WO2021199796A1 - Measurement system and measurement method - Google Patents

Measurement system and measurement method Download PDF

Info

Publication number
WO2021199796A1
WO2021199796A1 PCT/JP2021/006713 JP2021006713W WO2021199796A1 WO 2021199796 A1 WO2021199796 A1 WO 2021199796A1 JP 2021006713 W JP2021006713 W JP 2021006713W WO 2021199796 A1 WO2021199796 A1 WO 2021199796A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intensity
pressure
target surface
irradiation
Prior art date
Application number
PCT/JP2021/006713
Other languages
French (fr)
Japanese (ja)
Inventor
佑 松田
哲 片山
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to JP2022511660A priority Critical patent/JPWO2021199796A1/ja
Publication of WO2021199796A1 publication Critical patent/WO2021199796A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general

Definitions

  • the present invention relates to a system and a method for measuring the pressure and temperature of an object surface using a pressure-sensitive paint or a temperature-sensitive paint, and more specifically, removing the influence of ambient light to make the object surface more accurate.
  • the present invention relates to a measurement system and a measurement method for measuring pressure and temperature.
  • a pressure measuring method using a pressure-sensitive paint (PSP: Pressure-Sensitive Paint) is known when measuring the pressure distribution on the surface of an object such as the wing surface of an aircraft. ing.
  • the pressure-sensitive paint here is excited by blue excitation light from ultraviolet rays to generate light emission from blue to red fluorescence or phosphorescence, and the more the air or the like in contact with the coated surface becomes high pressure and the oxygen concentration increases, the stronger the light emission intensity. Has the property of decreasing. Therefore, in the pressure measurement method using the pressure-sensitive paint, as conceptually shown in FIG.
  • the target surface F of the object to which the pressure-sensitive paint is applied is irradiated with the excitation light L1 from the excitation light source 51, and the CCD
  • an image pickup device 52 such as a camera and detecting the intensity distribution in the space due to the light emitted L2 from the pressure-sensitive paint
  • TSP Temperature-Sensitive Paint
  • the present invention has been devised by paying attention to such inconveniences, and an object of the present invention is to measure the pressure and temperature of the surface of an object by using a pressure-sensitive paint or a temperature-sensitive paint. It is an object of the present invention to provide a measurement system and a measurement method capable of measuring pressure and temperature with higher accuracy by removing the influence.
  • the present invention mainly uses a pressure-sensitive paint to measure the pressure acting on the target surface of an object, and / or uses a temperature-sensitive paint to measure the temperature of the target surface.
  • the excitation light irradiation means for irradiating the target surface coated with the pressure-sensitive paint or the temperature-sensitive paint
  • the light intensity detection for detecting the intensity of the light generated in the vicinity of the target surface.
  • the means and the pressure / temperature deriving means for deriving the pressure and temperature based on the detection result by the light intensity detecting means are provided, and the excitation light irradiating means is the excitation light when the target surface is irradiated.
  • the excitation light can be irradiated by a plurality of irradiation patterns in which the spatial intensity distribution of the above changes at different timings.
  • the components that are not synchronized with each irradiation pattern are specified as the ambient light intensity due to the ambient light excluding the light emitted by the pressure-sensitive paint or the temperature-sensitive paint, and the ambient light intensity is removed from the detection result of the light intensity detecting means.
  • the light emission intensity of the pressure-sensitive paint or the temperature-sensitive paint in the target surface is specified, and the measured value of the pressure or temperature is obtained from the relationship between the light emission intensity and the pressure or temperature stored in advance. It has a structure of asking.
  • the present invention applies a pressure-sensitive paint or a temperature-sensitive paint to the target surface of an object, irradiates the target surface with a predetermined excitation light, and detects the emission intensity of the pressure-sensitive paint or the temperature-sensitive paint.
  • the target surface is irradiated with the excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings.
  • the intensity of light generated in the vicinity of is detected for each irradiation pattern, and by comparing the detection results, the components that are not synchronized with each irradiation pattern are generated by ambient light excluding the light emitted by the pressure-sensitive paint or the temperature-sensitive paint.
  • the emission intensity of the pressure-sensitive paint or the temperature-sensitive paint in the target surface is specified, and the emission intensity is set to a preset value.
  • a method is adopted in which the measured value of the pressure or temperature is obtained from the relationship with the pressure or temperature.
  • the target surface is irradiated with the excitation light at different timings by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light in the target surface is non-uniform, and the excitation light is generated in the vicinity of the target surface in each irradiation pattern.
  • the ambient light intensity is specified by extracting components that are not synchronized with each irradiation pattern. Then, by removing the ambient light intensity from the detection result of the light intensity generated in the vicinity of the target surface, the light emission intensity of only the pressure-sensitive paint or the temperature-sensitive paint on the target surface is specified.
  • FIG. 1 It is a schematic block diagram of the pressure measurement system which concerns on this embodiment.
  • (A) is a conceptual diagram showing the irradiation state of the excitation light on the target surface in the first irradiation pattern
  • (B) is a concept showing the irradiation state of the excitation light on the target surface in the second irradiation pattern.
  • (C) is a graph showing the relationship between the excitation light intensity and the position in the first irradiation pattern
  • (D) is a graph showing the relationship between the excitation light intensity and the position in the second irradiation pattern.
  • Yes is a graph partially showing the relationship between the intensity and the position detected by the light intensity detecting means in the first and second irradiation patterns.
  • FIG. 1 shows a schematic configuration diagram of a pressure measurement system (measurement system) according to this embodiment.
  • the pressure measuring system 10 is a system for measuring the pressure of each part in the target surface F of an object coated with a pressure-sensitive paint, and is an excitation light irradiation means for irradiating the target surface F with excitation light.
  • 11 and a light intensity detecting means 12 for detecting the intensity of light generated in the vicinity of the target surface F, and a pressure deriving means for deriving a pressure acting on the target surface F based on the detection results of the light intensity detecting means 12. It is equipped with 13.
  • the pressure-sensitive paint applicable to the present invention is not particularly limited, and includes a luminescent dye that fluoresces or phosphoresces (hereinafter, collectively referred to as "light emission") by excitation light of a predetermined wavelength, and the coated surface thereof.
  • a luminescent dye that fluoresces or phosphoresces hereinafter, collectively referred to as "light emission"
  • Any gas having the property of changing the emission intensity from the luminescent dye may be used as long as it has the property of changing the emission intensity from the luminescent dye according to the concentration of oxygen molecules in the gas that comes into contact with.
  • the pressure-sensitive paint used in the present invention a known pressure-sensitive paint whose emission intensity decreases as the oxygen concentration in contact increases is used, and the pressure of the gas containing oxygen and the oxygen concentration are in a proportional relationship. Therefore, as the pressure of air or the like acting on the target surface increases, the emission intensity decreases.
  • the excitation light irradiation means 11 is configured to change the spatial intensity distribution, which is the spatial intensity distribution of the excitation light when the target surface F is irradiated, at different timings.
  • the excitation light irradiation means 11 includes a known excitation light source 15 that generates excitation light that excites a luminescent dye in a pressure-sensitive paint such as a xenon lamp, an LED, and a blue laser, and excitation light from the excitation light source 15 to the target surface F. It is provided with an irradiation adjusting unit 16 that adjusts the irradiation so that the irradiation can be performed in a plurality of patterns.
  • the irradiation adjusting unit 16 is configured to include a digital micromirror device (DMD) using a micromirror surface or the like, a known filter, or the like, and is a space when the excitation light generated by the excitation light source 15 is applied to the target surface F.
  • DMD digital micromirror device
  • the irradiation of the excitation light can be adjusted by a plurality of irradiation patterns that change the intensity distribution at different timings. That is, in the irradiation adjusting unit 16, a plurality of irradiation patterns are set so that the intensity of the excitation light in the target surface F is partially different, and the spatial intensity distribution of the excitation light is not the same at different timings. As a result, the target surface F is irradiated with excitation light.
  • the irradiation of the excitation light is blocked at least once and the irradiation of the excitation light is allowed at least once for each part in the target surface F (or a minute region that divides the target surface F).
  • Multiple types are prepared to do so. For example, as shown in FIGS. 2 (A) and 2 (B), a plurality of irradiation patterns including an irradiation pattern in which the target surface F is irradiated with excitation light in a vertical stripe pattern and regions that are mutually bright and dark are shifted. Is prepared.
  • the light intensity detecting means 12 includes an image pickup device such as a CCD camera or CMOS that images the vicinity of the target surface, and an image pickup element, and the light intensity can be detected for each part of the target surface F from the image pickup result. ..
  • the light intensity detected here is a value obtained by adding the emission intensity corresponding to the light emission by the pressure-sensitive paint to the disturbance light intensity corresponding to various ambient light including the light from the outside.
  • the pressure deriving means 13 is composed of a computer, and has a storage unit 19 that stores the detection result of the light intensity detecting means 12 and a disturbance light intensity specifying that specifies the disturbance light intensity due to the disturbance light excluding the light emitted by the pressure-sensitive paint.
  • the light emission intensity specifying part 21 that specifies the light emission intensity by the pressure-sensitive paint in the target surface F by removing the disturbance light intensity from the detection result of the light intensity detection means 12 and the light emission intensity that is stored in advance. It is provided with a pressure specifying unit 22 for obtaining a measured value of pressure from the relationship between light and pressure.
  • the light intensity measured in No. 12 is temporarily stored.
  • a component that is not synchronized with each irradiation pattern is specified as an disturbance light intensity by comparing the detection results of the light intensity detecting means 12 in each irradiation pattern. That is, here, the detection result of the light intensity detecting means 12 at the time of the irradiation pattern in which the irradiation of the excitation light is blocked at each portion of the target surface F is specified as the ambient light intensity that is not synchronized with each irradiation pattern.
  • the procedure for specifying the disturbance light intensity in the disturbance light intensity specifying unit 20 is illustrated below.
  • the portion A in the target surface F irradiated with the excitation light at a predetermined time is not partially irradiated with the excitation light, and the corresponding excitation light (C) is shown in FIG.
  • the excitation light intensity becomes zero.
  • the second irradiation pattern of the figure (B) as shown in the corresponding figure (D)
  • the excitation light intensity does not become zero at the portion A. Therefore, the light intensity of the portion A measured by the light intensity detecting means 12 in the first irradiation pattern does not include the emission intensity at the portion A, and the ambient light is composed of only the components of the other ambient light. It becomes strength.
  • the detection result of the portion A is obtained in each irradiation pattern. It is specified as an unsynchronized disturbance light intensity C1.
  • the disturbance light intensity specifying unit 20 identifies each portion in the target surface F from the detection result of the light intensity detecting means 12 at the time of another irradiation pattern in which irradiation of excitation light is permitted.
  • the emission intensity can be obtained by subtracting the ambient light intensity of the same portion.
  • the procedure for specifying the light emission intensity in the light emission intensity specifying unit 21 is illustrated below.
  • the relational expression between the emission intensity and the pressure set by the initial calibration work is stored in advance, and the pressure is obtained from the emission intensity for each part by using the relational expression.
  • the relational expression is set for each excitation light intensity, and when the emission intensity is determined by an irradiation pattern that allows irradiation of excitation light at each site, the corresponding relational expression is obtained from the excitation light intensity in the irradiation pattern. Is used. That is, in the above-mentioned example, the relational expression in the excitation light intensity C3 of the portion A in the second pattern shown in FIG. 2D is used, thereby specifying the pressure corresponding to the emission intensity C2.
  • the pressure distribution of the target surface F to which the pressure-sensitive paint is applied can be obtained by the following procedure.
  • the excitation light irradiation means 11 irradiates the target surface F coated with the pressure-sensitive paint with excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings.
  • the light intensity detecting means 12 detects the intensity of the light generated in the vicinity of the target surface F for each irradiation pattern.
  • the disturbance light intensity specifying unit 20 of the pressure deriving means 13 compares the detection results of each detection result of the light intensity detecting means 12, and the components that are not synchronized with each irradiation pattern are the disturbance caused by the disturbance light excluding the light emission by the pressure-sensitive paint. Specified as light intensity.
  • the emission intensity specifying unit 21 specifies the emission intensity of the pressure-sensitive paint in the target surface F by subtracting the ambient light intensity from the detection result of the light intensity detecting means 12.
  • the pressure specifying unit 22 obtains a measured value of the pressure at each site from the relationship between the emission intensity and the pressure set in advance, and obtains the pressure distribution in the target surface F.
  • the pressure measuring system 10 for measuring the pressure of the target surface F by the pressure-sensitive paint and the pressure distribution in the plane has been illustrated and described, but the present invention is not limited to this, and the temperature-sensitive paint is applied.
  • the same configuration and method as in the above embodiment can be applied to the measurement system for measuring the temperature and its distribution of the target surface F and its surrounding space. That is, in this temperature measurement system, the paint applied to the target surface F is changed from the pressure-sensitive paint to the temperature-sensitive paint for the pressure measurement system 10, and the relational expression between the emission intensity by the temperature-sensitive paint and the temperature is set.
  • the measurement target can be changed from pressure to temperature by using a configuration that is substantially the same. Therefore, the pressure deriving means 13 and the pressure specifying unit 22 function as a temperature deriving means and a temperature specifying unit for performing temperature measurement using the temperature-sensitive paint in the temperature measuring system.
  • the paint (luminous paint) to be applied to the target surface F a paint in which a pressure-sensitive paint and a temperature-sensitive paint are mixed is applied, and the target surface F is subjected to a measurement system that integrates the pressure measurement system and the temperature measurement system. Pressure and temperature can also be measured. This enables more accurate measurement while correcting the above-mentioned error of pressure measurement due to the influence of the temperature distribution, for example.
  • each part of the device in the present invention is not limited to the illustrated configuration example, and various changes can be made as long as substantially the same operation is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A measurement system 10 comprises: an excitation light irradiation means 11 that irradiates a surface F of interest, on which a pressure-sensitive coating material or a temperature-sensitive coating material is applied, with excitation light; a light intensity detection means 12 that detects the intensity of light generated near the surface F of interest; and a derivation means 13 that derives the pressure or temperature on the basis of the result of detection by the light intensity detection means 12. The excitation light irradiation means 11 is configured so as to be capable of radiating excitation light in a plurality of irradiation patterns, in which the spatial intensity distribution of the excitation light when the surface F of interest is irradiated changes at different timings. Using the derivation means 13, according to a comparison of the light intensities detected by the light intensity detection means 12 in the respective irradiation patterns, a component that is not synchronized with the irradiation patterns is specified as the ambient light intensity of ambient light other than the emitted light produced by the pressure-sensitive coating material or temperature-sensitive coating material, and the ambient light intensity is excluded from the result of detection of the light intensity, whereby the intensity of emitted light produced by the pressure-sensitive coating material or temperature-sensitive coating material in the surface F of interest is specified, and a measured value of the pressure or temperature is derived.

Description

計測システム及び計測方法Measurement system and measurement method
 本発明は、感圧塗料や感温塗料を利用して物体表面の圧力や温度を計測するためのシステム及び方法に係り、更に詳しくは、外乱光の影響を除去してより正確に物体表面の圧力や温度を計測するための計測システム及び計測方法に関する。 The present invention relates to a system and a method for measuring the pressure and temperature of an object surface using a pressure-sensitive paint or a temperature-sensitive paint, and more specifically, removing the influence of ambient light to make the object surface more accurate. The present invention relates to a measurement system and a measurement method for measuring pressure and temperature.
 特許文献1等に開示されているように、航空機の翼表面等の物体表面の圧力分布を計測する際には、感圧塗料(PSP:Pressure-Sensitive Paint)を利用した圧力計測方法が知られている。ここでの感圧塗料は、紫外から青色の励起光により励起して青色から赤色の蛍光や燐光による発光が生じ、その塗布面に接触する空気等が高圧となり酸素濃度が増大する程、発光強度が低下する性質がある。従って、感圧塗料を利用した圧力計測方法では、図3に概念的に示されるように、感圧塗料が塗布された物体の対象面Fに、励起光源51から励起光L1が照射され、CCDカメラ等の撮像装置52により対象面Fを撮像し、感圧塗料からの発光L2による空間内の強度分布を検出することにより、当該対象面F内の圧力分布を特定可能となる。 As disclosed in Patent Document 1 and the like, a pressure measuring method using a pressure-sensitive paint (PSP: Pressure-Sensitive Paint) is known when measuring the pressure distribution on the surface of an object such as the wing surface of an aircraft. ing. The pressure-sensitive paint here is excited by blue excitation light from ultraviolet rays to generate light emission from blue to red fluorescence or phosphorescence, and the more the air or the like in contact with the coated surface becomes high pressure and the oxygen concentration increases, the stronger the light emission intensity. Has the property of decreasing. Therefore, in the pressure measurement method using the pressure-sensitive paint, as conceptually shown in FIG. 3, the target surface F of the object to which the pressure-sensitive paint is applied is irradiated with the excitation light L1 from the excitation light source 51, and the CCD By imaging the target surface F with an image pickup device 52 such as a camera and detecting the intensity distribution in the space due to the light emitted L2 from the pressure-sensitive paint, the pressure distribution in the target surface F can be specified.
特開2006-10517号公報Japanese Unexamined Patent Publication No. 2006-10517 特開2001-4460号公報Japanese Unexamined Patent Publication No. 2001-4460
 しかしながら、感圧塗料を用いた特許文献1等のこれまでの圧力計測方法では、外部からの光や、励起光L1の照射による対象面Fの反射光を含む様々な外乱光の影響について考慮されていない。このため、対象面Fに作用する圧力の大きさとは直接関係のない外乱光が、感圧塗料からの発光L2とともに撮像装置52で撮像されてしまい、対象面Fの圧力計測に誤差が生じるという問題がある。ここで、外乱光としては、例えば、航空機の翼表面等の圧力分布を計測する際に、翼の先端にライトが付いており、夜間飛行における当該ライトによる光、その他、街灯あるいは実験設備灯等が挙げられる。
 また、特許文献2等に開示されているように、感温塗料(TSP:Temperature-Sensitive Paint)を利用し、前述した感圧塗料による圧力測定と同様にして感温塗料の塗布面の温度を計測する温度計測方法が知られているが、当該方法における温度計測時にも同様の問題が生じる。
However, in the conventional pressure measuring methods such as Patent Document 1 using the pressure-sensitive paint, the influence of various ambient light including the light from the outside and the reflected light of the target surface F due to the irradiation of the excitation light L1 is considered. Not. For this reason, ambient light that is not directly related to the magnitude of the pressure acting on the target surface F is imaged by the imaging device 52 together with the light emission L2 from the pressure-sensitive paint, and an error occurs in the pressure measurement of the target surface F. There's a problem. Here, as the ambient light, for example, when measuring the pressure distribution on the wing surface of an aircraft, a light is attached to the tip of the wing, and the light from the light in night flight, other street lights, experimental equipment lights, etc. Can be mentioned.
Further, as disclosed in Patent Document 2 and the like, a temperature-sensitive paint (TSP: Temperature-Sensitive Paint) is used, and the temperature of the coated surface of the temperature-sensitive paint is measured in the same manner as the pressure measurement by the pressure-sensitive paint described above. Although a temperature measuring method for measuring is known, the same problem occurs when measuring the temperature in the method.
 本発明は、このような不都合に着目して案出されたものであり、その目的は、感圧塗料や感温塗料を利用して物体表面の圧力や温度を計測する際に、外乱光の影響を除去してより高精度に圧力や温度を計測することができる計測システム及び計測方法を提供することにある。 The present invention has been devised by paying attention to such inconveniences, and an object of the present invention is to measure the pressure and temperature of the surface of an object by using a pressure-sensitive paint or a temperature-sensitive paint. It is an object of the present invention to provide a measurement system and a measurement method capable of measuring pressure and temperature with higher accuracy by removing the influence.
 前記目的を達成するため、本発明は、主として、感圧塗料を利用して物体の対象面に作用する圧力を計測し、及び/又は、感温塗料を利用して前記対象面の温度を計測する計測システムにおいて、前記感圧塗料や前記感温塗料が塗布された前記対象面に励起光を照射する励起光照射手段と、前記対象面の近傍で発生する光の強度を検出する光強度検出手段と、当該光強度検出手段での検出結果に基づいて前記圧力や温度を導出する圧力/温度導出手段とを備え、前記励起光照射手段は、前記対象面に照射される際の前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を照射可能に構成され、前記圧力/温度導出手段では、前記各照射パターンにおける前記光強度検出手段での各検出結果の対比により、前記各照射パターンに同期しない成分が、前記感圧塗料や感温塗料による発光を除く外乱光による外乱光強度として特定され、当該外乱光強度を前記光強度検出手段の検出結果から除去することで、前記対象面内での前記感圧塗料や感温塗料による発光強度が特定され、予め記憶された当該発光強度と前記圧力や温度との関係から、当該圧力や温度の計測値を求める、という構成を採っている。 In order to achieve the above object, the present invention mainly uses a pressure-sensitive paint to measure the pressure acting on the target surface of an object, and / or uses a temperature-sensitive paint to measure the temperature of the target surface. In the measurement system, the excitation light irradiation means for irradiating the target surface coated with the pressure-sensitive paint or the temperature-sensitive paint, and the light intensity detection for detecting the intensity of the light generated in the vicinity of the target surface. The means and the pressure / temperature deriving means for deriving the pressure and temperature based on the detection result by the light intensity detecting means are provided, and the excitation light irradiating means is the excitation light when the target surface is irradiated. The excitation light can be irradiated by a plurality of irradiation patterns in which the spatial intensity distribution of the above changes at different timings. By comparison, the components that are not synchronized with each irradiation pattern are specified as the ambient light intensity due to the ambient light excluding the light emitted by the pressure-sensitive paint or the temperature-sensitive paint, and the ambient light intensity is removed from the detection result of the light intensity detecting means. By doing so, the light emission intensity of the pressure-sensitive paint or the temperature-sensitive paint in the target surface is specified, and the measured value of the pressure or temperature is obtained from the relationship between the light emission intensity and the pressure or temperature stored in advance. It has a structure of asking.
 また、本発明は、物体の対象面に感圧塗料や感温塗料を塗布し、前記対象面に所定の励起光を照射して前記感圧塗料や感温塗料による発光強度を検出することで、前記対象面に作用する圧力や温度を計測する計測方法において、前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を前記対象面に照射し、前記対象面の近傍で発生する光の強度を前記照射パターン毎に検出し、これら各検出結果の対比により、前記各照射パターンに同期しない成分を、前記感圧塗料や感温塗料による発光を除く外乱光による外乱光強度として特定し、当該外乱光強度を前記検出結果から除去することで、前記対象面内での前記感圧塗料や感温塗料による発光強度を特定し、予め設定された当該発光強度と前記圧力や温度との関係から、当該圧力や温度の計測値を求める、という手法を採っている。 Further, the present invention applies a pressure-sensitive paint or a temperature-sensitive paint to the target surface of an object, irradiates the target surface with a predetermined excitation light, and detects the emission intensity of the pressure-sensitive paint or the temperature-sensitive paint. In the measurement method for measuring the pressure and temperature acting on the target surface, the target surface is irradiated with the excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings. The intensity of light generated in the vicinity of is detected for each irradiation pattern, and by comparing the detection results, the components that are not synchronized with each irradiation pattern are generated by ambient light excluding the light emitted by the pressure-sensitive paint or the temperature-sensitive paint. By specifying it as the ambient light intensity and removing the ambient light intensity from the detection result, the emission intensity of the pressure-sensitive paint or the temperature-sensitive paint in the target surface is specified, and the emission intensity is set to a preset value. A method is adopted in which the measured value of the pressure or temperature is obtained from the relationship with the pressure or temperature.
 本発明によれば、対象面内における励起光の空間強度分布が不均一となる複数の照射パターンにより、異なるタイミングで対象面に励起光が照射され、各照射パターンにおいて対象面の近傍で発生する光の強度の検出結果から、各照射パターンに同期しない成分を抽出することで外乱光強度が特定される。そして、対象面の近傍で発生する光の強度の検出結果から外乱光強度を除去することで、対象面での感圧塗料や感温塗料のみによる発光強度が特定される。その結果、対象面内の各部位における圧力や温度を検出する際に、外乱光の影響を除去した状態で、圧力や温度の計測を高精度に行うことができる。 According to the present invention, the target surface is irradiated with the excitation light at different timings by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light in the target surface is non-uniform, and the excitation light is generated in the vicinity of the target surface in each irradiation pattern. From the light intensity detection result, the ambient light intensity is specified by extracting components that are not synchronized with each irradiation pattern. Then, by removing the ambient light intensity from the detection result of the light intensity generated in the vicinity of the target surface, the light emission intensity of only the pressure-sensitive paint or the temperature-sensitive paint on the target surface is specified. As a result, when detecting the pressure and temperature at each part in the target surface, the pressure and temperature can be measured with high accuracy while the influence of the ambient light is removed.
本実施形態に係る圧力計測システムの概略構成図である。It is a schematic block diagram of the pressure measurement system which concerns on this embodiment. (A)は、第1の照射パターンにおける対象面への励起光の照射状態を表す概念図であり、(B)は、第2の照射パターンにおける対象面への励起光の照射状態を表す概念図であり、(C)は、第1の照射パターンにおける励起光強度と位置の関係を表すグラフであり、(D)は、第2の照射パターンにおける励起光強度と位置の関係を表すグラフであり、(E)は、第1及び第2の照射パターン時における光強度検出手段で検出される強度と位置の関係を部分的に表したグラフである。(A) is a conceptual diagram showing the irradiation state of the excitation light on the target surface in the first irradiation pattern, and (B) is a concept showing the irradiation state of the excitation light on the target surface in the second irradiation pattern. In the figure, (C) is a graph showing the relationship between the excitation light intensity and the position in the first irradiation pattern, and (D) is a graph showing the relationship between the excitation light intensity and the position in the second irradiation pattern. Yes, (E) is a graph partially showing the relationship between the intensity and the position detected by the light intensity detecting means in the first and second irradiation patterns. 従来における感圧塗料を用いた圧力測定方法を説明するための概念図である。It is a conceptual diagram for demonstrating the pressure measurement method using the conventional pressure-sensitive paint.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1には、本実施形態に係る圧力計測システム(計測システム)の概略構成図が示されている。この図において、前記圧力計測システム10は、感圧塗料が塗布された物体の対象面F内の各部位の圧力を計測するシステムであって、対象面Fに励起光を照射する励起光照射手段11と、対象面Fの近傍で発生する光の強度を検出する光強度検出手段12と、光強度検出手段12での検出結果に基づいて、対象面Fに作用する圧力を導出する圧力導出手段13とを備えている。 FIG. 1 shows a schematic configuration diagram of a pressure measurement system (measurement system) according to this embodiment. In this figure, the pressure measuring system 10 is a system for measuring the pressure of each part in the target surface F of an object coated with a pressure-sensitive paint, and is an excitation light irradiation means for irradiating the target surface F with excitation light. 11 and a light intensity detecting means 12 for detecting the intensity of light generated in the vicinity of the target surface F, and a pressure deriving means for deriving a pressure acting on the target surface F based on the detection results of the light intensity detecting means 12. It is equipped with 13.
 本発明に適用可能な感圧塗料としては、特に限定されるものではなく、所定波長の励起光によって蛍光、燐光(以下、これらを「発光」と総称する)する発光色素を含み、その塗布面に触れる気体中の酸素分子の濃度に応じて、発光色素からの発光強度が変化する性質を有するものであれば何でも良い。換言すれば、本発明に利用される感圧塗料として、接触する酸素濃度が増大する程、発光強度が低下する公知のものが用いられ、酸素を含む気体の圧力と酸素濃度は比例関係にあることから、前記対象面に作用する空気等の圧力が増大する程、発光強度が低下する性質を有している。 The pressure-sensitive paint applicable to the present invention is not particularly limited, and includes a luminescent dye that fluoresces or phosphoresces (hereinafter, collectively referred to as "light emission") by excitation light of a predetermined wavelength, and the coated surface thereof. Any gas having the property of changing the emission intensity from the luminescent dye may be used as long as it has the property of changing the emission intensity from the luminescent dye according to the concentration of oxygen molecules in the gas that comes into contact with. In other words, as the pressure-sensitive paint used in the present invention, a known pressure-sensitive paint whose emission intensity decreases as the oxygen concentration in contact increases is used, and the pressure of the gas containing oxygen and the oxygen concentration are in a proportional relationship. Therefore, as the pressure of air or the like acting on the target surface increases, the emission intensity decreases.
 前記励起光照射手段11は、対象面Fに照射される際の励起光の空間的な強度分布である空間強度分布を異なるタイミングで変化させるように構成されている。 The excitation light irradiation means 11 is configured to change the spatial intensity distribution, which is the spatial intensity distribution of the excitation light when the target surface F is irradiated, at different timings.
 この励起光照射手段11は、キセノンランプ、LED、青色レーザ等、感圧塗料中の発光色素を励起させる励起光を発生させる公知の励起光源15と、励起光源15から対象面Fへの励起光の照射を複数のパターンで行えるように当該照射を調整する照射調整部16とを備えている。 The excitation light irradiation means 11 includes a known excitation light source 15 that generates excitation light that excites a luminescent dye in a pressure-sensitive paint such as a xenon lamp, an LED, and a blue laser, and excitation light from the excitation light source 15 to the target surface F. It is provided with an irradiation adjusting unit 16 that adjusts the irradiation so that the irradiation can be performed in a plurality of patterns.
 前記照射調整部16は、微小鏡面等を利用したデジタルマイクロミラーデバイス(DMD)や公知のフィルタ等を含んで構成され、励起光源15で発生した励起光が対象面Fに照射される際の空間強度分布を異なるタイミングで変化させる複数の照射パターンにより、励起光の照射を調整可能になっている。すなわち、この照射調整部16では、対象面F内での励起光の強度が部分的に異なるように照射パターンが複数設定され、異なるタイミングで、励起光の空間強度分布が非同一となる照射パターンにより、対象面Fに励起光を照射するようになっている。 The irradiation adjusting unit 16 is configured to include a digital micromirror device (DMD) using a micromirror surface or the like, a known filter, or the like, and is a space when the excitation light generated by the excitation light source 15 is applied to the target surface F. The irradiation of the excitation light can be adjusted by a plurality of irradiation patterns that change the intensity distribution at different timings. That is, in the irradiation adjusting unit 16, a plurality of irradiation patterns are set so that the intensity of the excitation light in the target surface F is partially different, and the spatial intensity distribution of the excitation light is not the same at different timings. As a result, the target surface F is irradiated with excitation light.
 前記照射パターンとしては、対象面F内の各部位(若しくは、対象面Fを区分する微小領域)それぞれについて、少なくとも1度は励起光の照射を遮断し、少なくとも1度は励起光の照射を許容するように複数種用意される。例えば、図2(A)、(B)に示されるように、対象面Fに対して縦縞模様状に励起光が照射され、相互に明暗となる領域がシフトした照射パターンを含む複数の照射パターンが用意される。すなわち、同図(A)に対応する同図(C)と、同図(B)に対応する同図(D)に示されるように、対象面F内における位置に対する励起光強度の位相を相互に変えた複数の照射パターンが用意される。 As the irradiation pattern, the irradiation of the excitation light is blocked at least once and the irradiation of the excitation light is allowed at least once for each part in the target surface F (or a minute region that divides the target surface F). Multiple types are prepared to do so. For example, as shown in FIGS. 2 (A) and 2 (B), a plurality of irradiation patterns including an irradiation pattern in which the target surface F is irradiated with excitation light in a vertical stripe pattern and regions that are mutually bright and dark are shifted. Is prepared. That is, as shown in the figure (C) corresponding to the figure (A) and the figure (D) corresponding to the figure (B), the phases of the excitation light intensity with respect to the position in the target surface F are mutual. Multiple irradiation patterns changed to are prepared.
 前記光強度検出手段12は、対象面の近傍を撮像するCCDカメラやCMOS等の撮像装置や撮像素子からなり、その撮像結果から、対象面Fの部位毎に光強度を検出可能となっている。ここで検出される光強度は、感圧塗料による発光に対応する発光強度に、外部からの光を含む様々な外乱光に対応する外乱光強度が加算された値となる。 The light intensity detecting means 12 includes an image pickup device such as a CCD camera or CMOS that images the vicinity of the target surface, and an image pickup element, and the light intensity can be detected for each part of the target surface F from the image pickup result. .. The light intensity detected here is a value obtained by adding the emission intensity corresponding to the light emission by the pressure-sensitive paint to the disturbance light intensity corresponding to various ambient light including the light from the outside.
 前記圧力導出手段13は、コンピュータにより構成されており、光強度検出手段12の検出結果を記憶する記憶部19と、感圧塗料による発光を除く外乱光による外乱光強度を特定する外乱光強度特定部20と、外乱光強度を光強度検出手段12の検出結果から除去することで、対象面F内での感圧塗料による発光強度を特定する発光強度特定部21と、予め記憶された発光強度と圧力との関係から、圧力の計測値を求める圧力特定部22とを備えている。 The pressure deriving means 13 is composed of a computer, and has a storage unit 19 that stores the detection result of the light intensity detecting means 12 and a disturbance light intensity specifying that specifies the disturbance light intensity due to the disturbance light excluding the light emitted by the pressure-sensitive paint. The light emission intensity specifying part 21 that specifies the light emission intensity by the pressure-sensitive paint in the target surface F by removing the disturbance light intensity from the detection result of the light intensity detection means 12 and the light emission intensity that is stored in advance. It is provided with a pressure specifying unit 22 for obtaining a measured value of pressure from the relationship between light and pressure.
 前記記憶部19では、励起光照射手段11により異なるタイミングで照射された励起光の各照射パターンとともに、当該各照射パターンそれぞれに対応させた状態で、対象面Fの部位毎に、光強度検出手段12で計測された光強度が一時的に記憶される。 In the storage unit 19, the light intensity detecting means for each part of the target surface F in a state corresponding to each irradiation pattern together with each irradiation pattern of the excitation light irradiated by the excitation light irradiation means 11 at different timings. The light intensity measured in No. 12 is temporarily stored.
 前記外乱光強度特定部20では、各照射パターンにおける光強度検出手段12での各検出結果の対比により、各照射パターンに同期しない成分を外乱光強度として特定するようになっている。すなわち、ここでは、対象面Fの各部位において、励起光の照射が遮断される照射パターン時での光強度検出手段12の検出結果が、各照射パターンに同期しない外乱光強度と特定される。 In the disturbance light intensity specifying unit 20, a component that is not synchronized with each irradiation pattern is specified as an disturbance light intensity by comparing the detection results of the light intensity detecting means 12 in each irradiation pattern. That is, here, the detection result of the light intensity detecting means 12 at the time of the irradiation pattern in which the irradiation of the excitation light is blocked at each portion of the target surface F is specified as the ambient light intensity that is not synchronized with each irradiation pattern.
 この外乱光強度特定部20での外乱光強度の特定手順について、以下に例示する。 The procedure for specifying the disturbance light intensity in the disturbance light intensity specifying unit 20 is illustrated below.
 例えば、図2(A)の第1の照射パターンにおいて、所定時に励起光が照射された対象面F内の部位Aには、励起光が部分的に照射されず、対応する同図(C)に示されるように、励起光強度がゼロになる。そして、同図(B)の第2の照射パターンでは、対応する同図(D)に示されるように、前記部位Aにおいて励起光強度がゼロにはならない。従って、第1の照射パターンの際に、光強度検出手段12で計測された部位Aの光強度は、当該部位Aでの発光強度は含まれず、それ以外の外乱光の成分のみからなる外乱光強度となる。そこで、同図(E)中の実線に示されるように、第1の照射パターンでの照射時に光強度検出手段12で検出された光強度のうち、部位Aの検出結果は、各照射パターンに同期しない外乱光強度C1として特定される。 For example, in the first irradiation pattern of FIG. 2A, the portion A in the target surface F irradiated with the excitation light at a predetermined time is not partially irradiated with the excitation light, and the corresponding excitation light (C) is shown in FIG. As shown in, the excitation light intensity becomes zero. Then, in the second irradiation pattern of the figure (B), as shown in the corresponding figure (D), the excitation light intensity does not become zero at the portion A. Therefore, the light intensity of the portion A measured by the light intensity detecting means 12 in the first irradiation pattern does not include the emission intensity at the portion A, and the ambient light is composed of only the components of the other ambient light. It becomes strength. Therefore, as shown by the solid line in FIG. 3E, among the light intensities detected by the light intensity detecting means 12 at the time of irradiation in the first irradiation pattern, the detection result of the portion A is obtained in each irradiation pattern. It is specified as an unsynchronized disturbance light intensity C1.
 前記発光強度特定部21では、対象面F内の各部位において、励起光の照射が許容される他の照射パターン時での光強度検出手段12の検出結果から、外乱光強度特定部20で特定された同一部位の外乱光強度を減算することにより、発光強度が求められるようになっている。 In the emission intensity specifying unit 21, the disturbance light intensity specifying unit 20 identifies each portion in the target surface F from the detection result of the light intensity detecting means 12 at the time of another irradiation pattern in which irradiation of excitation light is permitted. The emission intensity can be obtained by subtracting the ambient light intensity of the same portion.
 この発光強度特定部21での発光強度の特定手順について、以下に例示する。 The procedure for specifying the light emission intensity in the light emission intensity specifying unit 21 is illustrated below.
 前述した図2(B)の第2の照射パターンでは、同図(D)に示されるように、部位Aでの励起光の照射が許容されるため、同図(E)に示されるように、同図中破線の第2の照射パターンにおける光強度検出手段12での部位Aの検出結果から、外乱光強度特定部20で特定された外乱光強度C1を除くことで、部位Aにおける感圧塗料のみによる発光強度C2が求められる。 In the second irradiation pattern of FIG. 2 (B) described above, as shown in FIG. 2 (D), irradiation of the excitation light at the site A is permitted, and therefore, as shown in FIG. 2 (E). By removing the disturbance light intensity C1 specified by the disturbance light intensity specifying unit 20 from the detection result of the part A by the light intensity detecting means 12 in the second irradiation pattern of the broken line in the figure, the pressure sensitivity at the part A The emission intensity C2 of only the paint is required.
 前記圧力特定部22では、初期の較正作業により設定された発光強度と圧力の関係式が予め記憶され、当該関係式を利用し、各部位それぞれについて、発光強度から圧力が求められる。前記関係式は、励起光強度毎に設定されており、各部位において、励起光の照射を許容する照射パターンにより発光強度を求めた際に、当該照射パターンにおける励起光強度から、対応する関係式が用いられる。つまり、前述の例では、図2(D)に示される第2のパターンにおける部位Aの励起光強度C3における前記関係式が用いられ、これにより発光強度C2に対応する圧力が特定される。 In the pressure specifying unit 22, the relational expression between the emission intensity and the pressure set by the initial calibration work is stored in advance, and the pressure is obtained from the emission intensity for each part by using the relational expression. The relational expression is set for each excitation light intensity, and when the emission intensity is determined by an irradiation pattern that allows irradiation of excitation light at each site, the corresponding relational expression is obtained from the excitation light intensity in the irradiation pattern. Is used. That is, in the above-mentioned example, the relational expression in the excitation light intensity C3 of the portion A in the second pattern shown in FIG. 2D is used, thereby specifying the pressure corresponding to the emission intensity C2.
 前記圧力計測システム10によれば、次の手順で感圧塗料が塗布された対象面Fの圧力分布が求められる。 According to the pressure measurement system 10, the pressure distribution of the target surface F to which the pressure-sensitive paint is applied can be obtained by the following procedure.
 先ず、励起光照射手段11により、感圧塗料が塗布された対象面Fに対して、励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより励起光が照射される。そして、光強度検出手段12により、対象面Fの近傍で発生する光の強度が照射パターン毎に検出される。次に、圧力導出手段13の外乱光強度特定部20により、光強度検出手段12での各検出結果の対比により、各照射パターンに同期しない成分が、感圧塗料による発光を除く外乱光による外乱光強度として特定される。そして、発光強度特定部21により、外乱光強度を光強度検出手段12での検出結果から減算することで、対象面F内での感圧塗料による発光強度が特定される。最後に、圧力特定部22により、予め設定された発光強度と圧力との関係から、各部位における圧力の計測値を求め、対象面F内の圧力分布が取得される。 First, the excitation light irradiation means 11 irradiates the target surface F coated with the pressure-sensitive paint with excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings. Then, the light intensity detecting means 12 detects the intensity of the light generated in the vicinity of the target surface F for each irradiation pattern. Next, the disturbance light intensity specifying unit 20 of the pressure deriving means 13 compares the detection results of each detection result of the light intensity detecting means 12, and the components that are not synchronized with each irradiation pattern are the disturbance caused by the disturbance light excluding the light emission by the pressure-sensitive paint. Specified as light intensity. Then, the emission intensity specifying unit 21 specifies the emission intensity of the pressure-sensitive paint in the target surface F by subtracting the ambient light intensity from the detection result of the light intensity detecting means 12. Finally, the pressure specifying unit 22 obtains a measured value of the pressure at each site from the relationship between the emission intensity and the pressure set in advance, and obtains the pressure distribution in the target surface F.
 なお、前記実施形態においては、感圧塗料による対象面Fの圧力やその面内の圧力分布を計測する圧力計測システム10について図示説明したが、本発明はこれに限らず、感温塗料が塗布された対象面Fやその周辺空間の温度やその分布を計測する計測システムに対し、前記実施形態と同様の構成及び手法を適用することができる。つまり、この温度計測システムでは、圧力計測システム10に対し、対象面Fに塗布される塗料を感圧塗料から感温塗料に変更し、感温塗料による発光強度と温度との関係式を設定することで、実質同一となる構成を利用し、計測対象を圧力から温度に変更できる。従って、前記圧力導出手段13、前記圧力特定部22は、温度計測システムにおいて、感温塗料を利用した温度測定を行う温度導出手段、温度特定部として機能する。 In the above embodiment, the pressure measuring system 10 for measuring the pressure of the target surface F by the pressure-sensitive paint and the pressure distribution in the plane has been illustrated and described, but the present invention is not limited to this, and the temperature-sensitive paint is applied. The same configuration and method as in the above embodiment can be applied to the measurement system for measuring the temperature and its distribution of the target surface F and its surrounding space. That is, in this temperature measurement system, the paint applied to the target surface F is changed from the pressure-sensitive paint to the temperature-sensitive paint for the pressure measurement system 10, and the relational expression between the emission intensity by the temperature-sensitive paint and the temperature is set. As a result, the measurement target can be changed from pressure to temperature by using a configuration that is substantially the same. Therefore, the pressure deriving means 13 and the pressure specifying unit 22 function as a temperature deriving means and a temperature specifying unit for performing temperature measurement using the temperature-sensitive paint in the temperature measuring system.
 また、対象面Fに塗布される塗料(発光塗料)として、感圧塗料と感温塗料を混合した塗料を適用し、前記圧力計測システム及び温度計測システムを総合した計測システムにより、対象面Fの圧力及び温度を計測することもできる。これにより、例えば、温度分布の影響による前述の圧力計測の誤差を補正しながら、より高精度な計測が可能となる。 Further, as the paint (luminous paint) to be applied to the target surface F, a paint in which a pressure-sensitive paint and a temperature-sensitive paint are mixed is applied, and the target surface F is subjected to a measurement system that integrates the pressure measurement system and the temperature measurement system. Pressure and temperature can also be measured. This enables more accurate measurement while correcting the above-mentioned error of pressure measurement due to the influence of the temperature distribution, for example.
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。 In addition, the configuration of each part of the device in the present invention is not limited to the illustrated configuration example, and various changes can be made as long as substantially the same operation is achieved.
 10 圧力計測システム(計測システム)
 11 励起光照射手段
 12 光強度検出手段
 13 圧力導出手段(温度導出手段)
 15 励起光源
 16 照射調整部
 20 外乱光強度特定部
 21 発光強度特定部
 22 圧力特定部(温度特定部)
 C1 外乱光強度
 C2 発光強度
 C3 励起光強度
 F 対象面
10 Pressure measurement system (measurement system)
11 Excitation light irradiation means 12 Light intensity detection means 13 Pressure derivation means (temperature derivation means)
15 Excitation light source 16 Irradiation adjustment part 20 Disturbed light intensity specification part 21 Emission intensity specification part 22 Pressure specification part (temperature specification part)
C1 Disturbance light intensity C2 Emission intensity C3 Excitation light intensity F Target surface

Claims (8)

  1.  感圧塗料を利用して物体の対象面に作用する圧力を計測する計測システムにおいて、
     前記感圧塗料が塗布された前記対象面に励起光を照射する励起光照射手段と、前記対象面の近傍で発生する光の強度を検出する光強度検出手段と、当該光強度検出手段での検出結果に基づいて前記圧力を導出する圧力導出手段とを備え、
     前記励起光照射手段は、前記対象面に照射される際の前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を照射可能に構成され、
     前記圧力導出手段では、前記各照射パターンにおける前記光強度検出手段での各検出結果の対比により、前記各照射パターンに同期しない成分が、前記感圧塗料による発光を除く外乱光による外乱光強度として特定され、当該外乱光強度を前記光強度検出手段の検出結果から除去することで、前記対象面内での前記感圧塗料による発光強度が特定され、予め記憶された当該発光強度と前記圧力との関係から、当該圧力の計測値を求めることを特徴とする計測システム。
    In a measurement system that uses pressure-sensitive paint to measure the pressure acting on the target surface of an object
    The excitation light irradiation means for irradiating the target surface coated with the pressure-sensitive paint with excitation light, the light intensity detecting means for detecting the intensity of light generated in the vicinity of the target surface, and the light intensity detecting means. It is provided with a pressure deriving means for deriving the pressure based on the detection result.
    The excitation light irradiation means is configured to be capable of irradiating the excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light when irradiating the target surface changes at different timings.
    In the pressure deriving means, by comparing the detection results of the light intensity detecting means in each irradiation pattern, the component not synchronized with each irradiation pattern is used as the ambient light intensity due to the ambient light excluding the light emission by the pressure-sensitive paint. By specifying and removing the ambient light intensity from the detection result of the light intensity detecting means, the light emission intensity by the pressure-sensitive paint in the target surface is specified, and the light emission intensity and the pressure stored in advance are used. A measurement system characterized in that the measured value of the pressure is obtained from the above relationship.
  2.  感温塗料を利用して物体の対象面の温度を計測する計測システムにおいて、
     前記感温塗料が塗布された前記対象面に励起光を照射する励起光照射手段と、前記対象面の近傍で発生する光の強度を検出する光強度検出手段と、当該光強度検出手段での検出結果に基づいて前記温度を導出する温度導出手段とを備え、
     前記励起光照射手段は、前記対象面に照射される際の前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を照射可能に構成され、
     前記温度導出手段では、前記各照射パターンにおける前記光強度検出手段での各検出結果の対比により、前記各照射パターンに同期しない成分が、前記感温塗料による発光を除く外乱光による外乱光強度として特定され、当該外乱光強度を前記光強度検出手段の検出結果から除去することで、前記対象面内での前記感温塗料による発光強度が特定され、予め記憶された当該発光強度と前記温度との関係から、当該温度の計測値を求めることを特徴とする計測システム。
    In a measurement system that measures the temperature of the target surface of an object using temperature-sensitive paint
    The excitation light irradiation means for irradiating the target surface coated with the temperature-sensitive paint with excitation light, the light intensity detecting means for detecting the intensity of light generated in the vicinity of the target surface, and the light intensity detecting means. A temperature derivation means for deriving the temperature based on the detection result is provided.
    The excitation light irradiation means is configured to be capable of irradiating the excitation light by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light when irradiating the target surface changes at different timings.
    In the temperature derivation means, by comparing the detection results of the light intensity detecting means in each irradiation pattern, the component not synchronized with each irradiation pattern is used as the ambient light intensity due to the ambient light excluding the light emission by the temperature-sensitive paint. By specifying and removing the ambient light intensity from the detection result of the light intensity detecting means, the light emission intensity by the temperature-sensitive paint in the target surface is specified, and the light emission intensity and the temperature stored in advance are used. A measurement system characterized in that the measured value of the temperature is obtained from the above relationship.
  3.  感圧塗料を利用して物体の対象面に作用する圧力を計測する計測システムにおいて、
     前記感圧塗料が塗布された前記対象面に励起光を照射する励起光照射手段と、前記対象面の近傍で発生する光の強度を検出する光強度検出手段と、当該光強度検出手段での検出結果に基づいて前記圧力を導出する圧力導出手段とを備え、
     前記励起光照射手段は、前記励起光を発生させる励起光源と、当該励起光源から前記対象面に照射される際の前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光の照射を調整する照射調整部とを含み、
     前記圧力導出手段は、前記感圧塗料による発光を除く外乱光による外乱光強度を特定する外乱光強度特定部と、当該外乱光強度を前記光強度検出手段の検出結果から除去することで、前記対象面内での前記感圧塗料による発光強度を特定する発光強度特定部と、予め記憶された前記発光強度と前記圧力との関係から、当該圧力の計測値を求める圧力特定部とを備え、
     前記外乱光強度特定部では、前記各照射パターンにおける前記光強度検出手段での各検出結果の対比により、前記各照射パターンに同期しない成分を前記外乱光強度として抽出することを特徴とする計測システム。
    In a measurement system that uses pressure-sensitive paint to measure the pressure acting on the target surface of an object
    The excitation light irradiation means for irradiating the target surface coated with the pressure-sensitive paint with excitation light, the light intensity detecting means for detecting the intensity of light generated in the vicinity of the target surface, and the light intensity detecting means. It is provided with a pressure deriving means for deriving the pressure based on the detection result.
    The excitation light irradiation means is based on an excitation light source that generates the excitation light and a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light when the excitation light is irradiated to the target surface changes at different timings. Includes an irradiation adjustment unit that adjusts the irradiation of excitation light
    The pressure deriving means is described by removing the disturbance light intensity specifying portion for specifying the disturbance light intensity due to the disturbance light excluding the light emission by the pressure-sensitive paint and the disturbance light intensity from the detection result of the light intensity detecting means. It is provided with a light emitting intensity specifying unit that specifies the light emitting intensity of the pressure-sensitive paint in the target surface, and a pressure specifying unit that obtains a measured value of the pressure from the relationship between the light emitting intensity and the pressure stored in advance.
    The disturbance light intensity specifying unit is a measurement system characterized in that components that are not synchronized with each irradiation pattern are extracted as the disturbance light intensity by comparing the detection results of the light intensity detecting means in each irradiation pattern. ..
  4.  感温塗料を利用して物体の対象面の温度を計測する計測システムにおいて、
     前記感温塗料が塗布された前記対象面に励起光を照射する励起光照射手段と、前記対象面の近傍で発生する光の強度を検出する光強度検出手段と、当該光強度検出手段での検出結果に基づいて前記温度を導出する温度導出手段とを備え、
     前記励起光照射手段は、前記励起光を発生させる励起光源と、当該励起光源から前記対象面に照射される際の前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光の照射を調整する照射調整部とを含み、
     前記温度導出手段は、前記感温塗料による発光を除く外乱光による外乱光強度を特定する外乱光強度特定部と、当該外乱光強度を前記光強度検出手段の検出結果から除去することで、前記対象面内での前記感温塗料による発光強度を特定する発光強度特定部と、予め記憶された前記発光強度と前記温度との関係から、当該温度の計測値を求める温度特定部とを備え、
     前記外乱光強度特定部では、前記各照射パターンにおける前記光強度検出手段での各検出結果の対比により、前記各照射パターンに同期しない成分を前記外乱光強度として抽出することを特徴とする計測システム。
    In a measurement system that measures the temperature of the target surface of an object using temperature-sensitive paint
    The excitation light irradiation means for irradiating the target surface coated with the temperature-sensitive paint with excitation light, the light intensity detecting means for detecting the intensity of light generated in the vicinity of the target surface, and the light intensity detecting means. A temperature derivation means for deriving the temperature based on the detection result is provided.
    The excitation light irradiation means is based on an excitation light source that generates the excitation light and a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light when the excitation light is irradiated to the target surface changes at different timings. Includes an irradiation adjustment unit that adjusts the irradiation of excitation light
    The temperature derivation means is described by removing the disturbance light intensity specifying portion for specifying the disturbance light intensity due to the disturbance light excluding the light emission by the temperature-sensitive paint and the disturbance light intensity from the detection result of the light intensity detection means. It is provided with a light emission intensity specifying unit for specifying the light emission intensity of the temperature sensitive paint in the target surface, and a temperature specifying unit for obtaining a measured value of the temperature from the relationship between the light emission intensity and the temperature stored in advance.
    The disturbance light intensity specifying unit is a measurement system characterized in that components that are not synchronized with each irradiation pattern are extracted as the disturbance light intensity by comparing the detection results of the light intensity detecting means in each irradiation pattern. ..
  5.  前記照射調整部では、前記対象面内での前記励起光の強度が部分的に異なるように前記照射パターンが設定され、異なるタイミングで、前記励起光の空間強度分布が非同一となる前記照射パターンによる前記励起光の照射を可能にすることを特徴とする請求項3又は4記載の計測システム。 In the irradiation adjusting unit, the irradiation pattern is set so that the intensity of the excitation light in the target surface is partially different, and the spatial intensity distribution of the excitation light becomes non-identical at different timings. The measurement system according to claim 3 or 4, wherein the excitation light can be irradiated by the above.
  6.  前記照射パターンは、前記対象面内の各部位それぞれについて、少なくとも1度は前記励起光の照射を遮断し、少なくとも1度は前記励起光の照射を許容するように複数種用意され、
     前記外乱光強度特定部では、前記各部位において、前記励起光の照射が遮断される前記照射パターン時での前記光強度検出手段の検出結果が前記外乱光強度と特定され、
     前記発光強度特定部では、前記各部位において、前記励起光の照射が許容される他の前記照射パターン時での前記光強度検出手段の検出結果から、前記外乱光強度を減算することにより、前記発光強度を求めることを特徴とする請求項5記載の計測システム。
    A plurality of types of the irradiation patterns are prepared so as to block the irradiation of the excitation light at least once and allow the irradiation of the excitation light at least once for each part in the target surface.
    In the disturbance light intensity specifying unit, the detection result of the light intensity detecting means at the time of the irradiation pattern in which the irradiation of the excitation light is blocked is specified as the disturbance light intensity at each of the parts.
    In the emission intensity specifying unit, the disturbance light intensity is subtracted from the detection result of the light intensity detecting means at the time of the other irradiation pattern in which the irradiation of the excitation light is allowed in the respective parts. The measurement system according to claim 5, wherein the emission intensity is obtained.
  7.  物体の対象面に感圧塗料を塗布し、前記対象面に所定の励起光を照射して前記感圧塗料による発光強度を検出することで、前記対象面に作用する圧力を計測する計測方法において、
     前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を前記対象面に照射し、前記対象面の近傍で発生する光の強度を前記照射パターン毎に検出し、これら各検出結果の対比により、前記各照射パターンに同期しない成分を、前記感圧塗料による発光を除く外乱光による外乱光強度として特定し、当該外乱光強度を前記検出結果から除去することで、前記対象面内での前記感圧塗料による発光強度を特定し、予め設定された当該発光強度と前記圧力との関係から、当該圧力の計測値を求めることを特徴とする計測方法。
    In a measuring method for measuring the pressure acting on the target surface by applying a pressure-sensitive paint to the target surface of an object, irradiating the target surface with a predetermined excitation light, and detecting the emission intensity of the pressure-sensitive paint. ,
    The excitation light is irradiated to the target surface by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings, and the intensity of the light generated in the vicinity of the target surface is detected for each irradiation pattern. By comparing each of these detection results, a component that is not synchronized with each irradiation pattern is specified as the disturbance light intensity due to the ambient light excluding the light emitted by the pressure-sensitive paint, and the disturbance light intensity is removed from the detection result. A measurement method characterized in that the light emission intensity of the pressure-sensitive paint in the target surface is specified, and a measured value of the pressure is obtained from a preset relationship between the light emission intensity and the pressure.
  8.  物体の対象面に感温塗料を塗布し、前記対象面に所定の励起光を照射して前記感温塗料による発光強度を検出することで、前記対象面の温度を計測する計測方法において、
     前記励起光の空間強度分布が異なるタイミングで変化する複数の照射パターンにより、前記励起光を前記対象面に照射し、前記対象面の近傍で発生する光の強度を前記照射パターン毎に検出し、これら各検出結果の対比により、前記各照射パターンに同期しない成分を、前記感温塗料による発光を除く外乱光による外乱光強度として特定し、当該外乱光強度を前記検出結果から除去することで、前記対象面内での前記感温塗料による発光強度を特定し、予め設定された当該発光強度と前記温度との関係から、当該温度の計測値を求めることを特徴とする計測方法。
    In a measurement method for measuring the temperature of a target surface by applying a temperature-sensitive paint to the target surface of an object, irradiating the target surface with predetermined excitation light, and detecting the emission intensity of the temperature-sensitive paint.
    The excitation light is irradiated to the target surface by a plurality of irradiation patterns in which the spatial intensity distribution of the excitation light changes at different timings, and the intensity of the light generated in the vicinity of the target surface is detected for each irradiation pattern. By comparing each of these detection results, a component that is not synchronized with each irradiation pattern is specified as an ambient light intensity due to ambient light excluding light emitted by the temperature-sensitive paint, and the ambient light intensity is removed from the detection result. A measurement method characterized in that the light emission intensity of the temperature-sensitive coating material in the target surface is specified, and a measured value of the temperature is obtained from a preset relationship between the light emission intensity and the temperature.
PCT/JP2021/006713 2020-04-02 2021-02-23 Measurement system and measurement method WO2021199796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511660A JPWO2021199796A1 (en) 2020-04-02 2021-02-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020066985 2020-04-02
JP2020-066985 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021199796A1 true WO2021199796A1 (en) 2021-10-07

Family

ID=77927738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006713 WO2021199796A1 (en) 2020-04-02 2021-02-23 Measurement system and measurement method

Country Status (2)

Country Link
JP (1) JPWO2021199796A1 (en)
WO (1) WO2021199796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444655A (en) * 2020-03-26 2021-09-28 吉林中粮生化有限公司 Corynebacterium glutamicum, temperature-sensitive strain with high glutamic acid yield, acquisition method and application of temperature-sensitive strain and glutamic acid fermentation method
CN114459728A (en) * 2022-04-13 2022-05-10 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817945A (en) * 1996-04-15 1998-10-06 Mcdonnell Douglas System and method of determining strain
JP2006064600A (en) * 2004-08-27 2006-03-09 Japan Aerospace Exploration Agency Processing method for a-priori/in-situ hybrid pressure-sensitive paint data
JP2020190431A (en) * 2019-05-20 2020-11-26 株式会社島津製作所 Stress light emission data processor, stress light emission data processing method, stress light emission measurement device and stress light emission test system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817945A (en) * 1996-04-15 1998-10-06 Mcdonnell Douglas System and method of determining strain
JP2006064600A (en) * 2004-08-27 2006-03-09 Japan Aerospace Exploration Agency Processing method for a-priori/in-situ hybrid pressure-sensitive paint data
JP2020190431A (en) * 2019-05-20 2020-11-26 株式会社島津製作所 Stress light emission data processor, stress light emission data processing method, stress light emission measurement device and stress light emission test system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUMATA, DAIJU ET AL.: "Intensity-based PSP and TSP Measurements", JOURNAL OF THE VISUALIZATION SOCIETY OF JAPAN, vol. 37, no. 147, October 2017 (2017-10-01), pages 171 - 176, ISSN: 0916-4731 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444655A (en) * 2020-03-26 2021-09-28 吉林中粮生化有限公司 Corynebacterium glutamicum, temperature-sensitive strain with high glutamic acid yield, acquisition method and application of temperature-sensitive strain and glutamic acid fermentation method
CN113444655B (en) * 2020-03-26 2023-05-16 吉林中粮生化有限公司 Corynebacterium glutamicum, temperature-sensitive strain with high glutamic acid yield, obtaining method and application thereof, and glutamic acid fermentation method
CN114459728A (en) * 2022-04-13 2022-05-10 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method
CN114459728B (en) * 2022-04-13 2022-06-24 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method

Also Published As

Publication number Publication date
JPWO2021199796A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2021199796A1 (en) Measurement system and measurement method
KR102067883B1 (en) Method for calibrating a spectroradiometer
JP6670327B2 (en) Gemstone color measurement
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
JP5760096B2 (en) Systems and methods for metered dose illumination in biological analysis or other systems
US20090152771A1 (en) Method of manufacturing three-dimensional objects by laser sintering
US20150098092A1 (en) Device and Method For the Simultaneous Three-Dimensional Measurement of Surfaces With Several Wavelengths
EP3550363B1 (en) System and method for controlling exposure dose of light source
JP2015010834A (en) Method for estimating emission wavelength of luminous body and device therefore
KR101533588B1 (en) Apparatus and method for inspecting defect of light emitting diode
JP2012026962A (en) Measurement instrument
US20070014000A1 (en) Automatic microscope and method for true-color image
KR100418803B1 (en) A calibration device of pressure sensitive paint
JP2001004460A (en) Method and apparatus for measuring temperature and temperature-sensitive coating
US20230058064A1 (en) Film thickness measuring device and film thickness measuring method
JP2008020454A (en) Device and method for determining surface characteristic
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
JP3107773B2 (en) Fluorescent dot area meter
JPH11352013A (en) Fluorescent substance coating irregularities inspection method
WO2020003673A1 (en) Spectral sensitivity measurement method for image sensors, inspection method for spectral sensitivity measurement devices, and spectral sensitivity measurement device
WO2017168909A1 (en) Deposit amount measuring device
KR100242903B1 (en) Alignment measurement apparatus and method for using the same forming phosphor screen in color cathode-ray tube
JP6401606B2 (en) Fluorescent glass dosimeter reader
JP2014089156A (en) Visual inspection method
JP2020531868A (en) Optical measuring devices, systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779597

Country of ref document: EP

Kind code of ref document: A1