WO2021199923A1 - Imaging lens and imaging device - Google Patents

Imaging lens and imaging device Download PDF

Info

Publication number
WO2021199923A1
WO2021199923A1 PCT/JP2021/008823 JP2021008823W WO2021199923A1 WO 2021199923 A1 WO2021199923 A1 WO 2021199923A1 JP 2021008823 W JP2021008823 W JP 2021008823W WO 2021199923 A1 WO2021199923 A1 WO 2021199923A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
image
negative
positive
Prior art date
Application number
PCT/JP2021/008823
Other languages
French (fr)
Japanese (ja)
Inventor
拓陸 山田
松岡 大
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022511713A priority Critical patent/JPWO2021199923A1/ja
Publication of WO2021199923A1 publication Critical patent/WO2021199923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present technology relates to an image pickup lens having a first lens group and a second lens group arranged in order from an object side to an image side, and a technical field of an image pickup apparatus in which such an image pickup lens is used.
  • Patent Document 1 In digital cameras and the like, there is a demand for a function capable of capturing a wide angle of view for landscape and indoor photography, and various imaging lenses having a large diameter have been proposed (for example, Patent Document 1 and Patent Document 2). reference).
  • optical systems with a wide angle of view and high resolution from the center to the periphery of the screen tend to have worse chromatic aberration of magnification, coma, and sagittal coma flare. Further, in recent years, with the increase in the number of pixels of digital cameras and the like, correction of various aberrations is strictly required for the optical system used.
  • the retrofocus type imaging device that has been proposed conventionally has a high refractive index because the lens that exists on the object side is the strongest negative lens, although it is relatively easy to widen the angle while ensuring the flange back. It is necessary to use a glass material. Further, in general, the higher the refractive index of a glass material, the smaller the Abbe number. Therefore, it is difficult to satisfactorily correct the chromatic aberration of magnification.
  • Patent Document 1 various aberrations associated with an increase in aperture are corrected by forming the rear group in a Gauss type configuration symmetrical to the aperture stop.
  • a lens having a negative refractive power on the object side has a small Abbe number. Therefore, the configuration is disadvantageous for correcting chromatic aberration of magnification.
  • Patent Document 2 by adopting a retrofocus type, a large diameter of a wide-angle lens is realized while ensuring a flange back, while a negative refractive power is applied to the object side with respect to an aperture diaphragm.
  • the front group with the lens is arranged, and the positive refractive power is arranged on the image side.
  • the refractive power is asymmetrically arranged across the aperture diaphragm, distortion and chromatic aberration of magnification tend to occur easily.
  • imaging lens and imaging device it is an object of the present technology imaging lens and imaging device to provide a wide-angle lens capable of increasing the aperture by correcting various aberrations.
  • the imaging lens according to the present technology consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is from the object side to the image side.
  • a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side
  • a second negative meniscus lens having a convex surface facing the object side
  • a single lens having a negative refractive power Alternatively, it has a unit in which negative and positive are arranged in order from the object side to the image side, and the second lens group moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • the negative refractive power is divided on the object side, and the Abbe number of the first negative meniscus lens and the negative refractive power of the first negative meniscus lens are optimized.
  • the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (5).
  • fG2F Focal length of the positive lens group in the second lens group
  • f Focal length of the entire system at infinity focusing.
  • the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (6).
  • fG1 Focal length of the first lens group
  • fG2 Focal length of the second lens group.
  • the ratio of the refractive powers of the first lens group and the second lens group is optimized.
  • the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (7).
  • (7) 0.30 ⁇ fL1 / fL2 ⁇ 2.50
  • fL1 Focal length of the first negative meniscus lens
  • fL2 Focal length of the second negative meniscus lens.
  • the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized respectively.
  • the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (8).
  • fG2 Focal length of the second lens group
  • fLA Focal length of the negative air lens having the strongest refractive power in the second lens group.
  • the refractive power of the negative air lens with respect to the second lens group is optimized.
  • the distance from the image plane side surface to the image plane of the most image side lens in the second lens group is set as the back focus, and the following conditional expression (9) is used. It is desirable to satisfy. (9) 0.3 ⁇ BF / f ⁇ 2.5 However, BF: The back focus f: The focal length of the entire system when focusing at infinity.
  • the refractive index of the first negative meniscus lens is optimized.
  • the first lens group is fixed when focusing from an infinity object to a short-distance object.
  • the first lens group which has a large volume and a large weight with respect to the entire system, is not moved in the optical axis direction during focus drive.
  • the imaging device includes an imaging lens and an imaging element that converts an optical image formed by the imaging lens into an electrical signal, and the imaging lenses are arranged in order from the object side to the image side.
  • the first lens group is composed of a first lens group, an aperture aperture, and a second lens group.
  • the first lens group has an aspherical shape on both sides or one side in order from the object side to the image side, and the convex surface is directed toward the object side. It has one negative meniscus lens, a second negative meniscus lens with a convex surface facing the object side, and a single lens having a negative refractive force or a unit in which negative and positive are arranged in order from the object side to the image side.
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object, and the following conditional equations (1) and (2) are used. I am satisfied. (1) 40.00 ⁇ dL1 ⁇ 96.00 (2) -10.0 ⁇ fL1 / f ⁇ -2.0 However, ⁇ dL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
  • the negative refractive power is divided on the object side, and the Abbe number of the first negative meniscus lens and the negative refractive power of the first negative meniscus lens are optimized.
  • another imaging lens includes a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is an image from the object side.
  • a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side are provided in this order, and the first lens group has an aspherical surface on both sides or one side.
  • the second lens has a positive lens having a shape and a lens unit composed of a lens having a negative refractive force closest to the object side of the positive lens to a lens closest to the object side of the positive lens.
  • the group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object, and satisfies the following conditional equations (3) and (4). be. (3) -35.00 ⁇ fLN / fLP ⁇ -1.05 (4) 1.00 ⁇ dLP / dS ⁇ 1.55
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object-side surface to the image surface of the positive lens in the first lens group
  • dS From the aperture aperture The distance to the image plane.
  • the distance from the lens to the aperture aperture is optimized.
  • conditional expression (5) 1.5 ⁇ fG2F / f ⁇ 8.5
  • fG2F Focal length of the positive lens group in the second lens group
  • f Focal length of the entire system at infinity focusing.
  • the ratio of the refractive powers of the first lens group and the second lens group is optimized.
  • conditional expression (7) 0.30 ⁇ fL1 / fL2 ⁇ 2.50
  • fL1 Focal length of the first negative meniscus lens
  • fL2 Focal length of the second negative meniscus lens.
  • the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized respectively.
  • the refractive power of the negative air lens with respect to the second lens group is optimized.
  • the distance from the image plane side surface of the most image side lens in the second lens group to the image plane is set as the back focus, and the following conditional expression ( It is desirable to satisfy 9). (9) 0.3 ⁇ BF / f ⁇ 2.5 However, BF: The back focus f: The focal length of the entire system when focusing at infinity.
  • the refractive index of the first negative meniscus lens is optimized.
  • the first lens group is fixed at the time of focusing from an infinity object to a short-distance object.
  • the first lens group which has a large volume and a large weight with respect to the entire system, is not moved in the optical axis direction during focus drive.
  • another imaging device includes an imaging lens and an imaging element that converts an optical image formed by the imaging lens into an electrical signal, and the imaging lens moves from the object side to the image side. It consists of a first lens group, an aperture aperture, and a second lens group arranged in order.
  • the first lens group consists of a first negative meniscus lens having a convex surface facing the object side and an object in order from the object side to the image side. It has a second negative meniscus lens with a convex surface facing side, and the first lens group includes a positive lens having an aspherical shape on both sides or one side, and a negative refractive force closest to the object side of the positive lens.
  • It has a lens unit composed of a lens having a lens to a lens closest to the object side of the positive lens, and the second lens group is an object from the image side when focusing from an infinity object to a short-range object. It has a positive lens group that moves to the side, and satisfies the following conditional equations (3) and (4). (3) -35.00 ⁇ fLN / fLP ⁇ -1.05 (4) 1.00 ⁇ dLP / dS ⁇ 1.55
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object-side surface to the image surface of the positive lens in the first lens group
  • dS From the aperture aperture The distance to the image plane.
  • the upper ray of the off-axis angle of view passes through the center of the lens and the lower ray easily passes around the lens, and the refractive power of the positive lens having an aspherical shape on both sides or one side and the aspherical force on both sides or one side.
  • the distance from the positive lens with the shape to the aperture aperture is optimized.
  • 2 to 31 show an embodiment of the image pickup lens and the image pickup apparatus of the present technology, and this figure is a diagram showing a lens configuration of the first embodiment of the image pickup lens.
  • FIG. 5 is a longitudinal aberration diagram in a numerical example in which specific numerical values are applied to the tenth embodiment, and is a diagram showing spherical aberration, astigmatism, and distortion. It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the tenth embodiment. It is a block diagram which shows an example of an image pickup apparatus.
  • the imaging lens of the present technology consists of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is not arranged on both sides or one side in order from the object side to the image side.
  • a first negative meniscus lens having a spherical shape with a convex surface facing the object side a second negative meniscus lens having a convex surface facing the object side, and a single lens having a negative refractive power or from the object side to the image side. It has units arranged in negative and positive directions in order, and the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • conditional expression (1) and the conditional expression (2) are satisfied.
  • ⁇ dL1 Abbe number of the d line of the first negative meniscus lens
  • fL1 Focal length of the first negative meniscus lens
  • f Focal length of the entire system at infinity focusing.
  • the first lens group plays the role of a wide converter that secures sufficient back focus while increasing the angle of view in the entire optical system.
  • the first lens group has a first negative meniscus lens whose convex surface is most oriented toward the object side. Since the first lens group plays the role of a wide converter, it is necessary to arrange the refractive power of the retrofocus type with the object side as the negative refractive power and the image side as the positive refractive power. In this case, by arranging the first negative meniscus lens having an aspherical shape such that the conic coefficient becomes smaller with respect to the aperture diaphragm, it becomes possible to satisfactorily correct distortion and curvature of field. It becomes possible to reduce the size of the first lens group.
  • the first lens group includes a first negative meniscus lens having a convex surface facing the object side, a second negative meniscus lens having a convex surface facing the object side, and a negative refractive power in this order from the object side to the image side. It has a single lens with a lens or a unit in which negative and positive lenses are arranged in order from the object side to the image side. Since the first lens group plays the role of a wide converter, it is necessary to arrange the refractive power of the retrofocus type with the object side as the negative refractive power and the image side as the positive refractive power.
  • the negative lens on the object side By dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit, the negative refractive power can be divided, and various aberrations such as distortion and curvature of field can be satisfactorily reduced. It is possible to correct.
  • conditional expression (1) defines the Abbe number of the first negative meniscus lens in a preferable range in order to satisfactorily correct the chromatic aberration of magnification.
  • the imaging lens satisfies the conditional equation (1), the Abbe number of the first negative meniscus lens is optimized, and chromatic aberration of magnification, distortion, and curvature of field can be satisfactorily corrected.
  • Conditional expression (2) plays the role of a wide converter of the first lens group, and in order to perform good aberration correction while increasing the angle of view of the first negative meniscus lens on the most object side of the first lens group. It defines a preferred range.
  • the negative refractive power of the first negative meniscus lens with respect to the refractive power of the entire system becomes weaker, so that the first negative lens group plays a role as a wide converter.
  • the negative refractive power cannot be shared by the meniscus lens, the second negative meniscus lens, and the unit, and it becomes difficult to correct various aberrations such as distortion and curvature of field.
  • the imaging lens satisfies the condition equation (2), the negative refractive power of the first negative meniscus lens is optimized, and distortion, curvature of field, and astigmatism can be satisfactorily corrected. ..
  • the imaging lens of this technology by using a glass material with a high Abbe number for the lens having an aspherical surface and the most negative refractive power on the object side, various yields including chromatic aberration of magnification can be satisfactorily corrected. It is possible to provide a wide-angle lens capable of increasing the diameter.
  • Another imaging lens of the present technology consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is sequentially arranged from the object side to the image side to the object side. It has a first negative meniscus lens with a convex surface facing and a second negative meniscus lens with a convex surface facing the object side, and the first lens group includes a positive lens having an aspherical shape on both sides or one side and a positive lens.
  • It has a lens unit composed of a lens having a negative refractive force closest to the object side of the lens to a lens closest to the object side of a positive lens, and the second lens group is from an infinity object to a short-range object. It has a positive lens group that moves from the image side to the object side when in focus, and satisfies the following conditional equations (3) and (4).
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object side surface of the positive lens to the image plane in the first lens group
  • dS Distance from the aperture aperture to the image plane do.
  • Spherical aberration can be satisfactorily corrected by arranging a positive lens having an aspherical shape on both sides or one side of the first lens group near an aperture diaphragm having a high marginal ray with an axial angle of view. Further, by arranging this positive lens near the aperture diaphragm, the upper ray of the off-axis angle of view passes through the center of the lens and the lower ray passes around the lens, so that coma aberration can be satisfactorily corrected.
  • the first lens group has a lens unit composed of a lens having an aspherical shape on both sides or one side and having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. ..
  • the refractive power of the positive lens having an aspherical shape on both sides or one side becomes extremely strong as compared with the lens unit, so that the spherical aberration in the whole system worsens. Further, in the vicinity of the aperture aperture, the refractive power of the positive lens having an aspherical shape on both sides or one side becomes too strong, so that the light rays incident on the second lens group are more converged, so that the spherical surface at the time of focusing Aberration fluctuation becomes large.
  • the imaging lens satisfies the condition equation (3), the refractive power of the positive lens having an aspherical shape on both sides or one side is optimized, and the fluctuation of spherical aberration during focusing can be suppressed and the spherical aberration can be suppressed. It is possible to satisfactorily correct various aberrations such as.
  • the lower limit value of the conditional expression (3) is set to -35.00 to suppress chromatic aberration of magnification.
  • the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm becomes long, and when a marginal ray having an axial angle of view is incident on this positive lens.
  • various aberrations such as spherical aberration cannot be satisfactorily corrected.
  • the imaging lens satisfies the condition equation (4), the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm is optimized, and various aberrations such as spherical aberration are satisfactorily corrected.
  • the lens structure can be properly configured.
  • an imaging lens of the present technology by appropriately defining the focal length of each lens in the first lens group, it is possible to increase the diameter while satisfactorily correcting various yields including chromatic aberration of magnification. It is possible to provide a wide-angle lens.
  • conditional expression (5) is a conditional expression for appropriately setting the focal length of the positive lens group that functions as the focus group in the second lens group.
  • the refractive power of the positive lens group becomes too strong, and the aberration generated in the positive lens group becomes large, and various aberrations such as spherical aberration cannot be corrected.
  • the imaging lens satisfies the condition equation (5), the focal length of the positive lens group that functions as the focus group is optimized, various aberrations such as spherical aberration can be satisfactorily corrected, and the focus stroke. Can be shortened to reduce the size of the imaging lens.
  • conditional expression (6) 3 ⁇
  • fG1 Focal length of the first lens group
  • fG2 Focal length of the second lens group.
  • conditional expression (6) is a conditional expression for appropriately setting the ratio of the refractive powers of the first lens group and the second lens group.
  • the first lens group plays the role of a wide converter that secures sufficient back focus while increasing the angle of view in the entire optical system, and emits incident light rays from the first lens group to the second lens group. By making it afocal, it is possible to suppress fluctuations in spherical aberration during focusing.
  • conditional expression (7) 0.30 ⁇ fL1 / fL2 ⁇ 2.50
  • fL1 Focal length of the first negative meniscus lens
  • fL2 Focal length of the second negative meniscus lens.
  • the first lens group acts as a wide converter, and the negative refractive power can be divided by dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit. , It is possible to correct various aberrations such as distortion and curvature of field. Further, the second negative meniscus lens must have a higher refractive power than the first negative meniscus lens.
  • the imaging lens satisfies the conditional equation (7), the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized, and distortion aberration and curvature of field are satisfactorily corrected.
  • the first negative meniscus lens can satisfactorily correct the chromatic aberration of magnification.
  • conditional expression (8) is satisfied for the image pickup lens according to the embodiment of the present technology.
  • fG2 Focal length of the second lens group
  • fLA Focal length of the negative air lens having the strongest refractive power in the second lens group.
  • conditional equation (8) is based on the negative air lens in the second lens group and the second lens group. It is a condition for setting the ratio of.
  • the refractive power of the negative air lens in the second lens group becomes too strong with respect to the second lens group, so that spherical aberration and the like generated in the negative air lens occur. It becomes difficult to correct various aberrations.
  • the refractive power of the negative air lens in the second lens group becomes weaker than that in the second lens group. Therefore, the flange back should be shortened to reduce the size. Becomes difficult.
  • the imaging lens satisfies the condition equation (8), the refractive power of the negative air lens with respect to the second lens group is optimized, various aberrations such as spherical aberration can be satisfactorily corrected, and the flange back Can be shortened to reduce the size of the image pickup lens.
  • the distance from the image plane side surface of the most image side lens in the second lens group to the image plane is set as the back focus, and the following conditional expression (9) is satisfied. It is desirable to do. (9) 0.3 ⁇ BF / f ⁇ 2.5 However, BF: Back focus f: Focal length of the entire system when focusing at infinity.
  • the image pickup lens satisfies the conditional expression (9), the back focus is shortened and the total length is shortened, so that the image pickup lens can be miniaturized.
  • conditional expression (9) it is more preferable to set the lower limit value of the conditional expression (9) to 0.4 because a sufficient distance between the image plane and the lens on the image side can be secured and the manufacturability can be improved.
  • the specific gravity of glass glass material generally has a positive correlation with the refractive index, and the larger the specific gravity, the higher the refractive index tends to be.
  • the conditional expression (10) is an expression for appropriately setting the specific gravity of the first negative meniscus lens in order to reduce the weight of the lens.
  • the refractive index of the first negative meniscus lens becomes too small, and the negative refractive power of the first negative meniscus lens becomes weak, so that the first negative Distortion and curvature of field cannot be properly corrected by the meniscus lens.
  • the upper limit of the conditional expression (10) is exceeded, the specific gravity of the first lens group, which occupies most of the volume in the entire system, becomes too high, and it becomes difficult to reduce the weight of the lens in the entire system.
  • the imaging lens satisfies the conditional equation (10)
  • the refractive index of the first negative meniscus lens is optimized, distortion aberration and curvature of field can be satisfactorily corrected, and the lens in the entire system can be corrected. It is possible to reduce the weight of the lens.
  • the first lens group is fixed when focusing from an infinity object to a short-distance object.
  • the first lens group has a large volume and a large weight for the entire system, which is disadvantageous for speeding up focus drive.
  • the first lens group since the first lens group is fixed when focusing from an infinity object to a short-range object, the first lens group, which has a large volume and a large weight with respect to the entire system during focus drive, moves in the optical axis direction. Therefore, the focus drive can be speeded up.
  • R is the paraxial radius of curvature of the i-th plane
  • d is the axial top-top spacing (thickness of the center of the lens or air spacing) between the i-th plane and the i + 1th plane
  • ⁇ d is the Abbe number on the d-line of the lens or the like starting from the i-th plane.
  • the aspherical surface is marked with * on the right side of the surface number, and the aperture diaphragm is marked with the description of "aperture" on the right side of the surface number.
  • is a conical constant (conic constant)
  • A4", “A6”, “A8”, “A10”, “A12” are 4th, 6th, 8th, 10th, and 12th aspherical coefficients, respectively. Is shown.
  • imaging lenses used in each embodiment have an aspherical lens surface.
  • x is the distance (sag amount) in the optical axis direction from the apex of the lens surface
  • y is the height (image height) in the direction orthogonal to the optical axis direction
  • c is the lens.
  • Near-axis curvature at the apex inverse of the radius of curvature
  • is the conical constant (conic constant)
  • A4", “A6" are the aspherical coefficients of the 4th, 6th, ... Then, it is defined by the following equation 1.
  • FIG. 4 show the lens configuration at the infinity position of each embodiment.
  • FIG. 5, FIG. 8, FIG. 11, FIG. 14, FIG. 17, FIG. 20, FIG. 23, FIG. 26, and FIG. 29 show spherical aberration diagrams and astigmatism diagrams at the infinity position and the closest position of each embodiment. , Distortion aberration diagram is shown.
  • FIG. 3, FIG. 6, FIG. 9, FIG. 12, FIG. 15, FIG. 18, FIG. 21, FIG. 24, FIG. 27, and FIG. 30 show transverse aberration diagrams at the infinity position and the closest position of each embodiment.
  • the left column shows the lateral aberration in the tangier luminous flux (meridional coma aberration), and the right column shows the lateral aberration in the sagittal luminous flux (sagittal coma aberration).
  • FIG. 1 shows the lens configuration of the image pickup lens 1 according to the first embodiment of the present technology.
  • the imaging lens 1 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 1 shows the lens data of Numerical Example 1 in which specific numerical values are applied to the image pickup lens 1.
  • Table 2 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 1.
  • Table 4 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 1 together with the conical constant ⁇ .
  • Table 5 shows the focal lengths of each lens group in Example 1.
  • FIG. 2 is a longitudinal aberration diagram of Numerical Example 1
  • FIG. 3 is a lateral aberration diagram of Numerical Example 1.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 1 is miniaturized while realizing a large aperture of F number 1.85.
  • the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
  • FIG. 4 shows the lens configuration of the image pickup lens 2 in the second embodiment of the present technology.
  • the imaging lens 2 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and five lens components.
  • the second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides, in order from the object side to the image side. It is composed of negative lenses L13 having concave surfaces on both sides.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of 6 lenses and 5 lens components.
  • the six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 6 shows the lens data of Numerical Example 2 in which specific numerical values are applied to the image pickup lens 2.
  • Table 7 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 2.
  • Table 9 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 2 together with the conical constant ⁇ .
  • Table 10 shows the focal lengths of each lens group in Example 2.
  • FIG. 5 is a longitudinal aberration diagram of Numerical Example 2
  • FIG. 6 is a lateral aberration diagram of Numerical Example 2.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 2 is miniaturized while realizing a large aperture of F number 2.06.
  • FIG. 7 shows the lens configuration of the image pickup lens 3 according to the third embodiment of the present technology.
  • the image pickup lens 3 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative meniscus lens L13 with a convex surface facing the image side and a positive lens L14 with convex surfaces on both sides.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 11 shows the lens data of Numerical Example 3 in which specific numerical values are applied to the image pickup lens 3.
  • Table 12 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 3.
  • Table 14 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 3 together with the conical constant ⁇ .
  • Table 15 shows the focal lengths of each lens group in Example 3.
  • FIG. 8 is a longitudinal aberration diagram of Numerical Example 3
  • FIG. 9 is a lateral aberration diagram of Numerical Example 3.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 3 is miniaturized while realizing a large aperture of F number 1.85.
  • FIG. 10 shows the lens configuration of the image pickup lens 4 according to the fourth embodiment of the present technology.
  • the image pickup lens 4 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and five lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 having convex surfaces on both sides, a positive lens L9 having convex surfaces on both sides, a negative lens L10 having concave surfaces on both sides, a positive lens L11 having convex surfaces on both sides, and a negative lens L12 having concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 16 shows the lens data of Numerical Example 4 in which specific numerical values are applied to the image pickup lens 4.
  • Table 17 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 4.
  • Table 19 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 4 together with the conical constant ⁇ .
  • Table 20 shows the focal lengths of each lens group in Example 4.
  • FIG. 11 is a longitudinal aberration diagram of Numerical Example 4, and FIG. 12 is a transverse aberration diagram of Numerical Example 4.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 4 is miniaturized while realizing a large aperture of F number 2.11.
  • FIG. 13 shows the lens configuration of the image pickup lens 5 according to the fifth embodiment of the present technology.
  • the image pickup lens 5 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and negative lenses having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 having a convex surface facing the object side, a negative lens L5 having concave surfaces on both sides, a positive meniscus lens L6 having a convex surface facing the object side, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side.
  • the negative lens L5 and the positive meniscus lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive meniscus lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and five lens components.
  • the second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive meniscus lens L9 with convex surfaces facing the image side, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and concave surfaces on both sides, in order from the object side to the image side. It is composed of a negative lens L12, a negative lens L13 with concave surfaces on both sides, and a positive meniscus lens L14 with a convex surface facing the image side.
  • the positive meniscus lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 21 shows the lens data of Numerical Example 5 in which specific numerical values are applied to the image pickup lens 5.
  • Table 22 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 5.
  • Table 24 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 5 together with the conical constant ⁇ .
  • Table 25 shows the focal lengths of each lens group in Example 5.
  • FIG. 14 is a longitudinal aberration diagram of Numerical Example 5
  • FIG. 15 is a transverse aberration diagram of Numerical Example 5.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 5 is miniaturized while realizing a large aperture of F number 2.47.
  • FIG. 16 shows the lens configuration of the image pickup lens 6 according to the sixth embodiment of the present technology.
  • the image pickup lens 6 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
  • the first lens group G1 has a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a convex surface toward the object side in order from the object side to the image side. It is composed of a negative meniscus lens L3 directed, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides, in order from the object side to the image side. It is composed of a negative meniscus lens L13 with a convex surface facing the image side.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of 6 lenses and 5 lens components.
  • the six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 26 shows the lens data of Numerical Example 6 in which specific numerical values are applied to the image pickup lens 6.
  • Table 27 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 6.
  • Table 29 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 6 together with the conical constant ⁇ .
  • Table 30 shows the focal lengths of each lens group in Example 6.
  • FIG. 17 is a longitudinal aberration diagram of Numerical Example 6, and FIG. 18 is a transverse aberration diagram of Numerical Example 6.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 6 is miniaturized while realizing a large aperture of F number 1.85.
  • FIG. 19 shows the lens configuration of the image pickup lens 7 according to the seventh embodiment of the present technology.
  • the image pickup lens 7 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative meniscus lens L13 with a convex surface facing the image side and a positive lens L14 with convex surfaces on both sides.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 31 shows the lens data of Numerical Example 7 in which specific numerical values are applied to the image pickup lens 7.
  • Table 32 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 7.
  • Table 34 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 7 together with the conical constant ⁇ .
  • Table 35 shows the focal lengths of each lens group in Example 7.
  • FIG. 20 is a longitudinal aberration diagram of Numerical Example 7, and FIG. 21 is a transverse aberration diagram of Numerical Example 7.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 7 is miniaturized while realizing a large aperture of F number 1.85.
  • FIG. 22 shows the lens configuration of the image pickup lens 8 according to the eighth embodiment of the present technology.
  • the image pickup lens 8 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the lens unit LN is composed of a negative lens L5 and a positive lens L6.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and seven lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 1 shows the lens data of Numerical Example 8 in which specific numerical values are applied to the image pickup lens 8.
  • Table 37 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 8.
  • Table 39 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 8 together with the conical constant ⁇ .
  • Table 40 shows the focal lengths of each lens group in Example 8.
  • FIG. 23 is a longitudinal aberration diagram of Numerical Example 8 and FIG. 24 is a lateral aberration diagram of Numerical Example 8.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 8 is miniaturized while realizing a large aperture of F number 1.86.
  • FIG. 25 shows the lens configuration of the image pickup lens 9 according to the ninth embodiment of the present technology.
  • the image pickup lens 9 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
  • the first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN.
  • the positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 having convex surfaces on both sides, a positive lens L9 having convex surfaces on both sides, a negative lens L10 having concave surfaces on both sides, a positive lens L11 having convex surfaces on both sides, and a negative lens L12 having concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive lens L14 having convex surfaces on both sides.
  • the positive lens L9 and the negative lens L10 are bonded together to form a bonded lens.
  • the negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of seven lenses and six lens components.
  • the six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 41 shows the lens data of the numerical value Example 1 in which specific numerical values are applied to the image pickup lens 9.
  • Table 42 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 1.
  • Table 44 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 1 together with the conical constant ⁇ .
  • Table 45 shows the focal lengths of each lens group in Example 1.
  • FIG. 26 is a longitudinal aberration diagram of Numerical Example 1
  • FIG. 27 is a transverse aberration diagram of Numerical Example 1.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 9 is miniaturized while realizing a large aperture of F number 1.85.
  • the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
  • FIG. 28 shows the lens configuration of the image pickup lens 10 according to the tenth embodiment of the present technology.
  • the imaging lens 10 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
  • the first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and negative lenses having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 with convex surfaces on both sides, a negative lens L5 with concave surfaces on both sides, a positive meniscus lens L6 with convex surfaces facing the object side, and a positive lens L7 with convex surfaces on both sides.
  • the first negative meniscus lens L1 and the negative lens L3 are aspherical lenses having an aspherical shape formed on both sides.
  • the negative lens L5 and the positive lens L6 are bonded together to form a bonded lens.
  • the first lens group G1 consists of seven lenses and six lens components.
  • the second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a negative lens L9 with concave surfaces on both sides, a positive lens L10 with convex surfaces on both sides, a negative lens L11 with concave surfaces on both sides, and a positive lens L12 with convex surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides, a negative meniscus lens L14 having a convex surface facing the image side, and a negative meniscus lens L15 having a convex surface facing the image side.
  • the positive lens L8 and the negative lens L9 are bonded together to form a bonded lens, and the positive lens L10 and the negative lens L11 are bonded together to form a bonded lens.
  • the negative lens L14 is an aspherical lens having an aspherical shape formed on both sides.
  • the second lens group G2 consists of eight lenses and six lens components.
  • the seven lenses from the positive lens L8 to the negative lens L14 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object.
  • the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
  • the air gap between the negative lens L13 and the negative lens L14 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
  • Table 46 shows the lens data of Numerical Example 10 in which specific numerical values are applied to the image pickup lens 10.
  • Table 47 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 10.
  • Table 49 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 10 together with the conical constant ⁇ .
  • Table 50 shows the focal lengths of each lens group in Example 10.
  • FIG. 29 is a longitudinal aberration diagram of Numerical Example 10
  • FIG. 30 is a transverse aberration diagram of Numerical Example 10.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line
  • the image pickup lens 10 is miniaturized while realizing a large aperture of F number 2.06.
  • Table 51 shows the values of the conditional expressions (1) to (10) in the numerical examples 1 to 10 of the image pickup lens 1 to the image pickup lens 10.
  • the image pickup lens 1 to the image pickup lens 10 are designed to satisfy the conditional expression (1) to the conditional expression (10).
  • the imaging lens consists of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is arranged on both sides in order from the object side to the image side.
  • a first negative meniscus lens having an aspherical shape on one side and having a convex surface facing the object side
  • a second negative meniscus lens having a convex surface facing the object side
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object.
  • conditional expression (1) 40.00 ⁇ dL1 ⁇ 96.00 (2) -10.0 ⁇ fL1 / f ⁇ -2.0
  • ⁇ dL1 Abbe number of the d line of the first negative meniscus lens
  • fL1 Focal length of the first negative meniscus lens
  • f Focal length of the entire system at infinity focusing.
  • the image pickup device of the present technology distorts by arranging a first negative meniscus lens having an aspherical shape such that the conic coefficient becomes smaller with respect to the aperture diaphragm in the image pickup lens, similarly to the image pickup lens of the present technology. It is possible to satisfactorily correct aberrations and curvature of field, and it is possible to reduce the size of the first lens group.
  • the negative refractive power can be divided by dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit. , It is possible to satisfactorily correct various aberrations such as distortion and curvature of field.
  • the image pickup apparatus when the image pickup lens satisfies the condition equation (1), the Abbe number of the first negative meniscus lens is optimized, and the chromatic aberration of magnification, the distortion, and the curvature of field can be satisfactorily corrected. can.
  • the imaging lens when the imaging lens satisfies the condition equation (2), the negative refractive power of the first negative meniscus lens is optimized, and distortion, curvature of field, and astigmatism are satisfactorily suppressed. It can be corrected.
  • the imaging device of the present technology by using a glass material having a high Abbe number for a lens having a plurality of aspherical surfaces and having the most negative refractive power on the object side, various yields including chromatic aberration of magnification can be obtained. It is possible to provide a wide-angle lens capable of increasing the diameter while making good corrections.
  • the imaging lens is composed of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is sequentially arranged from the object side to the image side.
  • the first negative meniscus lens has a first negative meniscus lens with a convex surface facing the object side and a second negative meniscus lens with a convex surface facing the object side, and the first lens group has a positive spherical shape on both sides or one side.
  • It has a lens and a lens unit composed of a lens having a negative refractive force closest to the object side of the positive lens to a lens closest to the object side of the positive lens, and the second lens group is close to an infinity object. It has a positive lens group that moves from the image side to the object side when focusing on a distance object, and satisfies the following conditional equations (3) and (4).
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object side surface of the positive lens to the image plane in the first lens group
  • dS Distance from the aperture aperture to the image plane do.
  • another image pickup device of the present technology is arranged in the vicinity of the positive lens aperture diaphragm having an aspherical shape on both sides or one side of the first lens group in the image pickup lens, similarly to another image pickup lens of the present technology. Since the upper light beam at the outer angle of view passes through the center of the lens and the lower light beam passes around the lens, coma can be satisfactorily corrected.
  • another technology imaging device like another technology imaging lens, has spherical aberration by arranging the lens unit on the object side of a positive lens having an aspherical shape on both sides or one side of the imaging lens. It is possible to enhance the correction effect.
  • the image pickup apparatus when the image pickup lens satisfies the condition equation (3), the refractive power of the positive lens having an aspherical shape on both sides or one side is optimized, and the fluctuation of spherical aberration during focusing can be suppressed. At the same time, various aberrations such as spherical aberration can be satisfactorily corrected.
  • the imaging lens when the imaging lens satisfies the condition equation (4), the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm is optimized, and various aberrations such as spherical aberration are eliminated. It can be corrected satisfactorily and an appropriate lens structure can be constructed.
  • FIG. 31 shows a block diagram of a digital still camera according to an embodiment of the imaging device of the present technology.
  • the image pickup device (digital still camera) 100 includes an image pickup element 15 having a photoelectric conversion function for converting captured light into an electric signal, and a camera signal processing unit that performs signal processing such as analog-digital conversion of the captured image signal. 20 and an image processing unit 30 that performs recording / reproduction processing of an image signal. Further, the image pickup device 100 includes a display unit 40 for displaying a captured image and the like, an R / W (reader / writer) 50 for writing and reading an image signal to the memory 90, and the entire image pickup device 100.
  • a CPU 60 Central Processing Unit 60 to control, an input unit 70 such as various switches for which a user performs a required operation, and a lens for controlling the drive of an image pickup lens 1 (including an image pickup lens 2 to an image pickup lens 10). It includes a drive control unit 80.
  • a drive control unit 80 to control the drive of an image pickup lens 1 (including an image pickup lens 2 to an image pickup lens 10).
  • the camera signal processing unit 20 performs various signal processing such as conversion of the output signal from the image pickup element 15 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal.
  • the image processing unit 30 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
  • the display unit 40 has a function of displaying various data such as an operation state of the user's input unit 70 and a captured image.
  • the R / W 50 writes the image data encoded by the image processing unit 30 to the memory 90 and reads the image data recorded in the memory 90.
  • the CPU 60 functions as a control processing unit that controls each circuit block provided in the image pickup apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
  • the input unit 70 outputs an instruction input signal according to the operation by the user to the CPU 60.
  • the lens drive control unit 80 controls a motor or the like (not shown) that drives a lens group based on a control signal from the CPU 60.
  • the memory 90 is, for example, a semiconductor memory that can be attached to and detached from the slot connected to the R / W 50.
  • the memory 90 is not detachable from the slot and may be incorporated inside the image pickup apparatus 100.
  • the shot image signal is output to the display unit 40 via the camera signal processing unit 20 and displayed as a camera-through image.
  • the shot image signal is output from the camera signal processing unit 20 to the image processing unit 30, compressed and encoded, and converted into digital data in a predetermined data format. Will be done.
  • the converted data is output to the R / W 50 and written to the memory 90.
  • Focusing is performed by the lens drive control unit 80 moving the focus lens group based on the control signal from the CPU 60.
  • the R / W 50 reads out the predetermined image data from the memory 90 in response to the operation on the input unit 70, and the image processing unit 30 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 40 and the reproduced image is displayed.
  • imaging means converting the photoelectric conversion process of converting the light captured by the image pickup element 15 into an electric signal to the digital signal of the output signal from the image pickup element 15 by the camera signal processing unit 20.
  • imaging may refer only to the photoelectric conversion process for converting the light captured by the imaging element 15 into an electric signal, and from the photoelectric conversion process for converting the light captured by the imaging element 15 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 15 by the camera signal processing unit 20 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 15.
  • the camera signal processing unit 20 converts the output signal from the image pickup element 15 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like.
  • the photoelectric conversion process of converting to It may be pointed out through compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and writing processing of an image signal to the memory 90 by the R / W 50. You may point. In the above processing, the order of each processing may be changed as appropriate.
  • the image pickup device 100 may be configured to include only a part or all of the image pickup element 15, the camera signal processing section 20, the image processing section 30, and the R / W 50 that perform the above processing. ..
  • the lens configuration of the imaging lens of the present technology is substantially two groups of the first lens group G1 and the second lens group G2.
  • the image pickup device is applied to a digital still camera
  • the scope of application of the image pickup device is not limited to the digital still camera, and a digital video camera, a mobile phone having a built-in camera, etc. It can be widely applied as a camera unit of a digital input / output device in a mobile terminal.
  • the first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
  • An imaging lens that satisfies the following conditional expression (1) and conditional expression (2).
  • (1) 40.00 ⁇ dL1 ⁇ 96.00 (2) -10.0 ⁇ fL1 / f ⁇ -2.0
  • ⁇ dL1 Abbe number of the d line of the first negative meniscus lens
  • fL1 Focal length of the first negative meniscus lens
  • f Focal length of the entire system at infinity focusing.
  • ⁇ 2> The imaging lens according to ⁇ 1>, which satisfies the following conditional expression (5). (5) 1.5 ⁇ fG2F / f ⁇ 8.5 However, fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
  • ⁇ 3> The imaging lens according to ⁇ 1> or ⁇ 2>, which satisfies the following conditional expression (6).
  • fG1 Focal length of the first lens group
  • fG2 Focal length of the second lens group.
  • ⁇ 4> The imaging lens according to any one of ⁇ 1> to ⁇ 3>, which satisfies the following conditional expression (7). (7) 0.30 ⁇ fL1 / fL2 ⁇ 2.50
  • fL1 Focal length of the first negative meniscus lens
  • fL2 Focal length of the second negative meniscus lens.
  • ⁇ 5> The imaging lens according to any one of ⁇ 1> to ⁇ 4>, which satisfies the following conditional expression (8).
  • fG2 Focal length of the second lens group
  • fLA Focal length of the negative air lens having the strongest refractive power in the second lens group.
  • ⁇ 6> The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
  • ⁇ 8> The imaging lens according to any one of ⁇ 1> to ⁇ 7>, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
  • the image pickup lens includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
  • the image pickup lens is It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
  • the first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
  • An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
  • (1) 40.00 ⁇ dL1 ⁇ 96.00 (2) -10.0 ⁇ fL1 / f ⁇ -2.0
  • ⁇ dL1 Abbe number of the d line of the first negative meniscus lens
  • fL1 Focal length of the first negative meniscus lens
  • f Focal length of the entire system at infinity focusing.
  • the first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
  • the first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens.
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
  • An imaging lens that satisfies the following conditional expression (3) and conditional expression (4). (3) -35.00 ⁇ fLN / fLP ⁇ -1.05 (4) 1.00 ⁇ dLP / dS ⁇ 1.55
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object-side surface to the image surface of the positive lens in the first lens group
  • dS From the aperture aperture The distance to the image plane.
  • ⁇ 12> The imaging lens according to ⁇ 10> or ⁇ 11>, which satisfies the following conditional expression (6).
  • fG1 Focal length of the first lens group
  • fG2 Focal length of the second lens group.
  • ⁇ 13> The imaging lens according to any one of ⁇ 10> to ⁇ 12>, which satisfies the following conditional expression (7). (7) 0.30 ⁇ fL1 / fL2 ⁇ 2.50 However, fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
  • ⁇ 14> The imaging lens according to any one of ⁇ 10> to ⁇ 13>, which satisfies the following conditional expression (8).
  • fG2 Focal length of the second lens group
  • fLA Focal length of the negative air lens having the strongest refractive power in the second lens group.
  • ⁇ 15> The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
  • ⁇ 17> The imaging lens according to any one of ⁇ 10> to ⁇ 16>, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
  • the image pickup lens includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
  • the image pickup lens is It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
  • the first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
  • the first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens.
  • the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
  • An imaging device that satisfies the following conditional expression (3) and conditional expression (4). (3) -35.00 ⁇ fLN / fLP ⁇ -1.05 (4) 1.00 ⁇ dLP / dS ⁇ 1.55
  • fLN Focal length of the lens unit
  • fLP Focal length of the positive lens in the first lens group
  • dLP Distance from the object-side surface to the image surface of the positive lens in the first lens group
  • dS From the aperture aperture The distance to the image plane.
  • Imaging Lens 100 Imaging Device G1 First Lens Group G2 Second Lens Group L1 First Negative Meniscus Lens L2 Second Negative Meniscus Lens L3 Lens LN Lens Unit LP Positive Lens G2F Positive Lens Group S Aperture Aperture

Abstract

This imaging lens comprises a first lens group, an aperture stop, and a second lens group that are disposed in order from an object side to an image side. The first lens group comprises, in order from the object side to the image side, a fist negative meniscus lens having an aspherical shape on both sides or one side with a convex surface facing the object side, a second negative meniscus lens with a convex surface facing the object side, and a single lens having negative refractive power or a unit having a negative-positive arrangement in order from the object side to the image side. The second lens group has a positive lens group that moves from the image side to the object side from focusing on an infinite-distance object to focusing on a short-distance object. The imaging lens satisfies conditional expression (1) and conditional expression (2). (1): 40.00 < νdL1 < 96.00, (2): -10.0 < fL1/f < -2.0 where νdL1 is the Abbe number at the d line of the first negative meniscus lens, fL1 is the focal length of the first meniscus lens, and f is the focal length of the entire system at the time of infinite-distance focusing.

Description

撮像レンズ及び撮像装置Imaging lens and imaging device
 本技術は、物体側から像側へ順に配置された第1レンズ群と第2レンズ群を備えた撮像レンズ及びこのような撮像レンズが用いられる撮像装置の技術分野に関する。 The present technology relates to an image pickup lens having a first lens group and a second lens group arranged in order from an object side to an image side, and a technical field of an image pickup apparatus in which such an image pickup lens is used.
 デジタルカメラ等においては、風景や屋内撮影のために広い画角を撮影できる機能に対する需要が存在し、大口径化された各種の撮像レンズが提案されている(例えば、特許文献1及び特許文献2参照)。 In digital cameras and the like, there is a demand for a function capable of capturing a wide angle of view for landscape and indoor photography, and various imaging lenses having a large diameter have been proposed (for example, Patent Document 1 and Patent Document 2). reference).
 しかしながら、画角が広くかつ画面中心から周辺までの高い解像力を有する光学系は、倍率色収差やコマ収差、サジタルコマフレアなどが悪化する傾向にある。また、近年デジタルカメラ等の高画素化に伴い、用いられる光学系に対して諸収差の補正を厳しく求められるようになってきている。 However, optical systems with a wide angle of view and high resolution from the center to the periphery of the screen tend to have worse chromatic aberration of magnification, coma, and sagittal coma flare. Further, in recent years, with the increase in the number of pixels of digital cameras and the like, correction of various aberrations is strictly required for the optical system used.
特開2009-193053号公報JP-A-2009-193053 特開2018-18041号公報JP-A-2018-18041
 従来から提案されているレトロフォーカスタイプの撮像装置は、フランジバックを確保しながら広角化が比較的容易ではあるもの、最も物体側に存在するレンズが強い負のレンズであるため、高屈折率の硝材を使用する必要がある。また、一般的に、屈折率の高い硝材程アッベ数が小さい。従って、倍率色収差を良好に補正することが難しい。 The retrofocus type imaging device that has been proposed conventionally has a high refractive index because the lens that exists on the object side is the strongest negative lens, although it is relatively easy to widen the angle while ensuring the flange back. It is necessary to use a glass material. Further, in general, the higher the refractive index of a glass material, the smaller the Abbe number. Therefore, it is difficult to satisfactorily correct the chromatic aberration of magnification.
 特許文献1においては、後群を開口絞りに対称なガウスタイプの構成にすることにより、大口径化に伴う諸収差を補正している。一方、物体側に強い負の屈折力を持つ必要があるため、物体側の負の屈折力を有するレンズはアッベ数が小さくなっている。従って、倍率色収差を補正するには不利な構成にされている。 In Patent Document 1, various aberrations associated with an increase in aperture are corrected by forming the rear group in a Gauss type configuration symmetrical to the aperture stop. On the other hand, since it is necessary to have a strong negative refractive power on the object side, a lens having a negative refractive power on the object side has a small Abbe number. Therefore, the configuration is disadvantageous for correcting chromatic aberration of magnification.
 また、特許文献2においては、レトロフォーカスタイプを採用することにより、フランジバックを確保しながら広角レンズの大口径化を実現している一方で、開口絞りに対して物体側に負の屈折力を有する前群を配置し、像側に正の屈折力が配置されている。しかしながら、開口絞りを挟んで非対称な屈折力配置になるため、歪曲収差や倍率色収差が発生し易くなる傾向にある。 Further, in Patent Document 2, by adopting a retrofocus type, a large diameter of a wide-angle lens is realized while ensuring a flange back, while a negative refractive power is applied to the object side with respect to an aperture diaphragm. The front group with the lens is arranged, and the positive refractive power is arranged on the image side. However, since the refractive power is asymmetrically arranged across the aperture diaphragm, distortion and chromatic aberration of magnification tend to occur easily.
 そこで、本技術撮像レンズ及び撮像装置は、諸収差を補正した大口径化を可能とする広角レンズを提供することを目的とする。 Therefore, it is an object of the present technology imaging lens and imaging device to provide a wide-angle lens capable of increasing the aperture by correcting various aberrations.
 第1に、本技術に係る撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(1)及び条件式(2)を満足するものである。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:前記第1の負メニスカスレンズのd線のアッベ数
fL1:前記第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
First, the imaging lens according to the present technology consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is from the object side to the image side. In order, a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, a second negative meniscus lens having a convex surface facing the object side, and a single lens having a negative refractive power. Alternatively, it has a unit in which negative and positive are arranged in order from the object side to the image side, and the second lens group moves from the image side to the object side when focusing from an infinity object to a short-range object. It has a lens group and satisfies the following conditional equations (1) and (2).
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 これにより、物体側において負の屈折力が分割されると共に第1の負メニスカスレンズのアッベ数と第1の負メニスカスレンズの負の屈折力が適正化される。 As a result, the negative refractive power is divided on the object side, and the Abbe number of the first negative meniscus lens and the negative refractive power of the first negative meniscus lens are optimized.
 第2に、上記した本技術に係る撮像レンズにおいては、下記の条件式(5)を満足することが望ましい。
(5)1.5<fG2F/f<8.5 
但し、
fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
Secondly, it is desirable that the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (5).
(5) 1.5 <fG2F / f <8.5
However,
fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
 これにより、フォーカス群として機能する正のレンズ群の焦点距離が適正化される。 This optimizes the focal length of the positive lens group that functions as the focus group.
 第3に、上記した本技術に係る撮像レンズにおいては、下記の条件式(6)を満足することが望ましい。
(6)3<|fG1/fG2|
但し、
fG1:前記第1レンズ群の焦点距離
fG2:前記第2レンズ群の焦点距離
とする。
Thirdly, it is desirable that the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (6).
(6) 3 <| fG1 / fG2 |
However,
fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
 これにより、第1レンズ群と第2レンズ群の屈折力の比が適切化される。 As a result, the ratio of the refractive powers of the first lens group and the second lens group is optimized.
 第4に、上記した本技術に係る撮像レンズにおいては、下記の条件式(7)を満足することが望ましい。
(7)0.30<fL1/fL2<2.50
但し、
fL1:前記第1の負メニスカスレンズの焦点距離
fL2:前記第2の負メニスカスレンズの焦点距離
とする。
Fourth, it is desirable that the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (7).
(7) 0.30 <fL1 / fL2 <2.50
However,
fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
 これにより、第1の負メニスカスレンズと第2の負メニスカスレンズの屈折力がそれぞれ適正化される。 As a result, the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized respectively.
 第5に、上記した本技術に係る撮像レンズにおいては、下記の条件式(8)を満足することが望ましい。
(8)-1.5<fG2/fLA<-0.2
但し、
fG2:前記第2レンズ群の焦点距離
fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
とする。
Fifth, it is desirable that the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (8).
(8) -1.5 <fG2 / fLA <-0.2
However,
fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
 これにより、第2レンズ群に対する負の空気レンズの屈折力が適正化される。 As a result, the refractive power of the negative air lens with respect to the second lens group is optimized.
 第6に、上記した本技術に係る撮像レンズにおいては、前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、下記の条件式(9)を満足することが望ましい。
(9)0.3<BF/f<2.5
但し、
BF:前記バックフォーカス
f:無限遠合焦時の全系の焦点距離
とする。
Sixth, in the image pickup lens according to the present technology described above, the distance from the image plane side surface to the image plane of the most image side lens in the second lens group is set as the back focus, and the following conditional expression (9) is used. It is desirable to satisfy.
(9) 0.3 <BF / f <2.5
However,
BF: The back focus f: The focal length of the entire system when focusing at infinity.
 これにより、全長が短縮化される。 This shortens the total length.
 第7に、上記した本技術に係る撮像レンズにおいては、下記の条件式(10)を満足することが望ましい。
(10)2.3<SL1<4.6
但し、
SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
とする。
Seventh, it is desirable that the above-mentioned imaging lens according to the present technology satisfies the following conditional expression (10).
(10) 2.3 <SL1 <4.6
However,
SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
And.
 これにより、第1の負メニスカスレンズの屈折率が適正化される。 As a result, the refractive index of the first negative meniscus lens is optimized.
 第8に、上記した本技術に係る撮像レンズにおいては、前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されていることが望ましい。 Eighth, in the above-mentioned imaging lens according to the present technology, it is desirable that the first lens group is fixed when focusing from an infinity object to a short-distance object.
 これにより、フォーカス駆動時に全系に対する体積が大きく重量が大きい第1レンズ群が光軸方向へ移動されない。 As a result, the first lens group, which has a large volume and a large weight with respect to the entire system, is not moved in the optical axis direction during focus drive.
 第9に、本技術に係る撮像装置は、撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、前記撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(1)及び条件式(2)を満足するものである。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:前記第1の負メニスカスレンズのd線のアッベ数
fL1:前記第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
Ninth, the imaging device according to the present technology includes an imaging lens and an imaging element that converts an optical image formed by the imaging lens into an electrical signal, and the imaging lenses are arranged in order from the object side to the image side. The first lens group is composed of a first lens group, an aperture aperture, and a second lens group. The first lens group has an aspherical shape on both sides or one side in order from the object side to the image side, and the convex surface is directed toward the object side. It has one negative meniscus lens, a second negative meniscus lens with a convex surface facing the object side, and a single lens having a negative refractive force or a unit in which negative and positive are arranged in order from the object side to the image side. The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object, and the following conditional equations (1) and (2) are used. I am satisfied.
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 これにより、撮像レンズにおいて、物体側において負の屈折力が分割されると共に第1の負メニスカスレンズのアッベ数と第1の負メニスカスレンズの負の屈折力が適正化される。 As a result, in the imaging lens, the negative refractive power is divided on the object side, and the Abbe number of the first negative meniscus lens and the negative refractive power of the first negative meniscus lens are optimized.
 第10に、別の本技術に係る撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(3)及び条件式(4)を満足するものである。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:前記レンズユニットの焦点距離
fLP:前記第1レンズ群における前記正レンズの焦点距離
dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
dS:前記開口絞りから像面までの距離
とする。
Tenth, another imaging lens according to the present technology includes a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is an image from the object side. A first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side are provided in this order, and the first lens group has an aspherical surface on both sides or one side. The second lens has a positive lens having a shape and a lens unit composed of a lens having a negative refractive force closest to the object side of the positive lens to a lens closest to the object side of the positive lens. The group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object, and satisfies the following conditional equations (3) and (4). be.
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
 これにより、軸外画角の上光線がレンズ中心を通り下光線がレンズ周辺を通り易くなると共に両側又は片側に非球面形状を有する正レンズの屈折力と両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が適正化される。 This makes it easier for the upper ray with an off-axis angle of view to pass through the center of the lens and the lower ray to pass around the lens, and the refractive power of a positive lens having an aspherical shape on both sides or one side and the positive ray having an aspherical shape on both sides or one side. The distance from the lens to the aperture aperture is optimized.
 第11に、上記した別の本技術に係る撮像レンズにおいては、下記の条件式(5)を満足することが望ましい。
(5)1.5<fG2F/f<8.5 
但し、
fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
Eleventh, it is desirable that the following conditional expression (5) is satisfied in the above-mentioned imaging lens according to the present technology.
(5) 1.5 <fG2F / f <8.5
However,
fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
 これにより、フォーカス群として機能する正のレンズ群の焦点距離が適正化される。 This optimizes the focal length of the positive lens group that functions as the focus group.
 第12に、上記した別の本技術に係る撮像レンズにおいては、下記の条件式(6)を満足することが望ましい。
(6)3<|fG1/fG2|
但し、
fG1:前記第1レンズ群の焦点距離
fG2:前記第2レンズ群の焦点距離
とする。
Twelvely, it is desirable that the following conditional expression (6) is satisfied in the above-mentioned imaging lens according to the present technology.
(6) 3 <| fG1 / fG2 |
However,
fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
 これにより、第1レンズ群と第2レンズ群の屈折力の比が適切化される。 As a result, the ratio of the refractive powers of the first lens group and the second lens group is optimized.
 第13に、上記した別の本技術に係る撮像レンズにおいては、下記の条件式(7)を満足することが望ましい。
(7)0.30<fL1/fL2<2.50
但し、
fL1:前記第1の負メニスカスレンズの焦点距離
fL2:前記第2の負メニスカスレンズの焦点距離
とする。
Thirteenth, it is desirable that the following conditional expression (7) is satisfied in the above-mentioned imaging lens according to the present technology.
(7) 0.30 <fL1 / fL2 <2.50
However,
fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
 これにより、第1の負メニスカスレンズと第2の負メニスカスレンズの屈折力がそれぞれ適正化される。 As a result, the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized respectively.
 第14に、上記した別の本技術に係る撮像レンズにおいては、下記の条件式(8)を満足することが望ましい。
(8)-1.5<fG2/fLA<-0.2
但し、
fG2:前記第2レンズ群の焦点距離
fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
とする。
Fourteenth, it is desirable that the following conditional expression (8) is satisfied in the above-mentioned imaging lens according to the present technology.
(8) -1.5 <fG2 / fLA <-0.2
However,
fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
 これにより、第2レンズ群に対する負の空気レンズの屈折力が適正化される。 As a result, the refractive power of the negative air lens with respect to the second lens group is optimized.
 第15に、上記した別の本技術に係る撮像レンズにおいては、前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、下記の条件式(9)を満足することが望ましい。
(9)0.3<BF/f<2.5
但し、
BF:前記バックフォーカス
f:無限遠合焦時の全系の焦点距離
とする。
Fifteenth, in the above-mentioned imaging lens according to the present technology, the distance from the image plane side surface of the most image side lens in the second lens group to the image plane is set as the back focus, and the following conditional expression ( It is desirable to satisfy 9).
(9) 0.3 <BF / f <2.5
However,
BF: The back focus f: The focal length of the entire system when focusing at infinity.
 これにより、全長が短縮化される。 This shortens the total length.
 第16に、上記した別の本技術に係る撮像レンズにおいては、下記の条件式(10)を満足することが望ましい。
(10)2.3<SL1<4.6
但し、
SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
とする。
Sixteenth, it is desirable that the following conditional expression (10) is satisfied in the above-mentioned imaging lens according to the present technology.
(10) 2.3 <SL1 <4.6
However,
SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
And.
 これにより、第1の負メニスカスレンズの屈折率が適正化される。 As a result, the refractive index of the first negative meniscus lens is optimized.
 第17に、上記した別の本技術に係る撮像レンズにおいては、前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されていることが望ましい。 Seventeenth, in the above-mentioned imaging lens according to the present technology, it is desirable that the first lens group is fixed at the time of focusing from an infinity object to a short-distance object.
 これにより、フォーカス駆動時に全系に対する体積が大きく重量が大きい第1レンズ群が光軸方向へ移動されない。 As a result, the first lens group, which has a large volume and a large weight with respect to the entire system, is not moved in the optical axis direction during focus drive.
 第18に、別の本技術に係る撮像装置は、撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、前記撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(3)及び条件式(4)を満足するものである。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:前記レンズユニットの焦点距離
fLP:前記第1レンズ群における前記正レンズの焦点距離
dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
dS:前記開口絞りから像面までの距離
とする。
Eighteenth, another imaging device according to the present technology includes an imaging lens and an imaging element that converts an optical image formed by the imaging lens into an electrical signal, and the imaging lens moves from the object side to the image side. It consists of a first lens group, an aperture aperture, and a second lens group arranged in order. The first lens group consists of a first negative meniscus lens having a convex surface facing the object side and an object in order from the object side to the image side. It has a second negative meniscus lens with a convex surface facing side, and the first lens group includes a positive lens having an aspherical shape on both sides or one side, and a negative refractive force closest to the object side of the positive lens. It has a lens unit composed of a lens having a lens to a lens closest to the object side of the positive lens, and the second lens group is an object from the image side when focusing from an infinity object to a short-range object. It has a positive lens group that moves to the side, and satisfies the following conditional equations (3) and (4).
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
 これにより、撮像レンズにおいて、軸外画角の上光線がレンズ中心を通り下光線がレンズ周辺を通り易くなると共に両側又は片側に非球面形状を有する正レンズの屈折力と両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が適正化される。 As a result, in the imaging lens, the upper ray of the off-axis angle of view passes through the center of the lens and the lower ray easily passes around the lens, and the refractive power of the positive lens having an aspherical shape on both sides or one side and the aspherical force on both sides or one side. The distance from the positive lens with the shape to the aperture aperture is optimized.
図2乃至図31と共に本技術撮像レンズ及び撮像装置の実施の形態を示すものであり、本図は、撮像レンズの第1の実施の形態のレンズ構成を示す図である。2 to 31 show an embodiment of the image pickup lens and the image pickup apparatus of the present technology, and this figure is a diagram showing a lens configuration of the first embodiment of the image pickup lens. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment. 撮像レンズの第2の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 2nd Embodiment of an image pickup lens. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment. 撮像レンズの第3の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 3rd Embodiment of an image pickup lens. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment. 撮像レンズの第4の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 4th Embodiment of an image pickup lens. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment. 撮像レンズの第5の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 5th Embodiment of an image pickup lens. 第5の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 5th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第5の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 5th Embodiment. 撮像レンズの第6の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 6th Embodiment of an image pickup lens. 第6の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 6th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第6の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 6th Embodiment. 撮像レンズの第7の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of 7th Embodiment of an image pickup lens. 第7の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 7th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第7の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 7th Embodiment. 撮像レンズの第8の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 8th Embodiment of an image pickup lens. 第8の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 8th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第8の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 8th Embodiment. 撮像レンズの第9の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the 9th Embodiment of an image pickup lens. 第9の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 9th Embodiment, and is the figure which shows spherical aberration, astigmatism and distortion. 第9の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 9th Embodiment. 撮像レンズの第10の実施の形態のレンズ構成を示す図である。It is a figure which shows the lens structure of the tenth embodiment of an image pickup lens. 第10の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、球面収差、非点収差及び歪曲収差を示す図である。FIG. 5 is a longitudinal aberration diagram in a numerical example in which specific numerical values are applied to the tenth embodiment, and is a diagram showing spherical aberration, astigmatism, and distortion. 第10の実施の形態に具体的な数値を適用した数値実施例における横収差図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the tenth embodiment. 撮像装置の一例を示すブロック図である。It is a block diagram which shows an example of an image pickup apparatus.
 以下に、本技術撮像レンズ及び撮像装置を実施するための形態について説明する。 Hereinafter, a mode for implementing the present technology imaging lens and imaging device will be described.
 [撮像レンズの構成]
 本技術撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(1)及び条件式(2)を満足する。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:第1の負メニスカスレンズのd線のアッベ数
fL1:第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
[Configuration of imaging lens]
The imaging lens of the present technology consists of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is not arranged on both sides or one side in order from the object side to the image side. A first negative meniscus lens having a spherical shape with a convex surface facing the object side, a second negative meniscus lens having a convex surface facing the object side, and a single lens having a negative refractive power or from the object side to the image side. It has units arranged in negative and positive directions in order, and the second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object. The conditional expression (1) and the conditional expression (2) are satisfied.
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 第1レンズ群は、光学系全系において、画角を大きくしつつバックフォーカスを十分に確保するワイドコンバータの役割を担っている。第1レンズ群は、最も物体側に凸面を向けた第1の負メニスカスレンズを有する。第1レンズ群は、ワイドコンバータの役割を担うため、物体側を負の屈折力として、像側を正の屈折力としたレトロフォーカスタイプの屈折力の配置になる必要がある。この場合に、開口絞りに対してコーニック係数が小さくなるような非球面形状を有する第1の負メニスカスレンズを配置することにより、歪曲収差や像面湾曲を良好に補正することが可能になると共に第1レンズ群の小型化を図ることが可能になる。 The first lens group plays the role of a wide converter that secures sufficient back focus while increasing the angle of view in the entire optical system. The first lens group has a first negative meniscus lens whose convex surface is most oriented toward the object side. Since the first lens group plays the role of a wide converter, it is necessary to arrange the refractive power of the retrofocus type with the object side as the negative refractive power and the image side as the positive refractive power. In this case, by arranging the first negative meniscus lens having an aspherical shape such that the conic coefficient becomes smaller with respect to the aperture diaphragm, it becomes possible to satisfactorily correct distortion and curvature of field. It becomes possible to reduce the size of the first lens group.
 また、第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有する。第1レンズ群は、ワイドコンバータの役割を担うため、物体側を負の屈折力として、像側を正の屈折力としたレトロフォーカスタイプの屈折力の配置になる必要がある。物体側の負レンズを第1の負メニスカスレンズと第2の負メニスカスレンズとユニットに分割することによって負の屈折力を分割することができ、歪曲収差や像面湾曲等の諸収差を良好に補正することが可能である。 Further, the first lens group includes a first negative meniscus lens having a convex surface facing the object side, a second negative meniscus lens having a convex surface facing the object side, and a negative refractive power in this order from the object side to the image side. It has a single lens with a lens or a unit in which negative and positive lenses are arranged in order from the object side to the image side. Since the first lens group plays the role of a wide converter, it is necessary to arrange the refractive power of the retrofocus type with the object side as the negative refractive power and the image side as the positive refractive power. By dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit, the negative refractive power can be divided, and various aberrations such as distortion and curvature of field can be satisfactorily reduced. It is possible to correct.
 条件式(1)は、倍率色収差を良好に補正する上で、第1の負メニスカスレンズのアッベ数を好ましい範囲に規定するものである。 The conditional expression (1) defines the Abbe number of the first negative meniscus lens in a preferable range in order to satisfactorily correct the chromatic aberration of magnification.
 条件式(1)の下限値を下回ると、第1の負メニスカスレンズのアッベ数が小さくなり、倍率色収差を良好に補正することが困難になる。 If it falls below the lower limit of the conditional expression (1), the Abbe number of the first negative meniscus lens becomes small, and it becomes difficult to satisfactorily correct the chromatic aberration of magnification.
 一方、条件式(1)の上限値を上回ると、第1の負メニスカスレンズのアッベ数が大きくなり、一般に、屈折率が小さくなる傾向にあり、第1の負メニスカスレンズの屈折率が小さくなってしまい、第1の負メニスカスレンズの屈折力が弱くなってしまうため、歪曲収差や像面湾曲を良好に補正することが困難になる。 On the other hand, when the upper limit of the conditional equation (1) is exceeded, the Abbe number of the first negative meniscus lens increases, and in general, the refractive index tends to decrease, and the refractive index of the first negative meniscus lens decreases. This weakens the refractive power of the first negative meniscus lens, making it difficult to satisfactorily correct distortion and curvature of field.
 従って、撮像レンズが条件式(1)を満足することにより、第1の負メニスカスレンズのアッベ数が適正化され、倍率色収差や歪曲収差や像面湾曲を良好に補正することができる。 Therefore, when the imaging lens satisfies the conditional equation (1), the Abbe number of the first negative meniscus lens is optimized, and chromatic aberration of magnification, distortion, and curvature of field can be satisfactorily corrected.
 尚、条件式(1)の上限値を85.00にすることにより歪曲収差や像面湾曲を抑制することができ、より好ましい。 Note that distortion and curvature of field can be suppressed by setting the upper limit of the conditional expression (1) to 85.00, which is more preferable.
 また、条件式(1)の下限値を48.00にすることにより倍率色収差を抑制することができ、より好ましい。 Further, by setting the lower limit value of the conditional expression (1) to 48.00, chromatic aberration of magnification can be suppressed, which is more preferable.
 条件式(2)は、第1レンズ群のワイドコンバータ―の役割を担い、第1レンズ群の最も物体側の第1の負メニスカスレンズの画角を大きくしつつ良好な収差補正を行うために好ましい範囲を規定するものである。 Conditional expression (2) plays the role of a wide converter of the first lens group, and in order to perform good aberration correction while increasing the angle of view of the first negative meniscus lens on the most object side of the first lens group. It defines a preferred range.
 条件式(2)の下限値を下回ると、全系の屈折力に対する第1の負メニスカスレンズの負の屈折力が弱くなるため、ワイドコンバータとしての役割を担う第1レンズ群において第1の負メニスカスレンズと第2の負メニスカスレンズとユニットによって負の屈折力を分担することができず、歪曲収差や像面湾曲等の諸収差を補正することが困難になる。 If it falls below the lower limit of the conditional expression (2), the negative refractive power of the first negative meniscus lens with respect to the refractive power of the entire system becomes weaker, so that the first negative lens group plays a role as a wide converter. The negative refractive power cannot be shared by the meniscus lens, the second negative meniscus lens, and the unit, and it becomes difficult to correct various aberrations such as distortion and curvature of field.
 一方、条件式(2)の上限値を上回ると、全系の屈折力に対する第1の負メニスカスレンズの屈折力が強くなるため、第1の負メニスカスレンズの負の屈折力が極端に強くなり、歪曲収差や非点収差等が悪化するため好ましくない。 On the other hand, when the upper limit of the conditional equation (2) is exceeded, the refractive power of the first negative meniscus lens with respect to the refractive power of the entire system becomes strong, so that the negative refractive power of the first negative meniscus lens becomes extremely strong. , Distortion and astigmatism worsen, which is not preferable.
 従って、撮像レンズが条件式(2)を満足することにより、第1の負メニスカスレンズの負の屈折力が適正化され、歪曲収差や像面湾曲や非点収差を良好に補正することができる。 Therefore, when the imaging lens satisfies the condition equation (2), the negative refractive power of the first negative meniscus lens is optimized, and distortion, curvature of field, and astigmatism can be satisfactorily corrected. ..
 尚、条件式(2)の下限値を-6.5にすることにより歪曲収差や像面湾曲を抑制することができ、より好ましい。 It should be noted that by setting the lower limit value of the conditional expression (2) to -6.5, distortion and curvature of field can be suppressed, which is more preferable.
 本技術撮像レンズによれば、非球面を有し最も物体側の負の屈折力を持つレンズにアッベ数の高い硝材を使うことにより、倍率色収差を含めた諸収を良好に補正しながらも、大口径化を可能とする広角レンズを提供することができる。 According to the imaging lens of this technology, by using a glass material with a high Abbe number for the lens having an aspherical surface and the most negative refractive power on the object side, various yields including chromatic aberration of magnification can be satisfactorily corrected. It is possible to provide a wide-angle lens capable of increasing the diameter.
 [別の撮像レンズの構成]
 別の本技術撮像レンズは、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、正レンズの物体側に最も近い負の屈折力を有するレンズから正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(3)及び条件式(4)を満足する。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:レンズユニットの焦点距離
fLP:第1レンズ群における正レンズの焦点距離
dLP:第1レンズ群における正レンズの物体側の面から像面までの距離
dS:開口絞りから像面までの距離
とする。
[Structure of another imaging lens]
Another imaging lens of the present technology consists of a first lens group, an aperture aperture, and a second lens group arranged in order from the object side to the image side, and the first lens group is sequentially arranged from the object side to the image side to the object side. It has a first negative meniscus lens with a convex surface facing and a second negative meniscus lens with a convex surface facing the object side, and the first lens group includes a positive lens having an aspherical shape on both sides or one side and a positive lens. It has a lens unit composed of a lens having a negative refractive force closest to the object side of the lens to a lens closest to the object side of a positive lens, and the second lens group is from an infinity object to a short-range object. It has a positive lens group that moves from the image side to the object side when in focus, and satisfies the following conditional equations (3) and (4).
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object side surface of the positive lens to the image plane in the first lens group dS: Distance from the aperture aperture to the image plane do.
 第1レンズ群における両側又は片側に非球面形状を有する正レンズを、軸上画角のマージナル光線が高い開口絞り付近に配置することによって球面収差を良好に補正することが可能になる。また、この正レンズを開口絞り付近に配置することにより、軸外画角の上光線がレンズ中心を通り下光線がレンズ周辺を通るため、コマ収差を良好に補正することが可能である。 Spherical aberration can be satisfactorily corrected by arranging a positive lens having an aspherical shape on both sides or one side of the first lens group near an aperture diaphragm having a high marginal ray with an axial angle of view. Further, by arranging this positive lens near the aperture diaphragm, the upper ray of the off-axis angle of view passes through the center of the lens and the lower ray passes around the lens, so that coma aberration can be satisfactorily corrected.
 第1レンズ群は、両側又は片側に非球面形状を有する正レンズの物体側に最も近い負の屈折力を有するレンズからこの正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットを有する。このように両側又は片側に非球面形状を有する正レンズの物体側にレンズユニットを配置することにより、球面収差の補正効果を高めることが可能になる。 The first lens group has a lens unit composed of a lens having an aspherical shape on both sides or one side and having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. .. By arranging the lens unit on the object side of the positive lens having an aspherical shape on both sides or one side in this way, it is possible to enhance the correction effect of spherical aberration.
 条件式(3)の下限値を下回ると、レンズユニットに比べ両側又は片側に非球面形状を有する正レンズの屈折力が極端に強くなってしまうため、全系での球面収差が悪化する。また、開口絞り付近において、両側又は片側に非球面形状を有する正レンズの屈折力が強くなり過ぎてしまうことにより、第2レンズ群に入射される光線がより収斂されるため、フォーカシング時の球面収差変動が大きくなってしまう。 If it falls below the lower limit of the conditional expression (3), the refractive power of the positive lens having an aspherical shape on both sides or one side becomes extremely strong as compared with the lens unit, so that the spherical aberration in the whole system worsens. Further, in the vicinity of the aperture aperture, the refractive power of the positive lens having an aspherical shape on both sides or one side becomes too strong, so that the light rays incident on the second lens group are more converged, so that the spherical surface at the time of focusing Aberration fluctuation becomes large.
 一方、条件式(3)の上限値を上回ると、両側又は片側に非球面形状を有する正レンズの屈折力が極端に弱くなり、非球面レンズとしての効果が弱くなってしまうため、球面収差等の諸収差を良好に補正することができない。 On the other hand, if the upper limit of the conditional expression (3) is exceeded, the refractive power of the positive lens having an aspherical shape on both sides or one side becomes extremely weak, and the effect as an aspherical lens becomes weak. Various aberrations cannot be corrected satisfactorily.
 従って、撮像レンズが条件式(3)を満足することにより、両側又は片側に非球面形状を有する正レンズの屈折力が適正化され、フォーカシング時の球面収差変動を抑制することができると共に球面収差等の諸収差を良好に補正することができる。 Therefore, when the imaging lens satisfies the condition equation (3), the refractive power of the positive lens having an aspherical shape on both sides or one side is optimized, and the fluctuation of spherical aberration during focusing can be suppressed and the spherical aberration can be suppressed. It is possible to satisfactorily correct various aberrations such as.
 尚、条件式(3)の下限値を-35.00にすることにより倍率色収差を抑制することができ、より好ましい。 It is more preferable that the lower limit value of the conditional expression (3) is set to -35.00 to suppress chromatic aberration of magnification.
 条件式(4)の上限値を上回ると、両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が遠くなってしまい、軸上画角のマージナル光線がこの正レンズに入射する際に、十分に光線が広がらないため球面収差等の諸収差を良好に補正することができない。 If the upper limit of the conditional expression (4) is exceeded, the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm becomes long, and when a marginal ray having an axial angle of view is incident on this positive lens. In addition, since the light rays do not spread sufficiently, various aberrations such as spherical aberration cannot be satisfactorily corrected.
 一方、条件式(4)の下限値を下回ると、両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が近くなり過ぎてしまうため、レンズ構造が成り立たなくなってしまう。 On the other hand, if it falls below the lower limit of the conditional expression (4), the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm becomes too short, so that the lens structure cannot be established.
 従って、撮像レンズが条件式(4)を満足することにより、両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が適正化され、球面収差等の諸収差を良好に補正することができると共にレンズ構造を適正に構成することができる。 Therefore, when the imaging lens satisfies the condition equation (4), the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm is optimized, and various aberrations such as spherical aberration are satisfactorily corrected. At the same time, the lens structure can be properly configured.
 尚、条件式(4)の上限値を1.50にすることにより球面収差等の諸収差を良好に補正することができ、より好ましい。 It should be noted that by setting the upper limit value of the conditional expression (4) to 1.50, various aberrations such as spherical aberration can be satisfactorily corrected, which is more preferable.
 また、条件式(4)の上限値を1.40にすることにより球面収差等の諸収差をさらに良好に補正することができ、より好ましい。 Further, by setting the upper limit value of the conditional expression (4) to 1.40, various aberrations such as spherical aberration can be corrected more satisfactorily, which is more preferable.
 別の本技術撮像レンズによれば、第1レンズ群における各レンズ等の焦点距離を適正に規定すること等により、倍率色収差を含めた諸収を良好に補正しながらも、大口径化を可能とする広角レンズを提供することができる。 According to another imaging lens of the present technology, by appropriately defining the focal length of each lens in the first lens group, it is possible to increase the diameter while satisfactorily correcting various yields including chromatic aberration of magnification. It is possible to provide a wide-angle lens.
 [一実施形態による撮像レンズの構成]
 本技術(別の本技術を含む。以下、「撮像レンズ」において同じ。)の一実施形態による撮像レンズにあっては、下記の条件式(5)を満足することが望ましい。
(5)1.5<fG2F/f<8.5 
但し、
fG2F:第2レンズ群における正のレンズ群の焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
[Structure of an imaging lens according to one embodiment]
It is desirable that the following conditional expression (5) is satisfied for an imaging lens according to an embodiment of the present technology (including another present technology; the same shall apply hereinafter in the "imaging lens").
(5) 1.5 <fG2F / f <8.5
However,
fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
 条件式(5)は、第2レンズ群においてフォーカス群として機能する正のレンズ群の焦点距離を適切に設定するための条件式である。 The conditional expression (5) is a conditional expression for appropriately setting the focal length of the positive lens group that functions as the focus group in the second lens group.
 条件式(5)の下限値を下回ると、正のレンズ群の屈折力が強くなり過ぎてしまい、正のレンズ群において発生する収差が大きくなり球面収差等の諸収差を補正しきれない。 If it falls below the lower limit of the conditional expression (5), the refractive power of the positive lens group becomes too strong, and the aberration generated in the positive lens group becomes large, and various aberrations such as spherical aberration cannot be corrected.
 一方、条件式(5)の上限値を上回ると、正のレンズ群の屈折力が弱くなり過ぎてしまうため、ピント敏感度が稼げずフォーカスストロークが長くなってしまい、撮像レンズを小型化することが難しくなる。 On the other hand, if the upper limit of the conditional expression (5) is exceeded, the refractive power of the positive lens group becomes too weak, so that the focus sensitivity cannot be obtained and the focus stroke becomes long, so that the image pickup lens must be miniaturized. Becomes difficult.
 従って、撮像レンズが条件式(5)を満足することにより、フォーカス群として機能する正のレンズ群の焦点距離が適正化され、球面収差等の諸収差を良好に補正することができると共にフォーカスストロークを短縮化して撮像レンズの小型化を図ることができる。 Therefore, when the imaging lens satisfies the condition equation (5), the focal length of the positive lens group that functions as the focus group is optimized, various aberrations such as spherical aberration can be satisfactorily corrected, and the focus stroke. Can be shortened to reduce the size of the imaging lens.
 尚、条件式(5)の上限値を6.5にすることによりフォーカスストロークをより短くし小型化することができ、より好ましい。 It should be noted that by setting the upper limit value of the conditional expression (5) to 6.5, the focus stroke can be shortened and the size can be reduced, which is more preferable.
 また、条件式(5)の下限値を2.5にすることにより球面収差等の諸収差を抑制することができ、より好ましい。 Further, by setting the lower limit value of the conditional expression (5) to 2.5, various aberrations such as spherical aberration can be suppressed, which is more preferable.
 本技術の一実施形態による撮像レンズにあっては、下記の条件式(6)を満足することが望ましい。
(6)3<|fG1/fG2|
但し、
fG1:第1レンズ群の焦点距離
fG2:第2レンズ群の焦点距離
とする。
It is desirable that the following conditional expression (6) is satisfied for the image pickup lens according to the embodiment of the present technology.
(6) 3 <| fG1 / fG2 |
However,
fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
 条件式は(6)は、第1レンズ群と第2レンズ群の屈折力の比を適切に設定するための条件式である。 The conditional expression (6) is a conditional expression for appropriately setting the ratio of the refractive powers of the first lens group and the second lens group.
 第1レンズ群は、光学系全系において、画角を大きくしつつバックフォーカスを十分に確保するワイドコンバータの役割を担っており、第2レンズ群に対して第1レンズ群からの入射光線をアフォーカルにすることによって、フォーカシング時の球面収差変動を抑制することができる。 The first lens group plays the role of a wide converter that secures sufficient back focus while increasing the angle of view in the entire optical system, and emits incident light rays from the first lens group to the second lens group. By making it afocal, it is possible to suppress fluctuations in spherical aberration during focusing.
 尚、条件式(6)の下限値を4にすることにより球面収差等の諸収差を抑制することができ、より好ましい。 It should be noted that by setting the lower limit value of the conditional expression (6) to 4, various aberrations such as spherical aberration can be suppressed, which is more preferable.
 本技術の一実施形態による撮像レンズにあっては、下記の条件式(7)を満足することが望ましい。
(7)0.30<fL1/fL2<2.50
但し、
fL1:第1の負メニスカスレンズの焦点距離
fL2:第2の負メニスカスレンズの焦点距離
とする。
It is desirable that the following conditional expression (7) is satisfied for the image pickup lens according to the embodiment of the present technology.
(7) 0.30 <fL1 / fL2 <2.50
However,
fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
 第1レンズ群はワイドコンバータの役割をしており、物体側の負レンズを第1の負メニスカスレンズと第2の負メニスカスレンズとユニットに分割することによって負の屈折力を分割することができ、歪曲収差や像面湾曲等の諸収差を補正することが可能である。また、第2の負メニスカスレンズは第1の負メニスカスレンズに対してある程度屈折力を高くしなくてはならない。 The first lens group acts as a wide converter, and the negative refractive power can be divided by dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit. , It is possible to correct various aberrations such as distortion and curvature of field. Further, the second negative meniscus lens must have a higher refractive power than the first negative meniscus lens.
 条件式(7)の下限値を下回ると、第1の負メニスカスレンズと第2の負メニスカスレンズのうち一方の負メニスカスレンズの屈折力が弱くなってしまい歪曲収差や像面湾曲を補正することができない。 If it falls below the lower limit of the conditional equation (7), the refractive power of one of the first negative meniscus lens and the second negative meniscus lens becomes weak, and distortion and curvature of field are corrected. I can't.
 一方、条件式(7)の上限値を上回ると、第1の負メニスカスレンズの屈折力が弱くなってしまうため、第1の負メニスカスレンズによって倍率色収差を良好に補正することが困難になる。 On the other hand, if the upper limit of the conditional expression (7) is exceeded, the refractive power of the first negative meniscus lens is weakened, so that it becomes difficult for the first negative meniscus lens to satisfactorily correct the chromatic aberration of magnification.
 従って、撮像レンズが条件式(7)を満足することにより、第1の負メニスカスレンズと第2の負メニスカスレンズの屈折力がそれぞれ適正化され、歪曲収差や像面湾曲を良好に補正することができると共に第1の負メニスカスレンズによって倍率色収差を良好に補正することができる。 Therefore, when the imaging lens satisfies the conditional equation (7), the refractive powers of the first negative meniscus lens and the second negative meniscus lens are optimized, and distortion aberration and curvature of field are satisfactorily corrected. The first negative meniscus lens can satisfactorily correct the chromatic aberration of magnification.
 尚、条件式(7)の上限値を1.55にすることにより倍率色収差を抑制することができ、より好ましい。 It should be noted that by setting the upper limit value of the conditional expression (7) to 1.55, chromatic aberration of magnification can be suppressed, which is more preferable.
 また、条件式(7)の下限値を0.40にすることにより歪曲収差や像面湾曲を抑制することができ、より好ましい。 Further, by setting the lower limit value of the conditional expression (7) to 0.40, distortion and curvature of field can be suppressed, which is more preferable.
 本技術の一実施形態による撮像レンズにあっては、下記の条件式(8)を満足することが望ましい。
(8)-1.5<fG2/fLA<-0.2
但し、
fG2:第2レンズ群の焦点距離
fLA:第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
とする。
It is desirable that the following conditional expression (8) is satisfied for the image pickup lens according to the embodiment of the present technology.
(8) -1.5 <fG2 / fLA <-0.2
However,
fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
 フランジバックを短くし、全長を小型化するためには第2レンズ群に負の屈折力が必要であり、条件式(8)は、第2レンズ群と第2レンズ群における負の空気レンズとの比を適切に設定するための条件である。 In order to shorten the flange back and reduce the overall length, a negative refractive power is required in the second lens group, and the conditional equation (8) is based on the negative air lens in the second lens group and the second lens group. It is a condition for setting the ratio of.
 条件式(8)の下限値を下回ると、第2レンズ群に対して第2レンズ群における負の空気レンズの屈折力が強くなり過ぎてしまうため、負の空気レンズにおいて発生する球面収差等の諸収差を補正することが困難になる。 If it falls below the lower limit of the conditional equation (8), the refractive power of the negative air lens in the second lens group becomes too strong with respect to the second lens group, so that spherical aberration and the like generated in the negative air lens occur. It becomes difficult to correct various aberrations.
 一方、条件式(8)の上限値を上回ると、第2レンズ群に対して第2レンズ群における負の空気レンズの屈折力が弱くなってしまうため、フランジバックを短くして小型化することが困難になる。 On the other hand, if the upper limit of the conditional expression (8) is exceeded, the refractive power of the negative air lens in the second lens group becomes weaker than that in the second lens group. Therefore, the flange back should be shortened to reduce the size. Becomes difficult.
 従って、撮像レンズが条件式(8)を満足することにより、第2レンズ群に対する負の空気レンズの屈折力が適正化され、球面収差等の諸収差を良好に補正することができると共にフランジバックを短くして撮像レンズの小型化を図ることができる。 Therefore, when the imaging lens satisfies the condition equation (8), the refractive power of the negative air lens with respect to the second lens group is optimized, various aberrations such as spherical aberration can be satisfactorily corrected, and the flange back Can be shortened to reduce the size of the image pickup lens.
 尚、条件式(8)の下限値を-1.2にすることにより球面収差等の諸収差を抑制することができ、より好ましい。 It should be noted that various aberrations such as spherical aberration can be suppressed by setting the lower limit value of the conditional expression (8) to −1.2, which is more preferable.
 本技術の一実施形態による撮像レンズにあっては、第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、下記の条件式(9)を満足することが望ましい。
(9)0.3<BF/f<2.5
但し、
BF:バックフォーカス
f:無限遠合焦時の全系の焦点距離
とする。
In the image pickup lens according to the embodiment of the present technology, the distance from the image plane side surface of the most image side lens in the second lens group to the image plane is set as the back focus, and the following conditional expression (9) is satisfied. It is desirable to do.
(9) 0.3 <BF / f <2.5
However,
BF: Back focus f: Focal length of the entire system when focusing at infinity.
 条件式(9)の上限値を上回ると、バックフォーカスが長くなってしまうため、全長を短縮することができなくなってしまう。 If the upper limit of the conditional expression (9) is exceeded, the back focus becomes long, and the total length cannot be shortened.
 一方、条件式(9)の下限値を下回ると、像面と最も像側のレンズとの十分な距離を確保することが困難になり製造性が低下してしまう。 On the other hand, if it falls below the lower limit of the conditional expression (9), it becomes difficult to secure a sufficient distance between the image plane and the lens on the image side, and the manufacturability deteriorates.
 従って、撮像レンズが条件式(9)を満足することにより、バックフォーカスを短くして全長を短縮することにより、撮像レンズの小型化を図ることができる。 Therefore, if the image pickup lens satisfies the conditional expression (9), the back focus is shortened and the total length is shortened, so that the image pickup lens can be miniaturized.
 尚、条件式(9)の上限値を1.55にすることによりバックフォーカスを短くして全長を短縮することができ、より好ましい。 It should be noted that by setting the upper limit value of the conditional expression (9) to 1.55, the back focus can be shortened and the total length can be shortened, which is more preferable.
 また、条件式(9)の下限値を0.4にすることにより像面と最も像側のレンズとの十分な距離を確保でき製造性を高めることができるため、より好ましい。 Further, it is more preferable to set the lower limit value of the conditional expression (9) to 0.4 because a sufficient distance between the image plane and the lens on the image side can be secured and the manufacturability can be improved.
 本技術の一実施形態による撮像レンズにあっては、下記の条件式(10)を満足することが望ましい。
(10)2.3<SL1<4.6
但し、
SL1:第1の負メニスカスレンズの比重 [g/平方センチメートル]
とする。
It is desirable that the following conditional expression (10) is satisfied for the image pickup lens according to the embodiment of the present technology.
(10) 2.3 <SL1 <4.6
However,
SL1: Specific density of the first negative meniscus lens [g / square centimeter]
And.
 ガラス硝材の比重は、一般に、屈折率と正の相関があり、比重が大きいほど屈折率が高くなる傾向にある。条件式(10)は、レンズの重量を軽量化するために第1の負メニスカスレンズの比重を適切に設定する式である。 The specific gravity of glass glass material generally has a positive correlation with the refractive index, and the larger the specific gravity, the higher the refractive index tends to be. The conditional expression (10) is an expression for appropriately setting the specific gravity of the first negative meniscus lens in order to reduce the weight of the lens.
 条件式(10)の下限値を下回ると、第1の負メニスカスレンズの屈折率が小さくなり過ぎてしまい、第1の負メニスカスレンズの負の屈折力が弱くなってしまうため、第1の負メニスカスレンズによって歪曲収差や像面湾曲を適切に補正することができなくなる。 一方、条件式(10)の上限値を上回ると、全系において大部分の体積を占める第1レンズ群の比重が高くなり過ぎてしまうため、全系でのレンズの軽量化が困難になる。 If it falls below the lower limit of the conditional equation (10), the refractive index of the first negative meniscus lens becomes too small, and the negative refractive power of the first negative meniscus lens becomes weak, so that the first negative Distortion and curvature of field cannot be properly corrected by the meniscus lens. On the other hand, if the upper limit of the conditional expression (10) is exceeded, the specific gravity of the first lens group, which occupies most of the volume in the entire system, becomes too high, and it becomes difficult to reduce the weight of the lens in the entire system.
 従って、撮像レンズが条件式(10)を満足することにより、第1の負メニスカスレンズの屈折率が適正化され、歪曲収差や像面湾曲を良好に補正することができると共に全系でのレンズの軽量化を図ることができる。 Therefore, when the imaging lens satisfies the conditional equation (10), the refractive index of the first negative meniscus lens is optimized, distortion aberration and curvature of field can be satisfactorily corrected, and the lens in the entire system can be corrected. It is possible to reduce the weight of the lens.
 本技術の一実施形態による撮像レンズにあっては、第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されていることが望ましい。 In the imaging lens according to one embodiment of the present technology, it is desirable that the first lens group is fixed when focusing from an infinity object to a short-distance object.
 第1レンズ群は、全系に対する体積が大きく重量が大きいため、フォーカス駆動の高速化に不利である。 The first lens group has a large volume and a large weight for the entire system, which is disadvantageous for speeding up focus drive.
 従って、第1レンズ群が無限遠物体から近距離物体への合焦の際に固定されていることにより、フォーカス駆動時に全系に対する体積が大きく重量が大きい第1レンズ群が光軸方向へ移動されないため、フォーカス駆動の高速化を図ることができる。 Therefore, since the first lens group is fixed when focusing from an infinity object to a short-range object, the first lens group, which has a large volume and a large weight with respect to the entire system during focus drive, moves in the optical axis direction. Therefore, the focus drive can be speeded up.
 [撮像レンズの数値実施例]
 以下に、本技術撮像レンズの具体的な実施の形態及び実施の形態に具体的な数値を適用した数値実施例について、図面及び表を参照して説明する。
[Numerical Example of Imaging Lens]
Hereinafter, specific embodiments of the imaging lens of the present technology and numerical examples in which specific numerical values are applied to the embodiments will be described with reference to drawings and tables.
 尚、以下の各表や説明において示した記号の意味等については、下記に示す通りである。 The meanings of the symbols shown in the following tables and explanations are as shown below.
 「r」は第i番目の面の近軸曲率半径、「d」は第i番目の面と第i+1番目の面の間の軸上面間隔(レンズの中心の厚み又は空気間隔)、「nd」は第i番目の面から始まるレンズ等のd線(λ=587.6nm)における屈折率、「νd」は第i番目の面から始まるレンズ等のd線におけるアッベ数を示す。 "R" is the paraxial radius of curvature of the i-th plane, "d" is the axial top-top spacing (thickness of the center of the lens or air spacing) between the i-th plane and the i + 1th plane, "nd" Is the refractive index on the d-line (λ = 587.6 nm) of the lens or the like starting from the i-th plane, and “νd” is the Abbe number on the d-line of the lens or the like starting from the i-th plane.
 「r」に関し「∞」は当該面が平面であることを示す。「d」に関し「可変」とあるのは可変間隔であることを示す。 Regarding "r", "∞" indicates that the surface is a plane. Regarding "d", "variable" indicates that the interval is variable.
 非球面には面番号の右側に*印を付しており、開口絞りには面番号の右側に「絞り」の記述を付している。 The aspherical surface is marked with * on the right side of the surface number, and the aperture diaphragm is marked with the description of "aperture" on the right side of the surface number.
 「κ」は円錐定数(コーニック定数)、「A4」、「A6」、「A8」、「A10」、「A12」はそれぞれ4次、6次、8次、10次、12次の非球面係数を示す。 "Κ" is a conical constant (conic constant), "A4", "A6", "A8", "A10", "A12" are 4th, 6th, 8th, 10th, and 12th aspherical coefficients, respectively. Is shown.
 尚、以下の非球面係数等を示す各表において、「E-n」は10を底とする指数表現、即ち、「10のマイナスn乗」を表しており、例えば、「0.12345E-05」は「0.12345×(10のマイナス五乗)」を表している。 In each table showing the aspherical coefficient and the like below, "En" represents an exponential notation with a base of 10, that is, "10 minus nth power", for example, "0.12345E-05". "Represents" 0.12345 x (10 minus the fifth power) ".
 各実施の形態において用いられた撮像レンズには、レンズ面が非球面に形成されたものがある。非球面形状は、「x」をレンズ面の頂点からの光軸方向における距離(サグ量)、「y」を光軸方向に直交する方向における高さ(像高)、「c」をレンズの頂点における近軸曲率(曲率半径の逆数)、「κ」を円錐定数(コーニック定数)、「A4」、「A6」、・・・をそれぞれ4次、6次、・・・の非球面係数とすると、以下の数式1によって定義される。 Some of the imaging lenses used in each embodiment have an aspherical lens surface. For the aspherical shape, "x" is the distance (sag amount) in the optical axis direction from the apex of the lens surface, "y" is the height (image height) in the direction orthogonal to the optical axis direction, and "c" is the lens. Near-axis curvature at the apex (inverse of the radius of curvature), "κ" is the conical constant (conic constant), "A4", "A6", ... are the aspherical coefficients of the 4th, 6th, ... Then, it is defined by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図1、図4、図7、図10、図13、図16、図19、図22、図25、図28に各実施例の無限遠位置におけるレンズ構成を示す。 1, FIG. 4, FIG. 7, FIG. 10, FIG. 13, FIG. 16, FIG. 19, FIG. 22, FIG. 25, and FIG. 28 show the lens configuration at the infinity position of each embodiment.
 図2、図5、図8、図11、図14、図17、図20、図23、図26、図29に各実施例の無限遠位置と最至近位置における球面収差図、非点収差図、歪曲収差図を示す。 2, FIG. 5, FIG. 8, FIG. 11, FIG. 14, FIG. 17, FIG. 20, FIG. 23, FIG. 26, and FIG. 29 show spherical aberration diagrams and astigmatism diagrams at the infinity position and the closest position of each embodiment. , Distortion aberration diagram is shown.
 図3、図6、図9、図12、図15、図18、図21、図24、図27、図30に各実施例の無限遠位置と最至近位置での横収差図を示す。左側の列はタンジェンシャル光束での横収差(メリジオナルコマ収差)、右側はサジタル光束での横収差(サジタルコマ収差)を示している。 FIG. 3, FIG. 6, FIG. 9, FIG. 12, FIG. 15, FIG. 18, FIG. 21, FIG. 24, FIG. 27, and FIG. 30 show transverse aberration diagrams at the infinity position and the closest position of each embodiment. The left column shows the lateral aberration in the tangier luminous flux (meridional coma aberration), and the right column shows the lateral aberration in the sagittal luminous flux (sagittal coma aberration).
 <第1の実施の形態>
 図1は、本技術の第1の実施の形態における撮像レンズ1のレンズ構成を示している。
<First Embodiment>
FIG. 1 shows the lens configuration of the image pickup lens 1 according to the first embodiment of the present technology.
 撮像レンズ1は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The imaging lens 1 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13、像側に凸面を向けた正メニスカスレンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負レンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負レンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負レンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表1に、撮像レンズ1に具体的数値を適用した数値実施例1のレンズデータを示す。 Table 1 shows the lens data of Numerical Example 1 in which specific numerical values are applied to the image pickup lens 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 数値実施例1の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表2に示す。 Table 2 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL13と正メニスカスレンズL14の間隔が変化する。数値実施例1における各面間隔の無限遠と最至近における可変間隔を表3に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L13 and the positive meniscus lens L14 change. Numerical values Table 3 shows the infinity and the closest variable spacing of each surface spacing in Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 数値実施例1における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表4に示す。 Numerical values Table 4 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 1 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 数値実施例1における各レンズ群の焦点距離を表5に示す。 Numerical values Table 5 shows the focal lengths of each lens group in Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図2は数値実施例1の縦収差図、図3は数値実施例1の横収差図である。図2には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図3において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 2 is a longitudinal aberration diagram of Numerical Example 1, and FIG. 3 is a lateral aberration diagram of Numerical Example 1. In FIG. 2, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 3, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ1はFナンバー1.85と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 1 is miniaturized while realizing a large aperture of F number 1.85.
 また、各収差図から、数値実施例1は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
 <第2の実施の形態>
 図4は、本技術の第2の実施の形態における撮像レンズ2のレンズ構成を示している。
<Second embodiment>
FIG. 4 shows the lens configuration of the image pickup lens 2 in the second embodiment of the present technology.
 撮像レンズ2は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The imaging lens 2 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、物体側に凸面を向けた正メニスカスレンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL3と正メニスカスレンズL4は貼り合わされて接合レンズとして構成され、物体側から像側へ順に負正の並びにされたユニットとして構成されている。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで五つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and five lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13により構成されている。 The second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides, in order from the object side to the image side. It is composed of negative lenses L13 having concave surfaces on both sides.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負レンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は6枚のレンズで5つのレンズ成分により構成されている。 The second lens group G2 consists of 6 lenses and 5 lens components.
 正レンズL8から負レンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負レンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表6に、撮像レンズ2に具体的数値を適用した数値実施例2のレンズデータを示す。 Table 6 shows the lens data of Numerical Example 2 in which specific numerical values are applied to the image pickup lens 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 数値実施例2の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表7に示す。 Table 7 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL13と像面IMGの間隔が変化する。数値実施例2における各面間隔の無限遠と最至近における可変間隔を表8に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L13 and the image plane IMG change. Numerical values Table 8 shows the infinity and the closest variable spacing of each surface spacing in Example 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 数値実施例2における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表9に示す。 Table 9 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 2 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 数値実施例2における各レンズ群の焦点距離を表10に示す。 Numerical values Table 10 shows the focal lengths of each lens group in Example 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図5は数値実施例2の縦収差図、図6は数値実施例2の横収差図である。図5には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図6において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 5 is a longitudinal aberration diagram of Numerical Example 2, and FIG. 6 is a lateral aberration diagram of Numerical Example 2. In FIG. 5, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 6, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ2はFナンバー2.06と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 2 is miniaturized while realizing a large aperture of F number 2.06.
 また、各収差図から、数値実施例2は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that Numerical Example 2 has various aberrations corrected well and has excellent imaging performance.
 <第3の実施の形態>
 図7は、本技術の第3の実施の形態における撮像レンズ3のレンズ構成を示している。
<Third embodiment>
FIG. 7 shows the lens configuration of the image pickup lens 3 according to the third embodiment of the present technology.
 撮像レンズ3は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 3 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、像側に凸面を向けた負メニスカスレンズL13、両側凸面の正レンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative meniscus lens L13 with a convex surface facing the image side and a positive lens L14 with convex surfaces on both sides.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負メニスカスレンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負メニスカスレンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負メニスカスレンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表11に、撮像レンズ3に具体的数値を適用した数値実施例3のレンズデータを示す。 Table 11 shows the lens data of Numerical Example 3 in which specific numerical values are applied to the image pickup lens 3.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 数値実施例3の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表12に示す。 Table 12 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負メニスカスレンズL13と正レンズL14の間隔が変化する。数値実施例3における各面間隔の無限遠と最至近における可変間隔を表13に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative meniscus lens L13 and the positive lens L14 change. Numerical values Table 13 shows the infinity and the closest variable spacing of each surface spacing in Example 3.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 数値実施例3における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表14に示す。 Numerical values Table 14 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 3 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 数値実施例3における各レンズ群の焦点距離を表15に示す。 Numerical values Table 15 shows the focal lengths of each lens group in Example 3.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 図8は数値実施例3の縦収差図、図9は数値実施例3の横収差図である。図8には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図9において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 8 is a longitudinal aberration diagram of Numerical Example 3, and FIG. 9 is a lateral aberration diagram of Numerical Example 3. In FIG. 8, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 9, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ3はFナンバー1.85と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 3 is miniaturized while realizing a large aperture of F number 1.85.
 また、各収差図から、数値実施例3は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that Numerical Example 3 has various aberrations corrected well and has excellent imaging performance.
 <第4の実施の形態>
 図10は、本技術の第4の実施の形態における撮像レンズ4のレンズ構成を示している。
<Fourth Embodiment>
FIG. 10 shows the lens configuration of the image pickup lens 4 according to the fourth embodiment of the present technology.
 撮像レンズ4は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 4 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、物体側に凸面を向けた正メニスカスレンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL3と正メニスカスレンズL4は貼り合わされて接合レンズとして構成され、物体側から像側へ順に負正の並びにされたユニットとして構成されている。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで五つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and five lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13、像側に凸面を向けた正メニスカスレンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 having convex surfaces on both sides, a positive lens L9 having convex surfaces on both sides, a negative lens L10 having concave surfaces on both sides, a positive lens L11 having convex surfaces on both sides, and a negative lens L12 having concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負レンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負レンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負レンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表16に、撮像レンズ4に具体的数値を適用した数値実施例4のレンズデータを示す。 Table 16 shows the lens data of Numerical Example 4 in which specific numerical values are applied to the image pickup lens 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 数値実施例4の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表17に示す。 Table 17 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 4.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL13と正メニスカスレンズL14の間隔が変化する。数値実施例4における各面間隔の無限遠と最至近における可変間隔を表18に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L13 and the positive meniscus lens L14 change. Numerical values Table 18 shows the infinity and the closest variable spacing of each surface spacing in Example 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 数値実施例4における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表19に示す。 Table 19 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 4 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 数値実施例4における各レンズ群の焦点距離を表20に示す。 Numerical values Table 20 shows the focal lengths of each lens group in Example 4.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 図11は数値実施例4の縦収差図、図12は数値実施例4の横収差図である。図11には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図12において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 11 is a longitudinal aberration diagram of Numerical Example 4, and FIG. 12 is a transverse aberration diagram of Numerical Example 4. In FIG. 11, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 12, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ4はFナンバー2.11と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 4 is miniaturized while realizing a large aperture of F number 2.11.
 また、各収差図から、数値実施例4は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 4 has various aberrations corrected well and has excellent imaging performance.
 <第5の実施の形態>
 図13は、本技術の第5の実施の形態における撮像レンズ5のレンズ構成を示している。
<Fifth Embodiment>
FIG. 13 shows the lens configuration of the image pickup lens 5 according to the fifth embodiment of the present technology.
 撮像レンズ5は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 5 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、物体側に凸面を向けた正メニスカスレンズL4、両側凹面の負レンズL5、物体側に凸面を向けた正メニスカスレンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and negative lenses having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive meniscus lens L4 having a convex surface facing the object side, a negative lens L5 having concave surfaces on both sides, a positive meniscus lens L6 having a convex surface facing the object side, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL3と正メニスカスレンズL4は貼り合わされて接合レンズとして構成され、物体側から像側へ順に負正の並びにされたユニットとして構成されている。負レンズL5と正メニスカスレンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正メニスカスレンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L3 and the positive meniscus lens L4 are bonded together to form a bonded lens, and are configured as a unit in which negative and positive lenses are arranged in order from the object side to the image side. The negative lens L5 and the positive meniscus lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive meniscus lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで五つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and five lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、像側に凸面を向けた正メニスカスレンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13、像側に凸面を向けた正メニスカスレンズL14により構成されている。 The second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive meniscus lens L9 with convex surfaces facing the image side, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and concave surfaces on both sides, in order from the object side to the image side. It is composed of a negative lens L12, a negative lens L13 with concave surfaces on both sides, and a positive meniscus lens L14 with a convex surface facing the image side.
 正メニスカスレンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負レンズL13は両面に非球面形状が形成された非球面レンズである。 The positive meniscus lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負レンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負レンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表21に、撮像レンズ5に具体的数値を適用した数値実施例5のレンズデータを示す。 Table 21 shows the lens data of Numerical Example 5 in which specific numerical values are applied to the image pickup lens 5.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 数値実施例5の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表22に示す。 Table 22 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 5.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL13と正メニスカスレンズL14の間隔が変化する。数値実施例5における各面間隔の無限遠と最至近における可変間隔を表23に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L13 and the positive meniscus lens L14 change. Numerical values Table 23 shows the infinity and the closest variable spacing of each surface spacing in Example 5.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 数値実施例5における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表24に示す。 Numerical values Table 24 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 5 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 数値実施例5における各レンズ群の焦点距離を表25に示す。 Numerical values Table 25 shows the focal lengths of each lens group in Example 5.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 図14は数値実施例5の縦収差図、図15は数値実施例5の横収差図である。図14には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図15において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 14 is a longitudinal aberration diagram of Numerical Example 5, and FIG. 15 is a transverse aberration diagram of Numerical Example 5. In FIG. 14, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 15, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ5はFナンバー2.47と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 5 is miniaturized while realizing a large aperture of F number 2.47.
 また、各収差図から、数値実施例5は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 5 has various aberrations corrected well and has excellent imaging performance.
 <第6の実施の形態>
 図16は、本技術の第6の実施の形態における撮像レンズ6のレンズ構成を示している。
<Sixth Embodiment>
FIG. 16 shows the lens configuration of the image pickup lens 6 according to the sixth embodiment of the present technology.
 撮像レンズ6は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 6 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、物体側に凸面を向けた負メニスカスレンズL3、物体側に凸面を向けた正メニスカスレンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 has a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a convex surface toward the object side in order from the object side to the image side. It is composed of a negative meniscus lens L3 directed, a positive meniscus lens L4 with a convex surface facing the object side, a negative lens L5 with concave surfaces on both sides, a positive lens L6 with convex surfaces on both sides, and a positive lens L7 with convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、像側に凸面を向けた負メニスカスレンズL13により構成されている。 The second lens group G2 includes a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides, in order from the object side to the image side. It is composed of a negative meniscus lens L13 with a convex surface facing the image side.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負メニスカスレンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は6枚のレンズで5つのレンズ成分により構成されている。 The second lens group G2 consists of 6 lenses and 5 lens components.
 正レンズL8から負メニスカスレンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負メニスカスレンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表26に、撮像レンズ6に具体的数値を適用した数値実施例6のレンズデータを示す。 Table 26 shows the lens data of Numerical Example 6 in which specific numerical values are applied to the image pickup lens 6.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 数値実施例6の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表27に示す。 Table 27 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 6.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負メニスカスレンズL13と像面IMGの間隔が変化する。数値実施例6における各面間隔の無限遠と最至近における可変間隔を表28に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative meniscus lens L13 and the image plane IMG change. Numerical values Table 28 shows the infinity and the closest variable spacing of each surface spacing in Example 6.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 数値実施例6における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表29に示す。 Table 29 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 6 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 数値実施例6における各レンズ群の焦点距離を表30に示す。 Numerical values Table 30 shows the focal lengths of each lens group in Example 6.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 図17は数値実施例6の縦収差図、図18は数値実施例6の横収差図である。図17には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図18において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 17 is a longitudinal aberration diagram of Numerical Example 6, and FIG. 18 is a transverse aberration diagram of Numerical Example 6. In FIG. 17, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 18, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ6はFナンバー1.85と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 6 is miniaturized while realizing a large aperture of F number 1.85.
 また、各収差図から、数値実施例6は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 6 has various aberrations corrected well and has excellent imaging performance.
 <第7の実施の形態>
 図19は、本技術の第7の実施の形態における撮像レンズ7のレンズ構成を示している。
<7th embodiment>
FIG. 19 shows the lens configuration of the image pickup lens 7 according to the seventh embodiment of the present technology.
 撮像レンズ7は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 7 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、像側に凸面を向けた負メニスカスレンズL13、両側凸面の正レンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative meniscus lens L13 with a convex surface facing the image side and a positive lens L14 with convex surfaces on both sides.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負メニスカスレンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負メニスカスレンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負メニスカスレンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表31に、撮像レンズ7に具体的数値を適用した数値実施例7のレンズデータを示す。 Table 31 shows the lens data of Numerical Example 7 in which specific numerical values are applied to the image pickup lens 7.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 数値実施例7の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表32に示す。 Table 32 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 7.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負メニスカスレンズL13と正レンズL14の間隔が変化する。数値実施例7における各面間隔の無限遠と最至近における可変間隔を表33に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative meniscus lens L13 and the positive lens L14 change. Numerical values Table 33 shows the infinity and the closest variable spacing of each surface spacing in Example 7.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 数値実施例7における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表34に示す。 Numerical values Table 34 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 7 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 数値実施例7における各レンズ群の焦点距離を表35に示す。 Numerical values Table 35 shows the focal lengths of each lens group in Example 7.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 図20は数値実施例7の縦収差図、図21は数値実施例7の横収差図である。図20には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図21において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 20 is a longitudinal aberration diagram of Numerical Example 7, and FIG. 21 is a transverse aberration diagram of Numerical Example 7. In FIG. 20, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 21, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ7はFナンバー1.85と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 7 is miniaturized while realizing a large aperture of F number 1.85.
 また、各収差図から、数値実施例7は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 7 has various aberrations corrected well and has excellent imaging performance.
 <第8の実施の形態>
 図22は、本技術の第8の実施の形態における撮像レンズ8のレンズ構成を示している。
<8th embodiment>
FIG. 22 shows the lens configuration of the image pickup lens 8 according to the eighth embodiment of the present technology.
 撮像レンズ8は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 8 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The lens unit LN is composed of a negative lens L5 and a positive lens L6. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで七つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and seven lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13、像側に凸面を向けた正メニスカスレンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a positive lens L9 with convex surfaces on both sides, a negative lens L10 with concave surfaces on both sides, a positive lens L11 with convex surfaces on both sides, and a negative lens L12 with concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive meniscus lens L14 having a convex surface facing the image side.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負レンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負レンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負レンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表1に、撮像レンズ8に具体的数値を適用した数値実施例8のレンズデータを示す。 Table 1 shows the lens data of Numerical Example 8 in which specific numerical values are applied to the image pickup lens 8.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 数値実施例8の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表37に示す。 Table 37 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 8.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL13と正メニスカスレンズL14の間隔が変化する。数値実施例8における各面間隔の無限遠と最至近における可変間隔を表38に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L13 and the positive meniscus lens L14 change. Numerical values Table 38 shows the infinity and the closest variable spacing of each surface spacing in Example 8.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 数値実施例8における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表39に示す。 Numerical values Table 39 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 8 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 数値実施例8における各レンズ群の焦点距離を表40に示す。 Numerical values Table 40 shows the focal lengths of each lens group in Example 8.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 図23は数値実施例8の縦収差図、図24は数値実施例8の横収差図である。図23には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図24において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 23 is a longitudinal aberration diagram of Numerical Example 8 and FIG. 24 is a lateral aberration diagram of Numerical Example 8. In FIG. 23, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 24, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ8はFナンバー1.86と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 8 is miniaturized while realizing a large aperture of F number 1.86.
 また、各収差図から、数値実施例8は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 8 has various aberrations corrected well and has excellent imaging performance.
 <第9の実施の形態>
 図25は、本技術の第9の実施の形態における撮像レンズ9のレンズ構成を示している。
<9th embodiment>
FIG. 25 shows the lens configuration of the image pickup lens 9 according to the ninth embodiment of the present technology.
 撮像レンズ9は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The image pickup lens 9 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、両側凸面の正レンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and a negative lens having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 having convex surfaces on both sides, a negative lens L5 having concave surfaces on both sides, a positive lens L6 having convex surfaces on both sides, and a positive lens L7 having convex surfaces on both sides.
 第1の負メニスカスレンズL1と正レンズL7は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成され、負レンズL5と正レンズL6によってレンズユニットLNが構成されている。正レンズL7は両面に非球面形状が形成された正レンズLPとして構成されている。 The first negative meniscus lens L1 and the positive lens L7 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens, and the negative lens L5 and the positive lens L6 form a lens unit LN. The positive lens L7 is configured as a positive lens LP having an aspherical shape formed on both sides.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凸面の正レンズL9、両側凹面の負レンズL10、両側凸面の正レンズL11、両側凹面の負レンズL12、両側凹面の負レンズL13、両側凸面の正レンズL14により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 having convex surfaces on both sides, a positive lens L9 having convex surfaces on both sides, a negative lens L10 having concave surfaces on both sides, a positive lens L11 having convex surfaces on both sides, and a negative lens L12 having concave surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides and a positive lens L14 having convex surfaces on both sides.
 正レンズL9と負レンズL10は貼り合わされて接合レンズとして構成されている。負メニスカスレンズL13は両面に非球面形状が形成された非球面レンズである。 The positive lens L9 and the negative lens L10 are bonded together to form a bonded lens. The negative meniscus lens L13 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は7枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of seven lenses and six lens components.
 正レンズL8から負メニスカスレンズL13までの6枚のレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The six lenses from the positive lens L8 to the negative meniscus lens L13 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-range object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL12と負メニスカスレンズL13の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L12 and the negative meniscus lens L13 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表41に、撮像レンズ9に具体的数値を適用した数値実施例1のレンズデータを示す。 Table 41 shows the lens data of the numerical value Example 1 in which specific numerical values are applied to the image pickup lens 9.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 数値実施例1の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表42に示す。 Table 42 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 1.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 無限遠と最至近(250mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負メニスカスレンズL13と正メニスカスレンズL14の間隔が変化する。数値実施例1における各面間隔の無限遠と最至近における可変間隔を表43に示す。 When focusing between infinity and the closest (250 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative meniscus lens L13 and the positive meniscus lens L14 change. Numerical values Table 43 shows the infinity and the closest variable spacing of each surface spacing in Example 1.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 数値実施例1における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表44に示す。 Numerical values Table 44 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 1 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 数値実施例1における各レンズ群の焦点距離を表45に示す。 Numerical values Table 45 shows the focal lengths of each lens group in Example 1.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 図26は数値実施例1の縦収差図、図27は数値実施例1の横収差図である。図26には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図27において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 26 is a longitudinal aberration diagram of Numerical Example 1, and FIG. 27 is a transverse aberration diagram of Numerical Example 1. In FIG. 26, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 27, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ9はFナンバー1.85と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 9 is miniaturized while realizing a large aperture of F number 1.85.
 また、各収差図から、数値実施例1は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
 <第10の実施の形態>
 図28は、本技術の第10の実施の形態における撮像レンズ10のレンズ構成を示している。
<10th embodiment>
FIG. 28 shows the lens configuration of the image pickup lens 10 according to the tenth embodiment of the present technology.
 撮像レンズ10は、物体側から像側へ順に配置された正の屈折力を有する第1レンズ群G1と開口絞りSと正の屈折力を有する第2レンズ群G2とから成る。 The imaging lens 10 is composed of a first lens group G1 having a positive refractive power, an aperture diaphragm S, and a second lens group G2 having a positive refractive power, which are arranged in order from the object side to the image side.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズL1、物体側に凸面を向けた第2の負メニスカスレンズL2、両側凹面の負レンズL3、両側凸面の正レンズL4、両側凹面の負レンズL5、物体側に凸面を向けた正メニスカスレンズL6、両側凸面の正レンズL7により構成されている。 The first lens group G1 includes a first negative meniscus lens L1 having a convex surface facing the object side, a second negative meniscus lens L2 having a convex surface facing the object side, and negative lenses having concave surfaces on both sides, in order from the object side to the image side. It is composed of L3, a positive lens L4 with convex surfaces on both sides, a negative lens L5 with concave surfaces on both sides, a positive meniscus lens L6 with convex surfaces facing the object side, and a positive lens L7 with convex surfaces on both sides.
 第1の負メニスカスレンズL1と負レンズL3は両面に非球面形状が形成された非球面レンズである。負レンズL5と正レンズL6は貼り合わされて接合レンズとして構成されている。 The first negative meniscus lens L1 and the negative lens L3 are aspherical lenses having an aspherical shape formed on both sides. The negative lens L5 and the positive lens L6 are bonded together to form a bonded lens.
 第1レンズ群G1は7枚のレンズで六つのレンズ成分により構成されている。 The first lens group G1 consists of seven lenses and six lens components.
 第2レンズ群G2は、物体側から像側へ順に、両側凸面の正レンズL8、両側凹面の負レンズL9、両側凸面の正レンズL10、両側凹面の負レンズL11、両側凸面の正レンズL12、両側凹面の負レンズL13、像側に凸面を向けた負メニスカスレンズL14、像側に凸面を向けた負メニスカスレンズL15により構成されている。 The second lens group G2 includes, in order from the object side to the image side, a positive lens L8 with convex surfaces on both sides, a negative lens L9 with concave surfaces on both sides, a positive lens L10 with convex surfaces on both sides, a negative lens L11 with concave surfaces on both sides, and a positive lens L12 with convex surfaces on both sides. It is composed of a negative lens L13 having concave surfaces on both sides, a negative meniscus lens L14 having a convex surface facing the image side, and a negative meniscus lens L15 having a convex surface facing the image side.
 正レンズL8と負レンズL9は貼り合わされて接合レンズとして構成され、正レンズL10と負レンズL11は貼り合わされて接合レンズとして構成されている。負レンズL14は両面に非球面形状が形成された非球面レンズである。 The positive lens L8 and the negative lens L9 are bonded together to form a bonded lens, and the positive lens L10 and the negative lens L11 are bonded together to form a bonded lens. The negative lens L14 is an aspherical lens having an aspherical shape formed on both sides.
 第2レンズ群G2は8枚のレンズで六つのレンズ成分により構成されている。 The second lens group G2 consists of eight lenses and six lens components.
 正レンズL8から負レンズL14の7枚までのレンズは、無限遠物体から近距離物体への合焦の際に、像側から物体側へ移動する正のレンズ群G2Fとして構成されている。但し、フォーカシングに際しては、第2レンズ群G2に形成された空気間隔を隔てて前後を異なる移動比で移動させてもよい。 The seven lenses from the positive lens L8 to the negative lens L14 are configured as a positive lens group G2F that moves from the image side to the object side when focusing from an infinity object to a short-distance object. However, at the time of focusing, the front and rear may be moved at different movement ratios with an air interval formed in the second lens group G2.
 また、負レンズL13と負レンズL14の空気間隔は、第2レンズ群G2における屈折力の最も強い負の空気レンズLAとして機能する。 Further, the air gap between the negative lens L13 and the negative lens L14 functions as a negative air lens LA having the strongest refractive power in the second lens group G2.
 表46に、撮像レンズ10に具体的数値を適用した数値実施例10のレンズデータを示す。 Table 46 shows the lens data of Numerical Example 10 in which specific numerical values are applied to the image pickup lens 10.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 数値実施例10の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表47に示す。 Table 47 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 10.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 無限遠と最至近(190mm)の間のフォーカシングに際して、開口絞りSと正レンズL8の間隔及び負レンズL14と負メニスカスレンズL15の間隔が変化する。数値実施例10における各面間隔の無限遠と最至近における可変間隔を表48に示す。 When focusing between infinity and the closest (190 mm), the distance between the aperture stop S and the positive lens L8 and the distance between the negative lens L14 and the negative meniscus lens L15 change. Numerical values Table 48 shows the infinity and the closest variable spacing of each surface spacing in Example 10.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 数値実施例10における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表49に示す。 Numerical values Table 49 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Example 10 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 数値実施例10における各レンズ群の焦点距離を表50に示す。 Numerical values Table 50 shows the focal lengths of each lens group in Example 10.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 図29は数値実施例10の縦収差図、図30は数値実施例10の横収差図である。図29には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図30において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示し、Y′は撮像面上の像高である。 FIG. 29 is a longitudinal aberration diagram of Numerical Example 10, and FIG. 30 is a transverse aberration diagram of Numerical Example 10. In FIG. 29, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIG. 30, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, the alternate long and short dash line indicates the value of the g line, and Y'is the image height on the imaging surface.
 以上の構成により、撮像レンズ10はFナンバー2.06と言う大口径を実現した上で小型化が図られている。 With the above configuration, the image pickup lens 10 is miniaturized while realizing a large aperture of F number 2.06.
 また、各収差図から、数値実施例10は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 10 has various aberrations corrected well and has excellent imaging performance.
 [撮像レンズの条件式の各値]
 以下に、本技術撮像レンズの条件式の各値について説明する。
[Each value of the conditional expression of the imaging lens]
Hereinafter, each value of the conditional expression of the imaging lens of the present technology will be described.
 表51に撮像レンズ1乃至撮像レンズ10の数値実施例1乃至数値実施例10における条件式(1)乃至条件式(10)の各値を示す。 Table 51 shows the values of the conditional expressions (1) to (10) in the numerical examples 1 to 10 of the image pickup lens 1 to the image pickup lens 10.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 表51から明らかなように、撮像レンズ1乃至撮像レンズ10は条件式(1)乃至条件式(10)を満足するようにされている。 As is clear from Table 51, the image pickup lens 1 to the image pickup lens 10 are designed to satisfy the conditional expression (1) to the conditional expression (10).
 [撮像装置の構成]
 本技術撮像装置は、撮像レンズが、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(1)及び条件式(2)を満足する。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:第1の負メニスカスレンズのd線のアッベ数
fL1:第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
[Configuration of imaging device]
In the imaging device of the present technology, the imaging lens consists of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is arranged on both sides in order from the object side to the image side. Alternatively, a first negative meniscus lens having an aspherical shape on one side and having a convex surface facing the object side, a second negative meniscus lens having a convex surface facing the object side, and a single lens having a negative refractive power or the object side. The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinity object to a short-range object. Then, the following conditional expression (1) and conditional expression (2) are satisfied.
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 従って、本技術撮像装置は、本技術撮像レンズと同様に、撮像レンズにおいて、開口絞りに対してコーニック係数が小さくなるような非球面形状を有する第1の負メニスカスレンズを配置することにより、歪曲収差や像面湾曲を良好に補正することが可能になると共に第1レンズ群の小型化を図ることが可能になる。 Therefore, the image pickup device of the present technology distorts by arranging a first negative meniscus lens having an aspherical shape such that the conic coefficient becomes smaller with respect to the aperture diaphragm in the image pickup lens, similarly to the image pickup lens of the present technology. It is possible to satisfactorily correct aberrations and curvature of field, and it is possible to reduce the size of the first lens group.
 また、本技術撮像レンズと同様に、撮像レンズにおいて、物体側の負レンズを第1の負メニスカスレンズと第2の負メニスカスレンズとユニットに分割することによって負の屈折力を分割することができ、歪曲収差や像面湾曲等の諸収差を良好に補正することが可能である。 Further, similarly to the image pickup lens of the present technology, in the image pickup lens, the negative refractive power can be divided by dividing the negative lens on the object side into a first negative meniscus lens, a second negative meniscus lens, and a unit. , It is possible to satisfactorily correct various aberrations such as distortion and curvature of field.
 さらに、撮像装置において、撮像レンズが条件式(1)を満足することにより、第1の負メニスカスレンズのアッベ数が適正化され、倍率色収差や歪曲収差や像面湾曲を良好に補正することができる。 Further, in the image pickup apparatus, when the image pickup lens satisfies the condition equation (1), the Abbe number of the first negative meniscus lens is optimized, and the chromatic aberration of magnification, the distortion, and the curvature of field can be satisfactorily corrected. can.
 さらにまた、撮像装置において、撮像レンズが条件式(2)を満足することにより、第1の負メニスカスレンズの負の屈折力が適正化され、歪曲収差や像面湾曲や非点収差を良好に補正することができる。 Furthermore, in the imaging device, when the imaging lens satisfies the condition equation (2), the negative refractive power of the first negative meniscus lens is optimized, and distortion, curvature of field, and astigmatism are satisfactorily suppressed. It can be corrected.
 以上のように、本技術撮像装置によれば、複数の非球面を有し最も物体側の負の屈折力を持つレンズにアッベ数の高い硝材を使うことにより、倍率色収差を含めた諸収を良好に補正しながらも、大口径化を可能とする広角レンズを提供することができる。 As described above, according to the imaging device of the present technology, by using a glass material having a high Abbe number for a lens having a plurality of aspherical surfaces and having the most negative refractive power on the object side, various yields including chromatic aberration of magnification can be obtained. It is possible to provide a wide-angle lens capable of increasing the diameter while making good corrections.
 [別の撮像レンズの構成]
 別の本技術撮像レンズは、撮像レンズが、物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、正レンズの物体側に最も近い負の屈折力を有するレンズから正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、以下の条件式(3)及び条件式(4)を満足する。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:レンズユニットの焦点距離
fLP:第1レンズ群における正レンズの焦点距離
dLP:第1レンズ群における正レンズの物体側の面から像面までの距離
dS:開口絞りから像面までの距離
とする。
[Structure of another imaging lens]
In another technology imaging lens, the imaging lens is composed of a first lens group, an aperture aperture and a second lens group arranged in order from the object side to the image side, and the first lens group is sequentially arranged from the object side to the image side. The first negative meniscus lens has a first negative meniscus lens with a convex surface facing the object side and a second negative meniscus lens with a convex surface facing the object side, and the first lens group has a positive spherical shape on both sides or one side. It has a lens and a lens unit composed of a lens having a negative refractive force closest to the object side of the positive lens to a lens closest to the object side of the positive lens, and the second lens group is close to an infinity object. It has a positive lens group that moves from the image side to the object side when focusing on a distance object, and satisfies the following conditional equations (3) and (4).
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object side surface of the positive lens to the image plane in the first lens group dS: Distance from the aperture aperture to the image plane do.
 従って、別の本技術撮像装置は、別の本技術撮像レンズと同様に、撮像レンズにおいて、第1レンズ群における両側又は片側に非球面形状を有する正レンズ開口絞り付近に配置することにより、軸外画角の上光線がレンズ中心を通り下光線がレンズ周辺を通るため、コマ収差を良好に補正することが可能である。 Therefore, another image pickup device of the present technology is arranged in the vicinity of the positive lens aperture diaphragm having an aspherical shape on both sides or one side of the first lens group in the image pickup lens, similarly to another image pickup lens of the present technology. Since the upper light beam at the outer angle of view passes through the center of the lens and the lower light beam passes around the lens, coma can be satisfactorily corrected.
 また、別の本技術撮像装置は、別の本技術撮像レンズと同様に、撮像レンズにおいて、両側又は片側に非球面形状を有する正レンズの物体側にレンズユニットを配置することにより、球面収差の補正効果を高めることが可能になる。 In addition, another technology imaging device, like another technology imaging lens, has spherical aberration by arranging the lens unit on the object side of a positive lens having an aspherical shape on both sides or one side of the imaging lens. It is possible to enhance the correction effect.
 さらに、撮像装置において、撮像レンズが条件式(3)を満足することにより、両側又は片側に非球面形状を有する正レンズの屈折力が適正化され、フォーカシング時の球面収差変動を抑制することができると共に球面収差等の諸収差を良好に補正することができる。 Further, in the image pickup apparatus, when the image pickup lens satisfies the condition equation (3), the refractive power of the positive lens having an aspherical shape on both sides or one side is optimized, and the fluctuation of spherical aberration during focusing can be suppressed. At the same time, various aberrations such as spherical aberration can be satisfactorily corrected.
 さらにまた、撮像装置において、撮像レンズが条件式(4)を満足することにより、両側又は片側に非球面形状を有する正レンズから開口絞りまでの距離が適正化され、球面収差等の諸収差を良好に補正することができると共に適正なレンズ構造を構成することができる。 Furthermore, in the imaging device, when the imaging lens satisfies the condition equation (4), the distance from the positive lens having an aspherical shape on both sides or one side to the aperture diaphragm is optimized, and various aberrations such as spherical aberration are eliminated. It can be corrected satisfactorily and an appropriate lens structure can be constructed.
 以上のように、別の本技術撮像装置によれば、第1レンズ群における各レンズ等の焦点距離を適正に規定すること等により、倍率色収差を含めた諸収を良好に補正しながらも、大口径化を可能とする広角レンズを提供することができる。 As described above, according to another imaging device of the present technology, by appropriately defining the focal length of each lens or the like in the first lens group, various yields including chromatic aberration of magnification can be satisfactorily corrected. It is possible to provide a wide-angle lens capable of increasing the diameter.
 [撮像装置の一実施形態]
 図31に、本技術撮像装置の一実施形態によるデジタルスチルカメラのブロック図を示す。
[One Embodiment of an Imaging Device]
FIG. 31 shows a block diagram of a digital still camera according to an embodiment of the imaging device of the present technology.
 撮像装置(デジタルスチルカメラ)100は、取り込まれた光を電気信号に変換する光電変換機能を有する撮像素子15と、撮影された画像信号のアナログ-デジタル変換等の信号処理を行うカメラ信号処理部20と、画像信号の記録再生処理を行う画像処理部30とを有している。また、撮像装置100は、撮影された画像等を表示する表示部40と、メモリー90への画像信号の書込及び読出を行うR/W(リーダ/ライタ)50と、撮像装置100の全体を制御するCPU(Central Processing Unit)60と、ユーザーによって所要の操作が行われる各種のスイッチ等の入力部70と、撮像レンズ1(撮像レンズ2~撮像レンズ10を含む。)の駆動を制御するレンズ駆動制御部80とを備えている。 The image pickup device (digital still camera) 100 includes an image pickup element 15 having a photoelectric conversion function for converting captured light into an electric signal, and a camera signal processing unit that performs signal processing such as analog-digital conversion of the captured image signal. 20 and an image processing unit 30 that performs recording / reproduction processing of an image signal. Further, the image pickup device 100 includes a display unit 40 for displaying a captured image and the like, an R / W (reader / writer) 50 for writing and reading an image signal to the memory 90, and the entire image pickup device 100. A CPU (Central Processing Unit) 60 to control, an input unit 70 such as various switches for which a user performs a required operation, and a lens for controlling the drive of an image pickup lens 1 (including an image pickup lens 2 to an image pickup lens 10). It includes a drive control unit 80.
 カメラ信号処理部20は、撮像素子15からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行う。 The camera signal processing unit 20 performs various signal processing such as conversion of the output signal from the image pickup element 15 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal.
 画像処理部30は、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行う。 The image processing unit 30 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
 表示部40はユーザーの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。 The display unit 40 has a function of displaying various data such as an operation state of the user's input unit 70 and a captured image.
 R/W50は、画像処理部30によって符号化された画像データのメモリー90への書込及びメモリー90に記録された画像データの読出を行う。 The R / W 50 writes the image data encoded by the image processing unit 30 to the memory 90 and reads the image data recorded in the memory 90.
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能し、入力部70からの指示入力信号等に基づいて各回路ブロックを制御する。 The CPU 60 functions as a control processing unit that controls each circuit block provided in the image pickup apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
 入力部70はユーザーによる操作に応じた指示入力信号をCPU60に対して出力する。 The input unit 70 outputs an instruction input signal according to the operation by the user to the CPU 60.
 レンズ駆動制御部80は、CPU60からの制御信号に基づいてレンズ群を駆動する図示しないモータ等を制御する。 The lens drive control unit 80 controls a motor or the like (not shown) that drives a lens group based on a control signal from the CPU 60.
 メモリー90は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。尚、メモリー90は、スロットに対して着脱可能にされておらず、撮像装置100の内部に組み込まれていてもよい。 The memory 90 is, for example, a semiconductor memory that can be attached to and detached from the slot connected to the R / W 50. The memory 90 is not detachable from the slot and may be incorporated inside the image pickup apparatus 100.
 以下に、撮像装置100における動作を説明する。 The operation of the image pickup apparatus 100 will be described below.
 撮影の待機状態では、CPU60による制御の下で、撮影された画像信号がカメラ信号処理部20を介して表示部40に出力され、カメラスルー画像として表示される。 In the shooting standby state, under the control of the CPU 60, the shot image signal is output to the display unit 40 via the camera signal processing unit 20 and displayed as a camera-through image.
 入力部70からの指示入力信号により撮影が行われると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリー90に書き込まれる。 When shooting is performed by the instruction input signal from the input unit 70, the shot image signal is output from the camera signal processing unit 20 to the image processing unit 30, compressed and encoded, and converted into digital data in a predetermined data format. Will be done. The converted data is output to the R / W 50 and written to the memory 90.
 フォーカシングはCPU60からの制御信号に基づいてレンズ駆動制御部80がフォーカスレンズ群を移動させることにより行われる。 Focusing is performed by the lens drive control unit 80 moving the focus lens group based on the control signal from the CPU 60.
 メモリー90に記録された画像データを再生する場合には、入力部70に対する操作に応じてR/W50によってメモリー90から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後に、再生画像信号が表示部40に出力されて再生画像が表示される。 When the image data recorded in the memory 90 is reproduced, the R / W 50 reads out the predetermined image data from the memory 90 in response to the operation on the input unit 70, and the image processing unit 30 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 40 and the reproduced image is displayed.
 尚、本技術において、「撮像」とは、撮像素子15による取り込まれた光を電気信号に変換する光電変換処理から、カメラ信号処理部20による撮像素子15からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理、R/W50によるメモリー90への画像信号の書込処理までの一連の処理の一部のみ、又は全てを含む処理のことを言う。 In the present technology, "imaging" means converting the photoelectric conversion process of converting the light captured by the image pickup element 15 into an electric signal to the digital signal of the output signal from the image pickup element 15 by the camera signal processing unit 20. , Noise removal, image quality correction, conversion to brightness / color difference signals, etc., compression coding / decompression decoding processing of image signals based on a predetermined image data format by the image processing unit 30, and conversion processing of data specifications such as resolution. , A process including only a part or all of a series of processes up to the process of writing an image signal to the memory 90 by the R / W 50.
 即ち、「撮像」とは、撮像素子15による取り込まれた光を電気信号に変換する光電変換処理のみを指してもよく、撮像素子15による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子15からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理までを指してもよく、撮像素子15による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子15からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理を経て、画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理までを指してもよく、撮像素子15による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子15からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、及び画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理を経て指してもよく、R/W50によるメモリー90への画像信号の書込処理までを指してもよい。上記の処理において各処理の順番は適宜入れ替わってもよい。 That is, "imaging" may refer only to the photoelectric conversion process for converting the light captured by the imaging element 15 into an electric signal, and from the photoelectric conversion process for converting the light captured by the imaging element 15 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 15 by the camera signal processing unit 20 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 15. After the photoelectric conversion process for converting light into an electric signal, the camera signal processing unit 20 converts the output signal from the image pickup element 15 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like. It may also refer to compression coding / decompression decoding processing of an image signal based on a predetermined image data format by the image processing unit 30 and conversion processing of data specifications such as resolution, and the light captured by the image pickup element 15 is an electric signal. The photoelectric conversion process of converting to It may be pointed out through compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and writing processing of an image signal to the memory 90 by the R / W 50. You may point. In the above processing, the order of each processing may be changed as appropriate.
 また、本技術において、撮像装置100は、上記の処理を行う撮像素子15、カメラ信号処理部20、画像処理部30、R/W50の一部のみ又は全てを含むように構成されていてもよい。 Further, in the present technology, the image pickup device 100 may be configured to include only a part or all of the image pickup element 15, the camera signal processing section 20, the image processing section 30, and the R / W 50 that perform the above processing. ..
 [その他]
 本技術撮像レンズ及び本技術撮像装置においては、第1レンズ群G1と第2レンズ群G2に加えて屈折力を有さないレンズ等の他の光学要素が配置されていてもよい。この場合において、本技術撮像レンズのレンズ構成は第1レンズ群G1と第2レンズ群G2の実質的に2群のレンズ構成にされる。
[others]
In the present technology imaging lens and the present technology imaging device, in addition to the first lens group G1 and the second lens group G2, other optical elements such as a lens having no refractive power may be arranged. In this case, the lens configuration of the imaging lens of the present technology is substantially two groups of the first lens group G1 and the second lens group G2.
 尚、上記には、撮像装置をデジタルスチルカメラに適用した例を示したが、撮像装置の適用範囲はデジタルスチルカメラに限られることはなく、デジタルビデオカメラ、カメラが組み込まれた携帯電話等の携帯端末におけるデジタル入出力機器のカメラ部等として広く適用することができる。 Although an example in which the image pickup device is applied to a digital still camera is shown above, the scope of application of the image pickup device is not limited to the digital still camera, and a digital video camera, a mobile phone having a built-in camera, etc. It can be widely applied as a camera unit of a digital input / output device in a mobile terminal.
 [本技術]
 本技術は、以下の構成にすることもできる。
[Technology]
The present technology can also have the following configurations.
 <1>
 物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
 前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、
 前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
 以下の条件式(1)及び条件式(2)を満足する
 撮像レンズ。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:前記第1の負メニスカスレンズのd線のアッベ数
fL1:前記第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
<1>
It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
The first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
An imaging lens that satisfies the following conditional expression (1) and conditional expression (2).
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 <2>
 下記の条件式(5)を満足する
 前記<1>に記載の撮像レンズ。
(5)1.5<fG2F/f<8.5 
但し、
fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
<2>
The imaging lens according to <1>, which satisfies the following conditional expression (5).
(5) 1.5 <fG2F / f <8.5
However,
fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
 <3>
 下記の条件式(6)を満足する
 前記<1>又は前記<2>に記載の撮像レンズ。
(6)3<|fG1/fG2|
但し、
fG1:前記第1レンズ群の焦点距離
fG2:前記第2レンズ群の焦点距離
とする。
<3>
The imaging lens according to <1> or <2>, which satisfies the following conditional expression (6).
(6) 3 <| fG1 / fG2 |
However,
fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
 <4>
 下記の条件式(7)を満足する
 前記<1>から前記<3>の何れかに記載の撮像レンズ。
(7)0.30<fL1/fL2<2.50
但し、
fL1:前記第1の負メニスカスレンズの焦点距離
fL2:前記第2の負メニスカスレンズの焦点距離
とする。
<4>
The imaging lens according to any one of <1> to <3>, which satisfies the following conditional expression (7).
(7) 0.30 <fL1 / fL2 <2.50
However,
fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
 <5>
 下記の条件式(8)を満足する
 前記<1>から前記<4>の何れかに記載の撮像レンズ。
(8)-1.5<fG2/fLA<-0.2
但し、
fG2:前記第2レンズ群の焦点距離
fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
とする。
<5>
The imaging lens according to any one of <1> to <4>, which satisfies the following conditional expression (8).
(8) -1.5 <fG2 / fLA <-0.2
However,
fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
 <6>
 前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、
 下記の条件式(9)を満足する
 前記<1>から前記<5>の何れかに記載の撮像レンズ。
(9)0.3<BF/f<2.5
但し、
BF:前記バックフォーカス
f:無限遠合焦時の全系の焦点距離
とする。
<6>
The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
The imaging lens according to any one of <1> to <5>, which satisfies the following conditional expression (9).
(9) 0.3 <BF / f <2.5
However,
BF: The back focus f: The focal length of the entire system when focusing at infinity.
 <7>
 下記の条件式(10)を満足する
 前記<1>から前記<6>の何れかに記載の撮像レンズ。
(10)2.3<SL1<4.6
但し、
SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
とする。
<7>
The imaging lens according to any one of <1> to <6>, which satisfies the following conditional expression (10).
(10) 2.3 <SL1 <4.6
However,
SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
And.
 <8>
 前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されている
 前記<1>から前記<7>の何れかに記載の撮像レンズ。
<8>
The imaging lens according to any one of <1> to <7>, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
 <9>
 撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
 前記撮像レンズは、
 物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
 前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、
 前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
 以下の条件式(1)及び条件式(2)を満足する
 撮像装置。
(1)40.00<νdL1<96.00
(2)-10.0<fL1/f<-2.0
但し、
νdL1:前記第1の負メニスカスレンズのd線のアッベ数
fL1:前記第1の負メニスカスレンズの焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
<9>
It includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
The image pickup lens is
It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
The first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
(1) 40.00 <νdL1 <96.00
(2) -10.0 <fL1 / f <-2.0
However,
νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
 <10>
 物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
 前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、
 前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、
 前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
 以下の条件式(3)及び条件式(4)を満足する
 撮像レンズ。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:前記レンズユニットの焦点距離
fLP:前記第1レンズ群における前記正レンズの焦点距離
dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
dS:前記開口絞りから像面までの距離
とする。
<10>
It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
The first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
The first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. Has a lens unit that is
The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
An imaging lens that satisfies the following conditional expression (3) and conditional expression (4).
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
 <11>
 下記の条件式(5)を満足する
 前記<10>に記載の撮像レンズ。
(5)1.5<fG2F/f<8.5 
但し、
fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
f:無限遠合焦時の全系の焦点距離
とする。
<11>
The imaging lens according to <10>, which satisfies the following conditional expression (5).
(5) 1.5 <fG2F / f <8.5
However,
fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
 <12>
 下記の条件式(6)を満足する
 前記<10>又は前記<11>に記載の撮像レンズ。
(6)3<|fG1/fG2|
但し、
fG1:前記第1レンズ群の焦点距離
fG2:前記第2レンズ群の焦点距離
とする。
<12>
The imaging lens according to <10> or <11>, which satisfies the following conditional expression (6).
(6) 3 <| fG1 / fG2 |
However,
fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
 <13>
 下記の条件式(7)を満足する
 前記<10>から前記<12>の何れかに記載の撮像レンズ。
(7)0.30<fL1/fL2<2.50
但し、
fL1:前記第1の負メニスカスレンズの焦点距離
fL2:前記第2の負メニスカスレンズの焦点距離
とする。
<13>
The imaging lens according to any one of <10> to <12>, which satisfies the following conditional expression (7).
(7) 0.30 <fL1 / fL2 <2.50
However,
fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
 <14>
 下記の条件式(8)を満足する
 前記<10>から前記<13>の何れかに記載の撮像レンズ。
(8)-1.5<fG2/fLA<-0.2
但し、
fG2:前記第2レンズ群の焦点距離
fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
とする。
<14>
The imaging lens according to any one of <10> to <13>, which satisfies the following conditional expression (8).
(8) -1.5 <fG2 / fLA <-0.2
However,
fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
 <15>
 前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、
 下記の条件式(9)を満足する
 前記<10>から前記<14>の何れかに記載の撮像レンズ。
(9)0.3<BF/f<2.5
但し、
BF:前記バックフォーカス
f:無限遠合焦時の全系の焦点距離
とする。
<15>
The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
The imaging lens according to any one of <10> to <14>, which satisfies the following conditional expression (9).
(9) 0.3 <BF / f <2.5
However,
BF: The back focus f: The focal length of the entire system when focusing at infinity.
 <16>
 下記の条件式(10)を満足する
 前記<10>から前記<15>の何れかに記載の撮像レンズ。
(10)2.3<SL1<4.6
但し、
SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
とする。
<16>
The imaging lens according to any one of <10> to <15>, which satisfies the following conditional expression (10).
(10) 2.3 <SL1 <4.6
However,
SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
And.
 <17>
 前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されている
 前記<10>から前記<16>の何れかに記載の撮像レンズ。
<17>
The imaging lens according to any one of <10> to <16>, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
 <18>
 撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
 前記撮像レンズは、
 物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
 前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、
 前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、
 前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
 以下の条件式(3)及び条件式(4)を満足する
 撮像装置。
(3)-35.00<fLN/fLP<-1.05
(4)1.00<dLP/dS<1.55
但し、
fLN:前記レンズユニットの焦点距離
fLP:前記第1レンズ群における前記正レンズの焦点距離
dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
dS:前記開口絞りから像面までの距離
とする。
<18>
It includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
The image pickup lens is
It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
The first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
The first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. Has a lens unit that is
The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
An imaging device that satisfies the following conditional expression (3) and conditional expression (4).
(3) -35.00 <fLN / fLP <-1.05
(4) 1.00 <dLP / dS <1.55
However,
fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
1~10 撮像レンズ
100  撮像装置
G1   第1レンズ群
G2   第2レンズ群
L1   第1の負メニスカスレンズ
L2   第2の負メニスカスレンズ
L3   レンズ
LN   レンズユニット
LP   正レンズ
G2F  正のレンズ群
S    開口絞り
1 to 10 Imaging Lens 100 Imaging Device G1 First Lens Group G2 Second Lens Group L1 First Negative Meniscus Lens L2 Second Negative Meniscus Lens L3 Lens LN Lens Unit LP Positive Lens G2F Positive Lens Group S Aperture Aperture

Claims (18)

  1.  物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
     前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、
     前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
     以下の条件式(1)及び条件式(2)を満足する
     撮像レンズ。
    (1)40.00<νdL1<96.00
    (2)-10.0<fL1/f<-2.0
    但し、
    νdL1:前記第1の負メニスカスレンズのd線のアッベ数
    fL1:前記第1の負メニスカスレンズの焦点距離
    f:無限遠合焦時の全系の焦点距離
    とする。
    It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
    The first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
    The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
    An imaging lens that satisfies the following conditional expression (1) and conditional expression (2).
    (1) 40.00 <νdL1 <96.00
    (2) -10.0 <fL1 / f <-2.0
    However,
    νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
  2.  下記の条件式(5)を満足する
     請求項1に記載の撮像レンズ。
    (5)1.5<fG2F/f<8.5 
    但し、
    fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
    f:無限遠合焦時の全系の焦点距離
    とする。
    The imaging lens according to claim 1, which satisfies the following conditional expression (5).
    (5) 1.5 <fG2F / f <8.5
    However,
    fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
  3.  下記の条件式(6)を満足する
     請求項1に記載の撮像レンズ。
    (6)3<|fG1/fG2|
    但し、
    fG1:前記第1レンズ群の焦点距離
    fG2:前記第2レンズ群の焦点距離
    とする。
    The imaging lens according to claim 1, which satisfies the following conditional expression (6).
    (6) 3 <| fG1 / fG2 |
    However,
    fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
  4.  下記の条件式(7)を満足する
     請求項1に記載の撮像レンズ。
    (7)0.30<fL1/fL2<2.50
    但し、
    fL1:前記第1の負メニスカスレンズの焦点距離
    fL2:前記第2の負メニスカスレンズの焦点距離
    とする。
    The imaging lens according to claim 1, which satisfies the following conditional expression (7).
    (7) 0.30 <fL1 / fL2 <2.50
    However,
    fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
  5.  下記の条件式(8)を満足する
     請求項1に記載の撮像レンズ。
    (8)-1.5<fG2/fLA<-0.2
    但し、
    fG2:前記第2レンズ群の焦点距離
    fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
    とする。
    The imaging lens according to claim 1, which satisfies the following conditional expression (8).
    (8) -1.5 <fG2 / fLA <-0.2
    However,
    fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
  6.  前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、
     下記の条件式(9)を満足する
     請求項1に記載の撮像レンズ。
    (9)0.3<BF/f<2.5
    但し、
    BF:前記バックフォーカス
    f:無限遠合焦時の全系の焦点距離
    とする。
    The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
    The imaging lens according to claim 1, which satisfies the following conditional expression (9).
    (9) 0.3 <BF / f <2.5
    However,
    BF: The back focus f: The focal length of the entire system when focusing at infinity.
  7.  下記の条件式(10)を満足する
     請求項1に記載の撮像レンズ。
    (10)2.3<SL1<4.6
    但し、
    SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
    とする。
    The imaging lens according to claim 1, which satisfies the following conditional expression (10).
    (10) 2.3 <SL1 <4.6
    However,
    SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
    And.
  8.  前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されている
     請求項1に記載の撮像レンズ。
    The imaging lens according to claim 1, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
  9.  撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
     前記撮像レンズは、
     物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
     前記第1レンズ群は、物体側から像側へ順に、両側又は片側に非球面形状を有し物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズと、負の屈折力を持つ単レンズ若しくは物体側から像側へ順に負正の並びにされたユニットとを有し、
     前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
     以下の条件式(1)及び条件式(2)を満足する
     撮像装置。
    (1)40.00<νdL1<96.00
    (2)-10.0<fL1/f<-2.0
    但し、
    νdL1:前記第1の負メニスカスレンズのd線のアッベ数
    fL1:前記第1の負メニスカスレンズの焦点距離
    f:無限遠合焦時の全系の焦点距離
    とする。
    It includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
    The image pickup lens is
    It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
    The first lens group includes a first negative meniscus lens having an aspherical shape on both sides or one side and having a convex surface facing the object side, and a second lens having a convex surface facing the object side, in order from the object side to the image side. It has a negative meniscus lens and a single lens having a negative refractive power or a unit in which negative and positive are arranged in order from the object side to the image side.
    The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
    An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
    (1) 40.00 <νdL1 <96.00
    (2) -10.0 <fL1 / f <-2.0
    However,
    νdL1: Abbe number of the d line of the first negative meniscus lens fL1: Focal length of the first negative meniscus lens f: Focal length of the entire system at infinity focusing.
  10.  物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
     前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、
     前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、
     前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
     以下の条件式(3)及び条件式(4)を満足する
     撮像レンズ。
    (3)-35.00<fLN/fLP<-1.05
    (4)1.00<dLP/dS<1.55
    但し、
    fLN:前記レンズユニットの焦点距離
    fLP:前記第1レンズ群における前記正レンズの焦点距離
    dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
    dS:前記開口絞りから像面までの距離
    とする。
    It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
    The first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
    The first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. Has a lens unit that is
    The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
    An imaging lens that satisfies the following conditional expression (3) and conditional expression (4).
    (3) -35.00 <fLN / fLP <-1.05
    (4) 1.00 <dLP / dS <1.55
    However,
    fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
  11.  下記の条件式(5)を満足する
     請求項10に記載の撮像レンズ。
    (5)1.5<fG2F/f<8.5 
    但し、
    fG2F:前記第2レンズ群における前記正のレンズ群の焦点距離
    f:無限遠合焦時の全系の焦点距離
    とする。
    The imaging lens according to claim 10, which satisfies the following conditional expression (5).
    (5) 1.5 <fG2F / f <8.5
    However,
    fG2F: Focal length of the positive lens group in the second lens group f: Focal length of the entire system at infinity focusing.
  12.  下記の条件式(6)を満足する
     請求項10に記載の撮像レンズ。
    (6)3<|fG1/fG2|
    但し、
    fG1:前記第1レンズ群の焦点距離
    fG2:前記第2レンズ群の焦点距離
    とする。
    The imaging lens according to claim 10, which satisfies the following conditional expression (6).
    (6) 3 <| fG1 / fG2 |
    However,
    fG1: Focal length of the first lens group fG2: Focal length of the second lens group.
  13.  下記の条件式(7)を満足する
     請求項10に記載の撮像レンズ。
    (7)0.30<fL1/fL2<2.50
    但し、
    fL1:前記第1の負メニスカスレンズの焦点距離
    fL2:前記第2の負メニスカスレンズの焦点距離
    とする。
    The imaging lens according to claim 10, which satisfies the following conditional expression (7).
    (7) 0.30 <fL1 / fL2 <2.50
    However,
    fL1: Focal length of the first negative meniscus lens fL2: Focal length of the second negative meniscus lens.
  14.  下記の条件式(8)を満足する
     請求項10に記載の撮像レンズ。
    (8)-1.5<fG2/fLA<-0.2
    但し、
    fG2:前記第2レンズ群の焦点距離
    fLA:前記第2レンズ群における屈折力の最も強い負の空気レンズの焦点距離
    とする。
    The imaging lens according to claim 10, which satisfies the following conditional expression (8).
    (8) -1.5 <fG2 / fLA <-0.2
    However,
    fG2: Focal length of the second lens group fLA: Focal length of the negative air lens having the strongest refractive power in the second lens group.
  15.  前記第2レンズ群における最も像側のレンズの像面側の面から像面までの距離をバックフォーカスとし、
     下記の条件式(9)を満足する
     請求項10に記載の撮像レンズ。
    (9)0.3<BF/f<2.5
    但し、
    BF:前記バックフォーカス
    f:無限遠合焦時の全系の焦点距離
    とする。
    The distance from the image plane side of the lens closest to the image plane to the image plane in the second lens group is set as the back focus.
    The imaging lens according to claim 10, which satisfies the following conditional expression (9).
    (9) 0.3 <BF / f <2.5
    However,
    BF: The back focus f: The focal length of the entire system when focusing at infinity.
  16.  下記の条件式(10)を満足する
     請求項10に記載の撮像レンズ。
    (10)2.3<SL1<4.6
    但し、
    SL1:前記第1の負メニスカスレンズの比重 [g/平方センチメートル]
    とする。
    The imaging lens according to claim 10, which satisfies the following conditional expression (10).
    (10) 2.3 <SL1 <4.6
    However,
    SL1: Specific gravity of the first negative meniscus lens [g / square centimeter]
    And.
  17.  前記第1レンズ群は無限遠物体から近距離物体への合焦の際に固定されている
     請求項10に記載の撮像レンズ。
    The imaging lens according to claim 10, wherein the first lens group is fixed when focusing from an infinity object to a short-distance object.
  18.  撮像レンズと前記撮像レンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
     前記撮像レンズは、
     物体側から像側へ順に配置された第1レンズ群と開口絞りと第2レンズ群から成り、
     前記第1レンズ群は、物体側から像側へ順に、物体側に凸面を向けた第1の負メニスカスレンズと、物体側に凸面を向けた第2の負メニスカスレンズとを有し、
     前記第1レンズ群は、両側又は片側に非球面形状を有する正レンズと、前記正レンズの物体側に最も近い負の屈折力を有するレンズから前記正レンズの物体側に最も近いレンズまでによって構成されるレンズユニットとを有し、
     前記第2レンズ群は無限遠物体から近距離物体への合焦の際に像側から物体側へ移動する正のレンズ群を有し、
     以下の条件式(3)及び条件式(4)を満足する
     撮像装置。
    (3)-35.00<fLN/fLP<-1.05
    (4)1.00<dLP/dS<1.55
    但し、
    fLN:前記レンズユニットの焦点距離
    fLP:前記第1レンズ群における前記正レンズの焦点距離
    dLP:前記第1レンズ群における前記正レンズの物体側の面から像面までの距離
    dS:前記開口絞りから像面までの距離
    とする。
    It includes an image pickup lens and an image pickup element that converts an optical image formed by the image pickup lens into an electrical signal.
    The image pickup lens is
    It consists of a first lens group, an aperture diaphragm, and a second lens group arranged in order from the object side to the image side.
    The first lens group includes a first negative meniscus lens having a convex surface facing the object side and a second negative meniscus lens having a convex surface facing the object side in order from the object side to the image side.
    The first lens group is composed of a positive lens having an aspherical shape on both sides or one side, and a lens having a negative refractive power closest to the object side of the positive lens to a lens closest to the object side of the positive lens. Has a lens unit that is
    The second lens group has a positive lens group that moves from the image side to the object side when focusing from an infinite object to a short-distance object.
    An imaging device that satisfies the following conditional expression (3) and conditional expression (4).
    (3) -35.00 <fLN / fLP <-1.05
    (4) 1.00 <dLP / dS <1.55
    However,
    fLN: Focal length of the lens unit fLP: Focal length of the positive lens in the first lens group dLP: Distance from the object-side surface to the image surface of the positive lens in the first lens group dS: From the aperture aperture The distance to the image plane.
PCT/JP2021/008823 2020-03-31 2021-03-05 Imaging lens and imaging device WO2021199923A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511713A JPWO2021199923A1 (en) 2020-03-31 2021-03-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-065177 2020-03-31
JP2020065177 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199923A1 true WO2021199923A1 (en) 2021-10-07

Family

ID=77928550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008823 WO2021199923A1 (en) 2020-03-31 2021-03-05 Imaging lens and imaging device

Country Status (2)

Country Link
JP (1) JPWO2021199923A1 (en)
WO (1) WO2021199923A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201526A (en) * 2005-01-21 2006-08-03 Pentax Corp Super-wide angle lens system
JP2008129403A (en) * 2006-11-22 2008-06-05 Canon Inc Optical system and imaging apparatus having the same
JP2016110007A (en) * 2014-12-10 2016-06-20 オリンパス株式会社 Image capturing lens
JP2016126277A (en) * 2015-01-08 2016-07-11 株式会社タムロン Optical system and image capturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201526A (en) * 2005-01-21 2006-08-03 Pentax Corp Super-wide angle lens system
JP2008129403A (en) * 2006-11-22 2008-06-05 Canon Inc Optical system and imaging apparatus having the same
JP2016110007A (en) * 2014-12-10 2016-06-20 オリンパス株式会社 Image capturing lens
JP2016126277A (en) * 2015-01-08 2016-07-11 株式会社タムロン Optical system and image capturing device

Also Published As

Publication number Publication date
JPWO2021199923A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP5040430B2 (en) Variable-magnification optical system, imaging device, and digital device
WO2018088038A1 (en) Image pickup lens and image pickup device
JP5915437B2 (en) Variable focal length lens system and imaging apparatus
US20110194015A1 (en) Zoom lens and imaging apparatus
JP2011107450A (en) Imaging lens and imaging apparatus
WO2016056310A1 (en) Wide angle lens and image pickup device
JP4697555B2 (en) Zoom lens and imaging device
JP2015068910A (en) Imaging lens and imaging apparatus
JP2015064492A (en) Zoom lens and imaging apparatus
WO2018139160A1 (en) Zoom lens and imaging device
US7830615B2 (en) Zoom lens and image pickup apparatus
US10823942B2 (en) Zoom lens and optical instrument
JP4656453B2 (en) Zoom lens and imaging device
JP2010122625A (en) Zoom lens and imaging apparatus
JP2008158418A (en) Zoom lens and imaging apparatus
JP2003287681A (en) Image pickup lens device
JP2013125106A (en) Zoom lens and imaging apparatus
US20240061211A1 (en) Imaging lens and imaging apparatus
US8031256B2 (en) Zoom lens and image pickup device
JP2014044249A (en) Variable focal length lens system and image pickup device
CN218383455U (en) Camera module and shooting device
US7773310B2 (en) Zoom lens and image pickup apparatus
JP2012252278A (en) Zoom lens and imaging apparatus
JP6608738B2 (en) Imaging lens, imaging optical device, and digital device
WO2021199923A1 (en) Imaging lens and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780440

Country of ref document: EP

Kind code of ref document: A1