also be used as promoters of the present invention.
  • the foreign gene expression-enhancing activity of the expression unit of the present invention can be tested using the activity of a protein encoded by a reporter gene such as firefly luciferase or the amount of antibody produced in fed-batch culture as an index. Comparing the case where the expression unit consisting of the promoter region derived from human EF1 ⁇ (hEF1 ⁇ ) and 5'-UTR is used and the case where the expression unit of the present invention is used, the amount of antibody produced in fed-batch culture is preferably equal to or higher than that. When is increased 1.2 times or more, more preferably 1.5 times or more, it can be determined that the expression unit has a foreign gene expression enhancing activity.
  • the increase is about 1.2 times or more, it is expected that the cell culture scale can be reduced, the culture time, and the purification process can be shortened, and as a result, the yield can be improved and the culture cost can be reduced. If the yield is improved, it becomes possible to stably supply foreign proteins as pharmaceuticals. Moreover, if the culture cost is reduced, the cost of the foreign protein as a medicine is reduced.
  • the foreign gene expression cassette of the present invention (hereinafter, also referred to as “gene expression cassette of the present invention”) is at least 1. It has the expression unit of the present invention described in the above, a foreign gene, and a transcription terminator region (poly A addition signal).
  • poly A addition sequence may be a sequence having an activity of causing transcription termination with respect to transcription from the promoter region, and may be the same as or different from the gene from which the promoter region or 5'-UTR is derived. May be good.
  • DNA element 2 By using the expression cassette of the present invention described in the above in combination with a DNA element, the expression of a foreign gene can be further enhanced.
  • the DNA element used in combination can be obtained by using the interaction with acetylated histone H3 as an index. It is generally said that acetylation of histones (H3, H4) is involved in transcriptional activation, and two main theories are considered. The theory is related to the nucleosome conformational change that the histone tail is acetylated to neutralize the charge and loosen the bond between DNA and histone (Mellor J. (2006) Dynamic nucleosomes and gene transition. Trends). In Genet.
  • Examples of the DNA element used for enhancing the expression of a foreign gene, which is used in combination with the expression unit of the present invention, include A2, A7, and A18.
  • A2 is located on human chromosome 15 80966429-80974878 and is a polynucleotide having an AT content of 62.2% and 8450 bp.
  • the nucleotide sequence of A2 is set forth in SEQ ID NO: 42 of the Sequence Listing.
  • A7 is located on human chromosome 11 88992123 to 8900542, and is a polynucleotide having an AT content of 64.52% and 8420 bp.
  • the nucleotide sequence of A7 is set forth in SEQ ID NO: 43 of the Sequence Listing.
  • A18 is a polynucleotide located on human chromosome 4 1112757976 to 1112844450, having an AT content of 62.54% and 8475 bp.
  • the nucleotide sequence of A18 is set forth in SEQ ID NO: 44 of the Sequence Listing.
  • the foreign gene expression-enhancing activity of a DNA element used in combination with the expression unit of the present invention can be tested using the activity of a protein encoded by a reporter gene such as SEAP as an index.
  • any one of the above DNA elements may be used alone, or two or more copies of one of the DNA elements may be used. Alternatively, two or more types of DNA elements may be used in combination.
  • the DNA element used in the present invention has 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more identity with respect to the nucleotide sequences shown in SEQ ID NOs: 42 to 44. It may be a nucleotide sequence consisting of a nucleotide sequence and having a foreign gene expression-enhancing activity.
  • the homology search of the nucleotide sequence can be performed, for example, by using a program such as FASTA or BLAST for the DNA Data Bank of Japan (DNA Databank of JAPAN) or the like.
  • the introduction of a mutation (deletion, substitution, and / or addition) of the polynucleotide can be carried out by a method known in the art such as the Kunkel method or the Gapped duplex method, or a method similar thereto, for example, site-specific.
  • Mutagenesis kits for example, Mutant-K (manufactured by Takara Bio Co., Ltd.) or Mutant-G (manufactured by Takara Bio Co., Ltd.), LA PCR in vivo Mutagenesis series kit manufactured by Takara Bio Co., Ltd., etc. can be used.
  • Such mutant polynucleotides can also be used as the DNA element of the present invention.
  • a polynucleotide containing a foreign gene encoding a foreign protein to be enhanced in production can be obtained by the following general method.
  • a cDNA library derived from a cell or tissue expressing a foreign gene can be isolated by screening using a DNA probe synthesized based on the gene fragment.
  • the mRNA can be prepared by a method commonly used in the art.
  • the cells or tissues are treated with a guanidinin reagent, a phenol reagent, or the like to obtain total RNA, and then an affinity column method using an oligo (dT) cellulose column or poly U-sepharose using Sepharose 2B as a carrier is used.
  • an affinity column method using an oligo (dT) cellulose column or poly U-sepharose using Sepharose 2B as a carrier is used.
  • poly (A) + RNA may be further fractionated by a sucrose density gradient centrifugation method or the like.
  • a single-stranded cDNA was synthesized using an oligo dT primer and a reverse transcriptase, and the single-stranded cDNA was double-stranded using DNA synthase I, DNA ligase, RNase H, or the like.
  • a cDNA library is prepared by smoothing the synthesized double-stranded cDNA with a T4 DNA synthase, ligating an adapter (for example, an EcoRI adapter), phosphorylating, etc., incorporating it into a ⁇ phage such as ⁇ gt11, and packaging it in vivo. Make.
  • a cDNA library can also be prepared using a plasmid vector. Then, a strain having the desired DNA (positive clone) may be selected from the cDNA library.
  • genomic DNA is extracted from the cell line of the organism to be collected, and polynucleotides are selected.
  • Genomic DNA can be extracted, for example, by the method of Cryer et al. (Methods in Cell Biology, 12, 39-44 (1975)) and P. et al. It can be carried out according to the method of Philippesen et al. (Methods Enzymol., 194, 169-182 (1991)).
  • the acquisition of the polynucleotide containing the target promoter region, 5'-UTR, intron, DNA element or foreign gene can also be performed by, for example, the PCR method (PCR Technology. Henry A. Erlich, Attackton press (1989)).
  • PCR method PCR Technology. Henry A. Erlich, Attackton press (1989)
  • 20 to 30 mer synthetic single-stranded DNA is used as a primer
  • genomic DNA is used as a template.
  • the amplified gene is used after confirming the polynucleotide sequence.
  • a genomic DNA library such as a bacterial artificial chromosome (BAC) can be used.
  • a gene library is prepared by a conventional method, (b) a desired polynucleotide is selected from the prepared gene library, and the polynucleotide is selected. It can be done by amplifying.
  • chromosomal DNA obtained by a conventional method from the cell line of the organism to be collected is partially digested and fragmented with an appropriate restriction enzyme, and the obtained fragment is ligated to an appropriate vector, and the vector is appropriately used. It can be prepared by introducing it into a suitable host.
  • It can also be prepared by extracting mRNA from cells, synthesizing cDNA from this, ligating it to an appropriate vector, and introducing the vector into an appropriate host.
  • a vector used at this time a plasmid known as a commonly known vector for preparing a gene library can be used, and a phage vector, cosmid, or the like can also be widely used.
  • a host for transformation or transduction a host corresponding to the type of the vector may be used.
  • a polynucleotide containing a foreign gene is selected from the gene library by a colony hybridization method, a plaque hybridization method, or the like using a labeled probe containing a sequence peculiar to the foreign gene.
  • a method of preparing two pairs of complementary oligonucleotides and annealing them a method of linking several annealed DNAs with DNA ligase, or a method of preparing several partially complementary oligonucleotides and performing PCR.
  • Genes can be synthesized by a method of filling the gap or the like.
  • the polynucleotide sequence can be determined by a usual method, for example, the dideoxy method (Sanger et al., Proc. Natl. Acad. Sci., USA, 74, 5463-5467 (1977)) or the like. Further, the polynucleotide sequence can be easily determined by using a commercially available sequence kit or the like.
  • the foreign gene expression vector of the present invention includes the above 1. 2. The expression unit according to the above 2. A vector containing the foreign gene expression cassette described in the above is provided.
  • the foreign gene expression vector of the present invention is described in 3. above.
  • One of the DNA elements described in the above, one type of DNA element may include two or more copies, and a combination of two or more types of DNA elements.
  • the DNA element When the foreign gene is expressed in the host cell by the foreign gene expression vector, the DNA element may be placed immediately before or after the gene expression cassette, or may be placed at a position away from the gene expression cassette. good.
  • the orientation of the DNA element may be either forward or reverse with respect to the gene expression cassette.
  • the foreign gene is not particularly limited, but is useful for pharmaceutical purposes, such as secretory alkaline phosphatase (SEAP), green fluorescent protein (GFP), reporter genes such as luciferase, various enzyme genes such as ⁇ -amylase gene and ⁇ -galactosidase gene.
  • Various interferon genes such as interferon ⁇ and interferon ⁇ , various interleukin genes such as IL1 and IL2, various cytokine genes such as erythropoetin (EPO) gene and granulocyte colony stimulating factor (G-CSF) gene, which are physiologically active proteins. Examples thereof include a growth factor gene or a gene encoding a multimeric protein, for example, a gene encoding an antibody or a heteromultimer which is an antigen-binding fragment thereof. These genes may be obtained by any method.
  • the "antigen-binding fragment of an antibody” means a partial fragment of an antibody having an antigen-binding activity, and is a Fab, F (ab') 2, Fv, scFv, diabody, linear antibody, and antibody fragment. Includes more specific multispecific antibodies and the like.
  • Fab' which is a monovalent fragment of the variable region of the antibody obtained by treating F (ab') 2 under reducing conditions, is also included in the antigen-binding fragment of the antibody.
  • these antigen-binding fragments include not only those obtained by treating the full-length molecule of an antibody protein with an appropriate enzyme, but also proteins produced in an appropriate host cell using a genetically modified antibody gene. included.
  • the foreign gene expression vector of the present invention can include a selection marker for selecting a transformant.
  • a selection marker for selecting a transformant for example, by using a drug resistance marker that imparts resistance to drugs such as cerulenin, aureobasidin, zeocin, canavanin, cycloheximide, hygromycin, puromycin, blastocidin, tetracycline, kanamycin, ampicillin, neomycin, etc. It is possible to select transformants. Further, it is also possible to select a transformant by using a gene that imparts solvent resistance to ethanol or the like, osmotic pressure resistance to glycerol, salts or the like, metal ion resistance to copper or the like as a marker.
  • the foreign gene expression vector of the present invention may be a vector that is not incorporated into chromosomal DNA.
  • a foreign gene expression vector is randomly integrated into a chromosome after being introduced into a host cell, but is a component derived from a mammalian virus such as simian virus 40 (SV40), papilomavirus (BPV, HPV), and EBV.
  • SV40 simian virus 40
  • BPV papilomavirus
  • EBV papilomavirus
  • a vector having a sequence encoding an SV40-derived replication origin and a trans-acting factor SV40 large T antigen a vector having a sequence encoding EBV-derived oriP and EBNA-1, and the like are widely used.
  • the effect of the DNA element can show the activity of enhancing the expression of foreign genes regardless of the type of vector or the presence or absence of integration into the chromosome.
  • Transformed cells The transformed cells of the present invention are described in 5. above. It is a transformed cell introduced by using the foreign gene expression vector of.
  • the host cell to be transformed is a eukaryotic cell, preferably a mammalian cell, more preferably a human, mouse, rat, hamster, monkey, or bovine-derived cell.
  • mammalian cells include, but are not limited to, COS-1 cells, HEK293 cells, CHO cells (CHO-K1, DG44, CHO dhfr-, CHO-S) and the like.
  • the method for introducing an expression vector into a host cell may be any method as long as the transgene is stably present in the host and can be appropriately expressed, and is generally used.
  • Methods such as, for example, calcium phosphate method (Ito et al., (1984) Vector Biol. Chem., 48, 341), electroporation method (Becker, DM et al. (1990) Methods. Enzymol., 194,182-187), spheroplast method (Cregch et al., Mol. Cell. Biol., 5,3376 (1985)), lithium acetate method (Itoh, H. (1983) J. Vector. 153, 163). -168), the lipofection method and the like can be mentioned.
  • the method for producing a foreign protein of the present invention is described in 6.
  • the transformed cells described in the above item can be cultured by a known method, collected from the culture, and purified.
  • the “culture” means not only a culture supernatant but also a cultured cell or a crushed cell product.
  • As the foreign protein that can be produced using the transformed cells described in the above item not only a monomeric protein but also a multimeric protein can be selected.
  • a plurality of genes encoding these subunits should be used for each of the genes. It is necessary to introduce into the host cell described in the item of.
  • the method for culturing transformed cells can be carried out according to the usual method used for culturing the host cells.
  • the transformed cells are mammalian cells, they are cultured under the conditions of, for example, 37 ° C., 5% or 8% CO 2 , and the culture time is about 24 to 1000 hours.
  • the culture is allowed to stand, shake, stir, and aerate. It can be carried out by the lower batch culture, fed-batch culture, perfusion culture, continuous culture and the like.
  • Confirmation of the expression product of the foreign protein gene from the above culture (culture solution) can be performed by SDS-PAGE, Western blot analysis, ELISA or the like.
  • An antibody protein can be mentioned as a heteromultimeric protein produced by using the production method described in the above item.
  • the antibody protein is a tetrameric protein consisting of two molecules of heavy chain polypeptide and two molecules of light chain polypeptide. Therefore, in order to obtain the antibody protein in a form that maintains the antigen-binding ability, the above 6.
  • both heavy chain and light chain genes need to be introduced.
  • the heavy and light chain gene expression cassettes may be present on the same expression vector or on different expression vectors.
  • Examples of the antibody produced in the present invention include an antibody produced by immunizing an experimental animal such as a rabbit, mouse, or rat with a desired antigen. Further, a chimeric antibody using the above antibody as a raw material and a humanized antibody can also be mentioned as the antibody produced in the present invention. Furthermore, the human antibody obtained by the genetically modified animal or the phage display method is also an antibody produced in the present invention.
  • a specific polynucleotide is used as long as the combination of the heavy chain polypeptide and the light chain polypeptide transcribed and translated from the antibody gene retains the activity of binding to an arbitrary antigen protein. It is not limited to the antibody gene having the sequence.
  • the antibody gene it is not always necessary to encode the full-length molecule of the antibody, and a gene encoding an antigen-binding fragment of the antibody can be used.
  • the gene encoding these antigen-binding fragments can be obtained by genetically engineering the gene encoding the full-length molecule of the antibody protein.
  • foreign protein production methods examples include various proteins derived from humans or non-human animals, antigen-binding fragments thereof, variants thereof, and the like, in addition to the above-mentioned antibodies. Can be done. Examples of such proteins include atrial natriuretic peptide (ANP), cerebral natriuretic peptide (BNP), C-type natriuretic peptide (CNP), vasopressin, somatostatin, growth hormone (GH), insulin, oxytocin, grelin, etc.
  • ADP atrial natriuretic peptide
  • BNP cerebral natriuretic peptide
  • CNP C-type natriuretic peptide
  • vasopressin vasopressin
  • somatostatin growth hormone
  • GH growth hormone
  • insulin oxytocin
  • grelin etc.
  • Peptide hormones such as leptin, adiponectin, renin, calcitonin, osteoprotegerin, insulin-like growth factor (IGF), interleukin, chemokine, interferon, tumor necrosis factor (TNF ⁇ / ⁇ and other TNF superfamily), nerve growth factor (NGF) ), Cell growth factors (EGF, FGF, PDGF, HGF, TGF, etc.), hematopoietic factors (CSF, G-CSF, erythropoetin, etc.), cytokines such as adipokine, receptors such as ⁇ NF receptor, lysoteam, protease, proteinase, Examples include, but are limited to, enzymes such as peptidases, functional fragments thereof (fragments that retain some or all of the biological activity of the original protein), fusion proteins that include those proteins, and the like. It's not something.
  • the plasmids, restriction enzymes, DNA modifying enzymes and the like used in the examples of the present invention are commercially available and can be used according to a conventional method. Also well known to those skilled in the art are operations used for cloning DNA, determining nucleotide sequences, transforming host cells, culturing transformed cells, collecting proteins from the resulting cultures, purifying, etc. It is something that can be known from the literature.
  • PCR amplification was performed using the primer set shown in Table 1 and PrimeSTAR Max DNA Polymerase (Takara Bio) or KOD FX Neo (Toyobo), and purification was performed with QIAquick PCR Purification kit (QIAGEN) to obtain the desired nucleotide sequence.
  • the polynucleotide shown in SEQ ID NO: 39 was PCR-amplified to obtain a polynucleotide that is the 5'-UTR of the Hspa8 gene.
  • the polynucleotide set forth in SEQ ID NO: 29 was used as an expression unit to obtain a promoter region of a mouse-derived Ubc gene and a polynucleotide having a 5'-UTR sequence.
  • Example 2 Evaluation by feeding culture of an expression unit using the antibody expression level as an index (2-1) Construction of antibody expression vector
  • the humanized antibody gene Y expression described in Patent Document 5 is used for construction of the antibody expression vector.
  • the vector pDSLH3.1-Hspa5-Y was used.
  • An antibody expression vector was constructed by substituting the region of the nucleotide sequence corresponding to Hspa5 in pDSLH3.1-Hspa5-Y with the nucleotide sequence set forth in SEQ ID NOs: 18-22, 24-26, 29.
  • a schematic diagram of the vector is shown in FIG.
  • pDSLH3.1-Hspa5-Y and pDSLH3.1-hEF1 ⁇ -Y those described in Patent Document 5 were used.
  • (2-2) Preparation of humanized antibody Y expression stable pool CHO-K1 cells (ATCC) are acclimated so that they can be cultured in a suspended state using a serum-free medium, and host cell CHO-O1 cells are prepared. Obtained.
  • the antibody expression vector constructed in (2-1) was introduced into CHO-O1 cells using a gene transfer device Neon Transfection System (manufactured by Thermo Fisher Scientific), and 5% CO was introduced in a T-25 flask. 2 , 37 ° C. was cultured.
  • FIGS. 4A and 4B Changes in the number of viable cells and antibody production in the stable pool are shown in FIGS. 4A and 4B, respectively.
  • the amount of antibody produced by each expression unit on the 14th day of culture was 2.2 times higher for Hspa5-Hspa8 than for the expression unit (Hspa5-Hspa5) composed of the promoter region of the Hspa5 gene and 5'-UTR, respectively.
  • Hspa5-Actb 1.9 times for Hspa5-Actb
  • Hspa5-Rpsa 1.3 times for Hspa5-Rpsa
  • Hspa5-chUbc and Hspa5-EF1 ⁇ respectively.
  • FIGS. 5A and 5B the changes in the number of viable cells and the amount of antibody produced in the stable pool into which the expression unit consisting of the promoter of the mUbc gene and each 5'-UTR was introduced are shown in FIGS. 5A and 5B, respectively.
  • the antibody production in each expression unit on the 14th day of culture reached 1.6 times for mUbc-Hspa8, 2.1 times for mUbc-Actb, and 1.1 times for mUbc-Rpsa with respect to mUbc-mUbc. .. This reached a value of about 4.6 to 8.1 times that of hEF1 ⁇ -hEF1 ⁇ , which greatly exceeded the amount of antibody produced by the promoters currently frequently used.
  • Example 3 Examination of mouse-derived Ubc promoter region using the amount of luciferase luminescence in transient expression as an index (3-1) Construction of luciferase expression vector The luciferase expression vector is arranged in pGL4.10 (manufactured by Promega). The nucleotide sequence of No. 29 or 35 was inserted and constructed. (3-2) Evaluation of luciferase luminescence amount in transient expression Using Lipofectamine2000 CD (manufactured by Thermo Fisher Scientific Co., Ltd.) in CHO-O1 cells, the luciferase expression vector constructed in (3-1) was controlled. The gene was introduced at the same time as the vector pGL4.74.
  • luciferase luminescence was measured using a Dual-Luciferase Reporter Assay System (manufactured by Puromega).
  • the promoter activity was defined as the value obtained by dividing the luminescence amount of Firefly-derived luciferase on pGL4.10 by the luminescence amount of Renilla-derived luciferase on pGL4.74 (FIG. 6).
  • a region having a total length of about 2.1 kb upstream of TATA-box and having a total length of about 2.1 kb was obtained with a promoter activity equivalent to the total length of the promoter region of the mUbc gene, and the promoter region of the mUbc gene exhibited transcriptional activity. It was inferred that a region of 2.1 kb or more upstream of the start codon from the transcription start point was required to show.
  • Example 4 Examination by infusion culture of promoter region chain length of Hspa5 gene using antibody expression level as an index (4-1) Construction of antibody expression vector and preparation of humanized antibody Y expression stable pool
  • Example (2) -1) A human having an expression unit in which the promoter region of the Hspa5 gene contained in Hspa5-Hspa8 is contained from the transcription start site to 0, 8, 16, 24, 32, 40, 48 nucleotides downstream by the same method as described in -1). An antibody Y expression vector was constructed. Then, the gene was introduced into CHO-O1 cells by the same method as described in Example (2-2) to prepare a humanized antibody Y expression stable pool.
  • Example 5 Examination of the combined effect of the expression unit and A7 using the antibody expression level in the feed culture as an index (5-1) Construction of the antibody expression vector (2-1) The expression cassette of the antibody expression vector constructed in (2-1). An antibody expression vector in which the DNA element A7 was inserted was constructed upstream of the above. (5-2) Preparation of Humanized Antibody Y Expression Stable Pool The region of the nucleotide sequence corresponding to Hspa5 in pDSLH3.1-Hspa5-Y that does not contain the DNA element A7 constructed in (2-1) is designated by SEQ ID NO: 24.
  • An antibody expression vector containing the antibody expression vector substituted with the nucleotide sequence described in ⁇ 26, 29 and 45 to 48, and the DNA element A7 constructed in (5-1) was prepared by the method described in (2-2) for CHO-O1.
  • the cells were transfected and selectively cultured to prepare a humanized antibody Y expression stable pool.
  • (5-3) Evaluation of antibody production by fed-batch culture of humanized antibody Y-expressing stable pool Using the humanized antibody Y-expressing stable pool prepared in (5-2), an example was used in a 125 mL Erlenmeyer flask (5-3). Fed-batch culture was carried out by the same method as described in 2-3). The changes in the number of living cells and the amount of antibody produced are shown in FIGS. 8A and 8B, respectively.
  • the amount of antibody produced by the antibody expression vector containing A7 in each gene expression unit at the 14th day of culture was 1.3 to 2.1 times higher than that of the antibody expression vector containing no A7. Therefore, it was found that high production can be effectively achieved by the synergistic effect by using the expression unit consisting of the DNA element A7, the promoter of the mUbc gene, and each 5'-UTR in combination. Since it was suggested that the expression level of DNA element A7 was improved in all the expression units, it is presumed that the same synergistic effect can be realized when the promoter of the Hspa5 gene and the expression unit consisting of each 5'-UTR are combined.
  • SEQ ID NO: 1 Promoter region of Chinese hamster-derived Hspa5
  • SEQ ID NO: 2 Promoter region of mouse-derived Ubc
  • SEQ ID NO: 3 Promoter region of mouse-derived Ubc Corresponds to the transcription initiation site from about 2.1 kbp of nucleotide upstream of the Ubc start codon.
  • SEQ ID NO: 4 Nucleotide sequence that can be added to the 3'side of the promoter region of Hspa5
  • SEQ ID NO: 5 Nucleotide sequence in which 32 bases are linked to the 3'side of the promoter region of Hspa5.
  • SEQ ID NO: 6 5'-UTR of Hspa8 derived from Chinese hamster SEQ ID NO: 7: Chinese Hamster-derived Actb 5'-UTR SEQ ID NO: 8: Chinese hamster-derived Rpsa 5'-UTR SEQ ID NO: 9: Chinese hamster-derived Ubc 5'-UTR SEQ ID NO: 10: 5'-UTR of EF1 ⁇ derived from Chinese hamster SEQ ID NO: 11: Mouse-derived Ubc 5'-UTR SEQ ID NO: 12: Intron contained in 5'-UTR of Chinese hamster-derived Hspa8 SEQ ID NO: 13: Intron contained in 5'-UTR of Chinese hamster-derived Actb SEQ ID NO: 14: Included in 5'-UTR of Chinese hamster-derived Rpsa Intron SEQ ID NO: 15: Included in 5'-UTR of Chinese hamster-derived Ubc Intron SEQ ID NO: 16: Included in 5'-UTR of Chinese hamster-derived
  • Expression unit SEQ ID NO: 32 composed of 5'-UTR of Chinese hamster-derived Actb: Expression unit SEQ ID NO: 33 composed of 5'-UTR of Chinese hamster-derived Rpsa and promoter region of mouse-derived Ubc: Promoter of mouse-derived Ubc Expression unit SEQ ID NO: 34 composed of region and Chinese hamster-derived Ubc 5'-UTR: Mouse-derived Ubc promoter region and Chinese hamster-derived EF1 ⁇ 5'-UTR expression unit SEQ ID NO: 35: Mouse-derived Ubc Expression unit consisting of the promoter region of Ubc and the 5'-UTR of the mouse-derived Ubc SEQ ID NO: 36: Substance sequence that can be added to the 3'side of the promoter region of Hspa5 SEQ ID NO: 37: Primer of Hspa8 Hspa8-NotI-F SEQ ID NO: 38: Primer of Hspa8 Hspa8-XbaI-R SEQ ID NO: 39: Nucleotide sequence upstream
  • Expression unit consisting of a nucleotide sequence substituted for the intron region contained in the 5'-UTR of the hamster-derived Actb SEQ ID NO: 47: The promoter region of the mouse-derived Ubc and the intron region in the mouse-derived Ubc5'-UTR are defined as the Chinese hamster-derived Rpsa.
  • Expression unit composed of a nucleotide sequence substituted with the intron region contained in the 5'-UTR of the sequence No. 48 Expression unit composed of the mouse-derived Ubc promoter region and the Chinese hamster-derived Hspa8 5'-UTR.

Abstract

The present invention provides a means for renewing the production of a foreign protein, which will serve as a protein drug, in host cells such as cultured cells from a mammal. Provided are a novel expression unit that is used in promoting the expression of a foreign protein, transformed cells that include the expression unit, and a method for high secretory production of a foreign protein using said transformed host cells.

Description

新規遺伝子発現ユニットNew gene expression unit
 本発明は、転写活性が高いプロモーターと翻訳活性が高い5'-UTRを組み合わせて設計された発現ユニットを用いることにより、外来蛋白質の発現量が増強された哺乳動物形質転換細胞、及びこれを用いた該外来蛋白質の製造方法に関する。 The present invention uses a mammalian transformed cell in which the expression level of a foreign protein is enhanced by using an expression unit designed by combining a promoter having high transcriptional activity and 5'-UTR having high translational activity, and the present invention. The present invention relates to a method for producing the foreign protein.
 遺伝子組換え技術の発展によって、治療用蛋白質や抗体医薬といった蛋白質医薬品が急速にその市場を拡大している。中でも、抗体医薬は人体に投与しても有害な免疫反応を引き起こさず、その特異性の高さから開発が盛んに進められている。 With the development of gene recombination technology, protein drugs such as therapeutic proteins and antibody drugs are rapidly expanding their markets. Among them, antibody drugs do not cause a harmful immune reaction even when administered to the human body, and are being actively developed due to their high specificity.
 抗体医薬に代表される蛋白質医薬を生産させる宿主としては、ヒトと類似した糖鎖構造を有し、翻訳後修飾が可能、さらには安全性の面を考慮し、Chinese Hamster Ovary(CHO:チャイニーズハムスターの卵巣)細胞等の哺乳動物培養細胞が現在の主流となっている。 As a host for producing protein drugs represented by antibody drugs, it has a sugar chain structure similar to that of humans, can be modified after translation, and in consideration of safety, Chinese Hamster Ovaly (CHO: Chinese hamster). Mammalian cultured cells such as ovary) cells are currently the mainstream.
 哺乳動物培養細胞を宿主とする場合、微生物等と比較して、増殖速度や生産性の低さに起因する製造コストの高さが問題となっている(非特許文献1)。また、近年の抗体医薬の発展と投与量の多さから、世界的に抗体医薬の生産能力が不足している。生産能力の向上を目指して、蛋白質医薬品の各製造工程の改良が図られており、哺乳類培養細胞発現系の改良は、生産量向上を達成する上で有力な手段である(特許文献1~3、非特許文献2、3)。
プロモーターはDNA上に存在し、RNAポリメラーゼがプロモーター領域内の転写開始点からRNAを転写する。転写が行われる効率には、主に転写開始点上流の配列領域が関与しており、転写効率が高いプロモーターは配列領域内に複数の転写因子の結合配列を有する(非特許文献4)。
When cultured mammalian cells are used as a host, there is a problem of high production cost due to low growth rate and low productivity as compared with microorganisms (Non-Patent Document 1). In addition, due to the recent development of antibody drugs and the large doses, the production capacity of antibody drugs is insufficient worldwide. Improvements are being made to each manufacturing process of protein pharmaceuticals with the aim of improving production capacity, and improvement of the mammalian cultured cell expression system is a promising means for achieving an increase in production volume (Patent Documents 1 to 3). , Non-Patent Documents 2, 3).
The promoter is present on the DNA and RNA polymerase transcribes RNA from the transcription start site within the promoter region. The sequence region upstream of the transcription initiation site is mainly involved in the efficiency of transcription, and a promoter with high transcription efficiency has a binding sequence of a plurality of transcription factors in the sequence region (Non-Patent Document 4).
 遺伝子・蛋白質情報を持つメッセンジャーRNA(mRNA)では、翻訳によって蛋白質が合成される。mRNAは、遺伝子・蛋白質情報だけでなく、その上流と下流には遺伝子・蛋白質情報を含まない非翻訳領域である5'-Untranslated Region(5'-UTR)および3'-UTRを有する。非翻訳領域は遺伝子発現に関わるが、特に5'-UTRは翻訳効率を制御している(非特許文献5)。翻訳量やmRNAの細胞内安定性は、5'-UTR内のAUG配列やRNA結合蛋白質、micro RNA(miRNA)の結合・標的配列の有無によって変わる。また哺乳類培養細胞を含む真核生物内では、スプライシングによってイントロンが除外され、エキソンのみから構成されるmRNAへと成熟する。イントロンは非翻訳領域だけでなく構造遺伝子配列にも存在するが、その数や位置はmRNA毎で異なる。核内で転写されたmRNAが核外、すなわち細胞質内に輸送されて翻訳が開始される。イントロンは、このmRNAの核外への輸送や、3'末端のポリアデニル化に関わる(非特許文献6)。
生産能力の向上を目指した哺乳動物培養細胞発現系の改良として、ウイルス由来のエンハンサーやTATA-box、哺乳類由来のイントロンからなるハイブリッドプロモーター(特許文献4)、外来蛋白質の生産性を向上させたヒートショックプロテインA5(Hspa5/GRP78)遺伝子のプロモーター(特許文献5)や、外来イントロンを構造遺伝子内や下流に挿入する例が報告されている(非特許文献7)。
In messenger RNA (mRNA) that has gene / protein information, proteins are synthesized by translation. mRNA has not only gene / protein information but also 5'-Untranslated Region (5'-UTR) and 3'-UTR which are untranslated regions that do not contain gene / protein information upstream and downstream thereof. The untranslated region is involved in gene expression, and in particular, 5'-UTR controls translation efficiency (Non-Patent Document 5). The amount of translation and the intracellular stability of mRNA vary depending on the presence or absence of AUG sequence, RNA-binding protein, and microRNA (miRNA) binding / target sequence in 5'-UTR. In eukaryotes, including cultured mammalian cells, splicing excludes introns and matures into mRNAs composed exclusively of exons. Introns are present not only in untranslated regions but also in structural gene sequences, but their numbers and positions vary from mRNA to mRNA. The mRNA transcribed in the nucleus is transported to the outside of the nucleus, that is, into the cytoplasm, and translation is initiated. Introns are involved in the export of this mRNA to the nucleus and polyadenylation at the 3'end (Non-Patent Document 6).
As improvements to the mammalian cultured cell expression system aimed at improving production capacity, a hybrid promoter consisting of a virus-derived enhancer and TATA-box, a mammalian-derived intron (Patent Document 4), and a heat that improves the productivity of foreign proteins. Examples of inserting a promoter of a shock protein A5 (Hspa5 / GRP78) gene (Patent Document 5) and a foreign intron into or downstream of a structural gene have been reported (Non-Patent Document 7).
特許第3051411号Patent No. 3051411 WO2006/123097WO2006 / 123097 WO2005/000888WO2005 / 00788 US9234211US92342111 WO2018/066492WO2018 / 066492
 本発明の課題は、哺乳動物培養細胞等の宿主細胞において、高い転写活性を有するプロモーター領域と高い翻訳活性を有する5'-UTR、イントロンを組み合わせた発現ユニットを設計し、これを用いて蛋白質医薬品となる外来蛋白質の生産量を亢進させる手段を提供することにある。プロモーター領域に5'-UTRを組み合わせる、あるいは更に組み合わせた5'-UTR内のイントロンを異なるイントロンに置換することにより、CHO細胞等において、プロモーター領域のみを用いたときと比べて、同程度以上の蛋白質発現量が得られる発現ユニットを見出すことにより、哺乳動物培養細胞が安定的に外来遺伝子の高発現を達成する手段を提供し、哺乳動物培養細胞発現系における蛋白質性医薬品の生産量の向上、すなわち製造コスト低減に貢献する手段を提供することができる。 An object of the present invention is to design an expression unit that combines a promoter region with high transcriptional activity, 5'-UTR, and intron having high translational activity in a host cell such as cultured mammalian cells, and use this to design a protein drug. It is an object of the present invention to provide a means for increasing the production amount of a foreign protein. By combining the promoter region with a 5'-UTR, or by substituting a different intron for the intron in the combined 5'-UTR, the introns in the CHO cells and the like are equal to or higher than those in which only the promoter region is used. By finding an expression unit that can obtain the protein expression level, it is possible to provide a means for the cultured mammalian cells to stably achieve high expression of the foreign gene, and to improve the production amount of the proteinaceous drug in the cultured mammalian cell expression system. That is, it is possible to provide a means that contributes to the reduction of manufacturing cost.
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、転写活性を有するプロモーター領域に5'-UTRを組み合わせたポリヌクレオチドからなる発現ユニット、あるいは更に該発現ユニット内のイントロンを異なるイントロンと置換したポリヌクレオチドからなる発現ユニットを用いることで、哺乳動物培養細胞において発現対象となる外来蛋白質生産性の著しい向上が可能であることを見出し、本発明を完成させた。すなわち、本発明は以下の発明を包含する。
(1)プロモーター領域の下流に、該プロモーター領域を含む遺伝子と同一又は異なる遺伝子に含まれる5'-UTRが連結してなるポリヌクレオチド。
(2)5'-UTRに含まれるイントロンが、該5'-UTRを含む遺伝子と同一又は異なる遺伝子に含まれる5'-UTRに含まれるイントロンである、前記(1)に記載のポリヌクレオチド。
(3)プロモーター領域が、配列番号1乃至3のいずれか1つに記載のポリヌクレオチドである前記(1)又は(2)に記載のポリヌクレオチド。
(4)プロモーター領域が、配列番号1に記載のポリヌレオチドの3'末端に配列番号4に記載のポリヌクレオチドが連結してなる配列番号5に記載のポリヌクレオチドである前記(1)又は(2)に記載のポリヌクレオチド。
(5)配列番号4に記載のポリヌクレオチドの全長又は一部が欠損してなる前記(4)に記載のポリヌクレオチド。
(6)プロモーター領域が、配列番号1に記載のポリヌレオチドの3'末端に配列番号36に記載のポリヌクレオチドの全部又は一部が連結してなる前記(1)又は(2)に記載のポリヌクレオチド。
(7)5'-UTRが、配列番号6乃至11のいずれか1つに記載のポリヌクレオチドである前記(1)乃至(6)のいずれか1つに記載のポリヌクレオチド。
(8)イントロンが、配列番号12乃至17のいずれか1つに記載のポリヌクレオチドである前記(2)乃至(7)のいずれか1つに記載のポリヌクレオチド。
(9)配列番号18乃至35、及び45乃至48のいずれか1つに記載のポリヌクレオチドからなる前記(1)に記載のポリヌクレオチド。
(10)配列番号18、24乃至29、及び、45乃至48のいずれか1つに記載のポリヌクレオチドからなる前記(1)に記載のポリヌクレオチド。
(11)前記(9)又は(10)に記載のポリヌクレオチドに対して95%以上同一性を有するポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。
(12)前記(9)又は(10)に記載のポリヌクレオチドに対して99%以上同一性を有するポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。
(13)前記(9)又は(10)に記載のポリヌクレオチドに相補的なポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。
(14)前記(1)乃至(13)のいずれか1つに記載のポリヌクレオチドからなる発現ユニット。
(15)前記(14)に記載の発現ユニットを含む外来遺伝子発現カセット。
(16)外来遺伝子が多量体蛋白質をコードする遺伝子である、前記(15)に記載の外来遺伝子発現カセット。
(17)外来遺伝子がヘテロ多量体蛋白質をコードする遺伝子である、前記(15)に記載の外来遺伝子発現カセット。
(18)外来遺伝子が抗体又はその抗原結合性断片をコードする遺伝子である、前記(15)に記載の外来遺伝子発現カセット。
(19)前記(15)乃至(18)いずれか一つに記載の外来遺伝子発現カセットを含む外来遺伝子発現ベクター。
(20)前記(19)に記載の外来遺伝子発現ベクターが導入された形質転換細胞。
(21)細胞が哺乳動物由来の培養細胞である、前記(20)に記載の形質転換細胞。
(22)哺乳動物由来の培養細胞が、COS-1細胞、HEK293細胞、又はCHO細胞である、前記(21)に記載の形質転換細胞。
(23)前記(20)乃至(22)のいずれか一つに記載の形質転換細胞を培養し、培養物から外来遺伝子由来の蛋白質を取得することを特徴とする、該蛋白質の製造方法。
(24)形質転換細胞において外来遺伝子を発現させることを目的とする、前記(1)及至(13)のいずれか一つに記載のポリヌクレオチドの使用。
(25)形質転換細胞において外来遺伝子を発現させることを目的とする、前記(19)に記載の外来遺伝子発現ベクターの使用。
As a result of intensive studies to solve the above problems, the present inventors have different expression units consisting of polynucleotides in which a 5'-UTR is combined with a promoter region having transcriptional activity, or further, introns in the expression unit are different. We have found that it is possible to significantly improve the productivity of foreign proteins to be expressed in cultured mammalian cells by using an expression unit composed of a polynucleotide substituted with an intron, and completed the present invention. That is, the present invention includes the following inventions.
(1) A polynucleotide in which 5'-UTR contained in the same or different gene as the gene containing the promoter region is linked downstream of the promoter region.
(2) The polynucleotide according to (1) above, wherein the intron contained in the 5'-UTR is an intron contained in the 5'-UTR contained in the same or different gene as the gene containing the 5'-UTR.
(3) The polynucleotide according to (1) or (2) above, wherein the promoter region is the polynucleotide according to any one of SEQ ID NOs: 1 to 3.
(4) The above-mentioned (1) or (2), wherein the promoter region is the polynucleotide according to SEQ ID NO: 5, wherein the polynucleotide according to SEQ ID NO: 4 is linked to the 3'end of the polynureotide set forth in SEQ ID NO: 1. The polynucleotide described in.
(5) The polynucleotide according to (4) above, wherein the polynucleotide according to SEQ ID NO: 4 is lacking in the entire length or a part thereof.
(6) The polynucleotide according to (1) or (2) above, wherein the promoter region is formed by linking all or part of the polynucleotide set forth in SEQ ID NO: 36 to the 3'end of the polynureotide set forth in SEQ ID NO: 1. ..
(7) The polynucleotide according to any one of (1) to (6) above, wherein 5'-UTR is the polynucleotide according to any one of SEQ ID NOs: 6 to 11.
(8) The polynucleotide according to any one of (2) to (7) above, wherein the intron is the polynucleotide according to any one of SEQ ID NOs: 12 to 17.
(9) The polynucleotide according to (1) above, which comprises the polynucleotide according to any one of SEQ ID NOs: 18 to 35 and 45 to 48.
(10) The polynucleotide according to (1) above, which comprises the polynucleotide according to any one of SEQ ID NOs: 18, 24 to 29, and 45 to 48.
(11) A polynucleotide having 95% or more identity with respect to the polynucleotide according to (9) or (10) above, and having transcriptional activity and translational activity.
(12) A polynucleotide having 99% or more identity with respect to the polynucleotide according to (9) or (10) above, and having transcriptional activity and translational activity.
(13) A polynucleotide that hybridizes with a polynucleotide complementary to the polynucleotide according to (9) or (10) above under stringent conditions, and has transcriptional activity and translational activity.
(14) An expression unit composed of the polynucleotide according to any one of (1) to (13) above.
(15) A foreign gene expression cassette containing the expression unit according to (14) above.
(16) The foreign gene expression cassette according to (15) above, wherein the foreign gene is a gene encoding a multimeric protein.
(17) The foreign gene expression cassette according to (15) above, wherein the foreign gene is a gene encoding a heteromultimeric protein.
(18) The foreign gene expression cassette according to (15) above, wherein the foreign gene is a gene encoding an antibody or an antigen-binding fragment thereof.
(19) A foreign gene expression vector containing the foreign gene expression cassette according to any one of (15) to (18) above.
(20) A transformed cell into which the foreign gene expression vector according to (19) has been introduced.
(21) The transformed cell according to (20) above, wherein the cell is a cultured cell derived from a mammal.
(22) The transformed cell according to (21) above, wherein the cultured mammalian-derived cell is a COS-1 cell, a HEK293 cell, or a CHO cell.
(23) A method for producing a protein, which comprises culturing the transformed cell according to any one of (20) to (22) above and obtaining a protein derived from a foreign gene from the culture.
(24) Use of the polynucleotide according to any one of (1) and (13) above, for the purpose of expressing a foreign gene in transformed cells.
(25) Use of the foreign gene expression vector according to (19) above, for the purpose of expressing a foreign gene in transformed cells.
 本発明の発現ユニットは、外来遺伝子発現ベクターに遺伝子とともに組み込まれて哺乳動物宿主細胞へ導入されることによって、治療用蛋白質や抗体等の外来遺伝子の発現を著しく亢進することが可能である。 The expression unit of the present invention can significantly enhance the expression of foreign genes such as therapeutic proteins and antibodies by being incorporated into a foreign gene expression vector together with a gene and introduced into a mammalian host cell.
プロモーター領域、5'-UTRから構成される発現ユニット(Expression Unit)の概略図。図中、TSSは転写開始点(Transcription Start Site)を示す。Schematic diagram of an expression unit (Expression Unit) composed of a promoter region and 5'-UTR. In the figure, TSS indicates a transcription start site (Transcription Start Site). 発現ユニットに対してイントロンの置換を行った概略図。The schematic diagram which performed the intron substitution for the expression unit. 発現ユニットを用いた抗体H鎖およびL鎖遺伝子からなるヒト化抗体遺伝子Y発現ベクター(pDSLH3.1-Expression Unit-Y)の概略図。Schematic diagram of a humanized antibody gene Y expression vector (pDSLH3.1-Expression Unit-Y) composed of an antibody H chain and an L chain gene using an expression unit. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、Hspa5プロモーター領域を含む発現ユニットにより発現された抗体生産量をヒトEF1α(hEF1α)遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。図4Aは、各サンプリング日における生細胞数を示す。The antibody production amount expressed by the expression unit containing the Hspa5 promoter region in the feeding culture using the humanized antibody Y expression stable pool is composed of the promoter region of the human EF1α (hEF1α) gene and the 5'-UTR. The figure which compared with the expression unit. FIG. 4A shows the number of viable cells on each sampling day. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、Hspa5プロモーター領域を含む発現ユニットにより発現された抗体生産量をヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。図4Bは、各サンプリング日における生産量を示す。In the feeding culture using the humanized antibody Y expression stable pool, the amount of antibody produced by the expression unit containing the Hspa5 promoter region was expressed by the expression unit composed of the promoter region of the human EF1α gene and the 5'-UTR. Comparison figure. FIG. 4B shows the production volume on each sampling day. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、マウス由来Ubcプロモーター領域を含む発現ユニットにより発現された抗体生産量をヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。図5Aは、各サンプリング日における生細胞数を示す。In fed-batch culture using a humanized antibody Y expression stable pool, the amount of antibody produced by the expression unit containing the mouse-derived Ubc promoter region is expressed by the promoter region of the human EF1α gene and the 5'-UTR. Diagram compared to the unit. FIG. 5A shows the number of viable cells on each sampling day. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、マウス由来Ubcプロモーター領域を含む発現ユニットにより発現された抗体生産量をヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。図5Bは、各サンプリング日における生産量を示す。In fed-batch culture using a humanized antibody Y expression stable pool, the amount of antibody produced by the expression unit containing the mouse-derived Ubc promoter region is expressed by the promoter region of the human EF1α gene and the 5'-UTR. Diagram compared to the unit. FIG. 5B shows the production volume on each sampling day. マウス由来Ubcの開始コドンから上流約3.0kbpのヌクレオチド配列および、開始コドンから上流約2.1kbpのヌクレオチド配列のプロモーター領域と5'-UTRからなる発現ユニットを使用して一過性発現させたホタルルシフェラーゼ発現量をヒトEF1α遺伝子プロモーターと比較した図。Transient expression was performed using an expression unit consisting of a nucleotide sequence of about 3.0 kbp upstream from the start codon of mouse-derived Ubc and a promoter region of a nucleotide sequence of about 2.1 kbp upstream from the start codon and 5'-UTR. The figure which compared the expression level of firefly luciferase with the human EF1α gene promoter. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、Hspa5プロモーター領域とHspa8の5'‐UTRを含む発現ユニットにより発現された抗体生産量をヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。括弧内に転写開始点以降のヌクレオチド長を記載する。図7Aは、各サンプリング日における生細胞数を示す。In the feed culture using the humanized antibody Y expression stable pool, the amount of antibody produced by the expression unit containing the Hspa5 promoter region and the 5'-UTR of Hspa8 was measured by the promoter region of the human EF1α gene and the 5'-UTR. The figure which compared with the expression unit composed of. The nucleotide length after the transcription start point is described in parentheses. FIG. 7A shows the number of viable cells on each sampling day. ヒト化抗体Y発現ステーブルプールを用いた流加培養にて、Hspa5プロモーター領域とHspa8の5'‐UTRを含む発現ユニットにより発現された抗体生産量をヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニットと比較した図。括弧内に転写開始点以降のヌクレオチド長を記載する。図7Bは、各サンプリング日における生産量を示す。In the feed culture using the humanized antibody Y expression stable pool, the amount of antibody produced by the expression unit containing the Hspa5 promoter region and the 5'-UTR of Hspa8 was measured by the promoter region of the human EF1α gene and the 5'-UTR. The figure which compared with the expression unit composed of. The nucleotide length after the transcription start point is described in parentheses. FIG. 7B shows the production volume on each sampling day. mUbcプロモーター領域と5'‐UTRを含む発現ユニットを抗体H鎖及びL鎖遺伝子のプロモーターとして使用し、DNAエレメントA7を含む、あるいは含まないヒト化抗体Y発現ベクターを用いて作製したステーブルプールの流加培養にて、抗体生産量を比較した図。図8Aは、各サンプリング日における生細胞数を示す。A stable pool prepared using a humanized antibody Y expression vector containing or not containing DNA element A7 using an expression unit containing the mUbc promoter region and 5'-UTR as a promoter for antibody H chain and L chain genes. The figure which compared the antibody production amount by the pouring culture. FIG. 8A shows the number of viable cells on each sampling day. mUbcプロモーター領域と5'‐UTRを含む発現ユニットを抗体H鎖及びL鎖遺伝子のプロモーターとして使用し、DNAエレメントA7を含む、あるいは含まないヒト化抗体Y発現ベクターを用いて作製したステーブルプールの流加培養にて、抗体生産量を比較した図。図8Bは、各サンプリング日における生産量を示す。A stable pool prepared using a humanized antibody Y expression vector containing or not containing DNA element A7 using an expression unit containing the mUbc promoter region and 5'-UTR as a promoter for antibody H chain and L chain genes. The figure which compared the antibody production amount by the pouring culture. FIG. 8B shows the production volume on each sampling day.
 以下、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.
 本明細書において、「プロモーター領域」とは、転写開始点からその上流配列中の転写活性を有する配列を意味する。本明細書において「プロモーター」ということもある。 As used herein, the term "promoter region" means a sequence having transcriptional activity in the sequence upstream of the transcription initiation site. Also referred to herein as a "promoter."
 本明細書において、「5'-UTR」とは、転写されたmRNAに存在する遺伝子の開始コドンの上流配列であり、遺伝子・タンパク質情報を含まない非翻訳領域を意味する。 In the present specification, "5'-UTR" is an upstream sequence of the start codon of a gene present in transcribed mRNA, and means an untranslated region that does not contain gene / protein information.
 本明細書において「上流」とは遺伝子、配列領域、もしくは塩基の5’末端側をいい、「下流」とは遺伝子、配列領域、もしくは塩基の3’末端側をさす。 In the present specification, "upstream" refers to the 5'terminal side of a gene, sequence region, or base, and "downstream" refers to the 3'terminal side of a gene, sequence region, or base.
 本明細書において、「イントロン」とは、遺伝子発現においてDNAからスプライシングにより成熟メッセンジャーRNA(mRNA)が産生される際に、切除又は除去される非コード部分であり、コード部分(エキソン)と共にDNAを構成する配列を意味する。5'-UTR中にもイントロンが含まれている。 As used herein, an "intron" is a non-coding portion that is excised or removed when mature messenger RNA (mRNA) is produced from DNA by splicing in gene expression, and the DNA is combined with the coding portion (exon). Means the constituent array. Introns are also included in the 5'-UTR.
 本明細書において、「遺伝子」とは、mRNAに転写され、蛋白質に翻訳される部分を意味し、DNAのみならずそのmRNA、cDNA及びそのRNAも含まれるものとする。 In the present specification, the term "gene" means a portion that is transcribed into mRNA and translated into protein, and includes not only DNA but also its mRNA, cDNA and its RNA.
 本明細書において、「ポリヌクレオチド」とは核酸と同じ意味で用いており、DNA、RNA、プローブ、オリゴヌクレオチド、及びプライマーも含まれている。本明細書において、配列番号が例えばαの場合、[配列番号αのヌクレオチド配列からなるポリヌクレオチド]を略して[配列番号αに記載のポリヌクレオチド]とも記載する。 In the present specification, "polynucleotide" is used in the same meaning as nucleic acid, and includes DNA, RNA, probe, oligonucleotide, and primer. In the present specification, for example, when the SEQ ID NO: α is α, [a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: α] is abbreviated as [the polynucleotide described in SEQ ID NO: α].
 本明細書において、「ポリペプチド」と「蛋白質」は区別せずに用いている。 In this specification, "polypeptide" and "protein" are used without distinction.
 本明細書において、「遺伝子発現」とは、ある遺伝子がmRNAに転写され、該mRNAから蛋白質が翻訳される現象を意味する。 In the present specification, "gene expression" means a phenomenon in which a certain gene is transcribed into mRNA and a protein is translated from the mRNA.
 本明細書において、「外来遺伝子」とは、人工的に宿主細胞に導入される遺伝子を意味する。 In the present specification, the "foreign gene" means a gene artificially introduced into a host cell.
 本明細書において、「外来蛋白質」とは、外来遺伝子にコードされる蛋白質を意味する。 In the present specification, "foreign protein" means a protein encoded by a foreign gene.
 本明細書において、「遺伝子発現カセット」とは、転写の読み枠の方向に、少なくともプロモーター領域、外来遺伝子、転写ターミネーター領域(ポリA付加シグナル)を有するポリヌクレオチドを意味する。 As used herein, the term "gene expression cassette" means a polynucleotide having at least a promoter region, a foreign gene, and a transcription terminator region (poly A addition signal) in the direction of the transcription reading frame.
 本明細書において、「転写活性」とは、RNAポリメラーゼによってDNAから転写を開始し、mRNAを合成する活性をいう。 As used herein, the term "transcriptional activity" refers to the activity of initiating transcription from DNA by RNA polymerase and synthesizing mRNA.
 本明細書において、「翻訳活性」とは、転写されたmRNAから蛋白質が合成される活性をいう。 
本明細書中において、「DNAエレメント」とは、遺伝子発現カセットの近傍又は、遺伝子発現カセットに含まれる外来遺伝子発現ベクター上に配置された場合に、外来遺伝子発現亢進活性を有するポリヌクレオチドを意味する。
As used herein, the term "translational activity" refers to the activity of synthesizing a protein from transcribed mRNA.
As used herein, the term "DNA element" means a polynucleotide having a foreign gene expression-enhancing activity when placed in the vicinity of a gene expression cassette or on a foreign gene expression vector contained in the gene expression cassette. ..
 本明細書中において、「抗体の抗原結合性断片」とは、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab’)等を含むが、抗原との結合能を有している限りこれらの分子に限定されない。 In the present specification, the "antigen-binding fragment of an antibody" means a partial fragment of an antibody having an antigen-binding activity, including Fab, F (ab') 2, etc., but with an antigen. It is not limited to these molecules as long as it has a binding ability.
 本明細書中において、「同一性」とは、当該分野で公知のように、配列の比較によって決定される、2つ以上のヌクレオチド配列又はアミノ酸配列の、配列間の関係をいう。当該分野において、「同一性」はまた、場合に応じて、一列の2つ以上のヌクレオチド配列間または2つ以上のアミノ酸配列間の一致によって決定したときの、核酸分子間またはポリペプチド間の配列関連性の程度を意味する。「同一性」は、2つ以上の配列のうち小さなものと、特定の数理的モデルまたはコンピュータプログラム(すなわち、「アルゴリズム」)によってアドレス指定されるギャップアラインメント(存在する場合)との間の同一一致のパーセントを算出することにより評価することができる。具体的には、European Molecular Biology Laboratory-European Bioinformatics Institute(EMBL-EBI)が提供するClustalW2等のソフトを使用することにより評価することができるが、当業者において使用されるものであればこれに限定されない。 As used herein, "identity" refers to the relationship between sequences of two or more nucleotide sequences or amino acid sequences, as is known in the art, determined by comparison of sequences. In the art, "identity" is also a sequence between nucleic acid molecules or polypeptides, as determined by matching between two or more nucleotide sequences in a row or between two or more amino acid sequences, as the case may be. Means the degree of relevance. "Identity" is the same match between the smaller of two or more arrays and the gap alignment (if any) addressed by a particular mathematical model or computer program (ie, "algorithm"). It can be evaluated by calculating the percentage of. Specifically, it can be evaluated by using software such as ClinicalW2 provided by European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), but it is limited to those used by those skilled in the art. Not done.
 本明細書中において、「ストリンジェントな条件でハイブリダイズする」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、ある核酸に対する同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましく99%以上のヌクレオチド配列からなる核酸の相補鎖がハイブリダイズし、それより同一性が低いヌクレオチド配列からなる核酸の相補鎖がハイブリダイズしない条件を挙げることができる。より具体的には、市販のハイブリダイゼーション溶液ExpressHyb Hybridization Solution(クロンテック社製)中、68℃でハイブリダイズすること、又は、DNAを固定したフィルターを用いて0.7乃至1.0MのNaCl存在下68℃でハイブリダイゼーションを行った後、0.1乃至2倍濃度のSSC溶液(1倍濃度SSCとは150 mM NaCl、15 mM クエン酸ナトリウムからなる)を用い、68℃で洗浄する条件又はそれと同等の条件でハイブリダイズすることを意味する。 In the present specification, "hybridize under stringent conditions" means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. For example, a complementary strand of a nucleic acid consisting of a nucleotide sequence having an identity of 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more with respect to a certain nucleic acid hybridizes, and the identity is lower than that. The condition that the complementary strand of the nucleic acid consisting of the nucleotide sequence does not hybridize can be mentioned. More specifically, in a commercially available hybridization solution ExpressionHyb Hybridization Solution (manufactured by Clontech), hybridizing at 68 ° C., or using a DNA-fixed filter in the presence of 0.7 to 1.0 M NaCl. After hybridization at 68 ° C., use a 0.1 to 2-fold concentration SSC solution (1-fold concentration SSC consists of 150 mM NaCl and 15 mM sodium citrate), and wash at 68 ° C. It means hybridizing under the same conditions.
1.外来遺伝子の発現亢進に使用される発現ユニット
 本発明の発現ユニットとは、遺伝子上流に存在する転写に必須な配列領域であるプロモーター領域の下流に、5'-UTRを連結してなるポリヌクレオチドである。5'-UTRは、当該プロモーター領域を含む遺伝子上流に存在する5'-UTRでもよいし、当該プロモーター領域を含む遺伝子とは異なる遺伝子の上流に存在する5'-UTRであってもよい。当該プロモーター領域の下流に当該プロモーター領域を含む遺伝子とは異なる遺伝子の上流に存在する5'-UTRを連結した発現ユニットの概略を図1に示す。
1. 1. Expression unit used to enhance the expression of a foreign gene The expression unit of the present invention is a polynucleotide in which a 5'-UTR is linked downstream of a promoter region, which is a sequence region essential for transcription and exists upstream of a gene. be. The 5'-UTR may be a 5'-UTR existing upstream of the gene containing the promoter region, or may be a 5'-UTR existing upstream of a gene different from the gene containing the promoter region. FIG. 1 shows an outline of an expression unit in which a 5'-UTR existing upstream of a gene different from the gene containing the promoter region is linked downstream of the promoter region.
 更に、5'-UTRにはイントロンが含まれ、イントロンは、該5'-UTRを含む遺伝子とは異なる遺伝子中の5'-UTRに含まれるイントロンと置換されてもよい。発現ユニットに含まれるイントロンを、該5'-UTRを含む遺伝子とは異なる遺伝子中の5'-UTRに含まれるイントロンと置換した発現ユニットの概略を図2に示す。 Further, the 5'-UTR contains an intron, and the intron may be replaced with an intron contained in the 5'-UTR in a gene different from the gene containing the 5'-UTR. FIG. 2 shows an outline of an expression unit in which the intron contained in the expression unit is replaced with the intron contained in 5'-UTR in a gene different from the gene containing the 5'-UTR.
 本発明の発現ユニットに含まれるプロモーター領域は、転写開始点からその上流配列中の転写活性を有する配列領域である。転写開始点、もしくは5'-UTRの5'末端は、NCBI等のデータベース上に公開されている配列、もしくは5'-RACE法等の実験的手法により同定された配列位置である。 The promoter region contained in the expression unit of the present invention is a sequence region having transcriptional activity in the sequence upstream from the transcription initiation site. The transcription start site, or the 5'end of the 5'-UTR, is a sequence published on a database such as NCBI, or a sequence position identified by an experimental method such as the 5'-RACE method.
 本発明の発現ユニットに含まれるプロモーター領域は、その由来は特に限定されないが、好ましくは、哺乳動物培養細胞由来であり、哺乳動物としては、例えば、チャイニーズハムスター、ヒト、マウス、ラット等が挙げられる。 The origin of the promoter region contained in the expression unit of the present invention is not particularly limited, but is preferably derived from cultured mammalian cells, and examples of the mammal include Chinese hamsters, humans, mice, rats, and the like. ..
 本発明の発現ユニットに含まれるプロモーター領域の好ましい例として、チャイニーズハムスター由来のHspa5遺伝子に含まれるプロモーター領域、マウス由来のUbc遺伝子に含まれるプロモーター領域が挙げられる。さらに好適には、配列表の配列番号1に記載のポリヌクレオチドからなるチャイニーズハムスター由来のHspa5遺伝子のプロモーター領域、配列番号2、3に記載のポリヌクレオチドからなるマウス由来のUbc遺伝子のプロモーター領域が挙げられる
 配列番号1のヌクレオチド配列は、チャイニーズハムスター由来Hspa5遺伝子の開始コドンの上流約0.6kbpのヌクレオチドから転写開始点のヌクレオチドからなる配列である。
Preferred examples of the promoter region contained in the expression unit of the present invention include a promoter region contained in the Hspa5 gene derived from Chinese hamster and a promoter region contained in the Ubc gene derived from mouse. More preferably, the promoter region of the Hspa5 gene derived from the Chinese hamster consisting of the polynucleotide shown in SEQ ID NO: 1 in the sequence listing and the promoter region of the Ubc gene derived from the mouse consisting of the polynucleotides shown in SEQ ID NOs: 2 and 3 can be mentioned. The nucleotide sequence of SEQ ID NO: 1 is a sequence consisting of a nucleotide at the transcription start site from a nucleotide of about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Hspa5 gene.
 配列番号2のヌクレオチド配列は、マウス由来Ubc遺伝子の開始コドンの上流約3.0kbpのヌクレオチドから転写開始点のヌクレオチドからなる配列である。マウス由来Ubc遺伝子のプロモーター領域については、配列番号2に記載の配列の部分配列からなるヌクレオチド配列であってもよく、マウス由来Ubc遺伝子の開始コドンの上流約2.1kbpのヌクレオチドから転写開始点のヌクレオチドからなる配列番号3に記載のポリヌクレオチドが好ましい。 The nucleotide sequence of SEQ ID NO: 2 is a sequence consisting of nucleotides at the transcription start site from nucleotides about 3.0 kbp upstream of the start codon of the mouse-derived Ubc gene. The promoter region of the mouse-derived Ubc gene may be a nucleotide sequence consisting of a partial sequence of the sequence shown in SEQ ID NO: 2, and the transcription initiation site is located at a nucleotide of about 2.1 kbp upstream of the start codon of the mouse-derived Ubc gene. The polynucleotide set forth in SEQ ID NO: 3 consisting of nucleotides is preferred.
 配列番号4のヌクレオチド配列は、チャイニーズハムスター由来Hspa5遺伝子の開始コドンの上流約0.2kbpの転写開始点から32ヌクレオチド下流からなる配列である。配列番号5のヌクレオチド配列は、配列番号1のヌクレオチド配列の3'側に配列番号4のヌクレオチド配列を連結したヌクレオチド配列からなるポリヌクレオチドである。配列番号4のヌクレオチド配列からなるポリヌクレオチドは、その全長がプロモーター領域に含まれていてもいいし、一部が欠損した状態で含まれていてもよい。 The nucleotide sequence of SEQ ID NO: 4 is a sequence consisting of 32 nucleotides downstream from the transcription start site of about 0.2 kbp upstream of the start codon of the Chinese hamster-derived Hspa5 gene. The nucleotide sequence of SEQ ID NO: 5 is a polynucleotide consisting of a nucleotide sequence in which the nucleotide sequence of SEQ ID NO: 4 is linked to the 3'side of the nucleotide sequence of SEQ ID NO: 1. The polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 4 may be contained in the promoter region in its entire length, or may be contained in a partially deleted state.
 本発明の発現ユニットに含まれる5'-UTRは、その由来は特に限定されないが、好ましくは、哺乳動物培養細胞由来であり、哺乳動物としては、例えば、チャイニーズハムスター、ヒト、マウス、ラット等が挙げられる。 The origin of the 5'-UTR contained in the expression unit of the present invention is not particularly limited, but it is preferably derived from cultured mammalian cells, and examples of the mammal include Chinese hamsters, humans, mice, rats and the like. Can be mentioned.
 本発明の発現ユニットに含まれる5'-UTRの好ましい例として、Hspa8遺伝子、Actb遺伝子、Rpsa遺伝子、EF1α遺伝子の5'-UTRとしてチャイニーズハムスター由来の5'-UTRが、Ubc遺伝子の5'-UTRとしてチャイニーズハムスター由来およびマウス由来の5'-UTRが挙げられる。より好ましくは、配列番号6~11に記載のポリヌクレオチドからなる5'-UTRである。 As a preferable example of the 5'-UTR contained in the expression unit of the present invention, the 5'-UTR derived from Chinese hamster as the 5'-UTR of the Hspa8 gene, Actb gene, Rpsa gene, and EF1α gene is 5'-UTR of the Ubc gene. UTRs include 5'-UTRs derived from Chinese hamsters and mice. More preferably, it is a 5'-UTR consisting of the polynucleotides set forth in SEQ ID NOs: 6-11.
 配列番号6のヌクレオチド配列は、チャイニーズハムスター由来Hspa8遺伝子の開始コドンの上流約0.6kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号12に記載のポリヌクレオチドが、配列番号6に記載のポリヌクレオチドからなる5'-UTRに含まれるイントロンである。 The nucleotide sequence of SEQ ID NO: 6 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Hspa8 gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, the polynucleotide set forth in SEQ ID NO: 12 is an intron contained in the 5'-UTR composed of the polynucleotide set forth in SEQ ID NO: 6.
 配列番号7のヌクレオチド配列は、チャイニーズハムスター由来Actb遺伝子の開始コドンの上流約1.0kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号13が、配列番号7に記載のポリヌクレオチドからなる5'-UTRに含まれるがイントロンである。 The nucleotide sequence of SEQ ID NO: 7 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.0 kbp upstream of the start codon of the Chinese hamster-derived Actb gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, SEQ ID NO: 13 is included in the 5'-UTR consisting of the polynucleotide shown in SEQ ID NO: 7, but is an intron.
 配列番号8のヌクレオチド配列は、チャイニーズハムスター由来Rpsa遺伝子の開始コドンの上流約0.6kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号14が、配列番号8に記載のポリヌクレオチドからなる5'-UTRに含まれるイントロンである。 The nucleotide sequence of SEQ ID NO: 8 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 0.6 kbp upstream of the start codon of the Chinese hamster-derived Rpsa gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, SEQ ID NO: 14 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 8.
 配列番号9のヌクレオチド配列は、チャイニーズハムスター由来Ubcの開始コドンの上流約1.7kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号15が、配列番号9に記載のポリヌクレオチドからなる5'-UTRに含まれるイントロンである。 The nucleotide sequence of SEQ ID NO: 9 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.7 kbp upstream of the start codon of Chinese hamster-derived Ubc and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, SEQ ID NO: 15 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 9.
 配列番号10のヌクレオチド配列は、チャイニーズハムスター由来EF1α遺伝子の開始コドンの上流約1.0kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号16が、配列番号10に記載のポリヌクレオチドからなる5'-UTRに含まれるイントロンである。 The nucleotide sequence of SEQ ID NO: 10 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.0 kbp upstream of the start codon of the Chinese hamster-derived EF1α gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, SEQ ID NO: 16 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 10.
 配列番号11のヌクレオチド配列は、マウス由来Ubc遺伝子の開始コドンの上流約1.5kbpにある転写開始点に対応するヌクレオチドから開始コドンに対応するヌクレオチド配列の直前のヌクレオチドからなる配列である。このうち、配列番号17が、配列番号11に記載のポリヌクレオチドからなる5'-UTRに含まれるイントロンである。 The nucleotide sequence of SEQ ID NO: 11 is a sequence consisting of the nucleotide corresponding to the transcription start point at about 1.5 kbp upstream of the start codon of the mouse-derived Ubc gene and the nucleotide immediately preceding the nucleotide sequence corresponding to the start codon. Of these, SEQ ID NO: 17 is an intron contained in the 5'-UTR composed of the polynucleotide shown in SEQ ID NO: 11.
 本発明の発現ユニットに含まれるイントロンは、NCBI等のデータベース上に公開されている配列、もしくは配列解析等の実験的手法により同定された配列であり、本発明の発現ユニット中の5'-UTRに含まれている。イントロンとしては、好ましくは、本発明の発現ユニットに含まれる5'-UTR内のイントロンが挙げられ、より好ましくは、上述の配列番号12乃至17に記載のポリヌクレオチドが挙げられる。 The intron contained in the expression unit of the present invention is a sequence published on a database such as NCBI or a sequence identified by an experimental method such as sequence analysis, and is a 5'-UTR in the expression unit of the present invention. Included in. As the intron, preferably, an intron in 5'-UTR contained in the expression unit of the present invention can be mentioned, and more preferably, the polynucleotide described in SEQ ID NOs: 12 to 17 described above can be mentioned.
 本発明の発現ユニットは、好ましくは、配列番号1、2、3、5のいずれか1つに記載のプロモーター領域の下流に、配列番号6乃至11のいずれか1つに記載の5'-UTRを連結したポリヌクレオチドである。該5'-UTRにはイントロンが含まれる。イントロンは、該5'-UTRを含む遺伝子とは異なる遺伝子に含まれるイントロンと置換してもよい。例えば、配列番号6乃至11に記載のポリヌクレオチドからなる5'-UTRのそれぞれに含まれる配列番号12乃至17に記載のポリヌクレオチドからなるイントロンは、配列番号12乃至17に記載の他のイントロンと置換してもよい。 The expression unit of the present invention is preferably 5'-UTR according to any one of SEQ ID NOs: 6 to 11 downstream of the promoter region set forth in any one of SEQ ID NOs: 1, 2, 3 and 5. It is a polynucleotide in which the above is linked. The 5'-UTR includes an intron. The intron may be replaced with an intron contained in a gene different from the gene containing the 5'-UTR. For example, the intron consisting of the polynucleotides set forth in SEQ ID NOs: 12 to 17 contained in each of the 5'-UTRs consisting of the polynucleotides set forth in SEQ ID NOs: 6 to 11 is different from the other introns set forth in SEQ ID NOs: 12 to 17. It may be replaced.
 本発明の発現ユニットの好ましい具体例としては、配列番号18~35、45~48に記載のポリヌクレオチドからなる発現ユニットが挙げられる。これらの中でより好ましい具体例として、配列番号18、24~29、及び、45~48に記載のポリヌクレオチドからなる発現ユニットが挙げられる。 Preferred specific examples of the expression unit of the present invention include expression units composed of the polynucleotides set forth in SEQ ID NOs: 18 to 35 and 45 to 48. Among these, more preferable specific examples include expression units consisting of the polynucleotides set forth in SEQ ID NOs: 18, 24-29, and 45-48.
 配列番号18~23のヌクレオチド配列は、配列番号1に記載のポリヌクレオチドからなるチャイニーズハムスター由来Hspa5遺伝子のプロモーター領域に、配列番号4に記載の32ヌクレオチドが連結されたヌクレオチド配列の下流に、チャイニーズハムスター由来Hspa8遺伝子、Actb遺伝子、Rpsa遺伝子、Ubc遺伝子、EF1α遺伝子、又はマウス由来Ubc遺伝子の5'-UTRをそれぞれ連結したポリヌクレオチドである。 The nucleotide sequences of SEQ ID NOs: 18 to 23 are downstream of the nucleotide sequence in which the 32 nucleotides of SEQ ID NO: 4 are linked to the promoter region of the Chinese hamster-derived Hspa5 gene consisting of the polynucleotides of SEQ ID NO: 1. It is a polynucleotide in which the 5'-UTR of the Hspa8 gene of origin, the Actb gene, the Rpsa gene, the Ubc gene, the EF1α gene, or the Ubc gene of mouse origin is linked, respectively.
 配列番号24~29のヌクレオチド配列は、配列番号2に記載のポリヌクレオチドからなるマウス由来Ubc遺伝子のプロモーター領域の下流に、チャイニーズハムスター由来Hspa8遺伝子、Actb遺伝子、Rpsa遺伝子、Ubc遺伝子、EF1α遺伝子、又は、マウス由来Ubc遺伝子の5'-UTRをそれぞれ連結したポリヌクレオチドである。 The nucleotide sequences of SEQ ID NOs: 24-29 are downstream of the promoter region of the mouse-derived Ubc gene consisting of the polynucleotide shown in SEQ ID NO: 2, the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1α gene, or , 5'-UTR of the mouse-derived Ubc gene, respectively.
 配列番号30~35のヌクレオチド配列は、配列番号3に記載のポリヌクレオチドからなるマウス由来Ubc遺伝子のプロモーター領域の下流に、チャイニーズハムスター由来Hspa8遺伝子、Actb遺伝子、Rpsa遺伝子、Ubc遺伝子、EF1α遺伝子、又は、マウス由来Ubc遺伝子の5'-UTRをそれぞれ連結したポリヌクレオチドである。 The nucleotide sequences of SEQ ID NOs: 30 to 35 are downstream of the promoter region of the mouse-derived Ubc gene consisting of the polynucleotide shown in SEQ ID NO: 3, the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1α gene, or , 5'-UTR of the mouse-derived Ubc gene, respectively.
 配列番号36のヌクレオチド配列は、チャイニーズハムスター由来Hspa5の開始コドンの上流約0.2kbpの転写開始点の33ヌクレオチド下流から48ヌクレオチド下流からまでの配列である。該配列は、転写活性または翻訳活性の維持または向上に寄与する配列であり、配列番号5のヌクレオチド配列に付加できる。この下流にチャイニーズハムスター由来Hspa8遺伝子、Actb遺伝子、Rpsa遺伝子、Ubc遺伝子、EF1α遺伝子、又は、マウス由来Ubc遺伝子の5'-UTRをそれぞれ連結した場合に、配列番号18~23に記載のポリヌクレオチドと同様の転写活性または翻訳活性を有する。 The nucleotide sequence of SEQ ID NO: 36 is a sequence from 33 nucleotides downstream to 48 nucleotides downstream of the transcription initiation site at about 0.2 kbp upstream of the start codon of Chinese hamster-derived Hspa5. The sequence is a sequence that contributes to the maintenance or improvement of transcriptional activity or translational activity, and can be added to the nucleotide sequence of SEQ ID NO: 5. When the Chinese hamster-derived Hspa8 gene, Actb gene, Rpsa gene, Ubc gene, EF1α gene, or mouse-derived Ubc gene 5'-UTR are linked downstream of this, the polynucleotides shown in SEQ ID NOs: 18 to 23 are used. Has similar transcriptional or translational activity.
 発現ユニットに用いるプロモーター領域の3'末端、および5'-UTRの5'末端は転写開始点、もしくは転写開始点に対応するヌクレオチドの直前のヌクレオチドであることが好ましいが、発現ユニットを設計する上で転写活性または翻訳活性を維持もしくは向上できるのであれば、プロモーター領域および5'-UTRの末端にヌクレオチドを付加することができる。付加するヌクレオチド配列は、転写開始点の上流または下流のヌクレオチド配列であって、実験的手法により発現ユニットの転写活性及び翻訳活性を評価することにより、鎖長及び領域を選択・同定することができる。 The 3'end of the promoter region used for the expression unit and the 5'end of the 5'-UTR are preferably the nucleotides immediately before the transcription initiation site or the nucleotide corresponding to the transcription initiation site. Nucleotides can be added to the promoter region and to the ends of the 5'-UTR if the transcriptional or translational activity can be maintained or improved in the. The nucleotide sequence to be added is a nucleotide sequence upstream or downstream of the transcription initiation site, and the chain length and region can be selected and identified by evaluating the transcriptional activity and translational activity of the expression unit by an experimental method. ..
 配列番号45~47のヌクレオチド配列は、配列番号29に記載のポリヌクレオチドからなるマウス由来Ubc遺伝子プロモーター領域の下流にマウス由来Ubcの5'-UTRが連結されたポリヌクレオチド中の、5'-UTR中に含まれるイントロンを、それぞれ、チャイニーズハムスター由来Hspa8、Actb、Rpsa遺伝子の5'-UTR中に含まれるイントロンと置換したポリヌクレオチド配列である。 The nucleotide sequences of SEQ ID NOs: 45 to 47 are 5'-UTRs in the polynucleotide in which the 5'-UTR of mouse-derived Ubc is linked downstream of the mouse-derived Ubc gene promoter region consisting of the polynucleotide of SEQ ID NO: 29. It is a polynucleotide sequence in which the intron contained therein is replaced with the intron contained in the 5'-UTR of the Hspa8, Actb, and Rpsa genes derived from Chinese hamster, respectively.
 配列番号48のヌクレオチド配列は、配列番号3に記載のポリヌクレオチドからなるマウス由来Ubc遺伝子プロモーター領域の下流に、配列番号6に記載のポリヌクレオチド配列の31塩基目以降の配列を含むチャイニーズハムスター由来Hspa8遺伝子の5'-UTRを連結したポリヌクレオチドである。 The nucleotide sequence of SEQ ID NO: 48 is a Chinese hamster-derived Hspa8 containing the sequence after the 31st base of the polynucleotide sequence of SEQ ID NO: 6 downstream of the mouse-derived Ubc gene promoter region consisting of the polynucleotide shown in SEQ ID NO: 3. It is a polynucleotide in which the gene 5'-UTR is linked.
 本発明の各発現ユニットに使用したプロモーター領域と5'-UTRの組み合わせを「プロモーター領域が由来する遺伝子名‐5'-UTRが由来する遺伝子名」と表記する。本発明の発現ユニットは、配列番号18乃至35、及び、45乃至48に記載のいずれか1つのヌクレオチド配列、又は配列番号18乃至35に記載のヌクレオチド配列中、イントロンに対応するヌクレオチド配列を、配列番号12乃至17に記載のいずれか1つの他のイントロンに対応するヌクレオチド配列と組換えたいずれか1つのヌクレオチド配列に対して80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは99%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドであっても良い。このような本発明の発現ユニットは、転写活性及び翻訳活性を有する。 The combination of the promoter region and 5'-UTR used for each expression unit of the present invention is referred to as "gene name from which the promoter region is derived-5'-the gene name from which the UTR is derived". The expression unit of the present invention sequences the nucleotide sequence corresponding to the intron in any one of the nucleotide sequences set forth in SEQ ID NOs: 18 to 35 and 45 to 48, or the nucleotide sequence set forth in SEQ ID NOs: 18 to 35. 80% or more, preferably 90% or more, more preferably 95% or more, particularly more than 80%, preferably 90% or more, particularly preferably 95% or more, with respect to the nucleotide sequence corresponding to any one of the other introns described in Nos. 12 to 17 and the recombinant nucleotide sequence. It may be preferably a polynucleotide consisting of a nucleotide sequence having 99% or more identity. Such an expression unit of the present invention has transcriptional activity and translational activity.
 本発明の発現ユニットは、配列番号18乃至35、及び、45乃至48に記載のヌクレオチド配列、及び、配列番号18乃至35に記載のヌクレオチド配列中、イントロンに対応するヌクレオチド配列を配列番号12乃至17に記載のいずれか1つの他のイントロンに対応するヌクレオチド配列と組換えたいヌクレオチド配列からなる群から選択されるいずれか1つのヌクレオチド配列からなるポリヌクレオチドと相補的なヌクレオチド配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドであっても良い。 In the expression unit of the present invention, among the nucleotide sequences set forth in SEQ ID NOs: 18 to 35 and 45 to 48 and the nucleotide sequences set forth in SEQ ID NOs: 18 to 35, the nucleotide sequence corresponding to the intron is represented by SEQ ID NOs: 12 to 17. Consisting with a nucleotide sequence complementary to a nucleotide consisting of any one nucleotide sequence selected from the group consisting of a nucleotide sequence corresponding to any one of the other introns described in the above and a nucleotide sequence to be recombined, and a string. It may be a polynucleotide that hybridizes under gentle conditions.
 このような各発現ユニットに使用したプロモーター領域と、置換したイントロンの組み合わせを「プロモーター領域が由来する遺伝子名-イントロンが由来する遺伝子名」と表記する。配列番号29に記載のヌクレオチド配列中、イントロンに対応するヌクレオチド配列を配列番号12乃至17に記載のいずれか1つの他のイントロンに対応するヌクレオチドと置換したヌクレオチド配列を配列番号45乃至47に示す。 The combination of the promoter region used for each expression unit and the substituted intron is referred to as "gene name from which the promoter region is derived-gene name from which the intron is derived". Among the nucleotide sequences set forth in SEQ ID NO: 29, the nucleotide sequences in which the nucleotide sequence corresponding to the intron is replaced with the nucleotide corresponding to any one of the other introns set forth in SEQ ID NOs: 12 to 17 are shown in SEQ ID NOs: 45 to 47.
 このような本発明の発現ユニットは、転写活性と翻訳活性を有する。 Such an expression unit of the present invention has transcriptional activity and translational activity.
 本発明の発現ユニットは、配列番号18乃至35及び45乃至48に記載、及び配列番号18乃至35に記載のヌクレオチド配列中、イントロンに対応するヌクレオチド配列を配列番号12乃至17に記載のいずれか1つの他のイントロンに対応するヌクレオチド配列と組換えたヌクレオチド配列からなる群から選択されるいずれか一つのヌクレオチド配列において、1又は複数、好ましくは1乃至300個、さらに好ましくは1乃至30個のヌクレオチドが欠失、置換、及び/又は付加されたヌクレオチド配列からなる変異ポリヌクレオチドであってもよい。このような本発明の発現ユニットは、転写活性及び翻訳活性を有する。 In the expression unit of the present invention, among the nucleotide sequences set forth in SEQ ID NOs: 18 to 35 and 45 to 48, and the nucleotide sequences set forth in SEQ ID NOs: 18 to 35, the nucleotide sequence corresponding to the intron is set forth in any one of SEQ ID NOs: 12 to 17. One or more, preferably 1 to 300, more preferably 1 to 30 nucleotides in any one nucleotide sequence selected from the group consisting of the nucleotide sequence corresponding to one other intron and the recombinant nucleotide sequence. May be a mutant polynucleotide consisting of a nucleotide sequence that is deleted, substituted, and / or added. Such an expression unit of the present invention has transcriptional activity and translational activity.
 前記ヌクレオチド配列の変異(欠失、置換、及び/又は付加)の導入は、Kunkel法若しくはGapped duplex法等の当該技術分野で公知の手法、又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(タカラバイオ社製)若しくはMutant-G(タカラバイオ社製)、タカラバイオ社のLA PCR in vitro Mutagenesis シリーズキット等が利用できる。このような変異ポリヌクレオチドも本発明のプロモーターとして使用することができる。 The introduction of the nucleotide sequence mutation (deletion, substitution, and / or addition) can be carried out by a method known in the art such as the Kunkel method or the Gapped duplex method, or a method similar thereto, for example, site-specific. Mutagenesis kits (for example, Mutant-K (manufactured by Takara Bio Co., Ltd.) or Mutant-G (manufactured by Takara Bio Co., Ltd.), LA PCR in vivo Mutagenesis series kit manufactured by Takara Bio Co., Ltd., etc. can be used. Such mutant polynucleotides can also be used as promoters of the present invention.
 本発明の発現ユニットの有する外来遺伝子発現亢進活性は、ホタルルシフェラーゼ等のレポーター遺伝子にコードされる蛋白質の活性、あるいは、流加培養での抗体生産量を指標として検定することが可能である。ヒトEF1α(hEF1α)由来のプロモーター領域と5'-UTRからなる発現ユニットを使用した場合と本発明の発現ユニットを使用した場合を比較して、流加培養での抗体生産量が同等以上、好ましくは1.2倍以上、より好ましくは1.5倍以上に上昇した場合、該発現ユニットが外来遺伝子発現亢進活性を有すると判断することができる。1.2倍程度以上の亢進によっても、細胞の培養スケールの削減、培養時間、及び精製工程の短縮が期待され、結果として収量の向上と培養コストの削減が可能となる。収量が向上すれば、医薬としての外来蛋白質を安定して供給することが可能となる。又、培養コストが削減されれば、医薬としての外来蛋白質の原価が軽減される。 The foreign gene expression-enhancing activity of the expression unit of the present invention can be tested using the activity of a protein encoded by a reporter gene such as firefly luciferase or the amount of antibody produced in fed-batch culture as an index. Comparing the case where the expression unit consisting of the promoter region derived from human EF1α (hEF1α) and 5'-UTR is used and the case where the expression unit of the present invention is used, the amount of antibody produced in fed-batch culture is preferably equal to or higher than that. When is increased 1.2 times or more, more preferably 1.5 times or more, it can be determined that the expression unit has a foreign gene expression enhancing activity. Even if the increase is about 1.2 times or more, it is expected that the cell culture scale can be reduced, the culture time, and the purification process can be shortened, and as a result, the yield can be improved and the culture cost can be reduced. If the yield is improved, it becomes possible to stably supply foreign proteins as pharmaceuticals. Moreover, if the culture cost is reduced, the cost of the foreign protein as a medicine is reduced.
2.外来遺伝子発現カセット
 本発明の外来遺伝子発現カセット(以下、「本発明の遺伝子発現カセット」ということもある)は、転写の読み枠の方向に、少なくとも前記1.に記載の本発明の発現ユニット、外来遺伝子、及び転写ターミネーター領域(ポリA付加シグナル)を有するものである。
2. Foreign gene expression cassette The foreign gene expression cassette of the present invention (hereinafter, also referred to as “gene expression cassette of the present invention”) is at least 1. It has the expression unit of the present invention described in the above, a foreign gene, and a transcription terminator region (poly A addition signal).
 また、ポリA付加配列は、プロモーター領域からの転写に対して転写終結を起こす活性を有する配列であればよく、プロモーター領域もしくは5'-UTRが由来する遺伝子と同じ又は異なる遺伝子のものであってもよい。 Further, the poly A addition sequence may be a sequence having an activity of causing transcription termination with respect to transcription from the promoter region, and may be the same as or different from the gene from which the promoter region or 5'-UTR is derived. May be good.
3.DNAエレメント
 前記2.に記載の本発明の発現カセットとDNAエレメントを組み合わせて使用することにより、外来遺伝子の発現をさらに亢進することができる。組み合わせて使用するDNAエレメントは、アセチル化ヒストンH3との相互作用を指標として取得することが可能である。一般にヒストン(H3、H4)のアセチル化は転写の活性化に関与しているといわれており、主に2つの説が考えられている。ヒストンテールがアセチル化することで電荷的に中和され、DNAとヒストンとの結合が緩くなるというヌクレオソームの立体構造変化が関係している説(Mellor J. (2006) Dynamic nucleosomes and gene transcription. Trends Genet. 22(6):320-329)と、様々な転写因子のリクルートに関与するという説(Nakatani Y. (2001) Histone acetylases-versatile players. Genes Cells. 6(2):79-86)である。いずれの説においても、ヒストンのアセチル化が転写活性化に関与している可能性は高く、抗アセチル化ヒストンH3抗体を用いたクロマチン免疫沈降(Chromatin Immunoprecipitation;ChIP)によって、アセチル化ヒストンH3と相互作用するDNAエレメントを濃縮することが可能である。
3. 3. DNA element 2. By using the expression cassette of the present invention described in the above in combination with a DNA element, the expression of a foreign gene can be further enhanced. The DNA element used in combination can be obtained by using the interaction with acetylated histone H3 as an index. It is generally said that acetylation of histones (H3, H4) is involved in transcriptional activation, and two main theories are considered. The theory is related to the nucleosome conformational change that the histone tail is acetylated to neutralize the charge and loosen the bond between DNA and histone (Mellor J. (2006) Dynamic nucleosomes and gene transition. Trends). In Genet. 22 (6): 320-329) and the theory that it is involved in the recruitment of various transcription factors (Nakatani Y. (2001) Histone acetylases-verstile players. Genes Cells. 6 (2): 79-86). be. In both theories, histone acetylation is likely to be involved in transcriptional activation and interacts with acetylated histone H3 by chromatin immunoprecipitation (ChIP) with anti-acetylated histone H3 antibodies. It is possible to concentrate the working DNA elements.
 本発明の発現ユニットと組み合わせて使用する、外来遺伝子の発現亢進に使用されるDNAエレメントとして、A2、A7、及び、A18を挙げることができる。A2はヒト15番染色体80966429~80974878に位置しており、AT含量62.2%、8450bpのポリヌクレオチドである。A2のヌクレオチド配列は、配列表の配列番号42に記載されている。 Examples of the DNA element used for enhancing the expression of a foreign gene, which is used in combination with the expression unit of the present invention, include A2, A7, and A18. A2 is located on human chromosome 15 80966429-80974878 and is a polynucleotide having an AT content of 62.2% and 8450 bp. The nucleotide sequence of A2 is set forth in SEQ ID NO: 42 of the Sequence Listing.
 A7はヒト11番染色体88992123~89000542に位置しており、AT含量64.52%、8420bpのポリヌクレオチドである。A7のヌクレオチド配列は、配列表の配列番号43に記載されている。 A7 is located on human chromosome 11 88992123 to 8900542, and is a polynucleotide having an AT content of 64.52% and 8420 bp. The nucleotide sequence of A7 is set forth in SEQ ID NO: 43 of the Sequence Listing.
 A18は、ヒト4番染色体111275976~111284450に位置しており、AT含量62.54%、8475bpのポリヌクレオチドである。A18のヌクレオチド配列は、配列表の配列番号44に記載されている。 A18 is a polynucleotide located on human chromosome 4 1112757976 to 1112844450, having an AT content of 62.54% and 8475 bp. The nucleotide sequence of A18 is set forth in SEQ ID NO: 44 of the Sequence Listing.
 本発明の発現ユニットと組み合わせて使用する、DNAエレメントの有する外来遺伝子発現亢進活性は、SEAP等のレポーター遺伝子にコードされる蛋白質の活性を指標として検定することが可能である。 The foreign gene expression-enhancing activity of a DNA element used in combination with the expression unit of the present invention can be tested using the activity of a protein encoded by a reporter gene such as SEAP as an index.
 本発明の発現ユニットと組み合わせて使用する場合、前記DNAエレメントのいずれか1種を単独で使用しても良く、DNAエレメントの1種を2コピー以上使用しても良い。あるいは2種以上DNAエレメントを組み合わせて使用しても良い。 When used in combination with the expression unit of the present invention, any one of the above DNA elements may be used alone, or two or more copies of one of the DNA elements may be used. Alternatively, two or more types of DNA elements may be used in combination.
 本発明において使用されるDNAエレメントは、配列番号42乃至44に示すヌクレオチド配列に対して80%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつ外来遺伝子発現亢進活性を有するヌクレオチド配列であっても良い。ヌクレオチド配列のホモロジー検索は、例えば、日本DNAデータバンク(DNA Databank of JAPAN)等を対象に、FASTAやBLAST等のプログラムを用いて行うことができる。 The DNA element used in the present invention has 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more identity with respect to the nucleotide sequences shown in SEQ ID NOs: 42 to 44. It may be a nucleotide sequence consisting of a nucleotide sequence and having a foreign gene expression-enhancing activity. The homology search of the nucleotide sequence can be performed, for example, by using a program such as FASTA or BLAST for the DNA Data Bank of Japan (DNA Databank of JAPAN) or the like.
 当業者であれば、Molecular Cloning(Sambrook, J. et al., Molecular Cloning :a Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, 10 Skyline Drive Plainview, NY (1989))等を参照することにより、DNAエレメントのこうしたホモログ遺伝子を容易に取得することができる。また、前記のヌクレオチド配列の同一性は、同様に、FASTA検索やBLAST検索により決定することができる。 If you are a person skilled in the art, please refer to Molecular Cloning (Sambrook, J. et al., Molecular Cloning: a Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Plainview, etc. Such homologous genes of DNA elements can be easily obtained. In addition, the identity of the above-mentioned nucleotide sequence can be similarly determined by FASTA search or BLAST search.
 前記ポリヌクレオチドの変異(欠失、置換、及び/又は付加)の導入は、Kunkel法若しくはGapped duplex法等の当該技術分野で公知の手法、又はこれに準ずる方法により行うことができ、例えば部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutant-K(タカラバイオ社製)若しくはMutant-G(タカラバイオ社製)、タカラバイオ社のLA PCR in vitro Mutagenesis シリーズキット等が利用できる。このような変異ポリヌクレオチドも本発明のDNAエレメントとして使用することができる。 The introduction of a mutation (deletion, substitution, and / or addition) of the polynucleotide can be carried out by a method known in the art such as the Kunkel method or the Gapped duplex method, or a method similar thereto, for example, site-specific. Mutagenesis kits (for example, Mutant-K (manufactured by Takara Bio Co., Ltd.) or Mutant-G (manufactured by Takara Bio Co., Ltd.), LA PCR in vivo Mutagenesis series kit manufactured by Takara Bio Co., Ltd., etc. can be used. Such mutant polynucleotides can also be used as the DNA element of the present invention.
4.ポリヌクレオチドの取得
 本発明において、後記の産生亢進の対象となる外来蛋白質をコードする外来遺伝子を含むポリヌクレオチドは、以下に示す一般的な方法により取得することができる。例えば、外来遺伝子が発現している細胞や組織に由来するcDNAライブラリーを、当該遺伝子断片をもとにして合成したDNAプローブを用いてスクリーニングすることにより単離することができる。mRNAの調製は、当該技術分野において通常用いられる手法により行うことができる。例えば、前記細胞又は組織を、グアニジニン試薬、フェノール試薬等で処理して全RNAを得、その後、オリゴ(dT)セルロースカラムやセファロース2Bを担体とするポリU-セファロース等を用いたアフィニティーカラム法により、あるいはバッチ法によりポリ(A)+RNA(mRNA)を得る。さらに、ショ糖密度勾配遠心法等によりポリ(A)+RNAをさらに分画してもよい。次いで、得られたmRNAを鋳型として、オリゴdTプライマー及び逆転写酵素を用いて一本鎖cDNAを合成し、該一本鎖cDNAからDNA合成酵素I、DNAリガーゼ及びRNaseH等を用いて二本鎖cDNAを合成する。合成した二本鎖cDNAをT4DNA合成酵素によって平滑化後、アダプター(例えば、EcoRIアダプター)の連結、リン酸化等を経て、λgt11等のλファージに組み込んでin vivoパッケージングすることによってcDNAライブラリーを作製する。また、λファージ以外にもプラスミドベクターを用いてcDNAライブラリーを作製することもできる。その後、cDNAライブラリーから目的のDNAを有する株(ポジティブクローン)を選択すればよい。
4. Acquisition of polynucleotide In the present invention, a polynucleotide containing a foreign gene encoding a foreign protein to be enhanced in production, which will be described later, can be obtained by the following general method. For example, a cDNA library derived from a cell or tissue expressing a foreign gene can be isolated by screening using a DNA probe synthesized based on the gene fragment. The mRNA can be prepared by a method commonly used in the art. For example, the cells or tissues are treated with a guanidinin reagent, a phenol reagent, or the like to obtain total RNA, and then an affinity column method using an oligo (dT) cellulose column or poly U-sepharose using Sepharose 2B as a carrier is used. , Or the batch method to obtain poly (A) + RNA (mRNA). Further, poly (A) + RNA may be further fractionated by a sucrose density gradient centrifugation method or the like. Next, using the obtained mRNA as a template, a single-stranded cDNA was synthesized using an oligo dT primer and a reverse transcriptase, and the single-stranded cDNA was double-stranded using DNA synthase I, DNA ligase, RNase H, or the like. Synthesize cDNA. A cDNA library is prepared by smoothing the synthesized double-stranded cDNA with a T4 DNA synthase, ligating an adapter (for example, an EcoRI adapter), phosphorylating, etc., incorporating it into a λ phage such as λgt11, and packaging it in vivo. Make. In addition to λ phage, a cDNA library can also be prepared using a plasmid vector. Then, a strain having the desired DNA (positive clone) may be selected from the cDNA library.
 また、蛋白質の産生に用いる前記発現ユニット、ターミネーター領域を含むポリヌクレオチド、前記DNAエレメント又は外来遺伝子を含むポリヌクレオチドをゲノムDNAから単離する場合は、一般的手法(Molecular Cloning(1989),Methods in Enzymology 194(1991))に従い、採取源となる生物の細胞株よりゲノムDNAを抽出し、ポリヌクレオチドを選別することにより行う。ゲノムDNAの抽出は、例えば、Cryerらの方法(Methods in Cell Biology, 12, 39-44(1975))及びP. Philippsenらの方法(Methods Enzymol., 194, 169-182(1991))に従って行うことができる。 In addition, when isolating the expression unit used for protein production, the polynucleotide containing the terminator region, and the polynucleotide containing the DNA element or foreign gene from genomic DNA, a general method (Molecular Cloning (1989), Methods in). According to Energy 194 (1991)), genomic DNA is extracted from the cell line of the organism to be collected, and polynucleotides are selected. Genomic DNA can be extracted, for example, by the method of Cryer et al. (Methods in Cell Biology, 12, 39-44 (1975)) and P. et al. It can be carried out according to the method of Philippesen et al. (Methods Enzymol., 194, 169-182 (1991)).
 目的とするプロモーター領域、5'-UTR、イントロン、DNAエレメント又は外来遺伝子を含むポリヌクレオチドの取得は、例えばPCR法(PCR Technology.Henry A.Erlich,Atockton press(1989))によって行うこともできる。PCR法を用いたポリヌクレオチドの増幅には、プライマーとして20~30merの合成1本鎖DNAを、鋳型としてゲノムDNAを用いる。増幅された遺伝子はポリヌクレオチド配列を確認した後、用いる。PCRの鋳型としては、バクテリア人工染色体(BAC)等のゲノムDNAライブラリーを使用することが可能である。 The acquisition of the polynucleotide containing the target promoter region, 5'-UTR, intron, DNA element or foreign gene can also be performed by, for example, the PCR method (PCR Technology. Henry A. Erlich, Attackton press (1989)). For the amplification of polynucleotides using the PCR method, 20 to 30 mer synthetic single-stranded DNA is used as a primer, and genomic DNA is used as a template. The amplified gene is used after confirming the polynucleotide sequence. As a PCR template, a genomic DNA library such as a bacterial artificial chromosome (BAC) can be used.
 一方、配列未知の外来遺伝子を含むポリヌクレオチドの取得は、(a)常法により遺伝子ライブラリーを作製し、(b)作製された遺伝子ライブラリーから所望のポリヌクレオチドを選択し、当該ポリヌクレオチドを増幅することによって行うことができる。遺伝子ライブラリーは、採取源となる生物の細胞株から常法により得た染色体DNAを適当な制限酵素によって部分消化して断片化し、得られた断片を適当なベクターに連結し、該ベクターを適当な宿主に導入することによって調製することができる。また、細胞よりmRNAを抽出し、ここからcDNAを合成後、適当なベクターに連結し、該ベクターを適当な宿主に導入することによっても調製することができる。この際用いられるベクターとしては、通常公知の遺伝子ライブラリー調製用ベクターとして知られるプラスミドを用いることができ、ファージベクター又はコスミド等も広く用いることができる。形質転換又は形質導入を行う宿主は、前記ベクターの種類に応じたものを用いればよい。外来遺伝子を含むポリヌクレオチドの選択は、前記遺伝子ライブラリーから、外来遺伝子に特有の配列を含む標識プローブを用いるコロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法等によって行う。 On the other hand, in order to obtain a polynucleotide containing a foreign gene having an unknown sequence, (a) a gene library is prepared by a conventional method, (b) a desired polynucleotide is selected from the prepared gene library, and the polynucleotide is selected. It can be done by amplifying. In the gene library, chromosomal DNA obtained by a conventional method from the cell line of the organism to be collected is partially digested and fragmented with an appropriate restriction enzyme, and the obtained fragment is ligated to an appropriate vector, and the vector is appropriately used. It can be prepared by introducing it into a suitable host. It can also be prepared by extracting mRNA from cells, synthesizing cDNA from this, ligating it to an appropriate vector, and introducing the vector into an appropriate host. As the vector used at this time, a plasmid known as a commonly known vector for preparing a gene library can be used, and a phage vector, cosmid, or the like can also be widely used. As the host for transformation or transduction, a host corresponding to the type of the vector may be used. A polynucleotide containing a foreign gene is selected from the gene library by a colony hybridization method, a plaque hybridization method, or the like using a labeled probe containing a sequence peculiar to the foreign gene.
 また外来遺伝子を含むポリヌクレオチドを化学的に全合成することもできる。例えば相補的な2対のオリゴヌクレオチドを作製しこれらをアニールさせる方法や、数本のアニールされたDNAをDNAリガーゼにより連結する方法、又は一部相補的な数本のオリゴヌクレオチドを作製しPCRによりギャップを埋める方法等により、遺伝子を合成することができる。 It is also possible to chemically totally synthesize a polynucleotide containing a foreign gene. For example, a method of preparing two pairs of complementary oligonucleotides and annealing them, a method of linking several annealed DNAs with DNA ligase, or a method of preparing several partially complementary oligonucleotides and performing PCR. Genes can be synthesized by a method of filling the gap or the like.
 ポリヌクレオチド配列の決定は、通常の方法、例えばジデオキシ法(Sanger et al., Proc. Natl. Acad. Sci., USA, 74, 5463-5467(1977))等により行うことができる。更に前記ポリヌクレオチド配列の決定は、市販のシークエンスキット等を用いることによっても容易に行い得る。 The polynucleotide sequence can be determined by a usual method, for example, the dideoxy method (Sanger et al., Proc. Natl. Acad. Sci., USA, 74, 5463-5467 (1977)) or the like. Further, the polynucleotide sequence can be easily determined by using a commercially available sequence kit or the like.
5.外来遺伝子発現ベクター
 本発明の外来遺伝子発現ベクターとしては、前記1.に記載の発現ユニットを含む前記2.に記載の外来遺伝子発現カセットを含むベクターが提供される。
5. Foreign gene expression vector The foreign gene expression vector of the present invention includes the above 1. 2. The expression unit according to the above 2. A vector containing the foreign gene expression cassette described in the above is provided.
 本発明の外来遺伝子発現ベクターは、前記3.に記載のDNAエレメントの1種、DNAエレメントの1種を2個以上のコピー数、DNAエレメントの2種以上の組み合わせを含んでもよい。前記の外来遺伝子発現ベクターによって外来遺伝子を宿主細胞内で発現させる際には、DNAエレメントを遺伝子発現カセットの直前又は直後に配置してもよく、又は遺伝子発現カセットから離れた位置に配置しても良い。また、複数のDNAエレメントを含む1つの外来遺伝子発現ベクターを用いてもよい。なお、DNAエレメントの向きは、遺伝子発現カセットに対して順方向又は逆方向のいずれであっても良い。 The foreign gene expression vector of the present invention is described in 3. above. One of the DNA elements described in the above, one type of DNA element may include two or more copies, and a combination of two or more types of DNA elements. When the foreign gene is expressed in the host cell by the foreign gene expression vector, the DNA element may be placed immediately before or after the gene expression cassette, or may be placed at a position away from the gene expression cassette. good. Moreover, you may use one foreign gene expression vector containing a plurality of DNA elements. The orientation of the DNA element may be either forward or reverse with respect to the gene expression cassette.
 外来遺伝子としては、特に限定はされないが、分泌型アルカリフォスファターゼ(SEAP)、緑色蛍光蛋白質(GFP)、ルシフェラーゼ等のレポーター遺伝子、α-アミラーゼ遺伝子、α-ガラクトシダーゼ遺伝子等の各種酵素遺伝子、医薬上有用な生理活性蛋白質であるインターフェロンα、インターフェロンγ等の各種インターフェロン遺伝子、IL1、IL2等の各種インターロイキン遺伝子、エリスロポエチン(EPO)遺伝子、顆粒球コロニー刺激因子(G-CSF)遺伝子等の各種サイトカイン遺伝子、成長因子遺伝子、又は多量体蛋白質をコードする遺伝子、例えば抗体又はその抗原結合性断片であるヘテロ多量体をコードする遺伝子等を挙げることができる。これらの遺伝子はいかなる手法によって得られるものでもよい。 The foreign gene is not particularly limited, but is useful for pharmaceutical purposes, such as secretory alkaline phosphatase (SEAP), green fluorescent protein (GFP), reporter genes such as luciferase, various enzyme genes such as α-amylase gene and α-galactosidase gene. Various interferon genes such as interferon α and interferon γ, various interleukin genes such as IL1 and IL2, various cytokine genes such as erythropoetin (EPO) gene and granulocyte colony stimulating factor (G-CSF) gene, which are physiologically active proteins. Examples thereof include a growth factor gene or a gene encoding a multimeric protein, for example, a gene encoding an antibody or a heteromultimer which is an antigen-binding fragment thereof. These genes may be obtained by any method.
 「抗体の抗原結合性断片」とは、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab’)2、Fv、scFv、diabody、線状抗体、及び抗体断片より形成された多特異性抗体等を含む。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の抗原結合性断片に含まれる。但し、抗原との結合能を有している限りこれらの分子に限定されない。また、これらの抗原結合性断片には、抗体蛋白質の全長分子を適当な酵素で処理したもののみならず、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生された蛋白質も含まれる。 The "antigen-binding fragment of an antibody" means a partial fragment of an antibody having an antigen-binding activity, and is a Fab, F (ab') 2, Fv, scFv, diabody, linear antibody, and antibody fragment. Includes more specific multispecific antibodies and the like. In addition, Fab', which is a monovalent fragment of the variable region of the antibody obtained by treating F (ab') 2 under reducing conditions, is also included in the antigen-binding fragment of the antibody. However, it is not limited to these molecules as long as it has the ability to bind to an antigen. In addition, these antigen-binding fragments include not only those obtained by treating the full-length molecule of an antibody protein with an appropriate enzyme, but also proteins produced in an appropriate host cell using a genetically modified antibody gene. included.
 また、本発明の外来遺伝子発現ベクターには、形質転換体を選抜するための選択マーカーを含めることができる。例えば、セルレニン、オーレオバシジン、ゼオシン、カナバニン、シクロヘキシミド、ハイグロマイシン、ピューロマイシン、ブラストシジン、テトラサイクリン、カナマイシン、アンピシリン、ネオマイシン等の薬剤に対して耐性を付与する薬剤耐性マーカー等を使用することで、形質転換体の選抜を行うことが可能である。また、エタノール等に対する溶剤耐性や、グリセロールや塩等に対する浸透圧耐性、銅等の金属イオン耐性等を付与する遺伝子をマーカーにすることで、形質転換体の選抜を行うことも可能である。 Further, the foreign gene expression vector of the present invention can include a selection marker for selecting a transformant. For example, by using a drug resistance marker that imparts resistance to drugs such as cerulenin, aureobasidin, zeocin, canavanin, cycloheximide, hygromycin, puromycin, blastocidin, tetracycline, kanamycin, ampicillin, neomycin, etc. It is possible to select transformants. Further, it is also possible to select a transformant by using a gene that imparts solvent resistance to ethanol or the like, osmotic pressure resistance to glycerol, salts or the like, metal ion resistance to copper or the like as a marker.
 本発明の外来遺伝子発現ベクターは、染色体DNAに組込まれないベクターであってもよい。一般的に、外来遺伝子発現ベクターは宿主細胞に遺伝子導入された後、ランダムに染色体に組込まれるが、simian virus 40(SV40)やpapillomavirus(BPV、HPV)、EBV等の哺乳動物ウイルス由来の構成成分を用いることにより、導入された宿主細胞中で自己複製が可能なepisomal vectorとして使用することができる。例えば、SV40由来の複製起点及びtrans-acting factorであるSV40 large T抗原をコードした配列を有するベクターやEBV由来のoriP及びEBNA-1をコードした配列を有するベクター等が広く用いられている。DNAエレメントの効果はベクターの種類、あるいは染色体への組込み有無を問わず、外来遺伝子発現亢進活性を示すことが可能である。 The foreign gene expression vector of the present invention may be a vector that is not incorporated into chromosomal DNA. Generally, a foreign gene expression vector is randomly integrated into a chromosome after being introduced into a host cell, but is a component derived from a mammalian virus such as simian virus 40 (SV40), papilomavirus (BPV, HPV), and EBV. By using, it can be used as an expression vector capable of self-renewal in the introduced host cell. For example, a vector having a sequence encoding an SV40-derived replication origin and a trans-acting factor SV40 large T antigen, a vector having a sequence encoding EBV-derived oriP and EBNA-1, and the like are widely used. The effect of the DNA element can show the activity of enhancing the expression of foreign genes regardless of the type of vector or the presence or absence of integration into the chromosome.
6.形質転換細胞
 本発明の形質転換細胞は、前記5.の外来遺伝子発現ベクターを用いて導入した形質転換細胞である。
6. Transformed cells The transformed cells of the present invention are described in 5. above. It is a transformed cell introduced by using the foreign gene expression vector of.
 形質転換させる宿主細胞としては、真核細胞、好ましくは哺乳動物細胞、さらに好ましくはヒト、マウス、ラット、ハムスター、サル、又はウシ由来の細胞である。哺乳動物細胞としては、COS-1細胞、HEK293細胞、CHO細胞(CHO-K1、DG44、CHO dhfr-、CHO-S)等を挙げることができるが、これらに限定されない。 The host cell to be transformed is a eukaryotic cell, preferably a mammalian cell, more preferably a human, mouse, rat, hamster, monkey, or bovine-derived cell. Examples of mammalian cells include, but are not limited to, COS-1 cells, HEK293 cells, CHO cells (CHO-K1, DG44, CHO dhfr-, CHO-S) and the like.
 本発明において、宿主細胞への発現ベクターの導入方法としては、導入遺伝子が宿主内にて安定に存在し、かつ適宜発現させることができる方法であればいかなる方法でもよく、一般的に用いられている方法、例えば、リン酸カルシウム法(Ito et al., (1984) Agric.Biol.Chem.,48,341)、エレクトロポレーション法(Becker, D.M. et al. (1990) Methods. Enzymol., 194,182-187)、スフェロプラスト法(Creggh et al., Mol.Cell.Biol.,5,3376(1985))、酢酸リチウム法(Itoh, H. (1983) J. Bacteriol. 153, 163-168)、リポフェクション法等を挙げることができる。 In the present invention, the method for introducing an expression vector into a host cell may be any method as long as the transgene is stably present in the host and can be appropriately expressed, and is generally used. Methods such as, for example, calcium phosphate method (Ito et al., (1984) Vector Biol. Chem., 48, 341), electroporation method (Becker, DM et al. (1990) Methods. Enzymol., 194,182-187), spheroplast method (Cregch et al., Mol. Cell. Biol., 5,3376 (1985)), lithium acetate method (Itoh, H. (1983) J. Vector. 153, 163). -168), the lipofection method and the like can be mentioned.
7.外来蛋白質の製造方法
 本発明の外来蛋白質の製造方法は、前記6.の項目に記載の形質転換細胞を公知の方法により培養し、その培養物から採取し、精製することにより行うことができる。「培養物」とは、培養上清のほか、培養細胞、又は細胞の破砕物のいずれをも意味するものである。なお、6.の項目に記載の形質転換細胞を用いて産生することのできる外来蛋白質としては、単量体蛋白質のみならず多量体蛋白質を選択することも可能である。異なる複数のサブユニットから構成されるヘテロ多量体蛋白質の生産を行う場合、これらのサブユニットをコードしている複数の遺伝子を、それぞれ6.の項目に記載の宿主細胞に導入する必要がある。
7. Method for producing foreign protein The method for producing a foreign protein of the present invention is described in 6. The transformed cells described in the above item can be cultured by a known method, collected from the culture, and purified. The “culture” means not only a culture supernatant but also a cultured cell or a crushed cell product. In addition, 6. As the foreign protein that can be produced using the transformed cells described in the above item, not only a monomeric protein but also a multimeric protein can be selected. When producing a heteromultimeric protein composed of a plurality of different subunits, a plurality of genes encoding these subunits should be used for each of the genes. It is necessary to introduce into the host cell described in the item of.
 形質転換細胞を培養する方法は、その宿主細胞の培養に用いられる通常の方法に従って行うことができる。 The method for culturing transformed cells can be carried out according to the usual method used for culturing the host cells.
 形質転換細胞が哺乳動物細胞の場合は、例えば37℃、5%又は8%CO条件下で培養し、培養時間は24~1000時間程度であり、培養は静置、振とう、攪拌、通気下の回分培養、流加培養、灌流培養又は連続培養等により実施することができる。 When the transformed cells are mammalian cells, they are cultured under the conditions of, for example, 37 ° C., 5% or 8% CO 2 , and the culture time is about 24 to 1000 hours. The culture is allowed to stand, shake, stir, and aerate. It can be carried out by the lower batch culture, fed-batch culture, perfusion culture, continuous culture and the like.
 前記の培養物(培養液)から外来蛋白質遺伝子の発現産物の確認は、SDS-PAGE、ウエスタンブロット解析、ELISA等により行うことができる。 Confirmation of the expression product of the foreign protein gene from the above culture (culture solution) can be performed by SDS-PAGE, Western blot analysis, ELISA or the like.
8.抗体蛋白質の製造方法
 前記7.の項目に記載の製造方法を用いて製造されるヘテロ多量体蛋白質としては抗体蛋白質を挙げることができる。抗体蛋白質は、2分子の重鎖ポリペプチド及び2分子の軽鎖ポリペプチドからなる4量体蛋白質である。従って、抗原結合能を維持した形態で抗体蛋白質を取得するためには、前記6.の項目に記載の形質転換細胞において、重鎖及び軽鎖の遺伝子の双方が導入されている必要がある。この場合に、重鎖及び軽鎖の遺伝子発現カセットは、同じ発現ベクター上に存在しても良く、あるいは異なる発現ベクター上に存在していても良い。
8. Method for producing antibody protein 7. An antibody protein can be mentioned as a heteromultimeric protein produced by using the production method described in the above item. The antibody protein is a tetrameric protein consisting of two molecules of heavy chain polypeptide and two molecules of light chain polypeptide. Therefore, in order to obtain the antibody protein in a form that maintains the antigen-binding ability, the above 6. In the transformed cells described in the above item, both heavy chain and light chain genes need to be introduced. In this case, the heavy and light chain gene expression cassettes may be present on the same expression vector or on different expression vectors.
 本発明において製造される抗体としては、ウサギ、マウス、ラット等実験動物を所望の抗原で免疫して作製された抗体を挙げることができる。また、前記の抗体を原料とするキメラ抗体、及びヒト化抗体も本発明において製造される抗体として挙げることができる。さらに、遺伝子改変動物又はファージディスプレイ法によって取得されるヒト抗体についても、本発明において製造される抗体である。 Examples of the antibody produced in the present invention include an antibody produced by immunizing an experimental animal such as a rabbit, mouse, or rat with a desired antigen. Further, a chimeric antibody using the above antibody as a raw material and a humanized antibody can also be mentioned as the antibody produced in the present invention. Furthermore, the human antibody obtained by the genetically modified animal or the phage display method is also an antibody produced in the present invention.
 抗体製造に用いる抗体遺伝子としては、該抗体遺伝子より転写・翻訳される重鎖ポリペプチドと軽鎖ポリペプチドの組合せが、任意の抗原蛋白質と結合する活性を保持している限り、特定のポリヌクレオチド配列を持つ抗体遺伝子に限定されない。 As an antibody gene used for antibody production, a specific polynucleotide is used as long as the combination of the heavy chain polypeptide and the light chain polypeptide transcribed and translated from the antibody gene retains the activity of binding to an arbitrary antigen protein. It is not limited to the antibody gene having the sequence.
 また、抗体遺伝子としては、必ずしも抗体の全長分子をコードしている必要はなく、抗体の抗原結合性断片をコードしている遺伝子を用いることができる。これらの抗原結合性断片をコードする遺伝子は、抗体蛋白質の全長分子をコードする遺伝子を遺伝子工学的に改変することによって取得することができる。 Further, as the antibody gene, it is not always necessary to encode the full-length molecule of the antibody, and a gene encoding an antigen-binding fragment of the antibody can be used. The gene encoding these antigen-binding fragments can be obtained by genetically engineering the gene encoding the full-length molecule of the antibody protein.
9.その他の外来蛋白質の製造方法
 本発明の製造方法の対象となる外来蛋白質としては、前述の抗体に加え、ヒト又は非ヒト動物由来の各種蛋白質、その抗原結合性断片、その改変体等を挙げることができる。そのような蛋白質等としては、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、C型ナトリウム利尿ペプチド(CNP)、バソプレッシン、ソマトスタチン、成長ホルモン(GH)、インスリン、オキシトシン、グレリン、レプチン、アディポネクチン、レニン、カルシトニン、オステオプロテジェリン、インスリン様成長因子(IGF)等のペプチドホルモン、インターロイキン、ケモカイン、インターフェロン、腫瘍壊死因子(TNFα/βほかTNFスーパーファミリー等)、神経成長因子(NGF)、細胞増殖因子(EGF、FGF、PDGF、HGF、TGF等)、造血因子(CSF、G-CSF、エリスロポエチン等)、アディポカイン等のサイトカイン、ТNF受容体等の受容体、リゾチーム、プロテアーゼ、プロテイナーゼ、ペプチダーゼ等の酵素、その機能性断片(元の蛋白質の生物活性を一部又は全部保持している断片)、それらの蛋白質を含むことからなる融合蛋白質等を挙げることができるが、それらに限定されるものではない。
9. Other foreign protein production methods Examples of the foreign proteins to be produced by the production method of the present invention include various proteins derived from humans or non-human animals, antigen-binding fragments thereof, variants thereof, and the like, in addition to the above-mentioned antibodies. Can be done. Examples of such proteins include atrial natriuretic peptide (ANP), cerebral natriuretic peptide (BNP), C-type natriuretic peptide (CNP), vasopressin, somatostatin, growth hormone (GH), insulin, oxytocin, grelin, etc. Peptide hormones such as leptin, adiponectin, renin, calcitonin, osteoprotegerin, insulin-like growth factor (IGF), interleukin, chemokine, interferon, tumor necrosis factor (TNFα / β and other TNF superfamily), nerve growth factor (NGF) ), Cell growth factors (EGF, FGF, PDGF, HGF, TGF, etc.), hematopoietic factors (CSF, G-CSF, erythropoetin, etc.), cytokines such as adipokine, receptors such as ТNF receptor, lysoteam, protease, proteinase, Examples include, but are limited to, enzymes such as peptidases, functional fragments thereof (fragments that retain some or all of the biological activity of the original protein), fusion proteins that include those proteins, and the like. It's not something.
 以下、実施例により本発明を具体的に説明する。ただし、これらの実施例は本発明の技術的範囲をなんら限定するものではない。本発明の実施例で用いるプラスミド、制限酵素、DNA修飾酵素等は市販のものであり、常法に従って使用することができる。また、DNAのクローニング、ヌクレオチド配列の決定、宿主細胞の形質転換、形質転換細胞の培養、得られる培養物からの蛋白質の採取、精製等に用いた操作についても当業者によく知られているものであるか、文献により知ることのできるものである。 Hereinafter, the present invention will be specifically described with reference to Examples. However, these examples do not limit the technical scope of the present invention in any way. The plasmids, restriction enzymes, DNA modifying enzymes and the like used in the examples of the present invention are commercially available and can be used according to a conventional method. Also well known to those skilled in the art are operations used for cloning DNA, determining nucleotide sequences, transforming host cells, culturing transformed cells, collecting proteins from the resulting cultures, purifying, etc. It is something that can be known from the literature.
(実施例1)プロモーター領域及び5'-UTRのクローニング
 チャイニーズハムスター由来Hspa5遺伝子、Actb遺伝子、Rpsa遺伝子、Ubc遺伝子、EF1α遺伝子のプロモーター領域及び5'-UTRのクローニングは特許文献5に記載の方法に準じて行うことができる。
(Example 1) Cloning of promoter region and 5'-UTR Cloning of the promoter region of Chinese hamster-derived Hspa5 gene, Actb gene, Rpa gene, Ubc gene, EF1α gene and 5'-UTR is described in Patent Document 5. It can be done according to the same procedure.
 チャイニーズハムスター由来Hspa8遺伝子の5'-UTRとマウス由来Ubc遺伝子のプロモーター領域及び5'-UTRは、表1に記載のデータベースを参考にした。表1に記載のプライマーセットとPrimeSTAR Max DNA Polymerase(タカラバイオ)もしくはKOD FX Neo(東洋紡)を用いてPCR増幅し、QIAquick PCR Purification kit(QIAGEN)で精製して目的とするヌクレオチド配列を得た。 For the 5'-UTR of the Chinese hamster-derived Hspa8 gene and the promoter region and 5'-UTR of the mouse-derived Ubc gene, the database shown in Table 1 was referred to. PCR amplification was performed using the primer set shown in Table 1 and PrimeSTAR Max DNA Polymerase (Takara Bio) or KOD FX Neo (Toyobo), and purification was performed with QIAquick PCR Purification kit (QIAGEN) to obtain the desired nucleotide sequence.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 配列番号39に記載のポリヌクレオチドをPCR増幅して、Hspa8遺伝子の5’-UTRであるポリヌクレオチドを得た。配列番号29に記載のポリヌクレオチドを発現ユニットとして用いて、マウス由来Ubc遺伝子のプロモーター領域及び5'-UTR配列であるポリヌクレオチド得た。 The polynucleotide shown in SEQ ID NO: 39 was PCR-amplified to obtain a polynucleotide that is the 5'-UTR of the Hspa8 gene. The polynucleotide set forth in SEQ ID NO: 29 was used as an expression unit to obtain a promoter region of a mouse-derived Ubc gene and a polynucleotide having a 5'-UTR sequence.
(実施例2)抗体発現量を指標とした発現ユニットの流加培養による評価
(2-1)抗体発現ベクターの構築
 抗体発現ベクターの構築には、特許文献5に記載のヒト化抗体遺伝子Y発現ベクターpDSLH3.1-Hspa5-Yを使用した。pDSLH3.1-Hspa5-Y内のHspa5に該当するヌクレオチド配列の領域を配列番号18~22、24~26、29に記載のヌクレオチド配列と置換することで、抗体発現ベクターを構築した。ベクターの概略図を図3に示す。pDSLH3.1-Hspa5-Y、pDSLH3.1-hEF1α-Yは特許文献5に記載されているものを使用した。
(2-2)ヒト化抗体Y発現ステーブルプールの作製
 CHO-K1細胞(ATCC)を無血清培地を用いた浮遊状態での培養が可能となるように馴化し、宿主細胞CHO-O1細胞を得た。CHO-O1細胞に、(2-1)で構築した抗体発現ベクターを、遺伝子導入装置Neon Transfection System(サーモフィッシャーサイエンティフィック社製)を用いて遺伝子導入し、T-25フラスコにて5%CO、37℃で培養した。遺伝子導入の1日後にGeneticin(サーモフィッシャーサイエンティフィック社製)を終濃度800 μg/mLで添加し、1週間薬剤選択培養を行った。その後、125mL容三角フラスコにて5%CO、37℃で培養し、ヒト化抗体Y発現ステーブルプールを作製した。
(2-3)ヒト化抗体Y発現ステーブルプールの流加培養による抗体生産量評価
 (2-2)で作製したヒト化抗体Y発現ステーブルプールを用いて、125 mL容三角フラスコにて流加培養を行った。基礎培地にG13(富士フィルム和光純薬社製カスタム培地)、フィード培地にF13(富士フィルム和光純薬社製カスタム培地)を用いた。
(Example 2) Evaluation by feeding culture of an expression unit using the antibody expression level as an index (2-1) Construction of antibody expression vector The humanized antibody gene Y expression described in Patent Document 5 is used for construction of the antibody expression vector. The vector pDSLH3.1-Hspa5-Y was used. An antibody expression vector was constructed by substituting the region of the nucleotide sequence corresponding to Hspa5 in pDSLH3.1-Hspa5-Y with the nucleotide sequence set forth in SEQ ID NOs: 18-22, 24-26, 29. A schematic diagram of the vector is shown in FIG. As pDSLH3.1-Hspa5-Y and pDSLH3.1-hEF1α-Y, those described in Patent Document 5 were used.
(2-2) Preparation of humanized antibody Y expression stable pool CHO-K1 cells (ATCC) are acclimated so that they can be cultured in a suspended state using a serum-free medium, and host cell CHO-O1 cells are prepared. Obtained. The antibody expression vector constructed in (2-1) was introduced into CHO-O1 cells using a gene transfer device Neon Transfection System (manufactured by Thermo Fisher Scientific), and 5% CO was introduced in a T-25 flask. 2 , 37 ° C. was cultured. One day after gene transfer, Geneticin (manufactured by Thermo Fisher Scientific Co., Ltd.) was added at a final concentration of 800 μg / mL, and drug-selective culture was carried out for 1 week. Then, the cells were cultured in a 125 mL Erlenmeyer flask at 5% CO 2 and 37 ° C. to prepare a humanized antibody Y expression stable pool.
(2-3) Evaluation of antibody production by fed-batch culture of humanized antibody Y expression stable pool Using the humanized antibody Y expression stable pool prepared in (2-2), flow in a 125 mL Erlenmeyer flask. Fed-batch was performed. G13 (custom medium manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as the basal medium, and F13 (custom medium manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as the feed medium.
 ステーブルプールの生細胞数、抗体生産量の推移を、それぞれ図4A、図4Bに示す。培養14日目の各発現ユニットでの抗体生産量は、それぞれHspa5遺伝子のプロモーター領域と5'-UTRから構成される発現ユニット(Hspa5-Hspa5)と比較して、Hspa5-Hspa8で2.2倍、Hspa5-Actbで1.9倍、Hspa5-Rpsaで1.3倍、Hspa5-chUbcおよびHspa5-EF1αでそれぞれ2.0倍に達した。これは、ヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニット(hEF1α-hEF1α)と比較して約3.9~6.7倍の値に達し、現在頻繁に使用されているプロモーターでの抗体生産量を大きく上回った。 Changes in the number of viable cells and antibody production in the stable pool are shown in FIGS. 4A and 4B, respectively. The amount of antibody produced by each expression unit on the 14th day of culture was 2.2 times higher for Hspa5-Hspa8 than for the expression unit (Hspa5-Hspa5) composed of the promoter region of the Hspa5 gene and 5'-UTR, respectively. , 1.9 times for Hspa5-Actb, 1.3 times for Hspa5-Rpsa, and 2.0 times for Hspa5-chUbc and Hspa5-EF1α, respectively. This is about 3.9 to 6.7 times higher than the expression unit (hEF1α-hEF1α) composed of the promoter region of the human EF1α gene and 5'-UTR, and is currently frequently used. It greatly exceeded the amount of antibody produced by the promoter.
 また、mUbc遺伝子のプロモーターと各5'-UTRとからなる発現ユニットを導入したステーブルプールの生細胞数、抗体生産量の推移をそれぞれ図5A、図5Bに示す。培養14日目の各発現ユニットでの抗体生産量は、mUbc-mUbcに対してmUbc-Hspa8で1.6倍、mUbc-Actbで2.1倍、mUbc-Rpsaで1.1倍に達した。これは、hEF1α-hEF1αと比較して約4.6~8.1倍の値に達し、現在頻繁に使用されているプロモーターでの抗体生産量を大きく上回った。 In addition, the changes in the number of viable cells and the amount of antibody produced in the stable pool into which the expression unit consisting of the promoter of the mUbc gene and each 5'-UTR was introduced are shown in FIGS. 5A and 5B, respectively. The antibody production in each expression unit on the 14th day of culture reached 1.6 times for mUbc-Hspa8, 2.1 times for mUbc-Actb, and 1.1 times for mUbc-Rpsa with respect to mUbc-mUbc. .. This reached a value of about 4.6 to 8.1 times that of hEF1α-hEF1α, which greatly exceeded the amount of antibody produced by the promoters currently frequently used.
(実施例3)一過性発現でのルシフェラーゼ発光量を指標としたマウス由来Ubcプロモーター領域の検討
(3-1)ルシフェラーゼ発現ベクターの構築
 ルシフェラーゼ発現ベクターは、pGL4.10(プロメガ社製)に配列番号29又は35に記載のヌクレオチド配列を挿入して構築した。
(3-2)一過性発現でのルシフェラーゼ発光量評価
 CHO-O1細胞に、Lipofectamin2000 CD(サーモフィッシャーサイエンティフィック社製)を用いて、 (3-1)で構築したルシフェラーゼ発現ベクターを、コントロールベクターpGL4.74と同時に遺伝子導入した。遺伝子導入後、24時間後に細胞を遠心分離(1000 rpm、3min)して1.5 mLチューブに回収し、PBSバッファーで洗浄した。その後、Dual-Luciferase Reporter Assay S ystem (プロメガ社製)を用いてルシフェラーゼ発光量を測定した。尚、pGL4.10上のFirefly由来ルシフェラーゼの発光量をpGL4.74上のRenilla由来ルシフェラーゼの発光量で割った値をプロモーター活性とした(図6)。ルシフェラーゼ発光を評価した結果、TATA-boxから上流0.6kb以上を有する全長約2.1kbの領域がmUbc遺伝子のプロモーター領域全長と同等のプロモーター活性を得られ、mUbc遺伝子のプロモーター領域が転写活性を示すには転写開始点から開始コドン上流2.1kb以上の領域が必要であると推察された。
(Example 3) Examination of mouse-derived Ubc promoter region using the amount of luciferase luminescence in transient expression as an index (3-1) Construction of luciferase expression vector The luciferase expression vector is arranged in pGL4.10 (manufactured by Promega). The nucleotide sequence of No. 29 or 35 was inserted and constructed.
(3-2) Evaluation of luciferase luminescence amount in transient expression Using Lipofectamine2000 CD (manufactured by Thermo Fisher Scientific Co., Ltd.) in CHO-O1 cells, the luciferase expression vector constructed in (3-1) was controlled. The gene was introduced at the same time as the vector pGL4.74. Twenty-four hours after gene transfer, cells were centrifuged (1000 rpm, 3 min), collected in 1.5 mL tubes, and washed with PBS buffer. Then, the amount of luciferase luminescence was measured using a Dual-Luciferase Reporter Assay System (manufactured by Puromega). The promoter activity was defined as the value obtained by dividing the luminescence amount of Firefly-derived luciferase on pGL4.10 by the luminescence amount of Renilla-derived luciferase on pGL4.74 (FIG. 6). As a result of evaluating luciferase luminescence, a region having a total length of about 2.1 kb upstream of TATA-box and having a total length of about 2.1 kb was obtained with a promoter activity equivalent to the total length of the promoter region of the mUbc gene, and the promoter region of the mUbc gene exhibited transcriptional activity. It was inferred that a region of 2.1 kb or more upstream of the start codon from the transcription start point was required to show.
 (実施例4)抗体発現量を指標としたHspa5遺伝子のプロモーター領域鎖長の流加培養による検討
(4-1)抗体発現ベクターの構築およびヒト化抗体Y発現ステーブルプールの作製
 実施例(2-1)に記載と同様の手法で、Hspa5-Hspa8に含まれるHspa5遺伝子のプロモーター領域が転写開始点以降0、8、16、24、32、40、48ヌクレオチド下流まで含まれる発現ユニットを有するヒト化抗体Y発現ベクターを構築した。その後、実施例(2-2)に記載と同様の手法でCHO-O1細胞へ遺伝子導入し、ヒト化抗体Y発現ステーブルプールを作製した。
(4-2)ヒト化抗体Y発現ステーブルプールの流加培養による抗体生産量評価
実施例(2-3)に記載と同様の手法で、(4-1)で作製したステーブルプールを流加培養することにより抗体生産量を評価した。作製したステーブルプールの生細胞数の推移および抗体生産量をそれぞれ図7A、図7Bに示す。発現ユニットに含まれるHspa5遺伝子のプロモーター領域の鎖長に関わらず、抗体生産量はHspa5遺伝子のプロモーター領域と5'-UTRから構成される発現ユニット(Hspa5-Hspa5)を用いた場合と比較して約1.7~2.3倍に達した。これはヒトEF1α遺伝子のプロモーター領域と5'-UTRから構成される発現ユニット(hEF1α-hEF1α)を用いた場合の約3.2~4.4倍に相当し、現在頻繁に使用されているプロモーターでの抗体生産量を大きく上回った。また、以上の結果から発現ユニットにはHspa5遺伝子のプロモーター領域の転写開始点以降+0~+48ヌクレオチド下流までの配列を連結しても抗体発現量を維持できることが示され、転写開始点以降に一定のヌクレオチド配列を連結可能であることが示唆された。
(Example 4) Examination by infusion culture of promoter region chain length of Hspa5 gene using antibody expression level as an index (4-1) Construction of antibody expression vector and preparation of humanized antibody Y expression stable pool Example (2) -1) A human having an expression unit in which the promoter region of the Hspa5 gene contained in Hspa5-Hspa8 is contained from the transcription start site to 0, 8, 16, 24, 32, 40, 48 nucleotides downstream by the same method as described in -1). An antibody Y expression vector was constructed. Then, the gene was introduced into CHO-O1 cells by the same method as described in Example (2-2) to prepare a humanized antibody Y expression stable pool.
(4-2) Evaluation of antibody production by fed-batch culture of humanized antibody Y-expressing stable pool The stable pool prepared in (4-1) was flowed by the same method as described in Example (2-3). The amount of antibody produced was evaluated by culturing. Changes in the number of viable cells and antibody production in the prepared stable pool are shown in FIGS. 7A and 7B, respectively. Regardless of the chain length of the promoter region of the Hspa5 gene contained in the expression unit, the amount of antibody produced is compared with the case of using the expression unit (Hspa5-Hspa5) composed of the promoter region of the Hspa5 gene and 5'-UTR. It reached about 1.7 to 2.3 times. This corresponds to about 3.2 to 4.4 times that when the expression unit (hEF1α-hEF1α) composed of the promoter region of the human EF1α gene and 5'-UTR is used, and is a promoter that is frequently used at present. The amount of antibody produced in Japan was significantly exceeded. In addition, from the above results, it was shown that the antibody expression level can be maintained even if a sequence from the transcription start point of the promoter region of the Hspa5 gene to +0 to +48 nucleotides downstream is linked to the expression unit, and it is constant after the transcription start point. It was suggested that nucleotide sequences could be linked.
(実施例5)流加培養での抗体発現量を指標とした発現ユニットとA7の組み合わせ効果の検討
(5-1)抗体発現ベクターの構築
 (2-1)で構築した抗体発現ベクターの発現カセットの上流に、DNAエレメントA7を挿入した抗体発現ベクターを構築した。
(5-2)ヒト化抗体Y発現ステーブルプールの作製
 (2-1)で構築したDNAエレメントA7を含まないpDSLH3.1-Hspa5―Y内のHspa5に該当するヌクレオチド配列の領域を配列番号24~26、29及び45~48に記載のヌクレオチド配列と置換した抗体発現ベクター、(5-1)で構築したDNAエレメントA7を含む抗体発現ベクターを(2-2)に記載の方法でCHO-O1細胞にトランスフェクション、薬剤選択培養を行い、ヒト化抗体Y発現ステーブルプールを作製した。
(5-3)ヒト化抗体Y発現ステーブルプールの流加培養による抗体生産量評価
 (5-2)で作製したヒト化抗体Y発現ステーブルプールを用いて125mL容三角フラスコにて実施例(2-3)に記載と同等の方法で流加培養を行った。生細胞数、抗体生産量の推移をそれぞれ図8A、図8Bに示す。各遺伝子発現ユニットで培養14日目時点におけるA7を含む抗体発現ベクターでの抗体生産量は、A7を含まない抗体発現ベクターの1.3~2.1倍の値を示した。よって、DNAエレメントA7とmUbc遺伝子のプロモーターと各5'-UTRとからなる発現ユニットを組み合わせて使用することで、相乗効果によって効果的に高生産を実現できることが分かった。全ての発現ユニットでDNAエレメントA7による発現量向上が示唆されたことから、Hspa5遺伝子のプロモーターと各5'-UTRからなる発現ユニットを組み合わせた場合も同様の相乗効果が実現できると推察される。
(Example 5) Examination of the combined effect of the expression unit and A7 using the antibody expression level in the feed culture as an index (5-1) Construction of the antibody expression vector (2-1) The expression cassette of the antibody expression vector constructed in (2-1). An antibody expression vector in which the DNA element A7 was inserted was constructed upstream of the above.
(5-2) Preparation of Humanized Antibody Y Expression Stable Pool The region of the nucleotide sequence corresponding to Hspa5 in pDSLH3.1-Hspa5-Y that does not contain the DNA element A7 constructed in (2-1) is designated by SEQ ID NO: 24. An antibody expression vector containing the antibody expression vector substituted with the nucleotide sequence described in ~ 26, 29 and 45 to 48, and the DNA element A7 constructed in (5-1) was prepared by the method described in (2-2) for CHO-O1. The cells were transfected and selectively cultured to prepare a humanized antibody Y expression stable pool.
(5-3) Evaluation of antibody production by fed-batch culture of humanized antibody Y-expressing stable pool Using the humanized antibody Y-expressing stable pool prepared in (5-2), an example was used in a 125 mL Erlenmeyer flask (5-3). Fed-batch culture was carried out by the same method as described in 2-3). The changes in the number of living cells and the amount of antibody produced are shown in FIGS. 8A and 8B, respectively. The amount of antibody produced by the antibody expression vector containing A7 in each gene expression unit at the 14th day of culture was 1.3 to 2.1 times higher than that of the antibody expression vector containing no A7. Therefore, it was found that high production can be effectively achieved by the synergistic effect by using the expression unit consisting of the DNA element A7, the promoter of the mUbc gene, and each 5'-UTR in combination. Since it was suggested that the expression level of DNA element A7 was improved in all the expression units, it is presumed that the same synergistic effect can be realized when the promoter of the Hspa5 gene and the expression unit consisting of each 5'-UTR are combined.
 本発明の発現ユニットを用いて構築された外来遺伝子発現カセット又は本発明の外来遺伝子発現ベクターを哺乳動物宿主細胞へ導入することによって、治療用蛋白質や抗体等の外来遺伝子の生産性を向上させることが可能となる。 Improving the productivity of foreign genes such as therapeutic proteins and antibodies by introducing the foreign gene expression cassette or the foreign gene expression vector of the present invention constructed using the expression unit of the present invention into mammalian host cells. Is possible.
配列番号1:チャイニーズハムスター由来Hspa5のプロモーター領域
配列番号2:マウス由来Ubcのプロモーター領域
配列番号3:マウス由来Ubcのプロモーター領域 Ubcの開始コドンの上流約2.1kbpのヌクレオチドから転写開始点に対応するヌクレオチド配列のまでからなるヌクレオチド配列
配列番号4:Hspa5のプロモーター領域の3'側に付加可能なヌクレオチド配列
配列番号5:Hspa5のプロモーター領域 転写開始点である3'側に32塩基を連結したヌクレオチド配列
配列番号6:チャイニーズハムスター由来Hspa8の5'-UTR
配列番号7:チャイニーズハムスター由来Actbの5'-UTR
配列番号8:チャイニーズハムスター由来Rpsaの5'-UTR
配列番号9:チャイニーズハムスター由来Ubcの5'-UTR
配列番号10:チャイニーズハムスター由来EF1αの5'-UTR
配列番号11:マウス由来Ubcの5'-UTR
配列番号12:チャイニーズハムスター由来Hspa8の5'-UTRに含まれるイントロン
配列番号13:チャイニーズハムスター由来Actbの5'-UTRに含まれるイントロン
配列番号14:チャイニーズハムスター由来Rpsaの5'-UTRに含まれるイントロン
配列番号15:チャイニーズハムスター由来Ubcの5'-UTRに含まれるイントロン
配列番号16:チャイニーズハムスター由来EF1αの5'-UTRに含まれるイントロン
配列番号17: マウス由来Ubcの5'-UTRに含まれるイントロン
配列番号18:チャイニーズハムスター由来Hspa5のプロモーター領域とチャイニーズハムスター由来Hspa8の5'-UTRから構成される発現ユニット
配列番号19:チャイニーズハムスター由来Hspa5のプロモーター領域とチャイニーズハムスター由来Actbの5'-UTRから構成される発現ユニット
配列番号20:チャイニーズハムスター由来Hspa5のプロモーター領域とチャイニーズハムスター由来Rpsaの5'-UTRから構成される発現ユニット
配列番号21:チャイニーズハムスター由来Hspa5のプロモーター領域とチャイニーズハムスター由来Ubcの5'-UTRから構成される発現ユニット
配列番号22:チャイニーズハムスター由来Hspa5のプロモーター領域とチャイニーズハムスター由来EF1αの5'-UTRから構成される発現ユニット
配列番号23:チャイニーズハムスター由来Hspa5のプロモーター領域とマウス由来Ubcの5'-UTRから構成される発現ユニット
配列番号24:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Hspa8の5'-UTRから構成される発現ユニット
配列番号25:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Actbの5'-UTRから構成される発現ユニット
配列番号26:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Rpsaの5'-UTRから構成される発現ユニット
配列番号27:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Ubcの5'-UTRから構成される発現ユニット
配列番号28:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来EF1αの5'-UTRから構成される発現ユニット
配列番号29:マウス由来Ubcのプロモーター領域とマウス由来Ubcの5'-UTRから構成される発現ユニット
配列番号30:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Hspa8の5'-UTRから構成される発現ユニット
配列番号31:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Actbの5'-UTRから構成される発現ユニット
配列番号32:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Rpsaの5'-UTRから構成される発現ユニット
配列番号33:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Ubcの5'-UTRから構成される発現ユニット
配列番号34:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来EF1αの5'-UTRから構成される発現ユニット
配列番号35:マウス由来Ubcのプロモーター領域とマウス由来Ubcの5'-UTRから構成される発現ユニット
配列番号36:Hspa5のプロモーター領域の3'側に付加可能なヌクレオチド配列
配列番号37:Hspa8のプライマー Hspa8-NotI-F
配列番号38:Hspa8のプライマー Hspa8-XbaI-R
配列番号39:クローニングしたDNAに含まれるHspa8遺伝子上流のヌクレオチド配列
配列番号40:マウス由来Ubcのプライマー mChub2-3k-NotI-f
配列番号41:マウス由来Ubcのプライマー mChub2-2p-NheI-r
配列番号42:DNAエレメントA2のヌクレオチド配列
配列番号43:DNAエレメントA7のヌクレオチド配列
配列番号44:DNAエレメントA18のヌクレオチド配列
配列番号45:マウス由来Ubcのプロモーター領域とマウス由来Ubc5'-UTR中のイントロン領域をチャイニーズハムスター由来Hspa8の5'-UTRに含まれるイントロン領域と置換したヌクレオチド配列から構成される発現ユニット
配列番号46:マウス由来Ubcのプロモーター領域とマウス由来Ubc5'-UTR中のイントロン領域をチャイニーズハムスター由来Actbの5'-UTRに含まれるイントロン領域と置換したヌクレオチド配列から構成される発現ユニット
配列番号47:マウス由来Ubcのプロモーター領域とマウス由来Ubc5'-UTR中のイントロン領域をチャイニーズハムスター由来Rpsaの5'-UTRに含まれるイントロン領域と置換したヌクレオチド配列から構成される発現ユニット
配列番号48:マウス由来Ubcのプロモーター領域とチャイニーズハムスター由来Hspa8の5'-UTRから構成される発現ユニット
SEQ ID NO: 1: Promoter region of Chinese hamster-derived Hspa5 SEQ ID NO: 2: Promoter region of mouse-derived Ubc SEQ ID NO: 3: Promoter region of mouse-derived Ubc Corresponds to the transcription initiation site from about 2.1 kbp of nucleotide upstream of the Ubc start codon. Nucleotide sequence consisting up to the nucleotide sequence SEQ ID NO: 4: Nucleotide sequence that can be added to the 3'side of the promoter region of Hspa5 SEQ ID NO: 5: Nucleotide sequence in which 32 bases are linked to the 3'side of the promoter region of Hspa5. SEQ ID NO: 6: 5'-UTR of Hspa8 derived from Chinese hamster
SEQ ID NO: 7: Chinese Hamster-derived Actb 5'-UTR
SEQ ID NO: 8: Chinese hamster-derived Rpsa 5'-UTR
SEQ ID NO: 9: Chinese hamster-derived Ubc 5'-UTR
SEQ ID NO: 10: 5'-UTR of EF1α derived from Chinese hamster
SEQ ID NO: 11: Mouse-derived Ubc 5'-UTR
SEQ ID NO: 12: Intron contained in 5'-UTR of Chinese hamster-derived Hspa8 SEQ ID NO: 13: Intron contained in 5'-UTR of Chinese hamster-derived Actb SEQ ID NO: 14: Included in 5'-UTR of Chinese hamster-derived Rpsa Intron SEQ ID NO: 15: Included in 5'-UTR of Chinese hamster-derived Ubc Intron SEQ ID NO: 16: Included in 5'-UTR of Chinese hamster-derived EF1α Intron SEQ ID NO: 17: Included in 5'-UTR of mouse-derived Ubc Intron SEQ ID NO: 18: Expression unit composed of Chinese hamster-derived Hspa5 promoter region and Chinese hamster-derived Hspa8 5'-UTR SEQ ID NO: 19: Chinese hamster-derived Hspa5 promoter region and Chinese hamster-derived Actb 5'-UTR Expression unit SEQ ID NO: 20: Promoted region of Chinese hamster-derived Hspa5 and 5'-UTR of Chinese hamster-derived Rpsa Expression unit SEQ ID NO: 21: Promoted region of Chinese hamster-derived Hspa5 and 5 of Chinese hamster-derived Ubc '-UTR-derived expression unit SEQ ID NO: 22: Chinese hamster-derived Hspa5 promoter region and Chinese hamster-derived EF1α 5'-UTR-based expression unit SEQ ID NO: 23: Chinese hamster-derived Hspa5 promoter region and mouse-derived Expression unit SEQ ID NO: 24 composed of Ubc 5'-UTR: mouse-derived Ubc promoter region and Chinese hamster-derived Hspa8 expression unit SEQ ID NO: 25: mouse-derived Ubc promoter region and Chinese Expression unit SEQ ID NO: 26 composed of 5'-UTR of hamster-derived Actb: expression unit SEQ ID NO: 27: promoter region of mouse-derived Ubc and 5'-UTR of Chinese hamster-derived Rpsa: promoter region of mouse-derived Ubc And Chinese hamster-derived Ubc 5'-UTR expression unit SEQ ID NO: 28: Mouse-derived Ubc promoter region and Chinese hamster-derived EF1α 5'-UTR expression unit SEQ ID NO: 29: Mouse-derived Ubc Promoter region and mouse reason The expression unit SEQ ID NO: 30 composed of the 5'-UTR of the coming Ubc: the promoter region of the mouse-derived Ubc and the expression unit SEQ ID NO: 31 composed of the 5'-UTR of the Chinese hamster-derived Hspa8: the promoter region of the mouse-derived Ubc. Expression unit SEQ ID NO: 32 composed of 5'-UTR of Chinese hamster-derived Actb: Expression unit SEQ ID NO: 33 composed of 5'-UTR of Chinese hamster-derived Rpsa and promoter region of mouse-derived Ubc: Promoter of mouse-derived Ubc Expression unit SEQ ID NO: 34 composed of region and Chinese hamster-derived Ubc 5'-UTR: Mouse-derived Ubc promoter region and Chinese hamster-derived EF1α 5'-UTR expression unit SEQ ID NO: 35: Mouse-derived Ubc Expression unit consisting of the promoter region of Ubc and the 5'-UTR of the mouse-derived Ubc SEQ ID NO: 36: Substance sequence that can be added to the 3'side of the promoter region of Hspa5 SEQ ID NO: 37: Primer of Hspa8 Hspa8-NotI-F
SEQ ID NO: 38: Primer of Hspa8 Hspa8-XbaI-R
SEQ ID NO: 39: Nucleotide sequence upstream of Hspa8 gene contained in cloned DNA SEQ ID NO: 40: Mouse-derived Ubc primer mChub2-3k-NotI-f
SEQ ID NO: 41: Mouse-derived Ubc primer mChub2-2p-NheI-r
SEQ ID NO: 42: nucleotide sequence of DNA element A2 SEQ ID NO: 43: nucleotide sequence of DNA element A7 SEQ ID NO: 44: nucleotide sequence of DNA element A18 SEQ ID NO: 45: Promoter region of mouse-derived Ubc and intron in mouse-derived Ubc5'-UTR Expression unit consisting of a nucleotide sequence in which the region is replaced with the intron region contained in the 5'-UTR of Chinese hamster-derived Hspa8 Expression unit SEQ ID NO: 46: The intron region in the mouse-derived Ubc promoter region and the mouse-derived Ubc5'-UTR is Chinese. Expression unit consisting of a nucleotide sequence substituted for the intron region contained in the 5'-UTR of the hamster-derived Actb SEQ ID NO: 47: The promoter region of the mouse-derived Ubc and the intron region in the mouse-derived Ubc5'-UTR are defined as the Chinese hamster-derived Rpsa. Expression unit composed of a nucleotide sequence substituted with the intron region contained in the 5'-UTR of the sequence No. 48: Expression unit composed of the mouse-derived Ubc promoter region and the Chinese hamster-derived Hspa8 5'-UTR.

Claims (25)

  1.  プロモーター領域の下流に、該プロモーター領域を含む遺伝子と同一又は異なる遺伝子に含まれる5'-UTRが連結してなるポリヌクレオチド。 A polynucleotide in which 5'-UTR contained in the same or different gene as the gene containing the promoter region is linked downstream of the promoter region.
  2.  5'-UTRに含まれるイントロンが、該5'-UTRを含む遺伝子と同一又は異なる遺伝子に含まれる5'-UTRに含まれるイントロンである、請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, wherein the intron contained in the 5'-UTR is an intron contained in the 5'-UTR contained in the same or different gene as the gene containing the 5'-UTR.
  3.  プロモーター領域が、配列番号1乃至3のいずれか1つに記載のポリヌクレオチドである請求項1又は2に記載のポリヌクレオチド。 The polynucleotide according to claim 1 or 2, wherein the promoter region is the polynucleotide according to any one of SEQ ID NOs: 1 to 3.
  4.  プロモーター領域が、配列番号1に記載のポリヌレオチドの3'末端に配列番号4に記載のポリヌクレオチドが連結してなる、配列番号5に記載のポリヌクレオチドである請求項1又は2に記載のポリヌクレオチド。 The polynucleotide according to claim 1 or 2, wherein the promoter region is the polynucleotide according to SEQ ID NO: 5, in which the polynucleotide according to SEQ ID NO: 4 is linked to the 3'end of the polynureotide set forth in SEQ ID NO: 1. ..
  5.  配列番号4に記載のポリヌクレオチドの全長又は一部が欠損してなる請求項4に記載のポリヌクレオチド。 The polynucleotide according to claim 4, wherein the total length or a part of the polynucleotide according to SEQ ID NO: 4 is deleted.
  6.  プロモーター領域が、配列番号1に記載のポリヌレオチドの3'末端に配列番号36に記載のポリヌクレオチドの全部又は一部が連結してなる請求項1又は2に記載のポリヌクレオチド。 The polynucleotide according to claim 1 or 2, wherein the promoter region is the 3'end of the polynucleotide set forth in SEQ ID NO: 1 and all or part of the polynucleotide set forth in SEQ ID NO: 36 is linked.
  7.  5'-UTRが、配列番号6乃至11のいずれか1つに記載のポリヌクレオチドである請求項1乃至6のいずれか1つに記載のポリヌクレオチド。 The polynucleotide according to any one of claims 1 to 6, wherein the 5'-UTR is the polynucleotide according to any one of SEQ ID NOs: 6 to 11.
  8.  イントロンが、配列番号12乃至17のいずれか1つに記載のポリヌクレオチドである請求項2乃至7のいずれか1つに記載のポリヌクレオチド。 The polynucleotide according to any one of claims 2 to 7, wherein the intron is the polynucleotide according to any one of SEQ ID NOs: 12 to 17.
  9.  配列番号18乃至35、及び45乃至48のいずれか1つに記載のポリヌクレオチドからなる請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, which comprises the polynucleotide according to any one of SEQ ID NOs: 18 to 35 and 45 to 48.
  10.  配列番号18、24乃至29、及び、45乃至48のいずれか1つに記載のポリヌクレオチドからなる請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, which comprises the polynucleotide according to any one of SEQ ID NOs: 18, 24 to 29, and 45 to 48.
  11.  請求項9又は10に記載のポリヌクレオチドに対して95%以上同一性を有するポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。 A polynucleotide having 95% or more identity with respect to the polynucleotide according to claim 9 or 10, and having transcriptional activity and translational activity.
  12.  請求項9又は10に記載のポリヌクレオチドに対して99%以上同一性を有するポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。 A polynucleotide having 99% or more identity with respect to the polynucleotide according to claim 9 or 10, and having transcriptional activity and translational activity.
  13.  請求項9又は10に記載のポリヌクレオチドに相補的なポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、転写活性および翻訳活性を有するポリヌクレオチド。 A polynucleotide that hybridizes with a polynucleotide complementary to the polynucleotide according to claim 9 or 10 under stringent conditions, and has transcriptional activity and translational activity.
  14.  請求項1乃至13のいずれか1つに記載のポリヌクレオチドからなる発現ユニット。 An expression unit composed of the polynucleotide according to any one of claims 1 to 13.
  15.  請求項14に記載の発現ユニットを含む外来遺伝子発現カセット。 A foreign gene expression cassette containing the expression unit according to claim 14.
  16.  外来遺伝子が多量体蛋白質をコードする遺伝子である、請求項15に記載の外来遺伝子発現カセット。 The foreign gene expression cassette according to claim 15, wherein the foreign gene is a gene encoding a multimeric protein.
  17.  外来遺伝子がヘテロ多量体蛋白質をコードする遺伝子である、請求項15に記載の外来遺伝子発現カセット。 The foreign gene expression cassette according to claim 15, wherein the foreign gene is a gene encoding a heteromultimeric protein.
  18.  外来遺伝子が抗体又はその抗原結合性断片をコードする遺伝子である、請求項15に記載の外来遺伝子発現カセット。 The foreign gene expression cassette according to claim 15, wherein the foreign gene is a gene encoding an antibody or an antigen-binding fragment thereof.
  19.  請求項15乃至18いずれか一つに記載の外来遺伝子発現カセットを含む外来遺伝子発現ベクター。 A foreign gene expression vector containing the foreign gene expression cassette according to any one of claims 15 to 18.
  20.  請求項19に記載の外来遺伝子発現ベクターが導入された形質転換細胞。 A transformed cell into which the foreign gene expression vector according to claim 19 has been introduced.
  21.  細胞が哺乳動物由来の培養細胞である、請求項20に記載の形質転換細胞。 The transformed cell according to claim 20, wherein the cell is a cultured cell derived from a mammal.
  22.  哺乳動物由来の培養細胞が、COS-1細胞、HEK293細胞、又はCHO細胞である、請求項21に記載の形質転換細胞。 The transformed cell according to claim 21, wherein the cultured mammalian cell is a COS-1 cell, a HEK293 cell, or a CHO cell.
  23.  請求項20乃至22のいずれか一つに記載の形質転換細胞を培養し、培養物から外来遺伝子由来の蛋白質を取得することを特徴とする、該蛋白質の製造方法。 A method for producing a protein, which comprises culturing the transformed cell according to any one of claims 20 to 22 and obtaining a protein derived from a foreign gene from the culture.
  24.  形質転換細胞において外来遺伝子を発現させることを目的とする、請求項1及至13のいずれか一つに記載のポリヌクレオチドの使用。 Use of the polynucleotide according to any one of claims 1 to 13 for the purpose of expressing a foreign gene in transformed cells.
  25.  形質転換細胞において外来遺伝子を発現させることを目的とする、請求項19に記載の外来遺伝子発現ベクターの使用。 Use of the foreign gene expression vector according to claim 19, for the purpose of expressing a foreign gene in transformed cells.
PCT/JP2021/014287 2020-04-03 2021-04-02 Novel gene expression unit WO2021201268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067485 2020-04-03
JP2020-067485 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021201268A1 true WO2021201268A1 (en) 2021-10-07

Family

ID=77929222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014287 WO2021201268A1 (en) 2020-04-03 2021-04-02 Novel gene expression unit

Country Status (2)

Country Link
TW (1) TW202146432A (en)
WO (1) WO2021201268A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140387A1 (en) * 2009-06-05 2010-12-09 東洋紡績株式会社 Expression vector for establishing hyper-producing cells, and hyper-producing cells
JP2010539946A (en) * 2007-09-26 2010-12-24 イントレキソン コーポレーション Synthetic 5'UTR, expression vector, and method for increasing expression of a transgene
JP2014502159A (en) * 2010-11-30 2014-01-30 エルジー ライフ サイエンシーズ リミテッド New hybrid promoter and recombinant vector containing the same
WO2018066492A1 (en) * 2016-10-03 2018-04-12 第一三共株式会社 PROMOTER OF Hspa5 GENE
WO2020032153A1 (en) * 2018-08-09 2020-02-13 第一三共株式会社 PROMOTOR FOR H spa 8 GENE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539946A (en) * 2007-09-26 2010-12-24 イントレキソン コーポレーション Synthetic 5'UTR, expression vector, and method for increasing expression of a transgene
WO2010140387A1 (en) * 2009-06-05 2010-12-09 東洋紡績株式会社 Expression vector for establishing hyper-producing cells, and hyper-producing cells
JP2014502159A (en) * 2010-11-30 2014-01-30 エルジー ライフ サイエンシーズ リミテッド New hybrid promoter and recombinant vector containing the same
WO2018066492A1 (en) * 2016-10-03 2018-04-12 第一三共株式会社 PROMOTER OF Hspa5 GENE
WO2020032153A1 (en) * 2018-08-09 2020-02-13 第一三共株式会社 PROMOTOR FOR H spa 8 GENE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG M. T. ET AL.: "Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA", NUCLEIC ACIDS RESEARCH, vol. 18, no. 4, 1990, pages 937 - 947, XP055345599, DOI: 10.1093/nar/18.4.937 *

Also Published As

Publication number Publication date
TW202146432A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US20230257767A1 (en) Promoter of Hspa5 Gene
AU2018200686B2 (en) DNA element having the activity of enhancing foreign gene expression
US9862969B2 (en) Promoter derived from human gene
WO2020032153A1 (en) PROMOTOR FOR H spa 8 GENE
WO2021201268A1 (en) Novel gene expression unit
WO2023210607A1 (en) PROMOTER OF Eno1 GENE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP