WO2021201209A1 - Laminate film, polarizing plate, display device, and method for manufacturing polarizing plate roll - Google Patents

Laminate film, polarizing plate, display device, and method for manufacturing polarizing plate roll Download PDF

Info

Publication number
WO2021201209A1
WO2021201209A1 PCT/JP2021/014133 JP2021014133W WO2021201209A1 WO 2021201209 A1 WO2021201209 A1 WO 2021201209A1 JP 2021014133 W JP2021014133 W JP 2021014133W WO 2021201209 A1 WO2021201209 A1 WO 2021201209A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
range
polarizing plate
functional layer
layer
Prior art date
Application number
PCT/JP2021/014133
Other languages
French (fr)
Japanese (ja)
Inventor
隆 建部
大久保 康
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020227029240A priority Critical patent/KR20220127320A/en
Priority to CN202180021329.4A priority patent/CN115280201A/en
Priority to JP2022512692A priority patent/JPWO2021201209A1/ja
Publication of WO2021201209A1 publication Critical patent/WO2021201209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for manufacturing a laminated film, a polarizing plate, a display device, and a polarizing plate roll. More specifically, although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film, and further has excellent drying property, dimensional stability, and curl controllability during polarizing plate processing, and is a polarizing plate. Regarding laminated films and the like with improved processing productivity.
  • liquid crystal display device Since the liquid crystal display device has low power consumption and can be made thinner, it is widely used as an image display device for televisions (TVs), personal computers (PCs), and the like.
  • Patent Document 1 describes a method of forming a base resin film and a functional film as a laminated film in order to handle a thin functional film, and a polarizing plate is processed using the laminated film. At that time, there was a problem that the polarizing plate curled due to high moisture permeability and a large change in humidity dimension, and it was difficult to handle. Further, if the polarizing plate is curled due to humidity fluctuation after being incorporated in the display device, there is a problem that the curl causes light leakage and optical unevenness (also referred to as “bend unevenness”), which impairs the display quality.
  • the drying property is poor and the productivity is lowered in the step of bonding to the polarizing element layer which is a polarizing plate constituent member by using an adhesive or an adhesive.
  • the polarizer layer is deteriorated by applying heat in a water-containing state.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is that although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film without involving a complicated process. Furthermore, a laminated film having excellent drying property, dimensional stability, and curl controllability during polarizing plate processing and improved productivity of polarizing plate processing, a polarizing plate equipped with the laminated film, and high height without light leakage and optical unevenness.
  • the purpose of the present invention is to provide a high-quality display device and a method for manufacturing a polarizing plate roll.
  • the present inventor has laminated a removable functional layer having a specific layer thickness on a base film having a specific film thickness in the process of examining the cause of the above problem.
  • a removable functional layer having a specific layer thickness By controlling the moisture permeability and humidity dimensional change rate of the base film within a specific range, a laminated film having excellent drying property, dimensional stability, and curl controllability during polarizing plate processing can be obtained. Furthermore, it has been found that optical unevenness due to light leakage and bend deformation of the liquid crystal display device can be suppressed by using a polarizing plate provided with the laminated film as a polarizing plate protective film.
  • the layer thickness of the functional layer is in the range of 1 to 19 ⁇ m.
  • Temperature 40 ° C. of the substrate film, the moisture permeability under humidity of 90% RH is in the range of 100 ⁇ 400g / m 2 ⁇ 24h ,
  • the maximum dimensional change rate in the film surface in the temperature range of 23 ° C. and the humidity range of 20 to 80% RH of the base film is in the range of 0.01 to 0.10%
  • a laminated film characterized in that the film thickness of the base film is in the range of 20 to 60 ⁇ m.
  • the first item or the first item, wherein the base film contains any one of a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, and a styrene / hydroxystyrene copolymer.
  • Item 2. The laminated film according to item 2.
  • a polarizing plate comprising the laminated film according to any one of items 1 to 3.
  • a display device comprising the laminated film according to any one of items 1 to 3 or the polarizing plate according to item 4.
  • a method for producing a polarizing plate roll wherein the laminated film according to any one of items 1 to 3 is wound around at least one surface of a polarizing element layer while being bonded to at least one surface via an adhesive.
  • a polarizing plate roll including a step of winding the laminated film while adhering the laminated film to the polarizing layer so that the layers of the polarizing layer, the adhesive layer, the functional layer and the base film are arranged in this order from the inside of the roll. Manufacturing method.
  • the present invention although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film without involving a complicated process, and further, excellent drying property and dimensional stability during polarizing plate processing. , And a laminated film having curl controllability and improved productivity of polarizing plate processing, a polarizing plate equipped with the laminated film, a high-quality display device having no optical unevenness due to light leakage or bend deformation, and a polarizing plate roll. A method can be provided.
  • the present invention is a laminated film in which a removable functional layer having a specific layer thickness is laminated on a base film having a specific film thickness, and the moisture permeability and the rate of change in humidity dimension of the base film are specified.
  • the drying property during polarizing plate processing is controlled to improve the adhesiveness, and the dimensional change rate with respect to humidity fluctuation is reduced to reduce the thin film. It is possible to suppress wrinkles and curl deformation of the functional layer. Therefore, the polarizing plate can be processed by the same polarizing plate processing process as the conventional one without reducing the productivity and without requiring the complicated processing process as described above using the protective film, and further, the polarizing plate curl can be formed. Since it can be suppressed, it is presumed that it is possible to provide a high-quality display device without light leakage or optical unevenness when it is provided in the display device.
  • FIG. 1 Schematic diagram showing a cross section of the laminated film of the present invention
  • the schematic diagram which shows the manufacturing method of the laminated film which concerns on one Embodiment of this invention Cross-sectional view of polarizing plate with base film
  • the laminated film of the present invention is a laminated film in which at least a peelable functional layer is laminated on a base film, and the layer thickness of the functional layer is in the range of 1 to 19 ⁇ m, and the base material.
  • temperature 40 ° C. of the film the moisture permeability under humidity of 90% RH is in the range of 100 ⁇ 400g / m 2 ⁇ 24h , temperature 23 ° C. of the base film, in the region of RH humidity 20-80%, the film
  • the maximum in-plane dimensional change rate is in the range of 0.01 to 0.10%, and the film thickness of the base film is in the range of 20 to 60 ⁇ m.
  • the layer thickness of the functional layer is in the range of 2 to 10 ⁇ m to prevent wrinkles and curl deformation of the functional layer which is a thin film. It is preferable from the viewpoint of suppressing and providing a thinner polarizing plate when the base film is peeled off and the functional layer is bonded to the polarizer layer. Further, it is also preferable from the viewpoint of suppressing optical unevenness of the liquid crystal display device using the polarizing plate.
  • the base film is based on a resin material selected from a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, or a styrene / hydroxystyrene copolymer.
  • a resin material selected from a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, or a styrene / hydroxystyrene copolymer.
  • the polarizing plate of the present invention is provided with the laminated film of the present invention, so that the polarizing plate can be processed by the same polarizing plate processing process as the conventional one without reducing the productivity and without requiring a complicated processing process.
  • the display device of the present invention improves the curl resistance of the polarizing plate to suppress light leakage, and further, the layer thickness of the functional layer is in the range of 1 to 19 ⁇ m. It is preferable from the viewpoint of obtaining a high-quality display device having no optical unevenness.
  • the laminated film is wound around the polarizing layer so as to be in the order of the polarizer layer, the adhesive layer, the functional layer, and the substrate fill from the inside of the roll. It is characterized by including a process.
  • the base film can also serve as a protective film, leading to a reduction in the number of parts and a simplification of the processing process.
  • the laminated film of the present invention is a laminated film in which at least a peelable functional layer is laminated on a base film, and the layer thickness of the functional layer is in the range of 1 to 19 ⁇ m, and the base material.
  • temperature 40 ° C. of the film the moisture permeability under humidity of 90% RH is in the range of 100 ⁇ 400g / m 2 ⁇ 24h , temperature 23 ° C. of the base film, in the region of RH humidity 20-80%, the film
  • the maximum in-plane dimensional change rate is in the range of 0.01 to 0.10%, and the film thickness of the base film is in the range of 20 to 60 ⁇ m.
  • the moisture permeability of the base film is based on the calcium chloride-cup method described in JIS Z-0208: 1976, and the film to be measured is left to stand for 24 hours under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It is a value measured by.
  • Moisture permeability of the base film according to the present invention is in the range of 100 ⁇ 400g / m 2 ⁇ 24h , preferably in the range of 100g ⁇ 300 / m 2 / 24h , 100 ⁇ 200g / m 2 / more preferably 24h in the range of, more preferably within the range of 100 ⁇ 150g / m 2 ⁇ 24h .
  • the moisture permeability is less than 100g / m 2 ⁇ 24h, a substrate film or a functional layer according to the present invention, drying properties and adhesion inferior in bonding the polarizer layer with water glue, etc., more The addition of heat in the presence of residual moisture may cause deterioration of the polarizer layer, resulting in deterioration of display quality.
  • the moisture permeability is more than 400g / m 2 ⁇ 24h, causing polarizer curl by dehydration shrinkage of the polarizer layer due to sudden drying, even may cause peeling of a laminated film.
  • the moisture permeability of the base film is measured according to JIS Z 0208: 1976 after being left in an environment of a temperature of 40 ° C. and a humidity of 90% RH for 24 hours as described above.
  • the lower limit value of the moisture permeability of the substrate film was set to 100g / m 2 ⁇ 24h is a limit Mizunori drying is good
  • the upper limit was set to 400g / m 2 ⁇ 24h Is the limit value of the polarizing plate curl due to the sudden dehydration shrinkage of the polarizing element layer, so that the moisture permeability of the base film according to the present invention is adjusted within the above range.
  • the maximum dimensional change rate in the film surface in the range of the temperature of the base film of 23 ° C. and the humidity of 20 to 80% RH is in the range of 0.01 to 0.10%.
  • the "dimensional change rate" of the present invention is a value calculated as follows.
  • Two cross-shaped marks are placed on the surface of the base film, and the base film is left for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 20% RH to control the humidity, and then between the two marks with an optical microscope. Measure the distance L 1. After that, the film was left to stand in an environment of a temperature of 23 ° C. and a humidity of 80% RH for 24 hours to adjust the humidity, and then the distance L 2 between the two marks was measured in the same manner, and the dimensional change rate (%) was calculated by the following formula. do.
  • Dimensional change rate (%) ⁇ (L 2- L 1 ) / L 1 ⁇ x 100
  • the "maximum dimensional change rate in the film surface" as used in the present invention means that the two places on the film surface are marked with a cross-shaped mark at random at 10 places in the film surface, and the dimensional change rate is calculated. The value indicating the maximum dimensional change rate among each measurement is adopted.
  • the dimensional change rate is less than 0.01%, poor adhesion between the polarizing element layer and the functional layer occurs, and if it exceeds 0.10%, the functional layer is wrinkled or curled, and the polarizing plate curl is formed. As a result, the display panel is warped, resulting in light leakage and optical unevenness. More preferably, it is in the range of 0.03 to 0.08%.
  • FIG. 1 shows an example of the layer structure of the laminated film of the present invention.
  • the laminated film 1 of the present invention has a base film 2 and a functional layer 3 on the base film 2.
  • the base film 2 and the functional layer 3 may be formed by laminating a plurality of layers.
  • the functional layer 3 may have another functional layer such as a primer layer (not shown) or a protective layer (not shown) on the front surface or the back surface.
  • the base film 2 may have an adhesive layer (not shown) or an adhesive layer (not shown) on the surface opposite to the functional layer, and the adhesive layer or the adhesive layer is the base film 2 and a display element. It is possible to provide an adhesive function at the time of bonding with.
  • the "peelable functional layer” as used in the present invention means that the base film and the functional layer are in close contact with each other during normal production or general use and cannot be easily peeled off, but only the functional layer is used during polarizing plate processing. A mode in which the functional layer can be peeled off from the base film by external stress when desired.
  • the stress when the base film is peeled from the functional layer is fixed by sticking the surface of the functional layer on the side opposite to the base film side interface to the glass base material via an acrylic adhesive sheet. Later, using a tensile tester (RTF-1210 manufactured by A & D Co., Ltd.), the base film at one end in the length direction (one side of the width of 25 mm) of the test piece was grasped, and the temperature was 23 ° C. and the humidity was 60%.
  • RTF-1210 manufactured by A & D Co., Ltd.
  • Base film The base film according to the present invention has at least a removable functional layer laminated on it, and the base film has a moisture permeability of 100 to 400 g at a temperature of 40 ° C. and a humidity of 90% RH. / m is in the range of 2 ⁇ 24h, temperature 23 ° C. of the substrate film, between the humidity 20 ⁇ 80% RH, the maximum dimensional change in the film plane is in the range of 0.01 to 0.10% It is characterized in that the film thickness of the base film is in the range of 20 to 60 ⁇ m.
  • the laminated film of the present invention can suppress wrinkles and curl deformation even if it is a thin functional film, eliminates the need for a complicated processing process using a protective film or the like without reducing productivity, and is the same as the conventional one. It has the advantage that the polarizing plate can be processed in the polarizing plate processing process.
  • the temperature 40 ° C. of the substrate film, the moisture permeability under humidity of 90% RH is, by in the range of 100 ⁇ 400g / m 2 ⁇ 24h , it is possible to impart excellent drying properties at a polarizing plate processing Moreover, it exhibits the effect of suppressing deterioration of the polarizing element layer due to humidity.
  • the maximum dimensional change rate in the film surface in the range of the temperature of the base film of 23 ° C. and the humidity of 20 to 80% RH is in the range of 0.01 to 0.10%, the curl of the polarizing plate is obtained. Since it is possible to suppress the warpage of the display device, the effect of preventing the occurrence of display unevenness is exhibited.
  • the film thickness of the base film is within the range of 20 to 60 ⁇ m, it is possible to provide a thin-film polarizing plate that satisfies the above-mentioned moisture permeability, suppress the polarizing plate curl, and use the polarizer layer as a protective film. It is possible to provide film strength that exhibits the protective effect of. It is preferably in the range of 20 to 40 ⁇ m.
  • the means for adjusting the moisture permeability and the dimensional change rate according to the present invention within the above range is not particularly limited, but the type of resin constituting the base film and the film thickness of the base film are appropriately selected and used. Is preferable.
  • Resin examples of the resin used for the base film according to the present invention include cycloolefin-based resin, polypropylene-based resin, acrylic-based resin, polyester-based resin, polycarbonate resin, polyarylate-based resin, and styrene-based resin.
  • the composite resin include cycloolefin-based resins, polyarylate-based resins, styrene-based resins, and composite resins thereof (styrene-(styrene). It is preferable to contain either a meta) acrylate copolymer or a styrene / hydroxystyrene copolymer), and it is more preferable to use a cycloolefin resin.
  • the cycloolefin-based resin contained in the base film according to the present invention is a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and another copolymerizable monomer. Is preferable.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). More preferably.
  • R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility during solution film formation.
  • P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved.
  • R 5 represents an alkylsilyl group having a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2.
  • R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
  • P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
  • a cycloolefin monomer having a structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent.
  • an organic compound loses its symmetry and thus its crystallinity is lowered, so that its solubility in an organic solvent is improved.
  • R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
  • the content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it can be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
  • a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is increased, so that the retardation value is likely to increase.
  • ring-opening copolymerizable copolymerizable monomers examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • Examples of copolymerizable monomers that can be additionally copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, (meth) acrylates, and the like.
  • Examples of unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene.
  • Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
  • the content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It can be preferably 30 to 70 mol%.
  • the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
  • Ring-opening polymer of cycloolefin monomer 2) Ring-opening copolymer of cycloolefin monomer and copolymerizable copolymer with ring-opening copolymer 3) Of 1) or 2) above Hydrogenated ring-opened (co) polymer 4) The ring-opened (co) polymer of 1) or 2) above was cyclized by the Friedercrafts reaction, and then hydrogenated (co) polymer 5) Cycloolefin.
  • the polymers of 1) to 3) and 5) above are preferable, and the polymers of 3) and 5) above are more preferable.
  • the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable that at least one of the structural units represented by the following general formula (B-2) is contained, and only the structural unit represented by the general formula (B-2) is included, or the general formula (B-1) is used. It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2).
  • the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
  • the structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
  • R 1 ⁇ R 4 and p are respectively the same as R 1 ⁇ R 4 and p of the general formula (A-1).
  • R 5 ⁇ R 6 and p are respectively the same as R 5 ⁇ R 6 and p in the general formula (A-2).
  • the cycloolefin-based resin according to the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX (eg, R4500, R4900, R5000, etc.) manufactured by JSR Corporation.
  • Arton G eg, G7810, etc.
  • Arton F Arton F
  • Arton R eg, R4500, R4900, R5000, etc.
  • Arton RX eg, R4500, R4900, R5000, etc. manufactured by JSR Corporation.
  • RX4500 etc. is included.
  • the intrinsic viscosity [ ⁇ ] inh of the cycloolefin resin is preferably 0.2 to 5 cm 3 / g, more preferably 0.3 to 3 cm 3 / g, as measured at 30 ° C. It is more preferably 4 to 1.5 cm 3 / g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000.
  • the number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the number average molecular weight and the weight average molecular weight are in the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability of the base film of the cycloolefin resin are improved. It will be good.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is.
  • Tg is 110 ° C. or higher, deformation under high temperature conditions can be easily suppressed.
  • Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the base film.
  • the polyarylate resin has excellent toughness when used as a base film.
  • the polyialate-based resin contains at least a structural unit derived from an aromatic dialcohol and a structural unit derived from an aromatic dicarboxylic acid.
  • the aromatic dialcohol is preferably bisphenols represented by the following general formula (I), and more preferably bisphenols represented by the following general formula (II).
  • L represents a divalent group.
  • the divalent group is preferably a single bond, an alkylene group, -S-, -SO-, -SO 2- , -O-, -CO- or -CR 1 R 2- (R 1 and R 2 are bonded to each other. To form an aliphatic ring or an aromatic ring).
  • the alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylene group, and an isopropylidene group.
  • the alkylene group may further have a substituent such as a halogen atom or an aryl group.
  • the aliphatic ring is preferably an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and preferably a substituted or unsubstituted cyclohexane ring.
  • the aromatic ring is an aromatic hydrocarbon ring having 6 to 20 carbon atoms, and is preferably a substituted or unsubstituted fluorene ring.
  • Examples of -CR 1 R 2- forming a substituted or unsubstituted cyclohexane ring include cyclohexane-1,1-diyl group, 3,3,5-trimethylcyclohexane-1,1-diyl group and the like. Is done.
  • Examples of ⁇ CR 1 R 2 ⁇ forming a substituted or unsubstituted fluorene ring include a fluoreneyl group represented by the following formula.
  • R of the general formula (I) and the general formula (II) can be independently an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • n is an integer of 0 to 4, preferably an integer of 0 to 3, independently of each other.
  • aromatic dialcohol component constituting the polyarylate resin only one type may be used alone, or two or more types may be used in combination.
  • the aromatic dicarboxylic acid can be terephthalic acid, isophthalic acid or a mixture thereof.
  • the polyarylate resin may further contain a structural unit derived from an aromatic dicarboxylic acid other than terephthalic acid and isophthalic acid.
  • aromatic dicarboxylic acid components are orthophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenic acid, 4,4'-dicarboxydiphenyl ether, bis (p-carboxyphenyl) alkane, 4,4'-. Dicarboxyphenyl sulfone and the like are included.
  • the polyarylate-based resin according to the present invention may be a commercially available product, and examples thereof include PAR resin "U-100” manufactured by Unitika Ltd. and a weight average molecular weight (Mw): 100,000.
  • styrene / (meth) acrylate copolymer has excellent transparency when used as a base film.
  • the styrene / acrylic resin is formed by addition polymerization of at least a styrene monomer and a (meth) acrylic acid ester monomer.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 1 to 24 carbon atoms.
  • an acrylic acid ester derivative and a methacrylic acid ester derivative having known side chains and functional groups in the structure of these esters are included.
  • styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-. Includes tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene and pn-dodecyl styrene.
  • (meth) acrylic acid ester monomers examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate (2EHA), and stearyl.
  • Acrylate monomers such as acrylates, lauryl acrylates and phenyl acrylates; methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate.
  • Methacrylate esters such as lauryl methacrylate, phenyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl methacrylate;
  • (meth) acrylic acid ester monomer is a general term for "acrylic acid ester monomer” and “methacrylic acid ester monomer”, and one or both of them may be used. means.
  • methyl (meth) acrylate means one or both of “methyl acrylate” and “methyl methacrylate”.
  • the above (meth) acrylic acid ester monomer may be one kind or more. For example, forming a copolymer using a styrene monomer and two or more kinds of acrylic acid ester monomers, or using a styrene monomer and two or more kinds of methacrylic acid ester monomers to have a common weight. It is possible to form a coalescence and to form a copolymer by using a styrene monomer, an acrylic acid ester monomer and a methacrylic acid ester monomer in combination.
  • the content of the structural unit derived from the styrene monomer in the styrene / acrylic resin is preferably in the range of 40 to 90% by mass. Further, the content of the structural unit derived from the (meth) acrylic acid ester monomer in the amorphous resin is preferably in the range of 10 to 60% by mass.
  • the styrene / acrylic resin may further contain a structural unit derived from a monomer other than the styrene monomer and the (meth) acrylic acid ester monomer.
  • the other monomer is preferably a compound having a carboxy group or a hydroxy group.
  • the other monomer is preferably a compound that ester-bonds with a hydroxy group (-OH) derived from a polyhydric alcohol or a carboxy group (-COOH) derived from a polyvalent carboxylic acid. That is, it is a polymer that can be additive-polymerized with respect to the styrene monomer and the (meth) acrylic acid ester monomer, and is further polymerized by a compound having a carboxy group or a hydroxy group (amphoteric compound). Is preferable.
  • Examples of the above compounds include compounds having a carboxy group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, silicic acid, fumaric acid, maleic acid monoalkyl ester, and itaconic acid monoalkyl ester; 2-hydroxyethyl.
  • Compounds having a hydroxy group such as polyethylene glycol mono (meth) acrylate; are included.
  • the styrene / acrylic resin can be synthesized by a method of polymerizing a monomer using a known oil-soluble or water-soluble polymerization initiator.
  • oil-soluble polymerization initiators include azo-based or diazo-based polymerization initiators and peroxide-based polymerization initiators.
  • azo-based or diazo-based polymerization initiator examples include 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, and 1,1'-azobis (2,4-dimethylvaleronitrile). Cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile and azobisisobutyronitrile are included.
  • peroxide-based polymerization initiators examples include benzoyl peroxide, methyl ethyl ketone peroxide, diisopropylperoxycarbonate, cumenehydroperoxide, t-butylhydroperoxide, di-t-butyl peroxide, dicumyl peroxide, 2 , 4-Dichlorobenzoyl peroxide, lauroyl peroxide, 2,2-bis- (4,5-t-butylperoxycyclohexyl) propane and tris- (t-butylperoxy) triazine.
  • a water-soluble radical polymerization initiator can be used as a polymerization initiator.
  • the water-soluble polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, azobisaminodipropane acetate, azobiscyanovaleric acid and its salts, and hydrogen peroxide.
  • the weight average molecular weight (Mw) of the styrene / acrylic resin is preferably in the range of 10,000 to 500,000, more preferably in the range of 50,000 to 200,000, from the viewpoint of easy control of plasticity.
  • the styrene / acrylic resin according to the present invention may be a commercially available product, and MS resin "TX320XL” manufactured by Denka Corporation can be mentioned as an example.
  • the styrene / hydroxystyrene copolymer (hereinafter, also referred to as “styrene / hydroxystyrene resin”) is excellent in heat resistance and chemical resistance when used as a base film.
  • styrene-based monomers examples include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene and p-methylstyrene; and halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene. can.
  • hydroxystyrene monomer examples include hydroxystyrenes such as 4-hydroxystyrene, p-hydroxystyrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene. can.
  • the weight average molecular weight (Mw) of the styrene / hydroxystyrene resin is preferably in the range of 10,000 to 500,000, more preferably in the range of 50,000 to 200,000, from the viewpoint of easy control of plasticity.
  • the styrene / hydroxystyrene resin according to the present invention may be a commercially available product, and examples thereof include a styrene / hydroxystyrene copolymer "Marcalinker CST50" manufactured by Maruzen Petrochemical Co., Ltd. and a weight average molecular weight (Mw): 60000. be able to.
  • the base film may contain a plasticizer.
  • the plasticizer is not particularly limited, but is preferably a polyhydric alcohol ester plasticizer, a phthalic acid ester plasticizer, a citric acid plasticizer, a fatty acid ester plasticizer, a phosphoric acid ester plasticizer, or a polyvalent carboxylic acid. It is preferably selected from an ester-based plasticizer, a polyester-based plasticizer, and the like, and a polyester-based plasticizer is more preferable.
  • the polyhydric alcohol ester-based plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. It is preferably a 2- to 20-valent aliphatic polyhydric alcohol ester.
  • phthalate-based plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and dicyclohexyl terephthalate.
  • citrate ester-based plasticizer examples include acetyltrimethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate.
  • fatty acid ester-based plasticizers examples include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
  • Examples of the phosphoric acid ester-based plasticizer include triphenyl phosphate, tricresyl phosphate, cresil diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
  • the polyvalent carboxylic acid ester-based plasticizer is composed of an ester of a polyvalent carboxylic acid having a divalent value or higher, preferably a divalent to 20-valent carboxylic acid, and an alcohol.
  • the aliphatic polyvalent carboxylic acid is preferably 2 to 20 valent, and the aromatic polyvalent carboxylic acid and the alicyclic polyvalent carboxylic acid are preferably 3 to 20 valent.
  • the polyvalent carboxylic acid is represented by the following general formula (a).
  • Rb (COOH) m (OH) n
  • Rb is an organic group having a (m + n) valence
  • m is a positive integer of 2 or more
  • n is an integer of 0 or more
  • a COOH group is a carboxy group
  • an OH group is an alcoholic hydroxy group or a phenolic hydroxy group. Represents a group.
  • the polyester-based plasticizer is not particularly limited, but a polyester-based plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used.
  • the polyester-based plasticizer is not particularly limited, but for example, an aromatic terminal ester-based plasticizer represented by the following general formula (b) can be used.
  • B is a benzenemonocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol having 4 to 12 carbon atoms.
  • the residue, A represents an alkylenedicarboxylic acid residue having 4 to 12 carbon atoms or an aryldicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • the benzenemonocarboxylic acid residue represented by B the alkylene glycol residue or oxyalkylene glycol residue or arylglycol residue represented by G, the alkylenedicarboxylic acid residue or aryldicarboxylic acid represented by A. It is composed of an acid residue and is obtained by the same reaction as a normal polyester-based plasticizer.
  • benzene monocarboxylic acid component of the polyester-based plasticizer used in the present invention examples include benzoic acid, parataciaributyl benzoic acid, orthotoluic acid, metatoluic acid, paratoluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid.
  • acids, aminobenzoic acid, acetoxybenzoic acid and the like can be used as one kind or a mixture of two or more kinds, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester-based plasticizer used in the present invention examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-.
  • examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like, and these glycols have 1 It can be used as a seed or a mixture of two or more.
  • alkylenedicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanediocarboxylic acid and the like. , Each used as one or a mixture of two or more.
  • Examples of the allylenedicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid.
  • the polyester-based plasticizer used in the present invention preferably has a number average molecular weight in the range of preferably in the range of 300 to 1500, more preferably in the range of 400 to 1000.
  • the acid value is 0.5 mgKOH / g or less, the hydroxy value (hydroxyl value) is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy value (hydroxyl value) is 15 mgKOH / g or less. It is a thing.
  • the number average molecular weight and weight average molecular weight of the polyester used in the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as described above.
  • the base film according to the present invention may also contain an ultraviolet absorber.
  • the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based agents.
  • the ultraviolet absorber having a molecular weight of 400 or more is hard to volatilize at a high boiling point and is hard to scatter even during high-temperature molding, so that the weather resistance is effectively improved by adding a relatively small amount. be able to.
  • Examples of ultraviolet absorbers having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1). 1,3,3-Tetrabutyl) -6- (2H-benzotriazole-2-yl) phenol] and other benzotriazoles, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, as well as 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid.
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3-) Tetrabutyl) -6- (2H-benzotriazole-2-yl) phenol] is particularly preferred.
  • the base film according to the present invention may contain an antioxidant.
  • Antioxidants are also called anti-deterioration agents.
  • the antioxidant has a role of delaying or preventing the decomposition of the base film due to, for example, the amount of halogen remaining in the base film or the phosphoric acid of the phosphoric acid-based plasticizer, and thus the base film. It is preferable to contain it in.
  • a hindered phenol-based compound is preferably used, for example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrax [3- (3,5-di). -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t)
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-T-Butyl-5-methyl-4-hydroxyphenyl) propionate] is preferable.
  • a hydrazine-based metal inactivating agent such as N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine or tris (2,4-di-).
  • a phosphorus-based processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the amount of these compounds added is preferably in the range of 1% by mass to 1.0% by mass, more preferably in the range of 10 to 1000% by mass with respect to 100% by mass of the base resin.
  • the base film according to the present invention preferably contains fine particles.
  • Examples of the fine particles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Calcium, aluminum silicate, magnesium silicate and calcium phosphate can be mentioned. Further, fine particles of an organic compound can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethylmethacrylate, polyppill methacrylate, polymethylacrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, and melamine resin.
  • Polyolefin-based powder polyester-based resin, polyamide-based resin, polyimide-based resin, or polyfluorinated ethylene-based resin, crushed grades of organic polymer compounds such as starch are also mentioned.
  • a polymer compound synthesized by a suspension polymerization method, a polymer compound made spherical by a spray-drying method, a dispersion method, or the like, or an inorganic compound can be used.
  • Fine particles containing silicon are preferable in that the turbidity is low, and silicon dioxide is particularly preferable.
  • the average particle size of the primary particles of the fine particles is preferably in the range of 5 to 400 nm, and more preferably in the range of 10 to 300 nm.
  • These may be mainly contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 ⁇ m, and particles having an average particle size in the range of 100 to 400 nm are contained as primary particles without agglomeration. It is also preferable that the particles are used.
  • the content of these fine particles is preferably in the range of 0.01 to 1% by mass, particularly preferably in the range of 0.05 to 0.5% by mass, based on 100% by mass of the total mass of the base film.
  • the surface layer skin layer
  • the surface layer contains fine particles in this amount.
  • the fine particles of silicon dioxide are commercially available under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (all manufactured by Nippon Aerosil Co., Ltd.) and can be used. can.
  • the fine particles of zirconium oxide are commercially available under the trade names of Aerosil R976 and R811 (all manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • Examples of polymers include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are preferable. For example, products of Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.). It is commercially available under the name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of lowering the coefficient of friction while keeping the turbidity of the base film low.
  • the coefficient of dynamic friction of at least one surface is preferably in the range of 0.2 to 1.0.
  • various additives may be added in batch to the dope which is the cycloolefin resin-containing solution before film formation, or the additives may be dissolved.
  • a liquid may be prepared separately and added in-line. In particular, it is preferable to add a part or all of the fine particles in-line in order to reduce the load on the filter medium.
  • the additive solution When the additive solution is added in-line, it is preferable to dissolve a small amount of cycloolefin resin in order to improve the miscibility with the doping.
  • the amount of the cycloolefin-based resin is preferably in the range of 1 to 10 parts by mass, and more preferably in the range of 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.
  • an in-line mixer such as a static mixer (manufactured by Toray Engineering) or SWJ (Toray static in-tube mixer Hi-Mixer) is preferably used.
  • the method for producing the base film of the present invention includes a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, and the like.
  • the solution casting method and the melt casting method are preferable, and the solution casting method is particularly used. It is more preferable that the temperature in the processing step is low, and therefore, from the viewpoint of imparting high functionality by using various additives.
  • the “solution casting method” preferable to the present invention will be described.
  • the method for producing the base film according to the present invention is a step of dissolving and dispersing an additive such as a thermoplastic resin and the above-mentioned fine particles in a solvent to prepare a dope (dissolving step; Dope preparation step), casting the dope onto an endless metal support (casting step), drying the cast dope as a web (solvent evaporation step), peeling from the metal support. It is preferable to include a step (peeling step), drying, stretching, a step of holding the width (stretching / width holding / drying step), and a step of winding the finished film into a roll (winding step).
  • FIG. 2 is a diagram schematically showing an example of a dope preparation step, a casting step, and a drying step (solvent evaporation step) of the solution casting method.
  • a large agglomerate is removed from the charging pot A41 with the filter A44, and the liquid is sent to the stock pot A42. Then, various additive liquids are added from the stock kettle A42 to the main dope melting kettle A1.
  • the main dope is filtered by the main filter A3, and the additive additive liquid is added in-line from A16.
  • the main dope may contain about 10 to 50% by mass of the return material.
  • the return material is a finely crushed film, and the material that is generated when the film is formed by cutting off both sides of the film, or the original film that is out of specification due to scratches, etc. is used.
  • the raw material of the resin used for the dope preparation those obtained by pelletizing a cycloolefin resin, an acrylic resin, or other additives as a base resin in advance can also be preferably used.
  • Dissolution step dissolution step
  • a cycloolefin resin hereinafter, also referred to as “COP”
  • COP cycloolefin resin
  • This step is a step of dissolving the COP, in some cases, other compounds in a dissolution kettle in a solvent mainly containing a good solvent for the COP while stirring to form a dope, or in the COP solution, in some cases, other
  • This is a step of mixing compound solutions to form a dope which is a main solution.
  • the COP concentration in the dope is high because the drying load after casting on the metal support can be reduced, but if the COP concentration is too high, the load during filtration increases and the filtration accuracy deteriorates.
  • the concentration at which these are compatible is preferably in the range of 10 to 35% by mass, more preferably in the range of 15 to 30% by mass.
  • the solvent used for doping may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of COP in terms of production efficiency, and the one having more good solvents. Is preferable in terms of the solubility of COP.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is the range of 70 to 98% by mass of the good solvent and the range of 2 to 30% by mass of the poor solvent.
  • the good solvent and the poor solvent are defined as a good solvent in which the COP to be used is dissolved alone, and a poor solvent in which the COP used alone is swollen or not dissolved. Therefore, the good solvent and the poor solvent change depending on the average degree of substitution of COP.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred are methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. Further, it is preferable that the dope contains water in the range of 0.01 to 2% by mass.
  • the solvent used for dissolving the COP the solvent removed from the film by drying in the film forming process is recovered and reused.
  • the recovery solvent may contain a small amount of additives added to the COP, such as a plasticizer, an ultraviolet absorber, a polymer, and a monomer component, but even if these are contained, they are preferably reused. It can be purified and reused if necessary.
  • additives added to the COP such as a plasticizer, an ultraviolet absorber, a polymer, and a monomer component, but even if these are contained, they are preferably reused. It can be purified and reused if necessary.
  • a general method can be used as the COP dissolution method when preparing the above-mentioned dope. Specifically, a method performed at normal pressure, a method performed below the boiling point of the main solvent, and a method performed by pressurizing above the boiling point of the main solvent are preferable, and when heating and pressurization are combined, heating can be performed above the boiling point at normal pressure.
  • a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and under pressure so that the solvent does not boil is also preferable in order to prevent the generation of massive undissolved substances called gels and maco.
  • a method in which COP is mixed with a poor solvent to moisten or swell, and then a good solvent is further added to dissolve the COP is also preferably used.
  • Pressurization may be performed by a method of press-fitting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating.
  • the heating is preferably performed from the outside, and for example, the jacket type is preferable because the temperature can be easily controlled.
  • a higher heating temperature with the addition of a solvent is preferable from the viewpoint of COP solubility, but if the heating temperature is too high, the required pressure increases and productivity deteriorates.
  • the preferred heating temperature is in the range of 45 to 120 ° C, more preferably in the range of 60 to 110 ° C, and even more preferably in the range of 70 ° C to 105 ° C.
  • the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, which allows the COP to be dissolved in a solvent such as methyl acetate.
  • this COP solution (dope during or after dissolution) using an appropriate filter material such as filter paper.
  • the absolute filtration accuracy is small in order to remove insoluble matter and the like, but if the absolute filtration accuracy is too small, there is a problem that clogging of the filter material is likely to occur. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium in the range of 0.001 to 0.008 mm is more preferable, and a filter medium in the range of 0.003 to 0.006 mm is further preferable.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used, but a plastic filter medium such as polypropylene or Teflon (registered trademark) or a metal filter medium such as stainless steel does not cause fibers to fall off. preferable.
  • a bright spot foreign substance is the opposite when two polarizing plates are arranged in a cross-nicoled state, a film or the like is placed between them, light is applied from the side of one polarizing plate, and observation is performed from the side of the other polarizing plate. It is a point (foreign matter) in which light from the side appears to leak, and it is preferable that the number of bright spots having a diameter of 0.01 mm or more is 200 / cm 2 or less. It is more preferably 100 pieces / cm 2 or less, further preferably 50 pieces / m 2 or less, and further preferably 0 to 10 pieces / cm 2 or less. Further, it is preferable that there are few bright spots of 0.01 mm or less.
  • Dope filtration can be performed by a usual method, but the method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within the range where the solvent does not boil under pressure is the method of filtering the filtration pressure before and after filtration.
  • the increase in the difference (referred to as "differential pressure") is small, which is preferable.
  • the preferred temperature is in the range of 45 to 120 ° C, more preferably in the range of 45 to 70 ° C, and even more preferably in the range of 45 to 55 ° C.
  • the filter pressure is small.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and even more preferably 1.0 MPa or less.
  • the dope is cast on the metal support. That is, in this step, the dope is sent to the pressure die A30 through a liquid feed pump (for example, a pressure type metering gear pump) and transferred indefinitely, such as an endless metal belt A31, for example, a stainless band, a rotating metal drum, or the like.
  • a liquid feed pump for example, a pressure type metering gear pump
  • a pressure die that can adjust the slit shape of the die base and makes it easy to make the film thickness uniform is preferable.
  • the pressure die includes a coat hanger die, a T die, and the like, and any of them is preferably used.
  • the surface of the metal support is preferably a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the doping amount may be divided and layered.
  • the cast width is preferably 1.3 m or more from the viewpoint of productivity. More preferably, it is in the range of 1.3 to 4.0 m. If it exceeds 4.0 m, there is a risk that stripes will appear in the manufacturing process and the stability in the subsequent transport process will decrease. More preferably, it is in the range of 1.3 to 3.0 m in terms of transportability and productivity.
  • the metal support in the casting process is preferably a mirror-finished surface, and the metal support is preferably a stainless steel belt or a drum whose surface is plated with a casting.
  • the surface temperature of the metal support in the casting process is in the range of -50 ° C to less than the boiling point of the solvent, and a higher temperature is preferable because the drying speed of the web can be increased, but if it is too high, the web may foam. , Flatness may deteriorate.
  • the preferred support temperature is in the range of 0 to 55 ° C, more preferably in the range of 22 to 50 ° C.
  • the method of controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use hot water because the heat transfer is more efficient and the time until the temperature of the metal support becomes constant is short.
  • air with a temperature higher than the target temperature may be used.
  • Solvent evaporation step This step is a step of heating a web (a dope film formed by casting a dope on a casting support and calling the web) on the casting support to evaporate the solvent. Is.
  • the web on the support after casting is dried on the support in an atmosphere in the range of 35 to 100 ° C. In order to maintain the atmosphere in the range of 35 to 100 ° C., it is preferable to blow warm air at this temperature on the upper surface of the web or heat it by means such as infrared rays.
  • peeling step Next, the web is peeled from the metal support. That is, this step is a step of peeling the web in which the solvent has evaporated on the metal support at the peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably in the range of -50 to 40 ° C, more preferably in the range of 10 to 40 ° C, and most preferably in the range of 15 to 30 ° C.
  • the amount of residual solvent at the time of peeling the web on the metal support at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the metal support, and the like.
  • the amount of residual solvent when the web is peeled from the metal support is preferably in the range of 10 to 150% by mass.
  • the amount is decided. It is more preferably in the range of 20 to 40% by mass or 60 to 130% by mass, and particularly preferably in the range of 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (mass%) [(MN) / N] ⁇ 100
  • M is the mass of the sample collected at any time during or after the production of the web or film
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the peeling tension when peeling the metal support and the film is preferably 300 N / m or less. More preferably, it is in the range of 196 to 245 N / m, but when wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N / m or less.
  • the peeling tension is preferably 300 N / m or less.
  • the web is preferably peeled from the metal support and further dried to reduce the residual solvent amount to 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0. It is ⁇ 0.01% by mass or less.
  • a roll drying method (a method in which the web is alternately passed through a large number of rollers arranged above and below to dry) or a tenter method is adopted while transporting the web.
  • the web is transferred by using a drying device 35 that alternately passes and conveys the web through a plurality of rollers arranged in the drying device, and / or a tenter stretching device 34 that clips and conveys both ends of the web with clips. dry.
  • the means for drying the web is not particularly limited, and generally it can be performed by hot air, infrared rays, heating rollers, microwaves, etc., but it is preferable to use hot air from the viewpoint of simplicity. Too rapid drying tends to impair the flatness of the finished film. Drying at high temperature should be performed when the residual solvent is about 8% by mass or less. Throughout, drying is generally carried out in the range of 30-250 ° C. In particular, it is preferable to dry in the range of 35 to 200 ° C. It is preferable that the drying temperature is gradually increased.
  • tenter stretching device When using a tenter stretching device, it is preferable to use a device that can independently control the film gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means of the tenter. Further, in the tenter step, it is also preferable to intentionally create sections having different temperatures in order to improve the flatness.
  • the film has the structure of the present invention, and the refractive index is controlled by controlling the transport tension and stretching operation.
  • the retardation value can be varied by lowering or increasing the tension in the longitudinal direction.
  • two axes are sequentially or simultaneously with respect to the longitudinal direction of the web (film forming direction; spreading direction; MD direction) and the direction orthogonal to the web surface, that is, the width direction (TD direction). It can be stretched or uniaxially stretched.
  • it is a biaxially stretched film in which biaxial stretching is performed in the casting direction (MD direction) and the width direction (TD direction), but the film according to the present invention may be a uniaxially stretched film. It may be an unstretched film.
  • the stretching operation may be performed in multiple stages.
  • simultaneous biaxial stretching may be performed, or biaxial stretching may be performed step by step.
  • stepwise means, for example, that stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any of the steps. Is also possible.
  • stretching steps are also possible: ⁇ Stretching in the casting direction ⁇ Stretching in the width direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the width direction ⁇ Stretching in the width direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction ⁇ Stretching in the casting direction
  • Simultaneous biaxial stretching includes the case of stretching in one direction and contracting the other by relaxing the tension.
  • the stretching ratios in the biaxial directions orthogonal to each other are preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. , It is preferable to carry out in the range of 0.8 to 1.2 times in the flow direction and 1.2 to 2.0 times in the width direction.
  • the stretching temperature is usually preferably a temperature in the range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the stretching temperature is preferably in the range of 120 to 200 ° C, more preferably in the range of 120 to 180 ° C.
  • the residual solvent in the web at the time of stretching is preferably in the range of 20 to 0% by mass, more preferably in the range of 15 to 0% by mass.
  • the method of stretching the web For example, a method of making a difference in peripheral speed between multiple rollers and stretching in the vertical direction using the difference in peripheral speed between the rollers, fixing both ends of the web with clips or pins, and widening the distance between the clips and pins in the direction of travel.
  • a method of stretching in the vertical direction, a method of similarly spreading in the horizontal direction and stretching in the horizontal direction, a method of spreading in the vertical and horizontal directions at the same time and stretching in both the vertical and horizontal directions, and the like can be mentioned. Of course, these methods may be used in combination. Above all, it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are gripped by clips or the like.
  • these width maintenance or lateral stretching in the film forming process is performed by a tenter, and either a pin tenter or a clip tenter may be used.
  • ⁇ 1 is preferably -1 ° or more and + 1 ° or less. More preferably, it is 0.5 ° or more and + 0.5 ° or less.
  • This ⁇ 1 can be defined as an orientation angle, and the measurement of ⁇ 1 can be performed using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Measuring Instruments Co., Ltd.). Satisfying each of the above relationships with ⁇ 1 can contribute to obtaining high brightness in the displayed image, suppressing or preventing light leakage, and can contribute to obtaining faithful color reproduction in the color liquid crystal display device.
  • a film roll is obtained by winding the obtained web (finished film). More specifically, it is a step of winding the film as a film by the winder A37 after the amount of residual solvent in the web becomes 2% by mass or less, and dimensional stability is achieved by reducing the amount of residual solvent to 0.4% by mass or less. A film having good properties can be obtained. In particular, it is preferable to wind up in the range of 0.00 to 0.10% by mass.
  • winding method a commonly used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these can be used properly.
  • the end Before winding, the end is slit to the width of the product and cut off, and knurling is applied to both ends of the film to prevent sticking and scratches during winding.
  • the gripping part of the clip at both ends of the film is usually cut because the film is deformed and cannot be used as a product. If the material has not deteriorated due to heat, it will be reused after recovery.
  • the base film according to the present invention is preferably a long film, specifically, a film having a length of about 100 to 10000 m, and is usually provided in a roll form.
  • the functional layer according to the present invention is preferably bonded to a polarizing element layer to form a polarizing plate, and can function as an optical film such as a polarizing plate protective film or a retardation film.
  • the base film according to the present invention may be peeled off from the functional layer or may be left as it is.
  • the layer thickness of the functional layer according to the present invention is in the range of 1 to 19 ⁇ m and in the range of 2 to 10 ⁇ m to provide a thin polarizing plate, and at the same time, wrinkle or curl deformation of the functional layer which is a thin film. It is preferable from the viewpoint of suppressing the above. If it is less than 1 ⁇ m, the strength as a functional layer cannot be maintained, wrinkles and curl deformation are likely to occur, and the protective function of the polarizer layer is insufficient. If it exceeds 19 ⁇ m, optical unevenness may be caused in a display device provided with a polarizing plate using the functional layer, and it becomes difficult to form a thin polarizing plate.
  • the resin used for the functional layer according to the present invention is not particularly limited, and is a (meth) acrylic resin, a cycloolefin resin, a cellulose acylate resin, a fumaric acid diester resin, or a polyimide resin. It can be resin or the like.
  • the cycloolefin-based resin the same cycloolefin-based resin as the cycloolefin-based resin described in the base film can be appropriately used.
  • the (meth) acrylic resin used for the functional layer preferably contains at least a structural unit (U1) derived from methyl methacrylate and a structural unit (U2) derived from phenylmaleimide.
  • the (meth) acrylic resin containing the structural unit (U2) derived from phenylmaleimide can reduce the coefficient of thermal expansion (CTE) of the functional layer.
  • the (meth) acrylic resin may further contain other structural units other than the above.
  • other structural units include (meth) acrylic acid alkyl esters such as adamantyl acrylate; (meth) acrylic acid cycloalkyl esters such as 2-ethylhexyl acrylate.
  • the structural unit (U3) derived from the acrylic acid alkyl ester from the viewpoint of reducing the deterioration of brittleness due to the inclusion of the structural unit (U2) derived from phenylmaleimide.
  • the (meth) acrylic resin contains a structural unit (U1) derived from methyl methacrylate, a structural unit (U2) derived from phenylmaleimide, and a structural unit (U3) derived from an acrylic acid alkyl ester. Is more preferable.
  • the content of the structural unit (U1) derived from methyl methacrylate is preferably in the range of 50 to 95% by mass, preferably 70 to 90% by mass, based on all the structural units constituting the (meth) acrylic resin. More preferably, it is in the range.
  • the coefficient of thermal expansion (CTE) of the functional layer can be reduced.
  • the structural unit (U2) derived from phenylmaleimide has a relatively bulky structure, it may have microscopic voids in the resin matrix that can move the rubber particles. Therefore, the rubber particles can be used as the surface layer of the functional layer. It can be easily distributed unevenly in the part.
  • the content of the structural unit (U2) derived from phenylmaleimide is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U2) derived from phenylmaleimide is 1% by mass or more, the coefficient of thermal expansion (CTE) of the functional layer is easily reduced, and when it is 25% by mass or less, the brittleness of the functional layer is excessive. Is not easily damaged.
  • the content of the structural unit (U2) derived from phenylmaleimide is more preferably in the range of 7 to 15% by mass.
  • the structural unit (U3) derived from the acrylic acid alkyl ester can impart appropriate flexibility to the resin, for example, the brittleness due to containing the structural unit (U2) derived from phenylmaleimide can be improved.
  • the acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having an alkyl moiety having 1 to 7 carbon atoms, preferably 1 to 5 carbon atoms.
  • acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate and the like.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 1% by mass or more, appropriate flexibility can be imparted to the (meth) acrylic resin, so that the functional layer does not become too brittle and breaks. Hateful.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 25% by mass or less, the Tg of the functional layer does not become too low and the coefficient of thermal expansion (CTE) does not become too large.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is more preferably in the range of 5 to 15% by mass.
  • the ratio of the structural unit (U2) derived from phenylmaleimide to the total amount of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester is in the range of 20 to 70% by mass. It is preferable to have. When the ratio is 20% by mass or more, the tensile elastic modulus G2 of the functional layer is likely to be increased, and when it is 70% by mass or less, the functional layer is not too brittle.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or higher, and more preferably 120 to 150 ° C.
  • Tg of the (meth) acrylic resin is within the above range, the heat resistance of the functional layer can be easily increased.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is not particularly limited and can be adjusted according to the purpose.
  • the weight average molecular weight of the (meth) acrylic resin is, for example, from the viewpoint of promoting entanglement of resin molecules to increase the toughness of the functional layer and making it difficult to break, and to appropriately increase the CTE ratio and curl to a degree preferable for adhesion. From the viewpoint of facilitating adjustment to the amount, it is preferably 100,000 or more, and more preferably 1 million or more. When the weight average molecular weight of the (meth) acrylic resin is 1 million or more, the toughness of the obtained functional layer can be enhanced.
  • the weight average molecular weight of the (meth) acrylic resin is more preferably in the range of 1.5 million to 3 million.
  • the method for measuring the weight average molecular weight is as described above.
  • the fumaric acid diester resin used for the functional layer is a fumaric acid diester resin containing a diisopropyl fumarate residue unit and a fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms.
  • the alkyl groups having 1 or 2 carbon atoms in the fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms are independent of each other, and examples thereof include a methyl group and an ethyl group. Further, these may be substituted with a halogen group such as fluorine or chlorine; an ether group; an ester group or an amino group.
  • a halogen group such as fluorine or chlorine
  • an ether group such as an ether group
  • an ester group or an amino group examples of the fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms include a dimethyl fumarate residue unit and a diethyl fumarate residue unit. Moreover, these may contain 1 type or 2 or more types.
  • fumaric acid diester resin examples include diisopropyl fumarate / dimethyl fumarate copolymer resin and diisopropyl fumarate / diethyl fumarate copolymer resin.
  • the fumaric acid diester resin may contain other monomer residue units as long as it does not exceed the scope of the present invention, and examples of the other monomer residue units include styrene residue units.
  • styrene residue units such as ⁇ -methylstyrene residue unit; (meth) acrylate residue unit; (meth) methyl acrylate residue unit, (meth) ethyl acrylate residue unit, (meth) butyl acrylate residue unit (Meta) acrylic acid ester residue unit such as residue unit; vinyl ester residue unit such as vinyl acetate residue unit, vinyl propionate residue unit; acrylonitrile residue unit; methacrylonyloryl residue unit; methyl Vinyl ether residue units such as vinyl ether residue unit, ethyl vinyl ether residue unit, butyl vinyl ether residue unit; N-methylmaleimide residue unit, N-cyclohexyl maleimide residue unit, N-phenylmaleimide residue unit, etc.
  • -Substituted maleimide residue unit olefin residue unit such as ethylene residue unit and propylene residue unit; or din-butyl fumarate residue unit, bis (2-ethylhexyl) fumarate residue unit and the like.
  • olefin residue unit such as ethylene residue unit and propylene residue unit
  • din-butyl fumarate residue unit bis (2-ethylhexyl) fumarate residue unit and the like.
  • One or more selected from the fumaric acid diester residue units other than the fumaric acid diester residue unit can be mentioned.
  • the blending ratio of the fumaric acid diester resin used in the present invention is in the range of 50 to 99 mol% of diisopropyl fumarate residue unit and 1 to 50 mol% of fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms.
  • Fumaric acid having a range of 60 to 95 mol% of diisopropyl fumarate residue unit and an alkyl group having 1 or 2 carbon atoms is preferable because the range is preferable and the retardation characteristics and strength when used as a retardation film are excellent.
  • a fumaric acid diester resin consisting of a diester residue unit in the range of 5 to 40 mol% is particularly preferable.
  • the fumaric acid diester resin used in the present invention preferably has a standard polystyrene-equivalent number average molecular weight in the range of 50,000 to 250,000 obtained from the elution curve measured by the gel permeation chromatography.
  • the suspension was cooled to room temperature, the suspension containing the produced polymer particles was filtered off, and washed with distilled water and methanol to obtain a fumaric acid diester resin (yield: 75%).
  • the polyimide-based resin can be a polymerization reaction product of tetracarboxylic dianhydride and diamine.
  • the tetracarboxylic acid dianhydride may be any of aromatic tetracarboxylic acid dianhydride, aliphatic tetracarboxylic acid dianhydride, and alicyclic tetracarboxylic acid dianhydride, but aromatic tetracarboxylic acid dianhydride is preferable. It is an acid dianhydride.
  • the diamine may be any of an aromatic diamine, an aliphatic diamine, and an alicyclic diamine, but is preferably an aromatic diamine.
  • the weight average molecular weight Mw of the polyimide resin is not particularly limited, but is preferably in the range of 100,000 to 300,000, preferably 130,000 to 250,000, from the viewpoint of increasing the toughness of the functional layer and making it difficult to break due to the conveying tension. It is more preferable that the range is.
  • the method for measuring the weight average molecular weight Mw of the polyimide resin is the same as described above.
  • (meth) acrylic resin is preferable from the viewpoint of excellent translucency and less curing shrinkage.
  • the content of the resin in the functional layer is preferably 60% by mass or more, more preferably 70% by mass or more with respect to the functional layer.
  • the functional layer may further contain components other than the above, if necessary.
  • examples of other components include rubber particles, the above-mentioned matting agent (fine particles), a plasticizer, an ultraviolet absorber, and the like.
  • the functional layer containing the above-mentioned (meth) acrylic resin tends to be brittle, it is preferable to further contain rubber particles from the viewpoint of imparting toughness (suppleness).
  • the rubber particles are particles containing a rubber-like polymer.
  • the rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20 ° C. or lower.
  • cross-linked polymers include butadiene-based cross-linked polymers, (meth) acrylic-based cross-linked polymers, and organosiloxane-based cross-linked polymers.
  • the (meth) acrylic crosslinked polymer is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the functional layer is not easily impaired, and the acrylic crosslinked polymer (acrylic rubber-like weight) is preferable. Coalescence) is more preferable.
  • the rubber particles are preferably particles containing the acrylic rubber-like polymer (a).
  • the acrylic rubber-like polymer (a) is a crosslinked polymer containing a structural unit derived from an acrylic acid ester as a main component. "Included as a main component” means that the content of structural units derived from acrylic acid ester is in the range described later.
  • the acrylic rubber-like polymer (a) has a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond).
  • Acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic.
  • An acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as n-octyl acid is preferable.
  • the acrylic acid ester may be one kind or two or more kinds.
  • the content of the structural unit derived from the acrylic acid ester is preferably in the range of 40 to 80% by mass, preferably 50 to 80% by mass, based on all the structural units constituting the acrylic rubber-like polymer (a1). More preferably, it is in the range. When the content of the acrylic acid ester is within the above range, it is easy to impart sufficient toughness to the protective film.
  • the other copolymerizable monomer is a monomer copolymerizable with the acrylic acid ester other than the polyfunctional monomer. That is, the copolymerizable monomer does not have two or more radically polymerizable groups.
  • copolymerizable monomers examples include methacrylic ester such as methyl methacrylate; styrenes such as styrene and methylstyrene; (meth) acrylonitrile; (meth) acrylamide; (meth) acrylic acid. .. Among them, the other copolymerizable monomer preferably contains styrenes.
  • the other copolymerizable monomer may be one kind or two or more kinds.
  • the content of the structural unit derived from the other copolymerizable monomer is preferably in the range of 5 to 55% by mass with respect to the total structural unit constituting the acrylic rubber-like polymer (a). More preferably, it is in the range of 10 to 45% by mass.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (diethylene glycol).
  • meth) acrylates triethylene glycol di (meth) acrylates, trimethylrol propanetri (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, polyethylene glycol di (meth) acrylates. ..
  • the content of the structural unit derived from the polyfunctional monomer is preferably in the range of 0.05 to 10% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a), and is 0. More preferably, it is in the range of 1 to 5% by mass.
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) is likely to be increased, so that the hardness and rigidity of the obtained functional layer are impaired. If it is not too much and is 10% by mass or less, the toughness of the functional layer is not easily impaired.
  • the monomer composition constituting the acrylic rubber-like polymer (a) can be measured by, for example, the peak area ratio detected by thermal decomposition GC-MS.
  • the glass transition temperature (Tg) of the rubber-like polymer is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • Tg glass transition temperature of the rubber-like polymer
  • appropriate toughness can be imparted to the film.
  • the glass transition temperature (Tg) of the rubbery polymer is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubber-like polymer can be adjusted by the composition of the rubber-like polymer.
  • It is preferable to increase the mass ratio of other copolymerizable monomers for example, 3 or more, preferably in the range of 4 to 10).
  • the particles containing the acrylic rubber-like polymer (a) are the particles made of the acrylic rubber-like polymer (a) or the hard layer made of the hard crosslinked polymer (c) having a glass transition temperature of 20 ° C. or higher. , Particles having a soft layer made of the acrylic rubber-like polymer (a) arranged around the particles (these are also referred to as “elastomers”); the acrylic rubber-like polymer (a).
  • the particles may be particles made of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as a methacrylate ester in at least one stage.
  • the particles made of the acrylic graft copolymer may be core-shell type particles having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
  • the core portion contains an acrylic rubber-like polymer (a), and may further contain a hard crosslinked polymer (c), if necessary. That is, the core portion may have a soft layer made of an acrylic rubber-like polymer and a hard layer made of a hard crosslinked polymer (c) arranged inside the soft layer.
  • the crosslinked polymer (c) can be a crosslinked polymer containing a methacrylic acid ester as a main component. That is, the crosslinked polymer (c) includes a structural unit derived from a methacrylic acid alkyl ester, a structural unit derived from another monomer copolymerizable therewith, and a structural unit derived from a polyfunctional monomer. It is preferably a crosslinked polymer containing.
  • the alkyl methacrylate ester may be the alkyl methacrylate ester described above; the other copolymerizable monomer may be the styrenes or acrylic acid ester described above; the polyfunctional monomer may be. Examples thereof include those similar to those mentioned above as the polyfunctional monomer.
  • the content of the structural unit derived from the methacrylic acid alkyl ester can be in the range of 40 to 100% by mass with respect to all the structural units constituting the crosslinked polymer (c).
  • the content of the structural unit derived from the other copolymerizable monomer can be in the range of 60 to 0% by mass with respect to the total structural unit constituting the other crosslinked polymer (c).
  • the content of the structural unit derived from the polyfunctional monomer can be in the range of 0.01 to 10% by mass with respect to all the structural units constituting the other crosslinked polymer.
  • the shell portion contains a methacrylic polymer (b) (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • a methacrylic polymer (b) another polymer
  • graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • Including as a main component means that the content of structural units derived from methacrylic acid ester is in the range described later.
  • the methacrylic acid ester constituting the methacrylic acid polymer (b) is preferably an alkyl methacrylate ester having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b).
  • the content of the methacrylate ester is 50% by mass or more, compatibility with a methacrylic resin containing a structural unit derived from methyl methacrylate as a main component can be easily obtained.
  • the content of the methacrylic acid ester is more preferably 70% by mass or more with respect to all the structural units constituting the methacrylic polymer (b).
  • the methacrylic polymer (b) may further contain a structural unit derived from another monomer copolymerizable with the methacrylic ester.
  • examples of other copolymerizable monomers are acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, A (meth) acrylic monomer having an alicyclic, heterocyclic or aromatic ring such as phenoxyethyl (meth) acrylate (ring-containing (meth) acrylic monomer) is included.
  • the content of the structural unit derived from the copolymerizable monomer is preferably 50% by mass or less, preferably 30% by mass or less, based on all the structural units constituting the methacrylic polymer (b). Is more preferable.
  • the ratio of the graft component (graft ratio) in the rubber particles is preferably in the range of 10 to 250% by mass, and more preferably in the range of 15 to 150% by mass.
  • the proportion of the graft component that is, the methacrylic polymer (b) containing the structural unit derived from the methacrylic acid ester as the main component is moderately large, so that the rubber particles and the methacrylic resin are separated from each other. It is easy to improve compatibility and it is more difficult to agglomerate rubber particles. In addition, the rigidity of the film is not easily impaired.
  • the proportion of the acrylic rubber-like polymer (a) does not become too small, so that the toughness and brittleness improving effect of the functional layer are not easily impaired.
  • the graft ratio is measured by the following method.
  • Graft ratio (mass%) [ ⁇ (mass of methyl ethyl ketone insoluble matter)-(mass of acrylic rubber-like polymer (a)) ⁇ / (mass of acrylic rubber-like polymer (a))] ⁇ 100
  • the shape of the rubber particles can be a shape close to a true sphere. That is, the aspect ratio of the rubber particles when observing the cross section or the surface of the functional layer can be about 1 to 2.
  • the average particle size of the rubber particles is preferably in the range of 100 to 400 nm.
  • the average particle size of the rubber particles is 100 nm or more, sufficient toughness and stress relaxation property are easily imparted to the functional layer, and when it is 400 nm or less, the transparency of the functional layer is not easily impaired.
  • the average particle size of the rubber particles is more preferably in the range of 150 to 300 nm.
  • the average particle size of the rubber particles can be calculated by the following method.
  • the average particle size of the rubber particles can be measured as the average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the surface or section of the laminated film.
  • the equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area.
  • the rubber particles observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size.
  • the content of the rubber particles is not particularly limited, but is preferably in the range of 5 to 40% by mass, and more preferably in the range of 7 to 30% by mass with respect to the functional layer.
  • the rubber particles may be uniformly dispersed in the thickness direction of the functional layer, or may be unevenly distributed.
  • the area of 20% or less of the thickness of the functional layer from the surface opposite to the support of the functional layer is the area A and the support side of the functional layer. 20% or less of the area of the thickness from the surface functional layer and area B, and area ratio per unit area of the rubber particles in the region a R a, the area ratio per unit area of the rubber particles in the region B and R B
  • RA / R B is in the range of 1.0 to 1.1.
  • the rubber particles are the surface layer portion of the functional layer (the surface layer portion on the opposite side to the support). It is preferable that the particles are unevenly distributed.
  • the RA / R B of the functional layer is more preferably in the range of 1.04 to 1.06.
  • R A / R B is 1.04 or more
  • the rubber particles are unevenly distributed on the surface layer portion of the functional layer. Therefore, since the flexibility and toughness of the surface layer portion of the functional layer can be increased, as shown in FIG. 1B, when the functional layer is curled so as to be on the outside, it is easy to follow the curl, and stress is generated due to the curl. Can be reduced.
  • RA / R B is 1.1 or less, the difference in toughness between the surface layer portion and the inside of the functional layer does not become too large, so that cracks are unlikely to occur during transportation due to the stress difference.
  • the area ratio RA per unit area of the rubber particles in the region A is expressed by the following formula.
  • Area ratio RA (%) total area of rubber particles in region A / area of region A x 100
  • Area ratio R B per unit area of the rubber particles in the area B is similarly defined.
  • the RA / R B of the functional layer can be measured by the following method.
  • the observation conditions may be acceleration voltage (electron energy irradiating the sample): 30 kV, working distance (distance between the lens and the sample): 8.6 mm ⁇ magnification: 3.00 k.
  • the observation area is a region including the entire functional layer in the thickness direction.
  • R A / R B is calculated from the result obtained in 3) above.
  • the method of unevenly distributing the rubber particles is not particularly limited, but can be adjusted by the drying conditions (drying speed, etc.) of the applied functional layer solution and the composition of the (meth) acrylic resin.
  • drying conditions drying speed, etc.
  • the drying rate in order to facilitate uneven distribution of rubber particles on the surface layer portion (region A) of the functional layer, it is preferable to increase the drying rate, as will be described later; in order to increase the drying rate, the drying temperature is increased. Is preferable.
  • the (meth) acrylic resin containing a moderately large amount of structural unit (U2) derived from phenylmaleimide has many microscopic voids and easily diffuses and moves rubber particles. Therefore, the structural unit derived from phenylmaleimide is used. By appropriately increasing the content of (U2), it is possible to make it easier for the rubber particles to be unevenly distributed.
  • the functional layer according to the present invention can function as an optical film such as a retardation film by being peeled off from a base film and then bonded to a polarizer layer.
  • the in-plane retardation Ro measured in an environment of a measurement wavelength of 590 nm, a temperature of 23 ° C., and a humidity of 55% RH is in the range of 0 to 10 nm. It is preferably in the range of 0 to 5 nm, and more preferably in the range of 0 to 5 nm.
  • the phase difference Rt in the thickness direction of the functional layer is preferably in the range of -40 to 40 nm, and more preferably in the range of -25 to 25 nm.
  • Ro and Rt are defined by the following formulas, respectively.
  • n x represents the refractive index in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized) of the functional layer.
  • n y represents the refractive index in the direction orthogonal to the in-plane slow phase axis of the functional layer.
  • n z represents the refractive index of the functional layer in the thickness direction.
  • d represents the thickness (nm) of the functional layer.
  • the in-plane slow-phase axis of the functional layer can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods.
  • the phase difference Ro and Rt of the functional layer can be adjusted, for example, by the type of resin, stretching conditions, and drying conditions. For example, Rt can be lowered by raising the drying temperature.
  • the form of the laminated film (laminated body of the base film and the functional layer) of the present invention is not particularly limited, but may be band-shaped, for example. That is, it is preferable that the laminated film of the present invention is wound into a roll in a direction orthogonal to the width direction to form a roll.
  • the method for producing a laminated film of the present invention includes 1) a step of obtaining a solution for a functional layer, 2) a step of applying the obtained functional layer solution to the surface of a base film, and 3) a step of applying the obtained functional layer solution to the surface of the base film. It may be a method of forming a film on a substrate having a step of removing a solvent from a solution to form a functional layer, or a method of simultaneously laminating a film using a laminated die in the above solution film forming method. However, from the viewpoint of the flatness of the functional layer, a method of forming a film on the substrate is preferable.
  • Step of obtaining a solution for a functional layer A solution for a functional layer containing the above-mentioned resin and a solvent is prepared.
  • the solvent used for the solution for the functional layer is not particularly limited as long as it can disperse or dissolve the resin well.
  • solvents include alcohols such as methanol, ethanol, propanol, n-butanol, 2-butanol, tert-butanol and cyclohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, ethyl acetate, methyl acetate and lactic acid.
  • Esters such as ethyl, isopropyl acetate, amyl acetate, ethyl butyrate, glycol ethers (propylene glycol mono (C1 to C4) alkyl ethers (specifically, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol) Mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, etc.), propylene glycol mono (C1-C4) alkyl ether esters (propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate)), toluene, benzene , Cyclohexane, n-hexane and other hydrocarbons are included. It is preferable to contain ketones from the viewpoint of easily dissolving the resin, having a low boiling point, and easily increasing the drying speed and productivity, and
  • the solvent preferably contains ketones and alcohols.
  • the proportion of ketones is moderately high, the drying property and productivity are likely to be improved, and when the proportion of alcohols is moderately high, the flatness is not easily impaired.
  • the resin concentration of the solution for the functional layer is preferably in the range of 1.0 to 20% by mass, for example, from the viewpoint of facilitating the adjustment of the viscosity to the range described later. Further, from the viewpoint of reducing the amount of shrinkage during drying of the coating film, the resin concentration of the solution for the functional layer is preferably moderately high, more preferably more than 5% by mass and 20% by mass or less, and more than 5% by mass. It is more preferably 15% by mass or less.
  • the viscosity of the solution for the functional layer may be such that a functional layer having a desired thickness can be formed, and is not particularly limited, but is preferably in the range of, for example, 5 to 5000 mPs ⁇ s.
  • the viscosity of the solution for the functional layer is 5 cP or more, it is easy to form a functional layer having an appropriate thickness, and when it is 5000 mPs ⁇ s or less, it is possible to suppress the occurrence of thickness unevenness due to the increase in the viscosity of the solution.
  • the viscosity of the solution for the functional layer is more preferably in the range of 100 to 1000 mPs ⁇ s.
  • the viscosity of the solution for the functional layer can be measured with an E-type viscometer at 25 ° C.
  • Step of applying the functional layer solution the obtained functional layer solution is applied to the surface of the base film. Specifically, the obtained solution for the functional layer is applied to the surface of the base film.
  • the method for applying the solution for the functional layer is not particularly limited, and may be, for example, a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Above all, the back coat method is preferable from the viewpoint of being able to form a thin and uniform thickness coating film.
  • Step 3 Step of forming the functional layer
  • the solvent is removed from the solution for the functional layer applied to the support to form the functional layer.
  • the solution for the functional layer applied to the support is dried. Drying can be performed, for example, by blowing air or heating. Above all, from the viewpoint of facilitating curling of the laminated film, it is preferable to dry the laminated film by blowing air.
  • the drying conditions for example, drying temperature, drying air volume, drying time, etc.
  • the distribution state of the rubber particles can be adjusted.
  • the drying rate of the coating film of the solution for the functional layer containing the (meth) acrylic resin and the rubber particles is preferably high, and 0.0015 to 0. it is preferably in the range of .05kg / hr ⁇ m 2, and more preferably in the range of 0.002 ⁇ 0.05kg / hr ⁇ m 2 .
  • the drying rate is expressed as the mass of the solvent that evaporates per unit time and unit area.
  • the drying rate can usually be adjusted by the drying temperature.
  • the drying temperature may be, for example, in the range of 50 to 200 ° C. ((Tb-50) to (Tb + 50) ° C. with respect to the boiling point of the solvent used), although it depends on the solvent type used.
  • the laminated film according to the present embodiment may be strip-shaped as described above. Therefore, it is preferable that the method for producing a laminated film according to the present embodiment further includes 4) a step of winding a strip-shaped laminated film into a roll to form a roll.
  • Step of winding the laminated film to obtain a roll body The obtained strip-shaped laminated film is wound into a roll shape in a direction orthogonal to the width direction thereof to form a roll body.
  • the length of the strip-shaped laminated film is not particularly limited, but may be, for example, about 100 to 10000 m.
  • the width of the strip-shaped laminated film is preferably 1 m or more, and more preferably 1.3 to 4 m.
  • the method for producing a laminated film of the present invention can be performed by, for example, the production apparatus shown in FIG.
  • FIG. 3 is a schematic view of a manufacturing apparatus B200 for carrying out the method for manufacturing a laminated film according to the present embodiment.
  • the manufacturing apparatus B200 includes a supply unit B210, a coating unit B220, a drying unit B230, a cooling unit B240, and a winding unit B250.
  • Ba to Bd indicate transport rolls for transporting the base film B110.
  • the supply unit B210 has a feeding device (not shown) for feeding out the roll body B201 of the strip-shaped base film B110 wound around the winding core.
  • the coating unit B220 is a coating device, and includes a backup roll B221 that holds the base film B110, a coating head B222 that applies a solution for a functional layer to the base film B110 held by the backup roll B221, and a coating head. It has a decompression chamber B223 provided on the upstream side of B222.
  • the flow rate of the functional layer solution discharged from the coating head B222 can be adjusted by a pump (not shown).
  • the flow rate of the functional layer solution discharged from the coating head B222 is set to an amount capable of stably forming a coating layer having a predetermined layer thickness when continuously coated under the conditions of the coating head B222 adjusted in advance.
  • the decompression chamber B223 is a mechanism for stabilizing the bead (pool of coating liquid) formed between the solution for the functional layer from the coating head B222 and the base film B110 at the time of coating, and the degree of decompression can be adjusted. It has become.
  • the decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed.
  • the pressure reducing chamber B223 is in a state where there is no air leakage, and the gap between the pressure reducing chamber B223 and the backup roll is narrowly adjusted so that a stable bead of the coating liquid can be formed.
  • the drying unit B230 is a drying device that dries the coating film applied to the surface of the base film B110, and has a drying chamber B231, a drying gas introduction port B232, and a discharge port B233.
  • the temperature and air volume of the dry air are appropriately determined depending on the type of the coating film and the type of the base film B110.
  • the residual solvent content of the coating film after drying can be adjusted.
  • the amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after the coating film is sufficiently dried.
  • the amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the functional layer.
  • the content of the residual solvent can be adjusted by the drying conditions of the solution for the functional layer applied on the base film in the manufacturing process of the functional layer.
  • the amount of residual solvent in the functional layer can be measured by headspace gas chromatography.
  • a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass analysis is performed to identify the compound.
  • the volatile components are quantified while doing so.
  • the headspace method makes it possible to observe all peaks of volatile components by gas chromatography, and by using an analytical method that utilizes electromagnetic interactions, it is possible to quantify volatile substances and monomers with high accuracy. It can be done at the same time.
  • the cooling unit B240 cools the temperature of the base film B110 having the coating film (functional layer B120) obtained by drying in the drying unit B230, and adjusts the temperature to an appropriate temperature.
  • the cooling unit B240 has a cooling chamber B241, a cooling air inlet B242, and a cooling air outlet B243.
  • the temperature and air volume of the cooling air can be appropriately determined depending on the type of the coating film and the type of the base film B110. Further, even if the cooling unit B240 is not provided, the cooling unit B240 may not be provided if the cooling temperature is appropriate.
  • the winding unit B250 is a winding device (not shown) for winding the base film B110 on which the transparent functional layer B120 is formed to obtain the roll body B251.
  • the polarizing plate has a polarizing element layer and a laminated film or functional layer of the present invention arranged on at least one surface thereof. It is preferable that the polarizer layer and the laminated film or the functional layer are adhered to each other via an adhesive layer.
  • FIG. 4 shows an example of the layer structure of the polarizing plate of the present invention, but the present invention is not limited thereto.
  • FIG. 4A is a cross-sectional view of a polarizing plate with a base film.
  • the functional layer 3 side of the laminated film 1 (base film 2 and functional layer 3) of the present invention is bonded to the polarizer layer 5 via the adhesive layer 4 to process the polarizing plate 10a.
  • the opposing film 6 may be bonded to the surface of the polarizer layer 5 opposite to the surface to which the laminated film 1 of the present invention is bonded, via the adhesive layer 4.
  • the laminated film 1 of the present invention may be bonded to the display element side via an adhesive layer (not shown), or the display element.
  • the facing film 6 may be attached to the side via an adhesive layer (not shown).
  • the laminated film 1 of the present invention it is preferably the embodiment shown in FIG. 4 (b) below in which the base film 2 is peeled off from the laminated film 1.
  • FIG. 4B is a cross-sectional view of a polarizing plate from which the base film has been peeled off.
  • the functional layer 3 side of the laminated film 1 (base film 2 and functional layer 3) of the present invention is bonded to the polarizer layer 5 via the adhesive layer 4 to process the polarizing plate 10b.
  • the base film 2 is peeled from the functional layer 3 during or after the polarizing plate processing to process the thin polarizing plate 10b.
  • the opposing film 6 may be bonded to the surface of the polarizer layer 5 opposite to the surface to which the functional layer 3 according to the present invention is bonded, via the adhesive layer 4.
  • the functional layer 3 may be attached to the display element side via an adhesive layer (not shown), and the polarizing plate 10b may be displayed.
  • the facing film 6 may be attached to the element side via an adhesive layer (not shown).
  • the polarizing layer is an element that allows only light on the plane of polarization in a certain direction to pass through.
  • the polarizer layer can usually be a polyvinyl alcohol-based polarizing film.
  • Examples of the polyvinyl alcohol-based polarizing film include a polyvinyl alcohol-based film dyed with iodine and a film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl.
  • An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound).
  • the absorption axis of the polarizer layer is usually parallel to the maximum stretching direction.
  • the thickness of the polarizing element layer is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 5 to 20 ⁇ m from the viewpoint of thinning the polarizing plate.
  • a base film or functional layer constituting the laminated film of the present invention is arranged on at least one surface of the polarizer layer. Any of the base film or the functional layer constituting the laminated film can function as a polarizer layer protective film. In the present embodiment, it is preferable that the functional layer is arranged on one surface of the polarizer layer and the other protective film is arranged on the other surface.
  • the opposing film examples include a cycloolefin resin, a polypropylene resin, an acrylic resin, a polyester resin, a polyarylate resin, a cellulose ester resin, a styrene resin, or a composite resin thereof. Above all, it is preferable to contain a cycloolefin resin, an acrylic resin and a polyester resin.
  • Adhesive layer The adhesive layer is arranged between the functional layer and the polarizer layer, and between the opposing film and the polarizer layer, respectively.
  • the adhesive layer arranged between the functional layer and the polarizer layer and the adhesive layer arranged between the opposing film and the polarizer layer may be the same or different.
  • the adhesive layer may be a layer obtained from a water-soluble polymer or a cured product layer of an active energy ray-curable adhesive.
  • a water-soluble polymer for example, via an adhesive made of a vinyl alcohol-based polymer, or at least an adhesive made of a water-soluble cross-linking agent of a vinyl alcohol-based polymer such as boric acid, borosand, glutaaldehyde, melamine, and oxalic acid. Can be done.
  • Such an adhesive layer is formed as a coating dry layer of an aqueous solution or the like, but when preparing the aqueous solution, other additives or a catalyst such as an acid can be added as needed.
  • the active energy ray-curable adhesive may be a photoradical polymerizable composition or a photocationic polymerizable composition. Of these, a photocationically polymerizable composition is preferable.
  • the photocationic polymerizable composition contains an epoxy compound and a photocationic polymerization initiator.
  • the epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • epoxy compounds include hydride epoxy compounds obtained by reacting an alicyclic polyol with epichlorohydrin (glycidyl ether of a polyol having an alicyclic ring); an aliphatic polyhydric alcohol or an alkylene thereof.
  • Aliphatic epoxy compounds such as polyglycidyl ether as an oxide adduct; alicyclic epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule are included. Only one type of epoxy compound may be used, or two or more types may be used in combination.
  • the photocationic polymerization initiator may be, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt; an iron-alene complex or the like.
  • Photocationic polymerization initiators include cationic polymerization accelerators such as oxetane and polyols, photosensitizers, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, and fluids, as required. Additives such as modifiers, plasticizers, defoamers, antistatic agents, leveling agents, solvents and the like may be further included.
  • the thickness of the adhesive layer is not particularly limited, but is preferably in the range of 0.01 to 10 ⁇ m, and more preferably in the range of 0.01 to 5 ⁇ m.
  • the adhesive layer is a layer for bonding a polarizing plate to a display element such as a liquid crystal cell, and may be arranged on a surface of the functional layer opposite to the polarizer layer. Alternatively, it can be arranged on the surface of the opposing film.
  • the pressure-sensitive adhesive layer is preferably a pressure-sensitive adhesive composition containing a base polymer, a prepolymer and / or a cross-linking monomer, a cross-linking agent and a solvent, which is dried and partially cross-linked. That is, at least a part of the pressure-sensitive adhesive composition may be crosslinked.
  • the pressure-sensitive adhesive composition examples include an acrylic pressure-sensitive adhesive composition using a (meth) acrylic polymer as a base polymer, a silicone-based pressure-sensitive adhesive composition using a silicone-based polymer as a base polymer, and a rubber-based pressure-sensitive adhesive composition using a rubber as a base polymer.
  • a pressure-sensitive adhesive composition is included.
  • an acrylic pressure-sensitive adhesive composition is preferable from the viewpoint of transparency, weather resistance, heat resistance, and processability.
  • the (meth) acrylic polymer contained in the acrylic pressure-sensitive adhesive composition can be a copolymer of a (meth) acrylic acid alkyl ester and a cross-linking agent and a cross-linkable functional group-containing monomer.
  • the (meth) acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having 2 to 14 carbon atoms in the alkyl group.
  • Examples of the functional group-containing monomer that can be crosslinked with the cross-linking agent include an amide group-containing monomer, a carboxyl group-containing monomer (acrylic acid, etc.), and a hydroxyl group-containing monomer (hydroxyethyl acrylate, etc.).
  • cross-linking agent contained in the acrylic pressure-sensitive adhesive composition examples include an epoxy-based cross-linking agent, an isocyanate-based cross-linking agent, and a peroxide-based cross-linking agent.
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition can usually be in the range of, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content).
  • Adhesive compositions include tackifiers, plasticizers, fiberglass, glass beads, metal powders, other fillers, pigments, colorants, fillers, antioxidants, UV absorbers, silane couplings as needed. Various additives such as agents may be further included.
  • the thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 ⁇ m, preferably in the range of 5 to 50 ⁇ m.
  • the surface of the adhesive layer is protected by a release film that has undergone a mold release treatment.
  • the release film include a plastic film such as an acrylic film, a polycarbonate film, a polyester film, and a fluororesin film.
  • the above-mentioned laminated film is attached to at least one surface of the polarizer layer, and the base film is peeled off if necessary. It can be manufactured through a process.
  • the laminated film may be bonded to only one surface of the polarizing element layer or both surfaces, and from the viewpoint of optical characteristics such as transmittance and phase difference and curling suppression, the polarizing element layer may be bonded. It is preferable that the laminated film is attached to one surface and the opposing film, which is another protective film, is attached to the other surface.
  • the base film side of the laminated film of the present invention may be bonded to the polarizer layer, or the functional layer side may be bonded.
  • the functional layer side is bonded and the base film is used as a protective film, or the base film is peeled off and only the functional layer of the thin film is used.
  • the polarizing element layer is formed from the inside of the roll. It is a preferable method for producing a polarizing plate roll to include a step of winding the laminated film while adhering it to the polarizing element layer so that the order of the adhesive layer, the functional layer and the base material fill is arranged.
  • the polarizing plate according to the present invention is 1) a step of laminating the functional layer side of the laminated film on one surface of the polarizing element layer (arranged on the surface opposite to the polarizing element layer of the functional layer).
  • the base film may be left attached or peeled off if necessary.
  • An opposing film, which is another protective film, is attached to the other surface of the polarizing element layer. It can be manufactured through a process.
  • the surface of the functional layer of the laminated film is subjected to surface treatment such as corona treatment, if necessary.
  • the functional layer of the laminated film is laminated on one surface of the polarizer layer via an adhesive of a water-soluble polymer.
  • the opposing film, which is another protective film is bonded to the other surface of the polarizer layer.
  • the surface of the opposing film is subjected to a surface treatment such as a corona treatment, if necessary.
  • the opposing film is laminated on the other surface of the polarizer layer via an adhesive of a water-soluble polymer, and then a stepwise drying treatment is performed in a temperature range of, for example, 50 to 80 ° C.
  • the steps 1) and 2) may be performed simultaneously or sequentially. From the viewpoint of increasing production efficiency, it is preferable to perform the steps 1) and 2) at the same time.
  • the polarizing plate according to the present embodiment may be band-shaped. Therefore, in the steps 1) and 2), the functional layer of the strip-shaped laminated film, the strip-shaped polarizing element layer, and the other strip-shaped protective film (opposing film) are unwound from the roll body to roll. It is preferable to perform the polarizing plate processing by laminating with a to roll.
  • the step of winding the strip-shaped polarizing plate into a roll shape to form a roll body it is preferable to further perform the step of winding the strip-shaped polarizing plate into a roll shape to form a roll body.
  • the length and width of the strip-shaped polarizing plate are the same as the length and width of the strip-shaped laminated film in the step 4) of the method for manufacturing a laminated film.
  • the polarizing layer 5 and the adhesive layer 4 are formed from the inside of the roll. It is also preferable to form a polarizing plate roll by a step of winding the laminated film 1 while adhering it to the polarizing element layer 5 so that the functional layer 3 and the base material fill 2 are layered in this order.
  • the base film 2 according to the present invention since the base film 2 according to the present invention is arranged on the outside of the polarizing plate roll, it exhibits a function as a protective film and prevents scratches or the like on the functional layer 2 during polarizing plate processing. Or, curling can be suppressed to facilitate handling.
  • the opposing film 6 is wound on the surface opposite to the surface on which the laminated film 1 is bonded while being bonded to the polarizing layer 5 via the adhesive layer 4, and the polarizing plate roll is used. May be formed.
  • the display device includes a display element such as a liquid crystal cell or an organic electroluminescence (also referred to as "EL") element, and a polarizing plate manufactured by the above manufacturing method.
  • a display element such as a liquid crystal cell or an organic electroluminescence (also referred to as "EL") element
  • EL organic electroluminescence
  • the display device according to the present embodiment is preferably a liquid crystal display device having a liquid crystal cell and a polarizing plate manufactured by the above manufacturing method.
  • the liquid crystal display device includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell. Then, at least one of the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment. It is preferable that the absorption axis of the first polarizing element layer in the first polarizing plate and the absorption axis of the second polarizer layer in the second polarizing plate are orthogonal to each other (cross Nicol).
  • the display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridrated Nematic), VA (Vertic), and VA (Vertic). (Patterned Vertical Element)), IPS (In-Plane-Switching), and the like.
  • STN Super-Twisted Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • HAN Hybridrated Nematic
  • VA Very
  • VA Very
  • VA Very-Plane-Switching
  • the IPS mode is preferable.
  • Cycloolefin resin (COP2) As a comparative cycloolefin resin, ZF14 manufactured by Nippon Zeon Corporation was used.
  • Triacetyl Cellulose Resin As a comparative triacetyl cellulose-based resin, acetyl cellulose having an acetyl substitution degree of 2.9 was used.
  • Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass dichloromethane 48 parts by mass Ethanol 48 parts by mass or more is stirred and mixed with a dissolver for 50 minutes, and then dispersed with manton gorin. went. Further, the particles were dispersed by an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
  • a dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressurized dissolution tank. Cycloolefin resin (DOP1): RX4500 was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol with stirring. Further, 15 minutes after the start of solvent addition, the fine particle-added solution prepared above was added, and the mixture was heated to 80 ° C. and completely dissolved while stirring. At this time, the temperature was raised from room temperature to 5 ° C./min, dissolved in 30 minutes, and then lowered to 3 ° C./min. The obtained solution was used as Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. Filtration was performed using 244 to prepare a dope.
  • DOP1 Cycloolefin resin
  • the base film was dried at 120 ° C. for 15 minutes while being conveyed by a large number of rollers in the drying zone, and the end portion sandwiched between the tenter clips was slit with a laser cutter and wound up to have a thickness of 15 ⁇ m and a width of 1500 mm.
  • the base film 1 of the above was prepared.
  • the moisture permeability of the base film is a value measured by leaving the film to be measured under the conditions of 40 ° C. and 90% RH for 24 hours based on the calcium chloride-cup method described in JIS Z-0208: 1976. ..
  • the moisture permeability of the base film was measured in accordance with JIS Z 0208: 1976 after being left in an environment with a temperature of 40 ° C. and a relative humidity of 90% RH for 24 hours.
  • ⁇ Measurement of humidity dimension change rate The prepared base film is cut into A4 size, two marks (crosses) are attached in the longitudinal direction or the width direction, and the humidity is adjusted for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 20% RH. The distance was measured with an optical microscope. This was designated as L 1 . Next, the humidity was adjusted for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 80% RH, and the distance between the two points was measured with an optical microscope. This was designated as L 2 .
  • the dimensional change rate was calculated using the following formula. The measurement was carried out at 10 points on the film surface at random, and the maximum value of the dimensional change rate was adopted.
  • Polyimide A weight having a structural unit derived from 4,4'-(hexafluoroisopropyridene) diphthalic anhydride and a structural unit derived from 2,2'-bis (trifluoromethyl) benzidine. Combined, Mw: 150,000, Tg: 350 ° C (5) TAC: Acetyl cellulose with an acetyl substitution degree of 2.80 (commercially available: manufactured by Wako Pure Chemical Industries, Ltd.) Table II shows the resin types (abbreviations) and model numbers.
  • Deionized water 180 parts by mass Polyoxyethylene lauryl ether phosphoric acid 0.002 parts by mass Boric acid 0.4725 parts by mass Sodium carbonate 0.04725 parts by mass Sodium hydroxide 0.0076 parts by mass
  • the inside of the polymerization machine was sufficiently replaced with nitrogen gas. After that, the internal temperature was adjusted to 80 ° C., and 0.021 parts by mass of potassium persulfate was added as a 2% aqueous solution.
  • a mixed solution prepared by adding 0.07 parts by mass of polyoxyethylene lauryl ether phosphoric acid to 21 parts by mass of the mixture (c') was continuously added to the above solution over 63 minutes. Further, by continuing the polymerization reaction for 60 minutes, a hard polymer (c) for a core was obtained.
  • a soft layer (a layer made of an acrylic rubber-like polymer (a)).
  • the glass transition temperature (Tg) of the soft layer was ⁇ 30 ° C.
  • the glass transition temperature of the soft layer was calculated by averaging the glass transition temperature of the homopolymer of each monomer constituting the acrylic rubber-like polymer (a) according to the composition ratio.
  • the obtained polymer was put into a warm aqueous solution of 3% by mass sodium sulfate for salting out and coagulation. Then, after repeating dehydration and washing, the particles were dried to obtain acrylic graft copolymer particles (rubber particles R1) having a three-layer structure.
  • the average particle size of the obtained rubber particles R1 was 200 nm.
  • the average particle size of the rubber particles was measured by the following method.
  • the dispersed particle size of the rubber particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • the functional layer solution 5 was similarly prepared with the following composition.
  • MEK Metallethylketone
  • Methanol alcohols
  • Sugar ester octaacetylsucrose
  • TAC Triacetyl cellulose
  • the functional layer solution 1 is applied onto the base film 1 by the backcoat method using a die, and then the drying speed is 0.002 kg / hr ⁇ m 2 , and the hot air and the functional layer applied from the support side are applied.
  • the temperature of the hot air applied from the side was set to 130 ° C. and dried to form a functional layer having a thickness of 5 ⁇ m to obtain a laminated film 1.
  • a polarizing plate was prepared by the following procedure.
  • COP Cycloolefin
  • RX4500 Triacetyl Cellulose
  • PMMA Polymethyl Methacrylate
  • PET polyethylene terephthalate
  • the surface of the laminated film on the adhesive side was subjected to corona discharge treatment at a corona output strength of 2.0 kW and a line speed of 18 m / min, and the water-soluble adhesive prepared above was applied to the corona discharge treated surface.
  • the agent solution 1 was coated with a bar coater so that the film thickness after drying was about 3 ⁇ m, and then dried at 50 ° C., 60 ° C., and 70 ° C. in this order for 60 seconds to obtain a polarizing plate.
  • the obtained polarizing plate was cut into a circle with a diameter of 5 cm and used as a sample.
  • the obtained sample was left for 24 hours in a constant temperature and humidity chamber having a temperature of 23 ° C. and a humidity of 55% RH. Then, the sample was taken out from the constant temperature and humidity chamber, placed on a flat plate, and 1 / r was obtained from the radius of curvature r (m) having a curve matching the sample using a curvature scale. Then, the curl amount was evaluated based on the following criteria.
  • ⁇ : 1 / r is less than 8 ⁇ : 1 / r is 8 or more and less than 12 ⁇ : 1 / r is 12 or more and ⁇ or more, it is judged to be good.
  • the peeling strength (adhesiveness) when peeled at the interface between the functional layer laminated on the base film of the obtained polarizing plate and the polarizer layer was 90 ° in an environment of a temperature of 23 ° C. and a humidity of 55% RH.
  • the peel test (based on JIS Z0237: 2009) was measured with a 90 ° peeling test jig (P90-200N) manufactured by Imada Co., Ltd.
  • Peeling strength is 2.0 (N / 25 mm) or more ⁇ : Peeling strength is 1.0 (N / 25 mm) or more and less than 2.0 (N / 25 mm) ⁇ : Peeling strength is 1.0 (N / 25 mm) If it is less than ⁇ or more, it is judged to be good.
  • a liquid crystal cell an IPS type liquid crystal cell having a glass substrate having a total thickness of 0.25 mm between two opposing sheets and a liquid crystal layer arranged between them was prepared. Then, after the base film is peeled off from the prepared polarizing plates 101 to 119, the liquid crystal display panels 201 to 219 are attached to both sides of the liquid crystal cell via the adhesive layer so that the functional layer side is the liquid crystal cell side. Obtained. The two polarizing plates were bonded together so that the light transmission axes of the polarizing element layers were in a cross-nicol state.
  • the liquid crystal display device produced above was displayed in black while the backlight was turned on, and light leakage was evaluated based on the following criteria.
  • No light leakage is observed or slight light leakage is observed, but there is no problem in actual use.
  • Light leakage is observed, but the quality is acceptable in actual use.
  • Clear light leakage is observed. There is a problem in actual use. Light leakage is unevenness caused by a decrease in the degree of polarization and a phase difference value (Ro, Rt), and appears as wavy white spots. If it is ⁇ or more, it is judged to be good.
  • ⁇ Bendmura> The liquid crystal display device produced above was left to stand in an environment of 40 ° C. and 80% RH for 80 hours. Next, in a state where the liquid crystal display device is displayed in black in a dry environment of 60 ° C., the difference between the brightness near the four vertices of the display screen and the brightness near the center of the display screen (optical unevenness between the center and the periphery). was visually observed. Then, the bend unevenness was evaluated based on the following evaluation criteria.
  • No or slight bend unevenness is observed, but there is no problem in actual use.
  • Bend unevenness is observed, but the quality is acceptable in actual use.
  • Clear bend unevenness is observed, and there is no problem in actual use. There is a problem Bend unevenness is optical unevenness caused by bending deformation of a panel that tends to occur when the polarizing plate curl is strong or the protective film is thick, and it appears as circular unevenness in the center of the screen. If it is ⁇ or more, it is judged to be good.
  • the laminated film of the present invention is excellent in polarizing plate curl, adhesiveness, light leakage of the display device, and optical unevenness due to bend deformation.
  • the laminated film of the present invention is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film, and further has excellent drying property, dimensional stability, and curl controllability during polarizing plate processing. Therefore, the productivity of the polarizing plate processing is improved, and the polarizing plate provided with the polarizing plate can provide a high-quality display device without optical unevenness due to light leakage or bend deformation.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The present invention has the object of providing a laminate film that is a thin film but that can be handled in the same manner as a conventional polarizing plate protective film, further has excellent drying properties, dimensional stability, and curl control performance during polarizing plate processing, and has improved productivity with regard to polarizing plate processing; the present invention also has the object of providing a polarizing plate equipped with this laminate film, a high-quality display device having no light leakage or optical unevenness, and a method for manufacturing a polarizing plate roll. This laminate film is formed by laminating at least a detachable functional layer on a base material film, and is characterized in that the layer thickness of the functional layer is in a range of 1-19 μm, the moisture permeability of the base material film at a temperature of 40°C and humidity of 90% RH is in a range of 100-400 g/m2·24h, the maximum dimensional change rate in the film plane of the base material film at a temperature of 23°C and humidity of 20-80% RH is in a range of 0.01-0.10%, and the thickness of the base material film is in a range of 20-60 μm.

Description

積層フィルム、偏光板、表示装置及び偏光板ロールの製造方法Method for manufacturing laminated film, polarizing plate, display device and polarizing plate roll
 本発明は、積層フィルム、偏光板、表示装置及び偏光板ロールの製造方法に関する。より詳しくは、薄膜でありながら、従来の偏光板保護フィルムと同様に取り扱うことが可能であり、更には偏光板加工時に優れた乾燥性、寸法安定性、及びカール制御性を有し、偏光板加工の生産性が向上した積層フィルム等に関する。 The present invention relates to a method for manufacturing a laminated film, a polarizing plate, a display device, and a polarizing plate roll. More specifically, although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film, and further has excellent drying property, dimensional stability, and curl controllability during polarizing plate processing, and is a polarizing plate. Regarding laminated films and the like with improved processing productivity.
 液晶表示装置は、低消費電力で、薄型化が可能であることから、テレビジョン(TV)やパーソナルコンピューター(PC)等の画像表示装置として広く採用されている。 Since the liquid crystal display device has low power consumption and can be made thinner, it is widely used as an image display device for televisions (TVs), personal computers (PCs), and the like.
 近年のテレビジョンの大型化・薄型化や表示品質の向上が要求される中、表示パネルのベンディングや部材の寸法変化によって生じる応力に伴って発生する光学ムラを抑制するため、部材の薄膜化が求められている。 In recent years, there has been a demand for larger and thinner televisions and improved display quality, and in order to suppress optical unevenness caused by stress caused by bending of display panels and dimensional changes of members, thinning of members has been made. It has been demanded.
 更には、ノート型や中小型のパーソナルコンピューター、スマートフォン、スレートPC等の用途では、部材の薄膜化要求が特に高く、用いられる機能性フィルム(例えば、視野角補償フィルムや偏光板保護フィルム等)の更なる薄膜化が必要である。 Furthermore, in applications such as notebook type and small and medium-sized personal computers, smartphones, slate PCs, etc., there is a particularly high demand for thinning of members, and functional films used (for example, viewing angle compensation film, polarizing plate protective film, etc.) Further thinning is required.
 薄膜フィルムを取り扱う場合には、フィルム搬送時のツレや皺、更には破断といった問題が発生する懸念があるため、プロテクトフィルムを貼り合わせて扱うのが一般的である。例えば、偏光板加工工程において、機能性フィルムと偏光子層を貼合後乾燥する時は、プロテクトフィルムを剥がして乾燥させ、その後、再び耐傷性の観点からプロテクトフィルムを貼り直して取り扱う等、加工プロセスが煩雑になるため、より簡素化できることが求められている。 When handling a thin film, there is a concern that problems such as wrinkles, wrinkles, and breakage may occur during film transportation, so it is common to handle by laminating a protective film. For example, in the polarizing plate processing step, when the functional film and the polarizing element layer are bonded and then dried, the protective film is peeled off and dried, and then the protective film is reattached and handled from the viewpoint of scratch resistance. Since the process becomes complicated, it is required to be more simplified.
 特許文献1には、薄型の機能性フィルムを取り扱うために、ベースとなる樹脂フィルムと機能性フィルムを積層フィルムとして製膜する方法が挙げられているが、当該積層フィルムを用いて偏光板を加工する時に、高い透湿性と大きな湿度寸法変化により、偏光板カールが発生し、扱い難いという問題があった。また、表示装置に組み込んだ後に湿度変動により偏光板カールが生じると、カールによって光漏れや光学ムラ(「ベンドムラ」ともいう。)が生じ表示品質を損なうという問題があった。 Patent Document 1 describes a method of forming a base resin film and a functional film as a laminated film in order to handle a thin functional film, and a polarizing plate is processed using the laminated film. At that time, there was a problem that the polarizing plate curled due to high moisture permeability and a large change in humidity dimension, and it was difficult to handle. Further, if the polarizing plate is curled due to humidity fluctuation after being incorporated in the display device, there is a problem that the curl causes light leakage and optical unevenness (also referred to as “bend unevenness”), which impairs the display quality.
 一方、透湿性の低い部材を用いた際には、接着剤や粘着剤等を用いて偏光板構成部材である偏光子層と貼合する工程において、乾燥性が悪く、生産性が低下したり、含水状態のまま熱がかかることによって偏光子層の劣化が生じたりするという問題があった。 On the other hand, when a member having low moisture permeability is used, the drying property is poor and the productivity is lowered in the step of bonding to the polarizing element layer which is a polarizing plate constituent member by using an adhesive or an adhesive. There is a problem that the polarizer layer is deteriorated by applying heat in a water-containing state.
特開2013-134336号公報Japanese Unexamined Patent Publication No. 2013-134336
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、薄膜でありながら、煩雑なプロセスを伴うことなく従来の偏光板保護フィルムと同様に取り扱うことが可能であり、更には偏光板加工時に優れた乾燥性、寸法安定性、及びカール制御性を有し、偏光板加工の生産性が向上した積層フィルム、それを具備した偏光板、光漏れや光学ムラのない高品質な表示装置、及び偏光板ロールの製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is that although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film without involving a complicated process. Furthermore, a laminated film having excellent drying property, dimensional stability, and curl controllability during polarizing plate processing and improved productivity of polarizing plate processing, a polarizing plate equipped with the laminated film, and high height without light leakage and optical unevenness. The purpose of the present invention is to provide a high-quality display device and a method for manufacturing a polarizing plate roll.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、特定の膜厚を有する基材フィルム上に、剥離可能で特定の層厚の機能層が積層された積層フィルムであって、基材フィルムの透湿度と湿度寸法変化率を特定の範囲に制御することで、偏光板加工時に優れた乾燥性、寸法安定性、及びカール制御性を有する積層フィルムが得られ、更には当該積層フィルムを偏光板保護フィルムとして具備した偏光板を用いることで、液晶表示装置の光漏れやベンド変形による光学ムラを抑制できることを見出した。 In order to solve the above problems, the present inventor has laminated a removable functional layer having a specific layer thickness on a base film having a specific film thickness in the process of examining the cause of the above problem. By controlling the moisture permeability and humidity dimensional change rate of the base film within a specific range, a laminated film having excellent drying property, dimensional stability, and curl controllability during polarizing plate processing can be obtained. Furthermore, it has been found that optical unevenness due to light leakage and bend deformation of the liquid crystal display device can be suppressed by using a polarizing plate provided with the laminated film as a polarizing plate protective film.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.基材フィルム上に、少なくとも剥離可能である機能層が積層された積層フィルムであって、
 前記機能層の層厚が、1~19μmの範囲内であり、
 前記基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であり、
 前記基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であり、かつ、
 前記基材フィルムの膜厚が、20~60μmの範囲内であることを特徴とする積層フィルム。
1. 1. A laminated film in which at least a peelable functional layer is laminated on a base film.
The layer thickness of the functional layer is in the range of 1 to 19 μm.
Temperature 40 ° C. of the substrate film, the moisture permeability under humidity of 90% RH is in the range of 100 ~ 400g / m 2 · 24h ,
The maximum dimensional change rate in the film surface in the temperature range of 23 ° C. and the humidity range of 20 to 80% RH of the base film is in the range of 0.01 to 0.10%, and
A laminated film characterized in that the film thickness of the base film is in the range of 20 to 60 μm.
 2.前記機能層の層厚が、2~10μmの範囲内であることを特徴とする第1項に記載の積層フィルム。 2. The laminated film according to item 1, wherein the thickness of the functional layer is in the range of 2 to 10 μm.
 3.前記基材フィルムが、シクロオレフィン系樹脂、ポリアリレート系樹脂、スチレン・(メタ)アクリレート共重合体、又はスチレン・ヒドロキシスチレン共重合体のいずれかを含有することを特徴とする第1項又は第2項に記載の積層フィルム。 3. The first item or the first item, wherein the base film contains any one of a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, and a styrene / hydroxystyrene copolymer. Item 2. The laminated film according to item 2.
 4.第1項から第3項までのいずれか一項に記載の積層フィルムを具備することを特徴とする偏光板。 4. A polarizing plate comprising the laminated film according to any one of items 1 to 3.
 5.第1項から第3項までのいずれか一項に記載の積層フィルム、又は第4項に記載の偏光板を具備することを特徴とする表示装置。 5. A display device comprising the laminated film according to any one of items 1 to 3 or the polarizing plate according to item 4.
 6.第1項から第3項までのいずれか一項に記載の積層フィルムを、偏光子層の少なくとも一方の面に接着剤を介して貼合しながら巻き取る偏光板ロールの製造方法であって、ロールの内側から偏光子層、接着層、機能層及び基材フィルムの層順になるように、前記偏光子層に前記積層フィルムを貼合しながら巻き取る工程を含むことを特徴とする偏光板ロールの製造方法。 6. A method for producing a polarizing plate roll, wherein the laminated film according to any one of items 1 to 3 is wound around at least one surface of a polarizing element layer while being bonded to at least one surface via an adhesive. A polarizing plate roll including a step of winding the laminated film while adhering the laminated film to the polarizing layer so that the layers of the polarizing layer, the adhesive layer, the functional layer and the base film are arranged in this order from the inside of the roll. Manufacturing method.
 本発明の上記手段により、薄膜でありながら、煩雑なプロセスを伴うことなく、従来の偏光板保護フィルムと同様に取り扱うことが可能であり、更には偏光板加工時に優れた乾燥性、寸法安定性、及びカール制御性を有し、偏光板加工の生産性が向上した積層フィルム、それを具備した偏光板、光漏れやベンド変形による光学ムラのない高品質な表示装置、及び偏光板ロールの製造方法を提供することができる。 By the above means of the present invention, although it is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film without involving a complicated process, and further, excellent drying property and dimensional stability during polarizing plate processing. , And a laminated film having curl controllability and improved productivity of polarizing plate processing, a polarizing plate equipped with the laminated film, a high-quality display device having no optical unevenness due to light leakage or bend deformation, and a polarizing plate roll. A method can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, but it is inferred as follows.
 本発明は、特定の膜厚を有する基材フィルム上に、剥離可能で特定の層厚の機能層が積層された積層フィルムであって、当該基材フィルムの透湿度と湿度寸法変化率を特定の範囲に制御することで、偏光板加工時に優れた乾燥性、寸法安定性、カール制御性を有する、偏光板保護フィルムに適用できる積層フィルムを提供するものである。 The present invention is a laminated film in which a removable functional layer having a specific layer thickness is laminated on a base film having a specific film thickness, and the moisture permeability and the rate of change in humidity dimension of the base film are specified. By controlling within the above range, it is possible to provide a laminated film that has excellent drying property, dimensional stability, and curl controllability at the time of polarizing plate processing and can be applied to a polarizing plate protective film.
 すなわち、基材フィルムの透湿度を特定の範囲に制御することで、偏光板加工時における乾燥性を制御して接着性を向上し、かつ、湿度変動に対する寸法変化率を小さくすることによって、薄膜である機能層の皺やカール変形を抑制することができる。したがって、生産性を落とすことなく、プロテクトフィルムを使用する前述のような煩雑な加工プロセスを必要とせずとも、従来と同じ偏光板加工プロセスにて偏光板を加工でき、更には、偏光板カールを抑制できることから、表示装置に具備した時に、光漏れや光学ムラのない高品質な表示装置を提供できるものと推察される。 That is, by controlling the moisture permeability of the base film within a specific range, the drying property during polarizing plate processing is controlled to improve the adhesiveness, and the dimensional change rate with respect to humidity fluctuation is reduced to reduce the thin film. It is possible to suppress wrinkles and curl deformation of the functional layer. Therefore, the polarizing plate can be processed by the same polarizing plate processing process as the conventional one without reducing the productivity and without requiring the complicated processing process as described above using the protective film, and further, the polarizing plate curl can be formed. Since it can be suppressed, it is presumed that it is possible to provide a high-quality display device without light leakage or optical unevenness when it is provided in the display device.
 これは、基材フィルムの透湿度、及び湿度寸法変化が特定の範囲内にあると、偏光板加工工程において、偏光子層内の水分が残留し続けることなく、また急に抜けることも無くなり、適度な揮発性を誘発することができるため、乾燥における加熱時に、残留水分による偏光子層の劣化を抑えることが可能であり、また急激な水分変化に伴うカール発生を抑制できるものと考えている。このようにして作製した偏光板、及び当該偏光板を表示装置に使用することで、湿度変動に伴う光漏れや光学ムラのない高品質な表示装置を提供することができるものと推察される。 This is because when the moisture permeability of the base film and the change in humidity dimension are within a specific range, the water content in the polarizing element layer does not continue to remain in the polarizing plate processing step and does not suddenly escape. Since it is possible to induce appropriate volatility, it is possible to suppress deterioration of the polarizer layer due to residual moisture during heating during drying, and it is thought that curl generation due to sudden changes in moisture can be suppressed. .. It is presumed that by using the polarizing plate produced in this manner and the polarizing plate in the display device, it is possible to provide a high-quality display device without light leakage or optical unevenness due to humidity fluctuation.
本発明の積層フィルムの断面を示す模式図Schematic diagram showing a cross section of the laminated film of the present invention 溶液流延法のドープ調製工程、流延工程及び乾燥工程(溶媒蒸発工程)の一例を模式的に示した図The figure which showed typically the example of the dope preparation step, the casting step and the drying step (solvent evaporation step) of the solution casting method. 本発明の一実施の形態に係る積層フィルムの製造方法を示す模式図The schematic diagram which shows the manufacturing method of the laminated film which concerns on one Embodiment of this invention 基材フィルム付き偏光板の断面図Cross-sectional view of polarizing plate with base film 基材フィルムを剥離した偏光板の断面図Cross-sectional view of the polarizing plate from which the base film has been peeled off
 本発明の積層フィルムは、基材フィルム上に、少なくとも剥離可能である機能層が積層された積層フィルムであって、前記機能層の層厚が、1~19μmの範囲内であり、前記基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であり、前記基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であり、かつ、前記基材フィルムの膜厚が、20~60μmの範囲内であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The laminated film of the present invention is a laminated film in which at least a peelable functional layer is laminated on a base film, and the layer thickness of the functional layer is in the range of 1 to 19 μm, and the base material. temperature 40 ° C. of the film, the moisture permeability under humidity of 90% RH is in the range of 100 ~ 400g / m 2 · 24h , temperature 23 ° C. of the base film, in the region of RH humidity 20-80%, the film The maximum in-plane dimensional change rate is in the range of 0.01 to 0.10%, and the film thickness of the base film is in the range of 20 to 60 μm. This feature is a technical feature common to or corresponding to the following embodiments.
 本発明の積層フィルムの実施態様としては、本発明の効果発現の観点から、前記機能層の層厚が、2~10μmの範囲内であることが、薄膜である機能層の皺やカール変形を抑制するとともに、基材フィルムを剥離して機能層を偏光子層と貼合したときにより薄膜な偏光板を提供する観点から、好ましい。更には、当該偏光板を用いた液晶表示装置の光学ムラを抑制する観点からも好ましい。 As an embodiment of the laminated film of the present invention, from the viewpoint of exhibiting the effect of the present invention, the layer thickness of the functional layer is in the range of 2 to 10 μm to prevent wrinkles and curl deformation of the functional layer which is a thin film. It is preferable from the viewpoint of suppressing and providing a thinner polarizing plate when the base film is peeled off and the functional layer is bonded to the polarizer layer. Further, it is also preferable from the viewpoint of suppressing optical unevenness of the liquid crystal display device using the polarizing plate.
 前記基材フィルムが、シクロオレフィン系樹脂、ポリアリレート系樹脂、スチレン・(メタ)アクリレート共重合体、又はスチレン・ヒドロキシスチレン共重合体のいずれかの樹脂材料を選択して含有することによって、基材フィルムの透湿度を特定の範囲に制御することで、偏光板加工時における乾燥性を向上し、かつ、湿度変動に対する寸法変化率を小さくすることで、機能層の皺やカールの発生を抑制する観点から、好ましい。更には、上記樹脂材料を用いることで、基材フィルム上に機能層を加工する際の加工性の観点からも好ましく用いることができる。 The base film is based on a resin material selected from a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, or a styrene / hydroxystyrene copolymer. By controlling the moisture permeability of the material film within a specific range, the dryness during styrene processing is improved, and by reducing the dimensional change rate with respect to humidity fluctuations, the occurrence of wrinkles and curls in the functional layer is suppressed. From the viewpoint of Furthermore, by using the above resin material, it can be preferably used from the viewpoint of processability when processing the functional layer on the base film.
 本発明の偏光板は、本発明の積層フィルムを具備することで、生産性を落とすことなく、煩雑な加工プロセスを必要とせずとも、従来と同じ偏光板加工プロセスにて偏光板を加工できる。 The polarizing plate of the present invention is provided with the laminated film of the present invention, so that the polarizing plate can be processed by the same polarizing plate processing process as the conventional one without reducing the productivity and without requiring a complicated processing process.
 本発明の表示装置は、本発明の積層フィルム、又は偏光板を具備することによって、偏光板のカール耐性を向上させて光漏れを抑制し、更には機能層の層厚を1~19μmの範囲内とすることで、光学ムラのない高品質な表示装置を得る観点から、好ましい。 By providing the laminated film of the present invention or the polarizing plate, the display device of the present invention improves the curl resistance of the polarizing plate to suppress light leakage, and further, the layer thickness of the functional layer is in the range of 1 to 19 μm. It is preferable from the viewpoint of obtaining a high-quality display device having no optical unevenness.
 本発明の偏光板ロールの製造方法は、ロールの内側から偏光子層、接着層、機能層及び基材フィルの層順になるように、前記偏光子層に前記積層フィルムを貼合しながら巻き取る工程を含むことを特徴とする。当該偏光板ロールの製造方法によって、基材フィルムがプロテクトフィルムを兼ねることができ、部品点数の削減や加工工程の簡略化につながる。 In the method for producing a polarizing plate roll of the present invention, the laminated film is wound around the polarizing layer so as to be in the order of the polarizer layer, the adhesive layer, the functional layer, and the substrate fill from the inside of the roll. It is characterized by including a process. Depending on the method for manufacturing the polarizing plate roll, the base film can also serve as a protective film, leading to a reduction in the number of parts and a simplification of the processing process.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present invention, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 ≪本発明の積層フィルムの概要≫
 本発明の積層フィルムは、基材フィルム上に、少なくとも剥離可能である機能層が積層された積層フィルムであって、前記機能層の層厚が、1~19μmの範囲内であり、前記基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であり、前記基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であり、かつ、前記基材フィルムの膜厚が、20~60μmの範囲内であることを特徴とする。
<< Overview of the Laminated Film of the Present Invention >>
The laminated film of the present invention is a laminated film in which at least a peelable functional layer is laminated on a base film, and the layer thickness of the functional layer is in the range of 1 to 19 μm, and the base material. temperature 40 ° C. of the film, the moisture permeability under humidity of 90% RH is in the range of 100 ~ 400g / m 2 · 24h , temperature 23 ° C. of the base film, in the region of RH humidity 20-80%, the film The maximum in-plane dimensional change rate is in the range of 0.01 to 0.10%, and the film thickness of the base film is in the range of 20 to 60 μm.
 (透湿度)
 本発明において、前記基材フィルムの透湿度は、JIS Z-0208:1976に記載の塩化カルシウム-カップ法に基づき、測定対象のフィルムを温度40℃、湿度90%RHの条件下で24時間放置して測定した値である。
(Humidity permeability)
In the present invention, the moisture permeability of the base film is based on the calcium chloride-cup method described in JIS Z-0208: 1976, and the film to be measured is left to stand for 24 hours under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It is a value measured by.
 本発明に係る基材フィルムの透湿度は、100~400g/m2・24hの範囲内であり、100g~300/m2/24hの範囲内であることが好ましく、100~200g/m2/24hの範囲内であることがより好ましく、100~150g/m2・24hの範囲内であることが更に好ましい。 Moisture permeability of the base film according to the present invention is in the range of 100 ~ 400g / m 2 · 24h , preferably in the range of 100g ~ 300 / m 2 / 24h , 100 ~ 200g / m 2 / more preferably 24h in the range of, more preferably within the range of 100 ~ 150g / m 2 · 24h .
 透湿度が100g/m2・24h未満であると、本発明に係る基材フィルム又は機能層と、水糊等を用いた偏光子層との貼合において乾燥性や密着性が劣り、更には残留水分がある状態で熱が加わることで偏光子層劣化を引き起こして、表示品質の劣化を引き起こす可能性がある。一方、透湿度が400g/m2・24hを超えると、急な乾燥に伴う偏光子層の脱水収縮による偏光板カールを引き起こし、更には積層フィルムとの剥がれを引き起こす恐れがある。 If the moisture permeability is less than 100g / m 2 · 24h, a substrate film or a functional layer according to the present invention, drying properties and adhesion inferior in bonding the polarizer layer with water glue, etc., more The addition of heat in the presence of residual moisture may cause deterioration of the polarizer layer, resulting in deterioration of display quality. On the other hand, when the moisture permeability is more than 400g / m 2 · 24h, causing polarizer curl by dehydration shrinkage of the polarizer layer due to sudden drying, even may cause peeling of a laminated film.
 具体的な基材フィルムの透湿度の測定は、前述のとおり温度40℃、湿度90%RHの環境に24時間放置して、JIS Z 0208:1976に準じて測定する。 Specifically, the moisture permeability of the base film is measured according to JIS Z 0208: 1976 after being left in an environment of a temperature of 40 ° C. and a humidity of 90% RH for 24 hours as described above.
 前述のとおり、基材フィルムの透湿度の下限値を100g/m2・24hとしたのは、水糊乾燥性が良好である限界値であり、上限値を400g/m2・24hとしたのは、急な偏光子層の脱水収縮による偏光板カールの限界値であることから、本発明に係る基材フィルムの透湿度は上記範囲内に調整されるものである。 As described above, the the lower limit value of the moisture permeability of the substrate film was set to 100g / m 2 · 24h is a limit Mizunori drying is good, the upper limit was set to 400g / m 2 · 24h Is the limit value of the polarizing plate curl due to the sudden dehydration shrinkage of the polarizing element layer, so that the moisture permeability of the base film according to the present invention is adjusted within the above range.
 (寸法変化率)
 本発明において、前記基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内である。
(Dimensional change rate)
In the present invention, the maximum dimensional change rate in the film surface in the range of the temperature of the base film of 23 ° C. and the humidity of 20 to 80% RH is in the range of 0.01 to 0.10%.
 ここで本発明の「寸法変化率」とは、以下のようにして算出した値である。 Here, the "dimensional change rate" of the present invention is a value calculated as follows.
 基材フィルムの表面2か所に十文字型の印を付し、温度23℃、湿度20%RHの環境下に基材フィルムを24時間放置して調湿後、光学顕微鏡で2つの印間の距離L1を測定する。その後、温度23℃、湿度80%RHの環境下にフィルムを24時間放置して調湿後、同様に2つの印間の距離L2を測定し、下記式により寸法変化率(%)を算出する。 Two cross-shaped marks are placed on the surface of the base film, and the base film is left for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 20% RH to control the humidity, and then between the two marks with an optical microscope. Measure the distance L 1. After that, the film was left to stand in an environment of a temperature of 23 ° C. and a humidity of 80% RH for 24 hours to adjust the humidity, and then the distance L 2 between the two marks was measured in the same manner, and the dimensional change rate (%) was calculated by the following formula. do.
 寸法変化率(%)={(L2-L1)/L1}×100
 本発明でいう「フィルム面内の最大寸法変化率」とは、上記フィルム表面2か所に十文字型の印を付けることを、無作為にフィルム面内の10箇所について行い、上記寸法変化率を各々測定した中で、最大の寸法変化率を示す値を採用する。
Dimensional change rate (%) = {(L 2- L 1 ) / L 1 } x 100
The "maximum dimensional change rate in the film surface" as used in the present invention means that the two places on the film surface are marked with a cross-shaped mark at random at 10 places in the film surface, and the dimensional change rate is calculated. The value indicating the maximum dimensional change rate among each measurement is adopted.
 寸法変化率が0.01%未満であると、偏光子層と機能層の接着不良が生じ、0.10%を超えると、機能層に皺やカールの発生があり、かつ、偏光板カールが生じて表示装置パネルに反りが発生し、光漏れや光学ムラとなる。より好ましくは、0.03~0.08%の範囲内である。 If the dimensional change rate is less than 0.01%, poor adhesion between the polarizing element layer and the functional layer occurs, and if it exceeds 0.10%, the functional layer is wrinkled or curled, and the polarizing plate curl is formed. As a result, the display panel is warped, resulting in light leakage and optical unevenness. More preferably, it is in the range of 0.03 to 0.08%.
 (積層フィルムの層構成)
 図1に本発明の積層フィルムの層構成について、その一例を示す。
(Layer structure of laminated film)
FIG. 1 shows an example of the layer structure of the laminated film of the present invention.
 本発明の積層フィルム1は、基材フィルム2及び当該基材フィルム2上に機能層3を有する。基材フィルム2及び機能層3は複数の層が積層されて構成されていてもよい。また、機能層3はプライマー層(不図示)や保護層(不図示)等の他の機能層を表面又は裏面に有していてもよい。 The laminated film 1 of the present invention has a base film 2 and a functional layer 3 on the base film 2. The base film 2 and the functional layer 3 may be formed by laminating a plurality of layers. Further, the functional layer 3 may have another functional layer such as a primer layer (not shown) or a protective layer (not shown) on the front surface or the back surface.
 基材フィルム2は、機能層とは反対側の面に接着層(不図示)又は粘着層(不図示)を有していてもよく、当該接着層又は粘着層は基材フィルム2と表示素子との貼合時に接着機能を提供することができる。 The base film 2 may have an adhesive layer (not shown) or an adhesive layer (not shown) on the surface opposite to the functional layer, and the adhesive layer or the adhesive layer is the base film 2 and a display element. It is possible to provide an adhesive function at the time of bonding with.
 本発明でいう「剥離可能である機能層」とは、通常生産時、又は一般使用時には基材フィルムと機能層は密着しており容易には剥離しないが、偏光板加工時において機能層のみ使用したいときに、外部応力によって基材フィルムから機能層が剥離できる態様をいう。 The "peelable functional layer" as used in the present invention means that the base film and the functional layer are in close contact with each other during normal production or general use and cannot be easily peeled off, but only the functional layer is used during polarizing plate processing. A mode in which the functional layer can be peeled off from the base film by external stress when desired.
 例えば、基材フィルムを機能層から剥離する際の応力は、機能層の基材フィルム側界面とは反対側の面を、アクリル系粘着剤シートを介してガラス基材に貼合して固定した後に、引張り試験機((株)エー・アンド・デイ製RTF-1210)を用いて、試験片の長さ方向一端(幅25mmの一辺)の基材フィルムをつかみ、温度23℃、湿度60%RHの雰囲気下、クロスヘッドスピード(つかみ移動速度)200mm/分で、90°剥離試験(JIS K 6854-1:1999 「接着剤-はく離接着強さ試験方法-第1部:90度はく離」に準拠する。)を実施することで剥離応力評価したときに、0.05~2.00N/25mmの範囲の応力で基材フィルムと機能層が剥離可能な状態を一例として挙げることができる。上記応力が0.05N/25mm以上であれば、偏光板加工プロセスの途中において剥がれが生じにくくなるため好ましく、2.00N/25mm以下であれば、基材フィルムを剥離する際に、偏光板に折れが発生しないため好ましい。 For example, the stress when the base film is peeled from the functional layer is fixed by sticking the surface of the functional layer on the side opposite to the base film side interface to the glass base material via an acrylic adhesive sheet. Later, using a tensile tester (RTF-1210 manufactured by A & D Co., Ltd.), the base film at one end in the length direction (one side of the width of 25 mm) of the test piece was grasped, and the temperature was 23 ° C. and the humidity was 60%. In a RH atmosphere, at a crosshead speed (grasping movement speed) of 200 mm / min, a 90 ° peeling test (JIS K 6854-1: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 1: 90 ° Peeling" When the peeling stress is evaluated by carrying out (according to the above), a state in which the base film and the functional layer can be peeled off with a stress in the range of 0.05 to 2.00 N / 25 mm can be mentioned as an example. If the stress is 0.05 N / 25 mm or more, peeling is less likely to occur during the polarizing plate processing process, and it is preferable. If the stress is 2.00 N / 25 mm or less, the polarizing plate is used when the base film is peeled off. It is preferable because it does not break.
 以下、本発明の積層フィルムの構成について詳細に説明する。 Hereinafter, the configuration of the laminated film of the present invention will be described in detail.
 〔1〕基材フィルム
 本発明に係る前記基材フィルムは、少なくとも剥離可能である機能層が積層されており、基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であり、基材フィルムの温度23℃、湿度20~80%RH間における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であり、かつ、基材フィルムの膜厚が、20~60μmの範囲内であることを特徴とする。
[1] Base film The base film according to the present invention has at least a removable functional layer laminated on it, and the base film has a moisture permeability of 100 to 400 g at a temperature of 40 ° C. and a humidity of 90% RH. / m is in the range of 2 · 24h, temperature 23 ° C. of the substrate film, between the humidity 20 ~ 80% RH, the maximum dimensional change in the film plane is in the range of 0.01 to 0.10% It is characterized in that the film thickness of the base film is in the range of 20 to 60 μm.
 本発明の積層フィルムは、薄膜な機能性フィルムであっても皺やカール変形を抑制することができ、生産性を落とすことなく、プロテクトフィルム等を用いる複雑な加工プロセスを不要にし、従来と同じ偏光板加工プロセスで偏光板を加工できる利点を有する。 The laminated film of the present invention can suppress wrinkles and curl deformation even if it is a thin functional film, eliminates the need for a complicated processing process using a protective film or the like without reducing productivity, and is the same as the conventional one. It has the advantage that the polarizing plate can be processed in the polarizing plate processing process.
 中でも、基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であることによって、偏光板加工時に優れた乾燥性を付与することができ、かつ偏光子層の湿度による劣化を抑制する効果を発現する。 Among them, the temperature 40 ° C. of the substrate film, the moisture permeability under humidity of 90% RH is, by in the range of 100 ~ 400g / m 2 · 24h , it is possible to impart excellent drying properties at a polarizing plate processing Moreover, it exhibits the effect of suppressing deterioration of the polarizing element layer due to humidity.
 また、基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であることによって、偏光板のカールを抑制し、表示装置の反りを抑制できることから、表示ムラの発生を防止する効果を発現する。 Further, when the maximum dimensional change rate in the film surface in the range of the temperature of the base film of 23 ° C. and the humidity of 20 to 80% RH is in the range of 0.01 to 0.10%, the curl of the polarizing plate is obtained. Since it is possible to suppress the warpage of the display device, the effect of preventing the occurrence of display unevenness is exhibited.
 更に、基材フィルムの膜厚が20~60μmの範囲内であることによって、上記透湿度を満たす薄膜の偏光板を提供することができるとともに、偏光板カールを抑制でき、プロテクトフィルムとして偏光子層の保護効果を発現するフィルム強度を提供することができる。好ましくは20~40μmの範囲である。 Further, when the film thickness of the base film is within the range of 20 to 60 μm, it is possible to provide a thin-film polarizing plate that satisfies the above-mentioned moisture permeability, suppress the polarizing plate curl, and use the polarizer layer as a protective film. It is possible to provide film strength that exhibits the protective effect of. It is preferably in the range of 20 to 40 μm.
 本発明に係る透湿度や寸法変化率を前記範囲に調整する手段は、特に限定されるものではないが、基材フィルムを構成する樹脂の種類と基材フィルムの膜厚を適宜選択して用いることが好ましい。 The means for adjusting the moisture permeability and the dimensional change rate according to the present invention within the above range is not particularly limited, but the type of resin constituting the base film and the film thickness of the base film are appropriately selected and used. Is preferable.
 〔1.1〕樹脂
 本発明に係る基材フィルムに用いられる樹脂としては、シクロオレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリアリレート系樹脂、及びスチレン系樹脂又はその複合樹脂を挙げることができるが、中でも前記透湿度及び湿度寸法変化率の範囲を満たすことができる樹脂として、シクロオレフィン系樹脂、ポリアリレート系樹脂、スチレン系樹脂又はその複合樹脂(スチレン・(メタ)アクリレート共重合体、又はスチレン・ヒドロキシスチレン共重合体)のいずれかを含有することが好ましく、更にシクロオレフィン系樹脂を使用することがより好ましい。
[1.1] Resin Examples of the resin used for the base film according to the present invention include cycloolefin-based resin, polypropylene-based resin, acrylic-based resin, polyester-based resin, polycarbonate resin, polyarylate-based resin, and styrene-based resin. Examples of the composite resin include cycloolefin-based resins, polyarylate-based resins, styrene-based resins, and composite resins thereof (styrene-(styrene). It is preferable to contain either a meta) acrylate copolymer or a styrene / hydroxystyrene copolymer), and it is more preferable to use a cycloolefin resin.
 〈シクロオレフィン系樹脂〉
 本発明に係る基材フィルムに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
<Cycloolefin resin>
The cycloolefin-based resin contained in the base film according to the present invention is a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and another copolymerizable monomer. Is preferable.
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。 The cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). More preferably.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(A-1)中、R1~R4は、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R1~R4の全てが同時に水素原子を表すことはなく、R1とR2が同時に水素原子を表すことはなく、R3とR4が同時に水素原子を表すことはないものとする。 In the general formula (A-1), R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
 一般式(A-1)においてR1~R4で表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していてもよい。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。 The hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5. The hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like. Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
 一般式(A-1)においてR1~R4で表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。 Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility during solution film formation.
 一般式(A-1)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(A-2)中、R5は、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。R6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。 In the general formula (A-2), R 5 represents an alkylsilyl group having a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom). p represents an integer of 0 to 2.
 一般式(A-2)におけるR5は、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。 R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
 一般式(A-2)におけるR6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。 R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
 一般式(A-2)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR5及びR6は、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、光学フィルムを溶液流延法によって製造する場合に適している。 A cycloolefin monomer having a structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent. In general, an organic compound loses its symmetry and thus its crystallinity is lowered, so that its solubility in an organic solvent is improved. Since R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。 The content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it can be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%. When a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is increased, so that the retardation value is likely to increase.
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。 Hereinafter, specific examples of the cycloolefin monomer having the structure represented by the general formula (A-1) are shown in Examples Compounds 1 to 14, and the cycloolefin single having the structure represented by the general formula (A-2) is shown. Specific examples of the merits are shown in Exemplified Compounds 15 to 34.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。 Examples of copolymerizable monomers that can be copolymerized with cycloolefin monomers include copolymerizable monomers that can be ring-opened and copolymerized with cycloolefin monomers, and addition copolymerization with cycloolefin monomers. Possible copolymerizable monomers and the like are included.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。 Examples of ring-opening copolymerizable copolymerizable monomers include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。 Examples of copolymerizable monomers that can be additionally copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, (meth) acrylates, and the like. Examples of unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene. Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%とし得る。 The content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It can be preferably 30 to 70 mol%.
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。 As described above, the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
 1)シクロオレフィン単量体の開環重合体
 2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 3)上記1)又は2)の開環(共)重合体の水素添加物
 4)上記1)又は2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記1)~7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記3)及び6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記5)~7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
1) Ring-opening polymer of cycloolefin monomer 2) Ring-opening copolymer of cycloolefin monomer and copolymerizable copolymer with ring-opening copolymer 3) Of 1) or 2) above Hydrogenated ring-opened (co) polymer 4) The ring-opened (co) polymer of 1) or 2) above was cyclized by the Friedercrafts reaction, and then hydrogenated (co) polymer 5) Cycloolefin. Saturated copolymer of monomer and unsaturated double bond-containing compound 6) Addition copolymer of cycloolefin monomer with vinyl-based cyclic hydrocarbon monomer and hydrogen additive thereof 7) Cycloolefin single Alternating copolymers of metric and (meth) acrylate The polymers of 1) to 7) above are all described in known methods, for example, JP-A-2008-107534 and JP-A-2005-227606. It can be obtained by the method of. For example, as the catalyst and solvent used for the ring-opening copolymerization of 2) above, those described in paragraphs 0019 to 0024 of JP-A-2008-107534 can be used, for example. As the catalyst used for hydrogenation of 3) and 6) above, for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction of 4) above, for example, those described in paragraph 0029 of JP-A-2008-107534 can be used. As the catalyst used for the addition polymerization of 5) to 7) above, for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used. The alternating copolymerization reaction of 7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
 中でも、上記1)~3)及び5)の重合体が好ましく、上記3)及び5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。 Among them, the polymers of 1) to 3) and 5) above are preferable, and the polymers of 3) and 5) above are more preferable. That is, the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable that at least one of the structural units represented by the following general formula (B-2) is contained, and only the structural unit represented by the general formula (B-2) is included, or the general formula (B-1) is used. It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2). The structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2). The structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(B-1)中、Xは、-CH=CH-又は-CH2CH2-を表す。R1~R4及びpは、それぞれ一般式(A-1)のR1~R4及びpと同義である。 In the general formula (B-1), X represents -CH = CH- or -CH 2 CH 2- . R 1 ~ R 4 and p are respectively the same as R 1 ~ R 4 and p of the general formula (A-1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(B-2)中、Xは、-CH=CH-又は-CH2CH2-を表す。R5~R6及びpは、それぞれ一般式(A-2)のR5~R6及びpと同義である。 In the general formula (B-2), X represents -CH = CH- or -CH 2 CH 2- . R 5 ~ R 6 and p are respectively the same as R 5 ~ R 6 and p in the general formula (A-2).
 本発明に係るシクロオレフィン系樹脂は、市販品であってもよい。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRX(例えば、RX4500等)が含まれる。 The cycloolefin-based resin according to the present invention may be a commercially available product. Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX (eg, R4500, R4900, R5000, etc.) manufactured by JSR Corporation. For example, RX4500 etc.) is included.
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm3/gであることが好ましく、0.3~3cm3/gであることがより好ましく、0.4~1.5cm3/gであることが更に好ましい。 The intrinsic viscosity [η] inh of the cycloolefin resin is preferably 0.2 to 5 cm 3 / g, more preferably 0.3 to 3 cm 3 / g, as measured at 30 ° C. It is more preferably 4 to 1.5 cm 3 / g.
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲であることが好ましく、10000~80000の範囲であることがより好ましく、12000~50000の範囲であることが更に好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲であることが好ましく、30000~250000の範囲であることがより好ましく、40000~200000の範囲であることが更に好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000. The weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000. The number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0mL/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
<Gel Permeation Chromatography>
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Three made by Showa Denko KK were connected and used)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 mL / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve with 13 samples in the range of Mw = 500 to 2800000 was used. The 13 samples are preferably used at approximately equal intervals.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及び基材フィルムとしての成形加工性が良好となる。 When the intrinsic viscosity [η] inh, the number average molecular weight and the weight average molecular weight are in the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability of the base film of the cycloolefin resin are improved. It will be good.
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲であることが好ましく、120~250℃の範囲であることがより好ましく、120~220℃の範囲であることが更に好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is. When Tg is 110 ° C. or higher, deformation under high temperature conditions can be easily suppressed. On the other hand, when Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
 シクロオレフィン系樹脂の含有量は、基材フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The content of the cycloolefin resin is preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the base film.
 〈ポリアリレート系樹脂〉
 ポリアリレート系樹脂は、基材フィルムに用いたときに靱性に優れる。当該ポリアイレート系樹脂は、少なくとも芳香族ジアルコール由来の構成単位と芳香族ジカルボン酸由来の構成単位とを含む。
<Polyarylate resin>
The polyarylate resin has excellent toughness when used as a base film. The polyialate-based resin contains at least a structural unit derived from an aromatic dialcohol and a structural unit derived from an aromatic dicarboxylic acid.
 芳香族ジアルコールは、好ましくは下記一般式(I)で表されるビスフェノール類、より好ましくは下記一般式(II)で表されるビスフェノール類である。 The aromatic dialcohol is preferably bisphenols represented by the following general formula (I), and more preferably bisphenols represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(I)及び一般式(II)中、Lは、2価の基を表す。2価の基は、好ましくは単結合、アルキレン基、-S-、-SO-、-SO2-、-O-、-CO-又は-CR12-(R1とR2は互いに結合して脂肪族環又は芳香族環を形成する)である。 In the general formula (I) and the general formula (II), L represents a divalent group. The divalent group is preferably a single bond, an alkylene group, -S-, -SO-, -SO 2- , -O-, -CO- or -CR 1 R 2- (R 1 and R 2 are bonded to each other. To form an aliphatic ring or an aromatic ring).
 アルキレン基は、好ましくは炭素数1~10のアルキレン基であり、その例には、メチレン基、エチレン基、イソプロピリデン基等が含まれる。アルキレン基は、ハロゲン原子やアリール基等の置換基を更に有してもよい。 The alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylene group, and an isopropylidene group. The alkylene group may further have a substituent such as a halogen atom or an aryl group.
 -CR12-のR1及びR2は、それぞれ互いに結合して脂肪族環又は芳香族環を形成している。脂肪族環は、好ましくは炭素数5~20の脂肪族炭化水素環であり、好ましくは置換された又は非置換のシクロヘキサン環である。芳香族環は、炭素数6~20の芳香族炭化水素環であり、好ましくは置換された又は非置換のフルオレン環である。置換された又は非置換のシクロヘキサン環を形成する-CR12-の例には、シクロヘキサン-1,1-ジイル基、3,3,5-トリメチルシクロヘキサン-1,1-ジイル基等が含まれる。置換された又は非置換のフルオレン環を形成する-CR12-の例には、下記式で表されるフルオレンジイル基が含まれる。 -CR 1 R 2- R 1 and R 2 are bonded to each other to form an aliphatic ring or an aromatic ring, respectively. The aliphatic ring is preferably an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and preferably a substituted or unsubstituted cyclohexane ring. The aromatic ring is an aromatic hydrocarbon ring having 6 to 20 carbon atoms, and is preferably a substituted or unsubstituted fluorene ring. Examples of -CR 1 R 2- forming a substituted or unsubstituted cyclohexane ring include cyclohexane-1,1-diyl group, 3,3,5-trimethylcyclohexane-1,1-diyl group and the like. Is done. Examples of −CR 1 R 2− forming a substituted or unsubstituted fluorene ring include a fluoreneyl group represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(I)及び一般式(II)のRは、それぞれ独立して、炭素数1~5のアルキル基又は炭素数6~10のアリール基でありうる。nは、それぞれ独立して、0~4の整数、好ましくは0~3の整数である。 R of the general formula (I) and the general formula (II) can be independently an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms. n is an integer of 0 to 4, preferably an integer of 0 to 3, independently of each other.
 ポリアリレート系樹脂を構成する芳香族ジアルコール成分は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the aromatic dialcohol component constituting the polyarylate resin, only one type may be used alone, or two or more types may be used in combination.
 芳香族ジカルボン酸は、テレフタル酸、イソフタル酸又はそれらの混合物でありうる。 The aromatic dicarboxylic acid can be terephthalic acid, isophthalic acid or a mixture thereof.
 ポリアリレート系樹脂は、テレフタル酸及びイソフタル酸以外の芳香族ジカルボン酸由来の構成単位を更に含んでもよい。そのような芳香族ジカルボン酸成分の例には、オルトフタル酸、2,6-ナフタレンジカルボン酸、ジフェン酸、4,4′-ジカルボキシジフェニルエーテル、ビス(p-カルボキシフェニル)アルカン、4,4′-ジカルボキシフェニルスルホン等が含まれる。 The polyarylate resin may further contain a structural unit derived from an aromatic dicarboxylic acid other than terephthalic acid and isophthalic acid. Examples of such aromatic dicarboxylic acid components are orthophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenic acid, 4,4'-dicarboxydiphenyl ether, bis (p-carboxyphenyl) alkane, 4,4'-. Dicarboxyphenyl sulfone and the like are included.
 本発明に係るポリアリレート系樹脂は、市販品であっても良く、ユニチカ株式会社製PAR樹脂「U-100」、重量平均分子量(Mw):100000を一例として挙げることができる。 The polyarylate-based resin according to the present invention may be a commercially available product, and examples thereof include PAR resin "U-100" manufactured by Unitika Ltd. and a weight average molecular weight (Mw): 100,000.
 〈スチレン・(メタ)アクリレート共重合体〉
 スチレン・(メタ)アクリレート共重合体(以下、「スチレン・アクリル樹脂」ともいう。)は、基材フィルムに用いたときに透明性に優れる。
<Styrene / (meth) acrylate copolymer>
The styrene / (meth) acrylate copolymer (hereinafter, also referred to as “styrene / acrylic resin”) has excellent transparency when used as a base film.
 スチレン・アクリル樹脂は、少なくとも、スチレン単量体と(メタ)アクリル酸エステル単量体とを付加重合させて形成される。スチレン単量体は、CH2=CH-C65の構造式で表されるスチレンの他に、スチレン構造中に公知の側鎖や官能基を有するスチレン誘導体を含む。 The styrene / acrylic resin is formed by addition polymerization of at least a styrene monomer and a (meth) acrylic acid ester monomer. Styrene monomer includes, in addition to styrene represented by the structural formula CH 2 = CH-C 6 H 5, comprising a styrene derivative having a known side-chain or functional groups styrene structure.
 また、(メタ)アクリル酸エステル単量体は、CH(R1)=CHCOOR2(R1は水素原子又はメチル基を表し、R2は炭素数が1~24のアルキル基を表す。)で表されるアクリル酸エステルやメタクリル酸エステルの他に、これらのエステルの構造中に公知の側鎖や官能基を有するアクリル酸エステル誘導体やメタクリル酸エステル誘導体を含む。 The (meth) acrylic acid ester monomer is CH (R 1 ) = CHCOOR 2 (R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 24 carbon atoms). In addition to the represented acrylic acid ester and methacrylic acid ester, an acrylic acid ester derivative and a methacrylic acid ester derivative having known side chains and functional groups in the structure of these esters are included.
 スチレン単量体の例には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-フェニルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン及びp-n-ドデシルスチレンが含まれる。 Examples of styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-. Includes tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene and pn-dodecyl styrene.
 (メタ)アクリル酸エステル単量体の例には、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート(2EHA)、ステアリルアクリレート、ラウリルアクリレート及びフェニルアクリレートなどのアクリル酸エステル単量体;メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、フェニルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレートなどのメタクリル酸エステル;が含まれる。 Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate (2EHA), and stearyl. Acrylate monomers such as acrylates, lauryl acrylates and phenyl acrylates; methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate. , Methacrylate esters such as lauryl methacrylate, phenyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl methacrylate;
 なお、本明細書中、「(メタ)アクリル酸エステル単量体」とは、「アクリル酸エステル単量体」と「メタクリル酸エステル単量体」との総称であり、それらの一方又は両方を意味する。例えば、「(メタ)アクリル酸メチル」は、「アクリル酸メチル」及び「メタクリル酸メチル」の一方又は両方を意味する。 In the present specification, "(meth) acrylic acid ester monomer" is a general term for "acrylic acid ester monomer" and "methacrylic acid ester monomer", and one or both of them may be used. means. For example, "methyl (meth) acrylate" means one or both of "methyl acrylate" and "methyl methacrylate".
 上記(メタ)アクリル酸エステル単量体は、1種でもそれ以上でもよい。例えば、スチレン単量体と2種以上のアクリル酸エステル単量体とを用いて共重合体を形成すること、スチレン単量体と2種以上のメタクリル酸エステル単量体とを用いて共重合体を形成すること、及び、スチレン単量体とアクリル酸エステル単量体及びメタクリル酸エステル単量体とを併用して共重合体を形成すること、のいずれも可能である。 The above (meth) acrylic acid ester monomer may be one kind or more. For example, forming a copolymer using a styrene monomer and two or more kinds of acrylic acid ester monomers, or using a styrene monomer and two or more kinds of methacrylic acid ester monomers to have a common weight. It is possible to form a coalescence and to form a copolymer by using a styrene monomer, an acrylic acid ester monomer and a methacrylic acid ester monomer in combination.
 上記スチレン・アクリル樹脂の可塑性を制御する観点から、上記スチレン・アクリル樹脂におけるスチレン単量体に由来する構成単位の含有量は、40~90質量%の範囲内であることが好ましい。また、上記非晶性樹脂における(メタ)アクリル酸エステル単量体に由来する構成単位の含有率は、10~60質量%の範囲内であると好ましい。 From the viewpoint of controlling the plasticity of the styrene / acrylic resin, the content of the structural unit derived from the styrene monomer in the styrene / acrylic resin is preferably in the range of 40 to 90% by mass. Further, the content of the structural unit derived from the (meth) acrylic acid ester monomer in the amorphous resin is preferably in the range of 10 to 60% by mass.
 上記スチレン・アクリル樹脂は、上記スチレン単量体及び(メタ)アクリル酸エステル単量体以外の他の単量体に由来する構成単位を更に含有していてもよい。他の単量体は、カルボキシ基又はヒドロキシ基を有する化合物であることが好ましい。 The styrene / acrylic resin may further contain a structural unit derived from a monomer other than the styrene monomer and the (meth) acrylic acid ester monomer. The other monomer is preferably a compound having a carboxy group or a hydroxy group.
 他の単量体は、多価アルコール由来のヒドロキシ基(-OH)又は多価カルボン酸由来のカルボキシ基(-COOH)とエステル結合する化合物であることが好ましい。すなわち、上記スチレン単量体及び(メタ)アクリル酸エステル単量体に対して付加重合可能であり、かつ、カルボキシ基又はヒドロキシ基を有する化合物(両性化合物)が更に重合してなる重合体であることが好ましい。 The other monomer is preferably a compound that ester-bonds with a hydroxy group (-OH) derived from a polyhydric alcohol or a carboxy group (-COOH) derived from a polyvalent carboxylic acid. That is, it is a polymer that can be additive-polymerized with respect to the styrene monomer and the (meth) acrylic acid ester monomer, and is further polymerized by a compound having a carboxy group or a hydroxy group (amphoteric compound). Is preferable.
 上記化合物の例には、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、ケイ皮酸、フマル酸、マレイン酸モノアルキルエステル、イタコン酸モノアルキルエステル等などのカルボキシ基を有する化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどのヒドロキシ基を有する化合物;が含まれる。 Examples of the above compounds include compounds having a carboxy group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, silicic acid, fumaric acid, maleic acid monoalkyl ester, and itaconic acid monoalkyl ester; 2-hydroxyethyl. (Meta) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Compounds having a hydroxy group such as polyethylene glycol mono (meth) acrylate; are included.
 上記スチレン・アクリル樹脂は、公知の油溶性又は水溶性の重合開始剤を使用して単量体を重合する方法によって合成することができる。油溶性の重合開始剤の例には、アゾ系又はジアゾ系重合開始剤、及び、過酸化物系重合開始剤、が含まれる。 The styrene / acrylic resin can be synthesized by a method of polymerizing a monomer using a known oil-soluble or water-soluble polymerization initiator. Examples of oil-soluble polymerization initiators include azo-based or diazo-based polymerization initiators and peroxide-based polymerization initiators.
 上記アゾ系又はジアゾ系重合開始剤の例には、2,2′-アゾビス-(2,4-ジメチルバレロニトリル)、2,2′-アゾビスイソブチロニトリル、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル及びアゾビスイソブチロニトリルが含まれる。 Examples of the azo-based or diazo-based polymerization initiator include 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, and 1,1'-azobis (2,4-dimethylvaleronitrile). Cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile and azobisisobutyronitrile are included.
 過酸化物系重合開始剤の例には、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、ジイソプロピルペルオキシカーボネート、クメンヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、2,2-ビス-(4,4-t-ブチルパーオキシシクロヘキシル)プロパン及びトリス-(t-ブチルパーオキシ)トリアジンが含まれる。 Examples of peroxide-based polymerization initiators include benzoyl peroxide, methyl ethyl ketone peroxide, diisopropylperoxycarbonate, cumenehydroperoxide, t-butylhydroperoxide, di-t-butyl peroxide, dicumyl peroxide, 2 , 4-Dichlorobenzoyl peroxide, lauroyl peroxide, 2,2-bis- (4,5-t-butylperoxycyclohexyl) propane and tris- (t-butylperoxy) triazine.
 また、乳化重合法でスチレン・アクリル樹脂を合成する場合には、重合開始剤として水溶性ラジカル重合開始剤が使用可能である。水溶性重合開始剤の例には、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、アゾビスアミノジプロパン酢酸塩、アゾビスシアノ吉草酸とその塩、及び、過酸化水素、が含まれる。 Further, when synthesizing a styrene / acrylic resin by an emulsion polymerization method, a water-soluble radical polymerization initiator can be used as a polymerization initiator. Examples of the water-soluble polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, azobisaminodipropane acetate, azobiscyanovaleric acid and its salts, and hydrogen peroxide.
 上記スチレン・アクリル樹脂の重量平均分子量(Mw)は、可塑性を制御しやすい観点から、10000~500000の範囲であることが好ましく、50000~200000の範囲であることがより好ましい。 The weight average molecular weight (Mw) of the styrene / acrylic resin is preferably in the range of 10,000 to 500,000, more preferably in the range of 50,000 to 200,000, from the viewpoint of easy control of plasticity.
 本発明に係るスチレン・アクリル樹脂は、市販品であっても良く、デンカ株式会社製MS樹脂「TX320XL」」を一例として挙げることができる。 The styrene / acrylic resin according to the present invention may be a commercially available product, and MS resin "TX320XL" manufactured by Denka Corporation can be mentioned as an example.
 〈スチレン・ヒドロキシスチレン共重合体〉
 スチレン・ヒドロキシスチレン共重合体(以下、「スチレン・ヒドロキシスチレン樹脂」ともいう。)は、基材フィルムに用いたときに耐熱性、耐薬品性に優れる。
<Styrene / hydroxystyrene copolymer>
The styrene / hydroxystyrene copolymer (hereinafter, also referred to as “styrene / hydroxystyrene resin”) is excellent in heat resistance and chemical resistance when used as a base film.
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレンなどのアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレンなどのハロゲン置換スチレン類を挙げることができる。 Examples of styrene-based monomers include styrene; alkyl-substituted styrenes such as α-methylstyrene, β-methylstyrene and p-methylstyrene; and halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene. can.
 ヒドロキシスチレン系モノマーとしては、4-ヒドロキシスチレン、p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレンなどのヒドロキシスチレン類を挙げることができる。 Examples of the hydroxystyrene monomer include hydroxystyrenes such as 4-hydroxystyrene, p-hydroxystyrene, α-methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene. can.
 上記スチレン・ヒドロキシスチレン樹脂の重量平均分子量(Mw)は、可塑性を制御しやすい観点から、10000~500000の範囲であることが好ましく、50000~200000の範囲であることがより好ましい。 The weight average molecular weight (Mw) of the styrene / hydroxystyrene resin is preferably in the range of 10,000 to 500,000, more preferably in the range of 50,000 to 200,000, from the viewpoint of easy control of plasticity.
 本発明に係るスチレン・ヒドロキシスチレン樹脂は、市販品であっても良く、丸善石油化学株式会社製スチレン・ヒドロキシスチレン共重合体「マルカリンカーCST50」、重量平均分子量(Mw):60000を一例として挙げることができる。 The styrene / hydroxystyrene resin according to the present invention may be a commercially available product, and examples thereof include a styrene / hydroxystyrene copolymer "Marcalinker CST50" manufactured by Maruzen Petrochemical Co., Ltd. and a weight average molecular weight (Mw): 60000. be able to.
 〔1.2〕添加剤
 〈可塑剤〉
 前記基材フィルムは、可塑剤を含有してもよい。可塑剤としては特に限定されないが、好ましくは、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、及びポリエステル系可塑剤等から選択されることが好ましく、ポリエステル系可塑剤であることがより好ましい。
[1.2] Additives <Plasticizer>
The base film may contain a plasticizer. The plasticizer is not particularly limited, but is preferably a polyhydric alcohol ester plasticizer, a phthalic acid ester plasticizer, a citric acid plasticizer, a fatty acid ester plasticizer, a phosphoric acid ester plasticizer, or a polyvalent carboxylic acid. It is preferably selected from an ester-based plasticizer, a polyester-based plasticizer, and the like, and a polyester-based plasticizer is more preferable.
 多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。 The polyhydric alcohol ester-based plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. It is preferably a 2- to 20-valent aliphatic polyhydric alcohol ester.
 フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。 Examples of the phthalate-based plasticizer include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate and dicyclohexyl terephthalate.
 クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。 Examples of the citrate ester-based plasticizer include acetyltrimethyl citrate, acetyltriethyl citrate, and acetyltributyl citrate.
 脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。 Examples of fatty acid ester-based plasticizers include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.
 リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。 Examples of the phosphoric acid ester-based plasticizer include triphenyl phosphate, tricresyl phosphate, cresil diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
 多価カルボン酸エステル系可塑剤としては、2価以上、好ましくは2~20価の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3~20価であることが好ましい。 The polyvalent carboxylic acid ester-based plasticizer is composed of an ester of a polyvalent carboxylic acid having a divalent value or higher, preferably a divalent to 20-valent carboxylic acid, and an alcohol. The aliphatic polyvalent carboxylic acid is preferably 2 to 20 valent, and the aromatic polyvalent carboxylic acid and the alicyclic polyvalent carboxylic acid are preferably 3 to 20 valent.
 多価カルボン酸は次の一般式(a)で表される。 The polyvalent carboxylic acid is represented by the following general formula (a).
 一般式(a)  Rb(COOH)m(OH)n
 一般式(a)において、Rbは(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシ基、OH基はアルコール性ヒドロキシ基又はフェノール性ヒドロキシ基を表す。
General formula (a) Rb (COOH) m (OH) n
In the general formula (a), Rb is an organic group having a (m + n) valence, m is a positive integer of 2 or more, n is an integer of 0 or more, a COOH group is a carboxy group, and an OH group is an alcoholic hydroxy group or a phenolic hydroxy group. Represents a group.
 ポリエステル系可塑剤は特に限定されないが、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤を用いることができる。ポリエステル系可塑剤としては、特に限定されないが、例えば、下記一般式(b)で表される芳香族末端エステル系可塑剤を用いることができる。 The polyester-based plasticizer is not particularly limited, but a polyester-based plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used. The polyester-based plasticizer is not particularly limited, but for example, an aromatic terminal ester-based plasticizer represented by the following general formula (b) can be used.
 一般式(b)  B-(G-A)n-G-B
 一般式(b)において、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。
General formula (b) B- (GA ) n-GB
In the general formula (b), B is a benzenemonocarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol having 4 to 12 carbon atoms. The residue, A, represents an alkylenedicarboxylic acid residue having 4 to 12 carbon atoms or an aryldicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.
 一般式(b)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基又はオキシアルキレングリコール残基又はアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。 In the general formula (b), the benzenemonocarboxylic acid residue represented by B, the alkylene glycol residue or oxyalkylene glycol residue or arylglycol residue represented by G, the alkylenedicarboxylic acid residue or aryldicarboxylic acid represented by A. It is composed of an acid residue and is obtained by the same reaction as a normal polyester-based plasticizer.
 本発明で用いられるポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種又は2種以上の混合物として使用することができる。 Examples of the benzene monocarboxylic acid component of the polyester-based plasticizer used in the present invention include benzoic acid, parataciaributyl benzoic acid, orthotoluic acid, metatoluic acid, paratoluic acid, dimethyl benzoic acid, ethyl benzoic acid, and normal propyl benzoic acid. There are acids, aminobenzoic acid, acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
 本発明に用いられポリエステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種又は2種以上の混合物として使用される。特に炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。 Examples of the alkylene glycol component having 2 to 12 carbon atoms of the polyester-based plasticizer used in the present invention include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-. Butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl) Glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3propanediol (3,3-dimethylolheptan), 3-Methyl-1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8 There are -octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol and the like, and these glycols are used as one kind or a mixture of two or more kinds. In particular, alkylene glycol having 2 to 12 carbon atoms is particularly preferable because it has excellent compatibility with cellulose ester.
 また、上記芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種又は2種以上の混合物として使用できる。 Further, examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like, and these glycols have 1 It can be used as a seed or a mixture of two or more.
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種又は2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等がある。 Examples of the alkylenedicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanediocarboxylic acid and the like. , Each used as one or a mixture of two or more. Examples of the allylenedicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid.
 本発明に用いられるポリエステル系可塑剤は、数平均分子量が、好ましくは300~1500の範囲、より好ましくは400~1000の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ価(水酸基価)は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ価(水酸基価)は15mgKOH/g以下のものである。 The polyester-based plasticizer used in the present invention preferably has a number average molecular weight in the range of preferably in the range of 300 to 1500, more preferably in the range of 400 to 1000. The acid value is 0.5 mgKOH / g or less, the hydroxy value (hydroxyl value) is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy value (hydroxyl value) is 15 mgKOH / g or less. It is a thing.
 本発明に用いられるポリエステルの数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は前述のとおりである。 The number average molecular weight and weight average molecular weight of the polyester used in the present invention can be measured by gel permeation chromatography. The measurement conditions are as described above.
 〈紫外線吸収剤〉
 本発明に係る基材フィルムは、紫外線吸収剤を含有することもできる。用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
<UV absorber>
The base film according to the present invention may also contain an ultraviolet absorber. Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based agents. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3, Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And other benzophenones can be exemplified.
 ここで、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Here, among the ultraviolet absorbers, the ultraviolet absorber having a molecular weight of 400 or more is hard to volatilize at a high boiling point and is hard to scatter even during high-temperature molding, so that the weather resistance is effectively improved by adding a relatively small amount. be able to.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、更には2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、又は2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of ultraviolet absorbers having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1). 1,3,3-Tetrabutyl) -6- (2H-benzotriazole-2-yl) phenol] and other benzotriazoles, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, as well as 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid. Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4 -[3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidin and other molecules have both hindered phenol and hindered amine structures. Examples thereof include hybrid systems, which can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3-) Tetrabutyl) -6- (2H-benzotriazole-2-yl) phenol] is particularly preferred.
 〈酸化防止剤〉
 本発明に係る基材フィルムは、酸化防止剤を含有していてもよい。酸化防止剤は劣化防止剤ともいわれる。
<Antioxidant>
The base film according to the present invention may contain an antioxidant. Antioxidants are also called anti-deterioration agents.
 酸化防止剤は、例えば、基材フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等により基材フィルムが分解するのを遅らせたり、防いだりする役割を有するので、基材フィルム中に含有させるのが好ましい。 The antioxidant has a role of delaying or preventing the decomposition of the base film due to, for example, the amount of halogen remaining in the base film or the phosphoric acid of the phosphoric acid-based plasticizer, and thus the base film. It is preferable to contain it in.
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。 As such an antioxidant, a hindered phenol-based compound is preferably used, for example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrax [3- (3,5-di). -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t) -Butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4 , 6-Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, Tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate and the like. ..
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。 In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-T-Butyl-5-methyl-4-hydroxyphenyl) propionate] is preferable. Further, for example, a hydrazine-based metal inactivating agent such as N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine or tris (2,4-di-). A phosphorus-based processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
 これらの化合物の添加量は、基材樹脂100質量%に対して、1質量ppm~1.0質量%の範囲内が好ましく、10~1000質量ppmの範囲内が更に好ましい。 The amount of these compounds added is preferably in the range of 1% by mass to 1.0% by mass, more preferably in the range of 10 to 1000% by mass with respect to 100% by mass of the base resin.
 〈微粒子〉
 本発明に係る基材フィルムは、微粒子を含有することが好ましい。
<Fine particles>
The base film according to the present invention preferably contains fine particles.
 本発明に使用される微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、あるいはポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物も挙げられる。あるいは又懸濁重合法で合成した高分子化合物、スプレードライ法あるいは分散法等により球型にした高分子化合物、又は無機化合物を用いることができる。 Examples of the fine particles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Calcium, aluminum silicate, magnesium silicate and calcium phosphate can be mentioned. Further, fine particles of an organic compound can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethylmethacrylate, polyppill methacrylate, polymethylacrylate, polyethylene carbonate, acrylic styrene resin, silicone resin, polycarbonate resin, benzoguanamine resin, and melamine resin. , Polyolefin-based powder, polyester-based resin, polyamide-based resin, polyimide-based resin, or polyfluorinated ethylene-based resin, crushed grades of organic polymer compounds such as starch are also mentioned. Alternatively, a polymer compound synthesized by a suspension polymerization method, a polymer compound made spherical by a spray-drying method, a dispersion method, or the like, or an inorganic compound can be used.
 微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。 Fine particles containing silicon are preferable in that the turbidity is low, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は5~400nmの範囲が好ましく、更に好ましいのは10~300nmの範囲である。 The average particle size of the primary particles of the fine particles is preferably in the range of 5 to 400 nm, and more preferably in the range of 10 to 300 nm.
 これらは主に粒径0.05~0.3μmの範囲の二次凝集体として含有されていてもよく、平均粒径100~400nmの範囲の粒子であれば凝集せずに一次粒子として含まれていることも好ましい。 These may be mainly contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 μm, and particles having an average particle size in the range of 100 to 400 nm are contained as primary particles without agglomeration. It is also preferable that the particles are used.
 これらの微粒子の含有量は、基材フィルムの全質量100質量%に対して0.01~1質量%の範囲であることが好ましく、特に0.05~0.5質量%の範囲が好ましい。共流延法による多層構成の基材(光学フィルム)の場合は、表層(スキン層)にこの添加量の微粒子を含有することが好ましい。 The content of these fine particles is preferably in the range of 0.01 to 1% by mass, particularly preferably in the range of 0.05 to 0.5% by mass, based on 100% by mass of the total mass of the base film. In the case of a multi-layered base material (optical film) by the cocurrent spreading method, it is preferable that the surface layer (skin layer) contains fine particles in this amount.
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 The fine particles of silicon dioxide are commercially available under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (all manufactured by Nippon Aerosil Co., Ltd.) and can be used. can.
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 The fine particles of zirconium oxide are commercially available under the trade names of Aerosil R976 and R811 (all manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。 Examples of polymers include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are preferable. For example, products of Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.). It is commercially available under the name and can be used.
 これらの中でもアエロジル200V、アエロジルR972Vが基材フィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明に係る基材フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0の範囲であることが好ましい。 Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of lowering the coefficient of friction while keeping the turbidity of the base film low. In the base film according to the present invention, the coefficient of dynamic friction of at least one surface is preferably in the range of 0.2 to 1.0.
 基材フィルムがシクロオレフィン系樹脂含有溶液を流延して製膜される場合、各種添加剤は製膜前のシクロオレフィン系樹脂含有溶液であるドープにバッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に微粒子はろ過材への負荷を減らすために、一部又は全量をインライン添加することが好ましい。 When the base film is formed by casting a cycloolefin resin-containing solution to form a film, various additives may be added in batch to the dope which is the cycloolefin resin-containing solution before film formation, or the additives may be dissolved. A liquid may be prepared separately and added in-line. In particular, it is preferable to add a part or all of the fine particles in-line in order to reduce the load on the filter medium.
 添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、少量のシクロオレフィン系樹脂を溶解するのが好ましい。好ましいシクロオレフィン系樹脂の量は、溶媒100質量部に対して1~10質量部の範囲で、より好ましくは、3~5質量部の範囲である。 When the additive solution is added in-line, it is preferable to dissolve a small amount of cycloolefin resin in order to improve the miscibility with the doping. The amount of the cycloolefin-based resin is preferably in the range of 1 to 10 parts by mass, and more preferably in the range of 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.
 本発明においてインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。 In order to perform in-line addition and mixing in the present invention, for example, an in-line mixer such as a static mixer (manufactured by Toray Engineering) or SWJ (Toray static in-tube mixer Hi-Mixer) is preferably used.
 〔1.3〕基材フィルムの製造方法
 本発明の基材フィルムの製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延法と溶融流延法が好ましく、特に溶液流延法であることが、加工工程での温度が低く、このため種々の添加剤を用いることによる高機能化付与の観点からより好ましい。以下、本発明に好ましい「溶液流延法」について説明する。
[1.3] Method for Producing Base Film The method for producing the base film of the present invention includes a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, and the like. However, from the viewpoints of suppressing coloration, suppressing foreign matter defects, suppressing optical defects such as die lines, etc., the solution casting method and the melt casting method are preferable, and the solution casting method is particularly used. It is more preferable that the temperature in the processing step is low, and therefore, from the viewpoint of imparting high functionality by using various additives. Hereinafter, the “solution casting method” preferable to the present invention will be described.
 〈溶液流延法〉
 溶液流延法により製膜する場合、本発明に係る基材フィルムの製造方法は、熱可塑性樹脂及び上述した微粒子等の添加剤を溶媒に溶解、分散させてドープを調製する工程(溶解工程;ドープ調製工程)、ドープを無限に移行する無端の金属支持体上に流延する工程(流延工程)、流延したドープをウェブとして乾燥する工程(溶媒蒸発工程)、金属支持体から剥離する工程(剥離工程)、乾燥、延伸、幅保持する工程(延伸・幅保持・乾燥工程)、仕上がったフィルムをロール状に巻取る工程(巻き取り工程)を含むことが好ましい。
<Solution casting method>
When the film is formed by the solution casting method, the method for producing the base film according to the present invention is a step of dissolving and dispersing an additive such as a thermoplastic resin and the above-mentioned fine particles in a solvent to prepare a dope (dissolving step; Dope preparation step), casting the dope onto an endless metal support (casting step), drying the cast dope as a web (solvent evaporation step), peeling from the metal support. It is preferable to include a step (peeling step), drying, stretching, a step of holding the width (stretching / width holding / drying step), and a step of winding the finished film into a roll (winding step).
 図2は、溶液流延法のドープ調製工程、流延工程及び乾燥工程(溶媒蒸発工程)の一例を模式的に示した図である。 FIG. 2 is a diagram schematically showing an example of a dope preparation step, a casting step, and a drying step (solvent evaporation step) of the solution casting method.
 仕込釜A41より濾過器A44で大きな凝集物を除去し、ストック釜A42へ送液する。その後、ストック釜A42より主ドープ溶解釜A1へ各種添加液を添加する。 A large agglomerate is removed from the charging pot A41 with the filter A44, and the liquid is sent to the stock pot A42. Then, various additive liquids are added from the stock kettle A42 to the main dope melting kettle A1.
 その後主ドープは主濾過器A3にて濾過され、これに添加剤添加液がA16よりインライン添加される。 After that, the main dope is filtered by the main filter A3, and the additive additive liquid is added in-line from A16.
 多くの場合、主ドープには返材が10~50質量%程度含まれることがある。 In many cases, the main dope may contain about 10 to 50% by mass of the return material.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反が使用される。 The return material is a finely crushed film, and the material that is generated when the film is formed by cutting off both sides of the film, or the original film that is out of specification due to scratches, etc. is used.
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめ基材樹脂としてシクロオレフィン系樹脂やアクリル系樹脂及びその他の添加剤などをペレット化したものも、好ましく用いることができる。 Further, as the raw material of the resin used for the dope preparation, those obtained by pelletizing a cycloolefin resin, an acrylic resin, or other additives as a base resin in advance can also be preferably used.
 以下、各工程について説明する。 Each process will be described below.
 1)溶解工程(ドープ調製工程)
 以下、本発明の一実施形態として、熱可塑性樹脂としてシクロオレフィン系樹脂(以下、「COP」ともいう。)を使用する場合を一例として溶解工程を説明するが、本発明はこれに限定されない。
1) Dissolution step (dope preparation step)
Hereinafter, as one embodiment of the present invention, the dissolution step will be described by taking the case where a cycloolefin resin (hereinafter, also referred to as “COP”) is used as the thermoplastic resin as an example, but the present invention is not limited thereto.
 本工程は、COPに対する良溶媒を主とする溶媒に、溶解釜中で該COP、場合によって、その他の化合物を攪拌しながら溶解しドープを形成する工程、あるいは該COP溶液に、場合によってその他の化合物溶液を混合して主溶解液であるドープを形成する工程である。 This step is a step of dissolving the COP, in some cases, other compounds in a dissolution kettle in a solvent mainly containing a good solvent for the COP while stirring to form a dope, or in the COP solution, in some cases, other This is a step of mixing compound solutions to form a dope which is a main solution.
 ドープ中のCOPの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、COPの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%の範囲が好ましく、更に好ましくは、15~30質量%の範囲である。 It is preferable that the COP concentration in the dope is high because the drying load after casting on the metal support can be reduced, but if the COP concentration is too high, the load during filtration increases and the filtration accuracy deteriorates. The concentration at which these are compatible is preferably in the range of 10 to 35% by mass, more preferably in the range of 15 to 30% by mass.
 ドープで用いられる溶媒は、単独で用いても2種以上を併用してもよいが、COPの良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がCOPの溶解性の点で好ましい。 The solvent used for doping may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of COP in terms of production efficiency, and the one having more good solvents. Is preferable in terms of the solubility of COP.
 良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%の範囲であり、貧溶媒が2~30質量%の範囲である。良溶媒、貧溶媒とは、使用するCOPを単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。そのため、COPの平均置換度によって良溶媒、貧溶媒が変わる。 The preferable range of the mixing ratio of the good solvent and the poor solvent is the range of 70 to 98% by mass of the good solvent and the range of 2 to 30% by mass of the poor solvent. The good solvent and the poor solvent are defined as a good solvent in which the COP to be used is dissolved alone, and a poor solvent in which the COP used alone is swollen or not dissolved. Therefore, the good solvent and the poor solvent change depending on the average degree of substitution of COP.
 本発明に用いられる良溶媒は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。 The good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred are methylene chloride or methyl acetate.
 また、本発明に用いられる貧溶媒は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%の範囲含有していることが好ましい。 The poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. Further, it is preferable that the dope contains water in the range of 0.01 to 2% by mass.
 また、COPの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。 Further, as the solvent used for dissolving the COP, the solvent removed from the film by drying in the film forming process is recovered and reused.
 回収溶媒中に、COPに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。 The recovery solvent may contain a small amount of additives added to the COP, such as a plasticizer, an ultraviolet absorber, a polymer, and a monomer component, but even if these are contained, they are preferably reused. It can be purified and reused if necessary.
 上記記載のドープを調製する時の、COPの溶解方法としては、一般的な方法を用いることができる。具体的には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法が好ましく、加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。 A general method can be used as the COP dissolution method when preparing the above-mentioned dope. Specifically, a method performed at normal pressure, a method performed below the boiling point of the main solvent, and a method performed by pressurizing above the boiling point of the main solvent are preferable, and when heating and pressurization are combined, heating can be performed above the boiling point at normal pressure.
 また、溶媒の常圧での沸点以上でかつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解する方法も、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。 Further, a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and under pressure so that the solvent does not boil is also preferable in order to prevent the generation of massive undissolved substances called gels and mamaco.
 また、COPを貧溶媒と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。 Further, a method in which COP is mixed with a poor solvent to moisten or swell, and then a good solvent is further added to dissolve the COP is also preferably used.
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 Pressurization may be performed by a method of press-fitting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. The heating is preferably performed from the outside, and for example, the jacket type is preferable because the temperature can be easily controlled.
 溶媒を添加しての加熱温度は、高い方がCOPの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。 A higher heating temperature with the addition of a solvent is preferable from the viewpoint of COP solubility, but if the heating temperature is too high, the required pressure increases and productivity deteriorates.
 好ましい加熱温度は45~120℃の範囲であり、60~110℃の範囲がより好ましく、70℃~105℃の範囲が更に好ましい。また、圧力は設定温度で溶媒が沸騰しないように調整される。 The preferred heating temperature is in the range of 45 to 120 ° C, more preferably in the range of 60 to 110 ° C, and even more preferably in the range of 70 ° C to 105 ° C. In addition, the pressure is adjusted so that the solvent does not boil at the set temperature.
 又は、冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にCOPを溶解させることができる。 Alternatively, a cooling dissolution method is also preferably used, which allows the COP to be dissolved in a solvent such as methyl acetate.
 次に、このCOP溶液(溶解中又は溶解後のドープ)を濾紙等の適当な濾過材を用いて濾過することが好ましい。 Next, it is preferable to filter this COP solution (dope during or after dissolution) using an appropriate filter material such as filter paper.
 濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの範囲の濾材がより好ましく、0.003~0.006mmの範囲の濾材が更に好ましい。 As the filter material, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matter and the like, but if the absolute filtration accuracy is too small, there is a problem that clogging of the filter material is likely to occur. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium in the range of 0.001 to 0.008 mm is more preferable, and a filter medium in the range of 0.003 to 0.006 mm is further preferable.
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。 The material of the filter medium is not particularly limited, and a normal filter medium can be used, but a plastic filter medium such as polypropylene or Teflon (registered trademark) or a metal filter medium such as stainless steel does not cause fibers to fall off. preferable.
 濾過により、原料のCOPに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。 It is preferable to remove and reduce impurities contained in the COP of the raw material, particularly bright spot foreign matter, by filtration.
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にフィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/m2以下であり、更に好ましくは0~10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。 A bright spot foreign substance is the opposite when two polarizing plates are arranged in a cross-nicoled state, a film or the like is placed between them, light is applied from the side of one polarizing plate, and observation is performed from the side of the other polarizing plate. It is a point (foreign matter) in which light from the side appears to leak, and it is preferable that the number of bright spots having a diameter of 0.01 mm or more is 200 / cm 2 or less. It is more preferably 100 pieces / cm 2 or less, further preferably 50 pieces / m 2 or less, and further preferably 0 to 10 pieces / cm 2 or less. Further, it is preferable that there are few bright spots of 0.01 mm or less.
 ドープの濾過は通常の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(「差圧」という。)の上昇が小さく、好ましい。 Dope filtration can be performed by a usual method, but the method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within the range where the solvent does not boil under pressure is the method of filtering the filtration pressure before and after filtration. The increase in the difference (referred to as "differential pressure") is small, which is preferable.
 好ましい温度は45~120℃の範囲であり、45~70℃の範囲がより好ましく、45~55℃の範囲であることが更に好ましい。 The preferred temperature is in the range of 45 to 120 ° C, more preferably in the range of 45 to 70 ° C, and even more preferably in the range of 45 to 55 ° C.
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。 It is preferable that the filter pressure is small. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and even more preferably 1.0 MPa or less.
 2)流延工程
 続いて、ドープを金属支持体上に流延(キャスト)する。すなわち、本工程は、ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイA30に送液し、無限に移送する無端の金属ベルトA31、例えばステンレスバンド、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting step Subsequently, the dope is cast on the metal support. That is, in this step, the dope is sent to the pressure die A30 through a liquid feed pump (for example, a pressure type metering gear pump) and transferred indefinitely, such as an endless metal belt A31, for example, a stainless band, a rotating metal drum, or the like. This is a step of casting the dope from the pressure die slit at the casting position on the metal support of the above.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっていることが好ましい。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムロールを得ることも好ましい。 A pressure die that can adjust the slit shape of the die base and makes it easy to make the film thickness uniform is preferable. The pressure die includes a coat hanger die, a T die, and the like, and any of them is preferably used. The surface of the metal support is preferably a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the doping amount may be divided and layered. Alternatively, it is also preferable to obtain a film roll having a laminated structure by a co-flow spreading method in which a plurality of dope is cast at the same time.
 キャストの幅は生産性の観点から1.3m以上が好ましい。より好ましくは1.3~4.0mの範囲である。4.0mを超える場合には、製造工程で縞が入ったり、その後の搬送工程での安定性が低くなったりするおそれがある。更に好ましくは、搬送性、生産性の点で1.3~3.0mの範囲である。 The cast width is preferably 1.3 m or more from the viewpoint of productivity. More preferably, it is in the range of 1.3 to 4.0 m. If it exceeds 4.0 m, there is a risk that stripes will appear in the manufacturing process and the stability in the subsequent transport process will decrease. More preferably, it is in the range of 1.3 to 3.0 m in terms of transportability and productivity.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The metal support in the casting process is preferably a mirror-finished surface, and the metal support is preferably a stainless steel belt or a drum whose surface is plated with a casting.
 流延工程の金属支持体の表面温度は-50℃~溶媒の沸点未満の範囲の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化したりする場合がある。 The surface temperature of the metal support in the casting process is in the range of -50 ° C to less than the boiling point of the solvent, and a higher temperature is preferable because the drying speed of the web can be increased, but if it is too high, the web may foam. , Flatness may deteriorate.
 好ましい支持体温度は0~55℃の範囲であり、22~50℃の範囲が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 The preferred support temperature is in the range of 0 to 55 ° C, more preferably in the range of 22 to 50 ° C. Alternatively, it is also a preferable method to gel the web by cooling and peel it off from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 The method of controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use hot water because the heat transfer is more efficient and the time until the temperature of the metal support becomes constant is short. When using warm air, air with a temperature higher than the target temperature may be used.
 3)溶媒蒸発工程
 本工程は、ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step This step is a step of heating a web (a dope film formed by casting a dope on a casting support and calling the web) on the casting support to evaporate the solvent. Is.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを35~100℃の範囲の雰囲気下、支持体上で乾燥させることが好ましい。35~100℃の範囲の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing wind from the web side and / or a method of transferring heat from the back surface of the support with a liquid, a method of transferring heat from the front and back surfaces by radiant heat, etc. The drying efficiency is good and preferable. In addition, a method of combining them is also preferably used. It is preferable that the web on the support after casting is dried on the support in an atmosphere in the range of 35 to 100 ° C. In order to maintain the atmosphere in the range of 35 to 100 ° C., it is preferable to blow warm air at this temperature on the upper surface of the web or heat it by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 4)剥離工程
 次いで、ウェブを金属支持体から剥離する。すなわち、本工程は金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling step Next, the web is peeled from the metal support. That is, this step is a step of peeling the web in which the solvent has evaporated on the metal support at the peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は-50~40℃の範囲とするのが好ましく、10~40℃の範囲がより好ましく、15~30℃の範囲とするのが最も好ましい。 The temperature at the peeling position on the metal support is preferably in the range of -50 to 40 ° C, more preferably in the range of 10 to 40 ° C, and most preferably in the range of 15 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等によって適宜調節される。フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%の範囲が好ましい。残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。更に好ましくは20~40質量%の範囲又は60~130質量%の範囲であり、特に好ましくは、20~30質量%の範囲又は70~120質量%の範囲である。 The amount of residual solvent at the time of peeling the web on the metal support at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the metal support, and the like. In order for the film to exhibit good flatness, the amount of residual solvent when the web is peeled from the metal support is preferably in the range of 10 to 150% by mass. When peeling at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical streaks are likely to occur due to the peeling tension. The amount is decided. It is more preferably in the range of 20 to 40% by mass or 60 to 130% by mass, and particularly preferably in the range of 20 to 30% by mass or 70 to 120% by mass.
 本発明においては、残留溶媒量は下記式で定義される。 In the present invention, the amount of residual solvent is defined by the following formula.
  残留溶媒量(質量%)=[(M-N)/N]×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (mass%) = [(MN) / N] × 100
In addition, M is the mass of the sample collected at any time during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、300N/m以下とすることが好ましい。より好ましくは、196~245N/mの範囲であるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましい。剥離張力は300N/m以下で剥離することが好ましい。 The peeling tension when peeling the metal support and the film is preferably 300 N / m or less. More preferably, it is in the range of 196 to 245 N / m, but when wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N / m or less. The peeling tension is preferably 300 N / m or less.
 5)乾燥・延伸・幅保持工程
 (乾燥)
 フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
5) Drying / stretching / width holding process (drying)
In the film drying step, the web is preferably peeled from the metal support and further dried to reduce the residual solvent amount to 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0. It is ~ 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。例えば、剥離後、ウェブを乾燥装置内に複数配置したローラーに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。 In the film drying process, a roll drying method (a method in which the web is alternately passed through a large number of rollers arranged above and below to dry) or a tenter method is adopted while transporting the web. For example, after peeling, the web is transferred by using a drying device 35 that alternately passes and conveys the web through a plurality of rollers arranged in the drying device, and / or a tenter stretching device 34 that clips and conveys both ends of the web with clips. dry.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点から熱風で行うことが好ましい。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥はおおむね30~250℃の範囲で行われる。特に35~200℃の範囲で乾燥させることが好ましい。乾燥温度は、段階的に高くしていくことが好ましい。 The means for drying the web is not particularly limited, and generally it can be performed by hot air, infrared rays, heating rollers, microwaves, etc., but it is preferable to use hot air from the viewpoint of simplicity. Too rapid drying tends to impair the flatness of the finished film. Drying at high temperature should be performed when the residual solvent is about 8% by mass or less. Throughout, drying is generally carried out in the range of 30-250 ° C. In particular, it is preferable to dry in the range of 35 to 200 ° C. It is preferable that the drying temperature is gradually increased.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching device, it is preferable to use a device that can independently control the film gripping length (distance from the start of gripping to the end of gripping) by the left and right gripping means of the tenter. Further, in the tenter step, it is also preferable to intentionally create sections having different temperatures in order to improve the flatness.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone so that the respective compartments do not interfere with each other between different temperature compartments.
 (延伸・幅保持)
 続いて、金属支持体より剥離したウェブを少なくとも一方向に延伸処理することが好ましい。延伸処理することでフィルム内の分子の配向を制御することができる。本発明において目標とするリターデーション値Ro、Rtを得るには、フィルムが本発明の構成をとり、更に搬送張力の制御、延伸操作により屈折率制御を行うことが好ましい。例えば、長手方向の張力を低く又は高くすることでリターデーション値を変動させることが可能となる。
(Stretching / maintaining width)
Subsequently, it is preferable to stretch the web exfoliated from the metal support in at least one direction. The orientation of the molecules in the film can be controlled by the stretching treatment. In order to obtain the desired retardation values Ro and Rt in the present invention, it is preferable that the film has the structure of the present invention, and the refractive index is controlled by controlling the transport tension and stretching operation. For example, the retardation value can be varied by lowering or increasing the tension in the longitudinal direction.
 具体的な延伸方法としては、ウェブの長手方向(製膜方向;流延方向;MD方向)及びウェブ面内で直交する方向、即ち幅手方向(TD方向)に対して、逐次又は同時に2軸延伸もしくは1軸延伸することができる。好ましくは、流延方向(MD方向)、幅手方向(TD方向)に二軸延伸を実施した、二軸延伸フィルムであるが、本発明に係るフィルムは一軸延伸フィルムであってもよいし、未延伸フィルムであってもよい。なお、延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 As a specific stretching method, two axes are sequentially or simultaneously with respect to the longitudinal direction of the web (film forming direction; spreading direction; MD direction) and the direction orthogonal to the web surface, that is, the width direction (TD direction). It can be stretched or uniaxially stretched. Preferably, it is a biaxially stretched film in which biaxial stretching is performed in the casting direction (MD direction) and the width direction (TD direction), but the film according to the present invention may be a uniaxially stretched film. It may be an unstretched film. The stretching operation may be performed in multiple stages. Further, when biaxial stretching is performed, simultaneous biaxial stretching may be performed, or biaxial stretching may be performed step by step. In this case, the term “stepwise” means, for example, that stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any of the steps. Is also possible.
 例えば、次のような延伸ステップも可能である:
・流延方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
・幅手方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。
For example, the following stretching steps are also possible:
・ Stretching in the casting direction → Stretching in the width direction → Stretching in the casting direction → Stretching in the casting direction ・ Stretching in the width direction → Stretching in the width direction → Stretching in the casting direction → Stretching in the casting direction Simultaneous biaxial stretching includes the case of stretching in one direction and contracting the other by relaxing the tension.
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~1.5倍の範囲、幅手方向に1.1~2.5倍の範囲とすることが好ましく、流延方向に0.8~1.2倍の範囲、幅手方向に1.2~2.0倍の範囲で行うことが好ましい。 The stretching ratios in the biaxial directions orthogonal to each other are preferably in the range of 0.8 to 1.5 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. , It is preferable to carry out in the range of 0.8 to 1.2 times in the flow direction and 1.2 to 2.0 times in the width direction.
 延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+60℃の範囲の温度で行われることが好ましい。通常、延伸温度は120~200℃の範囲が好ましく、更に好ましくは120~180℃の範囲である。 The stretching temperature is usually preferably a temperature in the range of Tg to Tg + 60 ° C. of the resin constituting the film. Usually, the stretching temperature is preferably in the range of 120 to 200 ° C, more preferably in the range of 120 to 180 ° C.
 延伸時におけるウェブ中の残留溶媒は20~0質量%の範囲が好ましく、更に好ましくは15~0質量%の範囲で延伸するのが好ましい。 The residual solvent in the web at the time of stretching is preferably in the range of 20 to 0% by mass, more preferably in the range of 15 to 0% by mass.
 ウェブを延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。中でも、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。 There is no particular limitation on the method of stretching the web. For example, a method of making a difference in peripheral speed between multiple rollers and stretching in the vertical direction using the difference in peripheral speed between the rollers, fixing both ends of the web with clips or pins, and widening the distance between the clips and pins in the direction of travel. A method of stretching in the vertical direction, a method of similarly spreading in the horizontal direction and stretching in the horizontal direction, a method of spreading in the vertical and horizontal directions at the same time and stretching in both the vertical and horizontal directions, and the like can be mentioned. Of course, these methods may be used in combination. Above all, it is particularly preferable to stretch in the width direction (lateral direction) by a tenter method in which both ends of the web are gripped by clips or the like.
 また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。 Further, in the case of the so-called tenter method, it is preferable to drive the clip portion by the linear drive method because smooth stretching can be performed and the risk of breakage can be reduced.
 製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable that these width maintenance or lateral stretching in the film forming process is performed by a tenter, and either a pin tenter or a clip tenter may be used.
 本発明に係る基材フィルムの遅相軸又は進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とするとθ1は-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。 Assuming that the slow axis or the phase advance axis of the base film according to the present invention exists in the film surface and the angle formed by the film forming direction is θ1, θ1 is preferably -1 ° or more and + 1 ° or less. More preferably, it is 0.5 ° or more and + 0.5 ° or less.
 このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器株式会社製)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制又は防止することに寄与でき、カラー液晶表示装置においては忠実な色再現を得ることに寄与できる。 This θ1 can be defined as an orientation angle, and the measurement of θ1 can be performed using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Measuring Instruments Co., Ltd.). Satisfying each of the above relationships with θ1 can contribute to obtaining high brightness in the displayed image, suppressing or preventing light leakage, and can contribute to obtaining faithful color reproduction in the color liquid crystal display device.
 6)巻き取り工程
 最後に、得られたウェブ(仕上がったフィルム)を巻取ることにより、フィルムロールが得られる。より具体的には、ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機A37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%の範囲で巻き取ることが好ましい。
6) Winding step Finally, a film roll is obtained by winding the obtained web (finished film). More specifically, it is a step of winding the film as a film by the winder A37 after the amount of residual solvent in the web becomes 2% by mass or less, and dimensional stability is achieved by reducing the amount of residual solvent to 0.4% by mass or less. A film having good properties can be obtained. In particular, it is preferable to wind up in the range of 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As the winding method, a commonly used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these can be used properly.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きや擦り傷防止のために、ナーリング加工をフィルム両端に施す。 Before winding, the end is slit to the width of the product and cut off, and knurling is applied to both ends of the film to prevent sticking and scratches during winding.
 なお、フィルム両端部のクリップの把持部分は、通常はフィルムが変形しており、製品として使用できないので切除される。熱による材料の劣化が起こっていない場合は、回収後に再利用される。 Note that the gripping part of the clip at both ends of the film is usually cut because the film is deformed and cannot be used as a product. If the material has not deteriorated due to heat, it will be reused after recovery.
 本発明に係る基材フィルムは、長尺フィルムであることが好ましく、具体的には、100~10000m程度のものを示し、通常、ロール状で提供される形態のものである。 The base film according to the present invention is preferably a long film, specifically, a film having a length of about 100 to 10000 m, and is usually provided in a roll form.
 〔2〕機能層
 本発明に係る機能層は、好ましくは偏光子層と貼合されて偏光板を構成するものであり、偏光板保護フィルム又は位相差フィルムなどの光学フィルムとして機能しうる。その際、本発明に係る基材フィルムは、機能層から剥離されても又はそのままでもよい。
[2] Functional Layer The functional layer according to the present invention is preferably bonded to a polarizing element layer to form a polarizing plate, and can function as an optical film such as a polarizing plate protective film or a retardation film. At that time, the base film according to the present invention may be peeled off from the functional layer or may be left as it is.
 本発明に係る機能層の層厚は、1~19μmの範囲内であり、2~10μmの範囲内であることが、薄膜な偏光板を提供すると同時に、薄膜である機能層の皺やカール変形を抑制する観点から、好ましい。1μm未満では、機能層としての強度が保てず、皺やカール変形が発生しやすく、また偏光子層の保護機能としても不十分になる。19μmを超えると該機能層を用いた偏光板を具備する表示装置で光学ムラを引き起こす可能性があり、また薄膜な偏光板を形成することが困難になる。 The layer thickness of the functional layer according to the present invention is in the range of 1 to 19 μm and in the range of 2 to 10 μm to provide a thin polarizing plate, and at the same time, wrinkle or curl deformation of the functional layer which is a thin film. It is preferable from the viewpoint of suppressing the above. If it is less than 1 μm, the strength as a functional layer cannot be maintained, wrinkles and curl deformation are likely to occur, and the protective function of the polarizer layer is insufficient. If it exceeds 19 μm, optical unevenness may be caused in a display device provided with a polarizing plate using the functional layer, and it becomes difficult to form a thin polarizing plate.
 〔2.1〕樹脂
 本発明に係る機能層に用いられる樹脂は、特に制限されず、(メタ)アクリル系樹脂、シクロオレフィン系樹脂、セルロースアシレート系樹脂、フマル酸ジエステル系樹脂、又はポリイミド系樹脂などでありうる。シクロオレフィン系樹脂は、基材フィルムで説明したシクロオレフィン系樹脂と同様なものを適宜用いることができる。
[2.1] Resin The resin used for the functional layer according to the present invention is not particularly limited, and is a (meth) acrylic resin, a cycloolefin resin, a cellulose acylate resin, a fumaric acid diester resin, or a polyimide resin. It can be resin or the like. As the cycloolefin-based resin, the same cycloolefin-based resin as the cycloolefin-based resin described in the base film can be appropriately used.
 〈(メタ)アクリル系樹脂〉
 機能層に用いられる(メタ)アクリル系樹脂は、少なくともメタクリル酸メチルに由来する構造単位(U1)と、フェニルマレイミドに由来する構造単位(U2)とを含むことが好ましい。フェニルマレイミドに由来する構造単位(U2)を含む(メタ)アクリル系樹脂は、機能層の熱膨張係数(coefficient of thermal expansion:CTE)を小さくしうる。
<(Meta) acrylic resin>
The (meth) acrylic resin used for the functional layer preferably contains at least a structural unit (U1) derived from methyl methacrylate and a structural unit (U2) derived from phenylmaleimide. The (meth) acrylic resin containing the structural unit (U2) derived from phenylmaleimide can reduce the coefficient of thermal expansion (CTE) of the functional layer.
 (メタ)アクリル系樹脂は、上記以外の他の構造単位を更に含んでもよい。そのような他の構造単位の例には、アクリル酸アダマンチルなどの(メタ)アクリル酸アルキルエステル;アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸シクロアルキルエステルなどが含まれる。中でも、フェニルマレイミドに由来する構造単位(U2)を含むことによる脆性の悪化を低減する観点などから、アクリル酸アルキルエステルに由来する構造単位(U3)を更に含むことが好ましい。 The (meth) acrylic resin may further contain other structural units other than the above. Examples of such other structural units include (meth) acrylic acid alkyl esters such as adamantyl acrylate; (meth) acrylic acid cycloalkyl esters such as 2-ethylhexyl acrylate. Above all, it is preferable to further contain the structural unit (U3) derived from the acrylic acid alkyl ester from the viewpoint of reducing the deterioration of brittleness due to the inclusion of the structural unit (U2) derived from phenylmaleimide.
 すなわち、(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位(U1)と、フェニルマレイミドに由来する構造単位(U2)と、アクリル酸アルキルエステルに由来する構造単位(U3)とを含むことがより好ましい。 That is, the (meth) acrylic resin contains a structural unit (U1) derived from methyl methacrylate, a structural unit (U2) derived from phenylmaleimide, and a structural unit (U3) derived from an acrylic acid alkyl ester. Is more preferable.
 メタクリル酸メチルに由来する構造単位(U1)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して50~95質量%の範囲であることが好ましく、70~90質量%の範囲であることがより好ましい。 The content of the structural unit (U1) derived from methyl methacrylate is preferably in the range of 50 to 95% by mass, preferably 70 to 90% by mass, based on all the structural units constituting the (meth) acrylic resin. More preferably, it is in the range.
 フェニルマレイミドに由来する構造単位(U2)は、比較的剛直な構造を有するため、機能層の熱膨張係数(CTE)を小さくしうる。また、フェニルマレイミドに由来する構造単位(U2)は、比較的嵩高い構造を有するため、樹脂マトリクス中にゴム粒子を移動させうるミクロな空隙を有しうるため、ゴム粒子を、機能層の表層部に偏在させやすくしうる。 Since the structural unit (U2) derived from phenylmaleimide has a relatively rigid structure, the coefficient of thermal expansion (CTE) of the functional layer can be reduced. Further, since the structural unit (U2) derived from phenylmaleimide has a relatively bulky structure, it may have microscopic voids in the resin matrix that can move the rubber particles. Therefore, the rubber particles can be used as the surface layer of the functional layer. It can be easily distributed unevenly in the part.
 フェニルマレイミドに由来する構造単位(U2)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%の範囲であることが好ましい。フェニルマレイミドに由来する構造単位(U2)の含有量が1質量%以上であると、機能層の熱膨張係数(CTE)を小さくしやすく、25質量%以下であると、機能層の脆性が過度には損なわれにくい。フェニルマレイミドに由来する構造単位(U2)の含有量は、上記観点から、7~15質量%の範囲であることがより好ましい。 The content of the structural unit (U2) derived from phenylmaleimide is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin. When the content of the structural unit (U2) derived from phenylmaleimide is 1% by mass or more, the coefficient of thermal expansion (CTE) of the functional layer is easily reduced, and when it is 25% by mass or less, the brittleness of the functional layer is excessive. Is not easily damaged. From the above viewpoint, the content of the structural unit (U2) derived from phenylmaleimide is more preferably in the range of 7 to 15% by mass.
 アクリル酸アルキルエステルに由来する構造単位(U3)は、樹脂に適度な柔軟性を付与しうるため、例えばフェニルマレイミドに由来する構造単位(U2)を含むことによる脆さを改善しうる。 Since the structural unit (U3) derived from the acrylic acid alkyl ester can impart appropriate flexibility to the resin, for example, the brittleness due to containing the structural unit (U2) derived from phenylmaleimide can be improved.
 アクリル酸アルキルエステルは、アルキル部分の炭素原子数が1~7、好ましくは1~5のアクリル酸アルキルエステルであることが好ましい。アクリル酸アルキルエステルの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-ヒドロキシエチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシルなどが含まれる。 The acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having an alkyl moiety having 1 to 7 carbon atoms, preferably 1 to 5 carbon atoms. Examples of acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate and the like.
 アクリル酸アルキルエステルに由来する構造単位(U3)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%の範囲であることが好ましい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が1質量%以上であると、(メタ)アクリル樹脂に適度な柔軟性を付与しうるため、機能層が脆くなりすぎず、破断しにくい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が25質量%以下であると、機能層のTgが低くなりすぎず、熱膨張係数(CTE)も大きくなりすぎない。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量は、上記観点から、5~15質量%の範囲であることがより好ましい。 The content of the structural unit (U3) derived from the acrylic acid alkyl ester is preferably in the range of 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin. When the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 1% by mass or more, appropriate flexibility can be imparted to the (meth) acrylic resin, so that the functional layer does not become too brittle and breaks. Hateful. When the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 25% by mass or less, the Tg of the functional layer does not become too low and the coefficient of thermal expansion (CTE) does not become too large. From the above viewpoint, the content of the structural unit (U3) derived from the acrylic acid alkyl ester is more preferably in the range of 5 to 15% by mass.
 フェニルマレイミドに由来する構造単位(U2)の、フェニルマレイミドに由来する構造単位(U2)とアクリル酸アルキルエステルに由来する構造単位(U3)の合計量に対する比率は、20~70質量%の範囲であることが好ましい。当該比率が20質量%以上であると、機能層の引張弾性率G2を高めやすく、70質量%以下であると、機能層が脆くなりすぎない。 The ratio of the structural unit (U2) derived from phenylmaleimide to the total amount of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester is in the range of 20 to 70% by mass. It is preferable to have. When the ratio is 20% by mass or more, the tensile elastic modulus G2 of the functional layer is likely to be increased, and when it is 70% by mass or less, the functional layer is not too brittle.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、100℃以上であることが好ましく、120~150℃の範囲であることがより好ましい。(メタ)アクリル系樹脂のTgが上記範囲内にあると、機能層の耐熱性を高めやすい。(メタ)アクリル系樹脂のTgを調整するためには、例えばフェニルマレイミドに由来する構造単位(U2)やアクリル酸アルキルエステルに由来する構造単位(U3)の含有量を調整することが好ましい。 The glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or higher, and more preferably 120 to 150 ° C. When the Tg of the (meth) acrylic resin is within the above range, the heat resistance of the functional layer can be easily increased. In order to adjust the Tg of the (meth) acrylic resin, for example, it is preferable to adjust the content of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester.
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、特に制限されず、目的に応じて調整することができる。(メタ)アクリル系樹脂の重量平均分子量は、例えば樹脂分子同士の絡み合いを促進して機能層の靱性を高めて破断しにくくする観点や、CTE比を適度に大きくし、接着に好ましい程度のカール量に調整しやすくする観点では、10万以上であることが好ましく、100万以上であることがより好ましい。(メタ)アクリル系樹脂の重量平均分子量が100万以上であると、得られる機能層の靱性を高めうる。それにより、積層フィルムに搬送する際に、搬送張力によって機能層が破断するのを抑制することができ、搬送安定性を高めうる。(メタ)アクリル系樹脂の重量平均分子量は、同様の観点から、150万~300万の範囲であることが更に好ましい。重量平均分子量の測定方法は、前述の通りである。 The weight average molecular weight (Mw) of the (meth) acrylic resin is not particularly limited and can be adjusted according to the purpose. The weight average molecular weight of the (meth) acrylic resin is, for example, from the viewpoint of promoting entanglement of resin molecules to increase the toughness of the functional layer and making it difficult to break, and to appropriately increase the CTE ratio and curl to a degree preferable for adhesion. From the viewpoint of facilitating adjustment to the amount, it is preferably 100,000 or more, and more preferably 1 million or more. When the weight average molecular weight of the (meth) acrylic resin is 1 million or more, the toughness of the obtained functional layer can be enhanced. As a result, it is possible to prevent the functional layer from breaking due to the transfer tension when the film is transferred to the laminated film, and the transfer stability can be improved. From the same viewpoint, the weight average molecular weight of the (meth) acrylic resin is more preferably in the range of 1.5 million to 3 million. The method for measuring the weight average molecular weight is as described above.
 〈フマル酸ジエステル系樹脂〉
 機能層に用いられるフマル酸ジエステル系樹脂は、フマル酸ジイソプロピル残基単位及び炭素数1又は2のアルキル基を有するフマル酸ジエステル残基単位を含むフマル酸ジエステル系樹脂である。
<Fumaric acid diester resin>
The fumaric acid diester resin used for the functional layer is a fumaric acid diester resin containing a diisopropyl fumarate residue unit and a fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms.
 ここで、炭素数1又は2のアルキル基を有するフマル酸ジエステル残基単位における炭素数1又は2のアルキル基は、それぞれ独立しており、例えばメチル基、エチル基が挙げられる。また、これらはフッ素、塩素などのハロゲン基;エーテル基;エステル基もしくはアミノ基で置換されていてもよい。炭素数1または2のアルキル基を有するフマル酸ジエステル残基単位としては、例えばフマル酸ジメチル残基単位、フマル酸ジエチル残基単位が挙げられる。また、これらは1種または2種以上含まれていてもよい。 Here, the alkyl groups having 1 or 2 carbon atoms in the fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms are independent of each other, and examples thereof include a methyl group and an ethyl group. Further, these may be substituted with a halogen group such as fluorine or chlorine; an ether group; an ester group or an amino group. Examples of the fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms include a dimethyl fumarate residue unit and a diethyl fumarate residue unit. Moreover, these may contain 1 type or 2 or more types.
 具体的なフマル酸ジエステル系樹脂としては、例えばフマル酸ジイソプロピル/フマル酸ジメチル共重合体樹脂、フマル酸ジイソプロピル/フマル酸ジエチル共重合体樹脂等が挙げられる。 Specific examples of the fumaric acid diester resin include diisopropyl fumarate / dimethyl fumarate copolymer resin and diisopropyl fumarate / diethyl fumarate copolymer resin.
 前記フマル酸ジエステル系樹脂は、本発明の範囲を超えない限り、他の単量体残基単位を含有していてもよく、他の単量体残基単位としては、例えばスチレン残基単位、α-メチルスチレン残基単位等のスチレン類残基単位;(メタ)アクリル酸残基単位;(メタ)アクリル酸メチル残基単位、(メタ)アクリル酸エチル残基単位、(メタ)アクリル酸ブチル残基単位等の(メタ)アクリル酸エステル残基単位;酢酸ビニル残基単位、プロピオン酸ビニル残基単位等のビニルエステル類残基単位;アクリロニトリル残基単位;メタクリロニロリル残基単位;メチルビニルエーテル残基単位、エチルビニルエーテル残基単位、ブチルビニルエーテル残基単位等のビニルエーテル類残基単位;N-メチルマレイミド残基単位、N-シクロヘキシルマレイミド残基単位、N-フェニルマレイミド残基単位等のN-置換マレイミド類残基単位;エチレン残基単位、プロピレン残基単位等のオレフィン類残基単位;あるいはフマル酸ジn-ブチル残基単位、フマル酸ビス(2-エチルヘキシル)残基単位等の前記フマル酸ジエステル残基単位以外のフマル酸ジエステル類残基単位より選ばれる1種又は2種以上を挙げることができる。 The fumaric acid diester resin may contain other monomer residue units as long as it does not exceed the scope of the present invention, and examples of the other monomer residue units include styrene residue units. styrene residue units such as α-methylstyrene residue unit; (meth) acrylate residue unit; (meth) methyl acrylate residue unit, (meth) ethyl acrylate residue unit, (meth) butyl acrylate residue unit (Meta) acrylic acid ester residue unit such as residue unit; vinyl ester residue unit such as vinyl acetate residue unit, vinyl propionate residue unit; acrylonitrile residue unit; methacrylonyloryl residue unit; methyl Vinyl ether residue units such as vinyl ether residue unit, ethyl vinyl ether residue unit, butyl vinyl ether residue unit; N-methylmaleimide residue unit, N-cyclohexyl maleimide residue unit, N-phenylmaleimide residue unit, etc. -Substituted maleimide residue unit; olefin residue unit such as ethylene residue unit and propylene residue unit; or din-butyl fumarate residue unit, bis (2-ethylhexyl) fumarate residue unit and the like. One or more selected from the fumaric acid diester residue units other than the fumaric acid diester residue unit can be mentioned.
 本発明に用いられるフマル酸ジエステル系樹脂の配合割合はフマル酸ジイソプロピル残基単位50~99モル%の範囲及び炭素数1または2のアルキル基を有するフマル酸ジエステル残基単位1~50モル%の範囲が好ましく、位相差フィルムとした時の位相差特性や強度が優れたものとなることからフマル酸ジイソプロピル残基単位60~95モル%の範囲及び炭素数1または2のアルキル基を有するフマル酸ジエステル残基単位5~40モル%の範囲からなるフマル酸ジエステル系樹脂が特に好ましい。 The blending ratio of the fumaric acid diester resin used in the present invention is in the range of 50 to 99 mol% of diisopropyl fumarate residue unit and 1 to 50 mol% of fumaric acid diester residue unit having an alkyl group having 1 or 2 carbon atoms. Fumaric acid having a range of 60 to 95 mol% of diisopropyl fumarate residue unit and an alkyl group having 1 or 2 carbon atoms is preferable because the range is preferable and the retardation characteristics and strength when used as a retardation film are excellent. A fumaric acid diester resin consisting of a diester residue unit in the range of 5 to 40 mol% is particularly preferable.
 本発明に用いられるフマル酸ジエステル系樹脂は、前記ゲル・パーミエイション・クロマトグラフィーにより測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量が50000~250000の範囲であることが好ましい。 The fumaric acid diester resin used in the present invention preferably has a standard polystyrene-equivalent number average molecular weight in the range of 50,000 to 250,000 obtained from the elution curve measured by the gel permeation chromatography.
 (フマル酸ジエステル系樹脂の合成例)
 攪拌機、冷却管、窒素導入管および温度計を備えた1Lのオートクレーブに、ヒドロキシプロピルメチルセルロース(信越化学社製、商品名メトローズ60SH-50)2g、蒸留水600g、フマル酸ジイソプロピル330g、フマル酸ジエチル70g、および重合開始剤であるt-ブチルパーオキシピバレート3gを入れ、窒素バブリングを1時間行なった後、400rpmで攪拌しながら50℃で24時間保持することによりラジカル懸濁重合を行なった。室温まで冷却し、生成したポリマー粒子を含む懸濁液をろ別し、蒸留水およびメタノールで洗浄することによりフマル酸ジエステル系樹脂を得た(収率:75%)。
 得られたフマル酸ジエステル系樹脂の数平均分子量は120000であった。また、1H-NMR測定により、樹脂組成はフマル酸ジイソプロピル残基単位/フマル酸ジエチル残基単位=84/16(モル%)であることを確認した。
(Synthesis example of fumaric acid diester resin)
In a 1 L autoclave equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer, 2 g of hydroxypropyl methylcellulose (manufactured by Shinetsu Chemical Co., Ltd., trade name: Metroz 60SH-50), 600 g of distilled water, 330 g of diisopropyl fumarate, 70 g of diethyl fumarate. , And 3 g of t-butylperoxypivalate as a polymerization initiator was added, and nitrogen bubbling was carried out for 1 hour, and then radical suspension polymerization was carried out by holding at 50 ° C. for 24 hours while stirring at 400 rpm. The suspension was cooled to room temperature, the suspension containing the produced polymer particles was filtered off, and washed with distilled water and methanol to obtain a fumaric acid diester resin (yield: 75%).
The number average molecular weight of the obtained fumaric acid diester resin was 120,000. Further, it was confirmed by 1H-NMR measurement that the resin composition was diisopropyl fumarate residue unit / diethyl fumarate residue unit = 84/16 (mol%).
 〈ポリイミド系樹脂〉
 ポリイミド系樹脂は、テトラカルボン酸二無水物とジアミンとの重合反応物でありうる。
 テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物のいずれであってもよいが、好ましくは芳香族テトラカルボン酸二無水物である。ジアミンは、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミンのいずれであってもよいが、好ましくは芳香族ジアミンである。
<Polyimide resin>
The polyimide-based resin can be a polymerization reaction product of tetracarboxylic dianhydride and diamine.
The tetracarboxylic acid dianhydride may be any of aromatic tetracarboxylic acid dianhydride, aliphatic tetracarboxylic acid dianhydride, and alicyclic tetracarboxylic acid dianhydride, but aromatic tetracarboxylic acid dianhydride is preferable. It is an acid dianhydride. The diamine may be any of an aromatic diamine, an aliphatic diamine, and an alicyclic diamine, but is preferably an aromatic diamine.
 ポリイミド系樹脂の重量平均分子量Mwは、特に制限されないが、機能層の靱性を高めて搬送張力によって破断しにくくする観点では、10万~30万の範囲であることが好ましく、13万~25万の範囲であることがより好ましい。ポリイミド系樹脂の重量平均分子量Mwの測定方法は、前述と同様である。 The weight average molecular weight Mw of the polyimide resin is not particularly limited, but is preferably in the range of 100,000 to 300,000, preferably 130,000 to 250,000, from the viewpoint of increasing the toughness of the functional layer and making it difficult to break due to the conveying tension. It is more preferable that the range is. The method for measuring the weight average molecular weight Mw of the polyimide resin is the same as described above.
 これらの中でも、透光性に優れ、硬化収縮も少ない観点などから、(メタ)アクリル系樹脂が好ましい。 Among these, (meth) acrylic resin is preferable from the viewpoint of excellent translucency and less curing shrinkage.
 機能層における樹脂の含有量は、機能層に対して60質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The content of the resin in the functional layer is preferably 60% by mass or more, more preferably 70% by mass or more with respect to the functional layer.
 〔2.2〕添加剤
 機能層は、必要に応じて上記以外の他の成分を更に含んでもよい。他の成分の例には、ゴム粒子、前述したマット剤(微粒子)、可塑剤、紫外線吸収剤などが含まれる。中でも、前述の(メタ)アクリル系樹脂を含む機能層は脆くなりやすいことから、靱性(しなやかさ)を付与する観点から、ゴム粒子を更に含むことが好ましい。
[2.2] Additives The functional layer may further contain components other than the above, if necessary. Examples of other components include rubber particles, the above-mentioned matting agent (fine particles), a plasticizer, an ultraviolet absorber, and the like. Above all, since the functional layer containing the above-mentioned (meth) acrylic resin tends to be brittle, it is preferable to further contain rubber particles from the viewpoint of imparting toughness (suppleness).
 〈ゴム粒子〉
 ゴム粒子は、ゴム状重合体を含む粒子である。ゴム状重合体は、ガラス転移温度が20℃以下の軟質な架橋重合体である。そのような架橋重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、及びオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、機能層の透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。
<Rubber particles>
The rubber particles are particles containing a rubber-like polymer. The rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20 ° C. or lower. Examples of such cross-linked polymers include butadiene-based cross-linked polymers, (meth) acrylic-based cross-linked polymers, and organosiloxane-based cross-linked polymers. Among them, the (meth) acrylic crosslinked polymer is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the functional layer is not easily impaired, and the acrylic crosslinked polymer (acrylic rubber-like weight) is preferable. Coalescence) is more preferable.
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含む粒子であることが好ましい。 That is, the rubber particles are preferably particles containing the acrylic rubber-like polymer (a).
 アクリル系ゴム状重合体(a)について:
 アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位を主成分として含む架橋重合体である。主成分として含むとは、アクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、1分子中に2以上のラジカル重合性基(非共役な反応性二重結合)を有する多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。
About acrylic rubber-like polymer (a):
The acrylic rubber-like polymer (a) is a crosslinked polymer containing a structural unit derived from an acrylic acid ester as a main component. "Included as a main component" means that the content of structural units derived from acrylic acid ester is in the range described later. The acrylic rubber-like polymer (a) has a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond).
 アクリル酸エステルは、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸ベンジル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 Acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic. An acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as n-octyl acid is preferable. The acrylic acid ester may be one kind or two or more kinds.
 アクリル酸エステルに由来する構造単位の含有量は、アクリル系ゴム状重合体(a1)を構成する全構造単位に対して40~80質量%の範囲であることが好ましく、50~80質量%の範囲であることがより好ましい。アクリル酸エステルの含有量が上記範囲内であると、保護フィルムに十分な靱性を付与しやすい。
 共重合可能な他の単量体は、アクリル酸エステルと共重合可能な単量体のうち、多官能性単量体以外のものである。すなわち、共重合可能な単量体は、2以上のラジカル重合性基を有しない。共重合可能な単量体の例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;(メタ)アクリロニトリル類;(メタ)アクリルアミド類;(メタ)アクリル酸が含まれる。中でも、共重合可能な他の単量体は、スチレン類を含むことが好ましい。共重合可能な他の単量体は、1種類であってもよいし、2種類以上であってもよい。
The content of the structural unit derived from the acrylic acid ester is preferably in the range of 40 to 80% by mass, preferably 50 to 80% by mass, based on all the structural units constituting the acrylic rubber-like polymer (a1). More preferably, it is in the range. When the content of the acrylic acid ester is within the above range, it is easy to impart sufficient toughness to the protective film.
The other copolymerizable monomer is a monomer copolymerizable with the acrylic acid ester other than the polyfunctional monomer. That is, the copolymerizable monomer does not have two or more radically polymerizable groups. Examples of copolymerizable monomers include methacrylic ester such as methyl methacrylate; styrenes such as styrene and methylstyrene; (meth) acrylonitrile; (meth) acrylamide; (meth) acrylic acid. .. Among them, the other copolymerizable monomer preferably contains styrenes. The other copolymerizable monomer may be one kind or two or more kinds.
 共重合可能な他の単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して5~55質量%の範囲であることが好ましく、10~45質量%の範囲であることがより好ましい。 The content of the structural unit derived from the other copolymerizable monomer is preferably in the range of 5 to 55% by mass with respect to the total structural unit constituting the acrylic rubber-like polymer (a). More preferably, it is in the range of 10 to 45% by mass.
 多官能性単量体の例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。 Examples of polyfunctional monomers include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (diethylene glycol). Includes meth) acrylates, triethylene glycol di (meth) acrylates, trimethylrol propanetri (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, polyethylene glycol di (meth) acrylates. ..
 多官能性単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して0.05~10質量%の範囲であることが好ましく、0.1~5質量%の範囲であることがより好ましい。多官能性単量体の含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られる機能層の硬度、剛性が損なわれすぎず、10質量%以下であると、機能層の靱性が損なわれにくい。 The content of the structural unit derived from the polyfunctional monomer is preferably in the range of 0.05 to 10% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a), and is 0. More preferably, it is in the range of 1 to 5% by mass. When the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) is likely to be increased, so that the hardness and rigidity of the obtained functional layer are impaired. If it is not too much and is 10% by mass or less, the toughness of the functional layer is not easily impaired.
 アクリル系ゴム状重合体(a)を構成する単量体組成は、例えば熱分解GC-MSにより検出されるピーク面積比により測定することができる。 The monomer composition constituting the acrylic rubber-like polymer (a) can be measured by, for example, the peak area ratio detected by thermal decomposition GC-MS.
 ゴム状重合体のガラス転移温度(Tg)は、0℃以下であることが好ましく、-10℃以下であることがより好ましい。ゴム状重合体のガラス転移温度(Tg)が0℃以下であると、フィルムに適度な靱性を付与しうる。ゴム状重合体のガラス転移温度(Tg)は、前述と同様の方法で測定される。 The glass transition temperature (Tg) of the rubber-like polymer is preferably 0 ° C. or lower, more preferably −10 ° C. or lower. When the glass transition temperature (Tg) of the rubber-like polymer is 0 ° C. or lower, appropriate toughness can be imparted to the film. The glass transition temperature (Tg) of the rubbery polymer is measured by the same method as described above.
 ゴム状重合体のガラス転移温度(Tg)は、ゴム状重合体の組成によって調整することができる。例えばアクリル系ゴム状重合体(a)のガラス転移温度(Tg)を低くするためには、アクリル系ゴム状重合体(a)中の、アルキル基の炭素原子数が4以上のアクリル酸エステル/共重合可能な他の単量体の質量比を多くする(例えば3以上、好ましくは4~10の範囲とする)ことが好ましい。 The glass transition temperature (Tg) of the rubber-like polymer can be adjusted by the composition of the rubber-like polymer. For example, in order to lower the glass transition temperature (Tg) of the acrylic rubber-like polymer (a), an acrylic acid ester having an alkyl group having 4 or more carbon atoms in the acrylic rubber-like polymer (a) / It is preferable to increase the mass ratio of other copolymerizable monomers (for example, 3 or more, preferably in the range of 4 to 10).
 アクリル系ゴム状重合体(a)を含む粒子は、アクリル系ゴム状重合体(a)からなる粒子、又は、ガラス転移温度が20℃以上の硬質な架橋重合体(c)からなる硬質層と、その周囲に配置されたアクリル系ゴム状重合体(a)からなる軟質層とを有する粒子(これらを、「エラストマー」ともいう)であってもよいし;アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルなどの単量体の混合物を、少なくとも1段以上重合して得られるアクリル系グラフト共重合体からなる粒子であってもよい。アクリル系グラフト共重合体からなる粒子は、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であってもよい。 The particles containing the acrylic rubber-like polymer (a) are the particles made of the acrylic rubber-like polymer (a) or the hard layer made of the hard crosslinked polymer (c) having a glass transition temperature of 20 ° C. or higher. , Particles having a soft layer made of the acrylic rubber-like polymer (a) arranged around the particles (these are also referred to as “elastomers”); the acrylic rubber-like polymer (a). In the presence of, the particles may be particles made of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as a methacrylate ester in at least one stage. The particles made of the acrylic graft copolymer may be core-shell type particles having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
 アクリル系ゴム状重合体を含むコアシェル型のゴム粒子について:
 (コア部)
 コア部は、アクリル系ゴム状重合体(a)を含み、必要に応じて硬質な架橋重合体(c)を更に含んでもよい。すなわち、コア部は、アクリル系ゴム状重合体からなる軟質層と、その内側に配置された硬質な架橋重合体(c)からなる硬質層とを有してもよい。
About core-shell type rubber particles containing acrylic rubber-like polymer:
(Core part)
The core portion contains an acrylic rubber-like polymer (a), and may further contain a hard crosslinked polymer (c), if necessary. That is, the core portion may have a soft layer made of an acrylic rubber-like polymer and a hard layer made of a hard crosslinked polymer (c) arranged inside the soft layer.
 架橋重合体(c)は、メタクリル酸エステルを主成分とする架橋重合体でありうる。すなわち、架橋重合体(c)は、メタクリル酸アルキルエステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。 The crosslinked polymer (c) can be a crosslinked polymer containing a methacrylic acid ester as a main component. That is, the crosslinked polymer (c) includes a structural unit derived from a methacrylic acid alkyl ester, a structural unit derived from another monomer copolymerizable therewith, and a structural unit derived from a polyfunctional monomer. It is preferably a crosslinked polymer containing.
 メタクリル酸アルキルエステルは、前述のメタクリル酸アルキルエステルであってよく;共重合可能な他の単量体は、前述のスチレン類やアクリル酸エステルなどであってよく;多官能性単量体は、前述の多官能性単量体とした挙げたものと同様のものが挙げられる。 The alkyl methacrylate ester may be the alkyl methacrylate ester described above; the other copolymerizable monomer may be the styrenes or acrylic acid ester described above; the polyfunctional monomer may be. Examples thereof include those similar to those mentioned above as the polyfunctional monomer.
 メタクリル酸アルキルエステルに由来する構造単位の含有量は、架橋重合体(c)を構成する全構造単位に対して40~100質量%の範囲でありうる。共重合可能な他の単量体に由来する構造単位の含有量は、他の架橋重合体(c)を構成する全構造単位に対して60~0質量%の範囲でありうる。多官能性単量体に由来する構造単位の含有量は、他の架橋重合体を構成する全構造単位に対して0.01~10質量%の範囲でありうる。 The content of the structural unit derived from the methacrylic acid alkyl ester can be in the range of 40 to 100% by mass with respect to all the structural units constituting the crosslinked polymer (c). The content of the structural unit derived from the other copolymerizable monomer can be in the range of 60 to 0% by mass with respect to the total structural unit constituting the other crosslinked polymer (c). The content of the structural unit derived from the polyfunctional monomer can be in the range of 0.01 to 10% by mass with respect to all the structural units constituting the other crosslinked polymer.
 (シェル部)
 シェル部は、アクリル系ゴム状重合体(a)にグラフト結合した、メタクリル酸エステルに由来する構造単位を主成分として含むメタクリル系重合体(b)(他の重合体)を含む。主成分として含むとは、メタクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。
(Shell part)
The shell portion contains a methacrylic polymer (b) (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component. Including as a main component means that the content of structural units derived from methacrylic acid ester is in the range described later.
 メタクリル系重合体(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 The methacrylic acid ester constituting the methacrylic acid polymer (b) is preferably an alkyl methacrylate ester having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate. The methacrylic acid ester may be one kind or two or more kinds.
 メタクリル酸エステルの含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、メタクリル酸メチルに由来する構造単位を主成分として含むメタクリル系樹脂との相溶性が得られやすい。メタクリル酸エステルの含有量は、上記観点から、メタクリル系重合体(b)を構成する全構造単位に対して70質量%以上であることがより好ましい。 The content of the methacrylic acid ester is preferably 50% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b). When the content of the methacrylate ester is 50% by mass or more, compatibility with a methacrylic resin containing a structural unit derived from methyl methacrylate as a main component can be easily obtained. From the above viewpoint, the content of the methacrylic acid ester is more preferably 70% by mass or more with respect to all the structural units constituting the methacrylic polymer (b).
 メタクリル系重合体(b)は、メタクリル酸エステルと共重合可能な他の単量体に由来する構造単位を更に含んでもよい。共重合可能な他の単量体の例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環、複素環又は芳香環を有する(メタ)アクリル系単量体(環含有(メタ)アクリル系単量体)が含まれる。 The methacrylic polymer (b) may further contain a structural unit derived from another monomer copolymerizable with the methacrylic ester. Examples of other copolymerizable monomers are acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, A (meth) acrylic monomer having an alicyclic, heterocyclic or aromatic ring such as phenoxyethyl (meth) acrylate (ring-containing (meth) acrylic monomer) is included.
 共重合可能な単量体に由来する構造単位の含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましい。 The content of the structural unit derived from the copolymerizable monomer is preferably 50% by mass or less, preferably 30% by mass or less, based on all the structural units constituting the methacrylic polymer (b). Is more preferable.
 ゴム粒子におけるグラフト成分の比率(グラフト率)は、10~250質量%の範囲であることが好ましく、15~150質量%の範囲であることがより好ましい。グラフト率が一定以上であると、グラフト成分、すなわち、メタクリル酸エステルに由来する構造単位を主成分とするメタクリル系重合体(b)の割合が適度に多いため、ゴム粒子とメタクリル系樹脂との相溶性を高めやすく、ゴム粒子を一層凝集させにくい。また、フィルムの剛性などが損なわれにくい。グラフト率が一定以下であると、アクリル系ゴム状重合体(a)の割合が少なくなりすぎないため、機能層の靱性や脆性改善効果が損なわれにくい。 The ratio of the graft component (graft ratio) in the rubber particles is preferably in the range of 10 to 250% by mass, and more preferably in the range of 15 to 150% by mass. When the graft ratio is above a certain level, the proportion of the graft component, that is, the methacrylic polymer (b) containing the structural unit derived from the methacrylic acid ester as the main component is moderately large, so that the rubber particles and the methacrylic resin are separated from each other. It is easy to improve compatibility and it is more difficult to agglomerate rubber particles. In addition, the rigidity of the film is not easily impaired. When the graft ratio is below a certain level, the proportion of the acrylic rubber-like polymer (a) does not become too small, so that the toughness and brittleness improving effect of the functional layer are not easily impaired.
 グラフト率は、以下の方法で測定される。 The graft ratio is measured by the following method.
 1)コアシェル型の粒子2gを、メチルエチルケトン50mLに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpm、温度12℃にて1時間遠心し、不溶分と可溶分とに分離する(遠心分離作業を合計3回セット)。 1) Dissolve 2 g of core-shell type particles in 50 mL of methyl ethyl ketone and centrifuge at a rotation speed of 30,000 rpm and a temperature of 12 ° C. for 1 hour using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CP60E) to make it insoluble. Separate into the dissolved components (centrifugal separation work is set 3 times in total).
 2)得られた不溶分の重量を下記式に当てはめて、グラフト率を算出する。 2) Calculate the graft ratio by applying the weight of the obtained insoluble matter to the following formula.
 グラフト率(質量%)=[{(メチルエチルケトン不溶分の質量)-(アクリル系ゴム状重合体(a)の質量)}/(アクリル系ゴム状重合体(a)の質量)]×100
 本実施の形態では、機能層は延伸されていないため、ゴム粒子の形状は、真球状に近い形状でありうる。すなわち、機能層の断面又は表面を観察したときの、ゴム粒子のアスペクト比は、1~2程度でありうる。
Graft ratio (mass%) = [{(mass of methyl ethyl ketone insoluble matter)-(mass of acrylic rubber-like polymer (a))} / (mass of acrylic rubber-like polymer (a))] × 100
In the present embodiment, since the functional layer is not stretched, the shape of the rubber particles can be a shape close to a true sphere. That is, the aspect ratio of the rubber particles when observing the cross section or the surface of the functional layer can be about 1 to 2.
 ゴム粒子の平均粒子径は、100~400nmの範囲であることが好ましい。ゴム粒子の平均粒子径が100nm以上であると、機能層に十分な靱性や応力緩和性を付与しやすく、400nm以下であると、機能層の透明性が損なわれにくい。ゴム粒子の平均粒子径は、同様の観点から、150~300nmの範囲であることがより好ましい。 The average particle size of the rubber particles is preferably in the range of 100 to 400 nm. When the average particle size of the rubber particles is 100 nm or more, sufficient toughness and stress relaxation property are easily imparted to the functional layer, and when it is 400 nm or less, the transparency of the functional layer is not easily impaired. From the same viewpoint, the average particle size of the rubber particles is more preferably in the range of 150 to 300 nm.
 ゴム粒子の平均粒子径は、以下の方法で算出することができる。 The average particle size of the rubber particles can be calculated by the following method.
 ゴム粒子の平均粒子径は、積層フィルムの表面又は切片のSEM撮影又はTEM撮影によって得た粒子100個の円相当径の平均値として測定することができる。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。この際、倍率5000倍のSEM観察及び/又はTEM観察によって観察されるゴム粒子を、平均粒子径の算出に使用する。 The average particle size of the rubber particles can be measured as the average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the surface or section of the laminated film. The equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area. At this time, the rubber particles observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size.
 ゴム粒子の含有量は、特に限定されないが、機能層に対して5~40質量%の範囲であることが好ましく、7~30質量%の範囲であることがより好ましい。 The content of the rubber particles is not particularly limited, but is preferably in the range of 5 to 40% by mass, and more preferably in the range of 7 to 30% by mass with respect to the functional layer.
 (ゴム粒子の分布)
 ゴム粒子は、機能層の厚さ方向に均一に分散していてもよいし、偏在していてもよい。具体的には、機能層の厚さ方向に沿った断面において、機能層の支持体とは反対側の面から機能層の厚さの20%以下の領域を領域A、機能層の支持体側の面から機能層の厚さの20%以下の領域を領域Bとし、領域Aにおけるゴム粒子の単位面積当たりの面積率をRA、領域Bにおけるゴム粒子の単位面積当たりの面積率をRBとしたとき、RA/RBは、1.0~1.1の範囲であることなどが好ましい態様である。
(Distribution of rubber particles)
The rubber particles may be uniformly dispersed in the thickness direction of the functional layer, or may be unevenly distributed. Specifically, in the cross section along the thickness direction of the functional layer, the area of 20% or less of the thickness of the functional layer from the surface opposite to the support of the functional layer is the area A and the support side of the functional layer. 20% or less of the area of the thickness from the surface functional layer and area B, and area ratio per unit area of the rubber particles in the region a R a, the area ratio per unit area of the rubber particles in the region B and R B When this is done, it is preferable that RA / R B is in the range of 1.0 to 1.1.
 中でも、積層フィルムがカールする際に応力を生じさせにくくする観点や、偏光子層との接着性を高める観点では、ゴム粒子は、機能層の表層部(支持体とは反対側の表層部)に偏在していることが好ましい。具体的には、機能層のRA/RBは、1.04~1.06の範囲であることがより好ましい。RA/RBが1.04以上であると、ゴム粒子が機能層の表層部に偏在している。そのため、機能層の表層部の柔軟性や靱性を高めうるため、図1Bに示されるように、機能層が外側となるようにカールする際に、カールに追従しやすく、それによる応力の発生を少なくしうる。RA/RBが1.1以下であると、機能層の表層部と内部とで靱性の差が大きくなりすぎないため、応力差により搬送時などにクラックが生じにくい。 Above all, from the viewpoint of making it difficult to generate stress when the laminated film is curled and improving the adhesiveness with the polarizer layer, the rubber particles are the surface layer portion of the functional layer (the surface layer portion on the opposite side to the support). It is preferable that the particles are unevenly distributed. Specifically, the RA / R B of the functional layer is more preferably in the range of 1.04 to 1.06. When R A / R B is 1.04 or more, the rubber particles are unevenly distributed on the surface layer portion of the functional layer. Therefore, since the flexibility and toughness of the surface layer portion of the functional layer can be increased, as shown in FIG. 1B, when the functional layer is curled so as to be on the outside, it is easy to follow the curl, and stress is generated due to the curl. Can be reduced. When RA / R B is 1.1 or less, the difference in toughness between the surface layer portion and the inside of the functional layer does not become too large, so that cracks are unlikely to occur during transportation due to the stress difference.
 領域Aにおけるゴム粒子の単位面積当たりの面積率RAは、下記式で表される。 The area ratio RA per unit area of the rubber particles in the region A is expressed by the following formula.
 面積率RA(%)=領域Aにおけるゴム粒子の合計面積/領域Aの面積×100
 領域Bにおけるゴム粒子の単位面積当たりの面積率RBも同様に定義される。
Area ratio RA (%) = total area of rubber particles in region A / area of region A x 100
Area ratio R B per unit area of the rubber particles in the area B is similarly defined.
 機能層のRA/RBは、以下の方法で測定することができる。 The RA / R B of the functional layer can be measured by the following method.
 1)機能層をミクロトームで切断し、機能層の表面に垂直な切断面を、TEM観察する。観察条件は、加速電圧(サンプルに照射する電子エネルギー):30kV、作動距離(レンズとサンプルの間の距離):8.6mm×倍率:3.00kとしうる。観察領域は、機能層の厚さ方向の全部を含む領域とする。 1) Cut the functional layer with a microtome, and observe the cut surface perpendicular to the surface of the functional layer by TEM. The observation conditions may be acceleration voltage (electron energy irradiating the sample): 30 kV, working distance (distance between the lens and the sample): 8.6 mm × magnification: 3.00 k. The observation area is a region including the entire functional layer in the thickness direction.
 2)得られたTEM画像を、NiVision(ナショナルインスツルメンツ社製)の画像処理ソフトを用いて輝度傾斜を除去した後、オープニング処理を行い、バルクとゴム粒子とのコントラスト差を検出する。それにより、ゴム粒子の分布状態を特定する。 2) The obtained TEM image is subjected to an opening process after removing the brightness gradient using image processing software of NiVision (manufactured by National Instruments), and the contrast difference between the bulk and the rubber particles is detected. Thereby, the distribution state of the rubber particles is specified.
 3)上記2)で得られた画像処理後の画像において、機能層の厚さ方向において、領域Aにおけるゴム粒子の単位面積当たりの面積率RA、領域Bにおけるゴム粒子の単位面積当たりの面積率RBをそれぞれ算出する。 3) In the image after image processing obtained in 2) above, the area ratio RA per unit area of the rubber particles in the region A and the area per unit area of the rubber particles in the region B in the thickness direction of the functional layer. Calculate the rate R B respectively.
 4)上記3)で得られた結果から、RA/RBを算出する。 4) R A / R B is calculated from the result obtained in 3) above.
 ゴム粒子を偏在させる方法は、特に制限されないが、塗布した機能層用溶液の乾燥条件(乾燥速度など)や(メタ)アクリル樹脂の組成によって調整できる。機能層の表層部(領域A)にゴム粒子を偏在させやすくするためには、後述するように、乾燥速度を高くすることが好ましく;乾燥速度を高くするためには、乾燥温度を高くすることが好ましい。また、フェニルマレイミドに由来する構造単位(U2)を適度に多く含む(メタ)アクリル系樹脂は、ミクロな空隙を多く有し、ゴム粒子を拡散移動させやすいことから、フェニルマレイミドに由来する構造単位(U2)の含有量を適度に多くすることで、ゴム粒子を偏在させやすくすることもできる。 The method of unevenly distributing the rubber particles is not particularly limited, but can be adjusted by the drying conditions (drying speed, etc.) of the applied functional layer solution and the composition of the (meth) acrylic resin. In order to facilitate uneven distribution of rubber particles on the surface layer portion (region A) of the functional layer, it is preferable to increase the drying rate, as will be described later; in order to increase the drying rate, the drying temperature is increased. Is preferable. Further, the (meth) acrylic resin containing a moderately large amount of structural unit (U2) derived from phenylmaleimide has many microscopic voids and easily diffuses and moves rubber particles. Therefore, the structural unit derived from phenylmaleimide is used. By appropriately increasing the content of (U2), it is possible to make it easier for the rubber particles to be unevenly distributed.
 〔2.3〕物性
 本発明に係る機能層は、基材フィルムから剥離された後、偏光子層と貼り合わされて位相差フィルムなどの光学フィルムとして機能しうる。
[2.3] Physical Properties The functional layer according to the present invention can function as an optical film such as a retardation film by being peeled off from a base film and then bonded to a polarizer layer.
 〈位相差Ro及びRt〉
 機能層は、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長590nm、温度23℃、湿度55%RHの環境下で測定される面内方向の位相差Roは、0~10nmの範囲であることが好ましく、0~5nmの範囲であることがより好ましい。機能層の厚さ方向の位相差Rtは、-40~40nmの範囲であることが好ましく、-25~25nmの範囲であることがより好ましい。
<Phase difference Ro and Rt>
From the viewpoint of using the functional layer as a retardation film for IPS mode, for example, the in-plane retardation Ro measured in an environment of a measurement wavelength of 590 nm, a temperature of 23 ° C., and a humidity of 55% RH is in the range of 0 to 10 nm. It is preferably in the range of 0 to 5 nm, and more preferably in the range of 0 to 5 nm. The phase difference Rt in the thickness direction of the functional layer is preferably in the range of -40 to 40 nm, and more preferably in the range of -25 to 25 nm.
 Ro及びRtは、それぞれ下記式で定義される。 Ro and Rt are defined by the following formulas, respectively.
 式(a):Ro=(nx-ny)×d
 式(b):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、機能層の面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、機能層の面内遅相軸に直交する方向の屈折率を表し、
 nzは、機能層の厚さ方向の屈折率を表し、
 dは、機能層の厚さ(nm)を表す。)
 機能層の面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。
Equation (a): Ro = (n x − n y ) × d
Equation (b): Rt = ((n x + n y ) /2- nz ) × d
(During the ceremony,
n x represents the refractive index in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized) of the functional layer.
n y represents the refractive index in the direction orthogonal to the in-plane slow phase axis of the functional layer.
n z represents the refractive index of the functional layer in the thickness direction.
d represents the thickness (nm) of the functional layer. )
The in-plane slow-phase axis of the functional layer can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
 Ro及びRtは、以下の方法で測定することができる。 Ro and Rt can be measured by the following methods.
 1)機能層を温度23℃、湿度55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚さdを市販のマイクロメーターを用いて測定する。 1) Humidity control of the functional layer for 24 hours in an environment with a temperature of 23 ° C and a humidity of 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
 2)調湿後のフィルムの、測定波長590nmにおけるリターデーションRo及びRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、温度23℃、湿度55%RHの環境下で測定する。 2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 590 nm were measured at a temperature of 23 ° C. and a humidity of 55 using an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics). Measured in an environment of% RH.
 機能層の位相差Ro及びRtは、例えば樹脂の種類や延伸条件、乾燥条件によって調整することができる。例えば、乾燥温度を高くすることで、Rtを低くすることができる。 The phase difference Ro and Rt of the functional layer can be adjusted, for example, by the type of resin, stretching conditions, and drying conditions. For example, Rt can be lowered by raising the drying temperature.
 〔3〕積層フィルムの製造方法
 本発明の積層フィルム(基材フィルムと機能層の積層体)の形態は、特に制限されないが、例えば帯状でありうる。すなわち、本発明の積層フィルムは、その幅方向に直交する方向にロール状に巻き取られて、ロール体とすることが好ましい。
[3] Method for Producing Laminated Film The form of the laminated film (laminated body of the base film and the functional layer) of the present invention is not particularly limited, but may be band-shaped, for example. That is, it is preferable that the laminated film of the present invention is wound into a roll in a direction orthogonal to the width direction to form a roll.
 [製造方法]
 本発明の積層フィルムの製造方法は、1)機能層用溶液を得る工程と、2)得られた機能層溶液を、基材フィルムの表面に付与する工程と、3)付与された機能層用溶液から溶媒を除去して、機能層を形成する工程とを有する基材上に製膜する方法でもよいし、上記溶液製膜法にて、積層ダイを用いて同時に積層製膜する方法であってもよいが、機能層の平面性の観点から、基材上に製膜する方法が好ましい。
[Production method]
The method for producing a laminated film of the present invention includes 1) a step of obtaining a solution for a functional layer, 2) a step of applying the obtained functional layer solution to the surface of a base film, and 3) a step of applying the obtained functional layer solution to the surface of the base film. It may be a method of forming a film on a substrate having a step of removing a solvent from a solution to form a functional layer, or a method of simultaneously laminating a film using a laminated die in the above solution film forming method. However, from the viewpoint of the flatness of the functional layer, a method of forming a film on the substrate is preferable.
 1)機能層用溶液を得る工程
 前述の樹脂と、溶媒とを含む機能層用溶液を調製する。
1) Step of obtaining a solution for a functional layer A solution for a functional layer containing the above-mentioned resin and a solvent is prepared.
 機能層用溶液に用いられる溶媒は、樹脂を良好に分散又は溶解させうるものであればよく、特に制限されない。溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、シクロヘキサノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン類、酢酸エチル、酢酸メチル、乳酸エチル、酢酸イソプロピル、酢酸アミル、酪酸エチルなどのエステル類、グリコールエーテル類(プロピレングリコールモノ(C1~C4)アルキルエーテル(具体的にはプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル等)、プロピレングリコールモノ(C1~C4)アルキルエーテルエステル(プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート))、トルエン、ベンゼン、シクロヘキサン、n-ヘキサン等の炭化水素類が含まれる。樹脂を溶解しやすく、かつ低沸点で、乾燥速度及び生産性を高めやすい観点から、ケトン類を含むことが好ましく、平面性が高い機能層を形成しやすい観点から、アルコール類を更に含むことが好ましい。 The solvent used for the solution for the functional layer is not particularly limited as long as it can disperse or dissolve the resin well. Examples of solvents include alcohols such as methanol, ethanol, propanol, n-butanol, 2-butanol, tert-butanol and cyclohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, ethyl acetate, methyl acetate and lactic acid. Esters such as ethyl, isopropyl acetate, amyl acetate, ethyl butyrate, glycol ethers (propylene glycol mono (C1 to C4) alkyl ethers (specifically, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol) Mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, etc.), propylene glycol mono (C1-C4) alkyl ether esters (propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate)), toluene, benzene , Cyclohexane, n-hexane and other hydrocarbons are included. It is preferable to contain ketones from the viewpoint of easily dissolving the resin, having a low boiling point, and easily increasing the drying speed and productivity, and further containing alcohols from the viewpoint of easily forming a functional layer having high flatness. preferable.
 すなわち、溶媒は、ケトン類と、アルコール類とを含むことが好ましい。ケトン類とアルコール類の含有比率は、特に限定されないが、乾燥速度と平面性の両立の観点から、ケトン類/アルコール類=95/5~60/40(質量比)の範囲であることが好ましく、95/5~80/20(質量比)の範囲であることがより好ましい。ケトン類の割合が適度に多いと、乾燥性や生産性を高めやすく、アルコール類の割合が適度に多いと、平面性が損なわれにくい。 That is, the solvent preferably contains ketones and alcohols. The content ratio of ketones and alcohols is not particularly limited, but from the viewpoint of achieving both drying speed and flatness, ketones / alcohols = 95/5 to 60/40 (mass ratio) is preferable. , 95/5 to 80/20 (mass ratio), more preferably. When the proportion of ketones is moderately high, the drying property and productivity are likely to be improved, and when the proportion of alcohols is moderately high, the flatness is not easily impaired.
 機能層用溶液の樹脂濃度は、粘度を後述する範囲に調整しやすくする観点では、例えば1.0~20質量%の範囲であることが好ましい。更に、塗膜の乾燥時の収縮量を少なくする観点では、機能層用溶液の樹脂濃度は適度に高いことが好ましく、5質量%超20質量%以下であることがより好ましく、5質量%超15質量%以下であることが更に好ましい。 The resin concentration of the solution for the functional layer is preferably in the range of 1.0 to 20% by mass, for example, from the viewpoint of facilitating the adjustment of the viscosity to the range described later. Further, from the viewpoint of reducing the amount of shrinkage during drying of the coating film, the resin concentration of the solution for the functional layer is preferably moderately high, more preferably more than 5% by mass and 20% by mass or less, and more than 5% by mass. It is more preferably 15% by mass or less.
 機能層用溶液の粘度は、所望の厚さの機能層を形成しうる程度であればよく、特に制限されないが、例えば5~5000mPs・sの範囲であることが好ましい。機能層用溶液の粘度が5cP以上であると、適度な厚さの機能層を形成しやすく、5000mPs・s以下であると、溶液の粘度上昇によって、厚さムラが生じるのを抑制しうる。機能層用溶液の粘度は、同様の観点から、100~1000mPs・sの範囲であることがより好ましい。機能層用溶液の粘度は、25℃で、E型粘度計で測定することができる。 The viscosity of the solution for the functional layer may be such that a functional layer having a desired thickness can be formed, and is not particularly limited, but is preferably in the range of, for example, 5 to 5000 mPs · s. When the viscosity of the solution for the functional layer is 5 cP or more, it is easy to form a functional layer having an appropriate thickness, and when it is 5000 mPs · s or less, it is possible to suppress the occurrence of thickness unevenness due to the increase in the viscosity of the solution. From the same viewpoint, the viscosity of the solution for the functional layer is more preferably in the range of 100 to 1000 mPs · s. The viscosity of the solution for the functional layer can be measured with an E-type viscometer at 25 ° C.
 2)機能層用溶液を付与する工程
 次いで、得られた機能層用溶液を、基材フィルムの表面に付与する。具体的には、得られた機能層用溶液を、基材フィルムの表面に塗布する。
2) Step of applying the functional layer solution Next, the obtained functional layer solution is applied to the surface of the base film. Specifically, the obtained solution for the functional layer is applied to the surface of the base film.
 機能層用溶液の塗布方法は、特に制限されず、例えばバックロールコート法、グラビアコート法、スピンコート法、ワイヤーバーコート法、ロールコート法などでの公知の方法でありうる。中でも、薄くかつ均一な厚さの塗膜を形成しうる観点から、バックコート法が好ましい。 The method for applying the solution for the functional layer is not particularly limited, and may be, for example, a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Above all, the back coat method is preferable from the viewpoint of being able to form a thin and uniform thickness coating film.
 3)機能層を形成する工程
 次いで、支持体に付与された機能層用溶液から溶媒を除去して、機能層を形成する。
3) Step of forming the functional layer Next, the solvent is removed from the solution for the functional layer applied to the support to form the functional layer.
 具体的には、支持体に付与された機能層用溶液を乾燥させる。乾燥は、例えば送風又は加熱により行うことができる。中でも、積層フィルムのカールなどを抑制しやすくする観点では、送風により乾燥させることが好ましい。 Specifically, the solution for the functional layer applied to the support is dried. Drying can be performed, for example, by blowing air or heating. Above all, from the viewpoint of facilitating curling of the laminated film, it is preferable to dry the laminated film by blowing air.
 乾燥条件(例えば乾燥温度、乾燥風量、乾燥時間など)を調整することにより、例えば機能層がゴム粒子を含む場合、ゴム粒子の分布状態を調整しうる。具体的には、ゴム粒子を偏在させやすくする観点では、(メタ)アクリル系樹脂と、ゴム粒子とを含む機能層用溶液の塗膜の乾燥速度は、高いことが好ましく、0.0015~0.05kg/hr・m2の範囲であることが好ましく、0.002~0.05kg/hr・m2の範囲であることがより好ましい。 By adjusting the drying conditions (for example, drying temperature, drying air volume, drying time, etc.), for example, when the functional layer contains rubber particles, the distribution state of the rubber particles can be adjusted. Specifically, from the viewpoint of facilitating uneven distribution of rubber particles, the drying rate of the coating film of the solution for the functional layer containing the (meth) acrylic resin and the rubber particles is preferably high, and 0.0015 to 0. it is preferably in the range of .05kg / hr · m 2, and more preferably in the range of 0.002 ~ 0.05kg / hr · m 2 .
 乾燥速度とは、単位時間、単位面積当たりに蒸発する溶媒の質量として表される。乾燥速度は、通常、乾燥温度によって調整することができる。乾燥温度は、使用する溶媒種にもよるが、例えば50~200℃の範囲(使用する溶媒の沸点に対して(Tb-50)~(Tb+50)℃)でありうる。 The drying rate is expressed as the mass of the solvent that evaporates per unit time and unit area. The drying rate can usually be adjusted by the drying temperature. The drying temperature may be, for example, in the range of 50 to 200 ° C. ((Tb-50) to (Tb + 50) ° C. with respect to the boiling point of the solvent used), although it depends on the solvent type used.
 本実施の形態に係る積層フィルムは、前述の通り、帯状でありうる。したがって、本実施の形態に係る積層フィルムの製造方法は、4)帯状の積層フィルムをロール状に巻き取り、ロール体とする工程を更に含むことが好ましい。 The laminated film according to the present embodiment may be strip-shaped as described above. Therefore, it is preferable that the method for producing a laminated film according to the present embodiment further includes 4) a step of winding a strip-shaped laminated film into a roll to form a roll.
 4)積層フィルムを巻き取り、ロール体を得る工程
 得られた帯状の積層フィルムを、その幅方向に直交する方向にロール状に巻き取り、ロール体とする。
4) Step of winding the laminated film to obtain a roll body The obtained strip-shaped laminated film is wound into a roll shape in a direction orthogonal to the width direction thereof to form a roll body.
 帯状の積層フィルムの長さは、特に制限されないが、例えば100~10000m程度でありうる。また、帯状の積層フィルムの幅は、1m以上であることが好ましく、1.3~4mの範囲であることがより好ましい。 The length of the strip-shaped laminated film is not particularly limited, but may be, for example, about 100 to 10000 m. The width of the strip-shaped laminated film is preferably 1 m or more, and more preferably 1.3 to 4 m.
 [製造装置]
 本発明の積層フィルムの製造方法は、例えば図3に示される製造装置によって行うことができる。
[manufacturing device]
The method for producing a laminated film of the present invention can be performed by, for example, the production apparatus shown in FIG.
 図3は、本実施の形態に係る積層フィルムの製造方法を実施するための製造装置B200の模式図である。製造装置B200は、供給部B210と、塗布部B220と、乾燥部B230と、冷却部B240と、巻き取り部B250とを有する。Ba~Bdは、基材フィルムB110を搬送する搬送ロールを示す。 FIG. 3 is a schematic view of a manufacturing apparatus B200 for carrying out the method for manufacturing a laminated film according to the present embodiment. The manufacturing apparatus B200 includes a supply unit B210, a coating unit B220, a drying unit B230, a cooling unit B240, and a winding unit B250. Ba to Bd indicate transport rolls for transporting the base film B110.
 供給部B210は、巻き芯に巻かれた帯状の基材フィルムB110のロール体B201を繰り出す繰り出し装置(不図示)を有する。 The supply unit B210 has a feeding device (not shown) for feeding out the roll body B201 of the strip-shaped base film B110 wound around the winding core.
 塗布部B220は、塗布装置であって、基材フィルムB110を保持するバックアップロールB221と、バックアップロールB221で保持された基材フィルムB110に、機能層用溶液を塗布する塗布ヘッドB222と、塗布ヘッドB222の上流側に設けられた減圧室B223とを有する。 The coating unit B220 is a coating device, and includes a backup roll B221 that holds the base film B110, a coating head B222 that applies a solution for a functional layer to the base film B110 held by the backup roll B221, and a coating head. It has a decompression chamber B223 provided on the upstream side of B222.
 塗布ヘッドB222から吐出される機能層用溶液の流量は、不図示のポンプにより調整可能となっている。塗布ヘッドB222から吐出する機能層用溶液の流量は、予め調整した塗布ヘッドB222の条件で連続塗布したときに、安定して所定の層厚の塗布層を形成できる量に設定されている。 The flow rate of the functional layer solution discharged from the coating head B222 can be adjusted by a pump (not shown). The flow rate of the functional layer solution discharged from the coating head B222 is set to an amount capable of stably forming a coating layer having a predetermined layer thickness when continuously coated under the conditions of the coating head B222 adjusted in advance.
 減圧室B223は、塗布時に塗布ヘッドB222からの機能層用溶液と基材フィルムB110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室B223は、減圧ブロワ(不図示)に接続されており、内部が減圧されるようになっている。減圧室B223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。 The decompression chamber B223 is a mechanism for stabilizing the bead (pool of coating liquid) formed between the solution for the functional layer from the coating head B222 and the base film B110 at the time of coating, and the degree of decompression can be adjusted. It has become. The decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed. The pressure reducing chamber B223 is in a state where there is no air leakage, and the gap between the pressure reducing chamber B223 and the backup roll is narrowly adjusted so that a stable bead of the coating liquid can be formed.
 乾燥部B230は、基材フィルムB110の表面に塗布された塗膜を乾燥させる乾燥装置であって、乾燥室B231と、乾燥用気体の導入口B232と、排出口B233とを有する。乾燥風の温度及び風量は、塗膜の種類及び基材フィルムB110の種類により適宜決められる。乾燥部B230で乾燥風の温度及び風量、乾燥時間などの条件を設定することにより、乾燥後の塗膜の残留溶媒含有量を調整することができる。乾燥後の塗膜の残留溶媒量は、乾燥後の塗膜の単位質量と、該塗膜を十分に乾燥した後の質量を比較することにより測定することができる。 The drying unit B230 is a drying device that dries the coating film applied to the surface of the base film B110, and has a drying chamber B231, a drying gas introduction port B232, and a discharge port B233. The temperature and air volume of the dry air are appropriately determined depending on the type of the coating film and the type of the base film B110. By setting conditions such as the temperature and air volume of the drying air and the drying time in the drying unit B230, the residual solvent content of the coating film after drying can be adjusted. The amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after the coating film is sufficiently dried.
 (残留溶媒量)
 機能層は、機能層用溶液を塗布して得られることから、当該溶液に由来する溶媒が残留していることがある。残留溶媒量は、機能層に対して700ppm以下であることが好ましく、30~700ppmの範囲であることがより好ましい。残留溶媒の含有量は、機能層の製造工程における、基材フィルム上に付与した機能層用溶液の乾燥条件によって調整されうる。
(Amount of residual solvent)
Since the functional layer is obtained by applying a solution for the functional layer, a solvent derived from the solution may remain. The amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the functional layer. The content of the residual solvent can be adjusted by the drying conditions of the solution for the functional layer applied on the base film in the manufacturing process of the functional layer.
 機能層層の残留溶媒量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、サンプルを容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマーなどの定量も併せて行うことができる。 The amount of residual solvent in the functional layer can be measured by headspace gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass analysis is performed to identify the compound. The volatile components are quantified while doing so. The headspace method makes it possible to observe all peaks of volatile components by gas chromatography, and by using an analytical method that utilizes electromagnetic interactions, it is possible to quantify volatile substances and monomers with high accuracy. It can be done at the same time.
 冷却部B240は、乾燥部B230で乾燥させて得られる塗膜(機能層B120)を有する基材フィルムB110の温度を冷却し、適切な温度に調整する。冷却部B240は、冷却室B241と、冷却風入口B242と、冷却風出口B243とを有する。冷却風の温度及び風量は、塗膜の種類及び基材フィルムB110の種類により適宜決めうる。また、冷却部B240を設けなくても、適正な冷却温度になる場合は、冷却部B240はなくてもよい。 The cooling unit B240 cools the temperature of the base film B110 having the coating film (functional layer B120) obtained by drying in the drying unit B230, and adjusts the temperature to an appropriate temperature. The cooling unit B240 has a cooling chamber B241, a cooling air inlet B242, and a cooling air outlet B243. The temperature and air volume of the cooling air can be appropriately determined depending on the type of the coating film and the type of the base film B110. Further, even if the cooling unit B240 is not provided, the cooling unit B240 may not be provided if the cooling temperature is appropriate.
 巻き取り部B250は、透機能層B120が形成された基材フィルムB110を巻き取り、ロール体B251を得るための巻き取り装置(不図示)である。 The winding unit B250 is a winding device (not shown) for winding the base film B110 on which the transparent functional layer B120 is formed to obtain the roll body B251.
 〔4〕偏光板
 偏光板は、偏光子層と、その少なくとも一方の面に配置された本発明の積層フィルム又は機能層とを有する。偏光子層と積層フィルム又は機能層とは、接着剤層を介して接着されていることが好ましい。
[4] Polarizing plate The polarizing plate has a polarizing element layer and a laminated film or functional layer of the present invention arranged on at least one surface thereof. It is preferable that the polarizer layer and the laminated film or the functional layer are adhered to each other via an adhesive layer.
 図4に本発明の偏光板の層構成について、その一例を示すがこれに限定されるものではない。 FIG. 4 shows an example of the layer structure of the polarizing plate of the present invention, but the present invention is not limited thereto.
 図4Aは、基材フィルム付きの偏光板の断面図である。
 本発明の積層フィルム1(基材フィルム2及び機能層3)の機能層3側を、接着層4を介して偏光子層5に貼合して偏光板10aを加工する。偏光子層5の本発明の積層フィルム1を貼合した面とは反対側の面には、必要であれば、接着層4を介して対向フィルム6が貼合されていてもよい。
FIG. 4A is a cross-sectional view of a polarizing plate with a base film.
The functional layer 3 side of the laminated film 1 (base film 2 and functional layer 3) of the present invention is bonded to the polarizer layer 5 via the adhesive layer 4 to process the polarizing plate 10a. If necessary, the opposing film 6 may be bonded to the surface of the polarizer layer 5 opposite to the surface to which the laminated film 1 of the present invention is bonded, via the adhesive layer 4.
 偏光板10aは、例えば、表示装置(不図示)に具備する場合、表示素子側に本発明の積層フィルム1が粘着層(不図示)を介して貼合されていてもよく、また、表示素子側に対向フィルム6が粘着層(不図示)を介して貼合されていてもよい。本発明の積層フィルム1が貼合される場合は、積層フィルム1から基材フィルム2を剥離した下記図4(b)で示す実施形態であることが好ましい。 When the polarizing plate 10a is provided in a display device (not shown), for example, the laminated film 1 of the present invention may be bonded to the display element side via an adhesive layer (not shown), or the display element. The facing film 6 may be attached to the side via an adhesive layer (not shown). When the laminated film 1 of the present invention is bonded, it is preferably the embodiment shown in FIG. 4 (b) below in which the base film 2 is peeled off from the laminated film 1.
 図4Bは、基材フィルムを剥離した偏光板の断面図である。
 本発明の積層フィルム1(基材フィルム2と機能層3)の機能層3側を、接着層4を介して偏光子層5に貼合して偏光板10bを加工する。偏光板加工時又は加工後に基材フィルム2は機能層3から剥離して薄膜の偏光板10bを加工する。偏光子層5の本発明に係る機能層3を貼合した面とは反対側の面には、必要であれば、接着層4を介して対向フィルム6が貼合されていてもよい。
FIG. 4B is a cross-sectional view of a polarizing plate from which the base film has been peeled off.
The functional layer 3 side of the laminated film 1 (base film 2 and functional layer 3) of the present invention is bonded to the polarizer layer 5 via the adhesive layer 4 to process the polarizing plate 10b. The base film 2 is peeled from the functional layer 3 during or after the polarizing plate processing to process the thin polarizing plate 10b. If necessary, the opposing film 6 may be bonded to the surface of the polarizer layer 5 opposite to the surface to which the functional layer 3 according to the present invention is bonded, via the adhesive layer 4.
 偏光板10bは、例えば、表示装置(不図示)に具備する場合、表示素子側に本発明に係る機能層3が粘着層(不図示)を介して貼合されていてもよく、また、表示素子側に対向フィルム6が粘着層(不図示)を介して貼合されていてもよい。 When the polarizing plate 10b is provided in a display device (not shown), for example, the functional layer 3 according to the present invention may be attached to the display element side via an adhesive layer (not shown), and the polarizing plate 10b may be displayed. The facing film 6 may be attached to the element side via an adhesive layer (not shown).
 〔4.1〕偏光子層
 偏光子層は、一定方向の偏波面の光だけを通す素子である。偏光子層は、通常、ポリビニルアルコール系偏光フィルムでありうる。ポリビニルアルコール系偏光フィルムの例には、ポリビニルアルコール系フィルムにヨウ素を染色させたものや、二色性染料を染色させたものが含まれる。
[4.1] Polarizer layer The polarizing layer is an element that allows only light on the plane of polarization in a certain direction to pass through. The polarizer layer can usually be a polyvinyl alcohol-based polarizing film. Examples of the polyvinyl alcohol-based polarizing film include a polyvinyl alcohol-based film dyed with iodine and a film dyed with a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色したフィルム(好ましくは更にホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、更にホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子層の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl. An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound). The absorption axis of the polarizer layer is usually parallel to the maximum stretching direction.
 偏光子層の厚さは、5~30μmの範囲であることが好ましく、偏光板を薄型化する観点などから、5~20μmの範囲であることがより好ましい。 The thickness of the polarizing element layer is preferably in the range of 5 to 30 μm, and more preferably in the range of 5 to 20 μm from the viewpoint of thinning the polarizing plate.
 〔4.2〕積層フィルム又は機能層、及び対向フィルム
 偏光子層の少なくとも一方の面には、本発明の積層フィルムを構成する基材フィルム又は機能層が配置される。積層フィルムを構成する基材フィルム又は機能層は、いずれも偏光子層保護フィルムとして機能しうる。本実施の形態では、偏光子層の一方の面に機能層が配置され、他方の面に他の保護フィルムが配置されていることが好ましい。
[4.2] Laminated Film or Functional Layer, and Opposite Film A base film or functional layer constituting the laminated film of the present invention is arranged on at least one surface of the polarizer layer. Any of the base film or the functional layer constituting the laminated film can function as a polarizer layer protective film. In the present embodiment, it is preferable that the functional layer is arranged on one surface of the polarizer layer and the other protective film is arranged on the other surface.
 対向フィルムの例には、シクロオレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、セルロースエステル系樹脂及びスチレン系樹脂又はその複合樹脂等を含有する。中でも、シクロオレフィン系樹脂、アクリル系樹脂及びポリエステル系樹脂を含有することが好ましい。 Examples of the opposing film include a cycloolefin resin, a polypropylene resin, an acrylic resin, a polyester resin, a polyarylate resin, a cellulose ester resin, a styrene resin, or a composite resin thereof. Above all, it is preferable to contain a cycloolefin resin, an acrylic resin and a polyester resin.
 〔4.3〕接着剤層
 接着剤層は、機能層と偏光子層との間、及び、対向フィルムと偏光子層との間にそれぞれ配置されている。機能層と偏光子層との間に配置される接着剤層と、対向フィルムと偏光子層との間に配置される接着剤層とは、同じであってもよいし、異なってもよい。
[4.3] Adhesive layer The adhesive layer is arranged between the functional layer and the polarizer layer, and between the opposing film and the polarizer layer, respectively. The adhesive layer arranged between the functional layer and the polarizer layer and the adhesive layer arranged between the opposing film and the polarizer layer may be the same or different.
 接着剤層は、水溶性ポリマーから得られる層であってもよいし、活性エネルギー線硬化性接着剤の硬化物層であってもよい。水溶性ポリマーの場合、例えばビニルアルコール系ポリマーからなる接着剤、あるいは、ホウ酸や ホウ砂、グルタルアルデヒドやメラミン、シュウ酸などのビニルアルコール系ポリマーの水溶性架橋剤から少なくともなる接着剤等を介して行うことができる。かかる接着層は、水溶液の塗布乾燥層等として形成されるが、その水溶液の調製に際しては必要に応じて、他の添加剤や、酸等の触媒も配合することができる。 The adhesive layer may be a layer obtained from a water-soluble polymer or a cured product layer of an active energy ray-curable adhesive. In the case of a water-soluble polymer, for example, via an adhesive made of a vinyl alcohol-based polymer, or at least an adhesive made of a water-soluble cross-linking agent of a vinyl alcohol-based polymer such as boric acid, borosand, glutaaldehyde, melamine, and oxalic acid. Can be done. Such an adhesive layer is formed as a coating dry layer of an aqueous solution or the like, but when preparing the aqueous solution, other additives or a catalyst such as an acid can be added as needed.
 活性エネルギー線硬化性接着剤は、光ラジカル重合性組成物であってもよいし、光カチオン重合性組成物であってもよい。中でも、光カチオン重合性組成物が好ましい。 The active energy ray-curable adhesive may be a photoradical polymerizable composition or a photocationic polymerizable composition. Of these, a photocationically polymerizable composition is preferable.
 光カチオン重合性組成物は、エポキシ系化合物と、光カチオン重合開始剤とを含む。 The photocationic polymerizable composition contains an epoxy compound and a photocationic polymerization initiator.
 エポキシ系化合物とは、分子内に1以上、好ましくは2以上のエポキシ基を有する化合物である。エポキシ系化合物の例には、脂環式ポリオールに、エピクロロヒドリンを反応させて得られる水素化エポキシ系化合物(脂環式環を有するポリオールのグリシジルエーテル);脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルなどの脂肪族エポキシ系化合物;脂環式環に結合したエポキシ基を分子内に1以上有する脂環式エポキシ系化合物が含まれる。エポキシ系化合物は、1種のみを使用してもよいし、2種以上を併用してもよい。 The epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule. Examples of epoxy compounds include hydride epoxy compounds obtained by reacting an alicyclic polyol with epichlorohydrin (glycidyl ether of a polyol having an alicyclic ring); an aliphatic polyhydric alcohol or an alkylene thereof. Aliphatic epoxy compounds such as polyglycidyl ether as an oxide adduct; alicyclic epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule are included. Only one type of epoxy compound may be used, or two or more types may be used in combination.
 光カチオン重合開始剤は、例えば芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩などのオニウム塩;鉄-アレーン錯体などでありうる。 The photocationic polymerization initiator may be, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt; an iron-alene complex or the like.
 光カチオン重合開始剤は、必要に応じてオキセタン、ポリオールなどのカチオン重合促進剤、光増感剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶剤などの添加剤を更に含んでもよい。 Photocationic polymerization initiators include cationic polymerization accelerators such as oxetane and polyols, photosensitizers, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, and fluids, as required. Additives such as modifiers, plasticizers, defoamers, antistatic agents, leveling agents, solvents and the like may be further included.
 接着剤層の厚さは、特に限定されないが、それぞれ0.01~10μmの範囲であることが好ましく、0.01~5μmの範囲であることがより好ましい。 The thickness of the adhesive layer is not particularly limited, but is preferably in the range of 0.01 to 10 μm, and more preferably in the range of 0.01 to 5 μm.
 〔4.4〕粘着剤層
 粘着剤層は、偏光板を、液晶セルなどの表示素子と貼合するための層であり、機能層の偏光子層とは反対側の面に配置されうる。又は、対向フィルムの面に配置することもできる。
[4.4] Adhesive Layer The adhesive layer is a layer for bonding a polarizing plate to a display element such as a liquid crystal cell, and may be arranged on a surface of the functional layer opposite to the polarizer layer. Alternatively, it can be arranged on the surface of the opposing film.
 粘着剤層は、ベースポリマー、プレポリマー及び/又は架橋性モノマー、架橋剤ならびに溶媒を含む粘着剤組成物を、乾燥及び部分架橋させたものであることが好ましい。すなわち、粘着剤組成物の少なくとも一部が架橋したものでありうる。 The pressure-sensitive adhesive layer is preferably a pressure-sensitive adhesive composition containing a base polymer, a prepolymer and / or a cross-linking monomer, a cross-linking agent and a solvent, which is dried and partially cross-linked. That is, at least a part of the pressure-sensitive adhesive composition may be crosslinked.
 粘着剤組成物の例には、(メタ)アクリル系ポリマーをベースポリマーとするアクリル系粘着剤組成物、シリコーン系ポリマーをベースポリマーとするシリコーン系粘着剤組成物、ゴムをベースポリマーとするゴム系粘着剤組成物が含まれる。中でも、透明性、耐候性、耐熱性、加工性の観点では、アクリル系粘着剤組成物が好ましい。 Examples of the pressure-sensitive adhesive composition include an acrylic pressure-sensitive adhesive composition using a (meth) acrylic polymer as a base polymer, a silicone-based pressure-sensitive adhesive composition using a silicone-based polymer as a base polymer, and a rubber-based pressure-sensitive adhesive composition using a rubber as a base polymer. A pressure-sensitive adhesive composition is included. Above all, an acrylic pressure-sensitive adhesive composition is preferable from the viewpoint of transparency, weather resistance, heat resistance, and processability.
 アクリル系粘着剤組成物に含まれる(メタ)アクリル系ポリマーは、(メタ)アクリル酸アルキルエステルと、架橋剤と架橋可能な官能基含有モノマーとの共重合体でありうる。 The (meth) acrylic polymer contained in the acrylic pressure-sensitive adhesive composition can be a copolymer of a (meth) acrylic acid alkyl ester and a cross-linking agent and a cross-linkable functional group-containing monomer.
 (メタ)アクリル酸アルキルエステルは、アルキル基の炭素数2~14のアクリル酸アルキルエステルであることが好ましい。 The (meth) acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having 2 to 14 carbon atoms in the alkyl group.
 架橋剤と架橋可能な官能基含有モノマーの例には、アミド基含有モノマー、カルボキシル基含有モノマー(アクリル酸など)、ヒドロキシル基含有モノマー(アクリル酸ヒドロキシエチルなど)が含まれる。 Examples of the functional group-containing monomer that can be crosslinked with the cross-linking agent include an amide group-containing monomer, a carboxyl group-containing monomer (acrylic acid, etc.), and a hydroxyl group-containing monomer (hydroxyethyl acrylate, etc.).
 アクリル系粘着剤組成物に含まれる架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、過酸化物系架橋剤などが挙げられる。粘着剤組成物における架橋剤の含有量は、通常、ベースポリマー(固形分)100質量部に対して、例えば0.01~10質量部の範囲でありうる。 Examples of the cross-linking agent contained in the acrylic pressure-sensitive adhesive composition include an epoxy-based cross-linking agent, an isocyanate-based cross-linking agent, and a peroxide-based cross-linking agent. The content of the cross-linking agent in the pressure-sensitive adhesive composition can usually be in the range of, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content).
 粘着剤組成物は、必要に応じて粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤などの各種の添加剤を更に含んでもよい。 Adhesive compositions include tackifiers, plasticizers, fiberglass, glass beads, metal powders, other fillers, pigments, colorants, fillers, antioxidants, UV absorbers, silane couplings as needed. Various additives such as agents may be further included.
 粘着剤層の厚さは、通常、3~100μm程度であり、好ましくは5~50μmの範囲である。 The thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 μm, preferably in the range of 5 to 50 μm.
 粘着剤層の表面は、離型処理が施された剥離フィルムで保護されている。剥離フィルムの例には、アクリルフィルム、ポリカーボネートフィルム、ポリエステルフィルム、フッ素樹脂フィルムなどのプラスチックフィルムが含まれる。 The surface of the adhesive layer is protected by a release film that has undergone a mold release treatment. Examples of the release film include a plastic film such as an acrylic film, a polycarbonate film, a polyester film, and a fluororesin film.
 〔4.5〕偏光板の製造方法
 本実施の形態に係る偏光板は、偏光子層の少なくとも一方の面に、前述の積層フィルムを貼合するとともに、必要であれば基材フィルムを剥離する工程を経て製造されうる。積層フィルムの貼り合わせは、偏光子層の一方の面のみに行ってもよいし、両方の面に行ってもよく、透過率、位相差等の光学特性やカーリング抑制の観点では、偏光子層の一方の面に積層フィルムを貼り合わせ、他方の面に他の保護フィルムである対向フィルムを貼り合わせることが好ましい。
[4.5] Method for Manufacturing a Polarizing Plate In the polarizing plate according to the present embodiment, the above-mentioned laminated film is attached to at least one surface of the polarizer layer, and the base film is peeled off if necessary. It can be manufactured through a process. The laminated film may be bonded to only one surface of the polarizing element layer or both surfaces, and from the viewpoint of optical characteristics such as transmittance and phase difference and curling suppression, the polarizing element layer may be bonded. It is preferable that the laminated film is attached to one surface and the opposing film, which is another protective film, is attached to the other surface.
 また、偏光子層には、本発明の積層フィルムの基材フィルム側を貼合してもよく、機能層側を貼合してもよい。好ましくは、機能層側を貼合し、基材フィルムをプロテクトフィルムとして活用するか、剥離して薄膜の機能層のみを活用することである。 Further, the base film side of the laminated film of the present invention may be bonded to the polarizer layer, or the functional layer side may be bonded. Preferably, the functional layer side is bonded and the base film is used as a protective film, or the base film is peeled off and only the functional layer of the thin film is used.
 したがって積層フィルムを、偏光子層の少なくとも一方の面に貼合しながら巻き取り、ロール状の偏光板(「偏光板ロール」ともいう。)を製造する際に、ロールの内側から偏光子層、接着層、機能層及び基材フィルの層順になるように、前記偏光子層に前記積層フィルムを貼合しながら巻き取る工程を含むことが、好ましい偏光板ロールの製造方法である。 Therefore, when the laminated film is wound while being bonded to at least one surface of the polarizing element layer to produce a roll-shaped polarizing plate (also referred to as “polarizing plate roll”), the polarizing element layer is formed from the inside of the roll. It is a preferable method for producing a polarizing plate roll to include a step of winding the laminated film while adhering it to the polarizing element layer so that the order of the adhesive layer, the functional layer and the base material fill is arranged.
 基本的に、本発明に係る偏光板は、1)偏光子層の一方の面に、上記積層フィルムの機能層側を貼合する工程(機能層の偏光子層とは反対側の面に配置された基材フィルムは、貼り付けたままでもよいし、必要に応じて剥離してもよい。)、2)偏光子層の他方の面に、他の保護フィルムである対向フィルムを貼合する工程とを経て製造されうる。 Basically, the polarizing plate according to the present invention is 1) a step of laminating the functional layer side of the laminated film on one surface of the polarizing element layer (arranged on the surface opposite to the polarizing element layer of the functional layer). The base film may be left attached or peeled off if necessary.) 2) An opposing film, which is another protective film, is attached to the other surface of the polarizing element layer. It can be manufactured through a process.
 1)機能層の貼合工程
 偏光子層の一方の面に、上記積層フィルムの機能層側を、接着剤を介して貼合する。貼り合わされる機能層の表面、又は、偏光子層の一方の表面に、必要に応じてコロナ処理などの前処理を施してもよい。
1) Laminating step of the functional layer The functional layer side of the laminated film is bonded to one surface of the polarizing element layer via an adhesive. If necessary, a pretreatment such as a corona treatment may be applied to the surface of the functional layer to be bonded or one surface of the polarizer layer.
 例えば、接着剤として水溶性ポリマーの接着剤を用いる場合、1)積層フィルムの機能層の表面に、必要に応じてコロナ処理などの表面処理を施す。次いで、偏光子層の一方の面に、水溶性ポリマーの接着剤を介して、積層フィルムの機能層を積層する。
 2)偏光子層の他方の面に、他の保護フィルムである対向フィルムを貼合する工程
 次いで、偏光子層の他方の面に、他の保護フィルムである対向フィルムを貼合する。具体的には、対向フィルムの表面に、必要に応じてコロナ処理などの表面処理を施す。次いで、偏光子層の他方の面に、水溶性ポリマーの接着剤を介して、当該対向フィルムを積層した後、例えば50~80℃の温度範囲で段階的に乾燥処理を行う。
For example, when a water-soluble polymer adhesive is used as the adhesive, 1) the surface of the functional layer of the laminated film is subjected to surface treatment such as corona treatment, if necessary. Next, the functional layer of the laminated film is laminated on one surface of the polarizer layer via an adhesive of a water-soluble polymer.
2) Step of pasting the opposing film, which is another protective film, on the other surface of the polarizer layer Next, the opposing film, which is another protective film, is bonded to the other surface of the polarizer layer. Specifically, the surface of the opposing film is subjected to a surface treatment such as a corona treatment, if necessary. Next, the opposing film is laminated on the other surface of the polarizer layer via an adhesive of a water-soluble polymer, and then a stepwise drying treatment is performed in a temperature range of, for example, 50 to 80 ° C.
 1)及び2)の工程は、同時に行ってもよいし、逐次的に行ってもよい。製造効率を高める観点では、1)及び2)の工程は同時に行うことが好ましい。 The steps 1) and 2) may be performed simultaneously or sequentially. From the viewpoint of increasing production efficiency, it is preferable to perform the steps 1) and 2) at the same time.
 本実施の形態に係る偏光板は、帯状でありうる。したがって、1)及び2)の工程は、帯状の積層フィルムの機能層と、帯状の偏光子層と、帯状の他の保護フィルム(対向フィルム)とが、それぞれロール体から巻き出されて、ロールtoロールで貼り合わせることによって偏光板加工を行うことが好ましい。 The polarizing plate according to the present embodiment may be band-shaped. Therefore, in the steps 1) and 2), the functional layer of the strip-shaped laminated film, the strip-shaped polarizing element layer, and the other strip-shaped protective film (opposing film) are unwound from the roll body to roll. It is preferable to perform the polarizing plate processing by laminating with a to roll.
 また、帯状の偏光板をロール状に巻き取り、ロール体とする工程を更に行うことが好ましい。当該工程において、帯状の偏光板の長さや幅は、積層フィルムの製造方法の4)の工程における帯状の積層フィルムの長さや幅と同様である。 Further, it is preferable to further perform the step of winding the strip-shaped polarizing plate into a roll shape to form a roll body. In this step, the length and width of the strip-shaped polarizing plate are the same as the length and width of the strip-shaped laminated film in the step 4) of the method for manufacturing a laminated film.
 また、本発明の偏光板ロールの製造方法では、積層フィルム1を、偏光子層5の少なくとも一方の面に貼合しながら巻き取る工程において、ロールの内側から偏光子層5、接着層4、機能層3及び基材フィル2の層順になるように、前記偏光子層5に前記積層フィルム1を貼合しながら巻き取る工程によって、偏光板ロールを形成することも好ましい。この場合、本発明に係る基材フィルム2は、偏光板ロールの外側に配置されることから、プロテクトフィルムとしての機能を発揮し、偏光板加工時に機能層2への傷等の発生を防止したり、カーリングを抑制したりして、ハンドリングを容易にすることができる。 Further, in the method for producing a polarizing plate roll of the present invention, in the step of winding the laminated film 1 while adhering it to at least one surface of the polarizing layer 5, the polarizing layer 5 and the adhesive layer 4 are formed from the inside of the roll. It is also preferable to form a polarizing plate roll by a step of winding the laminated film 1 while adhering it to the polarizing element layer 5 so that the functional layer 3 and the base material fill 2 are layered in this order. In this case, since the base film 2 according to the present invention is arranged on the outside of the polarizing plate roll, it exhibits a function as a protective film and prevents scratches or the like on the functional layer 2 during polarizing plate processing. Or, curling can be suppressed to facilitate handling.
 またこのときに、積層フィルム1を貼合した面とは反対側の面に必要であれば対向フィルム6を接着層4を介して偏光子層5に貼合しながら巻き取って、偏光板ロールを形成してもよい。 At this time, if necessary, the opposing film 6 is wound on the surface opposite to the surface on which the laminated film 1 is bonded while being bonded to the polarizing layer 5 via the adhesive layer 4, and the polarizing plate roll is used. May be formed.
 〔5〕表示装置
 本実施の形態に係る表示装置は、液晶セルや有機エレクトロルミネッセンス(「EL」ともいう。)素子などの表示素子と、上記製造方法で製造された偏光板とを有する。中でも、本実施の形態に係る表示装置は、液晶セルと、上記製造方法で製造された偏光板とを有する液晶表示装置であることが好ましい。
[5] Display device The display device according to the present embodiment includes a display element such as a liquid crystal cell or an organic electroluminescence (also referred to as "EL") element, and a polarizing plate manufactured by the above manufacturing method. Above all, the display device according to the present embodiment is preferably a liquid crystal display device having a liquid crystal cell and a polarizing plate manufactured by the above manufacturing method.
 すなわち、液晶表示装置は、液晶セルと、液晶セルの一方の面に配置された第1偏光板と、液晶セルの他方の面に配置された第2偏光板とを含む。そして、第1偏光板と第2偏光板の少なくとも一方は、本実施の形態に係る偏光板である。第1偏光板中の第1偏光子層の吸収軸と第2偏光板中の第2偏光子層の吸収軸とは直交している(クロスニコルとなっている)ことが好ましい。 That is, the liquid crystal display device includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell. Then, at least one of the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment. It is preferable that the absorption axis of the first polarizing element layer in the first polarizing plate and the absorption axis of the second polarizer layer in the second polarizing plate are orthogonal to each other (cross Nicol).
 液晶セルの表示モードは、例えばSTN(Super-Twisted Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、HAN(Hybridaligned Nematic)、VA(Vertical Alignment、MVA(Multi-domain Vertical Alignment)、PVA(Patterned Vertical Alignment))、IPS(In-Plane-Switching)などでありうる。例えば、携帯機器用途の液晶表示装置では、IPSモードが好ましい。 The display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridrated Nematic), VA (Vertic), and VA (Vertic). (Patterned Vertical Element)), IPS (In-Plane-Switching), and the like. For example, in a liquid crystal display device for mobile devices, the IPS mode is preferable.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 1.基材フィルムの材料
 (1)シクロオレフィン系樹脂(COP1)
 シクロオレフィン系樹脂として、JSR(株)製ARTON/RX4500を用いた。
1. 1. Material of base film (1) Cycloolefin resin (COP1)
As the cycloolefin resin, ARTON / RX4500 manufactured by JSR Corporation was used.
 (2)ポリアリレート系樹脂(PAR)
 ポリアリレート系樹脂として、ユニチカ(株)製U-100を用いた。
(2) Polyarylate resin (PAR)
As the polyarylate resin, U-100 manufactured by Unitika Ltd. was used.
 (3)スチレン・(メタ)アクリレート共重合体(MS)
 スチレン・(メタ)アクリレート共重合体として、デンカ(株)製TX320XLを用いた。
(3) Styrene / (meth) acrylate copolymer (MS)
TX320XL manufactured by Denka Co., Ltd. was used as the styrene / (meth) acrylate copolymer.
 (4)スチレン・ヒドロキシスチレン共重合体(CST)
 スチレン・ヒドロキシスチレン共重合体として、丸善石油化学(株)製マルカリンカーCST50を用いた。
(4) Styrene-hydroxystyrene copolymer (CST)
Maruzen Petrochemical Co., Ltd. Maruka Linker CST50 was used as the styrene / hydroxystyrene copolymer.
 (5)シクロオレフィン系樹脂(COP2)
 比較のシクロオレフィン系樹脂として、日本ゼオン(株)製ZF14を用いた。
(5) Cycloolefin resin (COP2)
As a comparative cycloolefin resin, ZF14 manufactured by Nippon Zeon Corporation was used.
 (6)トリアセチルセルロース系樹脂(TAC)
 比較のトリアセチルセルロース系樹脂として、アセチル置換度2.9のアセチルセルロースを用いた。
(6) Triacetyl Cellulose Resin (TAC)
As a comparative triacetyl cellulose-based resin, acetyl cellulose having an acetyl substitution degree of 2.9 was used.
 (7)ポリメチルメタクリレート系樹脂(PMMA)
 比較のポリメチルメタクリレート系樹脂として、旭化成(株)製80Nを用いた。
 (8)ポリカーボネート系樹脂(PC)
 ポリカーボネート系樹脂として、帝人化学(株)製パンライト K1300Yを用いた。
(7) Polymethylmethacrylate resin (PMMA)
As a comparative polymethylmethacrylate resin, 80N manufactured by Asahi Kasei Corporation was used.
(8) Polycarbonate resin (PC)
As the polycarbonate resin, Panlite K1300Y manufactured by Teijin Chemical Industries, Ltd. was used.
 2.基材フィルムの作製
 <基材フィルム1の作製>
 (微粒子添加液の調製)
 微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)               4質量部
 ジクロロメタン                    48質量部
 エタノール                      48質量部
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
2. Preparation of base film <Production of base film 1>
(Preparation of fine particle additive liquid)
Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass dichloromethane 48 parts by mass Ethanol 48 parts by mass or more is stirred and mixed with a dissolver for 50 minutes, and then dispersed with manton gorin. went. Further, the particles were dispersed by an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 (ドープの調製)
 下記組成のドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。ジクロロメタンとエタノールの混合溶液の入った加圧溶解タンクにシクロオレフィン系樹脂(DOP1):RX4500を撹拌しながら投入した。更に、溶媒投入開始後15分後に、上記で調製した微粒子添加液を投入して、これを80℃に加熱し、撹拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープを調製した。
(Preparation of dope)
A dope having the following composition was prepared. First, dichloromethane and ethanol were added to the pressurized dissolution tank. Cycloolefin resin (DOP1): RX4500 was put into a pressurized dissolution tank containing a mixed solution of dichloromethane and ethanol with stirring. Further, 15 minutes after the start of solvent addition, the fine particle-added solution prepared above was added, and the mixture was heated to 80 ° C. and completely dissolved while stirring. At this time, the temperature was raised from room temperature to 5 ° C./min, dissolved in 30 minutes, and then lowered to 3 ° C./min. The obtained solution was used as Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. Filtration was performed using 244 to prepare a dope.
 (ドープの組成)
 シクロオレフィン系樹脂(RX4500)       100質量部
 ジクロロメタン                   200質量部
 エタノール                      10質量部
 微粒子添加液                      1質量部
 次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト上に均一に流延した。ステンレスベルトの温度は20℃に制御した。そして、ステンレスベルト上で、流延(キャスト)したフィルム中の残留溶媒量が100質量%になるまで溶媒を蒸発させ、ステンレスベルト上から流延膜(基材フィルム)を剥離した。剥離する際、基材フィルムを搬送方向に1.2倍延伸することで幅手方向に15%収縮させ、その後、160℃の条件下で幅手方向に1.5倍延伸した。延伸開始時の残留溶媒量は15質量%であった。
(Doping composition)
Cycloolefin resin (RX4500) 100 parts by mass Dichloromethane 200 parts by mass Ethanol 10 parts by mass 1 part by mass Fine particle addition liquid Next, using an endless belt casting device, dope is uniformly flowed on a stainless steel belt at a temperature of 31 ° C. and a width of 1800 mm. It was postponed. The temperature of the stainless belt was controlled to 20 ° C. Then, the solvent was evaporated on the stainless steel belt until the amount of residual solvent in the cast film reached 100% by mass, and the cast film (base film) was peeled off from the stainless steel belt. At the time of peeling, the base film was stretched 1.2 times in the transport direction to shrink 15% in the width direction, and then stretched 1.5 times in the width direction under the condition of 160 ° C. The amount of residual solvent at the start of stretching was 15% by mass.
 次いで、上記基材フィルムを乾燥ゾーンの中で多数のローラーで搬送しながら120℃で15分乾燥させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、厚さ15μm、幅1500mmの基材フィルム1を作製した。 Next, the base film was dried at 120 ° C. for 15 minutes while being conveyed by a large number of rollers in the drying zone, and the end portion sandwiched between the tenter clips was slit with a laser cutter and wound up to have a thickness of 15 μm and a width of 1500 mm. The base film 1 of the above was prepared.
 <基材フィルム2~11の作製>
 基材フィルム1の作製において、シクロオレフィン系樹脂RX4500の代わりに表Iに記載の樹脂(重合体)を用いて、表Iに記載の膜厚になるように、同様にして基材フィルム2~11を作製した。
<Preparation of base film 2 to 11>
In the preparation of the base film 1, the resins (polymers) shown in Table I are used instead of the cycloolefin resin RX4500, and the base films 2 to the same are used so as to have the film thickness shown in Table I. 11 was prepared.
 ≪透湿度の測定≫
 基材フィルムの透湿度は、JIS Z-0208:1976に記載の塩化カルシウム-カップ法に基づき、測定対象のフィルムを40℃・90%RHの条件下で24時間放置して測定した値である。
≪Measurement of moisture permeability≫
The moisture permeability of the base film is a value measured by leaving the film to be measured under the conditions of 40 ° C. and 90% RH for 24 hours based on the calcium chloride-cup method described in JIS Z-0208: 1976. ..
 基材フィルムの透湿度は前述のとおり、温度40℃、相対湿度90%RHの環境に24時間放置して、JIS Z 0208:1976に準じて測定を行った。 As described above, the moisture permeability of the base film was measured in accordance with JIS Z 0208: 1976 after being left in an environment with a temperature of 40 ° C. and a relative humidity of 90% RH for 24 hours.
 ≪湿度寸法変化率の測定≫
 作製した基材フィルムをA4サイズに切り出し、長手方向又は幅手方向に目印(十字)を2箇所つけて、温度23℃、湿度20%RHの環境下で24時間調湿し、2点間の距離を光学顕微鏡で測定した。これをL1とした。次いで、温度23℃、湿度80%RHの環境下で24時間調湿し、2点間の距離を光学顕微鏡で測定した。これをL2とした。以下の計算式を用いて、寸法変化率を算出した。測定は無作為にフィルム面内の10箇所において同様に行い、寸法変化率の最大値を採用した。
≪Measurement of humidity dimension change rate≫
The prepared base film is cut into A4 size, two marks (crosses) are attached in the longitudinal direction or the width direction, and the humidity is adjusted for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 20% RH. The distance was measured with an optical microscope. This was designated as L 1 . Next, the humidity was adjusted for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 80% RH, and the distance between the two points was measured with an optical microscope. This was designated as L 2 . The dimensional change rate was calculated using the following formula. The measurement was carried out at 10 points on the film surface at random, and the maximum value of the dimensional change rate was adopted.
 寸法変化率(%)={(L2-L1)/L1}×100
 以上の基材フィルムに用いた樹脂(重合体)の構成と膜厚、透湿度及び湿度寸法変化率の測定値を表Iに示す。
Dimensional change rate (%) = {(L 2- L 1 ) / L 1 } x 100
Table I shows the composition of the resin (polymer) used for the above base film and the measured values of the film thickness, the moisture permeability and the humidity dimensional change rate.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 3.機能層の材料
 (1)変性アクリル(Ac):MMA/PMI/HA共重合体(85/10/5質量比)、Mw:200万、Tg:122℃
 (上記略称は、MMA:メタクリル酸メチル、PMI:フェニルマレイミド、及びHA:アクリル酸2-エチルヘキシルを表す。)
 (2)スチレン-無水マレイン酸共重合体(St-MA):NOVA Chemical社製、DYLARK D332
 (3)フマル酸ジエステル(Rn):東ソー化学株式会社製、TYR-HR
 (4)ポリイミド(CPI):4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物に由来する構造単位と2,2′-ビス(トリフルオロメチル)ベンジジンに由来する構造単位とを有する重合体、Mw:15万、Tg:350℃
 (5)TAC:アセチル置換度2.80のアセチルセルロース(市販品:和光純薬株式会社製)
 表IIに樹脂種類(略称)と型番を示した。
3. 3. Material of functional layer (1) Modified acrylic (Ac): MMA / PMI / HA copolymer (85/10/5 mass ratio), Mw: 2 million, Tg: 122 ° C.
(The above abbreviations represent MMA: methyl methacrylate, PMI: phenylmaleimide, and HA: 2-ethylhexyl acrylate.)
(2) Styrene-maleic anhydride copolymer (St-MA): DYLARK D332 manufactured by NOVA Chemicals, Inc.
(3) Fumaric acid diester (Rn): TYR-HR manufactured by Tosoh Chemical Co., Ltd.
(4) Polyimide (CPI): A weight having a structural unit derived from 4,4'-(hexafluoroisopropyridene) diphthalic anhydride and a structural unit derived from 2,2'-bis (trifluoromethyl) benzidine. Combined, Mw: 150,000, Tg: 350 ° C
(5) TAC: Acetyl cellulose with an acetyl substitution degree of 2.80 (commercially available: manufactured by Wako Pure Chemical Industries, Ltd.)
Table II shows the resin types (abbreviations) and model numbers.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 4.積層フィルムの作製:機能層の形成
 <積層フィルム1の作製>
 上記作製した基材フィルム1を用いて下記機能層を積層し、積層フィルム1を作製した。
4. Fabrication of laminated film: Formation of functional layer <Preparation of laminated film 1>
The following functional layers were laminated using the prepared base film 1 to prepare a laminated film 1.
 <ゴム粒子R1の作製>
 以下の方法で調製したゴム粒子R1を用いた。
<Preparation of rubber particles R1>
The rubber particles R1 prepared by the following method were used.
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。 The following substances were charged into an 8L polymerization device with a stirrer.
 脱イオン水                     180質量部
 ポリオキシエチレンラウリルエーテルリン酸    0.002質量部
 ホウ酸                    0.4725質量部
 炭酸ナトリウム               0.04725質量部
 水酸化ナトリウム               0.0076質量部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸カリウム0.021質量部を2%水溶液として投入した。次いで、メタクリル酸メチル84.6質量%、アクリル酸ブチル5.9質量%、スチレン7.9質量%、メタクリル酸アリル0.5質量%、n-オクチルメルカプタン1.1質量%からなる単量体混合物(c′)21質量部にポリオキシエチレンラウリルエーテルリン酸を0.07質量部加えた混合液を、上記溶液に63分間にかけて連続的に添加した。更に、60分重合反応を継続させることにより、コア用硬質重合体(c)を得た。
Deionized water 180 parts by mass Polyoxyethylene lauryl ether phosphoric acid 0.002 parts by mass Boric acid 0.4725 parts by mass Sodium carbonate 0.04725 parts by mass Sodium hydroxide 0.0076 parts by mass The inside of the polymerization machine was sufficiently replaced with nitrogen gas. After that, the internal temperature was adjusted to 80 ° C., and 0.021 parts by mass of potassium persulfate was added as a 2% aqueous solution. Next, a monomer composed of 84.6% by mass of methyl methacrylate, 5.9% by mass of butyl acrylate, 7.9% by mass of styrene, 0.5% by mass of allyl methacrylate, and 1.1% by mass of n-octyl mercaptan. A mixed solution prepared by adding 0.07 parts by mass of polyoxyethylene lauryl ether phosphoric acid to 21 parts by mass of the mixture (c') was continuously added to the above solution over 63 minutes. Further, by continuing the polymerization reaction for 60 minutes, a hard polymer (c) for a core was obtained.
 その後、水酸化ナトリウム0.021質量部を2質量%水溶液として、過硫酸カリウム0.062質量部を2質量%水溶液としてそれぞれ添加した。次いで、アクリル酸ブチル80.0質量%、スチレン18.5質量%、メタクリル酸アリル1.5質量%からなる単量体混合物(a′)39質量部にポリオキシエチレンラウリルエーテルリン酸0.25質量部を加えた混合液を117分間にかけて連続的に添加した。添加終了後、過硫酸カリウム0.012質量部を2質量%水溶液で添加し、120分間重合反応を継続させて、軟質層(アクリル系ゴム状重合体(a)からなる層)を得た。軟質層のガラス転移温度(Tg)を、-30℃であった。軟質層のガラス転移温度は、アクリル系ゴム状重合体(a)を構成する各モノマーの単独重合体のガラス転移温度を組成比に応じて平均して算出した。 Then, 0.021 parts by mass of sodium hydroxide was added as a 2% by mass aqueous solution, and 0.062 parts by mass of potassium persulfate was added as a 2% by mass aqueous solution. Next, 0.25 polyoxyethylene lauryl ether phosphate was added to 39 parts by mass of the monomer mixture (a') consisting of 80.0% by mass of butyl acrylate, 18.5% by mass of styrene, and 1.5% by mass of allyl methacrylate. The mixed solution to which the mass part was added was continuously added over 117 minutes. After completion of the addition, 0.012 parts by mass of potassium persulfate was added in a 2% by mass aqueous solution, and the polymerization reaction was continued for 120 minutes to obtain a soft layer (a layer made of an acrylic rubber-like polymer (a)). The glass transition temperature (Tg) of the soft layer was −30 ° C. The glass transition temperature of the soft layer was calculated by averaging the glass transition temperature of the homopolymer of each monomer constituting the acrylic rubber-like polymer (a) according to the composition ratio.
 その後、過硫酸カリウム0.04質量部を2質量%水溶液で添加し、メタクリル酸メチル97.5質量%、アクリル酸ブチル2.5質量%からなる単量体混合物(b′)26.1質量部を78分間かけて連続的に添加した。更に30分間重合反応を継続させて、重合体(b)を得た。 Then, 0.04 parts by mass of potassium persulfate was added in a 2% by mass aqueous solution, and 26.1% by mass of a monomer mixture (b') composed of 97.5% by mass of methyl methacrylate and 2.5% by mass of butyl acrylate was added. The portions were added continuously over 78 minutes. The polymerization reaction was continued for another 30 minutes to obtain a polymer (b).
 得られた重合体を3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させた。次いで、脱水・洗浄を繰り返した後、乾燥させて、3層構造のアクリル系グラフト共重合体粒子(ゴム粒子R1)を得た。得られたゴム粒子R1の平均粒子径は200nmであった。 The obtained polymer was put into a warm aqueous solution of 3% by mass sodium sulfate for salting out and coagulation. Then, after repeating dehydration and washing, the particles were dried to obtain acrylic graft copolymer particles (rubber particles R1) having a three-layer structure. The average particle size of the obtained rubber particles R1 was 200 nm.
 ゴム粒子の平均粒子径は、以下の方法で測定した。 The average particle size of the rubber particles was measured by the following method.
 (平均粒子径)
 得られた分散液中のゴム粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。
(Average particle size)
The dispersed particle size of the rubber particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 <機能層用溶液1の調製>
 下記成分を混合して、機能層用溶液1を得た。
<Preparation of solution 1 for functional layer>
The following components were mixed to obtain a solution 1 for the functional layer.
  アセトン(ケトン類)            1012.5質量部
  メタノール(アルコール類)          112.5質量部
  変性アクリル(Ac)               100質量部
  ゴム粒子R1                    25質量部
Acetone (ketones) 1012.5 parts by mass Methanol (alcohols) 112.5 parts by mass Modified acrylic (Ac) 100 parts by mass Rubber particles R1 25 parts by mass
 <機能層用溶液2~4の調製>
 機能層用溶液1において、用いる樹脂(重合体)を、変性アクリル(Ac)からそれぞれスチレン-無水マレイン酸共重合体(St-MA)、フマル酸エステル(Rn)、及びポリイミド(CPI)に変更し、以下の組成にて機能層用溶液2~4を調製した。
 アセトン(ケトン類)             1057.5質量部
 メタノール(アルコール類)            67.5質量部
 樹脂組成物(St-MA、Rn、CPI)       125質量部
<Preparation of solutions 2 to 4 for functional layers>
In the functional layer solution 1, the resin (polymer) used was changed from modified acrylic (Ac) to styrene-maleic anhydride copolymer (St-MA), fumaric acid ester (Rn), and polyimide (CPI), respectively. Then, solutions 2 to 4 for the functional layer were prepared with the following compositions.
Acetone (ketones) 1057.5 parts by mass Methanol (alcohols) 67.5 parts by mass Resin composition (St-MA, Rn, CPI) 125 parts by mass
 <機能層用溶液5の調製>
 機能層用溶液5を以下の組成にて同様に調製した。
 MEK(メチルエチルケトン)         1057.5質量部
 メタノール(アルコール類)            67.5質量部
 糖エステル(オクタアセチルスクロース)        15質量部
 トリアセチルセルロース(TAC、アセチル置換度2.80のアセチルセルロース、Mn:70000)             110質量部
<Preparation of solution 5 for functional layer>
The functional layer solution 5 was similarly prepared with the following composition.
MEK (Methylethylketone) 1057.5 parts by mass Methanol (alcohols) 67.5 parts by mass Sugar ester (octaacetylsucrose) 15 parts by mass Triacetyl cellulose (TAC, acetyl cellulose with acetyl substitution degree 2.80, Mn: 70000) 110 Mass part
 <積層フィルム1の作製(機能層の形成)>
 支持体として、上記基材フィルム1上に、機能層用溶液1を、バックコート法によりダイを用いて塗布した後、乾燥速度0.002kg/hr・m2、支持体側から当てる熱風と機能層側から当てる熱風の温度をいずれも130℃として乾燥させて、厚さ5μmの機能層を形成し、積層フィルム1を得た。
<Preparation of laminated film 1 (formation of functional layer)>
As the support, the functional layer solution 1 is applied onto the base film 1 by the backcoat method using a die, and then the drying speed is 0.002 kg / hr · m 2 , and the hot air and the functional layer applied from the support side are applied. The temperature of the hot air applied from the side was set to 130 ° C. and dried to form a functional layer having a thickness of 5 μm to obtain a laminated film 1.
 <積層フィルム2~19の作製(機能層の形成)>
 積層フィルム1の作製において、基材フィルム及び機能層の種類、層厚を表III及び表IVの組み合わせに変更し、積層フィルム2~19を作製した。
 なお、機能層用溶液の調製は、変性アクリル(Ac)以外の樹脂組成物の場合は、以下の組成にて調製を行った。
 ジクロロメタン                1057.5質量部
 メタノール(アルコール類)            67.5質量部
 機能層の樹脂組成物                 125質量部
<Preparation of laminated films 2 to 19 (formation of functional layer)>
In the preparation of the laminated film 1, the types and layer thicknesses of the base film and the functional layer were changed to the combinations of Tables III and IV, and the laminated films 2 to 19 were prepared.
In the case of a resin composition other than the modified acrylic (Ac), the solution for the functional layer was prepared with the following composition.
Dichloromethane 1057.5 parts by mass Methanol (alcohols) 67.5 parts by mass 125 parts by mass of resin composition of functional layer
 ≪評価≫
 作製した積層フィルム1~19を用いて下記の評価を実施した。
≪Evaluation≫
The following evaluations were carried out using the produced laminated films 1 to 19.
 <偏光板カール>
 〈偏光板の作製〉
 上記作製した積層フィルム1~19を用いて、下記手順にて偏光板を作製した。
<Polarizing plate curl>
<Manufacturing of polarizing plate>
Using the laminated films 1 to 19 prepared above, a polarizing plate was prepared by the following procedure.
 (偏光子層の作製)
 ポリビニルアルコールフィルムの厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドローラーを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子層を、乾燥機中で50℃、30分間乾燥させて水分率4.9%の偏光子層を得た。
(Preparation of polarizer layer)
A long polyvinyl alcohol film with a thickness of 60 μm is continuously conveyed via a guide roller and immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for 2.5 times the dyeing treatment. After the stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added, a total of 5 times the stretching treatment and the cross-linking treatment were performed, and the obtained iodine-PVA system having a thickness of 12 μm was obtained. The polarizer layer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer layer having a moisture content of 4.9%.
 (偏光板の作製)
 上記作製した偏光子層を、積層フィルム1~19と対向フィルムとして表III及び表IV記載の光学フィルムを用いて両面から挟持して、下記水溶性接着剤液1を介して、接着し偏光板101~119を作製した。その際、偏光子層の長手方向と積層フィルムの長手方向の軸を合わせて貼合した。
(Preparation of polarizing plate)
The above-prepared polarizing element layers are sandwiched from both sides by using the optical films shown in Tables III and IV as opposed films with the laminated films 1 to 19, and are adhered to each other via the following water-soluble adhesive liquid 1 to form a polarizing plate. 101 to 119 were produced. At that time, the longitudinal axis of the polarizer layer and the longitudinal axis of the laminated film were aligned and bonded.
 〈対向フィルム〉
 対向フィルムは下記樹脂を含有するフィルムを用いた。
 COP(シクロオレフィン):JSR(株)製ARTON/RX4500
 TAC(トリアセチルセルロース):アセチル置換度2.9のアセチルセルロース
 PMMA(ポリメタクリル酸メチル):旭化成(株)製80N
 PET(ポリエチレンテレフタレート):東洋紡(株)製コスモシャインSRF
<Opposite film>
As the opposing film, a film containing the following resin was used.
COP (Cycloolefin): ARTON / RX4500 manufactured by JSR Corporation
TAC (Triacetyl Cellulose): Acetyl Cellulose with Degree of Substitution of 2.9 PMMA (Polymethyl Methacrylate): 80N manufactured by Asahi Kasei Corporation
PET (polyethylene terephthalate): Cosmo Shine SRF manufactured by Toyobo Co., Ltd.
 (水溶性接着剤液1の調製)
 下記の各成分を混合した後、脱泡して、水溶性接着剤液1を調製した。
(Preparation of water-soluble adhesive liquid 1)
After mixing each of the following components, defoaming was performed to prepare a water-soluble adhesive liquid 1.
 純水                        100質量部
 株式会社日本触媒製「エポクロス WS-300」   7.5質量部
 MENADIONA社製「CROSSLINKER CL-427」
                           0.1質量部
 なお、偏光板作製は、積層フィルムの接着側表面にコロナ出力強度2.0kW、ライン速度18m/分でコロナ放電処理を施し、コロナ放電処理面に、上記調製した水溶性接着剤液1を、乾燥後の膜厚が約3μmとなるようにバーコーターで塗工した後、50℃、60℃、70℃でこの順番に60秒ずつ乾燥し、偏光板を得た。
100 parts by mass of pure water "Epocross WS-300" manufactured by Nippon Shokubai Co., Ltd. 7.5 parts by mass "CROSSLINKER CL-427" manufactured by Menadione
0.1 part by mass In the production of the polarizing plate, the surface of the laminated film on the adhesive side was subjected to corona discharge treatment at a corona output strength of 2.0 kW and a line speed of 18 m / min, and the water-soluble adhesive prepared above was applied to the corona discharge treated surface. The agent solution 1 was coated with a bar coater so that the film thickness after drying was about 3 μm, and then dried at 50 ° C., 60 ° C., and 70 ° C. in this order for 60 seconds to obtain a polarizing plate.
 得られた偏光板を、直径5cmの円形に切り出し、サンプルとした。得られたサンプルを、温度23℃、湿度55%RHの恒温恒湿室にて24時間放置した。その後、サンプルを恒温恒湿室から取り出し、平板上に置き、曲率スケールを用いて、サンプルと合致するカーブを有する曲率半径r(m)から1/rを求めた。そして、以下の基準に基づいて、カール量を評価した。 The obtained polarizing plate was cut into a circle with a diameter of 5 cm and used as a sample. The obtained sample was left for 24 hours in a constant temperature and humidity chamber having a temperature of 23 ° C. and a humidity of 55% RH. Then, the sample was taken out from the constant temperature and humidity chamber, placed on a flat plate, and 1 / r was obtained from the radius of curvature r (m) having a curve matching the sample using a curvature scale. Then, the curl amount was evaluated based on the following criteria.
 ○ :1/rが8未満
 △ :1/rが8以上12未満
 × :1/rが12以上
 △以上であれば良好と判断した。
◯: 1 / r is less than 8 Δ: 1 / r is 8 or more and less than 12 ×: 1 / r is 12 or more and Δ or more, it is judged to be good.
 <偏光板接着性>
 得られた偏光板の基材フィルム上に積層した機能層と偏光子層との界面で剥離したときの剥離強度(接着性)を、温度23℃、湿度55%RHの環境下で、90°ピール試験(JIS Z0237:2009に準拠)を、株式会社イマダ製90°剥離試験治具(P90‐200N)により測定した。
<Polarizing plate adhesiveness>
The peeling strength (adhesiveness) when peeled at the interface between the functional layer laminated on the base film of the obtained polarizing plate and the polarizer layer was 90 ° in an environment of a temperature of 23 ° C. and a humidity of 55% RH. The peel test (based on JIS Z0237: 2009) was measured with a 90 ° peeling test jig (P90-200N) manufactured by Imada Co., Ltd.
 ○:剥離強度が2.0(N/25mm)以上
 △:剥離強度が1.0(N/25mm)以上2.0(N/25mm)未満
 ×:剥離強度が1.0(N/25mm)未満
 △以上であれば、良好と判断した。
◯: Peeling strength is 2.0 (N / 25 mm) or more Δ: Peeling strength is 1.0 (N / 25 mm) or more and less than 2.0 (N / 25 mm) ×: Peeling strength is 1.0 (N / 25 mm) If it is less than Δ or more, it is judged to be good.
 <光漏れ>
 〈液晶表示装置〉
 液晶セルとして、対向する2枚の合計の厚さが0.25mmの厚さとなるガラス基板と、それらの間に配置された液晶層とを有するIPS方式の液晶セルを準備した。そして、上記作製した偏光板101~119から基材フィルムを剥離後、粘着層を介して液晶セルの両面にそれぞれ機能層側が液晶セル側になるように貼り合わせて、液晶表示パネル201~219を得た。なお、上記2枚の偏光板は、それぞれ偏光子層の光透過軸がクロスニコル状態になるように、貼り合わせた。
<Light leakage>
<Liquid crystal display device>
As a liquid crystal cell, an IPS type liquid crystal cell having a glass substrate having a total thickness of 0.25 mm between two opposing sheets and a liquid crystal layer arranged between them was prepared. Then, after the base film is peeled off from the prepared polarizing plates 101 to 119, the liquid crystal display panels 201 to 219 are attached to both sides of the liquid crystal cell via the adhesive layer so that the functional layer side is the liquid crystal cell side. Obtained. The two polarizing plates were bonded together so that the light transmission axes of the polarizing element layers were in a cross-nicol state.
 上記作製した液晶表示装置を、バックライトを点灯しながら黒表示させた状態で、以下の基準に基づいて光漏れを評価した。 The liquid crystal display device produced above was displayed in black while the backlight was turned on, and light leakage was evaluated based on the following criteria.
 ○:光漏れが全く認められないか、僅かに認められるが実使用上問題ない
 △:光漏れが認められるが、実使用上は許容される品質である
 ×:明らかな光漏れが認められ、実使用上問題あり
 なお、光漏れは、偏光度の低下、及び位相差値(Ro、Rt)に起因して生じるムラであり、波状に白抜けて見えるものである。△以上であれば良好と判断した。
◯: No light leakage is observed or slight light leakage is observed, but there is no problem in actual use. Δ: Light leakage is observed, but the quality is acceptable in actual use. ×: Clear light leakage is observed. There is a problem in actual use. Light leakage is unevenness caused by a decrease in the degree of polarization and a phase difference value (Ro, Rt), and appears as wavy white spots. If it is Δ or more, it is judged to be good.
 <ベンドムラ>
 上記作製した液晶表示装置を、40℃、80%RHの環境下で80時間放置した。次いで、60℃ドライの環境下で液晶表示装置を黒表示させた状態で、表示画面の4頂点付近の輝度と表示画面中央部付近の輝度との差(中心部と周辺部との光学ムラ)を目視観察した。そして、以下の評価基準に基づいて、ベンドムラの評価を行った。
<Bendmura>
The liquid crystal display device produced above was left to stand in an environment of 40 ° C. and 80% RH for 80 hours. Next, in a state where the liquid crystal display device is displayed in black in a dry environment of 60 ° C., the difference between the brightness near the four vertices of the display screen and the brightness near the center of the display screen (optical unevenness between the center and the periphery). Was visually observed. Then, the bend unevenness was evaluated based on the following evaluation criteria.
 ○:ベンドムラが全く見られないか、僅かに認められるが実使用上問題ない
 △:ベンドムラが認められるが、実使用上は許容される品質である
 ×:明らかなベンドムラが認められ、実使用上問題あり
 なお、ベンドムラは、偏光板カールが強かったり、保護フィルムの厚さが厚かったりするときに生じやすいパネルのベンド変形によって生じる光学ムラであり、画面中央に円形のムラとして見えるものである。△以上であれば良好と判断した。
◯: No or slight bend unevenness is observed, but there is no problem in actual use. Δ: Bend unevenness is observed, but the quality is acceptable in actual use. ×: Clear bend unevenness is observed, and there is no problem in actual use. There is a problem Bend unevenness is optical unevenness caused by bending deformation of a panel that tends to occur when the polarizing plate curl is strong or the protective film is thick, and it appears as circular unevenness in the center of the screen. If it is Δ or more, it is judged to be good.
 以上の積層フィルムの構成、及び評価結果を、表III及び表IVに示した。 The composition of the above laminated film and the evaluation results are shown in Table III and Table IV.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表III及び表IVの評価結果から、本発明の積層フィルムは、偏光板カール、接着性、及び表示装置の光漏れ、ベンド変形による光学ムラに優れていることが明らかである。 From the evaluation results in Tables III and IV, it is clear that the laminated film of the present invention is excellent in polarizing plate curl, adhesiveness, light leakage of the display device, and optical unevenness due to bend deformation.
 本発明の積層フィルムは、薄膜でありながら、従来の偏光板保護フィルムと同様に取り扱うことが可能であり、更には偏光板加工時に優れた乾燥性、寸法安定性、及びカール制御性を有していることから、偏光板加工の生産性の向上し、さらにそれを具備した偏光板によって、光漏れやベンド変形による光学ムラのない高品質な表示装置を提供することができる。 Although the laminated film of the present invention is a thin film, it can be handled in the same manner as a conventional polarizing plate protective film, and further has excellent drying property, dimensional stability, and curl controllability during polarizing plate processing. Therefore, the productivity of the polarizing plate processing is improved, and the polarizing plate provided with the polarizing plate can provide a high-quality display device without optical unevenness due to light leakage or bend deformation.
 1 積層フィルム
 2 基材フィルム
 3 機能層
 4 接着層
 5 偏光子層
 6 対向フィルム
 10a、10b  偏光板
 A1 溶解釜
 A2、A5、A11、A14 送液ポンプ
 A3、A6、A12、A15 濾過器
 A4、A13 ストックタンク
 A8、A16 導管
 A10 添加剤用仕込釜
 A20 合流管
 A21 混合機
 A30 ダイ
 A31 金属支持体
 A32 ウェブ
 A33 剥離位置
 A34 テンター装置
 A35 ローラー乾燥装置
 A36 ローラー
 A37 ワインダー
 A41 ストックタンク
 A43 ポンプ
 A44 濾過器
 A100 流延装置
 B110 基材フィルム
 B120 機能層
 B200 製造装置
 B210 供給部
 B220 塗布部
 B230 乾燥部
 B240 冷却部
 B250 巻き取り部
1 Laminated film 2 Base film 3 Functional layer 4 Adhesive layer 5 Polarizer layer 6 Opposed film 10a, 10b Plate plate A1 Melting kettle A2, A5, A11, A14 Liquid transfer pump A3, A6, A12, A15 Filter A4, A13 Stock tank A8, A16 Conduit A10 Additive preparation pot A20 Confluence pipe A21 Mixer A30 Die A31 Metal support A32 Web A33 Peeling position A34 Tenter device A35 Roller drying device A36 Roller A37 Winder A41 Stock tank A43 Pump A44 Rolling device B110 Base film B120 Functional layer B200 Manufacturing device B210 Supply section B220 Coating section B230 Drying section B240 Cooling section B250 Winding section

Claims (6)

  1.  基材フィルム上に、少なくとも剥離可能である機能層が積層された積層フィルムであって、
     前記機能層の層厚が、1~19μmの範囲内であり、
     前記基材フィルムの温度40℃、湿度90%RH下の透湿度が、100~400g/m2・24hの範囲内であり、
     前記基材フィルムの温度23℃、湿度20~80%RHの範囲における、フィルム面内の最大寸法変化率が、0.01~0.10%の範囲内であり、かつ、
     前記基材フィルムの膜厚が、20~60μmの範囲内であることを特徴とする積層フィルム。
    A laminated film in which at least a peelable functional layer is laminated on a base film.
    The layer thickness of the functional layer is in the range of 1 to 19 μm.
    Temperature 40 ° C. of the substrate film, the moisture permeability under humidity of 90% RH is in the range of 100 ~ 400g / m 2 · 24h ,
    The maximum dimensional change rate in the film surface in the temperature range of 23 ° C. and the humidity range of 20 to 80% RH of the base film is in the range of 0.01 to 0.10%, and
    A laminated film characterized in that the film thickness of the base film is in the range of 20 to 60 μm.
  2.  前記機能層の層厚が、2~10μmの範囲内であることを特徴とする請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the functional layer has a layer thickness in the range of 2 to 10 μm.
  3.  前記基材フィルムが、シクロオレフィン系樹脂、ポリアリレート系樹脂、スチレン・(メタ)アクリレート共重合体、又はスチレン・ヒドロキシスチレン共重合体のいずれかを含有することを特徴とする請求項1又は請求項2に記載の積層フィルム。 Claim 1 or claim, wherein the base film contains any one of a cycloolefin resin, a polyarylate resin, a styrene / (meth) acrylate copolymer, or a styrene / hydroxystyrene copolymer. Item 2. The laminated film according to Item 2.
  4.  請求項1から請求項3までのいずれか一項に記載の積層フィルムを具備することを特徴とする偏光板。 A polarizing plate comprising the laminated film according to any one of claims 1 to 3.
  5.  記請求項1から請求項3までのいずれか一項に記載の積層フィルム、又は請求項4に記載の偏光板を具備することを特徴とする表示装置。 A display device comprising the laminated film according to any one of claims 1 to 3 or the polarizing plate according to claim 4.
  6.  請求項1から請求項3までのいずれか一項に記載の積層フィルムを、偏光子層の少なくとも一方の面に貼合しながら巻き取る偏光板ロールの製造方法であって、
     ロールの内側から偏光子層、接着層、機能層及び基材フィルムの層順になるように、前記偏光子層に前記積層フィルムを貼合しながら巻き取る工程を含むことを特徴とする偏光板ロールの製造方法。
    A method for producing a polarizing plate roll, wherein the laminated film according to any one of claims 1 to 3 is wound while being bonded to at least one surface of a polarizing element layer.
    A polarizing plate roll including a step of winding the laminated film while adhering the laminated film to the polarizing layer so that the layers of the polarizer layer, the adhesive layer, the functional layer and the base film are arranged in this order from the inside of the roll. Manufacturing method.
PCT/JP2021/014133 2020-04-02 2021-04-01 Laminate film, polarizing plate, display device, and method for manufacturing polarizing plate roll WO2021201209A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227029240A KR20220127320A (en) 2020-04-02 2021-04-01 Manufacturing method of laminated film, polarizing plate, display device, and polarizing plate roll
CN202180021329.4A CN115280201A (en) 2020-04-02 2021-04-01 Laminated film, polarizing plate, display device, and method for manufacturing polarizing plate roll
JP2022512692A JPWO2021201209A1 (en) 2020-04-02 2021-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-066454 2020-04-02
JP2020066454 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021201209A1 true WO2021201209A1 (en) 2021-10-07

Family

ID=77929572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014133 WO2021201209A1 (en) 2020-04-02 2021-04-01 Laminate film, polarizing plate, display device, and method for manufacturing polarizing plate roll

Country Status (4)

Country Link
JP (1) JPWO2021201209A1 (en)
KR (1) KR20220127320A (en)
CN (1) CN115280201A (en)
WO (1) WO2021201209A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213314A (en) * 2004-01-28 2005-08-11 Sumitomo Chemical Co Ltd Method for sticking adhesive layer
JP2010197991A (en) * 2009-01-30 2010-09-09 Nitto Denko Corp Method of producing laminated film
JP2014016596A (en) * 2012-06-15 2014-01-30 Fujifilm Corp Optical film, retardation film, polarizing plate and liquid crystal display device
JP2015011059A (en) * 2013-06-26 2015-01-19 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
WO2016148047A1 (en) * 2015-03-19 2016-09-22 日本ゼオン株式会社 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate
JP2017122854A (en) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 Liquid crystal display
JP2017211643A (en) * 2016-05-20 2017-11-30 住友化学株式会社 Production method of laminate film and production method of polarizing plate
JP2019109329A (en) * 2017-12-18 2019-07-04 住友化学株式会社 Laminated body
JP2020042166A (en) * 2018-09-11 2020-03-19 日東電工株式会社 Substrate for surface protective film, surface protective film using the substrate, and polarizing plate with retardation layer and with surface protective film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134336A (en) 2011-12-26 2013-07-08 Fujifilm Corp Layered film, polarizing plate, liquid crystal display device, and manufacturing method of optical film
JP6811060B2 (en) * 2016-09-09 2021-01-13 富士フイルム株式会社 Method for manufacturing peelable laminated film and polarizing plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213314A (en) * 2004-01-28 2005-08-11 Sumitomo Chemical Co Ltd Method for sticking adhesive layer
JP2010197991A (en) * 2009-01-30 2010-09-09 Nitto Denko Corp Method of producing laminated film
JP2014016596A (en) * 2012-06-15 2014-01-30 Fujifilm Corp Optical film, retardation film, polarizing plate and liquid crystal display device
JP2015011059A (en) * 2013-06-26 2015-01-19 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
WO2016148047A1 (en) * 2015-03-19 2016-09-22 日本ゼオン株式会社 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate
JP2017122854A (en) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 Liquid crystal display
JP2017211643A (en) * 2016-05-20 2017-11-30 住友化学株式会社 Production method of laminate film and production method of polarizing plate
JP2019109329A (en) * 2017-12-18 2019-07-04 住友化学株式会社 Laminated body
JP2020042166A (en) * 2018-09-11 2020-03-19 日東電工株式会社 Substrate for surface protective film, surface protective film using the substrate, and polarizing plate with retardation layer and with surface protective film

Also Published As

Publication number Publication date
CN115280201A (en) 2022-11-01
JPWO2021201209A1 (en) 2021-10-07
KR20220127320A (en) 2022-09-19

Similar Documents

Publication Publication Date Title
TWI569967B (en) A polarizing plate and a liquid crystal display device using the same
TWI437033B (en) A method of manufacturing a polarizing element, a polarizing element, a polarizing plate, an optical film, and an image display device
JP5532927B2 (en) Acrylic resin-containing film, polarizing plate and display device using the same
JP5234113B2 (en) Retardation film, polarizing plate, liquid crystal display
US20150024149A1 (en) Polarizing plate, method for manufacturing polarizing plate and liquid crystal display device
JP5402925B2 (en) Polarizing plate and liquid crystal display device
JP2009179731A (en) Acrylic resin-containing film, and polarizing plate and display device produced by using the same
JP7099440B2 (en) A polarizing plate and a display device equipped with the polarizing plate.
WO2015098491A1 (en) Cellulose-ester film, manufacturing method therefor, and polarizing plate
TW201736877A (en) Optical film, optical film manufacturing method, polarizing plate, and image display device wherein the optical film contains a cyclic olefin resin, fine particles, and a surface conditioning agent
JP6493213B2 (en) Retardation film, polarizing plate and liquid crystal display device
JP6711364B2 (en) Optical film, optical film roll, and method for producing optical film
JP2017122888A (en) Optical film, method for manufacturing optical film, polarizing plate, and image display device
WO2011055590A1 (en) Protective film roll for liquid crystal polarization plate and manufacturing method thereof
WO2021199402A1 (en) Layered film, polarizing plate, display device, and method for manufacturing polarizing plate roll
WO2021201209A1 (en) Laminate film, polarizing plate, display device, and method for manufacturing polarizing plate roll
TW201315760A (en) Optical resin material, manufacturing method of optical resin material, manufacturing method of optical film, optical film of display, optical film of lcd, polarizing plate protective film, optical film, light source of polarization surface, lens, screen
WO2009090900A1 (en) Acrylic resin-containing film and process for the production of the film
TW200919020A (en) Liquid crystal display device
WO2022004284A1 (en) Polarizing plate equipped with retardation layer and adhesive layer, and image display device using polarizing plate equipped with retardation layer and adhesive layer
WO2011077910A1 (en) Polarizing plate and production method therefor
WO2022024879A1 (en) Optical film, polarizing plate, and liquid crystal display device
JP7388443B2 (en) Laminate, method for manufacturing a laminate, method for manufacturing a polarizing plate
WO2021084752A1 (en) Multilayer body, method for producing multilayer body and method for producing polarizing plate
JP2015169677A (en) Manufacturing method of polarizing laminated film and manufacturing method of polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780252

Country of ref document: EP

Kind code of ref document: A1