WO2021200819A1 - Robot device - Google Patents

Robot device Download PDF

Info

Publication number
WO2021200819A1
WO2021200819A1 PCT/JP2021/013279 JP2021013279W WO2021200819A1 WO 2021200819 A1 WO2021200819 A1 WO 2021200819A1 JP 2021013279 W JP2021013279 W JP 2021013279W WO 2021200819 A1 WO2021200819 A1 WO 2021200819A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
robot device
artificial muscle
actuators
actuator
Prior art date
Application number
PCT/JP2021/013279
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 高巣
智己 石川
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to JP2022512208A priority Critical patent/JP7243921B2/en
Publication of WO2021200819A1 publication Critical patent/WO2021200819A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type

Definitions

  • This disclosure relates to a robot device.
  • the first and second artificial muscles are fixed to the first support and the second support, generally when the fluid pressure is not acting on the first and second artificial muscles, , At least one of the first and second artificial muscles is curved. Therefore, the curved artificial muscle of the first and second artificial muscles may come into contact with surrounding members such as a support member and another adjacent artificial muscle, which may affect the durability of the artificial muscle.
  • the main purpose of the robot device of the present disclosure is to suppress bending of the artificial muscle when no fluid pressure is applied to the artificial muscle.
  • the robot device of the present disclosure has adopted the following means in order to achieve the above-mentioned main purpose.
  • the robot device of the present disclosure operates by receiving a supply of a fluid, a first link, a second link rotatably supported by the first link via a joint, and the first link. It is a robot device including at least one artificial muscle that relatively rotates the second link, and the gist is that the robot device includes an urging portion that urges the artificial muscle to a side away from the second link. do.
  • the robot device of the present disclosure includes an urging portion that urges the artificial muscle on the side away from the second link. As a result, it is possible to suppress the bending of the artificial muscle when the fluid pressure is not acting on the artificial muscle. As a result, it is possible to prevent the artificial muscle from coming into contact with surrounding members such as a support member or another adjacent artificial muscle and affecting the durability of the artificial muscle.
  • FIG. 1 is a schematic configuration diagram of the robot device 10 of the present disclosure.
  • the robot device 10 is configured as a device that rotates an arm member 70 such as a robot arm around a rotation shaft 13 supported by a base member 11 via a support shaft 12.
  • the robot device 10 is rotatable by a base member 11 and a support shaft 12 as a first link, a rotation shaft 13 as a joint attached to the support shaft 12, and a rotation shaft 13.
  • the pulley 14 as the second link to be supported, the wire 16 as the winding mediation node wound around the pulley 14, and the first and first to apply a tensile force (force on the side separated from the pulley 14) to the wire 16.
  • Actuators 20 and 30 as artificial muscles and a fluid supply device 60 for supplying working fluid to the actuators 20 and 30 are provided.
  • a belt, a rope, a chain, or the like may be used instead of the wire 16.
  • a hydraulic oil is used as the hydraulic fluid.
  • a liquid such as water other than the hydraulic oil or a gas such as air may be used.
  • the arm member 70 is rotatably supported by the rotation shaft 13 and is connected to the pulley 14, and rotates around the rotation shaft 13 together with the pulley 14.
  • Actuators 20 and 30 are arranged parallel to each other.
  • the actuators 20 and 30 are configured as Macchiben-type artificial muscles and have the same specifications as each other.
  • Actuators 20 and 30 include tubes 21 and 31 that expand and contract due to the pressure of the working fluid, and braided sleeves 22 and 32 that cover the tubes 21 and 31.
  • the tubes 21 and 31 are formed in a cylindrical shape by an elastic material such as a rubber material having high resistance to a fluid.
  • the ends of the tubes 21 and 31 on the wire 16 side (pulley 14 side) are sealed by the sealing members 23 and 33, and the ends on the side separated from the wire 16 are the sealing members (first and second axes). Part) It is sealed by 24 and 34.
  • the sealing members 23, 24, 33, 34 are formed in a cylindrical or tubular shape, and the sealing members 23, 24 are attached to the actuator 20 so as to extend in the axial direction of the actuator 20 (tube 21).
  • the sealing members 33 and 34 are attached to the actuator 30 so as to extend in the axial direction of the actuator 30 (tube 31).
  • One end 16a of the wire 16 is fixed to the sealing member 23, and the other end 16b of the wire 16 is fixed to the sealing member 33.
  • the sealing members 24 and 34 are formed with inlets and outlets 24a and 34a for working fluids communicating with the tubes 21 and 31.
  • the sealing members 24 and 34 are inserted into the through holes 11a and 11b formed in the base member 11.
  • the braided sleeves 22 and 32 are formed in a cylindrical shape by knitting a plurality of cords oriented in a predetermined direction so as to intersect each other, and can be contracted in the axial direction and the radial direction.
  • a braided cord, a high-strength fiber, a metal cord composed of ultrafine filaments, or the like is used as the cord forming the braided sleeves 22 and 32.
  • actuators 20 and 30 when the working fluid is supplied from the fluid supply device 60 into the tubes 21 and 31 via the inlets and outlets 24a and 34a and the pressure of the working fluid in the tubes 21 and 31 increases, the tubes 21 and 31 are moved. Due to the action of the braided sleeves 22 and 32, the braided sleeves 22 and 32 expand in the radial direction and contract in the axial direction.
  • Bottomed cylindrical stopper members 25 and 35 are fixed to the tips of the sealing members 24 and 34 (the ends on the side separated from the tubes 21 and 31).
  • the stopper members 25 and 35 extend in a direction orthogonal to the bottoms (first and second extending portions) 26 and 36, such as a circular shape and a quadrangular shape, and the outer circumferences of the bottom portions 26 and 36 to the bottom portions 26 and 36. It has cylindrical tubular portions (first and second specified portions) 27 and 37.
  • the center of the bottom portions 26, 36 is fixed to the axial end faces of the sealing members 24, 34 so that the cylindrical portions 27, 37 are closer to the base member 11 than the bottom portions 26, 36. Therefore, the bottom portions 26 and 36 extend in the direction orthogonal to the axial direction of the actuators 20 and 30, and the tubular portions 27 and 37 extend in the axial direction of the actuators 20 and 30.
  • Spring (first and second elastic bodies) 28 and 38 are arranged between the base member 11 and the bottoms 26 and 36 of the stopper members 25 and 35 so as to surround the outer circumferences of the sealing members 24 and 34. ..
  • the springs 28 and 38 for example, coil springs are used. The springs 28 and 38 are compressed more than the free length and urge the bottoms 26 and 36 on the side away from the base member 11 (right side in FIG. 1).
  • the fluid supply device 60 controls a tank for storing the working fluid, a pump for sucking and discharging the working fluid in the tank, an accumulator for storing the working fluid discharged from the pump, a plurality of solenoid valves, and a plurality of solenoid valves. It is equipped with a control device.
  • the actuators 20 and 30 are in an assembled state in which the fluid (fluid pressure) is not supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30. Is free length, and the bottoms 26, 36 of the stopper members 25, 35 are urged to the side separated from the pulley 14 by the elastic force of the springs 28, 38, and the tubular portion 27 of the stopper members 25, 35. , 37 are separated from the base member 11.
  • the actuators 20 and 30 contract in the axial direction as shown in FIG.
  • the initial pressure is determined so that the axial contraction force of the actuators 20 and 30 overcomes the elastic force of the springs 28 and 38.
  • the sealing members 24 and 34 and the stopper members 25 and 35 move to the pulley 14 side (left side in FIG. 2), and the actuators 20 and 30 move in a predetermined amount (10) in the axial direction.
  • the tip surfaces of the stopper members 25 and 35 come into contact with the base member 11.
  • the positions of the actuators 20 and 30 in the axial direction are defined.
  • the state in which the actuators 20 and 30 are contracted by a predetermined amount in the axial direction is referred to as an "initial state".
  • the initial pressure is the pressure of the fluid supplied into the tubes 21 and 31 for the actuators 20 and 30 to be in the initial state.
  • the actuators 20 and 30 are generally used in the assembled state. At least one of them is curved. Therefore, the curved actuator of the actuators 20 and 30 may come into contact with surrounding members such as the support shaft 12 and another actuator, which may affect the durability of the actuator. It may also affect the durability of the buckled (bent) portion of the curved actuator.
  • the bottoms 26, 36 of the stopper members 25, 35 are urged to the side separated from the pulley 14 by the springs 28, 38, so that they are integrated with the stopper members 25, 35.
  • the actuators 20 and 30 are urged to the side separated from the pulley 14.
  • the fluid supply device 60 supplies the initial pressure into the tubes 21 and 31 of the actuators 20 and 30, and when the actuators 20 and 30 contract by a predetermined amount in the axial direction, the actuators 20 and 30 are subjected to the initial pressure.
  • the tip surfaces of the tubular portions 27, 37 of the stopper members 25, 35 fixed to the attached sealing members 24, 34 come into contact with the base member 11. Thereby, the positions of the actuators 20 and 30 in the axial direction (left-right direction in FIG. 2) can be defined.
  • the stopper members 25 and 35 and the actuators 20 and 30 are urged to the side separated from the pulley 14 by the springs 28 and 38.
  • the present invention is not limited to this, and for example, as shown in the robot device 10B of FIG. 4, a pulley rotatably supported by stopper members 25 and 35 (actuators 20 and 30) by a base member 11 and the like.
  • the mass bodies 42 and 52 may be connected via the wires 41 and 51 wound around the 40 and 50.
  • the pulleys 40 and 50 are arranged so that the wires 41 and 51 extend from the stopper members 25 and 35 to the side opposite to the pulley 14 in the axial direction of the actuators 20 and 30 and are wound around the pulleys 40 and 50. .. Even in this case, the mass bodies 42 and 52 can urge the stopper members 25 and 35 (actuators 20 and 30) to the side separated from the pulley 14. As a result, it is possible to prevent the actuators 20 and 30 from bending in the assembled state of the robot device 10B.
  • the stopper members 25 and 35 are formed in a bottomed cylindrical shape, and when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30, the stopper members 25 and 35 have a tubular shape.
  • the positions of the actuators 20 and 30 in the axial direction are defined by the abutting surfaces of the portions 27 and 37 in contact with the base member 11.
  • the groove portions 45 and 55 formed on the side surface of the sealing members 24 and 34 on the front end side (right side in FIG. 5) with respect to the base member 11, and the groove portions 45 by the spring. , 55 pressed members 48, 58 may be provided.
  • the robot device 10C of FIG. 5 is different from the robot device 10B of FIG.
  • the actuators 20 and 30 have wall surfaces 47 and 57 extending in a direction orthogonal to the axial direction (vertical direction in FIG. 5).
  • the robot device 10C is as shown in FIG. 5 in the assembled state.
  • the actuators 20 and 30 are urged by the mass bodies 42 and 52 to the side separated from the pulley 14, but the robot device 10 of FIG. Similarly, the springs 28 and 38 may urge the bottoms 26 and 36 of the stopper members 25 and 35 and the actuators 20 and 30 to the side separated from the pulley 14.
  • a link member (second link) 114 may be provided instead of the pulley 14 and the wire 16 of the robot device 10 of FIG.
  • the same configurations as those of the robot device 10 of FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the arm member 70 is rotatably supported by the rotation shaft 13 and connected to the link member 114, and rotates around the rotation shaft 13 together with the link member 114.
  • the central portion of the link member 114 in the longitudinal direction is rotatably supported by the rotating shaft 13 attached to the support shaft 12.
  • One end 114a of the link member 114 in the longitudinal direction is rotatably connected to the sealing member 23 attached to the actuator 20, and the other end 114b is rotatably connected to the sealing member 33 attached to the actuator 30. Will be done.
  • the actuators 20 and 30 have free lengths as shown in FIG. 6 in an assembled state in which fluid (fluid pressure) is not supplied from the fluid supply device 60 to the actuators 20 and 30.
  • the elastic forces of the springs 28 and 38 urge the bottoms 26 and 36 of the stopper members 25 and 35 to separate from the pulley 14, so that the tip surfaces of the tubular portions 27 and 37 of the stopper members 25 and 35 are urged. It is separated from the base member 11.
  • the actuators 20 and 30 At least one of them is curved.
  • the actuator 20 of the actuators 20 and 30 may come into contact with surrounding members such as the support shaft 12 and another actuator, which may affect the durability of the actuator.
  • the stopper members 25 are urged by the springs 28 and 38 to urge the bottoms 26 and 36 of the stopper members 25 and 35 to be separated from the link member 114.
  • 35 and the actuators 20 and 30 are urged to the side separated from the link member 114.
  • the actuators 20 and 30 contract in the axial direction, and the sealing members 24 and 34 and the stoppers are accompanied by this.
  • the members 25 and 35 move to the pulley 14 side and the actuators 20 and 30 contract in the axial direction by a predetermined amount (about 10% to 20%)
  • the tips of the tubular portions 27 and 37 of the stopper members 25 and 35 The surface comes into contact with the base member 11 and is in the initial state. In this way, the axial positions of the actuators 20 and 30 can be defined.
  • the actuators 20 and 30 on the side where the fluid pressure is higher contracts further in the axial direction.
  • the link member 114 and the arm member 70 rotate around the rotation shaft 13, and the actuator on the side where the fluid pressure is small expands in the axial direction.
  • the arm member 70 can be rotated around the rotation shaft 13.
  • the actuators 20 and 30 are driven in an antagonistic manner so as to rotate the link member 114 relative to the base member 11 and the support shaft 12.
  • the actuators 20 and 30 are urged to the side separated from the link member 114 by the same configuration as the robot device 10 in FIG.
  • the actuators 20 and 30 may be urged to the side separated from the link member 114 by the same configuration as the robot device 10B of FIG.
  • the robot device 110 defines the axial positions of the actuators 20 and 30 when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30 by the same configuration as the robot device 10 of FIG. And said. However, with the same configuration as the robot device 10C of FIG. 5, when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30, the positions of the actuators 20 and 30 in the axial direction may be defined. ..
  • the robot device 10 of the embodiment is provided with actuators 20 and 30 as the first and second artificial muscles.
  • actuators 20 and 30 as the first and second artificial muscles.
  • only one actuator 220 as an artificial muscle may be provided.
  • the same configuration as that of the robot device 10 of FIG. 1 is designated by the same reference numerals, and detailed description thereof will be omitted.
  • the robot device 210 of FIG. 7 includes a base member 11 and a support shaft 12 as a first link, a rotation shaft 213 as a joint, a support member 214 as a second link, an actuator 220, and a stopper member 25.
  • a spring 28 and a weight 230 are provided.
  • the support shaft 12 is rotatably supported by a rotation shaft 213 attached to the support member 214.
  • the sealing member 23 attached to the actuator 220 is rotatably connected to the support member 214.
  • the weight 230 is attached to the end of the base member 11 opposite to the through hole 11a with respect to the support shaft 12.
  • the actuator 220 has a free length as shown in FIG. 7 in an assembled state in which the fluid (fluid pressure) is not supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuator 220.
  • the bottom 26 of the stopper member 25 is urged to the side separated from the support member 214 by the elastic force of the spring 28, and the tip surface of the tubular portion 27 of the stopper member 25 is separated from the base member 11.
  • the actuator 220, the weight 230, etc. they rotate clockwise with respect to the support member 214 (on the right side in FIG. 7).
  • the actuator 220 is integrally supported with the stopper member 25 by urging the bottom portion 26 of the stopper member 25 to the side separated from the support member 214 by the spring 28. Bounce to the side away from. As a result, it is possible to prevent the actuator 220 from bending in the assembled state of the robot device 210. As a result, it is possible to prevent the actuator 220 from coming into contact with surrounding members such as the support shaft 12 and another actuator to affect the durability of the actuator 220.
  • the actuator 220 contracts in the axial direction, and the sealing member 24 and the stopper member 25 move to the support member 214 side accordingly.
  • the actuator 220 moves and contracts by a predetermined amount (about 10% to 20%) in the axial direction, the tip surface of the tubular portion 27 of the stopper member 25 comes into contact with the base member 11 to be in the initial state. In this way, the axial position of the actuator 220 can be defined.
  • the actuator 220 when a pressure higher than the initial pressure of the fluid is supplied from the fluid supply device 60 into the tube 21 of the actuator 220, the actuator 220 further contracts in the axial direction, and accordingly, the base member 11 and the support shaft 12
  • the actuator 220 or the like rotates counterclockwise in FIG. 7 with respect to the support member 214. In other words, the actuator 220 rotates the support member 214 relative to the base member 11 and the support shaft 12.
  • the actuator 220 is urged to the side separated from the support member 214 by the same configuration as the robot device 10 in FIG.
  • the actuator 220 may be urged to the side separated from the support member 214 by the same configuration as the robot device 10B of FIG.
  • the robot device 210 has the same configuration as the robot device 10 of FIG. 1, and defines the axial position of the actuator 220 when the initial pressure is supplied into the tube 21 of the actuator 220. However, with the same configuration as the robot device 10C of FIG. 5, when the initial pressure is supplied into the tube 21 of the actuator 220, the position of the actuator 220 in the axial direction may be defined.
  • the actuators 20 and 30 as artificial muscles include tubes 21 and 31 that expand in the radial direction and contract in the axial direction when a working fluid is supplied, and a braided sleeve 22 that covers the tubes 21 and 31. , 32 and is assumed to be a Macchiben type artificial muscle, but the present invention is not limited to this.
  • the actuators 20 and 30 include an inner cylindrical member formed of an elastic body, an outer cylindrical member formed of the elastic body and coaxially arranged outside the inner tubular member, and an inner tubular member.
  • An axial fiber reinforced actuator having a fiber layer arranged between the outer tubular member may be used.
  • the actuators 20 and 30 may be fluid cylinders having a cylinder and a piston.
  • the robot device of the present disclosure is rotatably supported by the first link (11, 12) via the first link (11, 12) and the joint (13, 213).
  • the two links (14,114,214) operate by receiving the supply of fluid, and the second link (14,114,214) is rotated relative to the first link (11,12).
  • the gist is to provide an urging portion (28, 38, 42, 52) that urges the side away from it.
  • the robot device of the present disclosure includes an urging portion that urges the artificial muscle on the side away from the second link. As a result, it is possible to suppress the bending of the artificial muscle when the fluid pressure is not acting on the artificial muscle. As a result, it is possible to prevent the artificial muscle from coming into contact with surrounding members such as a support member or another adjacent artificial muscle and affecting the durability of the artificial muscle.
  • a defining portion (27, 37, 47, 48) that defines the position of the artificial muscle (20, 30, 220) when an initial pressure is applied to the artificial muscle (20, 30, 220).
  • , 57, 58) may be further provided. In this way, the position of the artificial muscle when the initial pressure is applied to the artificial muscle can be defined.
  • the artificial muscle (20, 30, 220) is fixed to the end of the artificial muscle (20, 30, 220) on the side away from the second link (14, 114, 214) and the artificial muscle (20, 30, 220). ), And the shaft portion (24,34) extending in the axial direction and being inserted into the insertion holes (11a, 11b) formed in the first link (11,12), and the shaft portion (24,34). Further provided with an extension portion (26, 36) extending in a direction orthogonal to the axial direction at a position separated from the artificial muscle (20, 30, 220) than the first link (11, 12) of the above.
  • the urging portion (28,38) is arranged between the first link (11,12) and the extending portion (26,36), and the extending portion (26,36) is connected to the extending portion (26,36). It may have an elastic body (28, 38) that urges the side away from the first link (11, 12). In this way, the urging force of the elastic body can urge the artificial muscle to the side away from the second link.
  • the first link extends from the extending portion (26, 36) to the first link (11, 12) side and when the initial pressure acts on the artificial muscle (20, 30, 220).
  • a defining portion (27, 37) that abuts on (11, 12) and defines the position of the artificial muscle (20, 30, 220) may be further provided. In this way, when the initial pressure acts on the artificial muscle, the defining portion abuts on the first link to define the position of the artificial muscle.
  • the artificial muscles (20, 30, 220) may have tubes (21, 31) that expand in the radial direction and contract in the axial direction when a fluid is supplied.
  • This disclosure can be used in the robot device manufacturing industry and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)
  • Actuator (AREA)

Abstract

In the present invention, bending of an artificial muscle is suppressed when fluid pressure is not applied to the artificial muscle. This robot device comprises: a first link; a second link rotatably supported by the first link via a joint; and at least one artificial muscle that operates upon supply of fluid and that causes the second link to rotate relative to the first link. The robot device further comprises a biasing part that biases the artificial muscle to a side away from the second link. Accordingly, bending of the artificial muscle can be suppressed when fluid pressure is not applied to the artificial muscle.

Description

ロボット装置Robot device
 本開示は、ロボット装置に関する。 This disclosure relates to a robot device.
 従来、この種の技術としては、棒状の支持部材と、支持部材の一端部に固定されると共に支持部材の長手方向と直交して延びる棒状の第1支持体と、支持部材の他端部に対して関節軸と同心に回動できる円板型の第2支持体と、流体の供給を受けて作動すると共に第2支持体(関節軸)を回動駆動するように拮抗駆動される第1、第2弾性膨張収縮構造体(人工筋肉)と、を有する2自由度のロボットアームである弾性体アクチュエータ駆動機構が提案されている(例えば、特許文献1参照)。この弾性体アクチュエータ駆動機構では、第1、第2人工筋肉は、それぞれ、一端部が第1支持部材に固定されると共に他端部が第2支持部材に固定されている。 Conventionally, as this kind of technology, a rod-shaped support member, a rod-shaped first support fixed to one end of the support member and extending perpendicular to the longitudinal direction of the support member, and the other end of the support member have been used. On the other hand, a disk-shaped second support that can rotate concentrically with the joint shaft and a first that operates by receiving a fluid supply and is antagonistically driven so as to rotate and drive the second support (joint shaft). , A second elastic expansion / contraction structure (artificial muscle), and an elastic actuator drive mechanism which is a robot arm having two degrees of freedom have been proposed (see, for example, Patent Document 1). In this elastic actuator drive mechanism, one end of each of the first and second artificial muscles is fixed to the first support member and the other end is fixed to the second support member.
国際公開第12/081197号International Publication No. 12/081197
 上述のロボット装置では、第1、第2人工筋肉が第1支持体と第2支持体とに固定されているため、第1、第2人工筋肉に流体圧が作用していないときに、一般に、第1、第2人工筋肉のうちの少なくとも1つが湾曲する。このため、第1、第2人工筋肉のうち湾曲した人工筋肉が支持部材や隣り合う別の人工筋肉などの周りの部材に接触し、人工筋肉の耐久性に影響を与える可能性がある。 In the above-mentioned robot device, since the first and second artificial muscles are fixed to the first support and the second support, generally when the fluid pressure is not acting on the first and second artificial muscles, , At least one of the first and second artificial muscles is curved. Therefore, the curved artificial muscle of the first and second artificial muscles may come into contact with surrounding members such as a support member and another adjacent artificial muscle, which may affect the durability of the artificial muscle.
 本開示のロボット装置は、人工筋肉に流体圧が作用していないときに、人工筋肉が湾曲するのを抑制することを主目的とする。 The main purpose of the robot device of the present disclosure is to suppress bending of the artificial muscle when no fluid pressure is applied to the artificial muscle.
 本開示のロボット装置は、上述の主目的を達成するために以下の手段を採った。 The robot device of the present disclosure has adopted the following means in order to achieve the above-mentioned main purpose.
 本開示のロボット装置は、第1リンクと、関節を介して前記第1リンクにより回動自在に支持される第2リンクと、流体の供給を受けて作動すると共に前記第1リンクに対して前記第2リンクを相対的に回動させる少なくとも1つの人工筋肉と、を備えるロボット装置であって、前記人工筋肉を前記第2リンクから離間する側に付勢する付勢部を備えることを要旨とする。 The robot device of the present disclosure operates by receiving a supply of a fluid, a first link, a second link rotatably supported by the first link via a joint, and the first link. It is a robot device including at least one artificial muscle that relatively rotates the second link, and the gist is that the robot device includes an urging portion that urges the artificial muscle to a side away from the second link. do.
 本開示のロボット装置では、人工筋肉を第2リンクから離間する側に付勢する付勢部を備える。これにより、人工筋肉に流体圧が作用していないときに、人工筋肉が湾曲するのを抑制することができる。この結果、人工筋肉が支持部材や隣り合う別の人工筋肉などの周りの部材に接触して人工筋肉の耐久性に影響を与えるのを抑制することができる。 The robot device of the present disclosure includes an urging portion that urges the artificial muscle on the side away from the second link. As a result, it is possible to suppress the bending of the artificial muscle when the fluid pressure is not acting on the artificial muscle. As a result, it is possible to prevent the artificial muscle from coming into contact with surrounding members such as a support member or another adjacent artificial muscle and affecting the durability of the artificial muscle.
ロボット装置10の概略構成図である。It is a schematic block diagram of a robot apparatus 10. ロボット装置10の動作を説明するための説明図である。It is explanatory drawing for demonstrating the operation of the robot apparatus 10. ロボット装置10の動作を説明するための説明図である。It is explanatory drawing for demonstrating the operation of the robot apparatus 10. ロボット装置10Bの概略構成図である。It is a schematic block diagram of the robot apparatus 10B. ロボット装置10Cの概略構成図である。It is a schematic block diagram of the robot device 10C. ロボット装置110の概略構成図である。It is a schematic block diagram of a robot apparatus 110. ロボット装置210の概略構成図である。It is a schematic block diagram of a robot apparatus 210.
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, a mode for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1は、本開示のロボット装置10の概略構成図である。ロボット装置10は、ベース部材11に支持軸12を介して支持された回動軸13周りにロボットアームなどのアーム部材70を回動させる装置として構成されている。このロボット装置10は、図示するように、第1リンクとしてのベース部材11および支持軸12と、支持軸12に取り付けられた関節としての回動軸13と、回動軸13により回動自在に支持される第2リンクとしてのプーリ14と、プーリ14に巻き掛けられる巻掛け媒介節としてのワイヤ16と、ワイヤ16に引張力(プーリ14から離間する側の力)を付与する第1,第2人工筋肉としてのアクチュエータ20,30と、アクチュエータ20,30に作動流体を供給する流体供給装置60とを備える。ここで、巻掛け媒介節としては、ワイヤ16に代えて、ベルトやロープ、チェーンなどが用いられてもよい。作動流体としては、作動油が用いられる。なお、作動油に代えて、作動油以外の水などの液体や、空気などの気体が用いられてもよい。アーム部材70は、回動軸13に回動自在に支持されると共にプーリ14に連結されており、プーリ14と共に回動軸13周りに回動する。 FIG. 1 is a schematic configuration diagram of the robot device 10 of the present disclosure. The robot device 10 is configured as a device that rotates an arm member 70 such as a robot arm around a rotation shaft 13 supported by a base member 11 via a support shaft 12. As shown in the figure, the robot device 10 is rotatable by a base member 11 and a support shaft 12 as a first link, a rotation shaft 13 as a joint attached to the support shaft 12, and a rotation shaft 13. The pulley 14 as the second link to be supported, the wire 16 as the winding mediation node wound around the pulley 14, and the first and first first to apply a tensile force (force on the side separated from the pulley 14) to the wire 16. 2 Actuators 20 and 30 as artificial muscles and a fluid supply device 60 for supplying working fluid to the actuators 20 and 30 are provided. Here, as the winding mediating node, a belt, a rope, a chain, or the like may be used instead of the wire 16. A hydraulic oil is used as the hydraulic fluid. In addition, instead of the hydraulic oil, a liquid such as water other than the hydraulic oil or a gas such as air may be used. The arm member 70 is rotatably supported by the rotation shaft 13 and is connected to the pulley 14, and rotates around the rotation shaft 13 together with the pulley 14.
 アクチュエータ20,30は、互いに平行に配置されている。アクチュエータ20,30は、マッキベン型の人工筋肉として構成されており、互いに同一の諸元を有する。アクチュエータ20,30は、作動流体の圧力により膨張および収縮するチューブ21,31と、チューブ21,31を覆う編組スリーブ22,32とを備える。チューブ21,31は、流体に対する高い耐性を有する例えばゴム材等の弾性材により円筒状に形成されている。チューブ21,31のワイヤ16側(プーリ14側)の端部は、封止部材23,33により封止され、ワイヤ16から離間した側の端部は、封止部材(第1,第2軸部)24,34により封止されている。封止部材23,24,33,34は、円柱状または筒状に形成されており、封止部材23,24は、アクチュエータ20(チューブ21)の軸方向に延びるようにアクチュエータ20に取り付けられ、封止部材33,34は、アクチュエータ30(チューブ31)の軸方向に延びるようにアクチュエータ30に取り付けられている。封止部材23には、ワイヤ16の一端部16aが固定され、封止部材33には、ワイヤ16の他端部16bが固定されている。封止部材24,34には、チューブ21,31内に連通する作動流体の出入口24a,34aが形成されている。封止部材24,34は、ベース部材11に形成された貫通孔11a,11bに挿通される。編組スリーブ22,32は、所定方向に配向された複数のコードを互いに交差するように編み込むことにより円筒状に形成されており、軸方向および径方向に収縮可能である。編組スリーブ22,32を形成するコードとしては、編組コード、高強度繊維、極細のフィラメントにより構成される金属製コードなどが用いられる。こうしたアクチュエータ20,30では、流体供給装置60から出入口24a,34aを介してチューブ21,31内に作動流体が供給されてチューブ21,31内の作動流体の圧力が高くなると、チューブ21,31は、編組スリーブ22,32の作用により、径方向に膨張すると共に軸方向に収縮する。 Actuators 20 and 30 are arranged parallel to each other. The actuators 20 and 30 are configured as Macchiben-type artificial muscles and have the same specifications as each other. Actuators 20 and 30 include tubes 21 and 31 that expand and contract due to the pressure of the working fluid, and braided sleeves 22 and 32 that cover the tubes 21 and 31. The tubes 21 and 31 are formed in a cylindrical shape by an elastic material such as a rubber material having high resistance to a fluid. The ends of the tubes 21 and 31 on the wire 16 side (pulley 14 side) are sealed by the sealing members 23 and 33, and the ends on the side separated from the wire 16 are the sealing members (first and second axes). Part) It is sealed by 24 and 34. The sealing members 23, 24, 33, 34 are formed in a cylindrical or tubular shape, and the sealing members 23, 24 are attached to the actuator 20 so as to extend in the axial direction of the actuator 20 (tube 21). The sealing members 33 and 34 are attached to the actuator 30 so as to extend in the axial direction of the actuator 30 (tube 31). One end 16a of the wire 16 is fixed to the sealing member 23, and the other end 16b of the wire 16 is fixed to the sealing member 33. The sealing members 24 and 34 are formed with inlets and outlets 24a and 34a for working fluids communicating with the tubes 21 and 31. The sealing members 24 and 34 are inserted into the through holes 11a and 11b formed in the base member 11. The braided sleeves 22 and 32 are formed in a cylindrical shape by knitting a plurality of cords oriented in a predetermined direction so as to intersect each other, and can be contracted in the axial direction and the radial direction. As the cord forming the braided sleeves 22 and 32, a braided cord, a high-strength fiber, a metal cord composed of ultrafine filaments, or the like is used. In such actuators 20 and 30, when the working fluid is supplied from the fluid supply device 60 into the tubes 21 and 31 via the inlets and outlets 24a and 34a and the pressure of the working fluid in the tubes 21 and 31 increases, the tubes 21 and 31 are moved. Due to the action of the braided sleeves 22 and 32, the braided sleeves 22 and 32 expand in the radial direction and contract in the axial direction.
 封止部材24,34の先端部(チューブ21,31から離間した側の端部)には、有底筒状のストッパ部材25,35が固定される。ストッパ部材25,35は、円形状や四角形状などの底部(第1,第2延在部)26,36と、底部26,36の外周から底部26,36に直交する方向に延在された円筒状の筒状部(第1,第2規定部)27,37とを有する。底部26,36の中央は、筒状部27,37が底部26,36よりもベース部材11側となるように封止部材24,34の軸方向端面に固定される。したがって、底部26,36は、アクチュエータ20,30の軸方向に直交する方向に延在し、筒状部27,37は、アクチュエータ20,30の軸方向に延在する。 Bottomed cylindrical stopper members 25 and 35 are fixed to the tips of the sealing members 24 and 34 (the ends on the side separated from the tubes 21 and 31). The stopper members 25 and 35 extend in a direction orthogonal to the bottoms (first and second extending portions) 26 and 36, such as a circular shape and a quadrangular shape, and the outer circumferences of the bottom portions 26 and 36 to the bottom portions 26 and 36. It has cylindrical tubular portions (first and second specified portions) 27 and 37. The center of the bottom portions 26, 36 is fixed to the axial end faces of the sealing members 24, 34 so that the cylindrical portions 27, 37 are closer to the base member 11 than the bottom portions 26, 36. Therefore, the bottom portions 26 and 36 extend in the direction orthogonal to the axial direction of the actuators 20 and 30, and the tubular portions 27 and 37 extend in the axial direction of the actuators 20 and 30.
 ベース部材11とストッパ部材25,35の底部26,36との間には、封止部材24,34の外周を包囲するようにスプリング(第1,第2弾性体)28,38が配置される。スプリング28,38としては、例えばコイルスプリングが用いられる。スプリング28,38は、自由長よりも圧縮されており、底部26,36をベース部材11から離間する側(図1における右側)に付勢する。 Spring (first and second elastic bodies) 28 and 38 are arranged between the base member 11 and the bottoms 26 and 36 of the stopper members 25 and 35 so as to surround the outer circumferences of the sealing members 24 and 34. .. As the springs 28 and 38, for example, coil springs are used. The springs 28 and 38 are compressed more than the free length and urge the bottoms 26 and 36 on the side away from the base member 11 (right side in FIG. 1).
 流体供給装置60は、作動流体を貯留するタンクや、タンク内の作動流体を吸引して吐出するポンプ、ポンプから吐出された作動流体を蓄えるアキュムレータ、複数のソレノイドバルブ、複数のソレノイドバルブを制御する制御装置を備える。 The fluid supply device 60 controls a tank for storing the working fluid, a pump for sucking and discharging the working fluid in the tank, an accumulator for storing the working fluid discharged from the pump, a plurality of solenoid valves, and a plurality of solenoid valves. It is equipped with a control device.
 こうして構成されたロボット装置10では、流体供給装置60からアクチュエータ20,30のチューブ21,31内に流体(流体圧)が供給されていない組立状態で、図1に示すように、アクチュエータ20,30が自由長になっており、且つ、スプリング28,38の弾性力によってストッパ部材25,35の底部26,36がプーリ14から離間する側に付勢されてストッパ部材25,35の筒状部27,37の先端面がベース部材11から離間している。 In the robot device 10 configured in this way, as shown in FIG. 1, the actuators 20 and 30 are in an assembled state in which the fluid (fluid pressure) is not supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30. Is free length, and the bottoms 26, 36 of the stopper members 25, 35 are urged to the side separated from the pulley 14 by the elastic force of the springs 28, 38, and the tubular portion 27 of the stopper members 25, 35. , 37 are separated from the base member 11.
 続いて、流体供給装置60からアクチュエータ20,30のチューブ21,31内に初期圧が供給されると、図2に示すように、アクチュエータ20,30が軸方向に収縮する。初期圧は、アクチュエータ20,30の軸方向の収縮力がスプリング28,38の弾性力に打ち勝つように定められる。アクチュエータ20,30が軸方向の収縮に伴って封止部材24,34およびストッパ部材25,35がプーリ14側(図2における左側)に移動し、アクチュエータ20,30が軸方向に所定量(10%~20%程度)だけ収縮したときに、ストッパ部材25,35の先端面がベース部材11に当接する。これにより、アクチュエータ20,30の軸方向(図2の左右方向)における位置が規定される。以下、アクチュエータ20,30が軸方向に所定量だけ収縮した状態を「初期状態」という。言い換えれば、初期圧は、アクチュエータ20,30が初期状態になるためにチューブ21,31内に供給される流体の圧力である。 Subsequently, when the initial pressure is supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30, the actuators 20 and 30 contract in the axial direction as shown in FIG. The initial pressure is determined so that the axial contraction force of the actuators 20 and 30 overcomes the elastic force of the springs 28 and 38. As the actuators 20 and 30 contract in the axial direction, the sealing members 24 and 34 and the stopper members 25 and 35 move to the pulley 14 side (left side in FIG. 2), and the actuators 20 and 30 move in a predetermined amount (10) in the axial direction. When contracted by (% to 20%), the tip surfaces of the stopper members 25 and 35 come into contact with the base member 11. Thereby, the positions of the actuators 20 and 30 in the axial direction (left-right direction in FIG. 2) are defined. Hereinafter, the state in which the actuators 20 and 30 are contracted by a predetermined amount in the axial direction is referred to as an "initial state". In other words, the initial pressure is the pressure of the fluid supplied into the tubes 21 and 31 for the actuators 20 and 30 to be in the initial state.
 そして、流体供給装置60からアクチュエータ20,30のチューブ21,31内に供給される流体の圧力が互いに異なると、図3に示すように、流体の圧力が大きい側のアクチュエータ(図3ではアクチュエータ20)が更に軸方向に収縮し、これに伴ってワイヤ16が引っ張られて流体の圧力が小さい側のアクチュエータ(図3ではアクチュエータ30)が軸方向に膨張する。このとき、ワイヤ16が掛け渡されたプーリ14およびプーリ14に連結されたアーム部材70が回動軸13周りに一体に回動する。このようにしてアーム部材70を回動軸13周りに回動させることができる。言い換えれば、アクチュエータ20,30は、ベース部材11および支持軸12に対してプーリ14を相対的に回動させるように拮抗駆動される。 When the pressures of the fluids supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30 are different from each other, as shown in FIG. 3, the actuator on the side where the fluid pressure is large (actuator 20 in FIG. 3). ) Further contracts in the axial direction, and the wire 16 is pulled accordingly, and the actuator on the side where the fluid pressure is small (actuator 30 in FIG. 3) expands in the axial direction. At this time, the pulley 14 on which the wire 16 is hung and the arm member 70 connected to the pulley 14 rotate integrally around the rotation shaft 13. In this way, the arm member 70 can be rotated around the rotation shaft 13. In other words, the actuators 20 and 30 are driven in an antagonistic manner so as to rotate the pulley 14 relative to the base member 11 and the support shaft 12.
 実施形態のロボット装置10の奏する効果について説明する。ロボット装置10のストッパ部材25,35やスプリング28,38を備えずに封止部材24,34がベース部材11に固定される比較形態のロボット装置では、組立状態で、一般に、アクチュエータ20,30のうちの少なくとも1つが湾曲する。このため、アクチュエータ20,30のうち湾曲したアクチュエータが支持軸12や別のアクチュエータなどの周りの部材に接触し、アクチュエータの耐久性に影響を与える可能性がある。また、湾曲したアクチュエータの座屈(屈曲)部分の耐久性に影響を与える可能性もある。これらに対して、実施形態のロボット装置10では、スプリング28,38によってストッパ部材25,35の底部26,36をプーリ14から離間する側に付勢することにより、ストッパ部材25,35と一体にアクチュエータ20,30をプーリ14から離間する側に付勢する。これにより、ロボット装置10の組立状態で、アクチュエータ20,30が湾曲するのを抑制することができる。この結果、アクチュエータ20,30が支持軸12や別のアクチュエータなどの周りの部材に接触して第1、第2アクチュエータ20,30の耐久性に影響を与えるのを抑制することができる。また、アクチュエータの座屈(屈曲)により耐久性に影響を与えるのを抑制することもできる。更に、実施形態のロボット装置10では、スプリング28,38によってアクチュエータ20,30をプーリ14から離間する側に付勢することにより、ロボット装置10の組立状態で、アクチュエータ20,30に接続されるワイヤ16がプーリ14に対して緩んでしまうのを抑制することができる。この結果、ロボット装置10の組立状態でワイヤ16がプーリ14から外れてしまったり、その後にアクチュエータ20,30のチューブ21,31内に初期圧が作用したときにプーリ14やアーム部材70の初期回動位置がずれてしまう(図2の回動位置からずれてしまう)のを抑制することができる。 The effect of the robot device 10 of the embodiment will be described. In a comparative robot device in which the sealing members 24 and 34 are fixed to the base member 11 without providing the stopper members 25 and 35 and the springs 28 and 38 of the robot device 10, the actuators 20 and 30 are generally used in the assembled state. At least one of them is curved. Therefore, the curved actuator of the actuators 20 and 30 may come into contact with surrounding members such as the support shaft 12 and another actuator, which may affect the durability of the actuator. It may also affect the durability of the buckled (bent) portion of the curved actuator. On the other hand, in the robot device 10 of the embodiment, the bottoms 26, 36 of the stopper members 25, 35 are urged to the side separated from the pulley 14 by the springs 28, 38, so that they are integrated with the stopper members 25, 35. The actuators 20 and 30 are urged to the side separated from the pulley 14. As a result, it is possible to prevent the actuators 20 and 30 from bending in the assembled state of the robot device 10. As a result, it is possible to prevent the actuators 20 and 30 from coming into contact with surrounding members such as the support shaft 12 and another actuator and affecting the durability of the first and second actuators 20 and 30. In addition, it is possible to suppress the influence of the buckling (bending) of the actuator on the durability. Further, in the robot device 10 of the embodiment, the wires connected to the actuators 20 and 30 in the assembled state of the robot device 10 by urging the actuators 20 and 30 to the side separated from the pulley 14 by the springs 28 and 38. It is possible to prevent the 16 from loosening with respect to the pulley 14. As a result, when the wire 16 is disengaged from the pulley 14 in the assembled state of the robot device 10, or when an initial pressure is subsequently applied to the tubes 21 and 31 of the actuators 20 and 30, the initial rotation of the pulley 14 and the arm member 70 It is possible to prevent the moving position from shifting (shifting from the rotating position in FIG. 2).
 また、実施形態では、流体供給装置60によりアクチュエータ20,30のチューブ21,31内に初期圧を供給して、アクチュエータ20,30が軸方向に所定量だけ収縮したときに、アクチュエータ20,30に取り付けられた封止部材24,34に固定されたストッパ部材25,35の筒状部27,37の先端面がベース部材11に当接する。これにより、アクチュエータ20,30の軸方向(図2の左右方向)における位置を規定することができる。 Further, in the embodiment, the fluid supply device 60 supplies the initial pressure into the tubes 21 and 31 of the actuators 20 and 30, and when the actuators 20 and 30 contract by a predetermined amount in the axial direction, the actuators 20 and 30 are subjected to the initial pressure. The tip surfaces of the tubular portions 27, 37 of the stopper members 25, 35 fixed to the attached sealing members 24, 34 come into contact with the base member 11. Thereby, the positions of the actuators 20 and 30 in the axial direction (left-right direction in FIG. 2) can be defined.
 実施形態のロボット装置10では、スプリング28,38によりストッパ部材25,35およびアクチュエータ20,30をプーリ14から離間する側に付勢するものとした。しかし、これに限定されるものではなく、例えば、図4のロボット装置10Bに示すように、ストッパ部材25,35(アクチュエータ20,30)に、ベース部材11などにより回動自在に支持された滑車40,50に巻き掛けられたワイヤ41,51を介して質量体42,52が連結されるものとしてもよい。ここで、滑車40,50は、ワイヤ41,51がストッパ部材25,35からアクチュエータ20,30の軸方向におけるプーリ14とは反対側に延びて滑車40,50に巻き掛けられるように配置される。この場合でも、質量体42,52によりストッパ部材25,35(アクチュエータ20,30)をプーリ14から離間する側に付勢することができる。これにより、ロボット装置10Bの組立状態で、アクチュエータ20,30が湾曲するのを抑制することができる。 In the robot device 10 of the embodiment, the stopper members 25 and 35 and the actuators 20 and 30 are urged to the side separated from the pulley 14 by the springs 28 and 38. However, the present invention is not limited to this, and for example, as shown in the robot device 10B of FIG. 4, a pulley rotatably supported by stopper members 25 and 35 (actuators 20 and 30) by a base member 11 and the like. The mass bodies 42 and 52 may be connected via the wires 41 and 51 wound around the 40 and 50. Here, the pulleys 40 and 50 are arranged so that the wires 41 and 51 extend from the stopper members 25 and 35 to the side opposite to the pulley 14 in the axial direction of the actuators 20 and 30 and are wound around the pulleys 40 and 50. .. Even in this case, the mass bodies 42 and 52 can urge the stopper members 25 and 35 (actuators 20 and 30) to the side separated from the pulley 14. As a result, it is possible to prevent the actuators 20 and 30 from bending in the assembled state of the robot device 10B.
 実施形態のロボット装置10では、ストッパ部材25,35が有底筒状に形成され、アクチュエータ20,30のチューブ21,31内に初期圧が供給されたときに、ストッパ部材25,35の筒状部27,37の先端面がベース部材11に当接することにより、アクチュエータ20,30の軸方向における位置を規定するものとした。しかし、図5のロボット装置10Cに示すように、封止部材24,34のベース部材11よりも先端部側(図5の右側)の側面に形成された溝部45,55と、スプリングにより溝部45,55側に押圧される被押圧部材48,58とを有するものとしてもよい。図5のロボット装置10Cは、ストッパ部材25,35が溝部45,55および被押圧部材48,58に置き換えられた点で、図4のロボット装置10Bとは異なる。図5のロボット装置10Cの溝部45,55は、封止部材24,34の先端側に向かうにつれて深くなる(外周面から離間する)傾斜面46,56と、傾斜面46,56の最深部からアクチュエータ20,30の軸方向に直交する方向(図5における上下方向)に延在する壁面47,57とを有する。このロボット装置10Cは、組立状態では図5のようになっている。続いて、流体供給装置60によりアクチュエータ20,30のチューブ21,31内に初期圧を供給すると、アクチュエータ20,30が軸方向に収縮するのに伴って、封止部材24,34がプーリ14側(図5における左側)に移動し、アクチュエータ20,30が軸方向に所定量だけ収縮したときに、被押圧部材48,58の壁面47,57側の端面が壁面47,57に当接する。これにより、アクチュエータ20,30の軸方向(図5の左右方向)における位置が規定される。図5のロボット装置10Cでは、図4のロボット装置10Bと同様に、質量体42,52によりアクチュエータ20,30をプーリ14から離間する側に付勢するものとしたが、図1のロボット装置10と同様に、スプリング28,38によりストッパ部材25,35の底部26,36およびアクチュエータ20,30をプーリ14から離間する側に付勢するものとしてもよい。 In the robot device 10 of the embodiment, the stopper members 25 and 35 are formed in a bottomed cylindrical shape, and when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30, the stopper members 25 and 35 have a tubular shape. The positions of the actuators 20 and 30 in the axial direction are defined by the abutting surfaces of the portions 27 and 37 in contact with the base member 11. However, as shown in the robot device 10C of FIG. 5, the groove portions 45 and 55 formed on the side surface of the sealing members 24 and 34 on the front end side (right side in FIG. 5) with respect to the base member 11, and the groove portions 45 by the spring. , 55 pressed members 48, 58 may be provided. The robot device 10C of FIG. 5 is different from the robot device 10B of FIG. 4 in that the stopper members 25 and 35 are replaced with the groove portions 45 and 55 and the pressed members 48 and 58. The grooves 45, 55 of the robot device 10C of FIG. 5 become deeper (separated from the outer peripheral surface) toward the tip ends of the sealing members 24, 34, and from the deepest portions of the inclined surfaces 46, 56. The actuators 20 and 30 have wall surfaces 47 and 57 extending in a direction orthogonal to the axial direction (vertical direction in FIG. 5). The robot device 10C is as shown in FIG. 5 in the assembled state. Subsequently, when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30 by the fluid supply device 60, the sealing members 24 and 34 are moved to the pulley 14 side as the actuators 20 and 30 contract in the axial direction. (Left side in FIG. 5) When the actuators 20 and 30 contract by a predetermined amount in the axial direction, the end faces of the pressed members 48 and 58 on the wall surfaces 47 and 57 come into contact with the wall surfaces 47 and 57. Thereby, the positions of the actuators 20 and 30 in the axial direction (left-right direction in FIG. 5) are defined. In the robot device 10C of FIG. 5, similarly to the robot device 10B of FIG. 4, the actuators 20 and 30 are urged by the mass bodies 42 and 52 to the side separated from the pulley 14, but the robot device 10 of FIG. Similarly, the springs 28 and 38 may urge the bottoms 26 and 36 of the stopper members 25 and 35 and the actuators 20 and 30 to the side separated from the pulley 14.
 実施形態のロボット装置10では、図1に示したように、第1リンクとしてのベース部材11および支持軸12と、関節としての回動軸13と、第2リンクとしてのプーリ14と、ワイヤ16と、第1,第2人工筋肉としてのアクチュエータ20,30とを備えるものとした。しかし、図6のロボット装置110に示すように、図1のロボット装置10のプーリ14およびワイヤ16に代えて、リンク部材(第2リンク)114を備えるものとしてもよい。図6のロボット装置110のうち図1のロボット装置10と同一の構成については、同一の符号を付し、詳細な説明を省略する。 In the robot device 10 of the embodiment, as shown in FIG. 1, a base member 11 and a support shaft 12 as a first link, a rotation shaft 13 as a joint, a pulley 14 as a second link, and a wire 16 And the actuators 20 and 30 as the first and second artificial muscles. However, as shown in the robot device 110 of FIG. 6, a link member (second link) 114 may be provided instead of the pulley 14 and the wire 16 of the robot device 10 of FIG. Of the robot devices 110 of FIG. 6, the same configurations as those of the robot device 10 of FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
 図6のロボット装置110では、アーム部材70は、回動軸13に回動自在に支持されると共にリンク部材114に連結されており、リンク部材114と共に回動軸13周りに回動する。リンク部材114の長手方向における中央部は、支持軸12に取り付けられた回動軸13により回動自在に支持される。リンク部材114の長手方向における一端部114aは、アクチュエータ20に取り付けられた封止部材23に回転自在に連結され、他端部114bは、アクチュエータ30に取り付けられた封止部材33に回転自在に連結される。 In the robot device 110 of FIG. 6, the arm member 70 is rotatably supported by the rotation shaft 13 and connected to the link member 114, and rotates around the rotation shaft 13 together with the link member 114. The central portion of the link member 114 in the longitudinal direction is rotatably supported by the rotating shaft 13 attached to the support shaft 12. One end 114a of the link member 114 in the longitudinal direction is rotatably connected to the sealing member 23 attached to the actuator 20, and the other end 114b is rotatably connected to the sealing member 33 attached to the actuator 30. Will be done.
 こうして構成されたロボット装置110では、流体供給装置60からアクチュエータ20,30に流体(流体圧)が供給されていない組立状態で、図6に示すように、アクチュエータ20,30が自由長になっており、且つ、スプリング28,38の弾性力によってストッパ部材25,35の底部26,36がプーリ14から離間する側に付勢されてストッパ部材25,35の筒状部27,37の先端面がベース部材11から離間している。ロボット装置110のストッパ部材25,35やスプリング28,38を備えずに封止部材24,34がベース部材11に固定される比較形態のロボット装置では、組立状態で、一般に、アクチュエータ20,30のうちの少なくとも1つが湾曲する。例えば、ベース部材11とリンク部材114の一端部114aとの距離がベース部材11とリンク部材114の他端部114bとの距離に比して短い場合、アクチュエータ20,30のうち少なくともアクチュエータ20が湾曲する。このため、アクチュエータ20,30のうち湾曲したアクチュエータが支持軸12や別のアクチュエータなどの周りの部材に接触し、アクチュエータの耐久性に影響を与える可能性がある。これに対して、ロボット装置110では、ロボット装置10と同様に、スプリング28,38によってストッパ部材25,35の底部26,36をリンク部材114から離間する側に付勢することにより、ストッパ部材25,35と一体にアクチュエータ20,30をリンク部材114から離間する側に付勢する。これにより、ロボット装置110の組立状態で、アクチュエータ20,30が湾曲するのを抑制することができる。この結果、アクチュエータ20,30が支持軸12や別のアクチュエータなどの周りの部材に接触してアクチュエータ30,30の耐久性に影響を与えるのを抑制することができる。 In the robot device 110 configured in this way, the actuators 20 and 30 have free lengths as shown in FIG. 6 in an assembled state in which fluid (fluid pressure) is not supplied from the fluid supply device 60 to the actuators 20 and 30. In addition, the elastic forces of the springs 28 and 38 urge the bottoms 26 and 36 of the stopper members 25 and 35 to separate from the pulley 14, so that the tip surfaces of the tubular portions 27 and 37 of the stopper members 25 and 35 are urged. It is separated from the base member 11. In the robot device of the comparative form in which the sealing members 24 and 34 are fixed to the base member 11 without providing the stopper members 25 and 35 and the springs 28 and 38 of the robot device 110, in the assembled state, generally, the actuators 20 and 30 At least one of them is curved. For example, when the distance between the base member 11 and one end 114a of the link member 114 is shorter than the distance between the base member 11 and the other end 114b of the link member 114, at least the actuator 20 of the actuators 20 and 30 is curved. do. Therefore, the curved actuator of the actuators 20 and 30 may come into contact with surrounding members such as the support shaft 12 and another actuator, which may affect the durability of the actuator. On the other hand, in the robot device 110, similarly to the robot device 10, the stopper members 25 are urged by the springs 28 and 38 to urge the bottoms 26 and 36 of the stopper members 25 and 35 to be separated from the link member 114. , 35 and the actuators 20 and 30 are urged to the side separated from the link member 114. As a result, it is possible to prevent the actuators 20 and 30 from bending in the assembled state of the robot device 110. As a result, it is possible to prevent the actuators 20 and 30 from coming into contact with surrounding members such as the support shaft 12 and another actuator and affecting the durability of the actuators 30 and 30.
 続いて、流体供給装置60からアクチュエータ20,30のチューブ21,31内に初期圧が供給されると、アクチュエータ20,30が軸方向に収縮し、これに伴って封止部材24,34およびストッパ部材25,35がプーリ14側に移動し、アクチュエータ20,30が軸方向に所定量(10%~20%程度)だけ収縮したときに、ストッパ部材25,35の筒状部27,37の先端面がベース部材11に当接して初期状態となる。このようにして、アクチュエータ20,30の軸方向における位置を規定することができる。 Subsequently, when the initial pressure is supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30, the actuators 20 and 30 contract in the axial direction, and the sealing members 24 and 34 and the stoppers are accompanied by this. When the members 25 and 35 move to the pulley 14 side and the actuators 20 and 30 contract in the axial direction by a predetermined amount (about 10% to 20%), the tips of the tubular portions 27 and 37 of the stopper members 25 and 35 The surface comes into contact with the base member 11 and is in the initial state. In this way, the axial positions of the actuators 20 and 30 can be defined.
 そして、流体供給装置60からアクチュエータ20,30のチューブ21,31内に供給される流体の圧力が互いに異なると、アクチュエータ20,30のうち流体の圧力が大きい側のアクチュエータが更に軸方向に収縮し、これに伴ってリンク部材114およびアーム部材70が回動軸13周りに回動し、流体の圧力が小さい側のアクチュエータが軸方向に膨張する。このようにしてアーム部材70を回動軸13周りに回動させることができる。言い換えれば、アクチュエータ20,30は、ベース部材11および支持軸12に対してリンク部材114を相対的に回動させるように拮抗駆動される。 When the pressures of the fluids supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuators 20 and 30 are different from each other, the actuators 20 and 30 on the side where the fluid pressure is higher contracts further in the axial direction. Along with this, the link member 114 and the arm member 70 rotate around the rotation shaft 13, and the actuator on the side where the fluid pressure is small expands in the axial direction. In this way, the arm member 70 can be rotated around the rotation shaft 13. In other words, the actuators 20 and 30 are driven in an antagonistic manner so as to rotate the link member 114 relative to the base member 11 and the support shaft 12.
 ロボット装置110では、図1のロボット装置10と同様の構成により、アクチュエータ20,30をリンク部材114から離間する側に付勢するものとした。しかし、図4のロボット装置10Bと同様の構成により、アクチュエータ20,30をリンク部材114から離間する側に付勢するものとしてもよい。 In the robot device 110, the actuators 20 and 30 are urged to the side separated from the link member 114 by the same configuration as the robot device 10 in FIG. However, the actuators 20 and 30 may be urged to the side separated from the link member 114 by the same configuration as the robot device 10B of FIG.
 ロボット装置110では、図1のロボット装置10と同様の構成により、アクチュエータ20,30のチューブ21,31内に初期圧が供給されたときに、アクチュエータ20,30の軸方向における位置を規定するものとした。しかし、図5のロボット装置10Cと同様の構成により、アクチュエータ20,30のチューブ21,31内に初期圧が供給されたときに、アクチュエータ20,30の軸方向における位置を規定するものとしてもよい。 The robot device 110 defines the axial positions of the actuators 20 and 30 when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30 by the same configuration as the robot device 10 of FIG. And said. However, with the same configuration as the robot device 10C of FIG. 5, when the initial pressure is supplied into the tubes 21 and 31 of the actuators 20 and 30, the positions of the actuators 20 and 30 in the axial direction may be defined. ..
 実施形態のロボット装置10では、図1に示したように、第1,第2人工筋肉としてのアクチュエータ20,30を備えるものとした。しかし、図7のロボット装置210に示すように、人工筋肉としてのアクチュエータ220を1つだけを備えるものとしてもよい。図7のロボット装置210のうち図1のロボット装置10と同一の構成については、同一の符号を付し、詳細な説明を省略する。 As shown in FIG. 1, the robot device 10 of the embodiment is provided with actuators 20 and 30 as the first and second artificial muscles. However, as shown in the robot device 210 of FIG. 7, only one actuator 220 as an artificial muscle may be provided. Of the robot device 210 of FIG. 7, the same configuration as that of the robot device 10 of FIG. 1 is designated by the same reference numerals, and detailed description thereof will be omitted.
 図7のロボット装置210は、第1リンクとしてのベース部材11および支持軸12と、関節としての回動軸213と、第2リンクとしての支持部材214と、アクチュエータ220と、ストッパ部材25と、スプリング28と、錘230とを備える。支持軸12は、支持部材214に取り付けられた回動軸213により回動自在に支持される。アクチュエータ220に取り付けられた封止部材23は、支持部材214に回動自在に連結される。錘230は、ベース部材11の支持軸12に対して貫通孔11aとは反対側の端部に取り付けられる。 The robot device 210 of FIG. 7 includes a base member 11 and a support shaft 12 as a first link, a rotation shaft 213 as a joint, a support member 214 as a second link, an actuator 220, and a stopper member 25. A spring 28 and a weight 230 are provided. The support shaft 12 is rotatably supported by a rotation shaft 213 attached to the support member 214. The sealing member 23 attached to the actuator 220 is rotatably connected to the support member 214. The weight 230 is attached to the end of the base member 11 opposite to the through hole 11a with respect to the support shaft 12.
 こうして構成されたロボット装置210では、流体供給装置60からアクチュエータ220のチューブ21,31内に流体(流体圧)が供給されていない組立状態で、図7に示すように、アクチュエータ220が自由長になっており、且つ、スプリング28の弾性力によってストッパ部材25の底部26が支持部材214から離間する側に付勢されてストッパ部材25の筒状部27の先端面がベース部材11から離間しており、且つ、ベース部材11や支持軸12、アクチュエータ220,錘230等の重量によってこれらが支持部材214に対して鉛直方向よりも時計回り(図7における右側)に回動している。ロボット装置210でも、ロボット装置10,110と同様に、スプリング28によってストッパ部材25の底部26を支持部材214から離間する側に付勢することにより、ストッパ部材25と一体にアクチュエータ220を支持部材214から離間する側に付勢する。これにより、ロボット装置210の組立状態で、アクチュエータ220が湾曲するのを抑制することができる。この結果、アクチュエータ220が支持軸12や別のアクチュエータなどの周りの部材に接触してアクチュエータ220の耐久性に影響を与えるのを抑制することができる。 In the robot device 210 configured in this way, the actuator 220 has a free length as shown in FIG. 7 in an assembled state in which the fluid (fluid pressure) is not supplied from the fluid supply device 60 into the tubes 21 and 31 of the actuator 220. The bottom 26 of the stopper member 25 is urged to the side separated from the support member 214 by the elastic force of the spring 28, and the tip surface of the tubular portion 27 of the stopper member 25 is separated from the base member 11. Moreover, due to the weight of the base member 11, the support shaft 12, the actuator 220, the weight 230, etc., they rotate clockwise with respect to the support member 214 (on the right side in FIG. 7). In the robot device 210 as well, similarly to the robot devices 10 and 110, the actuator 220 is integrally supported with the stopper member 25 by urging the bottom portion 26 of the stopper member 25 to the side separated from the support member 214 by the spring 28. Bounce to the side away from. As a result, it is possible to prevent the actuator 220 from bending in the assembled state of the robot device 210. As a result, it is possible to prevent the actuator 220 from coming into contact with surrounding members such as the support shaft 12 and another actuator to affect the durability of the actuator 220.
 続いて、流体供給装置60からアクチュエータ220のチューブ21内に初期圧が供給されると、アクチュエータ220が軸方向に収縮し、これに伴って封止部材24およびストッパ部材25が支持部材214側に移動し、アクチュエータ220が軸方向に所定量(10%~20%程度)だけ収縮したときに、ストッパ部材25の筒状部27の先端面がベース部材11に当接して初期状態となる。このようにして、アクチュエータ220の軸方向における位置を規定することができる。 Subsequently, when the initial pressure is supplied from the fluid supply device 60 into the tube 21 of the actuator 220, the actuator 220 contracts in the axial direction, and the sealing member 24 and the stopper member 25 move to the support member 214 side accordingly. When the actuator 220 moves and contracts by a predetermined amount (about 10% to 20%) in the axial direction, the tip surface of the tubular portion 27 of the stopper member 25 comes into contact with the base member 11 to be in the initial state. In this way, the axial position of the actuator 220 can be defined.
 そして、流体供給装置60からアクチュエータ220のチューブ21内に流体の初期圧よりも高い圧力が供給されると、アクチュエータ220が更に軸方向に収縮し、これに伴ってベース部材11や支持軸12、アクチュエータ220等が支持部材214に対して図7における反時計回りに回動する。言い換えれば、アクチュエータ220は、ベース部材11および支持軸12に対して支持部材214を相対的に回動させる。 Then, when a pressure higher than the initial pressure of the fluid is supplied from the fluid supply device 60 into the tube 21 of the actuator 220, the actuator 220 further contracts in the axial direction, and accordingly, the base member 11 and the support shaft 12 The actuator 220 or the like rotates counterclockwise in FIG. 7 with respect to the support member 214. In other words, the actuator 220 rotates the support member 214 relative to the base member 11 and the support shaft 12.
 ロボット装置210では、図1のロボット装置10と同様の構成により、アクチュエータ220を支持部材214から離間する側に付勢するものとした。しかし、図4のロボット装置10Bと同様の構成により、アクチュエータ220を支持部材214から離間する側に付勢するものとしてもよい。 In the robot device 210, the actuator 220 is urged to the side separated from the support member 214 by the same configuration as the robot device 10 in FIG. However, the actuator 220 may be urged to the side separated from the support member 214 by the same configuration as the robot device 10B of FIG.
 ロボット装置210では、図1のロボット装置10と同様の構成により、アクチュエータ220のチューブ21内に初期圧が供給されたときに、アクチュエータ220の軸方向における位置を規定するものとした。しかし、図5のロボット装置10Cと同様の構成により、アクチュエータ220のチューブ21内に初期圧が供給されたときに、アクチュエータ220の軸方向における位置を規定するものとしてもよい。 The robot device 210 has the same configuration as the robot device 10 of FIG. 1, and defines the axial position of the actuator 220 when the initial pressure is supplied into the tube 21 of the actuator 220. However, with the same configuration as the robot device 10C of FIG. 5, when the initial pressure is supplied into the tube 21 of the actuator 220, the position of the actuator 220 in the axial direction may be defined.
 上述の実施形態では、人工筋肉としてのアクチュエータ20,30は、作動流体が供給された際に径方向に膨張し且つ軸方向に収縮するチューブ21,31と、チューブ21,31を覆う編組スリーブ22,32とを有するマッキベン型の人工筋肉であるものとしたが、これに限定されるものではない。例えば、アクチュエータ20,30は、弾性体により形成された内側筒状部材と、弾性体により形成されると共に内側筒状部材の外側に同軸に配置された外側筒状部材と、内側筒状部材と外側筒状部材との間に配置された繊維層とを有する軸方向繊維強化型のアクチュエータ(例えば、特開2011-137516号公報参照)であってもよい。また,アクチュエータ20,30は、シリンダおよびピストンを有する流体シリンダであってもよい。 In the above-described embodiment, the actuators 20 and 30 as artificial muscles include tubes 21 and 31 that expand in the radial direction and contract in the axial direction when a working fluid is supplied, and a braided sleeve 22 that covers the tubes 21 and 31. , 32 and is assumed to be a Macchiben type artificial muscle, but the present invention is not limited to this. For example, the actuators 20 and 30 include an inner cylindrical member formed of an elastic body, an outer cylindrical member formed of the elastic body and coaxially arranged outside the inner tubular member, and an inner tubular member. An axial fiber reinforced actuator having a fiber layer arranged between the outer tubular member (see, for example, Japanese Patent Application Laid-Open No. 2011-137516) may be used. Further, the actuators 20 and 30 may be fluid cylinders having a cylinder and a piston.
〔本実施形態のまとめ〕
 以上説明したように、本開示のロボット装置は、第1リンク(11,12)と、関節(13,213)を介して前記第1リンク(11,12)により回動自在に支持される第2リンク(14,114,214)と、流体の供給を受けて作動すると共に前記第1リンク(11,12)に対して前記第2リンク(14,114,214)を相対的に回動させる少なくとも1つの人工筋肉(20,30,220)と、を備えるロボット装置(10,10B,10C,110,210)であって、前記人工筋肉(20,30,220)を前記第2リンク(14,114,214)から離間する側に付勢する付勢部(28,38,42,52)を備えることを要旨とする。
[Summary of this embodiment]
As described above, the robot device of the present disclosure is rotatably supported by the first link (11, 12) via the first link (11, 12) and the joint (13, 213). The two links (14,114,214) operate by receiving the supply of fluid, and the second link (14,114,214) is rotated relative to the first link (11,12). A robot device (10, 10B, 10C, 110, 210) including at least one artificial muscle (20, 30, 220), wherein the artificial muscle (20, 30, 220) is attached to the second link (14). , 114, 214), the gist is to provide an urging portion (28, 38, 42, 52) that urges the side away from it.
 本開示のロボット装置では、人工筋肉を第2リンクから離間する側に付勢する付勢部を備える。これにより、人工筋肉に流体圧が作用していないときに、人工筋肉が湾曲するのを抑制することができる。この結果、人工筋肉が支持部材や隣り合う別の人工筋肉などの周りの部材に接触して人工筋肉の耐久性に影響を与えるのを抑制することができる。 The robot device of the present disclosure includes an urging portion that urges the artificial muscle on the side away from the second link. As a result, it is possible to suppress the bending of the artificial muscle when the fluid pressure is not acting on the artificial muscle. As a result, it is possible to prevent the artificial muscle from coming into contact with surrounding members such as a support member or another adjacent artificial muscle and affecting the durability of the artificial muscle.
 本開示のロボット装置において、前記人工筋肉(20,30,220)に初期圧が作用したときの前記人工筋肉(20,30,220)の位置を規定する規定部(27,37,47,48,57,58)を更に備えるものとしてもよい。こうすれば、人工筋肉に初期圧が作用したときの人工筋肉の位置を規定することができる。 In the robot device of the present disclosure, a defining portion (27, 37, 47, 48) that defines the position of the artificial muscle (20, 30, 220) when an initial pressure is applied to the artificial muscle (20, 30, 220). , 57, 58) may be further provided. In this way, the position of the artificial muscle when the initial pressure is applied to the artificial muscle can be defined.
 本開示のロボット装置において、前記人工筋肉(20,30,220)の前記第2リンク(14,114,214)から離間した側の端部に固定されると共に前記人工筋肉(20,30,220)の軸方向に延在し、前記第1リンク(11,12)に形成された挿通孔(11a,11b)に挿通される軸部(24,34)と、前記軸部(24,34)の前記第1リンク(11,12)よりも前記人工筋肉(20,30,220)から離間した位置で前記軸方向に直交する方向に延在する延在部(26,36)とを更に備え、前記付勢部(28,38)は、前記第1リンク(11,12)と前記延在部(26,36)との間に配置されると共に前記延在部(26,36)を前記第1リンク(11,12)から離間する側に付勢する弾性体(28,38)を有するものとしてもよい。こうすれば、弾性体の付勢力により、人工筋肉を第2リンクから離間する側に付勢することができる。 In the robot apparatus of the present disclosure, the artificial muscle (20, 30, 220) is fixed to the end of the artificial muscle (20, 30, 220) on the side away from the second link (14, 114, 214) and the artificial muscle (20, 30, 220). ), And the shaft portion (24,34) extending in the axial direction and being inserted into the insertion holes (11a, 11b) formed in the first link (11,12), and the shaft portion (24,34). Further provided with an extension portion (26, 36) extending in a direction orthogonal to the axial direction at a position separated from the artificial muscle (20, 30, 220) than the first link (11, 12) of the above. The urging portion (28,38) is arranged between the first link (11,12) and the extending portion (26,36), and the extending portion (26,36) is connected to the extending portion (26,36). It may have an elastic body (28, 38) that urges the side away from the first link (11, 12). In this way, the urging force of the elastic body can urge the artificial muscle to the side away from the second link.
 この場合、前記延在部(26,36)から前記第1リンク(11,12)側に延出されると共に前記人工筋肉(20,30,220)に初期圧が作用したときに前記第1リンク(11,12)に当接して前記人工筋肉(20,30,220)の位置を規定する規定部(27,37)を更に備えるものとしてもよい。こうすれば、人工筋肉に初期圧が作用したときに、規定部が第1リンクに当接して人工筋肉の位置を規定することができる。 In this case, the first link extends from the extending portion (26, 36) to the first link (11, 12) side and when the initial pressure acts on the artificial muscle (20, 30, 220). A defining portion (27, 37) that abuts on (11, 12) and defines the position of the artificial muscle (20, 30, 220) may be further provided. In this way, when the initial pressure acts on the artificial muscle, the defining portion abuts on the first link to define the position of the artificial muscle.
 本開示のロボット装置において、前記人工筋肉(20,30,220)は、流体が供給された際に径方向に膨張し且つ軸方向に収縮するチューブ(21,31)を有するものとしてもよい。 In the robot device of the present disclosure, the artificial muscles (20, 30, 220) may have tubes (21, 31) that expand in the radial direction and contract in the axial direction when a fluid is supplied.
 以上、本開示を実施するための形態について説明したが、本開示はこうした実施形態に何等限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present disclosure have been described above, the present disclosure is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present disclosure. Of course.
 本開示は、ロボット装置の製造産業などに利用可能である。 This disclosure can be used in the robot device manufacturing industry and the like.

Claims (5)

  1.  第1リンクと、
     関節を介して前記第1リンクにより回動自在に支持される第2リンクと、
     流体の供給を受けて作動すると共に前記第1リンクに対して前記第2リンクを相対的に回動させる少なくとも1つの人工筋肉と、
     を備えるロボット装置であって、
     前記人工筋肉を前記第2リンクから離間する側に付勢する付勢部、
     を備えるロボット装置。
    The first link and
    A second link rotatably supported by the first link via a joint,
    At least one artificial muscle that operates by receiving a fluid supply and rotates the second link relative to the first link.
    It is a robot device equipped with
    An urging portion that urges the artificial muscle to a side away from the second link,
    A robot device equipped with.
  2.  請求項1記載のロボット装置であって、
     前記人工筋肉に初期圧が作用したときの前記人工筋肉の位置を規定する規定部、
     を更に備えるロボット装置。
    The robot device according to claim 1.
    A defining part that defines the position of the artificial muscle when the initial pressure acts on the artificial muscle,
    A robot device further equipped with.
  3.  請求項1記載のロボット装置であって、
     前記人工筋肉の前記第2リンクから離間した側の端部に固定されると共に前記人工筋肉の軸方向に延在し、前記第1リンクに形成された挿通孔に挿通される軸部と、
     前記軸部の前記第1リンクよりも前記人工筋肉から離間した位置で前記軸方向に直交する方向に延在する延在部と、
     を更に備え、
     前記付勢部は、前記第1リンクと前記延在部との間に配置されると共に前記延在部を前記第1リンクから離間する側に付勢する弾性体を有する、
     ロボット装置。
    The robot device according to claim 1.
    A shaft portion fixed to an end portion of the artificial muscle on a side away from the second link, extending in the axial direction of the artificial muscle, and being inserted into an insertion hole formed in the first link.
    An extending portion extending in a direction orthogonal to the axial direction at a position separated from the artificial muscle from the first link of the shaft portion, and an extending portion.
    Further prepare
    The urging portion has an elastic body that is arranged between the first link and the extending portion and urges the extending portion to a side away from the first link.
    Robot device.
  4.  請求項3記載のロボット装置であって、
     前記延在部から前記第1リンク側に延出されると共に前記人工筋肉に初期圧が作用したときに前記第1リンクに当接して前記人工筋肉の位置を規定する規定部、
     を更に備えるロボット装置。
    The robot device according to claim 3.
    A defining portion that extends from the extending portion to the first link side and abuts on the first link when an initial pressure acts on the artificial muscle to define the position of the artificial muscle.
    A robot device further equipped with.
  5.  請求項1ないし4のうちの何れか1つの請求項に記載のロボット装置であって、
     前記人工筋肉は、流体が供給された際に径方向に膨張し且つ軸方向に収縮するチューブを有する、
     ロボット装置。
    The robot device according to any one of claims 1 to 4.
    The artificial muscle has a tube that expands radially and contracts axially when fluid is supplied.
    Robot device.
PCT/JP2021/013279 2020-03-30 2021-03-29 Robot device WO2021200819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512208A JP7243921B2 (en) 2020-03-30 2021-03-29 robot equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060263 2020-03-30
JP2020-060263 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200819A1 true WO2021200819A1 (en) 2021-10-07

Family

ID=77929451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013279 WO2021200819A1 (en) 2020-03-30 2021-03-29 Robot device

Country Status (2)

Country Link
JP (1) JP7243921B2 (en)
WO (1) WO2021200819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115488871A (en) * 2022-09-14 2022-12-20 清华大学深圳国际研究生院 Light-weight high-torque tendon-driven single-degree-of-freedom mechanical joint device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032743A (en) * 2005-07-28 2007-02-08 Tama Tlo Kk Actuator system, robot arm and medical rehabilitation system
WO2010092321A2 (en) * 2009-02-13 2010-08-19 The Shadow Robot Company Limited Robotic musculo-skeletal jointed structures
WO2017214259A1 (en) * 2016-06-07 2017-12-14 Worcester Polytechnic Institute Biologically-inspired joints and systems and methods of use thereof
JP2018527963A (en) * 2015-06-26 2018-09-27 スクオーラ スペリオーレ サンタンナ Pneumatic device for operating organs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032743A (en) * 2005-07-28 2007-02-08 Tama Tlo Kk Actuator system, robot arm and medical rehabilitation system
WO2010092321A2 (en) * 2009-02-13 2010-08-19 The Shadow Robot Company Limited Robotic musculo-skeletal jointed structures
JP2018527963A (en) * 2015-06-26 2018-09-27 スクオーラ スペリオーレ サンタンナ Pneumatic device for operating organs
WO2017214259A1 (en) * 2016-06-07 2017-12-14 Worcester Polytechnic Institute Biologically-inspired joints and systems and methods of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115488871A (en) * 2022-09-14 2022-12-20 清华大学深圳国际研究生院 Light-weight high-torque tendon-driven single-degree-of-freedom mechanical joint device

Also Published As

Publication number Publication date
JP7243921B2 (en) 2023-03-22
JPWO2021200819A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US6067892A (en) Artificial muscle actuator assembly
JP5246717B2 (en) Fluid injection type actuator
Daerden et al. Pneumatic artificial muscles: actuators for robotics and automation
US8205522B2 (en) Link assembly with defined boundaries for a snake like robot arm
US5067390A (en) Double-acting flexible wall actuator
WO2021200819A1 (en) Robot device
JP2005524802A (en) Artificial muscle
JP2002541410A (en) Actuator
US20020083828A1 (en) Flexible actuator
JPH0324304A (en) Actuator using elastic elongating body
JP2010127429A (en) Fluid actuator
JP2017024117A (en) Spirally deformable soft device and robot system using the same
JPWO2007058085A1 (en) Hydraulic actuator
JP6854504B2 (en) Fluid system
JP7301418B2 (en) self-propelled robot
US10683639B2 (en) Actuator
JP6670053B2 (en) Fluid pressure actuator
JP7343897B2 (en) Pump unit and pump
WO2023171110A1 (en) Hydraulic actuator
JP4635084B2 (en) Cylinder equipment
JP2022057312A (en) Artificial muscle unit, and gripping device using the same
WO2023171111A1 (en) Robot hand
WO2023171113A1 (en) Robot hand
WO2023112446A1 (en) Hydraulic actuator
WO2023171112A1 (en) Fluid pressure actuator with cover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779413

Country of ref document: EP

Kind code of ref document: A1