WO2021200587A1 - Electrode for power storage device, composite particles for power storage device, and power storage device - Google Patents

Electrode for power storage device, composite particles for power storage device, and power storage device Download PDF

Info

Publication number
WO2021200587A1
WO2021200587A1 PCT/JP2021/012682 JP2021012682W WO2021200587A1 WO 2021200587 A1 WO2021200587 A1 WO 2021200587A1 JP 2021012682 W JP2021012682 W JP 2021012682W WO 2021200587 A1 WO2021200587 A1 WO 2021200587A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
electrode
porous material
active material
Prior art date
Application number
PCT/JP2021/012682
Other languages
French (fr)
Japanese (ja)
Inventor
千里 後藤
弘義 武
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022512082A priority Critical patent/JPWO2021200587A1/ja
Publication of WO2021200587A1 publication Critical patent/WO2021200587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a power storage device, a composite particle for a power storage device, and a power storage device.
  • an electrode for a power storage device which is advantageous for reducing internal resistance in charging and discharging the power storage device.
  • FIG. 1 is a cross-sectional view schematically showing an electrode for a power storage device according to the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a power storage device according to the present embodiment.
  • FIG. 3 is a diagram showing an equivalent circuit for fitting the measurement result of the internal resistance of the electrode for the power storage device according to the examples and the comparative examples.
  • the power storage device When the power storage device is charged and discharged, an irreversible capacity is generated due to the formation of the SEI film. Since the SEI coating is generally non-conductive, the formation of the SEI coating can increase the internal resistance of the power storage device.
  • the electrode 1 for a power storage device includes an active material 10 and a porous material 20.
  • the ratio R of the content of the porous material 20 to the sum of the content of the active material 10 and the content of the porous material 20 is 0.1% by mass to 10% by mass.
  • Examples of functional groups are amino groups, hydroxy groups, aldehyde groups, carbonyl groups, nitro groups, sulfo groups, and ether groups.
  • the compound forming an atomic group containing a non-metal atom may contain these functional groups, particularly an amino group.
  • the compound forming an atomic group containing a non-metal atom may contain a heterocycle.
  • the porous material 20 has, for example, a metal ion and an organic ligand.
  • the porous material 20 can be formed, for example, by coordinating an organic ligand containing a non-metal atom to a metal ion. According to such a configuration, it is possible to provide the electrode 1 for a power storage device in which the internal resistance is less likely to increase in the charging / discharging of the power storage device.
  • the internal resistance of the electrode 1 for a power storage device can be measured by, for example, the electrochemical impedance method (EIS).
  • the porous material 20 can also be synthesized by using a solution method, a hydrothermal synthesis method, an atomic layer deposition method (ALD), a solid phase mixing method, an ultrasonic irradiation method, and a microwave irradiation method.
  • ALD atomic layer deposition method
  • solid phase mixing method an ultrasonic irradiation method
  • microwave irradiation method a microwave irradiation method
  • the porous material 20 is, for example, an organic metal-organic framework (MOF).
  • the organic metal structure is also called a porous coordination polymer (PCP).
  • the organic metal structure has a network structure formed by the interaction between a metal ion and an organic ligand.
  • the organic metal structure has a high specific surface area.
  • the porous material 20 has, for example, angstrom-order pores.
  • the porous material 20 may have holes on the order of nanometers.
  • the size of the pores of the porous material 20 is not limited to a specific value. Its size may be 0.8 angstroms ( ⁇ ) or greater and 1.0 ⁇ or greater.
  • the pore size of the porous material 20 can be measured, for example, by powder X-ray diffraction (PXRD).
  • the pore size of the porous material 20 can also be determined by using, for example, an X-ray diffraction simulation program such as PowerCell.
  • the Brunauer-Emmett-Teller (BET) specific surface area of the porous material 20 may be 500 m 2 / g or more, 1000 m 2 / g or more, or 1500 m 2 / g or more.
  • the BET specific surface area is a specific surface area obtained by the BET method by adsorbing nitrogen gas.
  • the metal atoms contained in the porous material 20 are Zn, Co, Cu, Al, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn. , Re, Fe, Ni, Pd, Pt, Ag, Cd, Hg, Au, Be, Ga, In, Tl, Sn, Rh, Ru and even if it contains at least one metal atom selected from the group consisting of Pb. good.
  • the metal atom may contain at least one selected from metal atoms belonging to any of Group 2, Group 3, and Group 5 to Group 14 of the periodic table.
  • the organic ligand can form a coordinate bond with a metal atom.
  • a polydentate ligand having two or more coordination sites for coordinating metal ions can be used.
  • the organic ligand may include at least one organic ligand selected from the group consisting of imidazoles, dipyridines, triazines, pyrazines, salins, and aromatic dicarboxylic acids.
  • Imidazoles are heterocyclic compounds containing one or more N's. Examples of imidazoles are 2-methylimidazole and benzimidazole.
  • aromatic dicarboxylic acids examples include phthalic acids, isophthalic acids, terephthalic acids, 2,6-naphthalenedicarboxylic acids, 1,4-naphthalenedicarboxylic acids, biphenylenedicarboxylic acids, 1,2,3-benzenetricarboxylic acids, 1,3.
  • the organic ligand may include at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, terephthalic acid, and benzenetricarboxylic acid.
  • the organic ligand may be at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, terephthalic acid, and benzenetricarboxylic acid.
  • the organic ligand may be at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, and benzenetricarboxylic acid.
  • the organic ligand may contain another substituent in the backbone, if desired.
  • substituents are hydroxy group, amino group, imino group, amide group, sulfonic acid group, methanedithioic acid group, pyridine group, pyrazine group, methoxy group, methyl group, nitro group, methylamino group, dimethylamino group. , Cyano group, fluoro group, chloro group, and bromo group.
  • Examples of the porous material 20 are Zeolitic imidazolate framework-8 (ZIF-8), ZIF-7, ZIF-9, ZIF-67, MIL-53 (Al), and HKUST-1.
  • the porous material 20 may contain at least one selected from the group consisting of ZIF-8, ZIF-67, MIL-53 (Al), and HKUST-1.
  • At least one selected from the group consisting of ZIF-8, ZIF-67, and HKUST-1 may be used, or a plurality of types may be mixed and used.
  • ZIF-8 has Zn and 2-methylimidazole.
  • ZIF-7 has Zn and benzimidazole.
  • ZIF-9 has Co and benzimidazole.
  • ZIF-67 has Co and 2-methylimidazole.
  • MIL-53 (Al) has Al and terephthalic acid.
  • HKUST-1 has Cu and a benzenetricarboxylic acid.
  • an organic ligand containing an amino group and / or a heterocycle is suitable.
  • the average particle size of the porous material 20 is not limited to a specific value.
  • the value may be 1 nm to 10 ⁇ m or 100 nm to 5 ⁇ m.
  • the porous material 20 tends to exist in a desired state in the electrode 1 for a power storage device.
  • the electrode 1 for the power storage device can further suppress the increase in internal resistance.
  • the "average particle size" can be determined using, for example, a scanning electron microscope (SEM). The average particle size can be determined by observing the cross section of the electrode 1 for a power storage device by SEM.
  • the active material 10 is, for example, a negative electrode active material.
  • negative electrode active materials are artificial graphite, natural graphite, mesophase carbon, soft carbon, pitch coated graphite, and hard carbon (HC).
  • the content of the active substance 10 is not limited to a specific value.
  • the value may be 85% by mass to 99% by mass or 90% by mass to 98% by mass with respect to the total mass of the electrode 1 for the power storage device.
  • the electrode 1 for the power storage device further includes a binder 30.
  • the binder 30 binds the active material.
  • the binder 30 are fluororesin, thermoplastic resin, carboxymethyl cellulose, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR), and styrene butadiene rubber (SBR).
  • fluororesins are polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
  • thermoplastics are polypropylene and polyethylene. As the binder 30, only one kind selected from these may be used, or a plurality of kinds may be mixed and used.
  • At least a part of the porous material 20 may be dispersed in the binder 30. According to such a configuration, it is considered that a portion through which ions easily pass is formed inside the electrode 1 for a power storage device. As a result, it is possible to provide the electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
  • Substantially all of the porous material 20 may be dispersed in the binder 30.
  • the electrode 1 for a power storage device in which the internal resistance is less likely to increase during charging and discharging.
  • substantially all is meant to be 85% or more, even 90% or more, especially 95% or more on a mass basis.
  • the dispersed state of the porous material 20 in the electrode 1 for the power storage device can be confirmed by, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the porous material 20 may be coated with the active material 10.
  • “covering” does not need to cover the entire surface, but is used in the sense of including a mode of covering a part.
  • the interaction between the porous material 20 and the surface of the active material 10 is not limited to the mode in which the active material 10 covers the entire surface.
  • the porous material 20 may be present on the surface of the active material 10 by physical adsorption, or may be present on the surface of the active material 10 by chemical bonding. Examples of chemical bonds are hydrogen bonds, covalent bonds, ionic bonds, coordination bonds, and van der Waals forces.
  • the active material 10 In charging and discharging the power storage device, the active material 10 generally expands and contracts. According to such a configuration, the porous material 20 is difficult to separate from the active material 10 even when the power storage device is charged and discharged.
  • composite particles including the active material 10 and the porous material 20 can be provided.
  • Substantially all of the porous material 20 may be coated with the active material 10. As a result, it is possible to provide the electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
  • the porous material 20 dispersed in the binder 30 may or may not be coated with the active material 10. At least a part of the porous material 20 dispersed in the binder 30 does not have to be coated with the active material 10. Such an uncoated porous material 20 can be obtained by mixing the preformed porous material 20 with the active material 10.
  • the ratio P 0 is 0.05% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass, more preferably 0.1% by mass to 3% by mass, and further preferably 0.15% by mass. ⁇ 3% by mass.
  • the ratio P 0 in the composite particle can be obtained, for example, as follows.
  • the BET specific surface area of the active material 10 is defined as a
  • the BET specific surface area of the porous material 20 is defined as b
  • the BET specific surface area of the composite particle is defined as c
  • the porous material 20 may be coated with the negative electrode active material.
  • the ratio P 1 of the content of the porous material 20 coated with the negative electrode active material to the sum of the content of the negative electrode active material and the content of the porous material 20 coating the negative electrode active material is a specific value. Not limited to.
  • the ratio P 1 is 0.05% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass, and particularly 0.15% by mass to 3% by mass.
  • the electrode 1 for a power storage device may contain other optional components as long as the effects of the present invention are not impaired.
  • the electrode 1 for the power storage device may contain a conductive auxiliary agent.
  • the conductive auxiliary agent is typically made of a conductive material having properties that do not change with the voltage applied for charging and discharging the power storage device.
  • the conductive auxiliary agent can be a conductive carbon material or a metallic material.
  • the conductive carbon material is, for example, conductive carbon black such as acetylene black and Ketjen black, or fibrous carbon material such as carbon fiber and carbon nanotube.
  • the conductive carbon material is preferably conductive carbon black.
  • the electrode 1 for the power storage device may contain a dispersant.
  • Dispersants are, for example, anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • sulfonic acid-type surfactants such as alkylbenzene sulfonic acid, oil-soluble alkylbenzene sulfonic acid, ⁇ -olefin sulfonic acid, sodium alkylbenzene sulfonic acid, oil-soluble alkylbenzene sulfonic acid, and ⁇ -olefin sulfonic acid are used as dispersants. It is preferably used.
  • Cellulose derivatives such as carboxymethyl cellulose can also be used.
  • ⁇ Power storage device> As shown in FIG. 2, it is possible to provide a power storage device 2 provided with an electrode 1 for a power storage device.
  • the power storage device electrode 1 functions as, for example, a negative electrode.
  • the power storage device 2 includes, for example, a negative electrode current collector 40, an electrode 1 for the power storage device, an electrolyte layer 50, a positive electrode 60, and a positive electrode current collector 70.
  • the electrolyte layer 50 is arranged between the storage device electrode 1 and the positive electrode 60.
  • the electrode 1 for the power storage device is arranged in the negative electrode current collector 40. Specifically, the electrode 1 for a power storage device is arranged between the electrolyte layer 50 and the negative electrode current collector 40.
  • the positive electrode 60 is arranged on the positive electrode current collector 70. Specifically, the positive electrode 60 is arranged between the electrolyte layer 50 and the positive electrode current collector 70.
  • the power storage device electrode 1 described above can be used as the storage device electrode 1.
  • the thickness of the electrode 1 for the power storage device is not limited to a specific value. The value is, for example, 0.1 ⁇ m to 1000 ⁇ m.
  • the electrolyte layer 50 contains, for example, an electrolyte and a solvent.
  • the electrolyte is, for example, a combination of a metal ion such as lithium ion and a predetermined counter ion for the metal ion.
  • Counterions include, for example, sulfonic acid ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenide ion, bis (trifluoromethanesulfonyl) imide ion, bis (pentafluoroethanesulfonyl) imide ion, bis.
  • electrolytes include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ), And LiCl.
  • the positive electrode 60 is preferably formed by using a positive electrode active material capable of inserting and removing metal or ions.
  • the positive electrode 60 may contain a positive electrode active material as a main component.
  • the principal component means the component contained most in the positive electrode 60 on a mass basis.
  • the positive electrode 60 is not limited to a specific material as long as it contains a positive electrode active material.
  • the positive electrode 60 may be a layer composed of a mixture of the positive electrode active material and other additive materials. As other additive materials, solid electrolytes, conductive auxiliaries, binders and the like can be used.
  • the thickness of the positive electrode 60 is not limited to a specific value.
  • the value is, for example, 0.1 ⁇ m to 1000 ⁇ m.
  • An example of the negative electrode current collector 40 is a foil or mesh made of a metal material such as nickel, aluminum, stainless steel, and copper.
  • the thickness of the negative electrode current collector 40 is, for example, 3 ⁇ m to 500 ⁇ m.
  • the material of the positive electrode current collector 70 may be the same as the material of the negative electrode current collector 40.
  • the thickness of the positive electrode current collector 70 is, for example, 3 ⁇ m to 500 ⁇ m.
  • the power storage device 2 may further include a conductive layer in order to improve the conductivity between the power storage device electrode 1 and the negative electrode current collector 40.
  • the power storage device 2 may further include an adhesive layer in order to improve the adhesiveness between the power storage device electrode 1 and the negative electrode current collector 40.
  • the power storage device 2 may further include a conductive layer in order to improve the conductivity between the positive electrode 60 and the positive electrode current collector 70.
  • the power storage device 2 may include an adhesive layer in order to improve the adhesiveness between the positive electrode 60 and the positive electrode current collector 70.
  • the electrode 1 for a power storage device is obtained by applying an electrode slurry to a current collector.
  • Examples of the method for preparing the slurry for electrodes include a method of preparing the active material 10 and the porous material 20 by mixing them with other components, and a method of synthesizing the porous material 20 on the surface of the active material 10, that is, in situ.
  • the active material 10, the porous material 20, and the binder 30 are mixed, and an appropriate solvent is added to prepare a slurry for electrodes.
  • the electrode 1 for a power storage device can be obtained by applying this electrode slurry to the surface of a current collector and drying it.
  • the electrode 1 for a power storage device may be formed by compression, if necessary, in order to increase the electrode density.
  • the porous material 20 is dispersed in the binder 30.
  • a solution A containing a part of the raw material of the porous material 20 and the active material 10 is prepared.
  • Some of the raw materials of the porous material 20 include, for example, the organic ligand of the porous material 20.
  • solution B is prepared.
  • Solution B is, for example, an aqueous solution of a metal salt that provides metal ions contained in the porous material 20.
  • solution B is added to solution A, and a mixture is prepared by stirring.
  • the porous material 20 is synthesized in the mixed solution.
  • the porous material 20 is synthesized on the surface of the active material 10.
  • the solid component is then obtained by filtering the mixture. By washing the solid components and vacuum drying, composite particles in which the active material 10 is coated with the porous material 20 can be obtained.
  • a binder and an appropriate solvent are added to the obtained composite particles to prepare a slurry for electrodes.
  • the electrode 1 for a power storage device can be obtained by applying this electrode slurry to the surface of a current collector and drying it.
  • the electrode 1 for a power storage device may be formed by compression, if necessary, in order to increase the electrode density.
  • the porous material 20 can be coated on the surface of the active material 10.
  • the porous material 20 since the cleaning operation is included, the porous material 20 is not substantially dispersed in the binder 30 in the electrode 1 for the power storage device.
  • “Substantially not dispersed” means that a small amount of the porous material 20 is allowed to be mixed in the binder 30, and the amount of the porous material 20 dispersed in the binder 30 is less than 2% by mass, or even 1% by mass. It is less than%, and in particular, it means that it is contained in less than 0.5% by mass.
  • a part of the porous material 20 is bound to the surface of the active material 10.
  • the method of applying the electrode slurry to the current collector is not limited to a specific method. Examples of such methods are spin coating, dip coating, bar coating, level coating, and spray coating.
  • the slurry for the storage device electrode according to Examples 1 to 5. was prepared. By applying this slurry to a Cu substrate and drying it, a negative electrode for a power storage device according to Example 1 was obtained.
  • a separator manufactured by Nippon Kodoshi Kogyo Co., Ltd. was attached to the negative electrode for the power storage device according to Example 1 to which the current collector tab was attached.
  • Product name: TF40-50 an electrode having a metal lithium foil attached to a stainless steel mesh to which a current collector tab was attached was placed on the separator. At this time, the metallic lithium foil was brought into contact with the separator.
  • This laminate was placed inside a bag-shaped package made of an aluminum laminate film.
  • this laminated cell is taken out from the glove box, and inside a constant temperature bath kept at 25 ° C., in a potential range of 1.5 V to 0.01 V, it corresponds to 0.1 C with respect to the capacity of the graphite negative electrode sheet. Charging and discharging were carried out for 3 cycles with the current value to be applied, and finally, a reaction was carried out in which lithium ions were inserted into graphite up to 40% of SOC with respect to the capacity of the graphite negative electrode sheet. In this way, two laminated cells containing the electrode sheet for the power storage device according to Example 1 in which the SOC was adjusted to 40% were produced.
  • the laminated cell containing the electrode sheet for the power storage device according to Example 1 in which the SOC was charged to 40% was reinserted into the glove box.
  • the sealed portion of the laminate cell was cut off, and the electrode sheet for the power storage device according to Example 1 was taken out.
  • these were stacked so that the separator was located between the two electrode sheets for the power storage device according to the first embodiment.
  • a non-woven fabric manufactured by Nippon Kodoshi Kogyo Co., Ltd., product name: TF40-50 was used as the separator.
  • the electrode sheet and separator for the power storage device according to Example 1 and the laminate of the electrode sheet for the power storage device according to Example 1 were placed inside a bag-shaped package made of an aluminum laminate film.
  • Example 5 Symmetrical cells for EIS according to Examples 2 to 5 were obtained in the same manner as in Example 1 except that the composite particles were prepared so that the ratio P 0 was the value shown in Table 1. “P 0 ” in Table 1 indicates “the ratio of the content of the porous material covering the active material to the sum of the content of the active material and the content of the porous material coating the active material”. Means.
  • Example 1 Comparison was performed in the same manner as in Example 1 except that pitch-coated graphite SCMG-AF-C (average particle size: 10 ⁇ m) not coated with a porous material was used instead of the composite particles according to Example 1. A symmetric cell for EIS according to Example 1 was obtained.
  • Example 6 As the active material, 25 g of natural graphite CGB-10 (average particle size: 10 ⁇ m) manufactured by Nippon Graphite Industry Co., Ltd. and 7.6 g of 2-methylimidazole were used, and 6.9% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 6 was obtained in the same manner as in Example 1 except that 4.3 g of a 6H 2 O aqueous solution was used.
  • Example 7 Symmetrical cells for EIS according to Example 7 were obtained in the same manner as in Example 6 except that vinylene carbonate was not used.
  • Example 8 As an active material, 25 g of natural graphite CGB-10 (average particle size: 10 ⁇ m) manufactured by Nippon Graphite Industry Co., Ltd. and 15.2 g of 2-methylimidazole were used, and 6.9% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 8 was obtained in the same manner as in Example 1 except that 8.6 g of a 6H 2 O aqueous solution was used.
  • Example 9 Symmetrical cells for EIS according to Example 9 were obtained in the same manner as in Example 8 except that vinylene carbonate was not used.
  • Example 10 As the active material, 25 g of natural graphite CGB-10 (average particle size: 10 ⁇ m) manufactured by Nippon Graphite Industry Co., Ltd. and 22.8 g of 2-methylimidazole were used, and 6.7% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 10 was obtained in the same manner as in Example 1 except that 12.9 g of a 6H 2 O aqueous solution was used.
  • Example 11 Symmetrical cells for EIS according to Example 11 were obtained in the same manner as in Example 10 except that vinylene carbonate was not used.
  • Example 12 in the same manner as in Example 1 except that natural graphite CGB-10 was used as the active material and a 6.7% by mass Co (NO 3 ) 2 aqueous solution was used as the solution B.
  • the composite particles according to the above were obtained.
  • natural graphite was coated with ZIF-67.
  • An EIS symmetric cell according to Example 12 was obtained in the same manner as in Example 1 except that the composite particle according to Example 12 was used instead of the composite particle according to Example 1.
  • Example 13 A symmetric cell for EIS according to Example 13 was obtained in the same manner as in Example 12 except that vinylene carbonate was not used.
  • Example 14 Composite particles according to Example 14 were obtained in the same manner as in Example 6 except that benzimidazole was used instead of 2-methylimidazole. In this composite particle, natural graphite was coated with ZIF-7. An EIS symmetric cell according to Example 14 was obtained in the same manner as in Example 1 except that the composite particle according to Example 14 was used instead of the composite particle according to Example 1.
  • Example 15 Symmetrical cells for EIS according to Example 15 were obtained in the same manner as in Example 14 except that vinylene carbonate was not used.
  • Example 16 Composite particles according to Example 16 were obtained in the same manner as in Example 12, except that benzimidazole was used instead of 2-methylimidazole. In this composite particle, natural graphite was coated with ZIF-9. An EIS symmetric cell according to Example 16 was obtained in the same manner as in Example 1 except that the composite particle according to Example 16 was used instead of the composite particle according to Example 1.
  • Example 17 Symmetrical cells for EIS according to Example 17 were obtained in the same manner as in Example 16 except that vinylene carbonate was not used.
  • Comparative Example 2 A symmetric cell for EIS according to Comparative Example 2 was obtained in the same manner as in Example 6 except that natural graphite CGB-10 not coated with a porous material was used as an electrode for a power storage device.
  • Comparative Example 3 A symmetric cell for EIS according to Comparative Example 3 was obtained in the same manner as in Comparative Example 2 except that vinylene carbonate was not added.
  • Example 18 ZIF-8 Basolite Z1200 and natural graphite CGB-10 manufactured by Aldrich were added in the amounts shown in Table 4. Further, 2% by mass of styrene-butadiene rubber (SBR) and 2% by mass of carboxymethyl cellulose (CMC) were mixed to prepare a slurry for a power storage device electrode according to Examples 18 to 22. By applying this slurry to a Cu substrate and drying it, electrodes for a power storage device according to Examples 18 to 22 were obtained. Then, in the same manner as in Example 1, symmetrical cells for EIS according to Examples 18 to 22 were obtained.
  • the "content R of the porous material" in Table 4 means "the ratio of the content of the porous material to the sum of the content of the negative electrode active material and the content of the porous material".
  • Example 23 to 28 Instead of ZIF-8, ZIF-67 PL-MOF-ZIF67 manufactured by PlasmaChem, MIL-53 (Al) Basolite A100 manufactured by Aldrich, and HKUST-1 Basolite C300 manufactured by Aldrich were used. Symmetrical cells for EIS according to Examples 23, 25, and 27 were obtained in the same manner as in Example 18, except that the porous material of No. 1 was added in the amount shown in Table 5. Except for the use of ZIF-67, MIL-53 (Al), and HKUST-1 instead of ZIF-8 and the addition of these porous materials in the amounts shown in Table 5. , EIS symmetric cells according to Examples 24, 26, and 28 were obtained in the same manner as in Example 19.
  • Example 29 and 30 Composite particles were obtained in the same manner as in Example 6. Examples 18 and 19 except that the composite particles, ZIF-8 Basolite Z1200 manufactured by Aldrich, and natural graphite CGB-10 were added to the slurry for the power storage device electrode in the amounts shown in Table 6. Similarly, symmetrical cells for EIS according to Examples 29 and 30, respectively, were obtained.
  • Examples 31 to 35 (Examples 31 to 35) Implemented except that instead of pitch-coated graphite, mesophase carbon CMS-10 manufactured by Shanghai Sugisugi, hard carbon LN-0010 manufactured by ATEC, or soft carbon NED-270ZJ manufactured by Nippon Steel Chemical Co., Ltd. was used. Similar to Example 4, EIS symmetric cells according to Examples 31, 34, and 35 were obtained. Symmetrical cells for EIS according to Examples 32 and 33 were obtained in the same manner as in Example 4 except that vinylene carbonate was not used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode 1 for a power storage device comprises: an active material 10; and a porous material 20. The porous material 20 comprises a structure in which metal particles and an atomic group comprising non-metal particles are bonded. The non-metal particles include at least an atom other than an oxygen atom. The ratio of the amount of the porous material 20 relative to the sum of the amount of the active material 10 and the amount of the porous material 20 is 0.1-10 mass%.

Description

蓄電デバイス用電極、蓄電デバイス用複合粒子、及び蓄電デバイスElectrodes for power storage devices, composite particles for power storage devices, and power storage devices
 本発明は、蓄電デバイス用電極、蓄電デバイス用複合粒子、及び蓄電デバイスに関する。 The present invention relates to an electrode for a power storage device, a composite particle for a power storage device, and a power storage device.
 特許文献1には、蓄電デバイスの内部抵抗をより低減できる蓄電システムが記載されている。この蓄電デバイスは、芳香族環構造を有する芳香族ジカルボン酸アニオンを含む有機骨格層と前記有機骨格層のカルボン酸に含まれる酸素にアルカリ金属元素が配位して骨格を形成するアルカリ金属元素層とを含む層状構造体を負極活物質として有している。 Patent Document 1 describes a power storage system that can further reduce the internal resistance of the power storage device. In this power storage device, an organic skeleton layer containing an aromatic dicarboxylic acid anion having an aromatic ring structure and an alkali metal element layer in which an alkali metal element is coordinated with oxygen contained in the carboxylic acid of the organic skeleton layer to form a skeleton. It has a layered structure containing and as a negative electrode active material.
特開2020-9846号公報Japanese Unexamined Patent Publication No. 2020-9846
 特許文献1に記載の技術は、蓄電デバイスの充放電において、上記の層状構造体とは異なる負極活物質を備えつつ、蓄電デバイス用電極の内部抵抗を低減させる観点から再検討の余地を有する。そこで、本発明は、蓄電デバイスの充放電において、蓄電デバイス用電極の内部抵抗を低減させるのに有利な技術を提供する。 The technique described in Patent Document 1 has room for reexamination from the viewpoint of reducing the internal resistance of the electrode for the power storage device while providing a negative electrode active material different from the above-mentioned layered structure in charging and discharging the power storage device. Therefore, the present invention provides an advantageous technique for reducing the internal resistance of the electrode for the power storage device in charging and discharging the power storage device.
 本発明は、
 活物質と、
 金属原子と、非金属原子を含む原子団とが結合した構造を含む多孔質材料と、を備え、
 前記非金属原子は、少なくとも酸素原子以外の原子を含み、
 前記活物質の含有量と前記多孔質材料の含有量との和に対する前記多孔質材料の含有量の比率は、0.1質量%~10質量%である、
 蓄電デバイス用電極を提供する。
The present invention
With active material
A porous material containing a structure in which a metal atom and an atomic group containing a non-metal atom are bonded is provided.
The non-metal atom contains at least an atom other than an oxygen atom and contains.
The ratio of the content of the porous material to the sum of the content of the active material and the content of the porous material is 0.1% by mass to 10% by mass.
Provided is an electrode for a power storage device.
 また、本発明は、
 負極活物質と、
 金属原子と、非金属原子を含む原子団とが結合した構造を含み、前記負極活物質を被覆している多孔質材料と、を備え、
 前記非金属原子は、少なくとも酸素原子以外の原子を含み、
 前記負極活物質の含有量と前記多孔質材料の含有量との和に対する前記多孔質材料の含有量の比率は、0.1質量%~5質量%である、
 蓄電デバイス用複合粒子を提供する。
In addition, the present invention
Negative electrode active material and
A porous material containing a structure in which a metal atom and an atomic group containing a non-metal atom are bonded and coating the negative electrode active material is provided.
The non-metal atom contains at least an atom other than an oxygen atom and contains.
The ratio of the content of the porous material to the sum of the content of the negative electrode active material and the content of the porous material is 0.1% by mass to 5% by mass.
Provided are composite particles for a power storage device.
 また、本発明は、
 上記の蓄電デバイス用電極を備えた、蓄電デバイスを提供する。
In addition, the present invention
Provided is a power storage device provided with the above-mentioned electrode for the power storage device.
 本発明によれば、蓄電デバイスの充放電において、内部抵抗を低減させるのに有利な蓄電デバイス用電極を提供できる。 According to the present invention, it is possible to provide an electrode for a power storage device which is advantageous for reducing internal resistance in charging and discharging the power storage device.
図1は、本実施形態に係る蓄電デバイス用電極を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an electrode for a power storage device according to the present embodiment. 図2は、本実施形態に係る蓄電デバイスを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a power storage device according to the present embodiment. 図3は、実施例及び比較例に係る蓄電デバイス用電極の内部抵抗の測定結果をフィッティングするための等価回路を示す図である。FIG. 3 is a diagram showing an equivalent circuit for fitting the measurement result of the internal resistance of the electrode for the power storage device according to the examples and the comparative examples.
 リチウムイオン電池などの二次電池において、負極は、高い還元力を有するため、充放電によって電解液が分解され、負極の表面に被膜が形成される。この被膜は、電解液のさらなる還元分解を防ぐとともに、負極及び電解液の界面でのリチウムイオンの脱離及び/又は挿入の場を提供する。この被膜は、Solid Electrolyte Interface(SEI)被膜とも呼ばれる。 In a secondary battery such as a lithium ion battery, since the negative electrode has a high reducing power, the electrolytic solution is decomposed by charging and discharging, and a film is formed on the surface of the negative electrode. This coating prevents further reductive decomposition of the electrolyte and provides a place for desorption and / or insertion of lithium ions at the interface between the negative electrode and the electrolyte. This coating is also called a Solid Electrolyte Interface (SEI) coating.
 蓄電デバイスを充放電させると、SEI被膜が形成されることによって不可逆容量が発生する。SEI被膜は、一般的に不導体であるため、SEI被膜が形成されることによって、蓄電デバイスの内部抵抗は増加しうる。 When the power storage device is charged and discharged, an irreversible capacity is generated due to the formation of the SEI film. Since the SEI coating is generally non-conductive, the formation of the SEI coating can increase the internal resistance of the power storage device.
 蓄電デバイスの充放電において内部抵抗の増加を抑制するために、リチウムなどのイオンが活物質に効率よく拡散できることが重要である。本発明者らは、鋭意検討の結果、負極活物質に特定の多孔質材料を加えることによって、内部抵抗が増加しにくい蓄電デバイスが得られることを見出した。多孔質材料は、一般的に不導体であるため、抵抗が増加すると考えられる。しかし、本発明者らの検討によれば、多孔質材料の含有量が所定の範囲にあることによって、蓄電デバイスの充放電において、内部抵抗が増加しにくい蓄電デバイス用電極が得られることを見出した。 It is important that ions such as lithium can be efficiently diffused into the active material in order to suppress the increase in internal resistance during charging and discharging of the power storage device. As a result of diligent studies, the present inventors have found that by adding a specific porous material to the negative electrode active material, a power storage device whose internal resistance does not easily increase can be obtained. Porous materials are generally non-conductors and are therefore considered to have increased resistance. However, according to the studies by the present inventors, it has been found that when the content of the porous material is within a predetermined range, an electrode for a power storage device whose internal resistance does not easily increase during charging / discharging of the power storage device can be obtained. rice field.
 以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.
<蓄電デバイス用電極>
 図1に示す通り、蓄電デバイス用電極1は、活物質10と、多孔質材料20とを備えている。活物質10の含有量と多孔質材料20の含有量との和に対する多孔質材料20の含有量の比率Rは、0.1質量%~10質量%である。これにより、蓄電デバイスの充放電において蓄電デバイス用電極1の内部抵抗が増加しにくい。
<Electrodes for power storage devices>
As shown in FIG. 1, the electrode 1 for a power storage device includes an active material 10 and a porous material 20. The ratio R of the content of the porous material 20 to the sum of the content of the active material 10 and the content of the porous material 20 is 0.1% by mass to 10% by mass. As a result, the internal resistance of the electrode 1 for the power storage device is unlikely to increase during charging / discharging of the power storage device.
 比率Rは、0.12質量%~7質量%であってもよく、0.13質量%~5質量%であってもよい。 The ratio R may be 0.12% by mass to 7% by mass, or 0.13% by mass to 5% by mass.
 多孔質材料20は、例えば、金属原子と、非金属原子を含む原子団とが結合した構造を含む。非金属原子は、少なくとも酸素原子以外の原子を含む。多孔質材料20は、例えば、多孔質材料20において金属原子同士の間に原子団が配置されている。原子団は、例えば、炭素原子を含んでいる。原子団は、酸素原子を含んでいてもよい。非金属原子を含む原子団は、有機配位子であってもよい。非金属原子を含む原子団は、官能基をさらに含んでいてもよい。官能基の種類は、特定の種類に限定されない。官能基の例は、アミノ基、ヒドロキシ基、アルデヒド基、カルボニル基、ニトロ基、スルホ基、及びエーテル基である。非金属原子を含む原子団をなす化合物は、これらの官能基、特にアミノ基を含んでいてもよい。非金属原子を含む原子団をなす化合物は、複素環を含んでいてもよい。 The porous material 20 includes, for example, a structure in which a metal atom and an atomic group containing a non-metal atom are bonded. Non-metal atoms include at least atoms other than oxygen atoms. In the porous material 20, for example, atomic groups are arranged between metal atoms in the porous material 20. The atomic group contains, for example, a carbon atom. The atomic group may contain an oxygen atom. The atomic group containing the non-metal atom may be an organic ligand. Atomic groups containing non-metal atoms may further contain functional groups. The type of functional group is not limited to a specific type. Examples of functional groups are amino groups, hydroxy groups, aldehyde groups, carbonyl groups, nitro groups, sulfo groups, and ether groups. The compound forming an atomic group containing a non-metal atom may contain these functional groups, particularly an amino group. The compound forming an atomic group containing a non-metal atom may contain a heterocycle.
 多孔質材料20は、例えば、金属イオン及び有機配位子を有する。多孔質材料20は、例えば、金属イオンに非金属原子を含む有機配位子が配位することによって形成されうる。このような構成によれば、蓄電デバイスの充放電において、内部抵抗がより増加しにくい蓄電デバイス用電極1が提供されうる。蓄電デバイス用電極1の内部抵抗は、例えば、電気化学インピーダンス法(EIS)により測定できる。多孔質材料20は、溶液法、水熱合成法、原子層堆積法(ALD)、固相混合法、超音波照射法、及びマイクロ波照射法を用いて合成することもできる。 The porous material 20 has, for example, a metal ion and an organic ligand. The porous material 20 can be formed, for example, by coordinating an organic ligand containing a non-metal atom to a metal ion. According to such a configuration, it is possible to provide the electrode 1 for a power storage device in which the internal resistance is less likely to increase in the charging / discharging of the power storage device. The internal resistance of the electrode 1 for a power storage device can be measured by, for example, the electrochemical impedance method (EIS). The porous material 20 can also be synthesized by using a solution method, a hydrothermal synthesis method, an atomic layer deposition method (ALD), a solid phase mixing method, an ultrasonic irradiation method, and a microwave irradiation method.
 多孔質材料20は、例えば、有機金属構造体(MOF)である。有機金属構造体は、多孔性配位高分子(PCP)とも呼ばれる。有機金属構造体は、金属イオンと有機配位子との相互作用により形成されたネットワーク構造を有する。有機金属構造体は、高い比表面積を有する。多孔質材料20は、例えば、オングストロームオーダーの孔を有する。多孔質材料20は、ナノメートルオーダーの孔を有していてもよい。 The porous material 20 is, for example, an organic metal-organic framework (MOF). The organic metal structure is also called a porous coordination polymer (PCP). The organic metal structure has a network structure formed by the interaction between a metal ion and an organic ligand. The organic metal structure has a high specific surface area. The porous material 20 has, for example, angstrom-order pores. The porous material 20 may have holes on the order of nanometers.
 多孔質材料20の孔のサイズは、特定の値に限定されない。そのサイズは、0.8オングストローム(Å)以上であってもよく、1.0Å以上であってもよい。多孔質材料20の孔のサイズは、例えば、粉末X線回折(PXRD)によって測定できる。また、多孔質材料20の孔のサイズは、例えば、PowderCellなどのX線回折シミュレーションプログラムを用いて求めることもできる。 The size of the pores of the porous material 20 is not limited to a specific value. Its size may be 0.8 angstroms (Å) or greater and 1.0 Å or greater. The pore size of the porous material 20 can be measured, for example, by powder X-ray diffraction (PXRD). The pore size of the porous material 20 can also be determined by using, for example, an X-ray diffraction simulation program such as PowerCell.
 蓄電デバイス用電極1において、多孔質材料20の孔のサイズは、例えば、Li+の直径より大きいことが好ましい。多孔質材料20の孔の形は、特定の形状に限定されない。その形状の例は、ボトルネック型、直管型、及びホーン型である。多孔質材料20の孔は、柔軟性を有していてもよい。 In the electrode 1 for a power storage device, the size of the pores of the porous material 20 is preferably larger than the diameter of Li +, for example. The shape of the pores of the porous material 20 is not limited to a specific shape. Examples of its shape are bottleneck type, straight tube type, and horn type. The pores of the porous material 20 may have flexibility.
 多孔質材料20のBrunauer-Emmett-Teller(BET)比表面積は、500m2/g以上であってもよく、1000m2/g以上であってもよく、1500m2/g以上であってもよい。なお、BET比表面積とは、窒素ガス吸着によるBET法によって求めた比表面積である。 The Brunauer-Emmett-Teller (BET) specific surface area of the porous material 20 may be 500 m 2 / g or more, 1000 m 2 / g or more, or 1500 m 2 / g or more. The BET specific surface area is a specific surface area obtained by the BET method by adsorbing nitrogen gas.
 多孔質材料20に含まれる金属原子は、Zn、Co、Cu、Al、Mg、Ca、Sr、Ba、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ni、Pd、Pt、Ag、Cd、Hg、Au、Be、Ga、In、Tl、Sn、Rh、Ru及びPbからなる群より選ばれる少なくとも1つの金属原子を含んでいてもよい。金属原子は、周期表の第2族、第3族、及び第5族~第14族のいずれかに属する金属原子から選ばれる少なくとも1つを含んでいてもよい。金属原子は、具体的にはZn、Co、Cu、Al、Mg、Fe、及びNiからなる群より選ばれる少なくとも1つの金属原子、特にZn、Co、Cu、及びAlからなる群より選ばれる少なくとも1つの金属原子を含んでいてもよい。金属原子は、Zn、Co、Cu、及びAlからなる群より選ばれる少なくとも1つの金属原子であってもよい。金属原子を含む金属塩の例は、硝酸塩、硫酸塩、フッ化物、塩化物、臭化物、ヨウ化物、炭酸塩、リン酸塩、硫化物、及び水酸化物である。 The metal atoms contained in the porous material 20 are Zn, Co, Cu, Al, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn. , Re, Fe, Ni, Pd, Pt, Ag, Cd, Hg, Au, Be, Ga, In, Tl, Sn, Rh, Ru and even if it contains at least one metal atom selected from the group consisting of Pb. good. The metal atom may contain at least one selected from metal atoms belonging to any of Group 2, Group 3, and Group 5 to Group 14 of the periodic table. The metal atom is specifically selected from at least one metal atom selected from the group consisting of Zn, Co, Cu, Al, Mg, Fe, and Ni, particularly at least selected from the group consisting of Zn, Co, Cu, and Al. It may contain one metal atom. The metal atom may be at least one metal atom selected from the group consisting of Zn, Co, Cu, and Al. Examples of metal salts containing metal atoms are nitrates, sulfates, fluorides, chlorides, bromides, iodides, carbonates, phosphates, sulfides, and hydroxides.
 有機配位子は、金属原子と配位結合を形成しうる。有機配位子は、金属イオンを配位する配位部位を2以上有する多座配位子を使用できる。有機配位子は、イミダゾール類、ジピリジン類、トリアジン類、ピラジン類、サリン類、及び芳香族ジカルボン酸類からなる群より選ばれる少なくとも1つの有機配位子を含んでいてもよい。イミダゾール類は、1又は複数のNを含む複素環式化合物である。イミダゾール類の例は、2-メチルイミダゾール及びベンゾイミダゾールである。芳香族ジカルボン酸類の例は、フタル酸類、イソフタル酸類、テレフタル酸類、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、ビフェニレンジカルボン酸、1,2,3-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、1,2,3,4-ベンゼンテトラカルボン酸、1,2,4,5-ベンゼンテトラカルボン酸、シクロブチル-1,4-ベンゼンジカルボキシレート、2-アミノ-1,4-ベンゼンジカルボキシレート、テトラヒドロピレン-2,7-ジカルボキシレート、テルフェニルジカルボキシレート、2,6-ナフタレンジカルボキシレート、ピレン-2,7-ジカルボキシレート、及びビフェニルジカルボキシレートである。有機配位子は、2-メチルイミダゾール、ベンゾイミダゾール、テレフタル酸、及びベンゼントリカルボン酸からなる群より選ばれる少なくとも1つの有機配位子を含んでいてもよい。有機配位子は、2-メチルイミダゾール、ベンゾイミダゾール、テレフタル酸、及びベンゼントリカルボン酸からなる群より選ばれる少なくとも1つの有機配位子であってもよい。場合によっては、有機配位子は、2-メチルイミダゾール、ベンゾイミダゾール、及びベンゼントリカルボン酸からなる群より選ばれる少なくとも1つの有機配位子であってもよい。多孔質材料20がこのような有機配位子を有することによって、蓄電デバイスの充放電において、より内部抵抗が増加しにくい蓄電デバイス用電極1が提供されうる。 The organic ligand can form a coordinate bond with a metal atom. As the organic ligand, a polydentate ligand having two or more coordination sites for coordinating metal ions can be used. The organic ligand may include at least one organic ligand selected from the group consisting of imidazoles, dipyridines, triazines, pyrazines, salins, and aromatic dicarboxylic acids. Imidazoles are heterocyclic compounds containing one or more N's. Examples of imidazoles are 2-methylimidazole and benzimidazole. Examples of aromatic dicarboxylic acids are phthalic acids, isophthalic acids, terephthalic acids, 2,6-naphthalenedicarboxylic acids, 1,4-naphthalenedicarboxylic acids, biphenylenedicarboxylic acids, 1,2,3-benzenetricarboxylic acids, 1,3. , 5-Benzene tricarboxylic acid, 1,2,3,4-benzenetetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid, cyclobutyl-1,4-benzenedicarboxylate, 2-amino-1, 4-Benzene dicarboxylate, tetrahydropyrene-2,7-dicarboxylate, terphenyldicarboxylate, 2,6-naphthalenedicarboxylate, pyrene-2,7-dicarboxylate, and biphenyldicarboxylate. .. The organic ligand may include at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, terephthalic acid, and benzenetricarboxylic acid. The organic ligand may be at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, terephthalic acid, and benzenetricarboxylic acid. In some cases, the organic ligand may be at least one organic ligand selected from the group consisting of 2-methylimidazole, benzimidazole, and benzenetricarboxylic acid. When the porous material 20 has such an organic ligand, it is possible to provide an electrode 1 for a power storage device in which the internal resistance is less likely to increase during charging / discharging of the power storage device.
 有機配位子は、必要に応じて骨格中に別の置換基を含んでいてもよい。別の置換基の例は、ヒドロキシ基、アミノ基、イミノ基、アミド基、スルホン酸基、メタンジチオ酸基、ピリジン基、ピラジン基、メトキシ基、メチル基、ニトロ基、メチルアミノ基、ジメチルアミノ基、シアノ基、フルオロ基、クロロ基、及びブロモ基である。有機配位子が別の置換基を含むことによって、多孔質材料20はLi+をより安定化させることができる。その結果、より内部抵抗が増加しにくい蓄電デバイス用電極1が提供されうる。 The organic ligand may contain another substituent in the backbone, if desired. Examples of other substituents are hydroxy group, amino group, imino group, amide group, sulfonic acid group, methanedithioic acid group, pyridine group, pyrazine group, methoxy group, methyl group, nitro group, methylamino group, dimethylamino group. , Cyano group, fluoro group, chloro group, and bromo group. By including another substituent in the organic ligand, the porous material 20 can make Li + more stable. As a result, the electrode 1 for a power storage device whose internal resistance is less likely to increase can be provided.
 多孔質材料20の例は、Zeolitic imidazolate framework-8(ZIF-8)、ZIF-7、ZIF-9、ZIF-67、MIL-53(Al)、及びHKUST-1である。多孔質材料20は、ZIF-8、ZIF-67、MIL-53(Al)、及びHKUST-1からなる群より選ばれる少なくとも1つを含んでいてもよい。多孔質材料20は、ZIF-8、ZIF-67、MIL-53(Al)、及びHKUST-1からなる群より選ばれる少なくとも1つを用いてもよく、複数種を混合して用いてもよい。場合によっては、多孔質材料20は、ZIF-8、ZIF-67、及びHKUST-1からなる群より選ばれる少なくとも1つを含んでいてもよい。場合によっては、多孔質材料20は、ZIF-8、ZIF-67、及びHKUST-1からなる群より選ばれる少なくとも1つを用いてもよく、複数種を混合して用いてもよい。ZIF-8は、Zn及び2-メチルイミダゾールを有する。ZIF-7は、Zn及びベンゾイミダゾールを有する。ZIF-9は、Co及びベンゾイミダゾールを有する。ZIF-67は、Co及び2-メチルイミダゾールを有する。MIL-53(Al)は、Al及びテレフタル酸を有する。HKUST-1は、Cu及びベンゼントリカルボン酸を有する。 Examples of the porous material 20 are Zeolitic imidazolate framework-8 (ZIF-8), ZIF-7, ZIF-9, ZIF-67, MIL-53 (Al), and HKUST-1. The porous material 20 may contain at least one selected from the group consisting of ZIF-8, ZIF-67, MIL-53 (Al), and HKUST-1. As the porous material 20, at least one selected from the group consisting of ZIF-8, ZIF-67, MIL-53 (Al), and HKUST-1 may be used, or a plurality of types may be mixed and used. .. In some cases, the porous material 20 may contain at least one selected from the group consisting of ZIF-8, ZIF-67, and HKUST-1. In some cases, as the porous material 20, at least one selected from the group consisting of ZIF-8, ZIF-67, and HKUST-1 may be used, or a plurality of types may be mixed and used. ZIF-8 has Zn and 2-methylimidazole. ZIF-7 has Zn and benzimidazole. ZIF-9 has Co and benzimidazole. ZIF-67 has Co and 2-methylimidazole. MIL-53 (Al) has Al and terephthalic acid. HKUST-1 has Cu and a benzenetricarboxylic acid.
 低温域における内部抵抗の低減には、例えば、アミノ基及び/又は複素環を含む有機配位子の使用が適している。 For reducing the internal resistance in the low temperature range, for example, the use of an organic ligand containing an amino group and / or a heterocycle is suitable.
 多孔質材料20の平均粒径は、特定の値に限定されない。その値は、1nm~10μmであってもよく、100nm~5μmであってもよい。多孔質材料20の平均粒径を適切に調節することによって、蓄電デバイス用電極1において多孔質材料20が所望の状態で存在しやすい。これにより、蓄電デバイス用電極1は、内部抵抗の増加をより抑制しうる。本明細書において、「平均粒径」は、例えば、走査型電子顕微鏡(SEM)を用いて求めることができる。平均粒径は、SEMによって、蓄電デバイス用電極1の断面を観察することによって求めることができる。具体的に、平均粒径は、多孔質材料20の全体を観察できる任意の50個の多孔質材料20について、その最大径及び最小径を測定してその平均値を各多孔質材料20の粒径とし、その平均値を算出することによって求めることができる。平均粒径は、透過型電子顕微鏡(TEM)を用いて求めることもできる。 The average particle size of the porous material 20 is not limited to a specific value. The value may be 1 nm to 10 μm or 100 nm to 5 μm. By appropriately adjusting the average particle size of the porous material 20, the porous material 20 tends to exist in a desired state in the electrode 1 for a power storage device. As a result, the electrode 1 for the power storage device can further suppress the increase in internal resistance. In the present specification, the "average particle size" can be determined using, for example, a scanning electron microscope (SEM). The average particle size can be determined by observing the cross section of the electrode 1 for a power storage device by SEM. Specifically, the average particle size is determined by measuring the maximum and minimum diameters of any 50 porous materials 20 capable of observing the entire porous material 20 and setting the average value as the grains of each porous material 20. It can be obtained by using the diameter as the diameter and calculating the average value thereof. The average particle size can also be determined using a transmission electron microscope (TEM).
 活物質10は、例えば、負極活物質である。負極活物質の例は、人造黒鉛、天然黒鉛、メソフェーズカーボン、ソフトカーボン、ピッチコートグラファイト、及びハードカーボン(HC)である。 The active material 10 is, for example, a negative electrode active material. Examples of negative electrode active materials are artificial graphite, natural graphite, mesophase carbon, soft carbon, pitch coated graphite, and hard carbon (HC).
 活物質10の含有量は、特定の値に制限されない。その値は、蓄電デバイス用電極1の総質量に対して、85質量%~99質量%であってもよく、90質量%~98質量%であってもよい。 The content of the active substance 10 is not limited to a specific value. The value may be 85% by mass to 99% by mass or 90% by mass to 98% by mass with respect to the total mass of the electrode 1 for the power storage device.
 蓄電デバイス用電極1は、バインダー30をさらに備えている。バインダー30は、活物質を結着させる。バインダー30の例は、フッ素樹脂、熱可塑性樹脂、カルボキシメチルセルロース、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)、及びスチレンブタジエンゴム(SBR)である。フッ素樹脂の例は、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、及びフッ素ゴムである。熱可塑性樹脂の例は、ポリプロピレン及びポリエチレンである。バインダー30は、これらから選ばれる1種類のみを用いてもよく、複数種を混合して用いてもよい。 The electrode 1 for the power storage device further includes a binder 30. The binder 30 binds the active material. Examples of the binder 30 are fluororesin, thermoplastic resin, carboxymethyl cellulose, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, natural butyl rubber (NBR), and styrene butadiene rubber (SBR). Examples of fluororesins are polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber. Examples of thermoplastics are polypropylene and polyethylene. As the binder 30, only one kind selected from these may be used, or a plurality of kinds may be mixed and used.
 バインダー30の含有量は、特定の値に制限されない。その値は、蓄電デバイス用電極1の総質量に対して、0.5質量%~15質量%であってもよく、1質量%~5質量%であってもよい。 The content of the binder 30 is not limited to a specific value. The value may be 0.5% by mass to 15% by mass or 1% by mass to 5% by mass with respect to the total mass of the electrode 1 for the power storage device.
 多孔質材料20の少なくとも一部は、バインダー30に分散していてもよい。このような構成によれば、蓄電デバイス用電極1の内部にイオンが通過しやすい部分が形成されると考えられる。その結果、蓄電デバイスの充放電において、より内部抵抗が増加しにくい蓄電デバイス用電極1が提供されうる。 At least a part of the porous material 20 may be dispersed in the binder 30. According to such a configuration, it is considered that a portion through which ions easily pass is formed inside the electrode 1 for a power storage device. As a result, it is possible to provide the electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
 多孔質材料20の実質的にすべてが、バインダー30に分散していてもよい。これにより、充放電において、内部抵抗がより増加しにくい蓄電デバイス用電極1が提供されうる。「実質的にすべて」とは、質量基準で85%以上、さらには90%以上、特に95%以上であることを意味する。蓄電デバイス用電極1における多孔質材料20の分散状態は、例えば、透過型電子顕微鏡(TEM)で確認できる。 Substantially all of the porous material 20 may be dispersed in the binder 30. As a result, it is possible to provide the electrode 1 for a power storage device in which the internal resistance is less likely to increase during charging and discharging. By "substantially all" is meant to be 85% or more, even 90% or more, especially 95% or more on a mass basis. The dispersed state of the porous material 20 in the electrode 1 for the power storage device can be confirmed by, for example, a transmission electron microscope (TEM).
 多孔質材料20の少なくとも一部は、活物質10を被覆していてもよい。なお、本明細書において、「被覆」は、全面を覆っていることまでは要さず、一部を覆う態様も含む意味で用いる。多孔質材料20と活物質10の表面との相互作用は、活物質10が全面を覆われている態様に限らずに得られる。多孔質材料20は、物理吸着によって活物質10の表面に存在していてもよく、化学結合によって活物質10の表面に存在していてもよい。化学結合の例は、水素結合、共有結合、イオン結合、配位結合、及びファンデルワールス力である。蓄電デバイスの充放電において、一般的に、活物質10は、膨張及び収縮する。このような構成によれば、蓄電デバイスを充放電しても活物質10から多孔質材料20が離れにくい。このように、活物質10と、多孔質材料20とを備えた複合粒子が提供されうる。 At least a part of the porous material 20 may be coated with the active material 10. In addition, in this specification, "covering" does not need to cover the entire surface, but is used in the sense of including a mode of covering a part. The interaction between the porous material 20 and the surface of the active material 10 is not limited to the mode in which the active material 10 covers the entire surface. The porous material 20 may be present on the surface of the active material 10 by physical adsorption, or may be present on the surface of the active material 10 by chemical bonding. Examples of chemical bonds are hydrogen bonds, covalent bonds, ionic bonds, coordination bonds, and van der Waals forces. In charging and discharging the power storage device, the active material 10 generally expands and contracts. According to such a configuration, the porous material 20 is difficult to separate from the active material 10 even when the power storage device is charged and discharged. As described above, composite particles including the active material 10 and the porous material 20 can be provided.
 多孔質材料20の実質的にすべてが、活物質10を被覆していてもよい。これにより、蓄電デバイスの充放電において、内部抵抗がより増加しにくい蓄電デバイス用電極1が提供されうる。 Substantially all of the porous material 20 may be coated with the active material 10. As a result, it is possible to provide the electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
 活物質10の表面が多孔質材料20で被覆されていることは、例えば、粉末X線回折測定(XRD)法及び/又は透過型電子顕微鏡(TEM)によって確認できる。 The fact that the surface of the active material 10 is covered with the porous material 20 can be confirmed by, for example, a powder X-ray diffraction measurement (XRD) method and / or a transmission electron microscope (TEM).
 バインダー30に分散している多孔質材料20は、活物質10を被覆していてもよいし、被覆していなくてもよい。バインダー30に分散している多孔質材料20の少なくとも一部は、活物質10を被覆していなくてもよい。このような非被覆の多孔質材料20は、予め形成した多孔質材料20を活物質10と混合することにより得ることができる。 The porous material 20 dispersed in the binder 30 may or may not be coated with the active material 10. At least a part of the porous material 20 dispersed in the binder 30 does not have to be coated with the active material 10. Such an uncoated porous material 20 can be obtained by mixing the preformed porous material 20 with the active material 10.
 複合粒子において、活物質10の含有量M10と活物質10を被覆している多孔質材料20の含有量M20との和(M10+M20)に対する活物質10を被覆している多孔質材料20の含有量M20の比率P0(=100×M20/(M10+M20))は、特定の値に限定されない。比率P0は、0.05質量%~10質量%であり、好ましくは0.1質量%~5質量%、より好ましくは0.1質量%~3質量%、さらに好ましくは0.15質量%~3質量%である。比率P0を適切に調節することによって、蓄電デバイスの充放電において、内部抵抗がより増加しにくい蓄電デバイス用電極1が提供されうる。 In the composite particle, the porous material coating the active material 10 with respect to the sum (M 10 + M 20 ) of the content M 10 of the active material 10 and the content M 20 of the porous material 20 coating the active material 10 The ratio P 0 (= 100 × M 20 / (M 10 + M 20 )) of the content M 20 of the material 20 is not limited to a specific value. The ratio P 0 is 0.05% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass, more preferably 0.1% by mass to 3% by mass, and further preferably 0.15% by mass. ~ 3% by mass. By appropriately adjusting the ratio P 0 , it is possible to provide an electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
 複合粒子における比率P0は、例えば、以下のようにして求めることができる。活物質10のBET比表面積をaと定義し、多孔質材料20のBET比表面積をbと定義し、複合粒子のBET比表面積をcと定義したとき、比率P0[質量%]は、下記式(1)により決定される。
 P0[質量%]=100×(c-a)/(b-a) ・・・(1)
The ratio P 0 in the composite particle can be obtained, for example, as follows. When the BET specific surface area of the active material 10 is defined as a, the BET specific surface area of the porous material 20 is defined as b, and the BET specific surface area of the composite particle is defined as c, the ratio P 0 [mass%] is as follows. It is determined by the formula (1).
P 0 [mass%] = 100 × (ca) / (ba) ・ ・ ・ (1)
 複合粒子において、多孔質材料20の少なくとも一部は、負極活物質を被覆していてもよい。負極活物質の含有量と負極活物質を被覆している多孔質材料20の含有量との和に対する負極活物質を被覆している多孔質材料20の含有量の比率P1は、特定の値に限定されない。比率P1は、0.05質量%~10質量%であり、好ましくは0.1質量%~5質量%、特に0.15質量%~3質量%である。比率P1を適切に調節することによって、蓄電デバイスの充放電において、内部抵抗がより増加しにくい蓄電デバイス用電極1が提供されうる。 In the composite particles, at least a part of the porous material 20 may be coated with the negative electrode active material. The ratio P 1 of the content of the porous material 20 coated with the negative electrode active material to the sum of the content of the negative electrode active material and the content of the porous material 20 coating the negative electrode active material is a specific value. Not limited to. The ratio P 1 is 0.05% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass, and particularly 0.15% by mass to 3% by mass. By appropriately adjusting the ratio P 1 , it is possible to provide an electrode 1 for a power storage device whose internal resistance is less likely to increase during charging / discharging of the power storage device.
 蓄電デバイス用電極1は、本発明の効果を損なわない範囲において、他の任意成分を含んでいてもよい。 The electrode 1 for a power storage device may contain other optional components as long as the effects of the present invention are not impaired.
 蓄電デバイス用電極1は、導電助剤を含んでいてもよい。導電助剤は、典型的には、蓄電デバイスの充放電のために印加される電圧によって変化しない性状を有する導電性材料でできている。導電助剤は、導電性カーボン材料又は金属材料でありうる。導電性カーボン材料は、例えば、アセチレンブラック及びケッチェンブラック等の導電性カーボンブラック、又は、炭素繊維及びカーボンナノチューブ等の繊維状のカーボン材料である。導電性カーボン材料は、望ましくは導電性カーボンブラックである。 The electrode 1 for the power storage device may contain a conductive auxiliary agent. The conductive auxiliary agent is typically made of a conductive material having properties that do not change with the voltage applied for charging and discharging the power storage device. The conductive auxiliary agent can be a conductive carbon material or a metallic material. The conductive carbon material is, for example, conductive carbon black such as acetylene black and Ketjen black, or fibrous carbon material such as carbon fiber and carbon nanotube. The conductive carbon material is preferably conductive carbon black.
 活物質10及び多孔質材料20を良好に分散させるために、蓄電デバイス用電極1は、分散剤を含んでいてもよい。分散剤は、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤である。なかでも、アルキルベンゼンスルホン酸、油溶性アルキルベンゼンスルホン酸、α-オレフィンスルホン酸、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸型の界面活性剤が分散剤として好ましく用いられる。カルボキシメチルセルロースなどのセルロース誘導体も用いることができる。 In order to disperse the active material 10 and the porous material 20 satisfactorily, the electrode 1 for the power storage device may contain a dispersant. Dispersants are, for example, anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Among them, sulfonic acid-type surfactants such as alkylbenzene sulfonic acid, oil-soluble alkylbenzene sulfonic acid, α-olefin sulfonic acid, sodium alkylbenzene sulfonic acid, oil-soluble alkylbenzene sulfonic acid, and α-olefin sulfonic acid are used as dispersants. It is preferably used. Cellulose derivatives such as carboxymethyl cellulose can also be used.
<蓄電デバイス>
 図2に示す通り、蓄電デバイス用電極1を備えた蓄電デバイス2を提供できる。蓄電デバイス2において、蓄電デバイス用電極1は、例えば、負極として機能する。
<Power storage device>
As shown in FIG. 2, it is possible to provide a power storage device 2 provided with an electrode 1 for a power storage device. In the power storage device 2, the power storage device electrode 1 functions as, for example, a negative electrode.
 蓄電デバイス2は、例えば、負極集電体40と、蓄電デバイス用電極1と、電解質層50と、正極60と、正極集電体70とを備えている。電解質層50は、蓄電デバイス用電極1と正極60との間に配置されている。蓄電デバイス用電極1は、負極集電体40に配置されている。具体的には、蓄電デバイス用電極1は、電解質層50と負極集電体40との間に配置されている。正極60は、正極集電体70に配置されている。具体的には、正極60は、電解質層50と正極集電体70との間に配置されている。 The power storage device 2 includes, for example, a negative electrode current collector 40, an electrode 1 for the power storage device, an electrolyte layer 50, a positive electrode 60, and a positive electrode current collector 70. The electrolyte layer 50 is arranged between the storage device electrode 1 and the positive electrode 60. The electrode 1 for the power storage device is arranged in the negative electrode current collector 40. Specifically, the electrode 1 for a power storage device is arranged between the electrolyte layer 50 and the negative electrode current collector 40. The positive electrode 60 is arranged on the positive electrode current collector 70. Specifically, the positive electrode 60 is arranged between the electrolyte layer 50 and the positive electrode current collector 70.
 蓄電デバイス用電極1は、上記で説明した蓄電デバイス用電極1を用いることができる。蓄電デバイス用電極1の厚さは、特定の値に限定されない。その値は、例えば、0.1μm~1000μmである。 As the storage device electrode 1, the power storage device electrode 1 described above can be used. The thickness of the electrode 1 for the power storage device is not limited to a specific value. The value is, for example, 0.1 μm to 1000 μm.
 電解質層50は、例えば、電解質と、溶媒とを含む。電解質は、例えば、リチウムイオンなどの金属イオンとこれに対する所定のカウンターイオンとを組み合わせたものである。カウンターイオンは、例えば、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミド、又はハロゲンイオンである。電解質の具体例は、LiCF3SO3、LiClO4、LiBF4、LiPF6、LiAsF6、LiN(SO2F)2、LiN(SO2CF32、LiN(SO225)、及びLiClである。 The electrolyte layer 50 contains, for example, an electrolyte and a solvent. The electrolyte is, for example, a combination of a metal ion such as lithium ion and a predetermined counter ion for the metal ion. Counterions include, for example, sulfonic acid ion, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenide ion, bis (trifluoromethanesulfonyl) imide ion, bis (pentafluoroethanesulfonyl) imide ion, bis. (Fluorosulfonyl) imide or halogen ion. Specific examples of electrolytes include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ), And LiCl.
 溶媒の例は、カーボネート類、ニトリル類、アミド類、及びエーテル類からなる群より選ばれる少なくとも1つの非水溶媒である。非水溶媒の具体例は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル、プロピロニトリル、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメトキシエタン、ジエトキシエタン、及びγ-ブチロラクトンである。溶媒として、1種類の溶媒が単独で用いられてもよいし、2種類以上の溶媒が併用されて用いられてもよい。なお、上記の溶媒に電解質が溶解したものを「電解液」ということがある。 An example of a solvent is at least one non-aqueous solvent selected from the group consisting of carbonates, nitriles, amides, and ethers. Specific examples of non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, acetonitrile, propyronitrile, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethoxy. Ethane, diethoxyethane, and γ-butyrolactone. As the solvent, one kind of solvent may be used alone, or two or more kinds of solvents may be used in combination. A solution in which an electrolyte is dissolved in the above solvent may be referred to as an "electrolyte solution".
 電解液は、添加剤をさらに含有していてもよい。添加剤の例は、ビニレンカーボネート(VC)及びフルオロエチレンカーボネートである。電解液における添加剤の濃度は、例えば、0.1質量%~15質量%である。 The electrolytic solution may further contain additives. Examples of additives are vinylene carbonate (VC) and fluoroethylene carbonate. The concentration of the additive in the electrolytic solution is, for example, 0.1% by mass to 15% by mass.
 正極60は、金属又はイオンを挿入及び脱離しうる正極活物質を用いて形成されたものが好ましい。正極60は、正極活物質を主成分として含んでいてもよい。主成分とは、正極60に質量基準で最も多く含まれた成分を意味する。正極60は、正極活物質を含んでいれば、特定の材料に限定されない。正極60は、正極活物質と他の添加材料との混合物から構成される層であってもよい。他の添加材料としては、固体電解質、導電助剤、及びバインダーなどが用いられうる。 The positive electrode 60 is preferably formed by using a positive electrode active material capable of inserting and removing metal or ions. The positive electrode 60 may contain a positive electrode active material as a main component. The principal component means the component contained most in the positive electrode 60 on a mass basis. The positive electrode 60 is not limited to a specific material as long as it contains a positive electrode active material. The positive electrode 60 may be a layer composed of a mixture of the positive electrode active material and other additive materials. As other additive materials, solid electrolytes, conductive auxiliaries, binders and the like can be used.
 正極60の厚さは、特定の値に限定されない。その値は、例えば、0.1μm~1000μmである。 The thickness of the positive electrode 60 is not limited to a specific value. The value is, for example, 0.1 μm to 1000 μm.
 負極集電体40の例は、ニッケル、アルミニウム、ステンレス、及び銅などの金属材料でできた箔又はメッシュである。負極集電体40の厚さは、例えば、3μm~500μmである。 An example of the negative electrode current collector 40 is a foil or mesh made of a metal material such as nickel, aluminum, stainless steel, and copper. The thickness of the negative electrode current collector 40 is, for example, 3 μm to 500 μm.
 正極集電体70の材料は、負極集電体40の材料と同じであってもよい。正極集電体70の厚さは、例えば、3μm~500μmである。 The material of the positive electrode current collector 70 may be the same as the material of the negative electrode current collector 40. The thickness of the positive electrode current collector 70 is, for example, 3 μm to 500 μm.
 蓄電デバイス2は、蓄電デバイス用電極1と負極集電体40との間の導電性を向上させるために、導電層をさらに備えていてもよい。蓄電デバイス2は、蓄電デバイス用電極1と負極集電体40との間の接着性を向上させるために、接着層をさらに備えていてもよい。 The power storage device 2 may further include a conductive layer in order to improve the conductivity between the power storage device electrode 1 and the negative electrode current collector 40. The power storage device 2 may further include an adhesive layer in order to improve the adhesiveness between the power storage device electrode 1 and the negative electrode current collector 40.
 蓄電デバイス2は、正極60と正極集電体70との間の導電性を向上させるために、導電層をさらに備えていてもよい。蓄電デバイス2は、正極60と正極集電体70との間の接着性を向上させるために、接着層を備えていてもよい。 The power storage device 2 may further include a conductive layer in order to improve the conductivity between the positive electrode 60 and the positive electrode current collector 70. The power storage device 2 may include an adhesive layer in order to improve the adhesiveness between the positive electrode 60 and the positive electrode current collector 70.
<蓄電デバイス用電極の作製方法>
 蓄電デバイス用電極1は、電極用スラリーを集電体に塗布することによって得られる。電極用スラリーの調製方法の例は、活物質10及び多孔質材料20を他の成分と混合させて調製する方法と、活物質10の表面にて、すなわちin situにて多孔質材料20を合成することによって得られた複合粒子を他の成分と混合させて調製する方法とがある。これらの方法が併用されてもよい。
<Method of manufacturing electrodes for power storage devices>
The electrode 1 for a power storage device is obtained by applying an electrode slurry to a current collector. Examples of the method for preparing the slurry for electrodes include a method of preparing the active material 10 and the porous material 20 by mixing them with other components, and a method of synthesizing the porous material 20 on the surface of the active material 10, that is, in situ. There is a method of preparing the composite particles obtained by mixing the composite particles with other components. These methods may be used together.
 例えば、活物質10と、多孔質材料20と、バインダー30とを混合し、適切な溶剤を加えて電極用スラリーを調製する。この電極用スラリーを、集電体の表面に塗布して、乾燥させることによって、蓄電デバイス用電極1を得ることができる。蓄電デバイス用電極1は、必要に応じて、電極密度を高めるために、圧縮して形成されてもよい。 For example, the active material 10, the porous material 20, and the binder 30 are mixed, and an appropriate solvent is added to prepare a slurry for electrodes. The electrode 1 for a power storage device can be obtained by applying this electrode slurry to the surface of a current collector and drying it. The electrode 1 for a power storage device may be formed by compression, if necessary, in order to increase the electrode density.
 この方法によれば、蓄電デバイス用電極1において、多孔質材料20は、バインダー30に分散している。 According to this method, in the electrode 1 for the power storage device, the porous material 20 is dispersed in the binder 30.
 別の方法として、例えば、まず、多孔質材料20の原料の一部及び活物質10を含む溶液Aを調製する。多孔質材料20の原料の一部は、例えば、多孔質材料20の有機配位子を含む。これとは別に、溶液Bを調製する。溶液Bは、例えば、多孔質材料20に含まれる金属イオンを提供する金属塩の水溶液である。次に、溶液Aに溶液Bを加え、撹拌することによって混合液を調製する。これにより、混合液中で多孔質材料20が合成される。具体的には、活物質10の表面で多孔質材料20が合成される。次に、混合液を濾過することによって固体成分を得る。固体成分を洗浄し、真空乾燥させることによって、活物質10が多孔質材料20によって被覆された複合粒子を得ることができる。 As another method, for example, first, a solution A containing a part of the raw material of the porous material 20 and the active material 10 is prepared. Some of the raw materials of the porous material 20 include, for example, the organic ligand of the porous material 20. Separately, solution B is prepared. Solution B is, for example, an aqueous solution of a metal salt that provides metal ions contained in the porous material 20. Next, solution B is added to solution A, and a mixture is prepared by stirring. As a result, the porous material 20 is synthesized in the mixed solution. Specifically, the porous material 20 is synthesized on the surface of the active material 10. The solid component is then obtained by filtering the mixture. By washing the solid components and vacuum drying, composite particles in which the active material 10 is coated with the porous material 20 can be obtained.
 得られた複合粒子にバインダー及び適切な溶剤を加えて電極用スラリーを調製する。この電極用スラリーを、集電体の表面に塗布して、乾燥させることによって、蓄電デバイス用電極1を得ることができる。蓄電デバイス用電極1は、必要に応じて、電極密度を高めるために、圧縮して形成されてもよい。 A binder and an appropriate solvent are added to the obtained composite particles to prepare a slurry for electrodes. The electrode 1 for a power storage device can be obtained by applying this electrode slurry to the surface of a current collector and drying it. The electrode 1 for a power storage device may be formed by compression, if necessary, in order to increase the electrode density.
 この方法によれば、多孔質材料20は、活物質10の表面に被覆されうる。加えて、この方法によれば、洗浄操作を含むため、蓄電デバイス用電極1において、多孔質材料20は、バインダー30に実質的に分散されていない。「実質的に分散されていない」とは、バインダー30への微量の多孔質材料20の混入を許容する趣旨であり、バインダー30に分散した多孔質材料20が2質量%未満、さらには1質量%未満であり、特に0.5質量%未満含まれていることを意味する。 According to this method, the porous material 20 can be coated on the surface of the active material 10. In addition, according to this method, since the cleaning operation is included, the porous material 20 is not substantially dispersed in the binder 30 in the electrode 1 for the power storage device. "Substantially not dispersed" means that a small amount of the porous material 20 is allowed to be mixed in the binder 30, and the amount of the porous material 20 dispersed in the binder 30 is less than 2% by mass, or even 1% by mass. It is less than%, and in particular, it means that it is contained in less than 0.5% by mass.
 加えて、この方法によれば、活物質10の表面に多孔質材料20の一部が結着している。これにより、蓄電デバイス用電極1を用いた二次電池を充放電させたとき、活物質10と多孔質材料20との間で副反応が生じにくく、かつ、活物質10から多孔質材料20が離れにくい。 In addition, according to this method, a part of the porous material 20 is bound to the surface of the active material 10. As a result, when the secondary battery using the electrode 1 for the power storage device is charged and discharged, a side reaction is unlikely to occur between the active material 10 and the porous material 20, and the porous material 20 is separated from the active material 10. Hard to separate.
 電極用スラリーを集電体へ塗布する方法は、特定の方法に限定されない。その方法の例は、スピンコート法、ディップコート法、バーコート法、レベルコート法、及びスプレーコート法である。 The method of applying the electrode slurry to the current collector is not limited to a specific method. Examples of such methods are spin coating, dip coating, bar coating, level coating, and spray coating.
 以下、実施例により本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited to the following examples.
(実施例1)
 昭和電工社製のピッチコートグラファイトSCMG-AF-C(登録商標)(平均粒径:10μm)25g及び2-メチルイミダゾール1.9gを純水に加えて、溶液Aを調製した。これとは別に、溶液Bとして、6.9質量%のZn(NO32・6H2O水溶液を調製した。溶液Aに溶液Bを1.08g添加し、2時間撹拌して、得られた混合液を濾過した。得られた固体を純水で2回、次いでメタノールで2回洗浄した。洗浄後、固体を40℃で15時間真空乾燥させることによって、ZIF-8で被覆された負極活物質である実施例1に係る複合粒子を得た。
(Example 1)
Solution A was prepared by adding 25 g of Pitch Coat Graphite SCMG-AF-C® (registered trademark) (average particle size: 10 μm) and 1.9 g of 2-methylimidazole manufactured by Showa Denko Corporation to pure water. Separately, a solution B, 6.9 mass% of Zn (NO 3) was prepared 2 · 6H 2 O aqueous solution. 1.08 g of Solution B was added to Solution A, the mixture was stirred for 2 hours, and the obtained mixed solution was filtered. The obtained solid was washed twice with pure water and then twice with methanol. After washing, the solid was vacuum dried at 40 ° C. for 15 hours to obtain composite particles according to Example 1, which is a negative electrode active material coated with ZIF-8.
 実施例1に係る複合粒子を96質量%、スチレンブタジエンゴム(SBR)を2質量%、及びカルボキシメチルセルロース(CMC)を2質量%混合することによって、実施例1~5に係る蓄電デバイス電極用スラリーを調製した。このスラリーをCu基板に塗布して、乾燥させることによって、実施例1に係る蓄電デバイス用負極を得た。 By mixing 96% by mass of the composite particles according to Example 1, 2% by mass of styrene-butadiene rubber (SBR), and 2% by mass of carboxymethyl cellulose (CMC), the slurry for the storage device electrode according to Examples 1 to 5. Was prepared. By applying this slurry to a Cu substrate and drying it, a negative electrode for a power storage device according to Example 1 was obtained.
 -60℃以下の露点及び1ppm以下の酸素濃度の環境に保たれたグローブボックスの内部において、集電体タブを取り付けた実施例1に係る蓄電デバイス用負極に、セパレータ(ニッポン高度紙工業社製、製品名:TF40-50)を重ねた。次に、セパレータに、集電体タブを取り付けたステンレス製のメッシュに金属リチウム箔を貼り付けた電極を重ねた。このとき、金属リチウム箔をセパレータに接触させた。この積層体を、アルミニウムラミネートフィルムによって作製された袋状のパッケージの内部に入れた。このパッケージにおいて、一対の四角形状のアルミニウムラミネートフィルムの三辺同士が封止され、かつ、それらの他の一辺同士が離れて開口が形成されていた。次に、このパッケージの内部に、電解液として1.2M(mol/dm3)の濃度のLiPF6カーボネート溶液を注入した。このカーボネート溶液は、カーボネートとして、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、及びジメチルカーボネート(DMC)を含有していた。次に、パッケージの開口から集電体タブを突出させた状態でパッケージの開口を封止した。このようにして、充電状態(SOC)調整用のラミネートセルを得た。次に、このラミネートセルをグローブボックスからから取出し、25℃に保たれた恒温槽の内部で、1.5Vから0.01Vの電位範囲で、グラファイト負極シートの容量に対して0.1Cに相当する電流値で3サイクル充放電を行い、最後に、グラファイト負極シートの容量に対してSOCを40%まで、リチウムイオンをグラファイトに挿入させる反応を行った。このようにして、SOCを40%に調整した実施例1に係る蓄電デバイス用電極シートを含むラミネートセルを2つ作製した。 Inside the glove box kept in an environment with a dew point of -60 ° C or less and an oxygen concentration of 1 ppm or less, a separator (manufactured by Nippon Kodoshi Kogyo Co., Ltd.) was attached to the negative electrode for the power storage device according to Example 1 to which the current collector tab was attached. , Product name: TF40-50). Next, an electrode having a metal lithium foil attached to a stainless steel mesh to which a current collector tab was attached was placed on the separator. At this time, the metallic lithium foil was brought into contact with the separator. This laminate was placed inside a bag-shaped package made of an aluminum laminate film. In this package, the three sides of the pair of square aluminum laminate films were sealed, and the other sides were separated from each other to form an opening. Next, a LiPF 6 carbonate solution having a concentration of 1.2 M (mol / dm 3 ) was injected into the inside of this package as an electrolytic solution. This carbonate solution contained ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) as carbonates. Next, the opening of the package was sealed with the current collector tab protruding from the opening of the package. In this way, a laminated cell for adjusting the state of charge (SOC) was obtained. Next, this laminated cell is taken out from the glove box, and inside a constant temperature bath kept at 25 ° C., in a potential range of 1.5 V to 0.01 V, it corresponds to 0.1 C with respect to the capacity of the graphite negative electrode sheet. Charging and discharging were carried out for 3 cycles with the current value to be applied, and finally, a reaction was carried out in which lithium ions were inserted into graphite up to 40% of SOC with respect to the capacity of the graphite negative electrode sheet. In this way, two laminated cells containing the electrode sheet for the power storage device according to Example 1 in which the SOC was adjusted to 40% were produced.
 上記のSOCが40%まで充電された実施例1に係る蓄電デバイス用電極シートを含むラミネートセルを、上記のグローブボックスの内部に再度入れた。ラミネートセルの封止部分を切り取り、実施例1に係る蓄電デバイス用電極シートを取り出した。次に、2枚の実施例1に係る蓄電デバイス用電極シートの間にセパレータが位置するようにこれらを重ねた。セパレータとして、不織布(ニッポン高度紙工業社製、製品名:TF40-50)を用いた。次に、実施例1に係る蓄電デバイス用電極シート、セパレータ、及び実施例1に係る蓄電デバイス用電極シートの積層体をアルミニウムラミネートフィルムによって作製された袋状のパッケージの内部に入れた。このパッケージにおいて、一対の四角形状のアルミニウムラミネートフィルムの三辺同士が封止され、かつ、それらの他の一辺同士が離れて開口が形成されていた。次に、パッケージの内部に、電解液として1.2M(mol/dm3)の濃度のLiPF6カーボネート溶液を注入した。このカーボネート溶液は、カーボネートとして、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、及びジメチルカーボネート(DMC)を含んでいた。電解液に1質量%のビニレンカーボネート(VC)をさらに加えた。次に、実施例1に係る蓄電デバイス用電極シートの集電体タブをパッケージの開口から突出させた状態で、パッケージの開口を封止した。このようにして、実施例1に係る電気化学インピーダンス測定(EIS)用対称セルを作製した。 The laminated cell containing the electrode sheet for the power storage device according to Example 1 in which the SOC was charged to 40% was reinserted into the glove box. The sealed portion of the laminate cell was cut off, and the electrode sheet for the power storage device according to Example 1 was taken out. Next, these were stacked so that the separator was located between the two electrode sheets for the power storage device according to the first embodiment. A non-woven fabric (manufactured by Nippon Kodoshi Kogyo Co., Ltd., product name: TF40-50) was used as the separator. Next, the electrode sheet and separator for the power storage device according to Example 1 and the laminate of the electrode sheet for the power storage device according to Example 1 were placed inside a bag-shaped package made of an aluminum laminate film. In this package, the three sides of the pair of square aluminum laminate films were sealed, and the other sides were separated from each other to form an opening. Next, a LiPF 6 carbonate solution having a concentration of 1.2 M (mol / dm 3) was injected into the package as an electrolytic solution. This carbonate solution contained ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) as carbonates. 1% by mass of vinylene carbonate (VC) was further added to the electrolytic solution. Next, the opening of the package was sealed with the current collector tab of the electrode sheet for the power storage device according to the first embodiment protruding from the opening of the package. In this way, a symmetric cell for electrochemical impedance measurement (EIS) according to Example 1 was produced.
(実施例2~5)
 比率P0が表1に記載した値になるように複合粒子を作製したことを除き、実施例1と同様にして、実施例2~5に係るEIS用対称セルを得た。なお、表1の「P0」は、「活物質の含有量と活物質を被覆している多孔質材料の含有量との和に対する活物質を被覆している多孔質材料の含有量の比率」を意味する。
(Examples 2 to 5)
Symmetrical cells for EIS according to Examples 2 to 5 were obtained in the same manner as in Example 1 except that the composite particles were prepared so that the ratio P 0 was the value shown in Table 1. “P 0 ” in Table 1 indicates “the ratio of the content of the porous material covering the active material to the sum of the content of the active material and the content of the porous material coating the active material”. Means.
(比較例1)
 実施例1に係る複合粒子に代えて、多孔質材料で被覆していないピッチコートグラファイトSCMG-AF-C(平均粒径:10μm)を使用したことを除き、実施例1と同様にして、比較例1に係るEIS用対称セルを得た。
(Comparative Example 1)
Comparison was performed in the same manner as in Example 1 except that pitch-coated graphite SCMG-AF-C (average particle size: 10 μm) not coated with a porous material was used instead of the composite particles according to Example 1. A symmetric cell for EIS according to Example 1 was obtained.
(実施例6)
 活物質として、日本黒鉛工業社製の天然黒鉛CGB-10(平均粒径:10μm)を25g及び2-メチルイミダゾール7.6g使用したことと、6.9質量%のZn(NO32・6H2O水溶液を4.3g使用したこととを除き、実施例1と同様にして、実施例6に係るEIS用対称セルを得た。
(Example 6)
As the active material, 25 g of natural graphite CGB-10 (average particle size: 10 μm) manufactured by Nippon Graphite Industry Co., Ltd. and 7.6 g of 2-methylimidazole were used, and 6.9% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 6 was obtained in the same manner as in Example 1 except that 4.3 g of a 6H 2 O aqueous solution was used.
(実施例7)
 ビニレンカーボネートを使用しなかったことを除き、実施例6と同様にして、実施例7に係るEIS用対称セルを得た。
(Example 7)
Symmetrical cells for EIS according to Example 7 were obtained in the same manner as in Example 6 except that vinylene carbonate was not used.
(実施例8)
 活物質として、日本黒鉛工業社製の天然黒鉛CGB-10(平均粒径:10μm)を25g及び2-メチルイミダゾール15.2g使用したことと、6.9質量%のZn(NO32・6H2O水溶液を8.6g使用したこととを除き、実施例1と同様にして、実施例8に係るEIS用対称セルを得た。
(Example 8)
As an active material, 25 g of natural graphite CGB-10 (average particle size: 10 μm) manufactured by Nippon Graphite Industry Co., Ltd. and 15.2 g of 2-methylimidazole were used, and 6.9% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 8 was obtained in the same manner as in Example 1 except that 8.6 g of a 6H 2 O aqueous solution was used.
(実施例9)
 ビニレンカーボネートを使用しなかったことを除き、実施例8と同様にして、実施例9に係るEIS用対称セルを得た。
(Example 9)
Symmetrical cells for EIS according to Example 9 were obtained in the same manner as in Example 8 except that vinylene carbonate was not used.
(実施例10)
 活物質として、日本黒鉛工業社製の天然黒鉛CGB-10(平均粒径:10μm)を25g及び2-メチルイミダゾール22.8g使用したことと、6.7質量%のZn(NO32・6H2O水溶液を12.9g使用したこととを除き、実施例1と同様にして、実施例10に係るEIS用対称セルを得た。
(Example 10)
As the active material, 25 g of natural graphite CGB-10 (average particle size: 10 μm) manufactured by Nippon Graphite Industry Co., Ltd. and 22.8 g of 2-methylimidazole were used, and 6.7% by mass of Zn (NO 3 ) 2. A symmetric cell for EIS according to Example 10 was obtained in the same manner as in Example 1 except that 12.9 g of a 6H 2 O aqueous solution was used.
(実施例11)
 ビニレンカーボネートを使用しなかったことを除き、実施例10と同様にして、実施例11に係るEIS用対称セルを得た。
(Example 11)
Symmetrical cells for EIS according to Example 11 were obtained in the same manner as in Example 10 except that vinylene carbonate was not used.
(実施例12)
 活物質として、天然黒鉛CGB-10を用いたことと、溶液Bとして、6.7質量%のCo(NO32水溶液を用いたことを除き、実施例1と同様にして、実施例12に係る複合粒子を得た。この複合粒子において、天然黒鉛がZIF-67で被覆されていた。実施例1に係る複合粒子の代わりに実施例12に係る複合粒子を用いた以外は、実施例1と同様にして実施例12に係るEIS用対称セルを得た。
(Example 12)
Example 12 in the same manner as in Example 1 except that natural graphite CGB-10 was used as the active material and a 6.7% by mass Co (NO 3 ) 2 aqueous solution was used as the solution B. The composite particles according to the above were obtained. In this composite particle, natural graphite was coated with ZIF-67. An EIS symmetric cell according to Example 12 was obtained in the same manner as in Example 1 except that the composite particle according to Example 12 was used instead of the composite particle according to Example 1.
(実施例13)
 ビニレンカーボネートを使用しなかったことを除き、実施例12と同様にして、実施例13に係るEIS用対称セルを得た。
(Example 13)
A symmetric cell for EIS according to Example 13 was obtained in the same manner as in Example 12 except that vinylene carbonate was not used.
(実施例14)
 2-メチルイミダゾールに代えて、ベンゾイミダゾールを用いたことを除き、実施例6と同様にして、実施例14に係る複合粒子を得た。この複合粒子において、天然黒鉛がZIF-7で被覆されていた。実施例1に係る複合粒子の代わりに実施例14に係る複合粒子を用いた以外は、実施例1と同様にして実施例14に係るEIS用対称セルを得た。
(Example 14)
Composite particles according to Example 14 were obtained in the same manner as in Example 6 except that benzimidazole was used instead of 2-methylimidazole. In this composite particle, natural graphite was coated with ZIF-7. An EIS symmetric cell according to Example 14 was obtained in the same manner as in Example 1 except that the composite particle according to Example 14 was used instead of the composite particle according to Example 1.
(実施例15)
 ビニレンカーボネートを使用しなかったことを除き、実施例14と同様にして、実施例15に係るEIS用対称セルを得た。
(Example 15)
Symmetrical cells for EIS according to Example 15 were obtained in the same manner as in Example 14 except that vinylene carbonate was not used.
(実施例16)
 2-メチルイミダゾールに代えて、ベンゾイミダゾールを用いたことを除き、実施例12と同様にして、実施例16に係る複合粒子を得た。この複合粒子において、天然黒鉛がZIF-9で被覆されていた。実施例1に係る複合粒子の代わりに実施例16に係る複合粒子を用いた以外は、実施例1と同様にして実施例16に係るEIS用対称セルを得た。
(Example 16)
Composite particles according to Example 16 were obtained in the same manner as in Example 12, except that benzimidazole was used instead of 2-methylimidazole. In this composite particle, natural graphite was coated with ZIF-9. An EIS symmetric cell according to Example 16 was obtained in the same manner as in Example 1 except that the composite particle according to Example 16 was used instead of the composite particle according to Example 1.
(実施例17)
 ビニレンカーボネートを使用しなかったことを除き、実施例16と同様にして、実施例17に係るEIS用対称セルを得た。
(Example 17)
Symmetrical cells for EIS according to Example 17 were obtained in the same manner as in Example 16 except that vinylene carbonate was not used.
(比較例2)
 蓄電デバイス用電極として、多孔質材料で被覆していない天然黒鉛CGB-10を使用したことを除き、実施例6と同様にして、比較例2に係るEIS用対称セルを得た。
(Comparative Example 2)
A symmetric cell for EIS according to Comparative Example 2 was obtained in the same manner as in Example 6 except that natural graphite CGB-10 not coated with a porous material was used as an electrode for a power storage device.
(比較例3)
 ビニレンカーボネートを添加しなかったことを除き、比較例2と同様にして、比較例3に係るEIS用対称セルを得た。
(Comparative Example 3)
A symmetric cell for EIS according to Comparative Example 3 was obtained in the same manner as in Comparative Example 2 except that vinylene carbonate was not added.
(実施例18~22)
 アルドリッチ社製のZIF-8 Basolite Z1200及び天然黒鉛CGB-10を表4に記載の分量になるように加えた。さらに、スチレンブタジエンゴム(SBR)を2質量%及びカルボキシメチルセルロース(CMC)を2質量%混合することによって、実施例18~22に係る蓄電デバイス電極用スラリーを調製した。このスラリーをCu基板に塗布し、乾燥させることによって、実施例18~22に係る蓄電デバイス用電極を得た。その後、実施例1と同様にして、実施例18~22に係るEIS用対称セルをそれぞれ得た。なお、表4の「多孔質材料の含有量R」は、「負極活物質の含有量と多孔質材料の含有量との和に対する多孔質材料の含有量の比率」を意味する。
(Examples 18 to 22)
ZIF-8 Basolite Z1200 and natural graphite CGB-10 manufactured by Aldrich were added in the amounts shown in Table 4. Further, 2% by mass of styrene-butadiene rubber (SBR) and 2% by mass of carboxymethyl cellulose (CMC) were mixed to prepare a slurry for a power storage device electrode according to Examples 18 to 22. By applying this slurry to a Cu substrate and drying it, electrodes for a power storage device according to Examples 18 to 22 were obtained. Then, in the same manner as in Example 1, symmetrical cells for EIS according to Examples 18 to 22 were obtained. The "content R of the porous material" in Table 4 means "the ratio of the content of the porous material to the sum of the content of the negative electrode active material and the content of the porous material".
(実施例23~28)
 ZIF-8に代えて、PlasmaChem社製のZIF-67 PL-MOF-ZIF67、アルドリッチ社製のMIL-53(Al) Basolite A100、及びアルドリッチ社製のHKUST-1 Basolite C300を使用したことと、これらの多孔質材料を表5に記載の分量になるように加えたこととを除き、実施例18と同様にして、実施例23、25、及び27に係るEIS用対称セルを得た。ZIF-8に代えて、ZIF-67、MIL-53(Al)、及びHKUST-1を使用したことと、これらの多孔質材料を表5に記載の分量になるように加えたこととを除き、実施例19と同様にして、実施例24、26、及び28に係るEIS用対称セルを得た。
(Examples 23 to 28)
Instead of ZIF-8, ZIF-67 PL-MOF-ZIF67 manufactured by PlasmaChem, MIL-53 (Al) Basolite A100 manufactured by Aldrich, and HKUST-1 Basolite C300 manufactured by Aldrich were used. Symmetrical cells for EIS according to Examples 23, 25, and 27 were obtained in the same manner as in Example 18, except that the porous material of No. 1 was added in the amount shown in Table 5. Except for the use of ZIF-67, MIL-53 (Al), and HKUST-1 instead of ZIF-8 and the addition of these porous materials in the amounts shown in Table 5. , EIS symmetric cells according to Examples 24, 26, and 28 were obtained in the same manner as in Example 19.
(実施例29及び30)
 実施例6と同様にして、複合粒子を得た。蓄電デバイス電極用スラリーに、この複合粒子、アルドリッチ社製のZIF-8 Basolite Z1200、及び天然黒鉛CGB-10を表6に記載の分量になるように加えたことを除き、実施例18及び19と同様にして、それぞれ実施例29及び30に係るEIS用対称セルを得た。
(Examples 29 and 30)
Composite particles were obtained in the same manner as in Example 6. Examples 18 and 19 except that the composite particles, ZIF-8 Basolite Z1200 manufactured by Aldrich, and natural graphite CGB-10 were added to the slurry for the power storage device electrode in the amounts shown in Table 6. Similarly, symmetrical cells for EIS according to Examples 29 and 30, respectively, were obtained.
(実施例31~35)
 ピッチコートグラファイトに代えて、上海杉杉社製のメソフェーズカーボンCMS-10、ATEC社製のハードカーボンLN-0010、又は新日鐵化学社製のソフトカーボンNED-270ZJを使用したことを除き、実施例4と同様にして、実施例31、34、及び35に係るEIS用対称セルを得た。ビニレンカーボネートを使用しなかったことを除き、実施例4と同様にして、実施例32及び33に係るEIS用対称セルを得た。
(Examples 31 to 35)
Implemented except that instead of pitch-coated graphite, mesophase carbon CMS-10 manufactured by Shanghai Sugisugi, hard carbon LN-0010 manufactured by ATEC, or soft carbon NED-270ZJ manufactured by Nippon Steel Chemical Co., Ltd. was used. Similar to Example 4, EIS symmetric cells according to Examples 31, 34, and 35 were obtained. Symmetrical cells for EIS according to Examples 32 and 33 were obtained in the same manner as in Example 4 except that vinylene carbonate was not used.
(比較例4~8)
 2-メチルイミダゾール及びZn(NO32・6H2O水溶液を使用していないことを除き、実施例31~35と同様にして、比較例4~8に係るEIS用対称セルをそれぞれ得た。
(Comparative Examples 4 to 8)
2-methylimidazole and Zn (NO 3) except that not using a 2 · 6H 2 O aqueous solution, in the same manner as in Example 31-35 to give respectively the EIS for symmetric cell according to Comparative Example 4-8 ..
(比較例9及び10)
 蓄電デバイス用電極の作製において、天然黒鉛CGB-10のみを純水に加えて、2時間撹拌して、得られた混合液を濾過した。得られた固体を純水で2回、次いでメタノールで2回洗浄した。洗浄後、固体を40℃で15時間真空乾燥させることによって、比較例9に係る負極活物質粒子を得た。この負極活物質粒子を使用したことを除き、実施例4と同様にして、比較例9に係るEIS用対称セルを得た。また、この負極活物質粒子を使用したことと、ビニレンカーボネートを添加しなかったこととを除き、実施例4と同様にして、比較例10に係るEIS用対称セルを得た。
(Comparative Examples 9 and 10)
In the preparation of the electrode for the power storage device, only natural graphite CGB-10 was added to pure water, stirred for 2 hours, and the obtained mixed solution was filtered. The obtained solid was washed twice with pure water and then twice with methanol. After washing, the solid was vacuum dried at 40 ° C. for 15 hours to obtain negative electrode active material particles according to Comparative Example 9. A symmetrical cell for EIS according to Comparative Example 9 was obtained in the same manner as in Example 4 except that the negative electrode active material particles were used. Further, a symmetric cell for EIS according to Comparative Example 10 was obtained in the same manner as in Example 4 except that the negative electrode active material particles were used and vinylene carbonate was not added.
(比較例11及び12)
 溶液Aに硝酸亜鉛六水和物を加えなかったことを除き、実施例4と同様にして、比較例11に係るEIS用対称セルを得た。溶液Aに硝酸亜鉛六水和物を加えなかったことと、ビニレンカーボネートを添加しなかったこととを除き、実施例4と同様にして、比較例12に係るEIS用対称セルを得た。
(Comparative Examples 11 and 12)
A symmetric cell for EIS according to Comparative Example 11 was obtained in the same manner as in Example 4 except that zinc nitrate hexahydrate was not added to Solution A. A symmetric cell for EIS according to Comparative Example 12 was obtained in the same manner as in Example 4 except that zinc nitrate hexahydrate was not added to the solution A and vinylene carbonate was not added.
(比較例13及び14)
 溶液Bを加えなかったことを除き、実施例4と同様にして、比較例13に係るEIS用対称セルを得た。溶液Bを加えなかったことと、ビニレンカーボネートを添加しなかったこととを除き、実施例4と同様にして、比較例14に係るEIS用対称セルを得た。
(Comparative Examples 13 and 14)
A symmetric cell for EIS according to Comparative Example 13 was obtained in the same manner as in Example 4 except that Solution B was not added. A symmetric cell for EIS according to Comparative Example 14 was obtained in the same manner as in Example 4 except that solution B was not added and vinylene carbonate was not added.
[電気化学インピーダンス測定]
 実施例及び比較例に係る蓄電デバイス用電極の内部抵抗は、電気化学インピーダンス法(EIS)によって測定した。東陽テクニカ社製の周波数特性分析器Solartron SI 1260を備えた東陽テクニカ社製の交流インピーダンス装置Solartron SI 1287を用いて、実施例及び比較例に係るEIS用対称セルの電気化学インピーダンス測定を実施した。周波数の範囲は、0.1Hz~1MHzであった。振幅電圧は、10mVであった。測定温度は-20℃、-10℃、0℃、10℃、25℃、40℃、又は60℃とした。測定結果を、複素平面上(ナイキスト線図)にプロットし、低周波数側に現れる円弧成分を図3に示す等価回路を用いてフィッティングし、R2の値を算出することによって、実施例及び比較例に係るEIS用対称セルの内部抵抗を算出した。測定結果を表8~13に示す。
[Electrochemical impedance measurement]
The internal resistance of the electrode for the power storage device according to the examples and the comparative examples was measured by the electrochemical impedance method (EIS). The electrochemical impedance of the EIS symmetric cell according to the examples and comparative examples was measured by using the AC impedance device Solartron SI 1287 manufactured by Toyo Corporation equipped with the frequency characteristic analyzer Solartron SI 1260 manufactured by Toyo Corporation. The frequency range was 0.1 Hz to 1 MHz. The amplitude voltage was 10 mV. The measurement temperature was −20 ° C., −10 ° C., 0 ° C., 10 ° C., 25 ° C., 40 ° C., or 60 ° C. Examples and comparative examples are obtained by plotting the measurement results on a complex plane (Nyquist diagram), fitting the arc components appearing on the low frequency side using the equivalent circuit shown in FIG. 3, and calculating the value of R2. The internal resistance of the EIS symmetric cell according to the above was calculated. The measurement results are shown in Tables 8 to 13.
[多孔質材料の含有量の算出]
 複合粒子における活物質の含有量M10と活物質を被覆している多孔質材料の含有量M20との和(M10+M20)に対する活物質を被覆している多孔質材料の含有量M20の比率P0=100×M20/(M10+M20)は、次のようにして求めた。まず、SCMG-AF-CのBET比表面積、CGB-10のBET比表面積、ZIF-8のBET比表面積、及び実施例1~11に係る複合粒子のBET比表面積を、マイクロトラックベル社製のBET測定装置BELSORP-mini Xを用いて測定した。その後、上記式(1)に従って、比率P0を算出した。SCMG-AF-CのBET比表面積は、1.96m2/gであった。CGB-10のBET比表面積は、6.7m2/gであった。LN-0010のBET比表面積は、8m2/gであった。NED-270ZJのBET比表面積は、1.7m2/gであった。ZIF-8のBET比表面積は、1692m2/gであった。ZIF-7のBET比表面積は、501m2/gであった。ZIF-67のBET比表面積は、1595m2/gであった。実施例1~11に係る複合粒子のBET比表面積の測定結果及び実施例1~11に係る複合粒子の比率P0の算出結果を表1及び2に示す。同様にして、実施例12~15、及び26~32に係る複合粒子の比率P0の算出結果を、表3、5及び6に示す。実施例1~15、31~33については、P0がRに相当する。
[Calculation of content of porous material]
The content M of the porous material coating the active material with respect to the sum (M 10 + M 20 ) of the content M 10 of the active material in the composite particle and the content M 20 of the porous material coating the active material. The ratio of 20 P 0 = 100 × M 20 / (M 10 + M 20 ) was obtained as follows. First, the BET specific surface area of SCMG-AF-C, the BET specific surface area of CGB-10, the BET specific surface area of ZIF-8, and the BET specific surface area of the composite particles according to Examples 1 to 11 are determined by Microtrac Bell. The measurement was performed using the BET measuring device BELSORP-mini X. Then, the ratio P 0 was calculated according to the above formula (1). The BET specific surface area of SCMG-AF-C was 1.96 m 2 / g. The BET specific surface area of CGB-10 was 6.7 m 2 / g. The BET specific surface area of LN-0010 was 8 m 2 / g. The BET specific surface area of NED-270ZJ was 1.7 m 2 / g. The BET specific surface area of ZIF-8 was 1692 m 2 / g. The BET specific surface area of ZIF-7 was 501 m 2 / g. The BET specific surface area of ZIF-67 was 1595 m 2 / g. Tables 1 and 2 show the measurement results of the BET specific surface area of the composite particles according to Examples 1 to 11 and the calculation results of the ratio P 0 of the composite particles according to Examples 1 to 11. Similarly, the calculation results of the ratio P 0 of the composite particles according to Examples 12 to 15 and 26 to 32 are shown in Tables 3, 5 and 6. For Examples 1 to 15 and 31 to 33, P 0 corresponds to R.
 実施例1~5に係るEIS用対称セルでは、どの温度で充電した場合であっても、比較例1に係るEIS用対称セルより、内部抵抗は低減した。ピッチコートグラファイトに多孔質材料を被覆した蓄電デバイス用電極を使用することによって、二次電池の充放電における内部抵抗が低減した。加えて、比率P0が小さければ小さいほど、内部抵抗の低減の割合は、大きかった。 In the EIS symmetric cells according to Examples 1 to 5, the internal resistance was reduced as compared with the EIS symmetric cells according to Comparative Example 1 regardless of the temperature at which the battery was charged. By using electrodes for power storage devices in which pitch-coated graphite is coated with a porous material, the internal resistance during charging and discharging of the secondary battery is reduced. In addition, the smaller the ratio P 0 , the greater the rate of reduction in internal resistance.
 実施例6~17に係るEIS用対称セルでは、どの温度で充電した場合であっても、比較例2又は3に係るEIS用対称セルの内部抵抗より、内部抵抗は低減した。天然黒鉛に多孔質材料を被覆した蓄電デバイス用電極を使用することによって、二次電池の充放電における内部抵抗が低減した。加えて、負極活物質にZIF-67、ZIF-7、又はZIF-9を被覆した場合であっても、二次電池の充放電における内部抵抗は、低減した。 In the EIS symmetric cells according to Examples 6 to 17, the internal resistance was lower than the internal resistance of the EIS symmetric cells according to Comparative Examples 2 or 3 regardless of the temperature at which the battery was charged. By using electrodes for power storage devices in which natural graphite is coated with a porous material, the internal resistance during charging and discharging of the secondary battery has been reduced. In addition, even when the negative electrode active material was coated with ZIF-67, ZIF-7, or ZIF-9, the internal resistance during charging and discharging of the secondary battery was reduced.
 実施例18~28に係るEIS用対称セルでは、どの温度で充電した場合であっても、比較例2又は3に係るEIS用対称セルの内部抵抗より、内部抵抗は低減した。バインダーに多孔質材料が分散している場合であっても、内部抵抗は、低減した。加えて、多孔質材料にZIF-8、ZIF-67、MIL-53(Al)、又はHKUST-1を使用した場合であっても、内部抵抗は低減した。バインダーに多孔質材料が含まれていることによって、バインダーの内部にイオンが通過しやすい部分が形成されたと考えられる。 In the EIS symmetric cells according to Examples 18 to 28, the internal resistance was lower than the internal resistance of the EIS symmetric cells according to Comparative Examples 2 or 3 regardless of the temperature at which the battery was charged. The internal resistance was reduced even when the porous material was dispersed in the binder. In addition, even when ZIF-8, ZIF-67, MIL-53 (Al), or HKUST-1 was used as the porous material, the internal resistance was reduced. It is considered that the inclusion of the porous material in the binder formed a portion inside the binder through which ions could easily pass.
 実施例29及び30に係るEIS用対称セルでは、どの温度で充電した場合であっても、比較例2又は3に係るEIS用対称セルの内部抵抗より、内部抵抗は低減した。加えて、実施例26及び27に係るEIS用対称セルでは、実施例18~28に係るEIS用対称セルより、内部抵抗は低減した。実施例29及び30に係るEIS用対称セルは、多孔質材料で被覆されている負極活物質を使用したことと、バインダーに多孔質材料を分散させたこととを含む。これにより、実施例29及び30係るEIS用対称セルでは、バインダーに多孔質材料を分散させたEIS用対称セルを使用したときよりも、内部抵抗の低減の割合は、大きかった。 In the EIS symmetric cell according to Examples 29 and 30, the internal resistance was lower than the internal resistance of the EIS symmetric cell according to Comparative Example 2 or 3 regardless of the temperature at which the battery was charged. In addition, in the EIS symmetric cells according to Examples 26 and 27, the internal resistance was reduced as compared with the EIS symmetric cells according to Examples 18 to 28. The EIS symmetric cells according to Examples 29 and 30 include the use of a negative electrode active material coated with a porous material and the dispersion of the porous material in a binder. As a result, in the symmetric cells for EIS according to Examples 29 and 30, the rate of reduction of the internal resistance was larger than that when the symmetric cells for EIS in which the porous material was dispersed in the binder were used.
 実施例31~35に係るEIS用対称セルの内部抵抗は、どの温度で充電した場合であっても、比較例4~8に係るEIS用対称セルの内部抵抗よりそれぞれ低減していた。これにより、様々な負極活物質を用いた場合であっても、多孔質材料を負極活物質に被覆させることによって、内部抵抗を低減させることが可能であった。 The internal resistance of the EIS symmetric cells according to Examples 31 to 35 was lower than the internal resistance of the EIS symmetric cells according to Comparative Examples 4 to 8 regardless of the temperature at which the battery was charged. As a result, even when various negative electrode active materials are used, it is possible to reduce the internal resistance by coating the negative electrode active material with the porous material.
 なお、比較例2、及び比較例9~14に係るEIS用対称セルの内部抵抗の値は、同程度であった。これにより、内部抵抗の値において、蓄電デバイス用電極の作製方法の影響は小さいと考えられる。 The values of the internal resistances of the symmetrical cells for EIS according to Comparative Examples 2 and 9 to 14 were about the same. Therefore, it is considered that the influence of the method of manufacturing the electrode for the power storage device on the value of the internal resistance is small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 

Claims (14)

  1.  活物質と、
     金属原子と、非金属原子を含む原子団とが結合した構造を含む多孔質材料と、を備え、
     前記非金属原子は、少なくとも酸素原子以外の原子を含み、
     前記活物質の含有量と前記多孔質材料の含有量との和に対する前記多孔質材料の含有量の比率は、0.1質量%~10質量%である、
     蓄電デバイス用電極。
    With active material
    A porous material containing a structure in which a metal atom and an atomic group containing a non-metal atom are bonded is provided.
    The non-metal atom contains at least an atom other than an oxygen atom and contains.
    The ratio of the content of the porous material to the sum of the content of the active material and the content of the porous material is 0.1% by mass to 10% by mass.
    Electrodes for power storage devices.
  2.  前記活物質を結着させるバインダーをさらに備え、
     前記多孔質材料の少なくとも一部は、前記バインダーに分散している、請求項1に記載の蓄電デバイス用電極。
    Further provided with a binder for binding the active material,
    The electrode for a power storage device according to claim 1, wherein at least a part of the porous material is dispersed in the binder.
  3.  前記バインダーに分散している前記多孔質材料の少なくとも一部は、前記活物質を被覆していない、請求項2に記載の蓄電デバイス用電極。 The electrode for a power storage device according to claim 2, wherein at least a part of the porous material dispersed in the binder is not coated with the active material.
  4.  前記多孔質材料の少なくとも一部は、前記活物質を被覆している、請求項1~3のいずれか1項に記載の蓄電デバイス用電極。 The electrode for a power storage device according to any one of claims 1 to 3, wherein at least a part of the porous material is coated with the active material.
  5.  前記活物質の含有量と前記活物質を被覆している前記多孔質材料の含有量との和に対する前記活物質を被覆している前記多孔質材料の含有量の比率は、0.1質量%~5質量%である、請求項4に記載の蓄電デバイス用電極。 The ratio of the content of the porous material coating the active material to the sum of the content of the active material and the content of the porous material coating the active material is 0.1% by mass. The electrode for a power storage device according to claim 4, which is ~ 5% by mass.
  6.  前記金属原子は、第2族、第3族、及び第5族~第14族のいずれかに属する金属原子から選ばれる少なくとも1つの金属原子を含む、請求項1~5のいずれか1項に記載の蓄電デバイス用電極。 According to any one of claims 1 to 5, the metal atom contains at least one metal atom selected from metal atoms belonging to any of Group 2, Group 3, and Group 5 to Group 14. The electrode for a power storage device described.
  7.  前記金属原子は、Zn、Co、Cu、及びAlからなる群より選ばれる少なくとも1つの金属原子を含む、請求項6に記載の蓄電デバイス用電極。 The electrode for a power storage device according to claim 6, wherein the metal atom contains at least one metal atom selected from the group consisting of Zn, Co, Cu, and Al.
  8.  前記原子団をなす化合物は、アミノ基を含む、請求項1~7のいずれか1項に記載の蓄電デバイス用電極。 The electrode for a power storage device according to any one of claims 1 to 7, wherein the compound forming the atomic group contains an amino group.
  9.  前記原子団をなす化合物は、複素環を含む、請求項1~8のいずれか1項に記載の蓄電デバイス用電極。 The electrode for a power storage device according to any one of claims 1 to 8, wherein the compound forming the atomic group contains a heterocycle.
  10.  前記原子団をなす化合物は、2-メチルイミダゾール、ベンゾイミダゾール、テレフタル酸、及びベンゼントリカルボン酸からなる群より選ばれる少なくとも1つである、請求項1~7のいずれか1項に記載の蓄電デバイス用電極。 The energy storage device according to any one of claims 1 to 7, wherein the compound forming the atomic group is at least one selected from the group consisting of 2-methylimidazole, benzimidazole, terephthalic acid, and benzenetricarboxylic acid. Electrode.
  11.  前記多孔質材料は、ZIF-8、ZIF-7、ZIF-9、ZIF-67、MIL-53(Al)、及びHKUST-1からなる群より選ばれる少なくとも1つの多孔質材料を含む、請求項1~7のいずれか1項に記載の蓄電デバイス用電極。 Claim that the porous material comprises at least one porous material selected from the group consisting of ZIF-8, ZIF-7, ZIF-9, ZIF-67, MIL-53 (Al), and HKUST-1. The electrode for a power storage device according to any one of 1 to 7.
  12.  前記活物質は、負極活物質である、請求項1~11のいずれか1項に記載の蓄電デバイス用電極。 The electrode for a power storage device according to any one of claims 1 to 11, wherein the active material is a negative electrode active material.
  13.  負極活物質と、
     金属原子と、非金属原子を含む原子団とが結合した構造を含み、前記負極活物質を被覆している多孔質材料と、を備え、
     前記非金属原子は、少なくとも酸素原子以外の原子を含み、
     前記負極活物質の含有量と前記多孔質材料の含有量との和に対する前記多孔質材料の含有量の比率は、0.1質量%~5質量%である、
     蓄電デバイス用複合粒子。
    Negative electrode active material and
    A porous material containing a structure in which a metal atom and an atomic group containing a non-metal atom are bonded and coating the negative electrode active material is provided.
    The non-metal atom contains at least an atom other than an oxygen atom and contains.
    The ratio of the content of the porous material to the sum of the content of the negative electrode active material and the content of the porous material is 0.1% by mass to 5% by mass.
    Composite particles for power storage devices.
  14.  請求項1~12のいずれか1項に記載の蓄電デバイス用電極を備えた、蓄電デバイス。
     
    A power storage device comprising the electrode for the power storage device according to any one of claims 1 to 12.
PCT/JP2021/012682 2020-03-31 2021-03-25 Electrode for power storage device, composite particles for power storage device, and power storage device WO2021200587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512082A JPWO2021200587A1 (en) 2020-03-31 2021-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064918 2020-03-31
JP2020-064918 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200587A1 true WO2021200587A1 (en) 2021-10-07

Family

ID=77927259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012682 WO2021200587A1 (en) 2020-03-31 2021-03-25 Electrode for power storage device, composite particles for power storage device, and power storage device

Country Status (2)

Country Link
JP (1) JPWO2021200587A1 (en)
WO (1) WO2021200587A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517250A (en) * 2015-11-30 2018-06-28 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, positive electrode for secondary battery including the same, and secondary battery
JP2019029089A (en) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 Secondary battery
JP2019050145A (en) * 2017-09-11 2019-03-28 トヨタ自動車株式会社 Anode, lithium ion secondary battery, manufacturing method for anode, and manufacturing method for lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517250A (en) * 2015-11-30 2018-06-28 エルジー・ケム・リミテッド Positive electrode active material for secondary battery, positive electrode for secondary battery including the same, and secondary battery
JP2019029089A (en) * 2017-07-26 2019-02-21 トヨタ自動車株式会社 Secondary battery
JP2019050145A (en) * 2017-09-11 2019-03-28 トヨタ自動車株式会社 Anode, lithium ion secondary battery, manufacturing method for anode, and manufacturing method for lithium ion secondary battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN YUZHEN, YU DANNI, ZHOU JUNWEN, XU PEIYU, QI PENGFEI, WANG QIANYOU, LI SIWU, FU XIAOTAO, GAO XING, JIANG CHENGHAO, FENG XIAO, W: "A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal-Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 23, no. 48, 25 August 2017 (2017-08-25), DE, pages 11513 - 11518, XP055925818, ISSN: 0947-6539, DOI: 10.1002/chem.201703016 *
LI BAOYUN, LI GUANGSHE, ZHANG DAN, FAN JIANMING, CHEN DANDAN, LIU XIAOQING, FENG TAO, LI LIPING: "Zeolitic imidazolate framework-8 modified LiNi1/3Co1/3Mn1/3O2: A durable cathode showing excellent electrochemical performances in Li-ion batteries", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 336, 1 March 2020 (2020-03-01), AMSTERDAM, NL , pages 135724 - 135733, XP055925810, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2020.135724 *
ZHAO RUO, LIANG ZIBIN, ZOU RUQIANG, XU QIANG: "Metal-Organic Frameworks for Batteries", JOULE, CELL PRESS, vol. 2, no. 11, 1 November 2018 (2018-11-01), pages 2235 - 2259, XP055925819, ISSN: 2542-4351, DOI: 10.1016/j.joule.2018.09.019 *

Also Published As

Publication number Publication date
JPWO2021200587A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US10566625B2 (en) Electrode active material, electrode for electricity storage device, electricity storage device, and method for producing electrode active material
US9590239B2 (en) Negative electrode for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
JP5896241B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6304746B2 (en) Lithium ion secondary battery
KR20150084920A (en) Process for producing a carbon-supported nickel-cobalt-oxide catalyst and its use in rechargeable electrochemical metal-oxygen cells
JPWO2018051675A1 (en) Lithium secondary battery
JP6798524B2 (en) Power storage device
KR101820446B1 (en) Electrode Slurry for Secondary Battery Containing Two Types of Conductive Materials and Secondary Battery Comprising the Same
WO2021200587A1 (en) Electrode for power storage device, composite particles for power storage device, and power storage device
WO2021200588A1 (en) Negative electrode for power storage device, composite particles for power storage device, and power storage device
WO2021200589A1 (en) Positive electrode for power storage device, and power storage device
JP2020161771A (en) Evaluation method, electrode for electricity storage device, and electricity storage device
CN112041955A (en) Positive electrode for power storage device and power storage device
JP2010244819A (en) Nonaqueous secondary battery
WO2020255489A1 (en) Anode material, anode and battery cell
JP7181709B2 (en) storage device
JP2019029215A (en) Nonaqueous secondary battery
JP6743799B2 (en) Electrolyte, power storage device, and method for manufacturing power storage device
JP2021034620A (en) Lithium ion capacitor
WO2020066263A1 (en) Secondary battery positive electrode active material and secondary battery
JP2020149941A (en) Power storage device
JP7311973B2 (en) storage device
JP2020150213A (en) Power storage device
JP7180499B2 (en) Electrode composition, electricity storage device electrode, electricity storage device, and method for producing electrode composition
CN110957468B (en) Electrode for electricity storage device, and method for manufacturing electrode for electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779729

Country of ref document: EP

Kind code of ref document: A1