WO2021200418A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2021200418A1
WO2021200418A1 PCT/JP2021/012096 JP2021012096W WO2021200418A1 WO 2021200418 A1 WO2021200418 A1 WO 2021200418A1 JP 2021012096 W JP2021012096 W JP 2021012096W WO 2021200418 A1 WO2021200418 A1 WO 2021200418A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell strings
solar cell
cell
pressure receiving
receiving body
Prior art date
Application number
PCT/JP2021/012096
Other languages
French (fr)
Japanese (ja)
Inventor
賢吾 前田
秀樹 松尾
澤田 徹
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022511998A priority Critical patent/JPWO2021200418A1/ja
Publication of WO2021200418A1 publication Critical patent/WO2021200418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module constituting a daylighting solar cell.
  • Daylighting solar cells are applied to windows of large buildings, etc.
  • the daylighting type solar cell when particularly excellent design is required, a type in which the power generation area of the thin film solar cell is locally removed to transmit light is used, but in recent years, per window area.
  • a solar cell of a type in which substantially square cells are arranged with a gap is often used (for example, described in Japanese Patent Application Laid-Open No. 2001-339087).
  • a solar cell using such a substantially square-shaped cell has a difficulty in design because the substantially square-shaped cell becomes conspicuous, and the cell is chromatically inconspicuous, or the metal electrode of each cell or the like. Ingenuity such as hiding the wiring between cells is required.
  • One solution to this problem is to connect a large number of elongated cells in one direction to form a cell string, and arrange multiple cell strings arranged at regular intervals to form a blind-like see-through. It is to be a solar cell (for example, described in International Publication No. 2019/181689).
  • the cell strings of a blind-like see-through solar cell are extremely elongated (the ratio of the length and width of each cell string is very large), and it is necessary to arrange a plurality of cell strings in parallel at regular intervals. Since it is necessary to sandwich and seal this with a sealing material made of transparent resin, each cell string is easily distorted due to pressure applied from the sealing material to each cell string when sealing. It is extremely difficult to maintain the straightness of the cell strings after sealing and the parallelism between the cell strings, which are elements that are directly related to the design.
  • the present invention comprises a plurality of cells, each of which is an elongated rectangular cell having a short side and a long side having a length of 10 times or more the length of the short side in a plan view.
  • the plurality of cell strings are composed of a plurality of cell strings formed by electrically connecting to each other along the extending direction of the long side, and the plurality of cell strings are the extending directions of the short side between the adjacent cell strings.
  • a solar cell module made of a sealing material which is arranged in parallel to each other with a gap, is arranged in each of the gaps, is transparent, and has fluidity at the time of arrangement, the solar cell module is arranged in parallel.
  • the cells are arranged outside the two cell strings located at both ends in the extending direction of the short side, parallel to each of the two cell strings, and with respect to each of the two cell strings. It is a solar cell module characterized by including a pressure receiving body that is not electrically connected.
  • the pressure receiving body is made of a material having a Young's modulus of 10 GPa or more.
  • the pressure receiving body can be made of metal.
  • plan view shape of each cell string and the plan view shape of each pressure receiving body can be the same.
  • the plurality of cell strings and the sealing material can be sandwiched between two transparent plates.
  • FIG. 1 is a front view showing an example of the appearance of the solar cell module according to the embodiment of the present invention, with the light receiving surface side facing forward.
  • FIG. 2 is an exploded cross-sectional view of the solar cell module.
  • FIG. 3A is a perspective view of a pressure receiving body according to an embodiment of the present invention.
  • FIG. 3B is a diagram showing various variations in the cross-sectional shape of the pressure receiving body.
  • FIG. 3C is a diagram showing various variations in the cross-sectional shape of the pressure receiving body.
  • FIG. 3D is a diagram showing various variations in the cross-sectional shape of the pressure receiving body.
  • FIG. 3E is a diagram showing various variations in the cross-sectional shape of the pressure receiving body.
  • FIG. 4A is a schematic vertical sectional view showing a configuration related to the pressure receiving body of the solar cell module.
  • FIG. 4B is a schematic vertical sectional view showing a configuration related to the pressure receiving body in the comparative example.
  • the solar cell module 1 of the present embodiment constitutes a blind-like see-through solar cell that transmits light in the thickness direction.
  • the solar cell module 1 includes a plurality of cell strings 2 and 2, a sealing material 3, a transparent plate 4, and a pressure receiving body 5 as main components related to the present invention.
  • the frame portions 6 located at the four edge edges are combined into a single piece.
  • the solar cell module 1 is attached to a window frame of a building, for example, and is used as a window.
  • the configuration (layer configuration) of the solar cell module 1 is substantially the same size as the highly transparent (float) unreinforced glass as the first transparent plate 4A and the first transparent plate 4A from the light receiving surface side.
  • the transparent first sealing material 3A is arranged, and from the back surface side opposite to the light receiving surface side, it is substantially the same as the highly transparent (float) unreinforced glass as the second transparent plate 4B and the second transparent plate 4B.
  • a transparent second sealing material 3B having the size of is arranged. Then, a plurality of cell strings 2 to 2 (see FIG. 1) are arranged between the first sealing material 3A on the upper side of the drawing and the second sealing material 3B on the lower side of the drawing.
  • the first sealing material 3A and the second sealing material 3B are collectively referred to as a sealing material 3, and the first transparent plate 4A and the second transparent plate 4B are collectively referred to as a transparent plate 4.
  • a connection-related member 9 is sandwiched between the ends of each cell string 2. As shown in FIG. 2, the connection-related member 9 is connected to the interconnector 91 provided at both ends of each cell string 2, the wiring sheet 92 supporting the interconnector 91, and the outside of the solar cell module 1 for extracting electricity.
  • the electric wiring 93 and the above-mentioned members 91 to 93 are provided with a shielding sheet 94 for hiding the members 91 to 93 so as not to appear in the appearance of the solar cell module 1.
  • Each cell string 2 is configured by electrically connecting a plurality of cells (individual cells are not shown).
  • Each cell is in the shape of a plate having a semiconductor substrate and a plurality of current collecting electrodes formed on the semiconductor substrate. Since the basic configuration of each cell for power generation and current collection is the same as that of a known solar cell, detailed description here will be omitted.
  • Each cell has an elongated rectangular shape having a short side and a long side having a length of 10 times or more the length of the short side in a plan view (plan view for each cell).
  • Each cell string 2 is formed by electrically connecting a plurality of cells having the above shape along the extending direction of the long side of each cell (longitudinal direction, left-right direction in FIGS. 1 and 2).
  • the connection can be made by various means.
  • a "singling connection" can be adopted in which the end portions in the longitudinal direction of each cell are sequentially arranged so as to overlap in the thickness direction.
  • the solar cell module 1 is configured by arranging a plurality of cell strings 2 to 2 in the plane direction. Specifically, a plurality of cell strings 2 and 2 are arranged parallel to each other with a gap in the extending direction (width direction, vertical direction in FIG. 1) of the short side between the adjacent cell strings 2 and 2. .. The gap contributes to daylighting.
  • one end for example, the right end
  • the reference cell string 2 and the other end portion for example, the left end portion of the other cell strings 2 adjacent to each other at the lower side in FIG. 1 are electrically connected to each other. In this way, several cell strings 2 and 2 are connected in series. In one solar cell module 1, a plurality of the units connected in series are connected in parallel.
  • the sealing material 3 is arranged in each of the gaps between the adjacent cell strings 2 and 2 in a state where the plurality of cell strings 2 and 2 are arranged in parallel. There is. That is, the sealing material 3 is interposed between the adjacent cell strings 2 and 2.
  • the sealing material 3 is in the form of a transparent sheet before being incorporated into the solar cell module 1, and is softened (liquefied) by heating when arranged in the gap between the adjacent cell strings 2 and 2.
  • Has fluidity It should be noted that this fluidity is sufficient to enter the gap.
  • EVA ethylene vinyl acetate copolymer
  • POE polyolefin
  • PVB polyvinyl butyral
  • the transparent plate 4 (specifically, the first transparent plate 4A) constitutes the outer layer of the solar cell module 1.
  • a hard glass plate is used as the transparent plate 4, and the transparent plate 4 is transparent and can transmit light in the thickness direction for daylighting.
  • Various constituent members for power generation, including a plurality of cell strings 2 and 2, and the sealing material 3 are sandwiched between two transparent plates 4 and 4 which are overlapped in the thickness direction.
  • the pressure receiving body 5 is an elongated plate-shaped body (ribbon-shaped body) or rod-shaped body.
  • the length dimension of the pressure receiving body 5 is substantially the same as the length dimension of each cell string 2, but the length of each cell string 2 is hidden because the end portion is hidden by the frame portion 6 and the shielding sheet 94. The length of plus or minus 20% with respect to the dimension is allowed.
  • the pressure receiving body 5 is outside of the two cell strings 2 and 2 located at both ends in the extending direction (width direction) of the short side of the plurality of cell strings 2 and 2 arranged in parallel (in the present embodiment). , It is arranged on the upper and lower outer sides of the upper and lower cell strings 2 and 2 shown in FIG.
  • the pressure receiving body 5 is arranged in parallel with each of the two cell strings 2 and 2. However, the pressure receiving body 5 is not electrically connected to each cell string 2. That is, the pressure receiving body 5 does not contribute to power generation. Further, unlike the cell string 2 in which a plurality of cells are connected, the pressure receiving body 5 is basically a single body formed continuously. However, it is also possible to connect a plurality of members to form one pressure receiving body 5. By shielding each pressure receiving body 5 with, for example, a sheet similar to the shielding sheet 94, the solar cell module 1 can be made inconspicuous in appearance.
  • the shape of the pressure receiving body 5 is not particularly limited, but since the pressure receiving body 5 is also sandwiched between the two transparent plates 4 and 4 together with the plurality of cell strings 2 and 2, the thickness dimension of the plurality of cell strings 2 and 2 It is preferable that the thickness dimensions are substantially the same as or larger than each thickness dimension. By setting such a thickness dimension, the pressure receiving body 5 can fill the space between the two transparent plates 4 and 4 facing each other, so that the sealing material 3 tends to flow. The pressure receiving body 5 can effectively receive the pressure.
  • the thickness dimension of the pressure receiving body 5 is set to about 50% of the thickness dimension of the sealing material 3 (before softening). Specifically, it is set to 20 ⁇ m to 5 mm.
  • each cell string 2 and the plan view shape of the pressure receiving body 5 are substantially the same. This is because even if the pressure receiving body 5 that does not contribute to power generation is provided, the appearance of the solar cell module 1 is unlikely to be uncomfortable. Further, as compared with the case where the pressure receiving body 5 is made wider, it is possible to suppress a reduction in the effective power generation area (area in which a plurality of cell strings 2 to 2 can be arranged) in the solar cell module 1.
  • the width dimension of the pressure receiving body 5 is set between 2 mm and 100 mm. In this embodiment, it is set to 5 mm.
  • FIGS. 3A to 3E The cross-sectional shape of the pressure receiving body 5 in the width direction can be as shown in FIGS. 3A to 3E, for example.
  • FIG. 3A is a rectangle
  • FIG. 3B is a substantially circular shape
  • FIG. 3C is an ellipse
  • FIGS. 3A to 3C have simple shapes, it is advantageous from the viewpoint of manufacturing and from the viewpoint of obtaining materials that general-purpose rods and plates can be easily diverted.
  • the shapes shown in FIGS. 3D and 3E are advantageous in that the bending strength in the longitudinal direction can be improved by alternately forming the portions having a large thickness dimension and the portions having a small thickness dimension.
  • the pressure receiving body 5 is composed of a material having a Young's modulus of 10 GPa or more, preferably a material having a Young's modulus of 50 GPa or more. However, even if the Young's modulus is a single material less than the above value, it can be molded by incorporating a reinforcing material such as glass fiber, or the width dimension can be set larger than the width dimension of each cell string 2. , Can be used for the pressure receiving body 5. By configuring the pressure receiving body 5 as described above, the pressure receiving body 5 can reliably receive the pressure of the sealing material 3.
  • Examples of the material constituting the pressure receiving body 5 include copper, aluminum, silver, iron, alloys thereof (stainless steel alloy, etc.), and surface-treated materials (copper plated, etc.) in the case of metal. ) Can be used.
  • the pressure receiving body 5 is made of metal, it is advantageous because the pressure receiving body 5 can be formed of an easily available material. Metal rods and metal wires can be used as easily available materials. In the case of non-metals, for example, glass fiber reinforced unsaturated polyester can be used. Since the pressure receiving body 5 does not contribute to power generation, it is not a problem to use a non-conductor such as a non-metal.
  • each cell string 2 and the plan view shape of the pressure receiving body 5 are substantially the same, when a non-metal is used, for example, the pressure of the sealing material 3 is used. Since it is necessary to increase the width dimension in order to reliably receive the metal, it is difficult to make it substantially the same as the plan view shape of each cell string 2, and the metal is selected due to the ease of material selection and cost. It can be said that it is preferable to use it.
  • arranging a foreign substance different from the sealing material 3 at the outer module end of the plurality of cell strings 2 and 2 is unacceptable from the viewpoint of ensuring the reliability of the sealing end portion in the technical field of the solar cell. It can be said that it is an act.
  • using a metal material as the foreign substance as in the present embodiment is an satisfactory act from the viewpoint of ensuring insulation.
  • the reliability of the sealing end portion and the insulation property can be ensured without any problem. This is an unprecedented original point of this embodiment.
  • the plurality of cell strings 2 and 2 and the sealing material 3 are sandwiched between the two transparent plates 4 and 4 (specifically, the first transparent plate 4A and the second transparent plate 4B). ing.
  • a plurality of cell strings 2 to 2 are sandwiched between two transparent plates 4 and 4 with a pressure P1 in the thickness direction (see FIG. 4A)
  • pressure is applied to the heated sealing material 3 to apply pressure to the sealing material 3.
  • a flow is generated in which the cells enter the gap between the adjacent cell strings 2 and 2 and further move outward in the width direction of the plurality of cell strings 2 and 2.
  • the solar cell module 1X shown as a comparative example in FIG. 4B has a configuration in which only a plurality of cell strings 2 and 2 are arranged between the two transparent plates 4 and 4.
  • the pressure P2 in the surface direction is generated by the flow of the sealing material 3 due to the pressure P1 in the thickness direction.
  • those at both ends (left and right ends in the drawing) lose to this pressure P2, and the cell strings 2 and 2 at both ends are U-shaped in a plan view. It was sometimes distorted in an S shape. If this happens, the solar cell module 1 will be defective.
  • the solar cell module 1 constituting the blind-like see-through solar cell can be manufactured with good yield while suppressing the occurrence of defective products.
  • the embodiment is a plurality of cells, each of which is an elongated rectangular cell having a short side and a long side having a length of 10 times or more the length of the short side in a plan view.
  • the plurality of cell strings 2 are formed by electrically connecting the two to each other along the extending direction of the long side, and the plurality of cell strings 2 are the short sides between the adjacent cell strings.
  • the solar cell module 1 made of a sealing material 3 which is arranged in parallel with each other with a gap in the extending direction of the above, is arranged in each of the gaps, and is transparent and has fluidity at the time of arrangement.
  • the solar cell module 1 is provided with a pressure receiving body 5 that is arranged and is not electrically connected to each of the above.
  • the pressure receiving body 5 receives the pressure caused by the sealing material 3 trying to flow, so that the sealing material 5 is sealed. It is possible to prevent the cell string 2 from being deformed by the pressure of the stop member 3.
  • the pressure receiving body 5 is made of a material having a Young's modulus of 10 GPa or more.
  • the pressure receiving body 5 can reliably receive the pressure of the sealing material 3.
  • the pressure receiving body 5 can be made of metal.
  • the pressure receiving body 5 can be formed of an easily available material.
  • plan view shape of each cell string 2 and the plan view shape of each pressure receiving body 5 can be the same.
  • the plurality of cell strings 2 and the sealing material 3 can be sandwiched between two transparent plates 4.

Abstract

A solar cell module (1) in which a plurality of cell strings (2) are each configured by electrically connecting a plurality of elongated cells, each having a long side that is not less than ten times longer than the short side of thereof in a plan view, the cells being connected in the direction of extension of the long sides thereof extend, in which the plurality of cell strings (2) are disposed in parallel in the direction of extension of the short sides, with gaps therebetween, and in which sealing materials (3) that are transparent and that have fluidity at the time of disposition are disposed in the gaps, said solar cell module (1) being provided with pressure receivers (5) which are respectively disposed outward of and parallel to the two cell strings (2) that, among the plurality of cell strings (2) disposed in parallel, are positioned at either end in the direction of extension of the short sides, and which are not electrically connected to said two cell strings.

Description

太陽電池モジュールSolar cell module 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2020-60103号に基づく優先権を主張し、引用によって本願明細書の記載に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2020-60103 and is incorporated in the description of the present application by citation.
 本発明は、採光型太陽電池を構成する太陽電池モジュールに関するものである。 The present invention relates to a solar cell module constituting a daylighting solar cell.
 大型ビル等の窓に採光型太陽電池が適用されている。採光型太陽電池は、特に優れた意匠性が要求される場合には、薄膜太陽電池の発電領域を局所的に除去して光を透過させるタイプが使用されるが、近年では、窓の面積当りの出力の観点から、略正方形状のセルを、隙間を空けて並べたタイプの太陽電池が使用されることも多い(例えば日本国特開2001-339087号公報に記載)。 Daylighting solar cells are applied to windows of large buildings, etc. As for the daylighting type solar cell, when particularly excellent design is required, a type in which the power generation area of the thin film solar cell is locally removed to transmit light is used, but in recent years, per window area. From the viewpoint of the output of the above, a solar cell of a type in which substantially square cells are arranged with a gap is often used (for example, described in Japanese Patent Application Laid-Open No. 2001-339087).
 しかしながら、このような略正方形状のセルを用いた太陽電池は、略正方形状のセルが目立ってしまうことから意匠性に難があり、色彩的にセルを目立たなくしたり、各セルの金属電極やセル間の配線を隠したりする等の工夫が求められている。この問題の一解決策は、一方向に細長いセルを長さ方向に多数接続してセルストリングとし、並べた複数のセルストリングを、間に一定の間隔を設けて配置して、ブラインド調のシースルー太陽電池とすることである(例えば国際公開第2019/181689号に記載)。 However, a solar cell using such a substantially square-shaped cell has a difficulty in design because the substantially square-shaped cell becomes conspicuous, and the cell is chromatically inconspicuous, or the metal electrode of each cell or the like. Ingenuity such as hiding the wiring between cells is required. One solution to this problem is to connect a large number of elongated cells in one direction to form a cell string, and arrange multiple cell strings arranged at regular intervals to form a blind-like see-through. It is to be a solar cell (for example, described in International Publication No. 2019/181689).
 ところで、ブラインド調シースルー太陽電池のセルストリングは極めて細長い(各セルストリングの長さと幅の比が非常に大きい)上に、複数のセルストリングを一定間隔空けて平行に配置する必要がある。そしてこれを透明樹脂からなる封止材でサンドイッチして封止する必要があるので、封止を行う際、各セルストリングに封止材から圧力がかかることが原因で各セルストリングがゆがみやすく、意匠性に直結する要素である、封止後のセルストリングの直進性や、セルストリング間の平行性を保つことが極めて難しい。 By the way, the cell strings of a blind-like see-through solar cell are extremely elongated (the ratio of the length and width of each cell string is very large), and it is necessary to arrange a plurality of cell strings in parallel at regular intervals. Since it is necessary to sandwich and seal this with a sealing material made of transparent resin, each cell string is easily distorted due to pressure applied from the sealing material to each cell string when sealing. It is extremely difficult to maintain the straightness of the cell strings after sealing and the parallelism between the cell strings, which are elements that are directly related to the design.
日本国特開2001-339087号公報Japanese Patent Application Laid-Open No. 2001-339087 国際公開第2019/181689号International Publication No. 2019/181689
 そこで本発明は、封止後のセルストリングの直進性や、セルストリング間の平行性を保つことが容易な太陽電池モジュールを提供することを課題とする。 Therefore, it is an object of the present invention to provide a solar cell module in which it is easy to maintain the straightness of the cell strings after sealing and the parallelism between the cell strings.
 本発明は、複数のセルであって、当該複数のセルの各々が平面視で、短辺及び当該短辺の長さの10倍以上の長さである長辺を有する細長い矩形状のセルを、前記長辺の延びる方向に沿って相互に電気的に接続することにより構成された複数のセルストリングからなり、前記複数のセルストリングは、隣接する各前記セルストリング間の前記短辺の延びる方向に隙間をもって相互に平行に配置した状態とされ、前記隙間の各々に配置され、透明であり配置の際には流動性を有している封止材からなる太陽電池モジュールにおいて、前記平行に配置された前記複数のセルストリングのうち、前記短辺の延びる方向で両端に位置する2本のセルストリングよりも外側に、前記2本のセルストリングの各々と平行に配置され、前記各々に対して電気的に接続されていない受圧体を備えることを特徴とする太陽電池モジュールである。 The present invention comprises a plurality of cells, each of which is an elongated rectangular cell having a short side and a long side having a length of 10 times or more the length of the short side in a plan view. The plurality of cell strings are composed of a plurality of cell strings formed by electrically connecting to each other along the extending direction of the long side, and the plurality of cell strings are the extending directions of the short side between the adjacent cell strings. In a solar cell module made of a sealing material which is arranged in parallel to each other with a gap, is arranged in each of the gaps, is transparent, and has fluidity at the time of arrangement, the solar cell module is arranged in parallel. Of the plurality of cell strings, the cells are arranged outside the two cell strings located at both ends in the extending direction of the short side, parallel to each of the two cell strings, and with respect to each of the two cell strings. It is a solar cell module characterized by including a pressure receiving body that is not electrically connected.
 また、前記受圧体が、ヤング率10GPa以上の材料から構成されているものとできる。 Further, it can be assumed that the pressure receiving body is made of a material having a Young's modulus of 10 GPa or more.
 また、前記受圧体が金属製であるものとできる。 Further, the pressure receiving body can be made of metal.
 また、各セルストリングの平面視形状と、各受圧体の平面視形状とが同一であるものとできる。 Further, the plan view shape of each cell string and the plan view shape of each pressure receiving body can be the same.
 また、前記複数のセルストリングと前記封止材とが、2枚の透明板に挟まれているものとできる。 Further, the plurality of cell strings and the sealing material can be sandwiched between two transparent plates.
図1は、本発明の一実施形態に係る太陽電池モジュールの外観例を、受光面側を手前に示す正面図である。FIG. 1 is a front view showing an example of the appearance of the solar cell module according to the embodiment of the present invention, with the light receiving surface side facing forward. 図2は、前記太陽電池モジュールの分解断面図である。FIG. 2 is an exploded cross-sectional view of the solar cell module. 図3Aは本発明の一実施形態に係る受圧体の斜視図である。FIG. 3A is a perspective view of a pressure receiving body according to an embodiment of the present invention. 図3Bは受圧体の横断面形状の種々のバリエーションを示す図である。FIG. 3B is a diagram showing various variations in the cross-sectional shape of the pressure receiving body. 図3Cは受圧体の横断面形状の種々のバリエーションを示す図である。FIG. 3C is a diagram showing various variations in the cross-sectional shape of the pressure receiving body. 図3Dは受圧体の横断面形状の種々のバリエーションを示す図である。FIG. 3D is a diagram showing various variations in the cross-sectional shape of the pressure receiving body. 図3Eは受圧体の横断面形状の種々のバリエーションを示す図である。FIG. 3E is a diagram showing various variations in the cross-sectional shape of the pressure receiving body. 図4Aは前記太陽電池モジュールの、前記受圧体に関連する構成を示す概略縦断面図である。FIG. 4A is a schematic vertical sectional view showing a configuration related to the pressure receiving body of the solar cell module. 図4Bは比較例における受圧体に関連する構成を示す概略縦断面図である。FIG. 4B is a schematic vertical sectional view showing a configuration related to the pressure receiving body in the comparative example.
 本発明に係る太陽電池モジュール1につき、一実施形態を取り上げて、図面とともに以下説明を行う。 Regarding the solar cell module 1 according to the present invention, one embodiment will be taken up and the following description will be given together with the drawings.
 本実施形態の太陽電池モジュール1は、図1に示すように、厚み方向に光が透過するブラインド調のシースルー太陽電池を構成する。この太陽電池モジュール1は、本発明に関係する主要な構成部材として、図1及び図2に示すように、複数のセルストリング2~2、封止材3、透明板4、受圧体5を備えており、図1に示すように、4つの端縁に位置する枠部6によって一枚物にまとめられている。この太陽電池モジュール1は、例えば建築物の窓枠に取り付けられて、窓として用いられる。 As shown in FIG. 1, the solar cell module 1 of the present embodiment constitutes a blind-like see-through solar cell that transmits light in the thickness direction. As shown in FIGS. 1 and 2, the solar cell module 1 includes a plurality of cell strings 2 and 2, a sealing material 3, a transparent plate 4, and a pressure receiving body 5 as main components related to the present invention. As shown in FIG. 1, the frame portions 6 located at the four edge edges are combined into a single piece. The solar cell module 1 is attached to a window frame of a building, for example, and is used as a window.
 太陽電池モジュール1の構成(層構成)は、図2に示すように、受光面側から、第1透明板4Aとしての高透過(フロート)未強化ガラス、第1透明板4Aと略同一の大きさで透明な第1封止材3Aが配置され、受光面側とは反対側の裏面側から、第2透明板4Bとしての高透過(フロート)未強化ガラス、第2透明板4Bと略同一の大きさで透明な第2封止材3Bが配置されている。そして、図示上側の第1封止材3Aと図示下側の第2封止材3Bとの間に複数のセルストリング2~2(図1参照)が配置される。なお、以下の説明では、第1封止材3Aと第2封止材3Bとをまとめて封止材3と称し、第1透明板4Aと第2透明板4Bとをまとめて透明板4と称する。また、各セルストリング2の端部には接続関係部材9が挟まれる。接続関係部材9は、図2に示すように、各セルストリング2の両端に設けられたインターコネクタ91、インターコネクタ91を支持する配線シート92、電気を取り出すために太陽電池モジュール1の外部に接続される電気配線93、前述の各部材91~93を太陽電池モジュール1の外観に現れないよう隠すための遮蔽シート94を備えている。 As shown in FIG. 2, the configuration (layer configuration) of the solar cell module 1 is substantially the same size as the highly transparent (float) unreinforced glass as the first transparent plate 4A and the first transparent plate 4A from the light receiving surface side. The transparent first sealing material 3A is arranged, and from the back surface side opposite to the light receiving surface side, it is substantially the same as the highly transparent (float) unreinforced glass as the second transparent plate 4B and the second transparent plate 4B. A transparent second sealing material 3B having the size of is arranged. Then, a plurality of cell strings 2 to 2 (see FIG. 1) are arranged between the first sealing material 3A on the upper side of the drawing and the second sealing material 3B on the lower side of the drawing. In the following description, the first sealing material 3A and the second sealing material 3B are collectively referred to as a sealing material 3, and the first transparent plate 4A and the second transparent plate 4B are collectively referred to as a transparent plate 4. Refer to. Further, a connection-related member 9 is sandwiched between the ends of each cell string 2. As shown in FIG. 2, the connection-related member 9 is connected to the interconnector 91 provided at both ends of each cell string 2, the wiring sheet 92 supporting the interconnector 91, and the outside of the solar cell module 1 for extracting electricity. The electric wiring 93 and the above-mentioned members 91 to 93 are provided with a shielding sheet 94 for hiding the members 91 to 93 so as not to appear in the appearance of the solar cell module 1.
 各セルストリング2は、複数のセル(個々のセルは図示しない)が電気的に接続されて構成されている。各セルは半導体基板と、この半導体基板上に形成された複数の集電電極と、を有する板状のものである。なお、各セルの発電及び集電に関する基本的構成は公知の太陽電池セルの構成と同様であることから、ここでの詳細な説明は省略する。各セルは、平面視(各セルに対する平面視)で、短辺及び短辺の長さの10倍以上の長さである長辺を有する細長い矩形状とされている。 Each cell string 2 is configured by electrically connecting a plurality of cells (individual cells are not shown). Each cell is in the shape of a plate having a semiconductor substrate and a plurality of current collecting electrodes formed on the semiconductor substrate. Since the basic configuration of each cell for power generation and current collection is the same as that of a known solar cell, detailed description here will be omitted. Each cell has an elongated rectangular shape having a short side and a long side having a length of 10 times or more the length of the short side in a plan view (plan view for each cell).
 前記形状である複数のセルを、各セルの長辺の延びる方向(長手方向、図1及び図2における左右方向)に沿って電気的に接続することにより各セルストリング2が構成される。接続は種々の手段で行うことができ、例えば、各セルにおける長手方向端部が、厚み方向で重なるように順次配置していく「シングリング接続」を採用できる。 Each cell string 2 is formed by electrically connecting a plurality of cells having the above shape along the extending direction of the long side of each cell (longitudinal direction, left-right direction in FIGS. 1 and 2). The connection can be made by various means. For example, a "singling connection" can be adopted in which the end portions in the longitudinal direction of each cell are sequentially arranged so as to overlap in the thickness direction.
 太陽電池モジュール1は、複数のセルストリング2~2が平面方向に並べられて構成されている。具体的には、複数のセルストリング2~2が、隣接する各セルストリング2,2間の短辺の延びる方向(幅方向、図1における上下方向)に隙間をもって相互に平行に配置されている。隙間は採光に寄与する。複数のセルストリング2~2は、基準のセルストリング2と、例えば図1における上方で隣り合う他のセルストリング2の一端部(例えば右端部)同士が電気的に接続される。また、前記基準のセルストリング2と、例えば図1における下方で隣り合う他のセルストリング2の他端部(例えば左端部)同士が電気的に接続される。このようにして、何本かのセルストリング2~2が直列接続される。1台の太陽電池モジュール1では、前記直列接続された単位が複数、並列接続されている。 The solar cell module 1 is configured by arranging a plurality of cell strings 2 to 2 in the plane direction. Specifically, a plurality of cell strings 2 and 2 are arranged parallel to each other with a gap in the extending direction (width direction, vertical direction in FIG. 1) of the short side between the adjacent cell strings 2 and 2. .. The gap contributes to daylighting. In the plurality of cell strings 2 and 2, one end (for example, the right end) of the reference cell string 2 and another cell string 2 adjacent to each other at the upper side in FIG. 1, for example, are electrically connected to each other. Further, the reference cell string 2 and the other end portion (for example, the left end portion) of the other cell strings 2 adjacent to each other at the lower side in FIG. 1 are electrically connected to each other. In this way, several cell strings 2 and 2 are connected in series. In one solar cell module 1, a plurality of the units connected in series are connected in parallel.
 太陽電池モジュール1における各セルストリング2の固定に関しては、複数のセルストリング2~2を前記平行に配置した状態で、隣り合うセルストリング2,2の隙間の各々に封止材3を配置している。つまり、隣り合うセルストリング2,2の間には封止材3が介在する。封止材3は、太陽電池モジュール1に組み込む前の状態で、各々が透明なシート状であって、隣り合うセルストリング2,2の隙間への配置の際には、加熱によって軟化(液状化)することで流動性を有している。なお、この流動性は、前記隙間に入り込む程度で足りる。封止材3を構成する材料として、例えば、EVA(エチレン酢酸ビニル共重合体)、POE(ポリオレフィン)、PVB(ポリビニルブチラール)、また、アイオノマーを用いることができる。 Regarding the fixing of each cell string 2 in the solar cell module 1, the sealing material 3 is arranged in each of the gaps between the adjacent cell strings 2 and 2 in a state where the plurality of cell strings 2 and 2 are arranged in parallel. There is. That is, the sealing material 3 is interposed between the adjacent cell strings 2 and 2. The sealing material 3 is in the form of a transparent sheet before being incorporated into the solar cell module 1, and is softened (liquefied) by heating when arranged in the gap between the adjacent cell strings 2 and 2. ) Has fluidity. It should be noted that this fluidity is sufficient to enter the gap. As a material constituting the sealing material 3, for example, EVA (ethylene vinyl acetate copolymer), POE (polyolefin), PVB (polyvinyl butyral), and ionomer can be used.
 透明板4(具体的には第1透明板4A)は太陽電池モジュール1の外層を構成する。本実施形態では透明板4として硬質のガラス板が用いられ、透明で、採光のために、厚み方向に光を通すことができる。複数のセルストリング2~2を含む、発電のための種々の構成部材と封止材3とが、厚み方向に重なる関係とされた2枚の透明板4,4に挟まれる。 The transparent plate 4 (specifically, the first transparent plate 4A) constitutes the outer layer of the solar cell module 1. In the present embodiment, a hard glass plate is used as the transparent plate 4, and the transparent plate 4 is transparent and can transmit light in the thickness direction for daylighting. Various constituent members for power generation, including a plurality of cell strings 2 and 2, and the sealing material 3 are sandwiched between two transparent plates 4 and 4 which are overlapped in the thickness direction.
 受圧体5は、細長形状の板状体(リボン状体)または棒状体である。受圧体5の長さ寸法は、各セルストリング2の長さ寸法に対して略同一とされているが、端部が枠部6や遮蔽シート94に隠されることから、各セルストリング2の長さ寸法に対してプラスマイナス20%の長短は許容される。受圧体5は、平行に配置された複数のセルストリング2~2のうち、短辺の延びる方向(幅方向)で両端に位置する2本のセルストリング2,2よりも外側(本実施形態では、図1に示す上下端のセルストリング2,2よりも上下の外側)に配置される。受圧体5は、前記2本のセルストリング2,2の各々と平行に配置される。ただし、この受圧体5は、各セルストリング2に対して電気的に接続されていない。つまり、受圧体5は発電に寄与するものではない。また、受圧体5は、複数のセルが接続されたセルストリング2とは異なり、基本的には、連続して形成された一本物である。ただし、複数部材を接続して一本の受圧体5を形成することも可能である。各受圧体5は、例えば遮蔽シート94と同様のシートにより遮蔽されることで、太陽電池モジュール1において、外観上目立たないようにすることもできる。 The pressure receiving body 5 is an elongated plate-shaped body (ribbon-shaped body) or rod-shaped body. The length dimension of the pressure receiving body 5 is substantially the same as the length dimension of each cell string 2, but the length of each cell string 2 is hidden because the end portion is hidden by the frame portion 6 and the shielding sheet 94. The length of plus or minus 20% with respect to the dimension is allowed. The pressure receiving body 5 is outside of the two cell strings 2 and 2 located at both ends in the extending direction (width direction) of the short side of the plurality of cell strings 2 and 2 arranged in parallel (in the present embodiment). , It is arranged on the upper and lower outer sides of the upper and lower cell strings 2 and 2 shown in FIG. The pressure receiving body 5 is arranged in parallel with each of the two cell strings 2 and 2. However, the pressure receiving body 5 is not electrically connected to each cell string 2. That is, the pressure receiving body 5 does not contribute to power generation. Further, unlike the cell string 2 in which a plurality of cells are connected, the pressure receiving body 5 is basically a single body formed continuously. However, it is also possible to connect a plurality of members to form one pressure receiving body 5. By shielding each pressure receiving body 5 with, for example, a sheet similar to the shielding sheet 94, the solar cell module 1 can be made inconspicuous in appearance.
 受圧体5の形状は特に限定されないが、受圧体5も複数のセルストリング2~2と共に2枚の透明板4,4に挟まれることから、厚み寸法に関しては、複数のセルストリング2~2の各々の厚み寸法と略同一か、大きいことが好ましい。このような厚み寸法に設定することで、対向する2枚の透明板4,4の間の空間を受圧体5が埋めることができるので、封止材3が流動しようとすることに伴って生じる圧力を受圧体5が有効に受け止めることができる。受圧体5の厚み寸法は、本実施形態では、封止材3(軟化前)の厚み寸法の約50%に設定される。具体的数値では、20μm~5mmで設定される。 The shape of the pressure receiving body 5 is not particularly limited, but since the pressure receiving body 5 is also sandwiched between the two transparent plates 4 and 4 together with the plurality of cell strings 2 and 2, the thickness dimension of the plurality of cell strings 2 and 2 It is preferable that the thickness dimensions are substantially the same as or larger than each thickness dimension. By setting such a thickness dimension, the pressure receiving body 5 can fill the space between the two transparent plates 4 and 4 facing each other, so that the sealing material 3 tends to flow. The pressure receiving body 5 can effectively receive the pressure. In the present embodiment, the thickness dimension of the pressure receiving body 5 is set to about 50% of the thickness dimension of the sealing material 3 (before softening). Specifically, it is set to 20 μm to 5 mm.
 また、意匠性(美観)の点で、各セルストリング2の平面視形状と、前記受圧体5の平面視形状とが略同一であることが好ましい。発電に寄与するものではない受圧体5を備えていても、太陽電池モジュール1の外観に違和感が生じにくいからである。また、受圧体5を幅広とした場合に比べ、太陽電池モジュール1における発電実効面積(複数のセルストリング2~2を配置可能な面積)の目減りを抑えられるからである。受圧体5の幅寸法は2mm~100mmの間で設定される。本実施形態では5mmとされている。 Further, in terms of design (aesthetics), it is preferable that the plan view shape of each cell string 2 and the plan view shape of the pressure receiving body 5 are substantially the same. This is because even if the pressure receiving body 5 that does not contribute to power generation is provided, the appearance of the solar cell module 1 is unlikely to be uncomfortable. Further, as compared with the case where the pressure receiving body 5 is made wider, it is possible to suppress a reduction in the effective power generation area (area in which a plurality of cell strings 2 to 2 can be arranged) in the solar cell module 1. The width dimension of the pressure receiving body 5 is set between 2 mm and 100 mm. In this embodiment, it is set to 5 mm.
 受圧体5の幅方向での横断面形状は、例えば図3A~図3Eに示すようにできる。図3Aは長方形、図3Bは略円形、図3Cは楕円形、図3Dは厚み寸法の大きい部分51と小さい部分52を複数交互に形成して、各部分の図示下面を揃えたもの、図3Eは厚み寸法の大きい部分51と小さい部分52を複数交互に形成して、各部分を厚み方向中央で揃えたものである。特に、図3A~図3Cは単純な形状であることから、製造の観点や、汎用的な棒材や板材の転用が容易であるとの、材料入手の観点で有利である。一方、図3D、図3Eに示す形状は、厚み寸法の大きい部分と小さい部分を交互に形成したことにより、長手方向の曲げ強度を向上できる点で有利である。 The cross-sectional shape of the pressure receiving body 5 in the width direction can be as shown in FIGS. 3A to 3E, for example. FIG. 3A is a rectangle, FIG. 3B is a substantially circular shape, FIG. 3C is an ellipse, and FIG. Is formed by alternately forming a plurality of portions 51 having a large thickness dimension and a plurality of portions 52 having a small thickness dimension, and aligning the respective portions at the center in the thickness direction. In particular, since FIGS. 3A to 3C have simple shapes, it is advantageous from the viewpoint of manufacturing and from the viewpoint of obtaining materials that general-purpose rods and plates can be easily diverted. On the other hand, the shapes shown in FIGS. 3D and 3E are advantageous in that the bending strength in the longitudinal direction can be improved by alternately forming the portions having a large thickness dimension and the portions having a small thickness dimension.
 受圧体5は、ヤング率10GPa以上の材料、好ましくは50GPa以上の材料から構成されている。ただし、ヤング率が単体で前記数値未満の材料であっても、ガラス繊維等の補強材を組み込む形で成形したり、幅寸法を各セルストリング2の幅寸法よりも大きく設定したりすることで、受圧体5に用いることが可能である。これらのように受圧体5を構成することにより、受圧体5が封止材3の圧力を確実に受け止めることができる。 The pressure receiving body 5 is composed of a material having a Young's modulus of 10 GPa or more, preferably a material having a Young's modulus of 50 GPa or more. However, even if the Young's modulus is a single material less than the above value, it can be molded by incorporating a reinforcing material such as glass fiber, or the width dimension can be set larger than the width dimension of each cell string 2. , Can be used for the pressure receiving body 5. By configuring the pressure receiving body 5 as described above, the pressure receiving body 5 can reliably receive the pressure of the sealing material 3.
 受圧体5を構成する材料として、例えば、金属の場合、銅、アルミニウム、銀、鉄、また、これらの合金(ステンレス合金等)、また、これらを表面処理したもの(半田めっきを施した銅等)を用いることができる。受圧体5が金属製である場合、入手しやすい材料により受圧体5を形成できるので有利である。入手しやすい材料として、金属棒や金属線を利用できる。また、非金属の場合、例えば、ガラスファイバー強化不飽和ポリエステルを用いることができる。なお、受圧体5は発電に寄与するものではないことから、非金属等の不導体を用いることは支障ない。しかし、前記意匠性の点で、各セルストリング2の平面視形状と、前記受圧体5の平面視形状とを略同一にするのであれば、非金属を用いる場合、例えば封止材3の圧力を確実に受け止めるために幅寸法を大きくする必要があるから、各セルストリング2の平面視形状と略同一にするのが困難であること、また、材料の選択容易性やコスト面により、金属を用いる方が好ましいと言える。 Examples of the material constituting the pressure receiving body 5 include copper, aluminum, silver, iron, alloys thereof (stainless steel alloy, etc.), and surface-treated materials (copper plated, etc.) in the case of metal. ) Can be used. When the pressure receiving body 5 is made of metal, it is advantageous because the pressure receiving body 5 can be formed of an easily available material. Metal rods and metal wires can be used as easily available materials. In the case of non-metals, for example, glass fiber reinforced unsaturated polyester can be used. Since the pressure receiving body 5 does not contribute to power generation, it is not a problem to use a non-conductor such as a non-metal. However, in terms of the design, if the plan view shape of each cell string 2 and the plan view shape of the pressure receiving body 5 are substantially the same, when a non-metal is used, for example, the pressure of the sealing material 3 is used. Since it is necessary to increase the width dimension in order to reliably receive the metal, it is difficult to make it substantially the same as the plan view shape of each cell string 2, and the metal is selected due to the ease of material selection and cost. It can be said that it is preferable to use it.
 ここで、複数のセルストリング2~2の外側のモジュール端に封止材3と異なる異物を配置することは、太陽電池の技術分野では、封止端部の信頼性確保の点からは非常識な行為と言える。まして、前記異物として、本実施形態のような金属材料を用いることは、絶縁性確保の点からも非常識な行為と言える。本実施形態では、当業者の常識にとらわれず、あえて、最端のセルストリング2の外側に、当該セルストリング2と平行に、発電に寄与しないダミーの金属体を配置して封止することで、太陽電池モジュール1で、各セルストリング2の位置精度が大幅に改善されたことに加えて、封止端部の信頼性、及び、絶縁性の確保も問題なく行えた。この点が、本実施形態の今までにない独創的な点である。 Here, arranging a foreign substance different from the sealing material 3 at the outer module end of the plurality of cell strings 2 and 2 is insane from the viewpoint of ensuring the reliability of the sealing end portion in the technical field of the solar cell. It can be said that it is an act. Moreover, using a metal material as the foreign substance as in the present embodiment is an insane act from the viewpoint of ensuring insulation. In the present embodiment, without being bound by the common sense of those skilled in the art, by daringly arranging and sealing a dummy metal body that does not contribute to power generation on the outside of the outermost cell string 2 in parallel with the cell string 2. In addition to the significant improvement in the positional accuracy of each cell string 2 in the solar cell module 1, the reliability of the sealing end portion and the insulation property can be ensured without any problem. This is an unprecedented original point of this embodiment.
 太陽電池モジュール1の端部(図示上下端部)に近接する、最端のセルストリング2の外側に、当該セルストリング2と平行に、当該セルストリング2とは電気的接続を行わない受圧体5を配置して封止する。太陽電池モジュール1に受圧体5が配置されたことにより、セルストリング2,2間の隙間に、流動性を有する封止材3を配置する際に、封止材3が流動しようとすることに伴って生じる圧力を受圧体5が受け止める。受圧体5は封止材3に対していわば「防波堤」として機能する。そして、受圧体5が封止材3の圧力を受け止めることから、太陽電池モジュール1の内部で封止材3の流動が生じにくくなる。このようにして、封止材3の圧力により、または、流動する封止材3に流されることにより、各セルストリング2が変形することを抑制できる。従って、各セルストリング2の直進性や隣り合うセルストリング2,2間の平行性が大幅に改善される。 A pressure receiving body 5 that is parallel to the cell string 2 and is not electrically connected to the cell string 2 on the outside of the outermost cell string 2 near the end (lower end in the drawing) of the solar cell module 1. Place and seal. Since the pressure receiving body 5 is arranged in the solar cell module 1, the sealing material 3 tends to flow when the sealing material 3 having fluidity is arranged in the gap between the cell strings 2 and 2. The pressure receiving body 5 receives the pressure generated accordingly. The pressure receiving body 5 functions as a so-called "breakwater" with respect to the sealing material 3. Then, since the pressure receiving body 5 receives the pressure of the sealing material 3, the sealing material 3 is less likely to flow inside the solar cell module 1. In this way, it is possible to suppress the deformation of each cell string 2 by the pressure of the sealing material 3 or by being flown through the flowing sealing material 3. Therefore, the straightness of each cell string 2 and the parallelism between the adjacent cell strings 2 and 2 are greatly improved.
 また、本実施形態では複数のセルストリング2~2と封止材3とが、2枚の透明板4,4(具体的には、第1透明板4Aと第2透明板4B)に挟まれている。2枚の透明板4,4で複数のセルストリング2~2を、厚み方向の圧力P1(図4A参照)をもって挟む際、加熱された封止材3に圧力がかかって封止材3に、隣り合うセルストリング2,2の隙間に入り込んでいき、更に、複数のセルストリング2~2の幅方向の外側に向かっていこうとする流動が生じる。 Further, in the present embodiment, the plurality of cell strings 2 and 2 and the sealing material 3 are sandwiched between the two transparent plates 4 and 4 (specifically, the first transparent plate 4A and the second transparent plate 4B). ing. When a plurality of cell strings 2 to 2 are sandwiched between two transparent plates 4 and 4 with a pressure P1 in the thickness direction (see FIG. 4A), pressure is applied to the heated sealing material 3 to apply pressure to the sealing material 3. A flow is generated in which the cells enter the gap between the adjacent cell strings 2 and 2 and further move outward in the width direction of the plurality of cell strings 2 and 2.
 ここで、図4Bに比較例として示す太陽電池モジュール1Xは、2枚の透明板4,4の間に複数のセルストリング2~2だけが配置された構成である。この例では、厚み方向の圧力P1かかったことによる封止材3の流動により、面方向への圧力P2が生じる。この圧力P2に対して、平行に並べられた複数のセルストリング2~2のうち両端(図示左右端)のものが負けてしまい、両端のセルストリング2,2が、平面視でU字状やS字状にゆがんでしてしまうことがあった。こうなると、太陽電池モジュール1としては不良品になってしまう。 Here, the solar cell module 1X shown as a comparative example in FIG. 4B has a configuration in which only a plurality of cell strings 2 and 2 are arranged between the two transparent plates 4 and 4. In this example, the pressure P2 in the surface direction is generated by the flow of the sealing material 3 due to the pressure P1 in the thickness direction. Of the plurality of cell strings 2 to 2 arranged in parallel, those at both ends (left and right ends in the drawing) lose to this pressure P2, and the cell strings 2 and 2 at both ends are U-shaped in a plan view. It was sometimes distorted in an S shape. If this happens, the solar cell module 1 will be defective.
 これに対して本実施形態では、前記厚み方向の圧力P1がかかったことによる封止材3の流動により、面方向への圧力が生じたとしても、この圧力を受圧体5,5が受け止めるため、内側のセルストリング2~2を封止材3が幅方向に押すことを抑制できる。その結果、各セルストリング2が変形することを抑制できる。従って、ブラインド調のシースルー太陽電池を構成する太陽電池モジュール1を、不良品発生を抑えて歩留まり良く製造できる。 On the other hand, in the present embodiment, even if a pressure in the surface direction is generated due to the flow of the sealing material 3 due to the pressure P1 in the thickness direction being applied, the pressure receiving bodies 5 and 5 receive this pressure. , It is possible to prevent the sealing material 3 from pushing the inner cell strings 2 and 2 in the width direction. As a result, it is possible to suppress the deformation of each cell string 2. Therefore, the solar cell module 1 constituting the blind-like see-through solar cell can be manufactured with good yield while suppressing the occurrence of defective products.
 以上、本発明につき一実施形態を取り上げて説明してきたが、本発明は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Although the present invention has been described above by taking up one embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 前記実施形態に関する構成と作用につき、以下にまとめて記載する。前記実施形態は、複数のセルであって、当該複数のセルの各々が平面視で、短辺及び当該短辺の長さの10倍以上の長さである長辺を有する細長い矩形状のセルを、前記長辺の延びる方向に沿って相互に電気的に接続することにより構成された複数のセルストリング2からなり、前記複数のセルストリング2は、隣接する各前記セルストリング間の前記短辺の延びる方向に隙間をもって相互に平行に配置した状態とされ、前記隙間の各々に配置され、透明であり配置の際には流動性を有している封止材3からなる太陽電池モジュール1において、前記平行に配置された前記複数のセルストリング2のうち、前記短辺の延びる方向で両端に位置する2本のセルストリング2よりも外側に、前記2本のセルストリング2の各々と平行に配置され、前記各々に対して電気的に接続されていない受圧体5を備えることを特徴とする太陽電池モジュール1である。 The configuration and operation related to the above embodiment are summarized below. The embodiment is a plurality of cells, each of which is an elongated rectangular cell having a short side and a long side having a length of 10 times or more the length of the short side in a plan view. The plurality of cell strings 2 are formed by electrically connecting the two to each other along the extending direction of the long side, and the plurality of cell strings 2 are the short sides between the adjacent cell strings. In the solar cell module 1 made of a sealing material 3 which is arranged in parallel with each other with a gap in the extending direction of the above, is arranged in each of the gaps, and is transparent and has fluidity at the time of arrangement. Of the plurality of cell strings 2 arranged in parallel, the two cell strings 2 located at both ends in the extending direction of the short side are outside and parallel to each of the two cell strings 2. The solar cell module 1 is provided with a pressure receiving body 5 that is arranged and is not electrically connected to each of the above.
 この構成によれば、セルストリング2間の隙間に、流動性を有する封止材3を配置する際に、封止材3が流動しようとすることに伴う圧力を受圧体5が受け止めるため、封止材3の圧力によりセルストリング2が変形することを抑制できる。 According to this configuration, when the sealing material 3 having fluidity is arranged in the gap between the cell strings 2, the pressure receiving body 5 receives the pressure caused by the sealing material 3 trying to flow, so that the sealing material 5 is sealed. It is possible to prevent the cell string 2 from being deformed by the pressure of the stop member 3.
 また、前記受圧体5が、ヤング率10GPa以上の材料から構成されているものとできる。 Further, it can be assumed that the pressure receiving body 5 is made of a material having a Young's modulus of 10 GPa or more.
 この構成によれば、受圧体5が封止材3の圧力を確実に受け止めることができる。 According to this configuration, the pressure receiving body 5 can reliably receive the pressure of the sealing material 3.
 また、前記受圧体5が金属製であるものとできる。 Further, the pressure receiving body 5 can be made of metal.
 この構成によれば、入手しやすい材料により受圧体5を形成できる。 According to this configuration, the pressure receiving body 5 can be formed of an easily available material.
 また、各セルストリング2の平面視形状と、各受圧体5の平面視形状とが同一であるものとできる。 Further, the plan view shape of each cell string 2 and the plan view shape of each pressure receiving body 5 can be the same.
 この構成によれば、受圧体5を備えていても、太陽電池モジュール1の外観に違和感が生じにくい。 According to this configuration, even if the pressure receiving body 5 is provided, the appearance of the solar cell module 1 is unlikely to be uncomfortable.
 また、前記複数のセルストリング2と前記封止材3とが、2枚の透明板4に挟まれているものとできる。 Further, the plurality of cell strings 2 and the sealing material 3 can be sandwiched between two transparent plates 4.
 この構成によれば、2枚の透明板4で複数のセルストリング2を挟む際の圧力による封止材3の流動に対して、セルストリング2が変形することを有効に抑制できる。 According to this configuration, it is possible to effectively suppress the deformation of the cell string 2 with respect to the flow of the sealing material 3 due to the pressure when the plurality of cell strings 2 are sandwiched between the two transparent plates 4.
 本実施形態は、封止材3の圧力によりセルストリング2が変形することを抑制できる。よって、封止後のセルストリング2の直進性や、セルストリング2間の平行性を保つことが容易にできる。 In this embodiment, it is possible to prevent the cell string 2 from being deformed by the pressure of the sealing material 3. Therefore, it is possible to easily maintain the straightness of the cell string 2 after sealing and the parallelism between the cell strings 2.
   1     太陽電池モジュール
   2     セルストリング
   3     封止材
   4     透明板
   5     受圧体
1 Solar cell module 2 Cell string 3 Encapsulant 4 Transparent plate 5 Pressure receiving body

Claims (5)

  1.  複数のセルであって、当該複数のセルの各々が平面視で、短辺及び当該短辺の長さの10倍以上の長さである長辺を有する細長い矩形状のセルを、前記長辺の延びる方向に沿って相互に電気的に接続することにより構成された複数のセルストリングからなり、
     前記複数のセルストリングは、隣接する各前記セルストリング間の前記短辺の延びる方向に隙間をもって相互に平行に配置した状態とされ、
     前記隙間の各々に配置され、透明であり配置の際には流動性を有している封止材からなる太陽電池モジュールにおいて、
     前記平行に配置された前記複数のセルストリングのうち、前記短辺の延びる方向で両端に位置する2本のセルストリングよりも外側に、前記2本のセルストリングの各々と平行に配置され、前記各々に対して電気的に接続されていない受圧体を備えることを特徴とする太陽電池モジュール。
    A plurality of cells, each of which is a slender rectangular cell having a short side and a long side having a length of 10 times or more the length of the short side in a plan view, is the long side. Consists of multiple cell strings constructed by electrically connecting to each other along the extending direction of
    The plurality of cell strings are arranged in parallel with each other with a gap in the extending direction of the short side between the adjacent cell strings.
    In a solar cell module made of a sealing material that is arranged in each of the gaps and is transparent and has fluidity when arranged.
    Of the plurality of cell strings arranged in parallel, the cell strings arranged in parallel with each of the two cell strings are arranged outside the two cell strings located at both ends in the extending direction of the short side. A solar cell module characterized by having a pressure receiving body that is not electrically connected to each of them.
  2.  前記受圧体が、ヤング率10GPa以上の材料から構成されていることを特徴とする、請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the pressure receiving body is made of a material having a Young's modulus of 10 GPa or more.
  3.  前記受圧体が金属製であることを特徴とする、請求項2に記載の太陽電池モジュール。 The solar cell module according to claim 2, wherein the pressure receiving body is made of metal.
  4.  各セルストリングの平面視形状と、各受圧体の平面視形状とが同一であることを特徴とする、請求項1~3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the plan view shape of each cell string and the plan view shape of each pressure receiving body are the same.
  5.  前記複数のセルストリングと前記封止材とが、2枚の透明板に挟まれている、請求項1~4のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, wherein the plurality of cell strings and the sealing material are sandwiched between two transparent plates.
PCT/JP2021/012096 2020-03-30 2021-03-24 Solar cell module WO2021200418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511998A JPWO2021200418A1 (en) 2020-03-30 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-060103 2020-03-30
JP2020060103 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200418A1 true WO2021200418A1 (en) 2021-10-07

Family

ID=77928601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012096 WO2021200418A1 (en) 2020-03-30 2021-03-24 Solar cell module

Country Status (3)

Country Link
JP (1) JPWO2021200418A1 (en)
TW (1) TW202145592A (en)
WO (1) WO2021200418A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016451A1 (en) * 2009-08-04 2011-02-10 シャープ株式会社 Manufacturing method for solar battery module, and solar battery module manufactured using said method
JP2011187555A (en) * 2010-03-05 2011-09-22 Toyota Motor Corp Solar cell module
JP2013080737A (en) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd Rear surface protective sheet for solar cell module and method for manufacturing the same
JP2014013876A (en) * 2012-06-04 2014-01-23 Sharp Corp Solar cell module and method for manufacturing the same
JP2014165312A (en) * 2013-02-25 2014-09-08 Toyota Motor Corp Solar cell module
CN109860321A (en) * 2019-03-08 2019-06-07 泸州金能移动能源科技有限公司 A kind of encapsulated photovoltaic module Anti-dislocation gassing prevention device and its application method
WO2019172258A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Solar cell module, glass building material, and method for producing solar cell module
JP2019176153A (en) * 2018-03-28 2019-10-10 エルジー エレクトロニクス インコーポレイティド Solar cell panel and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016451A1 (en) * 2009-08-04 2011-02-10 シャープ株式会社 Manufacturing method for solar battery module, and solar battery module manufactured using said method
JP2011187555A (en) * 2010-03-05 2011-09-22 Toyota Motor Corp Solar cell module
JP2013080737A (en) * 2011-09-30 2013-05-02 Dainippon Printing Co Ltd Rear surface protective sheet for solar cell module and method for manufacturing the same
JP2014013876A (en) * 2012-06-04 2014-01-23 Sharp Corp Solar cell module and method for manufacturing the same
JP2014165312A (en) * 2013-02-25 2014-09-08 Toyota Motor Corp Solar cell module
WO2019172258A1 (en) * 2018-03-08 2019-09-12 株式会社カネカ Solar cell module, glass building material, and method for producing solar cell module
JP2019176153A (en) * 2018-03-28 2019-10-10 エルジー エレクトロニクス インコーポレイティド Solar cell panel and manufacturing method thereof
CN109860321A (en) * 2019-03-08 2019-06-07 泸州金能移动能源科技有限公司 A kind of encapsulated photovoltaic module Anti-dislocation gassing prevention device and its application method

Also Published As

Publication number Publication date
JPWO2021200418A1 (en) 2021-10-07
TW202145592A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
TWI413266B (en) Photovoltaic module
TWI502752B (en) Solar cell module
US9935227B2 (en) Solar cell module and method of manufacturing same
US20140130848A1 (en) Solar cell module
JP5084146B2 (en) Photovoltaic module
JP6478128B2 (en) Solar cell module and method for manufacturing solar cell module
KR20120010251A (en) Wiring sheet, solar cell provided with wiring sheet, and solar cell module
CN113611766B (en) Solar cell module and preparation method thereof
JP5927437B2 (en) Solar cell module
CN210692545U (en) Photovoltaic module without main grid
TW201547181A (en) Photovoltaic module with flexible circuit
EP1998379B1 (en) Solar cell module and method of manufacturing the solar cell module
WO2018003563A1 (en) Solar cell module
CN107425082B (en) Solar cell module
JP2010016246A (en) Solar cell module and method of manufacturing the same
WO2021200418A1 (en) Solar cell module
US20190379321A1 (en) Solar roof tile connectors
CN111223950A (en) Solar panel and solar cell module
JP2017017270A (en) Interconnector and solar panel
JP5196821B2 (en) Solar cell module
WO2023273648A1 (en) Photovoltaic assembly
KR101666629B1 (en) Solar Cell Unit having Conductive Paste and Solar Cell Module Comprises the Same
JP5047340B2 (en) Manufacturing method of solar cell module
JP2011044751A (en) Solar cell module
JP6436943B2 (en) Interconnector and solar panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779371

Country of ref document: EP

Kind code of ref document: A1