WO2021199778A1 - Automatic charger - Google Patents

Automatic charger Download PDF

Info

Publication number
WO2021199778A1
WO2021199778A1 PCT/JP2021/006367 JP2021006367W WO2021199778A1 WO 2021199778 A1 WO2021199778 A1 WO 2021199778A1 JP 2021006367 W JP2021006367 W JP 2021006367W WO 2021199778 A1 WO2021199778 A1 WO 2021199778A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
temperature sensor
charging
batteries
accommodating portion
Prior art date
Application number
PCT/JP2021/006367
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 加藤
謙治 北村
康成 溝口
聖子 林
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2021199778A1 publication Critical patent/WO2021199778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an automatic charger, particularly an automatic charger capable of continuously charging a secondary battery.
  • Patent Document 1 describes a nickel-metal hydride storage battery in which a temperature sensor insertion hole is provided in the lid of the battery case and a temperature sensor is attached to the temperature sensor insertion hole.
  • the lower part of the temperature sensor insertion hole is brought close to the vicinity of the upper surface of the electrode group housed in the battery case. As a result, a temperature substantially equal to the internal temperature of the battery is measured, and accurate temperature information is obtained.
  • Patent Document 2 a plurality of batteries inserted from the inlet of the battery insertion portion are individually held in each slot provided in the rotating portion, and the plurality of batteries are collectively charged.
  • the vessel is listed.
  • the charger is configured to continuously charge a plurality of standby batteries after ejecting a plurality of batteries that have been charged together.
  • the ambient temperature around the battery such as the rotating part and the housing, also rises. Therefore, when the temperature sensor is attached to the housing surrounding the rotating portion, the temperature sensor may be affected by the ambient temperature around the battery.
  • the ambient temperature near the temperature sensor may be higher than the temperature of the standby battery immediately after the charged battery is discharged. Therefore, when batteries are continuously inserted into the charger, the temperature sensor may measure a temperature higher than the actual battery temperature, and may not be able to measure a temperature substantially equal to the battery temperature. In this case, the charger may not be able to start charging and may not be able to perform efficient charging.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an automatic charger capable of performing more efficient charging when continuously inserting batteries for charging. To do.
  • the automatic charger according to the present invention includes a box-shaped housing mounted on an installation table, and a battery charging portion provided on the upper portion of the housing into which a plurality of batteries are inserted.
  • a charging device that is arranged below the battery insertion unit inside the housing and is configured to charge the plurality of batteries inserted into the battery insertion unit.
  • a charging device including a rotatable holding body for holding the battery, an outer wall that at least partially surrounds the holding body, and a charging device provided under the charging device inside the housing to complete charging.
  • the battery accommodating portion for accommodating the plurality of batteries, the first temperature sensor provided inside the housing, and the temperature provided inside the housing and measured by the first temperature sensor are within a predetermined range.
  • the first temperature sensor includes a control device configured to start charging by the charging device when it is inside, and the first temperature sensor is below the outer wall of the charging device and the bottom wall of the housing. It is characterized in that it is arranged above.
  • the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery.
  • the unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device.
  • the first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position equal to the distance between the battery located at the bottom of the batteries and the sorting mechanism.
  • the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery.
  • the unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device.
  • the first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position shorter than the distance between the battery located at the bottom of the batteries and the sorting mechanism.
  • the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery.
  • the unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device.
  • the first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position longer than the distance between the battery located at the bottom of the batteries and the sorting mechanism.
  • the control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to a substrate connected to the first temperature sensor.
  • the first temperature sensor is located below the lower edge of the substrate and above the center of the lower edge and the bottom wall.
  • the control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to a substrate connected to the first temperature sensor.
  • the first temperature sensor is located below the lower edge of the substrate and below the center of the lower edge and the bottom wall.
  • a second temperature sensor corresponding to each of the batteries is provided on a portion of the outer wall facing each of the batteries held in the holder.
  • the control device is configured to end the charging operation by the charging device when the temperature measured by the second temperature sensor is higher than a predetermined value.
  • the automatic charger according to the present invention is a charging device configured to charge a plurality of batteries, and has a rotatable holder for holding the plurality of batteries and at least a partial periphery of the holder.
  • a charging device including an outer wall surrounding the battery and a charging device provided inside the housing are configured to start charging by the charging device when the temperature measured by the first temperature sensor is within a predetermined range. It is equipped with a control device. Further, the first temperature sensor is arranged inside the housing below the outer wall of the charging device and above the bottom wall of the housing.
  • the first temperature sensor is arranged at a position away from the charging device acting as a heat source, that is, between the outer wall of the charging device and the bottom wall of the housing. Therefore, even when the other batteries are continuously charged immediately after the fully charged battery is discharged, the first temperature sensor keeps the temperature near the charging device (higher than the outside air temperature) after the charging is completed. It is possible to measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected. As a result, the charger can start charging quickly, and efficient charging can be performed. In this way, it is possible to provide an automatic charger capable of performing more efficient charging when the batteries are continuously inserted and charged.
  • FIG. 1 is an external view of an automatic charger according to an embodiment.
  • FIG. 2 is a cross-sectional view of the automatic charger along the line ⁇ of FIG.
  • FIG. 3 is a block diagram for explaining a flow from charging the battery to accommodating the battery in the automatic charger according to the embodiment.
  • FIG. 4 is a flowchart for explaining battery charge control in the automatic charger according to the embodiment.
  • FIG. 1 is an external view of the automatic charger 1 according to the embodiment.
  • FIG. 2 is a cross-sectional view of the automatic charger 1 along the line ⁇ of FIG.
  • the side on which the battery insertion unit 20 is arranged is defined as “upper”, and the side on which the bottom wall 24 is arranged is defined as “lower”. do.
  • the side on which the first accommodating portion 41 is arranged is defined as “front”
  • the side on which the second accommodating portion 42 is arranged is defined as “rear”.
  • the above-mentioned directions perpendicular to the vertical direction and the front-back direction are defined as “right” and “left”.
  • “front”, “rear”, “left”, “right”, “top”, and “bottom” shown in each figure are all based on the above definitions.
  • the automatic charger 1 is configured to execute a charging operation by the charging device 3 for a plurality of batteries inserted from the battery charging unit 20 and to accommodate the plurality of batteries in the battery accommodating unit 4. ing. Further, the automatic charger 1 separately accommodates the first battery and the second battery in the battery accommodating unit 4, as will be described later.
  • the first battery in the present embodiment is, for example, a secondary battery and a battery in which the upper limit voltage for charging, the charge / discharge efficiency, and the maximum charge / discharge current are equal to or higher than a predetermined threshold value.
  • a secondary battery, a charge upper limit voltage, a charge / discharge efficiency, and a maximum charge / discharge current are predetermined according to the result of the charging operation by the charging device 3. It is determined whether or not the threshold value is equal to or higher than the threshold value of.
  • an objective value that can be determined to be a defective product or has reached the end of its life due to factors such as aging deterioration is set as the above threshold value.
  • an arbitrary numerical value can be set as the threshold value by the user.
  • the second battery in the present embodiment is a battery in which the upper limit voltage for charging, the charging / discharging efficiency, or the maximum charging / discharging current is less than a predetermined threshold value.
  • the second battery includes a primary battery and a secondary battery.
  • the primary battery in the present embodiment is a generally known battery such as an alkaline battery or a manganese battery.
  • the secondary battery in the present embodiment is a generally known battery such as a nickel hydrogen battery or a lithium ion battery.
  • the primary battery and the secondary battery in the present embodiment include batteries of various sizes such as AA or AAA batteries.
  • the automatic charger 1 includes a box-shaped housing 2 mounted on an installation table (not shown), a battery insertion unit 20 provided on the upper portion of the housing 2, and a housing 2.
  • a charging device 3 arranged on the lower side of the battery insertion unit 20 inside the housing 2, a battery accommodating unit 4 provided on the lower side of the charging device 3 inside the housing 2, and a first unit provided inside the housing 2.
  • the battery insertion unit 20 is a portion of the housing 2 into which a plurality of batteries are inserted.
  • the battery insertion unit 20 has a hopper shape having an inlet portion 21 at the upper portion of the housing 2 and an outlet portion 22 at the lower portion. Further, an introduction piece 23 is provided at the inlet portion 21 of the battery insertion portion 20. By having the hopper shape and the introduction piece 23, the battery insertion unit 20 can guide a plurality of batteries inserted from the inlet portion 21 to the outlet portion 22 in order while aligning the plurality of batteries.
  • the charging device 3 is configured to charge a plurality of batteries inserted into the battery insertion unit 20.
  • the charging device 3 includes a rotatable holding body 31 that holds a plurality of batteries, and an outer wall 32 that at least partially surrounds the holding body 31.
  • the holding body 31 has a gear shape that rotates in a predetermined direction about the rotation axis R, and the outer wall 32 is provided along the holding body 31 and is an outlet of the battery insertion unit 20. It has a battery inlet of the charging device 3 that matches the unit 22.
  • the rotation shaft R of the holding body 31 is connected to an output shaft of a motor (not shown).
  • the holding body 31 rotates about the rotation axis R in the rotation direction shown in FIG. 2 by the operation of the motor.
  • the holding body 31 is provided with a plurality of slots 33 at predetermined intervals in the circumferential direction of the holding body 31.
  • Each of the plurality of slots 33 receives one battery from the outlet 22 of the battery insertion unit 20 and locks the battery. For example, the battery is received in the slot 33 located near the battery introduction port of the charging device 3, the battery is locked, and then the holding body 31 is rotated by one slot in the rotation direction shown in FIG. Further, the battery is received in the slot 33 located near the battery introduction port of the charging device 3 and the battery is locked. By repeating these operations, the battery can be locked in each slot 33.
  • the charging device 3 according to the present embodiment is provided with, for example, 10 slots 33.
  • the charging device 3 is provided with a plurality of charging terminals 34 along a plurality of slots 33 provided in the holding body 31.
  • the charging terminal 34 is a plate-shaped member made of a conductive material.
  • the charging terminal 34 is, for example, a metal plate.
  • the charging terminal 34 is fixedly provided at a position where each slot 33 passes when the holding body 31 is rotated in the rotation direction shown in FIG. For example, when the battery locked in the slot 33 is moved to the position where the charging terminal 34 is provided, the battery is charged by the charging terminal 34.
  • the charging device 3 automatically discharges a plurality of batteries from the battery discharge port 35 of the charging device 3 after the charging operation is completed.
  • the timing for ending the charging operation in the charging device 3 is, for example, a predetermined time when the charging operation of all the batteries to be charged is completed or the charging of all the charged batteries is expected to be completed. Including the case where the time has passed.
  • the charging device 3 may discharge a plurality of batteries from the battery discharge port 35 of the charging device 3 triggered by a predetermined operation by the user. Specifically, the charging device 3 may discharge a plurality of batteries from the battery discharge port 35 of the charging device 3, triggered by the operation of the switch SW described later.
  • the battery accommodating unit 4 is configured to accommodate a plurality of batteries that have been charged. Specifically, the battery accommodating unit 4 separately accommodates the first battery and the second battery according to the discrimination result for each battery in the microcomputer 6 described later.
  • the battery accommodating unit 4 has a first accommodating unit 41, a second accommodating unit 42, and a distribution mechanism 43.
  • the first accommodating unit 41 accommodates the first battery.
  • the first accommodating portion 41 is installed inside the automatic charger 1, for example, below the charging device 3 and on the front side of the automatic charger 1 in order to improve the ease of taking out the first battery.
  • the second accommodating portion 42 accommodates the second battery.
  • the second accommodating portion 42 is installed below the charging device 3, for example, inside the automatic charger 1.
  • the distribution mechanism 43 guides the first battery from the battery discharge port 35 of the charging device 3 to the battery introduction port 44 of the first accommodating unit 41 according to the determination result in the microcomputer 6 described later, and guides the second battery to the battery introduction port 44 of the charging device 3. It is configured to lead from the battery discharge port 35 to the battery introduction port 45 of the second accommodating portion 42.
  • the sorting mechanism 43 in this embodiment has a flap. When the first battery is accommodated in the first accommodating portion 41, the flap introduces the battery of the first accommodating portion 41 from the battery discharge port 35 of the charging device 3 as a route for guiding the first battery to the first accommodating portion 41.
  • the battery exhaust of the charging device 3 is used as a route for guiding the second battery to the second accommodating portion 42.
  • the second path R2 connecting the outlet 35 to the battery introduction port 45 of the second accommodating portion 42 is selected.
  • the battery accommodating unit 4 accommodates the first battery in the first accommodating unit 41 and the second battery according to the determination result of each battery at the time of operating the switch SW. It may be configured to be accommodated in the second accommodating portion 42.
  • the microcomputer 6 includes a predetermined processor as a hardware resource.
  • the microcomputer 6 is configured to discriminate between a first battery that satisfies a predetermined charging characteristic and a second battery other than the first battery. Specifically, the microcomputer 6 discriminates between the first battery satisfying the predetermined charging characteristics and the second battery other than the first battery based on the detection results of each of the plurality of batteries by the detection units S1 to S5. It is configured. For example, the microcomputer 6 discriminates each type of battery, the electric capacity charged in the rechargeable battery, the battery that has reached the end of its life, and the defective product based on the detection results by the detection units S1 to S5, and the discrimination result.
  • the first battery and the second battery are identified according to the above.
  • the microcomputer 6 may determine, among the plurality of batteries, a battery that satisfies a predetermined charging characteristic when the switch SW is operated as the first battery, triggered by the operation of the switch SW. For example, even during the charging operation, if there is a battery that satisfies a predetermined charging characteristic when the switch SW is operated, the microcomputer 6 determines the battery as the first battery.
  • the microcomputer 6 is configured to start charging by the charging device 3 when the temperature measured by the first temperature sensor 5 is within a predetermined range. Specifically, the microcomputer 6 transmits a charging start signal to the charging device 3 when the temperature measured by the first temperature sensor 5 is 0 ° C. or higher and 35 ° C. or lower, whereby the charging operation for the battery is performed. It will be started. Further, the microcomputer 6 is configured to end the charging operation by the charging device 3 when the temperature measured by the second temperature sensor is higher than a predetermined value. Specifically, when the temperature measured by the second temperature sensor exceeds 60 degrees, the microcomputer 6 transmits a charging end signal to the charging device 3, thereby ending the charging operation for the battery.
  • the microcomputer 6 is a substrate 61 that covers at least the outer wall 32 of the charging device 3 from the side (left-right direction), and is attached to the substrate 61 connected to the first temperature sensor 5. Further, a second temperature sensor is connected to the substrate 61, whereby the temperature information measured by the first temperature sensor 5 and the second temperature sensor is transmitted to the microcomputer 6.
  • the detection units S1 to S5 are installed in association with each charging terminal 34.
  • the detection units S1 to S5 detect the state of each battery that is the target of the charging operation by the charging device 3. Specifically, the detection units S1 to S5 detect the electric capacity and the electric characteristics of the battery.
  • the detection units S1 to S5 transmit the detection results of each battery to the microcomputer 6 via the substrate 61.
  • the installation positions of the detection units S1 to S5 are not limited to the positions shown in FIG. 2, and can be installed at any position.
  • the automatic charger 1 according to the present embodiment is provided with charging terminals 34 at five locations, for example. That is, the automatic charger 1 according to the present embodiment can charge up to five batteries at the same time.
  • the first temperature sensor 5 is arranged below the outer wall 32 of the charging device 3 and above the bottom wall 24 of the housing 2. Specifically, in the first temperature sensor 5, the distance D1 between the distribution mechanism 43 is the distance D2 between the battery located at the bottom of the batteries held in the holding body 31 and the distribution mechanism 43. They are placed in equal positions. The first temperature sensor 5 is located at a position where the distance D1 between the distribution mechanism 43 and the distribution mechanism 43 is shorter than the distance D2 between the battery located at the bottom of the batteries held by the holding body 31 and the distribution mechanism 43. May be placed in.
  • the first temperature sensor 5 is set so that the distance D1 between the distribution mechanism 43 and the distribution mechanism 43 is longer than the distance between the battery located at the bottom of the batteries held in the holding body 31 and the distribution mechanism 43. It may be arranged. More specifically, the distance D1 between the first temperature sensor 5 and the distribution mechanism 43 is 4 cm or about 4 cm, and the battery and the distribution mechanism 43 located at the bottom of the batteries held in the holder 31 The distance D2 between and is 4 cm or about 4 cm.
  • first temperature sensor 5 may be arranged below the lower edge 62 of the substrate 61 and above the center of the lower edge 62 and the bottom wall 24. Further, the first temperature sensor 5 may be arranged below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24.
  • the second temperature sensor is provided on the portion of the outer wall 32 facing each of the batteries held in the holding body 31 corresponding to each of the batteries. Specifically, the second temperature sensor is embedded in the outer wall 32, and in the present embodiment, five sensors are provided corresponding to the charging terminals 34. As a result, each of the second temperature sensors is arranged to face each of the batteries held in the slot 33.
  • the display unit D displays the status of each battery that is the target of the charging operation by the charging device 3, for example, under the control of the microcomputer 6.
  • the display unit D includes a display interface circuit and a display device.
  • the display interface circuit converts the data representing the display target into a video signal.
  • the display signal is supplied to the display device.
  • the display device displays a video signal representing a display target.
  • a liquid crystal display LCD: Liquid Crystal Display
  • OELD Organic Electro Luminescence Display
  • the switch SW is for forcibly discharging the batteries locked in each slot 33 of the charging device 3 from the battery discharge port 35 of the charging device 3.
  • the switch SW can perform a predetermined operation such as pressing or rotating. For example, when the first battery is urgently needed, it is assumed that the display unit D displays a notification indicating that the first battery whose charging operation has been completed exists. The user operates the switch SW to forcibly discharge the batteries locked in each slot 33 of the charging device 3 from the battery discharge port 35 of the charging device 3. As a result, the user can take out the first battery from the automatic charger 1 regardless of the charging state of the second battery.
  • FIG. 3 is a block diagram for explaining a flow from charging the battery to accommodating the battery in the automatic charger 1 according to the embodiment.
  • FIG. 4 is a flowchart for explaining battery charge control in the automatic charger 1 according to the embodiment.
  • FIG. 3 exemplifies the flow from the insertion of the battery to the storage of the battery, and partially emphasizes, enlarges, reduces, or omits the constituent members constituting the automatic charger 1.
  • the scale and shape of the constituent members are not accurately represented. That is, the scale and shape of the constituent members shown in FIG. 3 are different from the scale and shape of the constituent members shown in FIGS. 1 and 2.
  • the user inserts the batteries B1 to B5 into the inlet portion 21 of the battery insertion unit 20.
  • the battery B5 is not shown in FIG.
  • the batteries B1 to B5 have a cylindrical shape.
  • the batteries B1 to B5 inserted into the inlet portion 21 of the battery insertion unit 20 are received and locked in each slot 33 of the charging device 3.
  • the batteries B1 to B5 locked in each slot 33 are moved to the installation positions of the charging terminals 34.
  • the microcomputer 6 receives the temperature information measured by the first temperature sensor 5 and determines whether or not the temperature is in the range of 0 degrees or more and 35 degrees or less (S100 in FIG. 4).
  • the microcomputer 6 determines that the temperature is not in the range of 0 ° C. or higher and 35 ° C. or lower (No in S100)
  • the microcomputer 6 does not send a charging start signal to the charging device 3 to start charging the battery.
  • the determination step of S100 is repeated until the temperature measured by the first temperature sensor 5 is within the range of 0 ° C. or higher and 35 ° C. or lower.
  • the microcomputer 6 determines that the temperature is in the range of 0 ° C. or higher and 35 ° C. or lower (Yes in S100), the microcomputer 6 transmits a charging start signal to the charging device 3 (FIG. 4). S300).
  • the detection units S1 to S5 detect the electric capacity and the electric characteristics of the batteries B1 to B5 during the charging operation and transmit them to the microcomputer 6. Note that the detection unit S5 is not shown in FIG.
  • the microcomputer 6 determines the types of batteries B1 to B5, the electric capacity charged in the rechargeable battery, and the batteries that have reached the end of their life and defective products, based on the detection results of the detection units S1 to S5. Specifically, when the voltage of the batteries B1 to B5 rises as a result of the charging operation by the charging terminal 34, the microcomputer 6 determines that the batteries B1 to B5 are secondary batteries.
  • the batteries B1 to B5 are the first. Determined to be a battery.
  • the microcomputer 6 determines that the battery B4 is a primary battery when the voltage of the batteries B1 to B5 does not rise as a result of the charging operation by the charging terminal 34. That is, the microcomputer 6 discriminates the batteries B1 to B5 as the second battery.
  • the microcomputer 6 determines whether or not the batteries B1 to B5 have reached full charge based on the detection results of the detection units S1 to S5 (S400 in FIG. 4). Specifically, in the microcomputer 6, whether or not the voltage inside the batteries B1 to B5 rises by a predetermined inclination or more as a result of the charging operation by the charging terminal 34, and whether or not the voltage shows a predetermined amount of decrease. Or, it is determined whether or not the temperature measured by the second temperature sensor exceeds 60 degrees. As a result, the voltage inside the batteries B1 to B5 does not rise by a predetermined inclination or more, the voltage does not show a predetermined decrease amount, or the temperature measured by the second temperature sensor does not exceed 60 degrees.
  • the microcomputer 6 determines that the batteries B1 to B5 have not reached full charge (No in S400), and transmits a charge continuation signal to the charging device 3 so as to continue the charging operation.
  • the microcomputer 6 determines that the batteries B1 to B5 have reached full charge (Yes in S400).
  • the charging device 3 discharges the batteries B1 to B5 from the battery discharge port 35 of the charging device 3 (S500). Specifically, when the batteries B1 to B5 are discharged from the charging device 3, the battery accommodating unit 4 sets the first battery as the first accommodating unit according to the determination result of each of the plurality of batteries B1 to B5 in the microcomputer 6. It is housed in 41, and the second battery is housed in the second storage section 42.
  • the flap 46 and the actuator 47 constituting the battery accommodating portion 4 are used to perform the second path R2. Close.
  • the actuator 47 is, for example, a solenoid or a servomotor. The operation of the actuator 47 is controlled by the microcomputer 6. As a result, the battery determined as the first battery can be accommodated in the first accommodating portion 41 via the first path R1.
  • the flap 46 and the actuator 47 are used to close the first path R1.
  • the batteries B1 to B5 are housed in the second storage unit 42, as shown in FIG. 3, the batteries B1 to B5 are discharged from the charging device 3 at the timing of discharging the batteries B1 to B5 according to the determination result by the microcomputer 6.
  • the flap 46 closes the first path R1. That is, the microcomputer 6 controls the operation of the actuator 47 so as to close the first path R1 by the flap 46.
  • the battery determined as the second battery can be accommodated in the second accommodating portion 42 via the second path R2.
  • the automatic charger 1 is a charging device 3 configured to charge a plurality of batteries, and includes a rotatable holder 31 for holding the plurality of batteries.
  • the charging device 3 including the outer wall 32 that at least partially surrounds the periphery of the holding body 31 and the temperature measured by the first temperature sensor 5 provided inside the housing 2 are within a predetermined range.
  • the microcomputer 6 configured to start charging by the charging device 3.
  • the first temperature sensor 5 is arranged inside the housing 2 below the outer wall 32 of the charging device 3 and above the bottom wall 24 of the housing 2.
  • the first temperature sensor 5 is located at a position away from the charging device 3 acting as a heat source, that is, the outer wall 32 of the charging device 3 and the bottom wall 24 of the housing 2. It is placed in between. That is, where the atmospheric temperature tends to be high above the charging device 3, by arranging the first temperature sensor 5 below the charging device 3, the temperature of the place where the battery before charging stands by is reproduced more accurately. can do. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature).
  • the automatic charger 1 can start charging quickly and can perform efficient charging. In this way, it is possible to provide the automatic charger 1 capable of performing more efficient charging when the batteries are continuously inserted and charged.
  • the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position equal to the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position away from the charging device 3 acting as a heat source and also at a position away from the installation table (for example, the floor) on which the housing 2 is placed. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging.
  • the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the charging is completed (from the outside air temperature). It is possible to more accurately measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected not only by the influence of (high) but also by the temperature of the installation table. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
  • the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position shorter than the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position farther from the installation table (for example, the floor) on which the housing 2 is placed. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after the fully charged battery is discharged, the first temperature sensor 5 is not affected by the temperature of the installation table and is inside the battery. A temperature that is approximately equal to the temperature (that is, a temperature that is approximately equal to the outside air temperature) can be measured more accurately. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
  • the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position longer than the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position further away from the charging device 3 that acts as a heat source. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature). It is possible to measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected by (high). As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
  • the first temperature sensor 5 is below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24. It is located above. In this way, the first temperature sensor 5 is arranged closer to the substrate 61 than the bottom wall 24 of the housing 2. Therefore, the first temperature sensor 5 can be easily attached to the substrate 61. Further, since it is not necessary to redesign the substrate 61 so as to correspond to the arrangement location of the first temperature sensor 5, the first temperature sensor 5 can be attached to the substrate 61 at low cost. Furthermore, the temperature of the place where the battery stands by before charging can be reproduced more accurately.
  • the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature). It is possible to more accurately measure a temperature that is substantially equal to the internal temperature of the battery (that is, a temperature that is approximately equal to the outside air temperature) without being affected by (high). As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
  • the first temperature sensor 5 is below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24. It is located below. In this way, the first temperature sensor 5 is arranged at a position further away from the substrate 61 that acts as a heat source. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the substrate 61 after the completion of charging (higher than the outside air temperature). ), It is possible to measure the temperature substantially equal to the internal temperature of the battery (that is, the temperature substantially equal to the outside air temperature) more accurately. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
  • a second temperature sensor is provided corresponding to each of the batteries on the portion of the outer wall 32 facing each of the batteries held in the holding body 31. ..
  • the microcomputer 6 is configured to end the charging operation by the charging device 3 when the temperature measured by the second temperature sensor is higher than a predetermined value. Therefore, even if the battery temperature before the start of charging is higher than the temperature measured by the first temperature sensor 5, it is possible to avoid a state in which the battery becomes excessively high due to charging of the charging device 3. , Battery failure can be avoided.
  • the present invention is not limited to the automatic charger 1 according to the above embodiment, and is included in the concept of the present invention and the scope of claims. Includes aspects.
  • each configuration may be selectively combined as appropriate so as to achieve the above-mentioned problems or effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An automatic charger (1) according to the present invention is provided with a box-shaped housing (2), a battery insertion unit (20) provided in an upper portion of the housing, a charging device (3) which is disposed below the battery insertion unit inside the housing, and which includes a rotatable holding body (31) for holding a plurality of batteries, and an outer wall (32) at least partially enclosing the perimeter of the holding body, a battery accommodating unit (4) provided below the charging device inside the housing, a first temperature sensor (5) provided inside the housing, and a control device (6) which is provided inside the housing and which is configured to begin charging by means of the charging device if the temperature measured by the first temperature sensor is within a certain range, wherein the first temperature sensor is disposed below the outer wall of the charging device and above a bottom wall of the housing.

Description

自動充電器Automatic charger
 本発明は自動充電器、特に二次電池を連続して充電することのできる自動充電器に関する。 The present invention relates to an automatic charger, particularly an automatic charger capable of continuously charging a secondary battery.
 従来から、二次電池の充電制御を的確に行うために、当該二次電池の温度情報を利用することが知られている。例えば、特許文献1には、電槽の蓋に温度センサ挿入孔を設け、当該温度センサ挿入孔に温度センサを取り付けたニッケル水素蓄電池が記載されている。当該ニッケル水素蓄電池では、電槽内に収容された電極群の上面近傍まで温度センサ挿入孔の下部を接近させている。これにより、電池内部温度とほぼ等しい温度を測定し、正確な温度情報を得ている。 Conventionally, it has been known to use the temperature information of the secondary battery in order to accurately control the charge of the secondary battery. For example, Patent Document 1 describes a nickel-metal hydride storage battery in which a temperature sensor insertion hole is provided in the lid of the battery case and a temperature sensor is attached to the temperature sensor insertion hole. In the nickel-metal hydride storage battery, the lower part of the temperature sensor insertion hole is brought close to the vicinity of the upper surface of the electrode group housed in the battery case. As a result, a temperature substantially equal to the internal temperature of the battery is measured, and accurate temperature information is obtained.
 また、特許文献2には、電池投入部の入口から投入された複数の電池を、回転部に設けた各スロットで個々に保持し、これら複数の電池をまとめて充電するように構成された充電器が記載されている。当該充電器は、充電が終了した複数の電池をまとめて排出した後、待機している複数の電池を連続して充電するように構成されている。 Further, in Patent Document 2, a plurality of batteries inserted from the inlet of the battery insertion portion are individually held in each slot provided in the rotating portion, and the plurality of batteries are collectively charged. The vessel is listed. The charger is configured to continuously charge a plurality of standby batteries after ejecting a plurality of batteries that have been charged together.
特開平8-140272号公報Japanese Unexamined Patent Publication No. 8-140272 特開2019-192368号公報Japanese Unexamined Patent Publication No. 2019-192368
 ところで、特許文献2に記載される充電器でも、二次電池の充電制御に当該電池の温度情報を利用することが一般的に行われている。この場合、回転部を取り囲むように設けられたハウジングに、スロットに保持された個々の電池に対応する複数の温度センサを埋設し、この温度センサを利用して個々の電池の温度情報を測定している。 By the way, even in the charger described in Patent Document 2, it is generally practiced to use the temperature information of the battery for charge control of the secondary battery. In this case, a plurality of temperature sensors corresponding to the individual batteries held in the slots are embedded in a housing provided so as to surround the rotating portion, and the temperature information of the individual batteries is measured using the temperature sensors. ing.
 しかしながら、充電された電池は発熱するため、回転部やハウジングなど、当該電池の周囲の雰囲気温度も上昇する。このため、回転部を取り囲むハウジングに温度センサを取り付けた場合、当該温度センサは、電池の周囲の雰囲気温度の影響を受ける場合がある。 However, since the charged battery generates heat, the ambient temperature around the battery, such as the rotating part and the housing, also rises. Therefore, when the temperature sensor is attached to the housing surrounding the rotating portion, the temperature sensor may be affected by the ambient temperature around the battery.
 特に、待機中の電池は外気温に近い温度を有するため、充電が終了した電池を排出した直後においては、温度センサ近傍の雰囲気温度は、待機中の電池の温度よりも高くなることがある。このため、当該充電器に電池が連続投入された場合、温度センサは、実際の電池温度よりも高い温度を測定してしまい、電池温度とほぼ等しい温度を測定できないことがある。この場合、充電器は、充電を開始することができず、効率的な充電を行うことができない場合があった。 In particular, since the standby battery has a temperature close to the outside air temperature, the ambient temperature near the temperature sensor may be higher than the temperature of the standby battery immediately after the charged battery is discharged. Therefore, when batteries are continuously inserted into the charger, the temperature sensor may measure a temperature higher than the actual battery temperature, and may not be able to measure a temperature substantially equal to the battery temperature. In this case, the charger may not be able to start charging and may not be able to perform efficient charging.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、電池を連続投入して充電を行う場合に、より効率的な充電を行うことのできる自動充電器を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an automatic charger capable of performing more efficient charging when continuously inserting batteries for charging. To do.
 上記目的を達成するため、本発明に係る自動充電器は、設置台に載置される箱形の筐体と、該筐体の上部に設けられ、複数の電池が投入される電池投入部と、前記筐体の内部において前記電池投入部の下側に配置され、前記電池投入部に投入された前記複数の電池に対して充電を行うように構成された充電装置であって、前記複数の電池を保持する回転可能な保持体と、該保持体の周囲を少なくとも部分的に包囲する外壁とを含む充電装置と、前記筐体の内部において前記充電装置の下側に設けられ、充電が終了した前記複数の電池を収容する電池収容部と、前記筐体の内部に設けられる第1温度センサと、前記筐体の内部に設けられ、前記第1温度センサによって測定された温度が所定の範囲内である場合に、前記充電装置による充電を開始するように構成された制御装置と、を備え、前記第1温度センサは、前記充電装置の前記外壁より下方、且つ、前記筐体の底壁の上方に配置されていることを特徴とする。 In order to achieve the above object, the automatic charger according to the present invention includes a box-shaped housing mounted on an installation table, and a battery charging portion provided on the upper portion of the housing into which a plurality of batteries are inserted. A charging device that is arranged below the battery insertion unit inside the housing and is configured to charge the plurality of batteries inserted into the battery insertion unit. A charging device including a rotatable holding body for holding the battery, an outer wall that at least partially surrounds the holding body, and a charging device provided under the charging device inside the housing to complete charging. The battery accommodating portion for accommodating the plurality of batteries, the first temperature sensor provided inside the housing, and the temperature provided inside the housing and measured by the first temperature sensor are within a predetermined range. The first temperature sensor includes a control device configured to start charging by the charging device when it is inside, and the first temperature sensor is below the outer wall of the charging device and the bottom wall of the housing. It is characterized in that it is arranged above.
 本発明の一態様に係る自動充電器において、前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離と等しくなる位置に配置されている。 In the automatic charger according to one aspect of the present invention, the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery. The unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device. The first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position equal to the distance between the battery located at the bottom of the batteries and the sorting mechanism.
 本発明の一態様に係る自動充電器において、前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離より短くなる位置に配置されている。 In the automatic charger according to one aspect of the present invention, the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery. The unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device. The first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position shorter than the distance between the battery located at the bottom of the batteries and the sorting mechanism.
 本発明の一態様に係る自動充電器において、前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離より長くなる位置に配置されている。 In the automatic charger according to one aspect of the present invention, the control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery, and accommodates the battery. The unit transfers the first battery to the first accommodating unit according to the determination result of the first accommodating unit accommodating the first battery, the second accommodating unit accommodating the second battery, and the control device. The first temperature sensor has a sorting mechanism for guiding and guiding the second battery to the second accommodating portion, and the distance between the first temperature sensor and the sorting mechanism is held by the holding body. It is arranged at a position longer than the distance between the battery located at the bottom of the batteries and the sorting mechanism.
 本発明の一態様に係る自動充電器において、前記制御装置は、少なくとも前記充電装置の前記外壁を側方から覆う基板であって、前記第1温度センサと接続される基板に取り付けられており、前記第1温度センサは、前記基板の下側端縁より下方であって、前記下側端縁と前記底壁との中央よりも上方に配置されている。 In the automatic charger according to one aspect of the present invention, the control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to a substrate connected to the first temperature sensor. The first temperature sensor is located below the lower edge of the substrate and above the center of the lower edge and the bottom wall.
 本発明の一態様に係る自動充電器において、前記制御装置は、少なくとも前記充電装置の前記外壁を側方から覆う基板であって、前記第1温度センサと接続される基板に取り付けられており、前記第1温度センサは、前記基板の下側端縁より下方であって、前記下側端縁と前記底壁との中央よりも下方に配置されている。 In the automatic charger according to one aspect of the present invention, the control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to a substrate connected to the first temperature sensor. The first temperature sensor is located below the lower edge of the substrate and below the center of the lower edge and the bottom wall.
 本発明の一態様に係る自動充電器において、前記保持体に保持された前記電池の各々と対向する前記外壁の部分に、前記電池の各々に対応して第2温度センサが設けられており、前記制御装置は、前記第2温度センサによって測定された温度が所定値より高い場合に、前記充電装置による充電動作を終了するように構成されている。 In the automatic charger according to one aspect of the present invention, a second temperature sensor corresponding to each of the batteries is provided on a portion of the outer wall facing each of the batteries held in the holder. The control device is configured to end the charging operation by the charging device when the temperature measured by the second temperature sensor is higher than a predetermined value.
 本発明に係る自動充電器は、複数の電池に対して充電を行うように構成された充電装置であって、複数の電池を保持する回転可能な保持体と、保持体の周囲を少なくとも部分的に包囲する外壁とを含む充電装置と、筐体の内部に設けられ、第1温度センサによって測定された温度が所定の範囲内である場合に、充電装置による充電を開始するように構成された制御装置と、を備えている。更に、当該第1温度センサは、筐体の内部において、充電装置の外壁より下方、且つ、筐体の底壁の上方に配置されている。このように、本発明の自動充電器において、第1温度センサは、熱源として作用する充電装置から離れた位置、即ち充電装置の外壁と筐体の底壁との間に配置されている。このため、充電が完了した電池を排出した直後に連続して他の電池を充電する場合であっても、第1温度センサは、充電終了後における充電装置近傍の温度(外気温より高い)の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)を測定することができる。これにより、当該充電器は、速やかに充電を開始することができ、効率的な充電を行うことができる。このようにして、電池を連続投入して充電を行う場合に、より効率的な充電を行うことのできる自動充電器を提供することができる。 The automatic charger according to the present invention is a charging device configured to charge a plurality of batteries, and has a rotatable holder for holding the plurality of batteries and at least a partial periphery of the holder. A charging device including an outer wall surrounding the battery and a charging device provided inside the housing are configured to start charging by the charging device when the temperature measured by the first temperature sensor is within a predetermined range. It is equipped with a control device. Further, the first temperature sensor is arranged inside the housing below the outer wall of the charging device and above the bottom wall of the housing. As described above, in the automatic charger of the present invention, the first temperature sensor is arranged at a position away from the charging device acting as a heat source, that is, between the outer wall of the charging device and the bottom wall of the housing. Therefore, even when the other batteries are continuously charged immediately after the fully charged battery is discharged, the first temperature sensor keeps the temperature near the charging device (higher than the outside air temperature) after the charging is completed. It is possible to measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected. As a result, the charger can start charging quickly, and efficient charging can be performed. In this way, it is possible to provide an automatic charger capable of performing more efficient charging when the batteries are continuously inserted and charged.
図1は、一実施形態に係る自動充電器の外観図である。FIG. 1 is an external view of an automatic charger according to an embodiment. 図2は、図1の線α-αに沿った自動充電器の断面図である。FIG. 2 is a cross-sectional view of the automatic charger along the line α−α of FIG. 図3は、一実施形態に係る自動充電器における、電池の投入から電池の収容までの流れを説明するためのブロック図である。FIG. 3 is a block diagram for explaining a flow from charging the battery to accommodating the battery in the automatic charger according to the embodiment. 図4は、一実施形態に係る自動充電器における電池の充電制御を説明するためのフローチャートである。FIG. 4 is a flowchart for explaining battery charge control in the automatic charger according to the embodiment.
 以下、本発明の実施形態について図面を参照し説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、一実施形態に係る自動充電器1の外観図である。図2は、図1の線α-αに沿った自動充電器1の断面図である。なお、説明の便宜上、図1及び図2に示すように、自動充電器1において、電池投入部20が配置される側を「上」、底壁24が配置される側を「下」と定義する。また、自動充電器1において、第1収容部41が配置される側を「前」、第2収容部42が配置される側を「後」と定義する。更に、上述した上下方向及び前後方向に垂直な方向を「右」、「左」と定義する。以下、各図に示される「前」、「後」、「左」、「右」、「上」、「下」は、全て上記定義に基づくものである。 FIG. 1 is an external view of the automatic charger 1 according to the embodiment. FIG. 2 is a cross-sectional view of the automatic charger 1 along the line α−α of FIG. For convenience of explanation, as shown in FIGS. 1 and 2, in the automatic charger 1, the side on which the battery insertion unit 20 is arranged is defined as "upper", and the side on which the bottom wall 24 is arranged is defined as "lower". do. Further, in the automatic charger 1, the side on which the first accommodating portion 41 is arranged is defined as "front", and the side on which the second accommodating portion 42 is arranged is defined as "rear". Further, the above-mentioned directions perpendicular to the vertical direction and the front-back direction are defined as "right" and "left". Hereinafter, "front", "rear", "left", "right", "top", and "bottom" shown in each figure are all based on the above definitions.
 本実施形態に係る自動充電器1は、電池投入部20から投入された複数の電池に対して充電装置3による充電動作を実行し、複数の電池を電池収容部4に収容するように構成されている。また、自動充電器1は、後述するように電池収容部4において第1電池及び第2電池を別々に収容する。 The automatic charger 1 according to the present embodiment is configured to execute a charging operation by the charging device 3 for a plurality of batteries inserted from the battery charging unit 20 and to accommodate the plurality of batteries in the battery accommodating unit 4. ing. Further, the automatic charger 1 separately accommodates the first battery and the second battery in the battery accommodating unit 4, as will be described later.
 ここで、本実施形態における第1電池とは、例えば、二次電池、かつ充電上限電圧、充放電効率、及び最大充放電電流が所定の閾値以上となる電池のことである。なお、本実施形態に係る自動充電器1では、後述するように、充電装置3による充電動作の結果に応じて、二次電池、かつ充電上限電圧、充放電効率、及び最大充放電電流が所定の閾値以上となるか否かを判定する。また、本実施形態に係る自動充電器1では、上記閾値として、経年劣化等の要因により寿命を迎えた、又は不良品であると判断可能な客観的数値が設定される。また、本実施形態に係る自動充電器1では、上記閾値として、ユーザにより任意の数値が設定可能である。 Here, the first battery in the present embodiment is, for example, a secondary battery and a battery in which the upper limit voltage for charging, the charge / discharge efficiency, and the maximum charge / discharge current are equal to or higher than a predetermined threshold value. In the automatic charger 1 according to the present embodiment, as will be described later, a secondary battery, a charge upper limit voltage, a charge / discharge efficiency, and a maximum charge / discharge current are predetermined according to the result of the charging operation by the charging device 3. It is determined whether or not the threshold value is equal to or higher than the threshold value of. Further, in the automatic charger 1 according to the present embodiment, an objective value that can be determined to be a defective product or has reached the end of its life due to factors such as aging deterioration is set as the above threshold value. Further, in the automatic charger 1 according to the present embodiment, an arbitrary numerical value can be set as the threshold value by the user.
 また、本実施形態における第2電池とは、充電上限電圧、充放電効率、又は最大充放電電流が所定の閾値未満となる電池のことである。上記第2電池には、一次電池、及び二次電池が含まれる。ここで、本実施形態における一次電池は、例えば、アルカリ電池、又はマンガン電池等の一般に知られている電池である。また、本実施形態における二次電池は、例えば、ニッケル水素電池、又はリチウムイオン電池等の一般に知られている電池である。また、本実施形態における一次電池、及び二次電池には、単三、又は単四等、様々な大きさの電池が含まれる。 Further, the second battery in the present embodiment is a battery in which the upper limit voltage for charging, the charging / discharging efficiency, or the maximum charging / discharging current is less than a predetermined threshold value. The second battery includes a primary battery and a secondary battery. Here, the primary battery in the present embodiment is a generally known battery such as an alkaline battery or a manganese battery. Further, the secondary battery in the present embodiment is a generally known battery such as a nickel hydrogen battery or a lithium ion battery. Further, the primary battery and the secondary battery in the present embodiment include batteries of various sizes such as AA or AAA batteries.
 次に、本実施形態に係る自動充電器1の各構成について説明する。図1及び図2に示すように、自動充電器1は、図示しない設置台に載置される箱形の筐体2と、筐体2の上部に設けられる電池投入部20と、筐体2の内部において電池投入部20の下側に配置される充電装置3と、筐体2の内部において充電装置3の下側に設けられる電池収容部4と、筐体2の内部に設けられる第1温度センサ5と、筐体2の内部に設けられる制御装置としてのマイコン6と、筐体2の内部に設けられる第2温度センサ(図示せず)と、検知部S1~S5と、表示部Dと、スイッチSWと、を備えている。 Next, each configuration of the automatic charger 1 according to the present embodiment will be described. As shown in FIGS. 1 and 2, the automatic charger 1 includes a box-shaped housing 2 mounted on an installation table (not shown), a battery insertion unit 20 provided on the upper portion of the housing 2, and a housing 2. A charging device 3 arranged on the lower side of the battery insertion unit 20 inside the housing 2, a battery accommodating unit 4 provided on the lower side of the charging device 3 inside the housing 2, and a first unit provided inside the housing 2. A temperature sensor 5, a microcomputer 6 as a control device provided inside the housing 2, a second temperature sensor (not shown) provided inside the housing 2, detection units S1 to S5, and a display unit D. And a switch SW.
 電池投入部20は、複数の電池が投入される筐体2の部分である。電池投入部20は、筐体2の上部に入口部21を有し、下部に出口部22を備えるホッパー形状を有する。また、電池投入部20の入口部21には、導入片23が設けられている。電池投入部20は、ホッパー形状及び導入片23を有することで、入口部21から投入された複数の電池を整列させながら、出口部22へ順番に導くことが可能である。 The battery insertion unit 20 is a portion of the housing 2 into which a plurality of batteries are inserted. The battery insertion unit 20 has a hopper shape having an inlet portion 21 at the upper portion of the housing 2 and an outlet portion 22 at the lower portion. Further, an introduction piece 23 is provided at the inlet portion 21 of the battery insertion portion 20. By having the hopper shape and the introduction piece 23, the battery insertion unit 20 can guide a plurality of batteries inserted from the inlet portion 21 to the outlet portion 22 in order while aligning the plurality of batteries.
 充電装置3は、電池投入部20に投入された複数の電池に対して充電を行うように構成されている。具体的には、充電装置3は、複数の電池を保持する回転可能な保持体31と、保持体31の周囲を少なくとも部分的に包囲する外壁32とを含む。より具体的には、保持体31は、回転軸Rを中心として所定の方向に回転する歯車形状を有しており、外壁32は、保持体31に沿って設けられ、電池投入部20の出口部22と一致する充電装置3の電池導入口を有する。保持体31の回転軸Rは、図示しないモータの出力軸に接続されている。保持体31は、モータの作動により、回転軸Rを中心として図2に示す回転方向に回転する。上記保持体31には、保持体31の円周方向に所定間隔で複数のスロット33が設けられている。 The charging device 3 is configured to charge a plurality of batteries inserted into the battery insertion unit 20. Specifically, the charging device 3 includes a rotatable holding body 31 that holds a plurality of batteries, and an outer wall 32 that at least partially surrounds the holding body 31. More specifically, the holding body 31 has a gear shape that rotates in a predetermined direction about the rotation axis R, and the outer wall 32 is provided along the holding body 31 and is an outlet of the battery insertion unit 20. It has a battery inlet of the charging device 3 that matches the unit 22. The rotation shaft R of the holding body 31 is connected to an output shaft of a motor (not shown). The holding body 31 rotates about the rotation axis R in the rotation direction shown in FIG. 2 by the operation of the motor. The holding body 31 is provided with a plurality of slots 33 at predetermined intervals in the circumferential direction of the holding body 31.
 複数のスロット33は、それぞれ電池投入部20の出口部22から一本ずつ電池を受容し、電池を係止する。例えば、充電装置3の電池導入口の近傍に位置するスロット33で電池を受容し、当該電池を係止した後、保持体31を図2に示す回転方向に1スロット分だけ回転させる。さらに、充電装置3の電池導入口の近傍に位置するスロット33で電池を受容し、当該電池を係止する。これらの作業を繰り返すことで、各スロット33において電池を係止することができる。本実施形態に係る充電装置3には、例えば、10個のスロット33が設けられている。 Each of the plurality of slots 33 receives one battery from the outlet 22 of the battery insertion unit 20 and locks the battery. For example, the battery is received in the slot 33 located near the battery introduction port of the charging device 3, the battery is locked, and then the holding body 31 is rotated by one slot in the rotation direction shown in FIG. Further, the battery is received in the slot 33 located near the battery introduction port of the charging device 3 and the battery is locked. By repeating these operations, the battery can be locked in each slot 33. The charging device 3 according to the present embodiment is provided with, for example, 10 slots 33.
 また、充電装置3には、保持体31に設けられた複数のスロット33に沿って複数の充電端子34が設けられている。充電端子34は、導電性を有する材料で形成された板状の部材である。充電端子34は、例えば、金属板である。充電端子34は、保持体31を図2に示す回転方向に回転させた場合に、各スロット33が通過する位置に固定されて設けられる。例えば、充電端子34が設けられた位置にスロット33に係止された電池が移動された場合、充電端子34により電池が充電される。 Further, the charging device 3 is provided with a plurality of charging terminals 34 along a plurality of slots 33 provided in the holding body 31. The charging terminal 34 is a plate-shaped member made of a conductive material. The charging terminal 34 is, for example, a metal plate. The charging terminal 34 is fixedly provided at a position where each slot 33 passes when the holding body 31 is rotated in the rotation direction shown in FIG. For example, when the battery locked in the slot 33 is moved to the position where the charging terminal 34 is provided, the battery is charged by the charging terminal 34.
 充電装置3は、充電動作の終了後、複数の電池を充電装置3の電池排出口35から自動で排出する。なお、充電装置3において充電動作を終了するタイミングは、例えば、充電対象となっているすべての電池の充電動作が終了した場合、又は充電されているすべての電池の充電が終了すると予想される所定の時間が経過した場合を含む。また、充電装置3は、ユーザによる所定の操作を契機として、複数の電池を充電装置3の電池排出口35から排出してもよい。具体的には、充電装置3は、後述するスイッチSWの操作を契機として、複数の電池を充電装置3の電池排出口35から排出してもよい。 The charging device 3 automatically discharges a plurality of batteries from the battery discharge port 35 of the charging device 3 after the charging operation is completed. The timing for ending the charging operation in the charging device 3 is, for example, a predetermined time when the charging operation of all the batteries to be charged is completed or the charging of all the charged batteries is expected to be completed. Including the case where the time has passed. Further, the charging device 3 may discharge a plurality of batteries from the battery discharge port 35 of the charging device 3 triggered by a predetermined operation by the user. Specifically, the charging device 3 may discharge a plurality of batteries from the battery discharge port 35 of the charging device 3, triggered by the operation of the switch SW described later.
 電池収容部4は、充電が終了した複数の電池を収容するように構成されている。具体的には、電池収容部4は、後述するマイコン6における電池各々に対する判別結果に応じて、第1電池及び第2電池を別々に収容する。例えば、電池収容部4は、第1収容部41、第2収容部42、及び振り分け機構43を有する。 The battery accommodating unit 4 is configured to accommodate a plurality of batteries that have been charged. Specifically, the battery accommodating unit 4 separately accommodates the first battery and the second battery according to the discrimination result for each battery in the microcomputer 6 described later. For example, the battery accommodating unit 4 has a first accommodating unit 41, a second accommodating unit 42, and a distribution mechanism 43.
 第1収容部41は、第1電池を収容する。第1収容部41は、第1電池の取り出しやすさを向上させるため、例えば、自動充電器1の内部において、上記充電装置3より下側、かつ自動充電器1の前側に設置される。第2収容部42は、第2電池を収容する。第2収容部42は、例えば、自動充電器1の内部において、充電装置3より下側に設置される。 The first accommodating unit 41 accommodates the first battery. The first accommodating portion 41 is installed inside the automatic charger 1, for example, below the charging device 3 and on the front side of the automatic charger 1 in order to improve the ease of taking out the first battery. The second accommodating portion 42 accommodates the second battery. The second accommodating portion 42 is installed below the charging device 3, for example, inside the automatic charger 1.
 振り分け機構43は、後述するマイコン6における判別結果に応じて、第1電池を充電装置3の電池排出口35から第1収容部41の電池導入口44へ導き、第2電池を充電装置3の電池排出口35から第2収容部42の電池導入口45へ導くように構成されている。例えば、本実施形態における振り分け機構43は、フラップを有する。フラップは、第1電池を第1収容部41に収容する場合、第1電池を第1収容部41へ導くための経路として、充電装置3の電池排出口35から第1収容部41の電池導入口44までを接続する第1経路R1を選択し、第2電池を第2収容部42に収容する場合、第2電池を第2収容部42へ導くための経路として、充電装置3の電池排出口35から第2収容部42の電池導入口45までを接続する第2経路R2を選択する。 The distribution mechanism 43 guides the first battery from the battery discharge port 35 of the charging device 3 to the battery introduction port 44 of the first accommodating unit 41 according to the determination result in the microcomputer 6 described later, and guides the second battery to the battery introduction port 44 of the charging device 3. It is configured to lead from the battery discharge port 35 to the battery introduction port 45 of the second accommodating portion 42. For example, the sorting mechanism 43 in this embodiment has a flap. When the first battery is accommodated in the first accommodating portion 41, the flap introduces the battery of the first accommodating portion 41 from the battery discharge port 35 of the charging device 3 as a route for guiding the first battery to the first accommodating portion 41. When the first path R1 connecting up to the port 44 is selected and the second battery is accommodated in the second accommodating portion 42, the battery exhaust of the charging device 3 is used as a route for guiding the second battery to the second accommodating portion 42. The second path R2 connecting the outlet 35 to the battery introduction port 45 of the second accommodating portion 42 is selected.
 なお、電池収容部4は、ユーザによりスイッチSWが操作された場合、スイッチSWの操作時における電池各々の判別結果に応じて、第1電池を第1収容部41に収容し、第2電池を第2収容部42に収容するように構成されてもよい。 When the switch SW is operated by the user, the battery accommodating unit 4 accommodates the first battery in the first accommodating unit 41 and the second battery according to the determination result of each battery at the time of operating the switch SW. It may be configured to be accommodated in the second accommodating portion 42.
 マイコン6は、ハードウェア資源として、所定のプロセッサを含む。マイコン6は、所定の充電特性を満たす第1電池、及び第1電池以外の第2電池を判別するように構成されている。具体的には、マイコン6は、検知部S1~S5による複数の電池各々の検知結果に基づいて、所定の充電特性を満たす第1電池、及び第1電池以外の第2電池を判別するように構成されている。例えば、マイコン6は、上記検知部S1~S5による検知結果に基づいて、電池各々の種類、充電可能な電池に充電された電気容量、並びに寿命を迎えた電池及び不良品を判別し、判別結果に応じて、第1電池及び第2電池を識別する。このとき、マイコン6は、スイッチSWの操作を契機として、複数の電池のうち、スイッチSWの操作時において所定の充電特性を満たす電池を第1電池として判別してもよい。例えば、マイコン6は、充電動作中であっても、複数の電池のうち、スイッチSWの操作時において所定の充電特性を満たす電池が存在すれば、当該電池を第1電池として判別する。 The microcomputer 6 includes a predetermined processor as a hardware resource. The microcomputer 6 is configured to discriminate between a first battery that satisfies a predetermined charging characteristic and a second battery other than the first battery. Specifically, the microcomputer 6 discriminates between the first battery satisfying the predetermined charging characteristics and the second battery other than the first battery based on the detection results of each of the plurality of batteries by the detection units S1 to S5. It is configured. For example, the microcomputer 6 discriminates each type of battery, the electric capacity charged in the rechargeable battery, the battery that has reached the end of its life, and the defective product based on the detection results by the detection units S1 to S5, and the discrimination result. The first battery and the second battery are identified according to the above. At this time, the microcomputer 6 may determine, among the plurality of batteries, a battery that satisfies a predetermined charging characteristic when the switch SW is operated as the first battery, triggered by the operation of the switch SW. For example, even during the charging operation, if there is a battery that satisfies a predetermined charging characteristic when the switch SW is operated, the microcomputer 6 determines the battery as the first battery.
 また、マイコン6は、第1温度センサ5によって測定された温度が所定の範囲内である場合に、充電装置3による充電を開始するように構成されている。具体的には、マイコン6は、第1温度センサ5によって測定された温度が0度以上35度以下である場合に、充電装置3に対し充電開始信号を送信し、これにより電池に対する充電動作が開始される。また、マイコン6は、第2温度センサによって測定された温度が所定値より高い場合に、充電装置3による充電動作を終了するように構成されている。具体的には、マイコン6は、第2温度センサによって測定された温度が60度を超えている場合に、充電装置3に対し充電終了信号を送信し、これにより電池に対する充電動作が終了する。なお、マイコン6は、少なくとも充電装置3の外壁32を側方(左右方向)から覆う基板61であって、第1温度センサ5と接続される基板61に取り付けられている。また、基板61には、第2温度センサが接続されており、これにより、第1温度センサ5及び第2温度センサによって測定された温度情報がマイコン6に送信される。 Further, the microcomputer 6 is configured to start charging by the charging device 3 when the temperature measured by the first temperature sensor 5 is within a predetermined range. Specifically, the microcomputer 6 transmits a charging start signal to the charging device 3 when the temperature measured by the first temperature sensor 5 is 0 ° C. or higher and 35 ° C. or lower, whereby the charging operation for the battery is performed. It will be started. Further, the microcomputer 6 is configured to end the charging operation by the charging device 3 when the temperature measured by the second temperature sensor is higher than a predetermined value. Specifically, when the temperature measured by the second temperature sensor exceeds 60 degrees, the microcomputer 6 transmits a charging end signal to the charging device 3, thereby ending the charging operation for the battery. The microcomputer 6 is a substrate 61 that covers at least the outer wall 32 of the charging device 3 from the side (left-right direction), and is attached to the substrate 61 connected to the first temperature sensor 5. Further, a second temperature sensor is connected to the substrate 61, whereby the temperature information measured by the first temperature sensor 5 and the second temperature sensor is transmitted to the microcomputer 6.
 検知部S1~S5は、各充電端子34に対応付けて設置される。検知部S1~S5は、充電装置3による充電動作の対象となっている電池各々の状態を検知する。具体的には、検知部S1~S5は、電池の電気容量、及び電気特性を検知する。検知部S1~S5は、電池各々の検知結果を、基板61を介してマイコン6へ送信する。なお、検知部S1~S5の設置位置は、図2に示す位置に限らず、任意の位置に設置可能である。本実施形態に係る自動充電器1には、例えば、5箇所に充電端子34が設けられている。すなわち、本実施形態に係る自動充電器1は、最大で5本の電池を同時に充電することが可能である。 The detection units S1 to S5 are installed in association with each charging terminal 34. The detection units S1 to S5 detect the state of each battery that is the target of the charging operation by the charging device 3. Specifically, the detection units S1 to S5 detect the electric capacity and the electric characteristics of the battery. The detection units S1 to S5 transmit the detection results of each battery to the microcomputer 6 via the substrate 61. The installation positions of the detection units S1 to S5 are not limited to the positions shown in FIG. 2, and can be installed at any position. The automatic charger 1 according to the present embodiment is provided with charging terminals 34 at five locations, for example. That is, the automatic charger 1 according to the present embodiment can charge up to five batteries at the same time.
 図2に示すように、第1温度センサ5は、充電装置3の外壁32より下方、且つ、筐体2の底壁24の上方に配置されている。具体的には、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2と等しくなる位置に配置されている。なお、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2より短くなる位置に配置されてもよい。また、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離より長くなる位置に配置されてもよい。より具体的には、第1温度センサ5と振り分け機構43との間の距離D1は、4cm又は約4cmであり、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2は、4cm又は約4cmである。 As shown in FIG. 2, the first temperature sensor 5 is arranged below the outer wall 32 of the charging device 3 and above the bottom wall 24 of the housing 2. Specifically, in the first temperature sensor 5, the distance D1 between the distribution mechanism 43 is the distance D2 between the battery located at the bottom of the batteries held in the holding body 31 and the distribution mechanism 43. They are placed in equal positions. The first temperature sensor 5 is located at a position where the distance D1 between the distribution mechanism 43 and the distribution mechanism 43 is shorter than the distance D2 between the battery located at the bottom of the batteries held by the holding body 31 and the distribution mechanism 43. May be placed in. Further, the first temperature sensor 5 is set so that the distance D1 between the distribution mechanism 43 and the distribution mechanism 43 is longer than the distance between the battery located at the bottom of the batteries held in the holding body 31 and the distribution mechanism 43. It may be arranged. More specifically, the distance D1 between the first temperature sensor 5 and the distribution mechanism 43 is 4 cm or about 4 cm, and the battery and the distribution mechanism 43 located at the bottom of the batteries held in the holder 31 The distance D2 between and is 4 cm or about 4 cm.
 また、第1温度センサ5は、基板61の下側端縁62より下方であって、下側端縁62と底壁24との中央よりも上方に配置されてもよい。また、第1温度センサ5は、基板61の下側端縁62より下方であって、下側端縁62と底壁24との中央よりも下方に配置されてもよい。 Further, the first temperature sensor 5 may be arranged below the lower edge 62 of the substrate 61 and above the center of the lower edge 62 and the bottom wall 24. Further, the first temperature sensor 5 may be arranged below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24.
 第2温度センサは、保持体31に保持された電池の各々と対向する外壁32の部分に、電池の各々に対応して設けられている。具体的には、第2温度センサは、外壁32に埋設されており、本実施形態では、充電端子34に対応して5つ設けられている。これにより、第2温度センサの各々は、スロット33に保持された電池の各々に対向して配置される。 The second temperature sensor is provided on the portion of the outer wall 32 facing each of the batteries held in the holding body 31 corresponding to each of the batteries. Specifically, the second temperature sensor is embedded in the outer wall 32, and in the present embodiment, five sensors are provided corresponding to the charging terminals 34. As a result, each of the second temperature sensors is arranged to face each of the batteries held in the slot 33.
 表示部Dは、例えば、マイコン6による制御の下で、充電装置3による充電動作の対象となっている電池各々の状態を表示する。表示部Dは、表示インタフェース回路と表示機器とを有する。表示インタフェース回路は、表示対象を表すデータをビデオ信号に変換する。表示信号は、表示機器に供給される。表示機器は、表示対象を表すビデオ信号を表示する。表示機器としては、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro Luminescence Display)、又は当技術分野で知られている他の任意のディスプレイが適宜利用可能である。 The display unit D displays the status of each battery that is the target of the charging operation by the charging device 3, for example, under the control of the microcomputer 6. The display unit D includes a display interface circuit and a display device. The display interface circuit converts the data representing the display target into a video signal. The display signal is supplied to the display device. The display device displays a video signal representing a display target. As the display device, for example, a liquid crystal display (LCD: Liquid Crystal Display), an organic EL display (OELD: Organic Electro Luminescence Display), or any other display known in the art can be appropriately used.
 スイッチSWは、充電装置3の各スロット33に係止されている電池を充電装置3の電池排出口35から強制的に排出するためのものである。スイッチSWは、押下又は回転等の所定の操作を行うことが可能である。例えば、第1電池が至急必要な場合において、表示部Dに上記充電動作が終了した第1電池が存在することを示す通知が表示されていると仮定する。ユーザは、スイッチSWを操作して、充電装置3の各スロット33に係止されている電池を充電装置3の電池排出口35から強制的に排出する。これにより、ユーザは、第2電池の充電状態に関わらず、自動充電器1から第1電池を取り出すことができる。 The switch SW is for forcibly discharging the batteries locked in each slot 33 of the charging device 3 from the battery discharge port 35 of the charging device 3. The switch SW can perform a predetermined operation such as pressing or rotating. For example, when the first battery is urgently needed, it is assumed that the display unit D displays a notification indicating that the first battery whose charging operation has been completed exists. The user operates the switch SW to forcibly discharge the batteries locked in each slot 33 of the charging device 3 from the battery discharge port 35 of the charging device 3. As a result, the user can take out the first battery from the automatic charger 1 regardless of the charging state of the second battery.
 次いで、本実施形態に係る自動充電器1における、電池の投入から電池の収容までの流れについて、図3及び図4を参照して説明する。図3は、一実施形態に係る自動充電器1における、電池の投入から電池の収容までの流れを説明するためのブロック図である。図4は、一実施形態に係る自動充電器1における電池の充電制御を説明するためのフローチャートである。なお、図3は、電池の投入から電池の収容までの流れを例示的に示すものであり、自動充電器1を構成する構成部材の部分的な強調、拡大、縮小、又は省略を行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない。すなわち、図3に示す構成部材の縮尺や形状は、図1及び図2に示す構成部材の縮尺や形状と異なる。 Next, the flow from charging the battery to accommodating the battery in the automatic charger 1 according to the present embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a block diagram for explaining a flow from charging the battery to accommodating the battery in the automatic charger 1 according to the embodiment. FIG. 4 is a flowchart for explaining battery charge control in the automatic charger 1 according to the embodiment. Note that FIG. 3 exemplifies the flow from the insertion of the battery to the storage of the battery, and partially emphasizes, enlarges, reduces, or omits the constituent members constituting the automatic charger 1. , The scale and shape of the constituent members are not accurately represented. That is, the scale and shape of the constituent members shown in FIG. 3 are different from the scale and shape of the constituent members shown in FIGS. 1 and 2.
 まず、ユーザにより、電池投入部20の入口部21に電池B1~B5が投入される。なお、図3において電池B5は図示されていない。電池B1~B5は、円筒形状を有している。次に、電池投入部20の入口部21に投入された電池B1~B5が充電装置3の各スロット33に受容され、係止される。次に、各スロット33に係止された電池B1~B5が各充電端子34の設置位置に移動される。 First, the user inserts the batteries B1 to B5 into the inlet portion 21 of the battery insertion unit 20. The battery B5 is not shown in FIG. The batteries B1 to B5 have a cylindrical shape. Next, the batteries B1 to B5 inserted into the inlet portion 21 of the battery insertion unit 20 are received and locked in each slot 33 of the charging device 3. Next, the batteries B1 to B5 locked in each slot 33 are moved to the installation positions of the charging terminals 34.
 次いで、マイコン6は、第1温度センサ5によって測定される温度情報を受信し、当該温度が0度以上35度以下の範囲にあるか否かを判断する(図4のS100)。マイコン6によって、当該温度が0度以上35度以下の範囲にないと判断された場合(S100のNo)、マイコン6は、充電装置3に対し電池の充電を開始する充電開始信号を送信せず、所定の時間待機する待機指令信号を送信する(図4のS200)。S100の判断工程は、第1温度センサ5によって測定される温度が0度以上35度以下の範囲内となるまで繰り返される。他方、マイコン6によって、当該温度が0度以上35度以下の範囲にあると判断された場合(S100のYes)、マイコン6は、充電装置3に対して充電開始信号を送信する(図4のS300)。 Next, the microcomputer 6 receives the temperature information measured by the first temperature sensor 5 and determines whether or not the temperature is in the range of 0 degrees or more and 35 degrees or less (S100 in FIG. 4). When the microcomputer 6 determines that the temperature is not in the range of 0 ° C. or higher and 35 ° C. or lower (No in S100), the microcomputer 6 does not send a charging start signal to the charging device 3 to start charging the battery. , Transmits a standby command signal that waits for a predetermined time (S200 in FIG. 4). The determination step of S100 is repeated until the temperature measured by the first temperature sensor 5 is within the range of 0 ° C. or higher and 35 ° C. or lower. On the other hand, when the microcomputer 6 determines that the temperature is in the range of 0 ° C. or higher and 35 ° C. or lower (Yes in S100), the microcomputer 6 transmits a charging start signal to the charging device 3 (FIG. 4). S300).
 ここで、検知部S1~S5は、充電動作中において、電池B1~B5の電気容量、及び電気特性を検知し、マイコン6へ送信する。なお、図3において検知部S5は図示されていない。次に、マイコン6は、検知部S1~S5による検知結果に基づいて、電池B1~B5の種類、充電可能な電池に充電された電気容量、並びに寿命を迎えた電池及び不良品を判定する。具体的には、マイコン6は、充電端子34による充電動作の結果、電池B1~B5の電圧が上昇した場合、電池B1~B5が二次電池であると判定する。また、マイコン6は、充電端子34による充電動作の結果、電池B1~B5の充電上限電圧、充放電効率、及び最大充放電電流が所定の閾値以上となった場合、電池B1~B5が第1電池であると判定する。他方、マイコン6は、充電端子34による充電動作の結果、電池B1~B5の電圧が上昇しなかった場合、電池B4が一次電池であると判定する。すなわち、マイコン6は、電池B1~B5を第2電池として判別する。 Here, the detection units S1 to S5 detect the electric capacity and the electric characteristics of the batteries B1 to B5 during the charging operation and transmit them to the microcomputer 6. Note that the detection unit S5 is not shown in FIG. Next, the microcomputer 6 determines the types of batteries B1 to B5, the electric capacity charged in the rechargeable battery, and the batteries that have reached the end of their life and defective products, based on the detection results of the detection units S1 to S5. Specifically, when the voltage of the batteries B1 to B5 rises as a result of the charging operation by the charging terminal 34, the microcomputer 6 determines that the batteries B1 to B5 are secondary batteries. Further, in the microcomputer 6, when the charging upper limit voltage, the charging / discharging efficiency, and the maximum charging / discharging current of the batteries B1 to B5 become equal to or more than a predetermined threshold value as a result of the charging operation by the charging terminal 34, the batteries B1 to B5 are the first. Determined to be a battery. On the other hand, the microcomputer 6 determines that the battery B4 is a primary battery when the voltage of the batteries B1 to B5 does not rise as a result of the charging operation by the charging terminal 34. That is, the microcomputer 6 discriminates the batteries B1 to B5 as the second battery.
 更に、マイコン6は、検知部S1~S5による検知結果に基づいて、電池B1~B5が満充電に達したか否かを判断する(図4のS400)。具体的には、マイコン6は、充電端子34による充電動作の結果、電池B1~B5の内部における電圧が所定の傾き以上で上昇したか否か、当該電圧が所定の低下量を示したか否か、又は第2温度センサによる測定温度が60度を超えたか否かを判断する。この結果、電池B1~B5の内部における電圧が所定の傾き以上で上昇していない、当該電圧が所定の低下量を示していない、又は第2温度センサによる測定温度が60度を超えていないと判断された場合、マイコン6は、当該電池B1~B5が満充電に達していないと判断し(S400のNo)、充電装置3に対し、充電動作を継続するよう充電継続信号を送信する。他方、電池B1~B5の内部における電圧が所定の傾き以上で上昇した、当該電圧が所定の低下量を示した、又は第2温度センサによる測定温度が60度を超えたと判断された場合、マイコン6は、当該電池B1~B5が満充電に達したと判断する(S400のYes)。 Further, the microcomputer 6 determines whether or not the batteries B1 to B5 have reached full charge based on the detection results of the detection units S1 to S5 (S400 in FIG. 4). Specifically, in the microcomputer 6, whether or not the voltage inside the batteries B1 to B5 rises by a predetermined inclination or more as a result of the charging operation by the charging terminal 34, and whether or not the voltage shows a predetermined amount of decrease. Or, it is determined whether or not the temperature measured by the second temperature sensor exceeds 60 degrees. As a result, the voltage inside the batteries B1 to B5 does not rise by a predetermined inclination or more, the voltage does not show a predetermined decrease amount, or the temperature measured by the second temperature sensor does not exceed 60 degrees. If it is determined, the microcomputer 6 determines that the batteries B1 to B5 have not reached full charge (No in S400), and transmits a charge continuation signal to the charging device 3 so as to continue the charging operation. On the other hand, when it is determined that the voltage inside the batteries B1 to B5 rises by a predetermined inclination or more, the voltage shows a predetermined decrease amount, or the temperature measured by the second temperature sensor exceeds 60 degrees, the microcomputer 6 determines that the batteries B1 to B5 have reached full charge (Yes in S400).
 マイコン6によって電池B1~B5が満充電に達したと判断された場合、充電装置3は、電池B1~B5を充電装置3の電池排出口35から排出する(S500)。具体的には、充電装置3から電池B1~B5が排出される最、電池収容部4は、マイコン6における複数の電池B1~B5各々の判別結果に応じて、第1電池を第1収容部41に収容し、第2電池を第2収容部42に収容する。 When it is determined by the microcomputer 6 that the batteries B1 to B5 have reached full charge, the charging device 3 discharges the batteries B1 to B5 from the battery discharge port 35 of the charging device 3 (S500). Specifically, when the batteries B1 to B5 are discharged from the charging device 3, the battery accommodating unit 4 sets the first battery as the first accommodating unit according to the determination result of each of the plurality of batteries B1 to B5 in the microcomputer 6. It is housed in 41, and the second battery is housed in the second storage section 42.
 例えば、マイコン6において第1電池として判別された電池B1~B5を第1収容部41に収容する場合、電池収容部4を構成するフラップ46、及びアクチュエータ47を用いて、上記第2経路R2を閉鎖する。上記アクチュエータ47は、例えば、ソレノイド、又はサーボモータである。アクチュエータ47の動作は、マイコン6により制御する。これにより、第1経路R1を経由して、第1電池として判別された電池を第1収容部41に収容することができる。 For example, when the batteries B1 to B5 determined as the first battery in the microcomputer 6 are accommodated in the first accommodating portion 41, the flap 46 and the actuator 47 constituting the battery accommodating portion 4 are used to perform the second path R2. Close. The actuator 47 is, for example, a solenoid or a servomotor. The operation of the actuator 47 is controlled by the microcomputer 6. As a result, the battery determined as the first battery can be accommodated in the first accommodating portion 41 via the first path R1.
 また、充電装置3において第2電池として判別された電池B1~B5を第2収容部42に収容する場合、上記フラップ46、及びアクチュエータ47を用いて、上記第1経路R1を閉鎖する。具体的には、電池B1~B5を第2収容部42に収容する場合、図3に示すように、マイコン6による判別結果に応じて、充電装置3からの電池B1~B5の排出タイミングで、フラップ46により上記第1経路R1を閉鎖する。すなわち、マイコン6は、フラップ46により第1経路R1を閉鎖するようにアクチュエータ47の動作を制御する。これにより、第2経路R2を経由して、第2電池として判別された電池を第2収容部42に収容することができる。上記過程を経て、本実施形態に係る自動充電器1は、第1電池を第1収容部41に収容し、第2電池を第2収容部42に収容することができる。 Further, when the batteries B1 to B5 determined as the second batteries in the charging device 3 are accommodated in the second accommodating portion 42, the flap 46 and the actuator 47 are used to close the first path R1. Specifically, when the batteries B1 to B5 are housed in the second storage unit 42, as shown in FIG. 3, the batteries B1 to B5 are discharged from the charging device 3 at the timing of discharging the batteries B1 to B5 according to the determination result by the microcomputer 6. The flap 46 closes the first path R1. That is, the microcomputer 6 controls the operation of the actuator 47 so as to close the first path R1 by the flap 46. As a result, the battery determined as the second battery can be accommodated in the second accommodating portion 42 via the second path R2. Through the above process, the automatic charger 1 according to the present embodiment can accommodate the first battery in the first accommodating portion 41 and the second battery in the second accommodating portion 42.
 本実施形態に係る自動充電器1の作用、効果について説明する。上述したように、本実施形態に係る自動充電器1は、複数の電池に対して充電を行うように構成された充電装置3であって、複数の電池を保持する回転可能な保持体31と、保持体31の周囲を少なくとも部分的に包囲する外壁32とを含む充電装置3と、筐体2の内部に設けられ、第1温度センサ5によって測定された温度が所定の範囲内である場合に、充電装置3による充電を開始するように構成されたマイコン6と、を備えている。更に、当該第1温度センサ5は、筐体2の内部において、充電装置3の外壁32より下方、且つ、筐体2の底壁24の上方に配置されている。このように、本実施形態の自動充電器1において、第1温度センサ5は、熱源として作用する充電装置3から離れた位置、即ち充電装置3の外壁32と筐体2の底壁24との間に配置されている。つまり、充電装置3の上方は雰囲気温度が高くなる傾向があるところ、第1温度センサ5を充電装置3の下方に配置することで、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、充電終了後における充電装置3の近傍の温度(外気温より高い)の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)を測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。このようにして、電池を連続投入して充電を行う場合に、より効率的な充電を行うことのできる自動充電器1を提供することができる。 The operation and effect of the automatic charger 1 according to this embodiment will be described. As described above, the automatic charger 1 according to the present embodiment is a charging device 3 configured to charge a plurality of batteries, and includes a rotatable holder 31 for holding the plurality of batteries. When the charging device 3 including the outer wall 32 that at least partially surrounds the periphery of the holding body 31 and the temperature measured by the first temperature sensor 5 provided inside the housing 2 are within a predetermined range. It also includes a microcomputer 6 configured to start charging by the charging device 3. Further, the first temperature sensor 5 is arranged inside the housing 2 below the outer wall 32 of the charging device 3 and above the bottom wall 24 of the housing 2. As described above, in the automatic charger 1 of the present embodiment, the first temperature sensor 5 is located at a position away from the charging device 3 acting as a heat source, that is, the outer wall 32 of the charging device 3 and the bottom wall 24 of the housing 2. It is placed in between. That is, where the atmospheric temperature tends to be high above the charging device 3, by arranging the first temperature sensor 5 below the charging device 3, the temperature of the place where the battery before charging stands by is reproduced more accurately. can do. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature). It is possible to measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected by (high). As a result, the automatic charger 1 can start charging quickly and can perform efficient charging. In this way, it is possible to provide the automatic charger 1 capable of performing more efficient charging when the batteries are continuously inserted and charged.
 また、本実施形態に係る自動充電器1によれば、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2と等しくなる位置に配置されている。このように、第1温度センサ5は、熱源として作用する充電装置3から離れた位置、且つ、筐体2が載置される設置台(例えば床)からも離れた位置に配置される。つまり、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、充電終了後における充電装置3の近傍の温度(外気温より高い)の影響だけでなく、設置台の温度の影響も受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)をより正確に測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。 Further, according to the automatic charger 1 according to the present embodiment, the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position equal to the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position away from the charging device 3 acting as a heat source and also at a position away from the installation table (for example, the floor) on which the housing 2 is placed. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after the fully charged battery is discharged, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the charging is completed (from the outside air temperature). It is possible to more accurately measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected not only by the influence of (high) but also by the temperature of the installation table. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
 また、本実施形態に係る自動充電器1によれば、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2より短くなる位置に配置されている。このように、第1温度センサ5は、筐体2が載置される設置台(例えば床)から、より離れた位置に配置される。つまり、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、設置台の温度の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)をより正確に測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。 Further, according to the automatic charger 1 according to the present embodiment, the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position shorter than the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position farther from the installation table (for example, the floor) on which the housing 2 is placed. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after the fully charged battery is discharged, the first temperature sensor 5 is not affected by the temperature of the installation table and is inside the battery. A temperature that is approximately equal to the temperature (that is, a temperature that is approximately equal to the outside air temperature) can be measured more accurately. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
 また、本実施形態に係る自動充電器1によれば、第1温度センサ5は、振り分け機構43との間の距離D1が、保持体31に保持される電池のうち最下部に位置する電池と振り分け機構43との間の距離D2より長くなる位置に配置されている。このように、第1温度センサ5は、熱源として作用する充電装置3からより一層離れた位置に配置される。つまり、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、充電終了後における充電装置3の近傍の温度(外気温より高い)の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)をより一層正確に測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。 Further, according to the automatic charger 1 according to the present embodiment, the first temperature sensor 5 has a distance D1 between the distribution mechanism 43 and the battery located at the lowest position among the batteries held in the holding body 31. It is arranged at a position longer than the distance D2 between the distribution mechanism 43 and the distribution mechanism 43. In this way, the first temperature sensor 5 is arranged at a position further away from the charging device 3 that acts as a heat source. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature). It is possible to measure a temperature substantially equal to the internal temperature of the battery (that is, a temperature substantially equal to the outside air temperature) without being affected by (high). As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
 また、本実施形態に係る自動充電器1によれば、第1温度センサ5は、基板61の下側端縁62より下方であって、下側端縁62と底壁24との中央よりも上方に配置されている。このように、第1温度センサ5は、筐体2の底壁24よりも基板61に近い側に配置される。このため、基板61への第1温度センサ5の取り付けを容易に行うことができる。また、第1温度センサ5の配置場所に対応させるように基板61を再設計する必要がないため、基板61への第1温度センサ5の取り付けを低コストで行うことができる。更に、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、充電終了後における充電装置3の近傍の温度(外気温より高い)の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)をより正確に測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。 Further, according to the automatic charger 1 according to the present embodiment, the first temperature sensor 5 is below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24. It is located above. In this way, the first temperature sensor 5 is arranged closer to the substrate 61 than the bottom wall 24 of the housing 2. Therefore, the first temperature sensor 5 can be easily attached to the substrate 61. Further, since it is not necessary to redesign the substrate 61 so as to correspond to the arrangement location of the first temperature sensor 5, the first temperature sensor 5 can be attached to the substrate 61 at low cost. Furthermore, the temperature of the place where the battery stands by before charging can be reproduced more accurately. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the charging device 3 after the completion of charging (from the outside air temperature). It is possible to more accurately measure a temperature that is substantially equal to the internal temperature of the battery (that is, a temperature that is approximately equal to the outside air temperature) without being affected by (high). As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
 また、本実施形態に係る自動充電器1によれば、第1温度センサ5は、基板61の下側端縁62より下方であって、下側端縁62と底壁24との中央よりも下方に配置されている。このように、第1温度センサ5は、熱源として作用する基板61からより一層離れた位置に配置される。つまり、充電前の電池が待機する場所の温度をより正確に再現することができる。このため、充電が完了した電池を排出した直後に連続して他の電池を投入する場合であっても、第1温度センサ5は、充電終了後における基板61の近傍の温度(外気温より高い)の影響を受けることなく、当該電池の内部温度とほぼ等しい温度(即ち外気温とほぼ等しい温度)をより正確に測定することができる。これにより、自動充電器1は、速やかに充電を開始することができ、効率的な充電を行うことができる。 Further, according to the automatic charger 1 according to the present embodiment, the first temperature sensor 5 is below the lower edge 62 of the substrate 61 and below the center of the lower edge 62 and the bottom wall 24. It is located below. In this way, the first temperature sensor 5 is arranged at a position further away from the substrate 61 that acts as a heat source. That is, it is possible to more accurately reproduce the temperature of the place where the battery stands by before charging. Therefore, even when another battery is continuously inserted immediately after discharging the fully charged battery, the first temperature sensor 5 keeps the temperature in the vicinity of the substrate 61 after the completion of charging (higher than the outside air temperature). ), It is possible to measure the temperature substantially equal to the internal temperature of the battery (that is, the temperature substantially equal to the outside air temperature) more accurately. As a result, the automatic charger 1 can start charging quickly and can perform efficient charging.
 また、本実施形態に係る自動充電器1によれば、保持体31に保持された電池の各々と対向する外壁32の部分に、電池の各々に対応して第2温度センサが設けられている。また、マイコン6は、第2温度センサによって測定された温度が所定値より高い場合に、充電装置3による充電動作を終了するように構成されている。このため、仮に、充電開始前の電池温度が第1温度センサ5により測定された温度より高い場合であっても、充電装置3の充電によって電池が過度に高温になる状態を回避することができ、電池の故障を回避することができる。 Further, according to the automatic charger 1 according to the present embodiment, a second temperature sensor is provided corresponding to each of the batteries on the portion of the outer wall 32 facing each of the batteries held in the holding body 31. .. Further, the microcomputer 6 is configured to end the charging operation by the charging device 3 when the temperature measured by the second temperature sensor is higher than a predetermined value. Therefore, even if the battery temperature before the start of charging is higher than the temperature measured by the first temperature sensor 5, it is possible to avoid a state in which the battery becomes excessively high due to charging of the charging device 3. , Battery failure can be avoided.
 以上、本発明の好適な実施の形態について説明したが、本発明は上記の実施の形態に係る自動充電器1に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含む。また、上述した課題、又は効果を奏するように、各構成を適宜選択的に組み合わせても良い。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the automatic charger 1 according to the above embodiment, and is included in the concept of the present invention and the scope of claims. Includes aspects. In addition, each configuration may be selectively combined as appropriate so as to achieve the above-mentioned problems or effects.
 1 自動充電器
 2 筐体
 3 充電装置
 4 電池収容部
 5 第1温度センサ
 6 マイコン(制御装置)
 20 電池投入部
 24 底壁
 31 保持体
 32 外壁
 41 第1収容部
 42 第2収容部
 43 振り分け機構
 61 基板
 62 下側端縁
 
1 Automatic charger 2 Housing 3 Charging device 4 Battery housing 5 First temperature sensor 6 Microcomputer (control device)
20 Battery insertion part 24 Bottom wall 31 Holder 32 Outer wall 41 First accommodating part 42 Second accommodating part 43 Sorting mechanism 61 Board 62 Lower edge

Claims (7)

  1.  設置台に載置される箱形の筐体と、
     該筐体の上部に設けられ、複数の電池が投入される電池投入部と、
     前記筐体の内部において前記電池投入部の下側に配置され、前記電池投入部に投入された前記複数の電池に対して充電を行うように構成された充電装置であって、前記複数の電池を保持する回転可能な保持体と、該保持体の周囲を少なくとも部分的に包囲する外壁とを含む充電装置と、
     前記筐体の内部において前記充電装置の下側に設けられ、充電が終了した前記複数の電池を収容する電池収容部と、
     前記筐体の内部に設けられる第1温度センサと、
     前記筐体の内部に設けられ、前記第1温度センサによって測定された温度が所定の範囲内である場合に、前記充電装置による充電を開始するように構成された制御装置と、を備え、
     前記第1温度センサは、前記充電装置の前記外壁より下方、且つ、前記筐体の底壁の上方に配置されていることを特徴とする、自動充電器。
    A box-shaped housing that is placed on the installation stand and
    A battery insertion unit provided on the upper part of the housing and into which a plurality of batteries are inserted,
    A charging device that is arranged below the battery insertion unit inside the housing and is configured to charge the plurality of batteries inserted into the battery insertion unit. A charging device including a rotatable holder for holding the holder and an outer wall that at least partially surrounds the holder.
    A battery accommodating portion provided under the charging device inside the housing and accommodating the plurality of batteries that have been charged, and a battery accommodating portion.
    The first temperature sensor provided inside the housing and
    A control device provided inside the housing and configured to start charging by the charging device when the temperature measured by the first temperature sensor is within a predetermined range.
    The first temperature sensor is an automatic charger, which is arranged below the outer wall of the charging device and above the bottom wall of the housing.
  2.  前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、
     前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、
     前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離と等しくなる位置に配置されている、請求項1記載の自動充電器。
    The control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery.
    The battery accommodating portion includes the first accommodating portion accommodating the first battery, the second accommodating portion accommodating the second battery, and the first battery according to the determination result in the control device. It has a distribution mechanism for guiding the second battery to the accommodating portion and guiding the second battery to the second accommodating portion.
    The first temperature sensor is arranged at a position where the distance between the distribution mechanism and the distribution mechanism is equal to the distance between the battery located at the bottom of the batteries held in the holder and the distribution mechanism. The automatic charger according to claim 1.
  3.  前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、
     前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、
     前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離より短くなる位置に配置されている、請求項1記載の自動充電器。
    The control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery.
    The battery accommodating portion includes the first accommodating portion accommodating the first battery, the second accommodating portion accommodating the second battery, and the first battery according to the determination result in the control device. It has a distribution mechanism for guiding the second battery to the accommodating portion and guiding the second battery to the second accommodating portion.
    The first temperature sensor is arranged at a position where the distance between the distribution mechanism and the distribution mechanism is shorter than the distance between the battery held in the holder at the bottom and the distribution mechanism. The automatic charger according to claim 1.
  4.  前記制御装置は、所定の充電特性を満たす第1電池と該第1電池以外の第2電池とを判別するように構成されており、
     前記電池収容部は、前記第1電池を収容する第1収容部と、前記第2電池を収容する第2収容部と、前記制御装置における判別結果に応じて、前記第1電池を前記第1収容部へ導き、前記第2電池を前記第2収容部へ導くための振り分け機構と、を有しており、
     前記第1温度センサは、前記振り分け機構との間の距離が、前記保持体に保持される電池のうち最下部に位置する電池と前記振り分け機構との間の距離より長くなる位置に配置されている、請求項1記載の自動充電器。
    The control device is configured to discriminate between a first battery satisfying a predetermined charging characteristic and a second battery other than the first battery.
    The battery accommodating portion includes the first accommodating portion accommodating the first battery, the second accommodating portion accommodating the second battery, and the first battery according to the determination result in the control device. It has a distribution mechanism for guiding the second battery to the accommodating portion and guiding the second battery to the second accommodating portion.
    The first temperature sensor is arranged at a position where the distance between the distribution mechanism and the distribution mechanism is longer than the distance between the battery located at the bottom of the batteries held in the holder and the distribution mechanism. The automatic charger according to claim 1.
  5.  前記制御装置は、少なくとも前記充電装置の前記外壁を側方から覆う基板であって、前記第1温度センサと接続される基板に取り付けられており、
     前記第1温度センサは、前記基板の下側端縁より下方であって、前記下側端縁と前記底壁との中央よりも上方に配置されている、請求項1記載の自動充電器。
    The control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to the substrate connected to the first temperature sensor.
    The automatic charger according to claim 1, wherein the first temperature sensor is located below the lower edge of the substrate and above the center of the lower edge and the bottom wall.
  6.  前記制御装置は、少なくとも前記充電装置の前記外壁を側方から覆う基板であって、前記第1温度センサと接続される基板に取り付けられており、
     前記第1温度センサは、前記基板の下側端縁より下方であって、前記下側端縁と前記底壁との中央よりも下方に配置されている、請求項1記載の自動充電器。
    The control device is a substrate that covers at least the outer wall of the charging device from the side, and is attached to the substrate connected to the first temperature sensor.
    The automatic charger according to claim 1, wherein the first temperature sensor is located below the lower edge of the substrate and below the center of the lower edge and the bottom wall.
  7.  前記保持体に保持された前記電池の各々と対向する前記外壁の部分に、前記電池の各々に対応して第2温度センサが設けられており、
     前記制御装置は、前記第2温度センサによって測定された温度が所定値より高い場合に、前記充電装置による充電動作を終了するように構成されている、請求項1から6までのいずれか1項記載の自動充電器。
     
    A second temperature sensor corresponding to each of the batteries is provided on a portion of the outer wall facing each of the batteries held in the holder.
    The control device is configured to end the charging operation by the charging device when the temperature measured by the second temperature sensor is higher than a predetermined value, any one of claims 1 to 6. Described automatic charger.
PCT/JP2021/006367 2020-03-30 2021-02-19 Automatic charger WO2021199778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060114A JP2021158892A (en) 2020-03-30 2020-03-30 Automatic charger
JP2020-060114 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021199778A1 true WO2021199778A1 (en) 2021-10-07

Family

ID=77918977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006367 WO2021199778A1 (en) 2020-03-30 2021-02-19 Automatic charger

Country Status (2)

Country Link
JP (1) JP2021158892A (en)
WO (1) WO2021199778A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215525A (en) * 1996-12-25 1998-08-11 Oki Electric Ind Co Ltd Charging device
JP2010246219A (en) * 2009-04-03 2010-10-28 Sanyo Electric Co Ltd Secondary-battery housing device
JP2012200113A (en) * 2011-03-23 2012-10-18 Panasonic Corp Battery pack and charging system
WO2015064734A1 (en) * 2013-11-01 2015-05-07 日本電気株式会社 Charging device, electricity storage system, charging method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215525A (en) * 1996-12-25 1998-08-11 Oki Electric Ind Co Ltd Charging device
JP2010246219A (en) * 2009-04-03 2010-10-28 Sanyo Electric Co Ltd Secondary-battery housing device
JP2012200113A (en) * 2011-03-23 2012-10-18 Panasonic Corp Battery pack and charging system
WO2015064734A1 (en) * 2013-11-01 2015-05-07 日本電気株式会社 Charging device, electricity storage system, charging method, and program

Also Published As

Publication number Publication date
JP2021158892A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US6215275B1 (en) Method for the automatic determination of battery chemistry in portable electronic devices
JP7234410B2 (en) BATTERY PACK DEFECT DETECTION APPARATUS AND METHOD
US7969116B2 (en) Power pack and cordless power tool having the same
AU2007222067B2 (en) Battery charger
US5744937A (en) Dual battery charging device for charging nickel metal-hydride and lithium-ion batteries
US20130257385A1 (en) Battery pack
US6476584B2 (en) Battery charger and battery charging method
WO2011152062A1 (en) Battery charging apparatus and battery charging method
JP4785708B2 (en) Pack battery control method
US11804616B2 (en) Battery pack manufacturing apparatus and method, and battery pack
US20090121687A1 (en) Charging method and charging apparatus
WO2020003827A1 (en) Rechargeable cleaner
KR20220107549A (en) Apparatus and method for managing battery
WO2021199778A1 (en) Automatic charger
JP4121098B2 (en) Rechargeable battery residual capacity detection method using nickel hydroxide positive electrode
JP3594078B2 (en) Information processing device capable of using secondary battery and dry battery, and dry battery pack detachable from the information processing device
JP7101524B2 (en) Automatic charger
JPH0745306A (en) Battery pack and electric and electronic equipment
JPH06105476A (en) Battery charger
JP7408903B2 (en) Battery diagnostic device and method
JP7452827B2 (en) Battery monitoring device, battery monitoring method, battery pack and electric vehicle
JP2000150002A (en) Overdischarged cell sensing device for set battery
KR20220080620A (en) Apparatus and method for diagnosing battery
JPH10285820A (en) Method and apparatus for charging alkaline dry cell
WO2007029691A1 (en) Secondary cell charged state display method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780906

Country of ref document: EP

Kind code of ref document: A1