WO2021199758A1 - Zoom lens and imaging device - Google Patents

Zoom lens and imaging device Download PDF

Info

Publication number
WO2021199758A1
WO2021199758A1 PCT/JP2021/005992 JP2021005992W WO2021199758A1 WO 2021199758 A1 WO2021199758 A1 WO 2021199758A1 JP 2021005992 W JP2021005992 W JP 2021005992W WO 2021199758 A1 WO2021199758 A1 WO 2021199758A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
positive
conditional expression
zoom
Prior art date
Application number
PCT/JP2021/005992
Other languages
French (fr)
Japanese (ja)
Inventor
哲一朗 奥村
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022511647A priority Critical patent/JPWO2021199758A1/ja
Publication of WO2021199758A1 publication Critical patent/WO2021199758A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present technology relates to a technical field of a zoom lens having a plurality of lens groups and an image pickup apparatus in which such a zoom lens is used.
  • Optical systems with various focal lengths and diameters are required for photographing optical systems used in imaging devices such as still cameras and video cameras.
  • a telephoto zoom lens capable of magnifying a distant subject at a desired angle of view is required to have high image quality, small size and light weight, and to be able to perform quick focusing at a high zoom ratio.
  • a positive lead type zoom lens in which a lens group having the most positive refractive power is arranged on the object side is known (see, for example, Patent Document 1 and Patent Document 2).
  • chromatic aberration such as axial chromatic aberration and Magnification chromatic aberration.
  • the most effective method for correcting chromatic aberration is to use anomalous partially dispersed glass in the group located closest to the object that passes through a position where both the on-axis luminous flux diameter and the off-axis luminous flux diameter are high, and use it to correct chromatic aberration. There is a method to do.
  • the zoom lens according to the present technology has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens The group is fixed at the time of magnification change, the second lens group and the third lens group are moved at the time of magnification change, and the first lens group is composed of four or less lenses. It satisfies (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
  • the total refractive power of the first lens group and the second lens group is increased, the refractive power of the first lens group is optimized, and the diameter of the light beam incident on the second lens group at the telephoto end is reduced. At the same time, the magnification reduction effect during zooming by the second lens group is suppressed.
  • the refractive power of the first lens group is optimized.
  • the refractive power of the first lens group is optimized.
  • the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller, and the magnification reduction effect during zooming by the second lens group is suppressed.
  • focusing is performed by a group having a small volume and a small weight with respect to the whole system or a part thereof.
  • the imaging device includes a zoom lens and an imaging element that converts an optical image formed by the zoom lens into an electrical signal, and the zoom lenses are arranged in order from the object side to the image side. It has a positive first lens group, a positive second lens group, and a negative third lens group, the first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are changed. It is moved at the time of magnification, and the first lens group is composed of four or less lenses, and satisfies the following conditional equations (1) and (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
  • the zoom lens As a result, in the zoom lens, the total refractive power of the first lens group and the second lens group is increased, the refractive power of the first lens group is optimized, and the light beam incident on the second lens group at the telephoto end is increased. As the diameter of the lens becomes smaller, the magnification reduction effect during zooming by the second lens group is suppressed.
  • FIGS. 2 to 73 an embodiment of the zoom lens and the image pickup apparatus of the present technology is shown, and this figure is a diagram showing a lens configuration at a wide-angle end at infinity according to the first embodiment of the zoom lens. .. It is a figure which shows the lens structure of the wide-angle end in the nearest vicinity of the 1st Embodiment of a zoom lens. It is a figure which shows the lens structure of the intermediate focal length at infinity of the 1st Embodiment of a zoom lens. It is a figure which shows the lens structure of the intermediate focal length in the nearest vicinity of the 1st Embodiment of a zoom lens.
  • the zoom lens of the present technology has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group is fixed at the time of magnification change.
  • the second lens group and the third lens group are moved at the time of magnification change, and the first lens group is composed of four or less lenses, and satisfies the following conditional equations (1) and (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
  • a lens having a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group has four or less lenses.
  • the weight of the optical system can be reduced by being configured and fixed at the time of magnification change, and by moving the second lens group and the third lens group at the time of magnification change.
  • the number of the first lens group is small, by making the second lens group a positive lens group, the total refractive power of the first lens group and the second lens group is increased and good aberration is obtained. It is possible to make corrections.
  • conditional equation (1) is an equation for achieving weight reduction while performing good aberration correction of the optical system, and is a conditional equation for optimizing the focal length of the first lens group and the focal length of the second lens group. Is.
  • the refractive power of the first lens group weakens and the diameter of the light beam incident on the second lens group becomes large, which makes it difficult to reduce the diameter of the optical system.
  • the refractive power of the first lens group becomes stronger, and it becomes difficult to correct various aberrations, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
  • the zoom lens satisfies the conditional equation (1)
  • the refractive power of the first lens group is optimized, the diameter of the optical system can be reduced, and various aberrations, particularly spherical aberration and axial chromatic aberration, can be achieved. And the chromatic aberration of magnification can be satisfactorily corrected.
  • the range of the conditional expression (1) can be set to the range of the following conditional expression (1A). (1A) 1.08 ⁇ f2 / f1 ⁇ 10.10 By setting the range of the conditional expression (1) to the range of the conditional expression (1A), the above-mentioned effect can be further enhanced.
  • the range of the conditional expression (1) can be set to the range of the following conditional expression (1B). (1B) 1.08 ⁇ f2 / f1 ⁇ 8.0
  • the range of the conditional expression (1) can be set to the range of the following conditional expression (1C). (1C) 1.08 ⁇ f2 / f1 ⁇ 6.0
  • the range of the conditional expression (1) can be set to the range of the conditional expression (1C)
  • the range of the conditional expression (1) can be set to the range of the following conditional expression (1D). (1D) 1.08 ⁇ f2 / f1 ⁇ 4.0
  • the range of the conditional expression (1) can be set to the range of the conditional expression (1D)
  • the range of the conditional expression (1) can be set to the range of the following conditional expression (1E). (1E) 1.08 ⁇ f2 / f1 ⁇ 2.5
  • Conditional expression (2) is a conditional expression for relatively defining the amount of movement of the second lens group and the amount of movement of the third lens group.
  • the zoom lens satisfies the condition equation (2), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification reduction effect during zooming by the second lens group is suppressed. It is possible to reduce the diameter and increase the magnification of the optical system.
  • the range of the conditional expression (2) can be set to the range of the following conditional expression (2A). (2A) 0.59 ⁇ m2 / m3 ⁇ 0.94 By setting the range of the conditional expression (2) to the range of the conditional expression (2A), the above-mentioned effect can be further enhanced.
  • the zoom lens of the present technology it is possible to provide a zoom lens that is lightweight and has satisfactorily corrected various aberrations.
  • Conditional formula (3) is a conditional formula for defining the focal length of the first lens group relative to the combined focal length of the second lens group and the third lens group.
  • the refractive power of the first lens group becomes too strong, and it becomes difficult to correct various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
  • the zoom lens satisfies the conditional equation (3), the refractive power of the first lens group is optimized, and various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification can be satisfactorily corrected. This can be done and the diameter of the optical system can be reduced.
  • the range of the conditional expression (3) can be set to the range of the following conditional expression (3A). (3A) -4.2 ⁇ f1 / f23w ⁇ -2.5 By setting the range of the conditional expression (3) to the range of the conditional expression (3A), the above-mentioned effect can be further enhanced.
  • Conditional expression (4) is a conditional expression for defining the focal length of the first lens group relative to the focal length of the optical system at the telephoto end.
  • the refractive power of the first lens group becomes too strong, and it becomes difficult to correct various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
  • the zoom lens satisfies the conditional equation (4), the refractive power of the first lens group is optimized, and various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification can be satisfactorily corrected. This can be done and the diameter of the optical system can be reduced.
  • the range of the conditional expression (4) can be set to the range of the following conditional expression (4A). (4A) 0.45 ⁇ f1 / ft ⁇ 0.85
  • conditional expression (5) 2.1 ⁇ d1t / d2t ⁇ 9.9
  • d1t Distance between the first lens group and the second lens group at the telephoto end
  • d2t The distance between the second lens group and the third lens group at the telephoto end.
  • Conditional expression (5) is a conditional expression for relatively defining the amount of movement of the second lens group and the amount of movement of the third lens group.
  • the zoom lens satisfies the condition equation (5), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification effect during zooming by the second lens group is suppressed.
  • the diameter of the optical system can be reduced and the magnification can be increased.
  • the range of the conditional expression (5) can be set to the range of the following conditional expression (5A).
  • the zoom lens according to the embodiment of the present technology it is desirable to focus by moving the whole or a part of the group located on the image side of the third lens group in the optical axis direction.
  • R is the paraxial radius of curvature of the i-th plane
  • d is the axial top-top spacing (thickness of the center of the lens or air spacing) between the i-th plane and the i + 1th plane
  • ⁇ d is the Abbe number on the d-line of the lens or the like starting from the i-th plane.
  • the aspherical surface is marked with * on the right side of the surface number, and the aperture diaphragm is marked with the description of "aperture" on the right side of the surface number.
  • is a conical constant (conic constant)
  • A4", “A6”, “A8”, “A10”, “A12” are 4th, 6th, 8th, 10th, and 12th aspherical coefficients, respectively. Is shown.
  • zoom lenses used in each embodiment have an aspherical lens surface.
  • x is the distance (sag amount) in the optical axis direction from the apex of the lens surface
  • y is the height (image height) in the direction orthogonal to the optical axis direction
  • c is the lens.
  • Near-axis curvature at the apex inverse of the radius of curvature
  • is the conical constant (conic constant)
  • A4", “A6" are the aspherical coefficients of the 4th, 6th, ... Then, it is defined by the following equation 1.
  • ⁇ First Embodiment> 1 to 6 show the lens configuration of the zoom lens 1 according to the first embodiment of the present technology.
  • the zoom lens 1 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have.
  • the first lens group G1 is provided as a positive lens group
  • the second lens group G2 is provided as a positive lens group
  • the third lens group G3 is provided as a negative lens group.
  • the first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a convex surface facing the object side, a positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side in order from the object side to the image side.
  • the second lens group G2 is composed of a positive meniscus lens L21 with a convex surface facing the image side.
  • the third lens group G3 is composed of a negative lens L31, a positive lens L32, a negative lens L33, and a negative meniscus lens L34 with a convex surface facing the image side, in this order from the object side to the image side.
  • the positive lens L32 and the negative lens L33 are configured as a junction lens.
  • the fourth lens group G4 is composed of a negative lens L41 and a positive meniscus lens L42 with a convex surface facing the object side in order from the object side to the image side.
  • the negative lens L41 and the positive meniscus lens L42 are configured as a junction lens.
  • the fifth lens group G5 is composed of a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a positive lens L53 in this order from the object side to the image side.
  • the negative meniscus lens L52 and the positive lens L53 are configured as a junction lens.
  • the sixth lens group G6 has a negative meniscus lens L61, a positive lens L62, an aperture aperture S, a positive lens L63, a negative lens L64, a positive lens L65, and an image side in order from the object side to the image side. It is composed of a positive meniscus lens L66 with a convex surface, a negative lens L67, a positive lens L68, a negative lens L69, a positive lens L610, a positive lens L611, a negative lens L612, and a negative lens L613 with a convex surface facing the image side.
  • the positive lens L63 and the negative lens L64 are configured as a junction lens
  • the positive meniscus lens L66 and the negative lens L67 are configured as a junction lens
  • the positive lens L68 and the negative lens L69 are configured as a junction lens
  • the fifth lens group G5 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction.
  • another configuration such as a configuration in which the positive lens L610 is moved in the optical axis direction may be used.
  • vibration isolation can be performed against camera shake and the like.
  • Table 1 shows the lens data of Numerical Example 1 in which specific numerical values are applied to the zoom lens 1.
  • Table 2 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 1.
  • Table 4 shows the focal lengths of each lens group in Example 1.
  • FIGS. 7 to 12 are longitudinal aberration diagrams of Numerical Example 1
  • FIGS. 13 to 18 are transverse aberration diagrams of Numerical Example 1.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line.
  • the zoom lens 1 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
  • the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
  • ⁇ Second embodiment> 19 to 24 show the lens configuration of the zoom lens 2 according to the second embodiment of the present technology.
  • the zoom lens 2 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. And has a seventh lens group G7.
  • the first lens group G1 is provided as a positive lens group
  • the second lens group G2 is provided as a positive lens group
  • the third lens group G3 is provided as a negative lens group.
  • the first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
  • the first lens group G1 is composed of a negative meniscus lens L11, a positive lens L12, and a positive lens L13 whose convex surfaces are directed toward the object side in order from the object side to the image side.
  • the second lens group G2 is composed of a positive meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a convex surface facing the object side in order from the object side to the image side.
  • the third lens group G3 is composed of a negative lens L31, a negative lens L32, and a positive lens L33 in this order from the object side to the image side.
  • the negative lens L32 and the positive lens L33 are configured as a junction lens.
  • the fourth lens group G4 is composed of a positive lens L41, a positive lens L42, a positive lens L43, and a negative lens L44 in this order from the object side to the image side.
  • the positive lens L43 and the negative lens L44 are configured as a junction lens.
  • the fifth lens group G5 includes an aperture aperture S, a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, a negative meniscus lens L53 with a convex surface facing the object side, and an object side in order from the object side to the image side. It is composed of a positive meniscus lens L54 with a convex surface, a positive meniscus lens L55 with a convex surface on the object side, a negative meniscus lens L56 with a convex surface on the object side, and a positive meniscus lens L57 with a convex surface on the object side.
  • the negative meniscus lens L53 and the positive meniscus lens L54 are configured as a junction lens
  • the negative meniscus lens L56 and the positive meniscus lens L57 are configured as a junction lens.
  • the sixth lens group G6 is composed of a negative meniscus lens L61, a negative lens L62, and a positive lens L63 whose convex surfaces are directed toward the object side in order from the object side to the image side.
  • the negative lens L62 and the positive lens L63 are configured as a junction lens.
  • the seventh lens group G7 includes a positive meniscus lens L71 having a convex surface facing the object side, a positive meniscus lens L72 having a convex surface facing the image side, and a negative meniscus lens L73 having a convex surface facing the image side in order from the object side to the image side. It is composed of.
  • the 6th lens group G6 When focusing from infinity to a short distance, the 6th lens group G6 is moved in the optical axis direction.
  • the fourth lens group G4 may have another configuration such as being moved in the optical axis direction. Further, by moving the negative meniscus lens L53 and the positive meniscus lens L54 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
  • Table 5 shows the lens data of Numerical Example 2 in which specific numerical values are applied to the zoom lens 2.
  • Table 6 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 2.
  • Table 8 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 2 together with the conical constant ⁇ .
  • Table 9 shows the focal lengths of each lens group in Example 2.
  • FIGS. 25 to 30 are longitudinal aberration diagrams of Numerical Example 2
  • FIGS. 31 to 36 are transverse aberration diagrams of Numerical Example 2.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line.
  • the zoom lens 2 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
  • ⁇ Third embodiment> 37 to 42 show the lens configuration of the zoom lens 3 according to the third embodiment of the present technology.
  • the zoom lens 3 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have.
  • the first lens group G1 is provided as a positive lens group
  • the second lens group G2 is provided as a positive lens group
  • the third lens group G3 is provided as a negative lens group.
  • the first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
  • the first lens group G1 is composed of a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, a positive lens L13, and a positive lens L14 in order from the object side to the image side. There is.
  • the second lens group G2 is composed of a positive meniscus lens L21 with a convex surface facing the image side.
  • the third lens group G3 is composed of a negative lens L31, a positive lens L32, a negative lens L33, and a negative lens L34 in this order from the object side to the image side.
  • the positive lens L32 and the negative lens L33 are configured as a junction lens.
  • the fourth lens group G4 is composed of a negative lens L41 and a positive meniscus lens L42 with a convex surface facing the object side in order from the object side to the image side.
  • the negative lens L41 and the positive meniscus lens L42 are configured as a junction lens.
  • the fifth lens group G5 is composed of a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a positive lens L53 in this order from the object side to the image side.
  • the negative meniscus lens L52 and the positive lens L53 are configured as a junction lens.
  • the sixth lens group G6 includes a negative meniscus lens L61 with a convex surface facing the image side, a positive meniscus lens L62 with a convex surface facing the object side, an aperture aperture S, a positive lens L63, and a negative lens L64 in order from the object side to the image side.
  • Positive meniscus lens L65 with convex surface facing the object side positive lens L66, negative lens L67, positive lens L68, negative meniscus lens L69 with convex surface facing the image side
  • positive lens L610 positive meniscus with convex surface facing the image side It is composed of a lens L611, a negative meniscus lens L612 with a convex surface facing the image side, and a negative lens L613.
  • the positive lens L63 and the negative lens L64 are configured as a junction lens
  • the positive lens L66 and the negative lens L67 are configured as a junction lens
  • the positive meniscus lens L611 and the negative meniscus lens L612 are configured as a junction lens.
  • the fifth lens group G5 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction.
  • the positive meniscus lens L611 and the negative meniscus lens L612 may have other configurations such as being moved in the optical axis direction. Further, by moving the positive lens L66 and the negative lens L67 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
  • Table 10 shows the lens data of Numerical Example 3 in which specific numerical values are applied to the zoom lens 3.
  • Table 11 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 3.
  • Table 13 shows the focal lengths of each lens group in Example 3.
  • FIGS. 43 to 48 are longitudinal aberration diagrams of Numerical Example 3
  • FIGS. 49 to 54 are transverse aberration diagrams of Numerical Example 3.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line.
  • the zoom lens 3 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
  • ⁇ Fourth Embodiment> 55 to 60 show the lens configuration of the zoom lens 4 according to the fourth embodiment of the present technology.
  • the zoom lens 4 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have.
  • the first lens group G1 is provided as a positive lens group
  • the second lens group G2 is provided as a positive lens group
  • the third lens group G3 is provided as a negative lens group.
  • the first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive lens L13 in order from the object side to the image side.
  • the second lens group G2 is composed of a positive meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a convex surface facing the object side in order from the object side to the image side.
  • the third lens group G3 is composed of a negative lens L31, a negative lens L32, and a positive lens L33 in this order from the object side to the image side.
  • the negative lens L32 and the positive lens L33 are configured as a junction lens.
  • the fourth lens group G4 includes a positive meniscus lens 41, a positive lens L42, a positive lens L43, a negative lens L44, an aperture aperture S, a positive lens L45, and an object side in order from the object side to the image side.
  • Negative meniscus lens L46 with convex surface negative meniscus lens L47 with convex surface toward the object side, positive meniscus lens L48 with convex surface toward the object side, positive meniscus lens L49 with convex surface toward the object side, convex surface toward the object side It is composed of a negative meniscus lens L410 directed toward the object and a positive meniscus lens L411 with a convex surface facing the object side.
  • the positive lens L43 and the negative lens L44 are configured as a junction lens
  • the negative meniscus lens L47 and the positive meniscus lens L48 are configured as a junction lens
  • the negative meniscus lens L410 and the positive meniscus lens L411 are configured as a junction lens.
  • the fifth lens group G5 is composed of a negative meniscus lens L51, a negative lens L52, and a positive lens L53 whose convex surfaces are directed toward the object side in order from the object side to the image side.
  • the negative lens L52 and the positive lens L53 are configured as a junction lens.
  • the sixth lens group G6 includes a positive meniscus lens L61 having a convex surface facing the object side, a positive meniscus lens L62 having a convex surface facing the image side, and a negative meniscus lens L63 having a convex surface facing the image side in order from the object side to the image side. It is composed of.
  • the fifth lens group G5 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction.
  • other configurations such as a configuration in which the positive lens 41, the positive lens L42, the positive lens L43, and the negative lens L44 are moved in the optical axis direction may be used.
  • vibration isolation can be performed against camera shake and the like.
  • Table 14 shows the lens data of Numerical Example 4 in which specific numerical values are applied to the zoom lens 4.
  • Table 15 shows the focal length f, the F number Fno, the half angle of view ⁇ , the image height Y, and the total optical length L of Numerical Example 4.
  • Table 17 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 4 together with the conical constant ⁇ .
  • Table 18 shows the focal lengths of each lens group in Example 4.
  • FIGS. 61 to 66 are longitudinal aberration diagrams of Numerical Example 4, and FIGS. 67 to 72 are transverse aberration diagrams of Numerical Example 4.
  • the solid line shows the value of the d line (587.56 nm)
  • the dotted line shows the value of the c line (656.27 nm)
  • the alternate long and short dash line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image plane of the d line
  • the broken line shows the value of the meridional image plane of the d line
  • the distortion shows the value of the d line.
  • the solid line indicates the value of the d line
  • the dotted line indicates the value of the c line
  • the alternate long and short dash line indicates the value of the g line.
  • the zoom lens 4 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
  • Table 19 shows the values of the conditional expressions (1) to (5) in the numerical examples 1 to 4 of the zoom lenses 1 to 4.
  • the zoom lenses 1 to 4 are designed to satisfy the conditional expressions (1) to (5).
  • the zoom lens has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group is changed.
  • the second lens group and the third lens group are fixed at the time of magnification and are moved at the time of magnification change, and the first lens group is composed of four or less lenses and satisfies the following conditional equations (1) and (2). ..
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 At the time of scaling from the wide-angle end to the telephoto end It is the amount of movement of the third lens group in.
  • a lens having a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group has four or less lenses.
  • the weight of the optical system can be reduced by being configured and fixed at the time of magnification change, and by moving the second lens group and the third lens group at the time of magnification change. Further, although the number of the first lens group is small, the total refractive power is increased and good aberration correction can be performed by making the second lens group a positive lens group.
  • the zoom lens when the zoom lens satisfies the condition equation (1), the refractive power of the first lens group is optimized, the diameter of the optical system can be reduced, and various aberrations, particularly spherical aberration, can be achieved. , Axial chromatic aberration and lateral chromatic aberration can be satisfactorily corrected.
  • the zoom lens when the zoom lens satisfies the condition equation (2), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification effect at the time of zooming by the second lens group becomes smaller. Therefore, it is possible to reduce the diameter and increase the magnification of the optical system.
  • the image pickup device of the present technology it is possible to provide an image pickup device provided with a zoom lens that is lightweight and has satisfactorily corrected various aberrations.
  • FIG. 73 shows a block diagram of a digital still camera according to an embodiment of the imaging device of the present technology.
  • the image pickup device (digital still camera) 100 includes an image pickup element 10 having a photoelectric conversion function for converting captured light into an electric signal, and a camera signal processing unit that performs signal processing such as analog-digital conversion of the captured image signal. 20 and an image processing unit 30 that performs recording / reproduction processing of an image signal. Further, the image pickup device 100 includes a display unit 40 for displaying a captured image and the like, an R / W (reader / writer) 50 for writing and reading an image signal to the memory 90, and the entire image pickup device 100.
  • a CPU Central Processing Unit
  • an input unit 70 such as various switches for which a user performs a required operation
  • a zoom lens 1 including a zoom lens 2, a zoom lens 3 and a zoom lens 4
  • a lens drive control unit 80 for controlling the above.
  • the camera signal processing unit 20 performs various signal processing such as conversion of the output signal from the image pickup element 10 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal.
  • the image processing unit 30 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
  • the display unit 40 has a function of displaying various data such as an operation state of the user's input unit 70 and a captured image.
  • the R / W 50 writes the image data encoded by the image processing unit 30 to the memory 90 and reads the image data recorded in the memory 90.
  • the CPU 60 functions as a control processing unit that controls each circuit block provided in the image pickup apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
  • the input unit 70 outputs an instruction input signal according to the operation by the user to the CPU 60.
  • the lens drive control unit 80 controls a motor or the like (not shown) that drives a lens group based on a control signal from the CPU 60.
  • the memory 90 is, for example, a semiconductor memory that can be attached to and detached from the slot connected to the R / W 50.
  • the memory 90 is not detachable from the slot and may be incorporated inside the image pickup apparatus 100.
  • the shot image signal is output to the display unit 40 via the camera signal processing unit 20 and displayed as a camera-through image.
  • the shot image signal is output from the camera signal processing unit 20 to the image processing unit 30, compressed and encoded, and converted into digital data in a predetermined data format. Will be done.
  • the converted data is output to the R / W 50 and written to the memory 90.
  • Focusing is performed by the lens drive control unit 80 moving the focus lens group based on the control signal from the CPU 60.
  • the R / W 50 reads out the predetermined image data from the memory 90 in response to the operation on the input unit 70, and the image processing unit 30 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 40 and the reproduced image is displayed.
  • imaging means converting the photoelectric conversion process of converting the light captured by the image pickup element 10 into an electric signal to the digital signal of the output signal from the image pickup element 10 by the camera signal processing unit 20.
  • imaging may refer only to the photoelectric conversion process for converting the light captured by the imaging element 10 into an electric signal, and from the photoelectric conversion process for converting the light captured by the imaging element 10 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 10 by the camera signal processing unit 20 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 10.
  • the camera signal processing unit 20 converts the output signal from the image pickup element 10 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like.
  • the photoelectric conversion process of converting to It may be pointed out through compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and writing processing of an image signal to the memory 90 by the R / W 50. You may point. In the above processing, the order of each processing may be changed as appropriate.
  • the image pickup device 100 may be configured to include only a part or all of the image pickup element 10, the camera signal processing section 20, the image processing section 30, and the R / W 50 that perform the above processing. ..
  • the lens configuration of the zoom lens of the present technology is substantially a 6- or 7-group lens configuration of the 1st lens group G1 to the 6th lens group G6 or the 1st lens group G1 to the 7th lens group G7. ..
  • the image pickup device is applied to a digital still camera
  • the scope of application of the image pickup device is not limited to the digital still camera, and a digital video camera, a mobile phone having a built-in camera, etc. It can be widely applied as a camera unit of a digital input / output device in a mobile terminal.
  • the first lens group has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
  • the first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
  • the first lens group is composed of four or less lenses.
  • a zoom lens that satisfies the following conditional expression (1) and conditional expression (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
  • ⁇ 2> The zoom lens according to ⁇ 1>, which satisfies the following conditional expression (3). (3) -5.0 ⁇ f1 / f23w ⁇ -1.0 However, f23w: The combined focal length at the wide-angle end of the second lens group and the third lens group.
  • ⁇ 3> The zoom lens according to ⁇ 1> or ⁇ 2>, which satisfies the following conditional expression (4). (4) 0.35 ⁇ f1 / ft ⁇ 1.20
  • ft The focal length of the entire system at the telephoto end.
  • ⁇ 4> The zoom lens according to any one of ⁇ 1> to ⁇ 3>, which satisfies the following conditional expression (5).
  • d1t Distance between the first lens group and the second lens group at the telephoto end
  • d2t The distance between the second lens group and the third lens group at the telephoto end.
  • ⁇ 5> The zoom lens according to any one of ⁇ 1> to ⁇ 4>, which focuses by moving all or a part of a group located on the image side of the third lens group in the optical axis direction.
  • ⁇ 6> It includes a zoom lens and an image pickup device that converts an optical image formed by the zoom lens into an electrical signal.
  • the zoom lens is It has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
  • the first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
  • the first lens group is composed of four or less lenses.
  • An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group
  • m2 Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end
  • m3 From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

The present invention has a positive first lens group, a positive second lens group, and a negative third lens group that are disposed in that order from the object side to the image side. The first lens group is fixed when varying magnification, and the second and third lens groups are moved when varying magnification. The first lens group is constituted by four or fewer lenses, thereby satisfying the following conditional equations (1) and (2). (1) 1.00<f2/f1<11.00 (2) 0.57<m2/m3<0.95, where f1 is the focal length of the first lens group, f2 is the focal length of the second lens group, m2 is the amount of movement of the second lens group when varying magnification from the wide-angle end to the telephoto end, and m3 is the amount of movement of the third lens group when varying magnification from the wide-angle end to the telephoto end.

Description

ズームレンズ及び撮像装置Zoom lens and imaging device
 本技術は、複数のレンズ群を有するズームレンズ及びこのようなズームレンズが用いられる撮像装置の技術分野に関する。 The present technology relates to a technical field of a zoom lens having a plurality of lens groups and an image pickup apparatus in which such a zoom lens is used.
 スチルカメラやビデオカメラ等の撮像装置に用いられる撮影光学系には、用途に応じて様々な焦点距離や口径の光学系が要望されている。例えば、遠くの被写体を所望の画角で拡大して撮影できる望遠ズームレンズに対しては、高画質で小型軽量であり、高ズーム比で迅速なフォーカシングができること等が要求されている。 Optical systems with various focal lengths and diameters are required for photographing optical systems used in imaging devices such as still cameras and video cameras. For example, a telephoto zoom lens capable of magnifying a distant subject at a desired angle of view is required to have high image quality, small size and light weight, and to be able to perform quick focusing at a high zoom ratio.
 これらの要求を満足するズームレンズとして、最も物体側に正の屈折力を有するレンズ群が配置されたポジティブリード型のズームレンズが知られている(例えば、特許文献1及び特許文献2参照)。 As a zoom lens that satisfies these requirements, a positive lead type zoom lens in which a lens group having the most positive refractive power is arranged on the object side is known (see, for example, Patent Document 1 and Patent Document 2).
特開2013-238827号公報Japanese Unexamined Patent Publication No. 2013-238827 特開2019-120773号公報Japanese Unexamined Patent Publication No. 2019-127073
 しかしながら、望遠ズームレンズの高画質化のためには軸上色収差や倍率色収差と言った色収差の補正が重要になる。 However, in order to improve the image quality of the telephoto zoom lens, it is important to correct chromatic aberration such as axial chromatic aberration and Magnification chromatic aberration.
 最も効果的に色収差の補正が可能な手法としては、軸上光束径と軸外光束径がともに高い位置を通過する最も物体側に位置する群に異常部分分散ガラスを用いて色収差の補正に活用する手法がある。 The most effective method for correcting chromatic aberration is to use anomalous partially dispersed glass in the group located closest to the object that passes through a position where both the on-axis luminous flux diameter and the off-axis luminous flux diameter are high, and use it to correct chromatic aberration. There is a method to do.
 一方、望遠ズームレンズの高画質化のためには球面収差やコマ収差を良好に補正することも重要であるが、異常部分分散ガラスは屈折率が低い傾向にある。従って、収差の補正のためには多くのレンズの枚数が必要であり、レンズの枚数が多くなるため重量化を来すおそれがある。 On the other hand, it is important to satisfactorily correct spherical aberration and coma in order to improve the image quality of the telephoto zoom lens, but the abnormal partially dispersed glass tends to have a low refractive index. Therefore, a large number of lenses is required to correct the aberration, and the number of lenses is large, which may result in weight increase.
 そこで、本技術ズームレンズ及び撮像装置は、軽量でありながら諸収差を良好に補正したズームレンズ及びこれを備えた撮像装置を提供することを目的とする。 Therefore, it is an object of the present technology zoom lens and an image pickup apparatus to provide a zoom lens which is lightweight and has satisfactorily corrected various aberrations, and an image pickup apparatus equipped with the same.
 第1に、本技術に係るズームレンズは、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、前記第1レンズ群は4枚以下のレンズによって構成され、以下の条件式(1)及び条件式(2)を満足するものである。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
とする。
First, the zoom lens according to the present technology has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens The group is fixed at the time of magnification change, the second lens group and the third lens group are moved at the time of magnification change, and the first lens group is composed of four or less lenses. It satisfies (2).
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
 これにより、第1レンズ群と第2レンズ群の合計の屈折力が大きくなると共に第1レンズ群の屈折力が適正化され、また、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制される。 As a result, the total refractive power of the first lens group and the second lens group is increased, the refractive power of the first lens group is optimized, and the diameter of the light beam incident on the second lens group at the telephoto end is reduced. At the same time, the magnification reduction effect during zooming by the second lens group is suppressed.
 第2に、上記した本技術に係るズームレンズにおいては、以下の条件式(3)を満足することが望ましい。
(3)-5.0<f1/f23w<-1.0
但し、
f23w:前記第2レンズ群と前記第3レンズ群の広角端における合成焦点距離
とする。
Secondly, in the zoom lens according to the present technology described above, it is desirable that the following conditional expression (3) is satisfied.
(3) -5.0 <f1 / f23w <-1.0
However,
f23w: The combined focal length at the wide-angle end of the second lens group and the third lens group.
 これにより、第1レンズ群の屈折力が適正化される。 As a result, the refractive power of the first lens group is optimized.
 第3に、上記した本技術に係るズームレンズにおいては、以下の条件式(4)を満足することが望ましい。
(4)0.35<f1/ft<1.20
但し、
ft:望遠端における全系の焦点距離
とする。
Thirdly, in the zoom lens according to the present technology described above, it is desirable that the following conditional expression (4) is satisfied.
(4) 0.35 <f1 / ft <1.20
However,
ft: The focal length of the entire system at the telephoto end.
 これにより、第1レンズ群の屈折力が適正化される。 As a result, the refractive power of the first lens group is optimized.
 第4に、上記した本技術に係るズームレンズにおいては、以下の条件式(5)を満足することが望ましい。
(5)2.1<d1t/d2t<9.9
但し、
d1t:望遠端における前記第1レンズ群と前記第2レンズ群の間隔
d2t:望遠端における前記第2レンズ群と前記第3レンズ群の間隔
とする。
Fourth, in the zoom lens according to the present technology described above, it is desirable that the following conditional expression (5) is satisfied.
(5) 2.1 <d1t / d2t <9.9
However,
d1t: Distance between the first lens group and the second lens group at the telephoto end d2t: The distance between the second lens group and the third lens group at the telephoto end.
 これにより、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制される。 As a result, the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller, and the magnification reduction effect during zooming by the second lens group is suppressed.
 第5に、上記した本技術に係るズームレンズにおいては、前記第3レンズ群より像側に位置する群の全体又は一部を光軸方向へ移動させることによりフォーカシングすることが望ましい。 Fifth, in the zoom lens according to the present technology described above, it is desirable to focus by moving all or a part of the group located on the image side of the third lens group in the optical axis direction.
 これにより、全系に対する体積が小さく重量の小さい群又はその一部によってフォーカシングが行われる。 As a result, focusing is performed by a group having a small volume and a small weight with respect to the whole system or a part thereof.
 第6に、本技術に係る撮像装置は、ズームレンズと前記ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、前記ズームレンズは、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、前記第1レンズ群は4枚以下のレンズによって構成され、以下の条件式(1)及び条件式(2)を満足するものである。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
とする。
Sixth, the imaging device according to the present technology includes a zoom lens and an imaging element that converts an optical image formed by the zoom lens into an electrical signal, and the zoom lenses are arranged in order from the object side to the image side. It has a positive first lens group, a positive second lens group, and a negative third lens group, the first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are changed. It is moved at the time of magnification, and the first lens group is composed of four or less lenses, and satisfies the following conditional equations (1) and (2).
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
 これにより、ズームレンズにおいて、第1レンズ群と第2レンズ群の合計の屈折力が大きくなると共に第1レンズ群の屈折力が適正化され、また、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制される。 As a result, in the zoom lens, the total refractive power of the first lens group and the second lens group is increased, the refractive power of the first lens group is optimized, and the light beam incident on the second lens group at the telephoto end is increased. As the diameter of the lens becomes smaller, the magnification reduction effect during zooming by the second lens group is suppressed.
図2乃至図73と共に本技術ズームレンズ及び撮像装置の実施の形態を示すものであり、本図は、ズームレンズの第1の実施の形態の無限遠における広角端のレンズ構成を示す図である。Along with FIGS. 2 to 73, an embodiment of the zoom lens and the image pickup apparatus of the present technology is shown, and this figure is a diagram showing a lens configuration at a wide-angle end at infinity according to the first embodiment of the zoom lens. .. ズームレンズの第1の実施の形態の最至近における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end in the nearest vicinity of the 1st Embodiment of a zoom lens. ズームレンズの第1の実施の形態の無限遠における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length at infinity of the 1st Embodiment of a zoom lens. ズームレンズの第1の実施の形態の最至近における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length in the nearest vicinity of the 1st Embodiment of a zoom lens. ズームレンズの第1の実施の形態の無限遠における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end at infinity of the 1st Embodiment of a zoom lens. ズームレンズの第1の実施の形態の最至近における望遠端のレンズ構成を示す図である。It is a figure which shows the lens structure of the telephoto end in the nearest vicinity of the 1st Embodiment of a zoom lens. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the wide-angle end at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism, and distortion at the wide-angle end in the nearest vicinity. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the intermediate focal length at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the nearest intermediate focal length. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the telephoto end at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the telephoto end at the nearest telephoto end. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the wide-angle end at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the wide-angle end at the nearest. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における中間焦点距離の図である。It is a lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the intermediate focal length at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the intermediate focal length at the nearest. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the telephoto end at infinity. 第1の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 1st Embodiment, and is the figure of the telephoto end at the nearest. ズームレンズの第2の実施の形態の無限遠における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end at infinity of the 2nd Embodiment of a zoom lens. ズームレンズの第2の実施の形態の最至近における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end in the nearest vicinity of the 2nd Embodiment of a zoom lens. ズームレンズの第2の実施の形態の無限遠における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length at infinity of the 2nd Embodiment of a zoom lens. ズームレンズの第2の実施の形態の最至近における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length in the nearest vicinity of the 2nd Embodiment of a zoom lens. ズームレンズの第2の実施の形態の無限遠における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end at infinity of the 2nd Embodiment of a zoom lens. ズームレンズの第2の実施の形態の最至近における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end in the nearest vicinity of the 2nd Embodiment of a zoom lens. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the wide-angle end at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism, and distortion at the wide-angle end in the nearest vicinity. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the intermediate focal length at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the nearest intermediate focal length. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the telephoto end at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the telephoto end at the nearest telephoto end. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the wide-angle end at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the wide-angle end at the nearest. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the intermediate focal length at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the intermediate focal length at the nearest. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the telephoto end at infinity. 第2の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 2nd Embodiment, and is the figure of the telephoto end at the nearest. ズームレンズの第3の実施の形態の無限遠における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end at infinity of the 3rd Embodiment of a zoom lens. ズームレンズの第3の実施の形態の最至近における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end in the nearest vicinity of the 3rd Embodiment of a zoom lens. ズームレンズの第3の実施の形態の無限遠における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length at infinity of the 3rd Embodiment of a zoom lens. ズームレンズの第3の実施の形態の最至近における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length in the closest vicinity of the 3rd Embodiment of a zoom lens. ズームレンズの第3の実施の形態の無限遠における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end at infinity of the 3rd Embodiment of a zoom lens. ズームレンズの第3の実施の形態の最至近における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end in the nearest vicinity of the 3rd Embodiment of a zoom lens. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the wide-angle end at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism, and distortion at the wide-angle end in the nearest vicinity. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the intermediate focal length at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the nearest intermediate focal length. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the telephoto end at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the telephoto end at the nearest telephoto end. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the wide-angle end at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the wide-angle end at the nearest. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the intermediate focal length at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the intermediate focal length at the nearest. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the telephoto end at infinity. 第3の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 3rd Embodiment, and is the figure of the telephoto end at the nearest. ズームレンズの第4の実施の形態の無限遠における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end at infinity of the 4th Embodiment of a zoom lens. ズームレンズの第4の実施の形態の最至近における広角端のレンズ構成を示す図である。It is a figure which shows the lens structure of the wide-angle end in the nearest vicinity of the 4th Embodiment of a zoom lens. ズームレンズの第4の実施の形態の無限遠における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length at infinity of the 4th Embodiment of a zoom lens. ズームレンズの第4の実施の形態の最至近における中間焦点距離のレンズ構成を示す図である。It is a figure which shows the lens structure of the intermediate focal length in the nearest vicinity of the 4th Embodiment of a zoom lens. ズームレンズの第4の実施の形態の無限遠における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end at infinity of the 4th Embodiment of a zoom lens. ズームレンズの第4の実施の形態の最至近における望遠端のレンズ構成を示す図である。It is a figure which shows the lens composition of the telephoto end in the nearest vicinity of the 4th Embodiment of a zoom lens. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the wide-angle end at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における広角端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the wide-angle end in the nearest vicinity. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the intermediate focal length at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における中間焦点距離の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the nearest intermediate focal length. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、無限遠における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion at the telephoto end at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における縦収差図であり、最至近における望遠端の球面収差、非点収差及び歪曲収差を示す図である。It is a longitudinal aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure which shows the spherical aberration, astigmatism and distortion of the telephoto end at the nearest telephoto end. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the wide-angle end at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における広角端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the wide-angle end at the nearest. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the intermediate focal length at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における中間焦点距離の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the intermediate focal length at the nearest. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、無限遠における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the telephoto end at infinity. 第4の実施の形態に具体的な数値を適用した数値実施例における横収差図であり、最至近における望遠端の図である。It is the lateral aberration diagram in the numerical example which applied the specific numerical value to the 4th Embodiment, and is the figure of the telephoto end at the nearest. 撮像装置の一例を示すブロック図である。It is a block diagram which shows an example of an image pickup apparatus.
 以下に、本技術ズームレンズ及び撮像装置を実施するための形態について説明する。 Hereinafter, a mode for implementing the present technology zoom lens and an imaging device will be described.
 [ズームレンズの構成]
 本技術ズームレンズは、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、前記第1レンズ群は変倍時に固定され前記第2レンズ群と第3レンズ群は変倍時に移動され、前記第1レンズ群は4枚以下のレンズによって構成され、以下の条件式(1)及び条件式(2)を満足する。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
とする。
[Zoom lens configuration]
The zoom lens of the present technology has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group is fixed at the time of magnification change. The second lens group and the third lens group are moved at the time of magnification change, and the first lens group is composed of four or less lenses, and satisfies the following conditional equations (1) and (2).
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
 上記のように、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、第1レンズ群が4枚以下のレンズによって構成されて変倍時に固定され、第2レンズ群と第3レンズ群が変倍時に移動されることにより、光学系の軽量化を図ることが可能になる。また、第1レンズ群が少ない枚数の構成にされているが、第2レンズ群を正レンズ群にすることにより第1レンズ群と第2レンズ群の合計の屈折力を大きくすると共に良好な収差補正ができるようにしている。 As described above, a lens having a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group has four or less lenses. The weight of the optical system can be reduced by being configured and fixed at the time of magnification change, and by moving the second lens group and the third lens group at the time of magnification change. Further, although the number of the first lens group is small, by making the second lens group a positive lens group, the total refractive power of the first lens group and the second lens group is increased and good aberration is obtained. It is possible to make corrections.
 条件式(1)は、光学系の良好な収差補正を行いながら軽量化を達成するための式であり、第1レンズ群の焦点距離と第2レンズ群の焦点距離の適正化を図る条件式である。 The conditional equation (1) is an equation for achieving weight reduction while performing good aberration correction of the optical system, and is a conditional equation for optimizing the focal length of the first lens group and the focal length of the second lens group. Is.
 条件式(1)の下限値を下回ると、第1レンズ群の屈折力が弱まり第2レンズ群に入射する光線の径が大きくなるため光学系の小径化が困難になる。 If it falls below the lower limit of the conditional expression (1), the refractive power of the first lens group weakens and the diameter of the light beam incident on the second lens group becomes large, which makes it difficult to reduce the diameter of the optical system.
 一方、条件式(1)の上限値を上回ると、第1レンズ群の屈折力が強まり諸収差、特に、球面収差、軸上色収差、倍率色収差の補正が困難になる。 On the other hand, if the upper limit of the conditional expression (1) is exceeded, the refractive power of the first lens group becomes stronger, and it becomes difficult to correct various aberrations, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
 従って、ズームレンズが条件式(1)を満足することにより、第1レンズ群の屈折力が適正化され、光学系の小径化を図ることができると共に諸収差、特に、球面収差、軸上色収差及び倍率色収差を良好に補正することができる。 Therefore, when the zoom lens satisfies the conditional equation (1), the refractive power of the first lens group is optimized, the diameter of the optical system can be reduced, and various aberrations, particularly spherical aberration and axial chromatic aberration, can be achieved. And the chromatic aberration of magnification can be satisfactorily corrected.
 尚、条件式(1)の範囲を以下の条件式(1A)の範囲に設定することが可能である。
(1A)1.08<f2/f1<10.10
 条件式(1)の範囲を条件式(1A)の範囲に設定することにより、上記した効果を一層高めることができる。
The range of the conditional expression (1) can be set to the range of the following conditional expression (1A).
(1A) 1.08 <f2 / f1 <10.10
By setting the range of the conditional expression (1) to the range of the conditional expression (1A), the above-mentioned effect can be further enhanced.
 また、条件式(1)の範囲を以下の条件式(1B)の範囲に設定することが可能である。
(1B)1.08<f2/f1<8.0
 条件式(1)の範囲を条件式(1B)の範囲に設定することにより、上記した効果をより一層高めることができる。
Further, the range of the conditional expression (1) can be set to the range of the following conditional expression (1B).
(1B) 1.08 <f2 / f1 <8.0
By setting the range of the conditional expression (1) to the range of the conditional expression (1B), the above-mentioned effect can be further enhanced.
 さらに、条件式(1)の範囲を以下の条件式(1C)の範囲に設定することが可能である。
(1C)1.08<f2/f1<6.0
 条件式(1)の範囲を条件式(1C)の範囲に設定することにより、上記した効果をさらに一層高めることができる。
Further, the range of the conditional expression (1) can be set to the range of the following conditional expression (1C).
(1C) 1.08 <f2 / f1 <6.0
By setting the range of the conditional expression (1) to the range of the conditional expression (1C), the above-mentioned effect can be further enhanced.
 さらにまた、条件式(1)の範囲を以下の条件式(1D)の範囲に設定することが可能である。
(1D)1.08<f2/f1<4.0
 条件式(1)の範囲を条件式(1D)の範囲に設定することにより、上記した効果をさらにより一層高めることができる。
Furthermore, the range of the conditional expression (1) can be set to the range of the following conditional expression (1D).
(1D) 1.08 <f2 / f1 <4.0
By setting the range of the conditional expression (1) to the range of the conditional expression (1D), the above-mentioned effect can be further enhanced.
 加えて、条件式(1)の範囲を以下の条件式(1E)の範囲に設定することが可能である。
(1E)1.08<f2/f1<2.5
 条件式(1)の範囲を条件式(1E)の範囲に設定することにより、上記した効果をさらにまたより一層高めることができる。
In addition, the range of the conditional expression (1) can be set to the range of the following conditional expression (1E).
(1E) 1.08 <f2 / f1 <2.5
By setting the range of the conditional expression (1) to the range of the conditional expression (1E), the above-mentioned effect can be further enhanced.
 条件式(2)は、第2レンズ群の移動量と第3レンズ群の移動量とを相対的に規定するための条件式である。 Conditional expression (2) is a conditional expression for relatively defining the amount of movement of the second lens group and the amount of movement of the third lens group.
 条件式(2)の下限値を下回ると、望遠端における第2レンズ群に入射する光線の径が大きくなるため光学系の小径化が困難になる。 If it falls below the lower limit of the conditional expression (2), the diameter of the light beam incident on the second lens group at the telephoto end becomes large, which makes it difficult to reduce the diameter of the optical system.
 一方、条件式(2)の上限値を上回ると、第2レンズ群によるズーミング時の減倍効果が大きくなってしまうため高倍率化の達成が困難になる。 On the other hand, if the upper limit of the conditional expression (2) is exceeded, the magnification reduction effect during zooming by the second lens group becomes large, and it becomes difficult to achieve high magnification.
 従って、ズームレンズが条件式(2)を満足することにより、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制されるため、光学系の小径化及び高倍率化を図ることができる。 Therefore, when the zoom lens satisfies the condition equation (2), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification reduction effect during zooming by the second lens group is suppressed. It is possible to reduce the diameter and increase the magnification of the optical system.
 尚、条件式(2)の範囲を以下の条件式(2A)の範囲に設定することが可能である。
(2A)0.59<m2/m3<0.94
 条件式(2)の範囲を条件式(2A)の範囲に設定することにより、上記した効果を一層高めることができる。
The range of the conditional expression (2) can be set to the range of the following conditional expression (2A).
(2A) 0.59 <m2 / m3 <0.94
By setting the range of the conditional expression (2) to the range of the conditional expression (2A), the above-mentioned effect can be further enhanced.
 以上のように、本技術ズームレンズによれば、軽量でありながら諸収差を良好に補正したズームレンズを提供することができる。 As described above, according to the zoom lens of the present technology, it is possible to provide a zoom lens that is lightweight and has satisfactorily corrected various aberrations.
 [一実施形態によるズームレンズの構成]
 本技術の一実施形態によるズームレンズにあっては、以下の条件式(3)を満足することが望ましい。
(3)-5.0<f1/f23w<-1.0
但し、
f23w:第2レンズ群と第3レンズ群の広角端における合成焦点距離
とする。
[Structure of zoom lens according to one embodiment]
It is desirable that the following conditional expression (3) is satisfied for the zoom lens according to the embodiment of the present technology.
(3) -5.0 <f1 / f23w <-1.0
However,
f23w: The combined focal length at the wide-angle end of the second lens group and the third lens group.
 条件式(3)は第1レンズ群の焦点距離を第2レンズ群と第3レンズ群の合成焦点距離に対して相対的に規定するための条件式である。 Conditional formula (3) is a conditional formula for defining the focal length of the first lens group relative to the combined focal length of the second lens group and the third lens group.
 条件式(3)の下限値を下回ると、第1レンズ群の屈折力が強くなり過ぎるため、望遠端における諸収差、特に、球面収差や軸上色収差や倍率色収差の補正が困難になる。 If it falls below the lower limit of the conditional expression (3), the refractive power of the first lens group becomes too strong, and it becomes difficult to correct various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
 一方、条件式(3)の上限値を上回ると、第1レンズ群の屈折力が弱くなり過ぎるため、望遠端における第2レンズ群に入射する光線の径が大きくなり光学系の小径化が困難になる。 On the other hand, if the upper limit of the conditional expression (3) is exceeded, the refractive power of the first lens group becomes too weak, so that the diameter of the light beam incident on the second lens group at the telephoto end becomes large and it is difficult to reduce the diameter of the optical system. become.
 従って、ズームレンズが条件式(3)を満足することにより、第1レンズ群の屈折力が適正化され、望遠端における諸収差、特に、球面収差や軸上色収差や倍率色収差の良好な補正を行うことができると共に光学系の小径化を図ることができる。 Therefore, when the zoom lens satisfies the conditional equation (3), the refractive power of the first lens group is optimized, and various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification can be satisfactorily corrected. This can be done and the diameter of the optical system can be reduced.
 尚、条件式(3)の範囲を以下の条件式(3A)の範囲に設定することが可能である。
(3A)-4.2<f1/f23w<-2.5
 条件式(3)の範囲を条件式(3A)の範囲に設定することにより、上記した効果を一層高めることができる。
The range of the conditional expression (3) can be set to the range of the following conditional expression (3A).
(3A) -4.2 <f1 / f23w <-2.5
By setting the range of the conditional expression (3) to the range of the conditional expression (3A), the above-mentioned effect can be further enhanced.
 本技術の一実施形態によるズームレンズにあっては、以下の条件式(4)を満足することが望ましい。
(4)0.35<f1/ft<1.20
但し、
ft:望遠端における全系の焦点距離
とする。
It is desirable that the following conditional expression (4) is satisfied in the zoom lens according to the embodiment of the present technology.
(4) 0.35 <f1 / ft <1.20
However,
ft: The focal length of the entire system at the telephoto end.
 条件式(4)は、第1レンズ群の焦点距離を望遠端における光学系の焦点距離に対して相対的に規定するための条件式である。 Conditional expression (4) is a conditional expression for defining the focal length of the first lens group relative to the focal length of the optical system at the telephoto end.
 条件式(4)の下限値を下回ると、第1レンズ群の屈折力が強くなり過ぎるため、望遠端における諸収差、特に、球面収差や軸上色収差や倍率色収差の補正が困難になる。 If it falls below the lower limit of the conditional equation (4), the refractive power of the first lens group becomes too strong, and it becomes difficult to correct various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification.
 一方、条件式(4)の上限値を上回ると、第1レンズ群の屈折力が弱くなり過ぎるため、望遠端における第2レンズ群に入射する光線の径が大きくなり光学系の小径化が困難になる。 On the other hand, if the upper limit of the conditional equation (4) is exceeded, the refractive power of the first lens group becomes too weak, so that the diameter of the light beam incident on the second lens group at the telephoto end becomes large and it is difficult to reduce the diameter of the optical system. become.
 従って、ズームレンズが条件式(4)を満足することにより、第1レンズ群の屈折力が適正化され、望遠端における諸収差、特に、球面収差や軸上色収差や倍率色収差の良好な補正を行うことができると共に光学系の小径化を図ることができる。 Therefore, when the zoom lens satisfies the conditional equation (4), the refractive power of the first lens group is optimized, and various aberrations at the telephoto end, particularly spherical aberration, axial chromatic aberration, and chromatic aberration of magnification can be satisfactorily corrected. This can be done and the diameter of the optical system can be reduced.
 尚、条件式(4)の範囲を以下の条件式(4A)の範囲に設定することが可能である。
(4A)0.45<f1/ft<0.85
 条件式(4)の範囲を条件式(4A)の範囲に設定することにより、上記した効果を一層高めることができる。
The range of the conditional expression (4) can be set to the range of the following conditional expression (4A).
(4A) 0.45 <f1 / ft <0.85
By setting the range of the conditional expression (4) to the range of the conditional expression (4A), the above-mentioned effect can be further enhanced.
 本技術の一実施形態によるズームレンズにあっては、以下の条件式(5)を満足することが望ましい。
(5)2.1<d1t/d2t<9.9
但し、
d1t:望遠端における第1レンズ群と第2レンズ群の間隔
d2t:望遠端における第2レンズ群と第3レンズ群の間隔
とする。
It is desirable that the following conditional expression (5) is satisfied for the zoom lens according to the embodiment of the present technology.
(5) 2.1 <d1t / d2t <9.9
However,
d1t: Distance between the first lens group and the second lens group at the telephoto end d2t: The distance between the second lens group and the third lens group at the telephoto end.
 条件式(5)は、第2レンズ群の移動量と第3レンズ群の移動量を相対的に規定するための条件式である。 Conditional expression (5) is a conditional expression for relatively defining the amount of movement of the second lens group and the amount of movement of the third lens group.
 条件式(5)の下限値を下回ると、望遠端における第2レンズ群に入射する光線の径が大きくなるため、光学系の小径化が困難になる。 If it is less than the lower limit of the conditional expression (5), the diameter of the light beam incident on the second lens group at the telephoto end becomes large, so that it becomes difficult to reduce the diameter of the optical system.
 一方、条件式(5)の上限値を上回ると、第2レンズ群によるズーミング時の減倍効果が大きくなってしまうため、高倍率化の達成が困難になる。 On the other hand, if the upper limit of the conditional expression (5) is exceeded, the magnification reduction effect during zooming by the second lens group becomes large, and it becomes difficult to achieve high magnification.
 従って、ズームレンズが条件式(5)を満足することにより、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制されるため、光学系の小径化を図ることができると共に高倍率化を図ることができる。 Therefore, when the zoom lens satisfies the condition equation (5), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification effect during zooming by the second lens group is suppressed. The diameter of the optical system can be reduced and the magnification can be increased.
 尚、条件式(5)の範囲を以下の条件式(5A)の範囲に設定することが可能である。
(5A)3.0<d1t/d2t<7.0
 条件式(5)の範囲を条件式(5A)の範囲に設定することにより、上記した効果を一層高めることができる。
The range of the conditional expression (5) can be set to the range of the following conditional expression (5A).
(5A) 3.0 <d1t / d2t <7.0
By setting the range of the conditional expression (5) to the range of the conditional expression (5A), the above-mentioned effect can be further enhanced.
 本技術の一実施形態によるズームレンズにあっては、第3レンズ群より像側に位置する群の全体又は一部を光軸方向へ移動させることによりフォーカシングすることが望ましい。 In the zoom lens according to the embodiment of the present technology, it is desirable to focus by moving the whole or a part of the group located on the image side of the third lens group in the optical axis direction.
 第3レンズ群より像側に位置する群の全体又は一部を光軸方向へ移動させることにより、全系に対する体積が小さく重量の小さい群又はその一部によってフォーカシングが行われるため、フォーカス駆動の高速化を図ることができる。 By moving all or a part of the group located on the image side of the third lens group in the optical axis direction, focusing is performed by the group having a small volume and a small weight with respect to the whole system or a part thereof. The speed can be increased.
 [ズームレンズの数値実施例]
 以下に、本技術ズームレンズの具体的な実施の形態及び実施の形態に具体的な数値を適用した数値実施例について、図面及び表を参照して説明する。
[Numerical example of zoom lens]
Hereinafter, specific embodiments of the zoom lens of the present technology and numerical examples in which specific numerical values are applied to the embodiments will be described with reference to drawings and tables.
 尚、以下の各表や説明において示した記号の意味等については、下記に示す通りである。 The meanings of the symbols shown in the following tables and explanations are as shown below.
 「r」は第i番目の面の近軸曲率半径、「d」は第i番目の面と第i+1番目の面の間の軸上面間隔(レンズの中心の厚み又は空気間隔)、「nd」は第i番目の面から始まるレンズ等のd線(λ=587.6nm)における屈折率、「νd」は第i番目の面から始まるレンズ等のd線におけるアッベ数を示す。 "R" is the paraxial radius of curvature of the i-th plane, "d" is the axial top-top spacing (thickness of the center of the lens or air spacing) between the i-th plane and the i + 1th plane, "nd" Is the refractive index on the d-line (λ = 587.6 nm) of the lens or the like starting from the i-th plane, and “νd” is the Abbe number on the d-line of the lens or the like starting from the i-th plane.
 「r」に関し「∞」は当該面が平面であることを示す。「d」に関し「可変」とあるのは可変間隔であることを示す。 Regarding "r", "∞" indicates that the surface is a plane. Regarding "d", "variable" indicates that the interval is variable.
 非球面には面番号の右側に*印を付しており、開口絞りには面番号の右側に「絞り」の記述を付している。 The aspherical surface is marked with * on the right side of the surface number, and the aperture diaphragm is marked with the description of "aperture" on the right side of the surface number.
 「κ」は円錐定数(コーニック定数)、「A4」、「A6」、「A8」、「A10」、「A12」はそれぞれ4次、6次、8次、10次、12次の非球面係数を示す。 "Κ" is a conical constant (conic constant), "A4", "A6", "A8", "A10", "A12" are 4th, 6th, 8th, 10th, and 12th aspherical coefficients, respectively. Is shown.
 尚、以下の非球面係数を示す各表において、「E-n」は10を底とする指数表現、即ち、「10のマイナスn乗」を表しており、例えば、「0.12345E-05」は「0.12345×(10のマイナス五乗)」を表している。 In each table showing the aspherical coefficient below, "En" represents an exponential notation with a base of 10, that is, "10 minus nth power", for example, "0.12345E-05". Represents "0.12345 x (10 minus the fifth power)".
 各実施の形態において用いられたズームレンズには、レンズ面が非球面に形成されたものがある。非球面形状は、「x」をレンズ面の頂点からの光軸方向における距離(サグ量)、「y」を光軸方向に直交する方向における高さ(像高)、「c」をレンズの頂点における近軸曲率(曲率半径の逆数)、「κ」を円錐定数(コーニック定数)、「A4」、「A6」、・・・をそれぞれ4次、6次、・・・の非球面係数とすると、以下の数式1によって定義される。 Some of the zoom lenses used in each embodiment have an aspherical lens surface. For the aspherical shape, "x" is the distance (sag amount) in the optical axis direction from the apex of the lens surface, "y" is the height (image height) in the direction orthogonal to the optical axis direction, and "c" is the lens. Near-axis curvature at the apex (inverse of the radius of curvature), "κ" is the conical constant (conic constant), "A4", "A6", ... are the aspherical coefficients of the 4th, 6th, ... Then, it is defined by the following equation 1.
 各図において、像面は「IMG」で示す。 In each figure, the image plane is indicated by "IMG".
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 <第1の実施の形態>
 図1乃至図6は、本技術の第1の実施の形態におけるズームレンズ1のレンズ構成を示している。
<First Embodiment>
1 to 6 show the lens configuration of the zoom lens 1 according to the first embodiment of the present technology.
 ズームレンズ1は、物体側より像側へ順に配置された第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4と第5レンズ群G5と第6レンズ群G6を有している。第1レンズ群G1は正のレンズ群として設けられ、第2レンズ群G2は正のレンズ群として設けられ、第3レンズ群G3は負のレンズ群として設けられている。 The zoom lens 1 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have. The first lens group G1 is provided as a positive lens group, the second lens group G2 is provided as a positive lens group, and the third lens group G3 is provided as a negative lens group.
 第1レンズ群G1は変倍時に固定され、第2レンズ群G2と第3レンズ群G3は変倍時に移動される。 The first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた負メニスカスレンズL11、正レンズL12、物体側に凸面を向けた正メニスカスレンズL13によって構成されている。 The first lens group G1 is composed of a negative meniscus lens L11 having a convex surface facing the object side, a positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side in order from the object side to the image side.
 第2レンズ群G2は、像側に凸面を向けた正メニスカスレンズL21によって構成されている。 The second lens group G2 is composed of a positive meniscus lens L21 with a convex surface facing the image side.
 第3レンズ群G3は、物体側から像側へ順に、負レンズL31、正レンズL32、負レンズL33、像側に凸面を向けた負メニスカスレンズL34によって構成されている。正レンズL32と負レンズL33は接合レンズとして構成されている。 The third lens group G3 is composed of a negative lens L31, a positive lens L32, a negative lens L33, and a negative meniscus lens L34 with a convex surface facing the image side, in this order from the object side to the image side. The positive lens L32 and the negative lens L33 are configured as a junction lens.
 第4レンズ群G4は、物体側から像側へ順に、負レンズL41、物体側に凸面を向けた正メニスカスレンズL42によって構成されている。負レンズL41と正メニスカスレンズL42は接合レンズとして構成されている。 The fourth lens group G4 is composed of a negative lens L41 and a positive meniscus lens L42 with a convex surface facing the object side in order from the object side to the image side. The negative lens L41 and the positive meniscus lens L42 are configured as a junction lens.
 第5レンズ群G5は、物体側から像側へ順に、正レンズL51、物体側に凸面を向けた負メニスカスレンズL52、正レンズL53によって構成されている。負メニスカスレンズL52と正レンズL53は接合レンズとして構成されている。 The fifth lens group G5 is composed of a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a positive lens L53 in this order from the object side to the image side. The negative meniscus lens L52 and the positive lens L53 are configured as a junction lens.
 第6レンズ群G6は、物体側から像側へ順に、像側に凸面を向けた負メニスカスレンズL61、正レンズL62、開口絞りS、正レンズL63、負レンズL64、正レンズL65、像側に凸面を向けた正メニスカスレンズL66、負レンズL67、正レンズL68、負レンズL69、正レンズL610、正レンズL611、負レンズL612、像側に凸面を向けた負レンズL613によって構成されている。正レンズL63と負レンズL64は接合レンズとして構成され、正メニスカスレンズL66と負レンズL67は接合レンズとして構成され、正レンズL68と負レンズL69は接合レンズとして構成され、正レンズL611と負レンズL612は接合レンズとして構成されている。 The sixth lens group G6 has a negative meniscus lens L61, a positive lens L62, an aperture aperture S, a positive lens L63, a negative lens L64, a positive lens L65, and an image side in order from the object side to the image side. It is composed of a positive meniscus lens L66 with a convex surface, a negative lens L67, a positive lens L68, a negative lens L69, a positive lens L610, a positive lens L611, a negative lens L612, and a negative lens L613 with a convex surface facing the image side. The positive lens L63 and the negative lens L64 are configured as a junction lens, the positive meniscus lens L66 and the negative lens L67 are configured as a junction lens, the positive lens L68 and the negative lens L69 are configured as a junction lens, and the positive lens L611 and the negative lens L612. Is configured as a junction lens.
 無限遠から近距離へのフォーカシングに際しては、第5レンズ群G5が光軸方向へ移動される。尚、フォーカシングに際しては、正レンズL610が光軸方向へ移動される構成等の他の構成にされていてもよい。また、接合レンズを構成する正レンズL66と負レンズL67が光軸方向に直交する方向へ移動されることにより、手振れ等に対して防振を行うことができる。 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction. At the time of focusing, another configuration such as a configuration in which the positive lens L610 is moved in the optical axis direction may be used. Further, by moving the positive lens L66 and the negative lens L67 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
 表1に、ズームレンズ1に具体的数値を適用した数値実施例1のレンズデータを示す。 Table 1 shows the lens data of Numerical Example 1 in which specific numerical values are applied to the zoom lens 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 数値実施例1の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表2に示す。 Table 2 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 無限遠と最至近(2000mm)の間のフォーカシングに際して、第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔、第4レンズ群G4と第5レンズ群G5の間隔、第5レンズ群G5と第6レンズ群G6の間隔が変化する。数値実施例1における各面間隔の無限遠と最至近における可変間隔を表3に示す。 When focusing between infinity and the closest (2000 mm), the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the third lens group G3 and the fourth The distance between the lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6 change. Numerical values Table 3 shows the infinity and the closest variable spacing of each surface spacing in Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 数値実施例1における各レンズ群の焦点距離を表4に示す。 Numerical values Table 4 shows the focal lengths of each lens group in Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図7乃至図12は数値実施例1の縦収差図、図13乃至図18は数値実施例1の横収差図である。図7乃至図12には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図13乃至図18において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示す。 7 to 12 are longitudinal aberration diagrams of Numerical Example 1, and FIGS. 13 to 18 are transverse aberration diagrams of Numerical Example 1. In FIGS. 7 to 12, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIGS. 13 to 18, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, and the alternate long and short dash line indicates the value of the g line.
 以上の構成により、ズームレンズ1は高画質な望遠ズームレンズを実現した上で軽量化が図られている。 With the above configuration, the zoom lens 1 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
 また、各収差図から、数値実施例1は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 1 has various aberrations corrected well and has excellent imaging performance.
 <第2の実施の形態>
 図19乃至図24は、本技術の第2の実施の形態におけるズームレンズ2のレンズ構成を示している。
<Second embodiment>
19 to 24 show the lens configuration of the zoom lens 2 according to the second embodiment of the present technology.
 ズームレンズ2は、物体側より像側へ順に配置された第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4と第5レンズ群G5と第6レンズ群G6と第7レンズ群G7を有している。第1レンズ群G1は正のレンズ群として設けられ、第2レンズ群G2は正のレンズ群として設けられ、第3レンズ群G3は負のレンズ群として設けられている。 The zoom lens 2 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. And has a seventh lens group G7. The first lens group G1 is provided as a positive lens group, the second lens group G2 is provided as a positive lens group, and the third lens group G3 is provided as a negative lens group.
 第1レンズ群G1は変倍時に固定され、第2レンズ群G2と第3レンズ群G3は変倍時に移動される。 The first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた負メニスカスレンズL11、正レンズL12、正レンズL13によって構成されている。 The first lens group G1 is composed of a negative meniscus lens L11, a positive lens L12, and a positive lens L13 whose convex surfaces are directed toward the object side in order from the object side to the image side.
 第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向けた正メニスカスレンズL21、物体側に凸面を向けた負メニスカスレンズL22によって構成されている。 The second lens group G2 is composed of a positive meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a convex surface facing the object side in order from the object side to the image side.
 第3レンズ群G3は、物体側から像側へ順に、負レンズL31、負レンズL32、正レンズL33によって構成されている。負レンズL32と正レンズL33は接合レンズとして構成されている。 The third lens group G3 is composed of a negative lens L31, a negative lens L32, and a positive lens L33 in this order from the object side to the image side. The negative lens L32 and the positive lens L33 are configured as a junction lens.
 第4レンズ群G4は、物体側から像側へ順に、正レンズL41、正レンズL42、正レンズL43、負レンズL44によって構成されている。正レンズL43と負レンズL44は接合レンズとして構成されている。 The fourth lens group G4 is composed of a positive lens L41, a positive lens L42, a positive lens L43, and a negative lens L44 in this order from the object side to the image side. The positive lens L43 and the negative lens L44 are configured as a junction lens.
 第5レンズ群G5は、物体側から像側へ順に、開口絞りS、正レンズL51、物体側に凸面を向けた負メニスカスレンズL52、物体側に凸面を向けた負メニスカスレンズL53、物体側に凸面を向けた正メニスカスレンズL54、物体側に凸面を向けた正メニスカスレンズL55、物体側に凸面を向けた負メニスカスレンズL56、物体側に凸面を向けた正メニスカスレンズL57によって構成されている。負メニスカスレンズL53と正メニスカスレンズL54は接合レンズとして構成され、負メニスカスレンズL56と正メニスカスレンズL57は接合レンズとして構成されている。 The fifth lens group G5 includes an aperture aperture S, a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, a negative meniscus lens L53 with a convex surface facing the object side, and an object side in order from the object side to the image side. It is composed of a positive meniscus lens L54 with a convex surface, a positive meniscus lens L55 with a convex surface on the object side, a negative meniscus lens L56 with a convex surface on the object side, and a positive meniscus lens L57 with a convex surface on the object side. The negative meniscus lens L53 and the positive meniscus lens L54 are configured as a junction lens, and the negative meniscus lens L56 and the positive meniscus lens L57 are configured as a junction lens.
 第6レンズ群G6は、物体側から像側へ順に、物体側に凸面を向けた負メニスカスレンズL61、負レンズL62、正レンズL63によって構成されている。負レンズL62と正レンズL63は接合レンズとして構成されている。 The sixth lens group G6 is composed of a negative meniscus lens L61, a negative lens L62, and a positive lens L63 whose convex surfaces are directed toward the object side in order from the object side to the image side. The negative lens L62 and the positive lens L63 are configured as a junction lens.
 第7レンズ群G7は、物体側から像側へ順に、物体側に凸面を向けた正メニスカスレンズL71、像側に凸面を向けた正メニスカスレンズL72、像側に凸面を向けた負メニスカスレンズL73によって構成されている。 The seventh lens group G7 includes a positive meniscus lens L71 having a convex surface facing the object side, a positive meniscus lens L72 having a convex surface facing the image side, and a negative meniscus lens L73 having a convex surface facing the image side in order from the object side to the image side. It is composed of.
 無限遠から近距離へのフォーカシングに際しては、第6レンズ群G6が光軸方向へ移動される。尚、フォーカシングに際しては、第4レンズ群G4が光軸方向へ移動される等の他の構成にされていてもよい。また、接合レンズを構成する負メニスカスレンズL53と正メニスカスレンズL54が光軸方向に直交する方向へ移動されることにより、手振れ等に対して防振を行うことができる。 When focusing from infinity to a short distance, the 6th lens group G6 is moved in the optical axis direction. At the time of focusing, the fourth lens group G4 may have another configuration such as being moved in the optical axis direction. Further, by moving the negative meniscus lens L53 and the positive meniscus lens L54 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
 表5に、ズームレンズ2に具体的数値を適用した数値実施例2のレンズデータを示す。 Table 5 shows the lens data of Numerical Example 2 in which specific numerical values are applied to the zoom lens 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 数値実施例2の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表6に示す。 Table 6 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 無限遠と最至近(2000mm)の間のフォーカシングに際して、第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔、第4レンズ群G4と第5レンズ群G5の間隔、第5レンズ群G5と第6レンズ群G6の間隔、第6レンズ群G6と第7レンズ群G7の間隔が変化する。数値実施例2における各面間隔の無限遠と最至近における可変間隔を表7に示す。 When focusing between infinity and the closest (2000 mm), the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the third lens group G3 and the fourth The distance between the lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6, and the distance between the sixth lens group G6 and the seventh lens group G7 change. .. Numerical values Table 7 shows the infinity and the closest variable spacing of each surface spacing in Example 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 数値実施例2における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表8に示す。 Table 8 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 2 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 数値実施例2における各レンズ群の焦点距離を表9に示す。 Numerical values Table 9 shows the focal lengths of each lens group in Example 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図25乃至図30は数値実施例2の縦収差図、図31乃至図36は数値実施例2の横収差図である。図25乃至図30には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図31乃至図36において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示す。 25 to 30 are longitudinal aberration diagrams of Numerical Example 2, and FIGS. 31 to 36 are transverse aberration diagrams of Numerical Example 2. In FIGS. 25 to 30, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIGS. 31 to 36, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, and the alternate long and short dash line indicates the value of the g line.
 以上の構成により、ズームレンズ2は高画質な望遠ズームレンズを実現した上で軽量化が図られている。 With the above configuration, the zoom lens 2 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
 また、各収差図から、数値実施例2は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that Numerical Example 2 has various aberrations corrected well and has excellent imaging performance.
 <第3の実施の形態>
 図37乃至図42は、本技術の第3の実施の形態におけるズームレンズ3のレンズ構成を示している。
<Third embodiment>
37 to 42 show the lens configuration of the zoom lens 3 according to the third embodiment of the present technology.
 ズームレンズ3は、物体側より像側へ順に配置された第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4と第5レンズ群G5と第6レンズ群G6を有している。第1レンズ群G1は正のレンズ群として設けられ、第2レンズ群G2は正のレンズ群として設けられ、第3レンズ群G3は負のレンズ群として設けられている。 The zoom lens 3 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have. The first lens group G1 is provided as a positive lens group, the second lens group G2 is provided as a positive lens group, and the third lens group G3 is provided as a negative lens group.
 第1レンズ群G1は変倍時に固定され、第2レンズ群G2と第3レンズ群G3は変倍時に移動される。 The first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた正メニスカスレンズL11、物体側に凸面を向けた負メニスカスレンズL12、正レンズL13、正レンズL14によって構成されている。 The first lens group G1 is composed of a positive meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, a positive lens L13, and a positive lens L14 in order from the object side to the image side. There is.
 第2レンズ群G2は像側に凸面を向けた正メニスカスレンズL21によって構成されている。 The second lens group G2 is composed of a positive meniscus lens L21 with a convex surface facing the image side.
 第3レンズ群G3は、物体側から像側へ順に、負レンズL31、正レンズL32、負レンズL33、負レンズL34によって構成されている。正レンズL32と負レンズL33は接合レンズとして構成されている。 The third lens group G3 is composed of a negative lens L31, a positive lens L32, a negative lens L33, and a negative lens L34 in this order from the object side to the image side. The positive lens L32 and the negative lens L33 are configured as a junction lens.
 第4レンズ群G4は、物体側から像側へ順に、負レンズL41、物体側に凸面を向けた正メニスカスレンズL42によって構成されている。負レンズL41と正メニスカスレンズL42は接合レンズとして構成されている。 The fourth lens group G4 is composed of a negative lens L41 and a positive meniscus lens L42 with a convex surface facing the object side in order from the object side to the image side. The negative lens L41 and the positive meniscus lens L42 are configured as a junction lens.
 第5レンズ群G5は、物体側から像側へ順に、正レンズL51、物体側に凸面を向けた負メニスカスレンズL52、正レンズL53によって構成されている。負メニスカスレンズL52と正レンズL53は接合レンズとして構成されている。 The fifth lens group G5 is composed of a positive lens L51, a negative meniscus lens L52 with a convex surface facing the object side, and a positive lens L53 in this order from the object side to the image side. The negative meniscus lens L52 and the positive lens L53 are configured as a junction lens.
 第6レンズ群G6は、物体側から像側へ順に、像側に凸面を向けた負メニスカスレンズL61、物体側に凸面を向けた正メニスカスレンズL62、開口絞りS、正レンズL63、負レンズL64、物体側に凸面を向けた正メニスカスレンズL65、正レンズL66、負レンズL67、正レンズL68、像側に凸面を向けた負メニスカスレンズL69、正レンズL610、像側に凸面を向けた正メニスカスレンズL611、像側に凸面を向けた負メニスカスレンズL612、負レンズL613によって構成されている。正レンズL63と負レンズL64は接合レンズとして構成され、正レンズL66と負レンズL67は接合レンズとして構成され、正メニスカスレンズL611と負メニスカスレンズL612は接合レンズとして構成されている。 The sixth lens group G6 includes a negative meniscus lens L61 with a convex surface facing the image side, a positive meniscus lens L62 with a convex surface facing the object side, an aperture aperture S, a positive lens L63, and a negative lens L64 in order from the object side to the image side. , Positive meniscus lens L65 with convex surface facing the object side, positive lens L66, negative lens L67, positive lens L68, negative meniscus lens L69 with convex surface facing the image side, positive lens L610, positive meniscus with convex surface facing the image side It is composed of a lens L611, a negative meniscus lens L612 with a convex surface facing the image side, and a negative lens L613. The positive lens L63 and the negative lens L64 are configured as a junction lens, the positive lens L66 and the negative lens L67 are configured as a junction lens, and the positive meniscus lens L611 and the negative meniscus lens L612 are configured as a junction lens.
 無限遠から近距離へのフォーカシングに際しては、第5レンズ群G5が光軸方向へ移動される。尚、フォーカシングに際しては、正メニスカスレンズL611、負メニスカスレンズL612が光軸方向へ移動される構成等の他の構成にされていてもよい。また、接合レンズを構成する正レンズL66と負レンズL67が光軸方向に直交する方向へ移動されることにより、手振れ等に対して防振を行うことができる。 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction. At the time of focusing, the positive meniscus lens L611 and the negative meniscus lens L612 may have other configurations such as being moved in the optical axis direction. Further, by moving the positive lens L66 and the negative lens L67 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
 表10に、ズームレンズ3に具体的数値を適用した数値実施例3のレンズデータを示す。 Table 10 shows the lens data of Numerical Example 3 in which specific numerical values are applied to the zoom lens 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 数値実施例3の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表11に示す。 Table 11 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 3.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 無限遠と最至近(2000mm)の間のフォーカシングに際して、第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔、第4レンズ群G4と第5レンズ群G5の間隔、第5レンズ群G5と第6レンズ群G6の間隔が変化する。数値実施例3における各面間隔の無限遠と最至近における可変間隔を表12に示す。 When focusing between infinity and the closest (2000 mm), the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the third lens group G3 and the fourth The distance between the lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6 change. Numerical values Table 12 shows the infinity and the closest variable spacing of each surface spacing in Example 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 数値実施例3における各レンズ群の焦点距離を表13に示す。 Numerical values Table 13 shows the focal lengths of each lens group in Example 3.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 図43乃至図48は数値実施例3の縦収差図、図49乃至図54は数値実施例3の横収差図である。図43乃至図48には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図49乃至図54において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示す。 43 to 48 are longitudinal aberration diagrams of Numerical Example 3, and FIGS. 49 to 54 are transverse aberration diagrams of Numerical Example 3. In FIGS. 43 to 48, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIGS. 49 to 54, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, and the alternate long and short dash line indicates the value of the g line.
 以上の構成により、ズームレンズ3は高画質な望遠ズームレンズを実現した上で軽量化が図られている。 With the above configuration, the zoom lens 3 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
 また、各収差図から、数値実施例3は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that Numerical Example 3 has various aberrations corrected well and has excellent imaging performance.
 <第4の実施の形態>
 図55乃至図60は、本技術の第4の実施の形態におけるズームレンズ4のレンズ構成を示している。
<Fourth Embodiment>
55 to 60 show the lens configuration of the zoom lens 4 according to the fourth embodiment of the present technology.
 ズームレンズ4は、物体側より像側へ順に配置された第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4と第5レンズ群G5と第6レンズ群G6を有している。第1レンズ群G1は正のレンズ群として設けられ、第2レンズ群G2は正のレンズ群として設けられ、第3レンズ群G3は負のレンズ群として設けられている。 The zoom lens 4 includes a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, a fifth lens group G5, and a sixth lens group G6 arranged in order from the object side to the image side. have. The first lens group G1 is provided as a positive lens group, the second lens group G2 is provided as a positive lens group, and the third lens group G3 is provided as a negative lens group.
 第1レンズ群G1は変倍時に固定され、第2レンズ群G2と第3レンズ群G3は変倍時に移動される。 The first lens group G1 is fixed at the time of scaling, and the second lens group G2 and the third lens group G3 are moved at the time of scaling.
 第1レンズ群G1は、物体側から像側へ順に、物体側に凸面を向けた負メニスカスレンズL11、物体側に凸面を向けた正メニスカスレンズL12、正レンズL13によって構成されている。 The first lens group G1 is composed of a negative meniscus lens L11 having a convex surface facing the object side, a positive meniscus lens L12 having a convex surface facing the object side, and a positive lens L13 in order from the object side to the image side.
 第2レンズ群G2は、物体側から像側へ順に、物体側に凸面を向けた正メニスカスレンズL21、物体側に凸面を向けた負メニスカスレンズL22によって構成されている。 The second lens group G2 is composed of a positive meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a convex surface facing the object side in order from the object side to the image side.
 第3レンズ群G3は、物体側から像側へ順に、負レンズL31、負レンズL32、正レンズL33によって構成されている。負レンズL32と正レンズL33は接合レンズとして構成されている。 The third lens group G3 is composed of a negative lens L31, a negative lens L32, and a positive lens L33 in this order from the object side to the image side. The negative lens L32 and the positive lens L33 are configured as a junction lens.
 第4レンズ群G4は、物体側から像側へ順に、像側に凸面を向けた正メニスカスレンズ41、正レンズL42、正レンズL43、負レンズL44、開口絞りS、正レンズL45、物体側に凸面を向けた負メニスカスレンズL46、物体側に凸面を向けた負メニスカスレンズL47、物体側に凸面を向けた正メニスカスレンズL48、物体側に凸面を向けた正メニスカスレンズL49、物体側に凸面を向けた負メニスカスレンズL410、物体側に凸面を向けた正メニスカスレンズL411によって構成されている。正レンズL43と負レンズL44は接合レンズとして構成され、負メニスカスレンズL47と正メニスカスレンズL48は接合レンズとして構成され、負メニスカスレンズL410と正メニスカスレンズL411は接合レンズとして構成されている。 The fourth lens group G4 includes a positive meniscus lens 41, a positive lens L42, a positive lens L43, a negative lens L44, an aperture aperture S, a positive lens L45, and an object side in order from the object side to the image side. Negative meniscus lens L46 with convex surface, negative meniscus lens L47 with convex surface toward the object side, positive meniscus lens L48 with convex surface toward the object side, positive meniscus lens L49 with convex surface toward the object side, convex surface toward the object side It is composed of a negative meniscus lens L410 directed toward the object and a positive meniscus lens L411 with a convex surface facing the object side. The positive lens L43 and the negative lens L44 are configured as a junction lens, the negative meniscus lens L47 and the positive meniscus lens L48 are configured as a junction lens, and the negative meniscus lens L410 and the positive meniscus lens L411 are configured as a junction lens.
 第5レンズ群G5は、物体側から像側へ順に、物体側に凸面を向けた負メニスカスレンズL51、負レンズL52、正レンズL53によって構成されている。負レンズL52と正レンズL53は接合レンズとして構成されている。 The fifth lens group G5 is composed of a negative meniscus lens L51, a negative lens L52, and a positive lens L53 whose convex surfaces are directed toward the object side in order from the object side to the image side. The negative lens L52 and the positive lens L53 are configured as a junction lens.
 第6レンズ群G6は、物体側から像側へ順に、物体側に凸面を向けた正メニスカスレンズL61、像側に凸面を向けた正メニスカスレンズL62、像側に凸面を向けた負メニスカスレンズL63によって構成されている。 The sixth lens group G6 includes a positive meniscus lens L61 having a convex surface facing the object side, a positive meniscus lens L62 having a convex surface facing the image side, and a negative meniscus lens L63 having a convex surface facing the image side in order from the object side to the image side. It is composed of.
 無限遠から近距離へのフォーカシングに際しては、第5レンズ群G5が光軸方向へ移動される。尚、フォーカシングに際しては、正レンズ41、正レンズL42、正レンズL43、負レンズL44が光軸方向へ移動される構成等の他の構成にされていてもよい。また、接合レンズを構成する負メニスカスレンズL47と正メニスカスレンズL48が光軸方向に直交する方向へ移動されることにより、手振れ等に対して防振を行うことができる。 When focusing from infinity to a short distance, the fifth lens group G5 is moved in the optical axis direction. At the time of focusing, other configurations such as a configuration in which the positive lens 41, the positive lens L42, the positive lens L43, and the negative lens L44 are moved in the optical axis direction may be used. Further, by moving the negative meniscus lens L47 and the positive meniscus lens L48 constituting the bonded lens in the direction orthogonal to the optical axis direction, vibration isolation can be performed against camera shake and the like.
 表14に、ズームレンズ4に具体的数値を適用した数値実施例4のレンズデータを示す。 Table 14 shows the lens data of Numerical Example 4 in which specific numerical values are applied to the zoom lens 4.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 数値実施例4の焦点距離f、FナンバーFno、半画角ω、像高Y及び光学全長Lを表15に示す。 Table 15 shows the focal length f, the F number Fno, the half angle of view ω, the image height Y, and the total optical length L of Numerical Example 4.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 無限遠と最至近(2000mm)の間のフォーカシングに際して、第1レンズ群G1と第2レンズ群G2の間隔、第2レンズ群G2と第3レンズ群G3の間隔、第3レンズ群G3と第4レンズ群G4の間隔、第4レンズ群G4と第5レンズ群G5の間隔、第5レンズ群G5と第6レンズ群G6の間隔が変化する。数値実施例4における各面間隔の無限遠と最至近における可変間隔を表16に示す。 When focusing between infinity and the closest (2000 mm), the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the third lens group G3 and the fourth The distance between the lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6 change. Numerical values Table 16 shows the infinity and the closest variable spacing of each surface spacing in Example 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 数値実施例4における非球面の4次、6次、8次、10次、12次の非球面係数A4、A6、A8、A10、A12を円錐定数κと共に表17に示す。 Table 17 shows the 4th, 6th, 8th, 10th, and 12th aspherical coefficients A4, A6, A8, A10, and A12 of the aspherical surface in Numerical Example 4 together with the conical constant κ.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 数値実施例4における各レンズ群の焦点距離を表18に示す。 Numerical values Table 18 shows the focal lengths of each lens group in Example 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 図61乃至図66は数値実施例4の縦収差図、図67乃至図72は数値実施例4の横収差図である。図61乃至図66には、球面収差において実線はd線(587.56nm)の値を示し、点線はc線(656.27nm)の値を示し、一点鎖線はg線(435.84nm)の値を示し、非点収差において実線はd線のサジタル像面の値を示し、破線はd線のメリジオアナル像面の値を示し、歪曲収差においてd線の値を示す。図67乃至図72において、実線はd線の値を示し、点線はc線の値を示し、一点鎖線はg線の値を示す。 61 to 66 are longitudinal aberration diagrams of Numerical Example 4, and FIGS. 67 to 72 are transverse aberration diagrams of Numerical Example 4. In FIGS. 61 to 66, the solid line shows the value of the d line (587.56 nm), the dotted line shows the value of the c line (656.27 nm), and the alternate long and short dash line shows the value of the g line (435.84 nm). In the astigmatism, the solid line shows the value of the sagittal image plane of the d line, the broken line shows the value of the meridional image plane of the d line, and the distortion shows the value of the d line. In FIGS. 67 to 72, the solid line indicates the value of the d line, the dotted line indicates the value of the c line, and the alternate long and short dash line indicates the value of the g line.
 以上の構成により、ズームレンズ4は高画質な望遠ズームレンズを実現した上で軽量化が図られている。 With the above configuration, the zoom lens 4 is designed to be lightweight while realizing a high-quality telephoto zoom lens.
 また、各収差図から、数値実施例4は諸収差が良好に補正され、優れた結像性能を有していることが明らかである。 Further, from each aberration diagram, it is clear that the numerical embodiment 4 has various aberrations corrected well and has excellent imaging performance.
 [ズームレンズの条件式の各値]
 以下に、本技術ズームレンズの条件式の各値について説明する。
[Each value of the conditional expression of the zoom lens]
Each value of the conditional expression of the zoom lens of this technology will be described below.
 表19にズームレンズ1乃至ズームレンズ4の数値実施例1乃至数値実施例4における条件式(1)乃至条件式(5)の各値を示す。 Table 19 shows the values of the conditional expressions (1) to (5) in the numerical examples 1 to 4 of the zoom lenses 1 to 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表19から明らかなように、ズームレンズ1乃至ズームレンズ4は条件式(1)乃至条件式(5)を満足するようにされている。 As is clear from Table 19, the zoom lenses 1 to 4 are designed to satisfy the conditional expressions (1) to (5).
 [撮像装置の構成]
 本技術撮像装置は、ズームレンズが、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、第1レンズ群は変倍時に固定され第2レンズ群と第3レンズ群は変倍時に移動され、第1レンズ群は4枚以下のレンズによって構成され、以下の条件式(1)及び条件式(2)を満足する。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における第3レンズ群の移動量
とする。
[Configuration of imaging device]
In the imaging device of the present technology, the zoom lens has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group is changed. The second lens group and the third lens group are fixed at the time of magnification and are moved at the time of magnification change, and the first lens group is composed of four or less lenses and satisfies the following conditional equations (1) and (2). ..
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: At the time of scaling from the wide-angle end to the telephoto end It is the amount of movement of the third lens group in.
 上記のように、物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、第1レンズ群が4枚以下のレンズによって構成されて変倍時に固定され、第2レンズ群と第3レンズ群が変倍時に移動されることにより、光学系の軽量化を図ることが可能になる。また、第1レンズ群が少ない枚数の構成にされているが、第2レンズ群を正レンズ群にすることにより合計の屈折力を大きくすると共に良好な収差補正ができるようにしている。 As described above, a lens having a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side, and the first lens group has four or less lenses. The weight of the optical system can be reduced by being configured and fixed at the time of magnification change, and by moving the second lens group and the third lens group at the time of magnification change. Further, although the number of the first lens group is small, the total refractive power is increased and good aberration correction can be performed by making the second lens group a positive lens group.
 本技術撮像装置は、ズームレンズが条件式(1)を満足することにより、第1レンズ群の屈折力が適正化され、光学系の小径化を図ることができると共に諸収差、特に、球面収差、軸上色収差及び倍率色収差を良好に補正することができる。 In the imaging device of the present technology, when the zoom lens satisfies the condition equation (1), the refractive power of the first lens group is optimized, the diameter of the optical system can be reduced, and various aberrations, particularly spherical aberration, can be achieved. , Axial chromatic aberration and lateral chromatic aberration can be satisfactorily corrected.
 また、本技術撮像装置は、ズームレンズが条件式(2)を満足することにより、望遠端における第2レンズ群に入射する光線の径が小さくなると共に第2レンズ群によるズーミング時の減倍効果が抑制されるため、光学系の小径化及び高倍率化を図ることができる。 以上のように、本技術撮像装置によれば、軽量でありながら諸収差を良好に補正したズームレンズを備えた撮像装置を提供することができる。 Further, in the imaging device of the present technology, when the zoom lens satisfies the condition equation (2), the diameter of the light beam incident on the second lens group at the telephoto end becomes smaller and the magnification effect at the time of zooming by the second lens group becomes smaller. Therefore, it is possible to reduce the diameter and increase the magnification of the optical system. As described above, according to the image pickup device of the present technology, it is possible to provide an image pickup device provided with a zoom lens that is lightweight and has satisfactorily corrected various aberrations.
 [撮像装置の一実施形態]
 図73に、本技術撮像装置の一実施形態によるデジタルスチルカメラのブロック図を示す。
[One Embodiment of an Imaging Device]
FIG. 73 shows a block diagram of a digital still camera according to an embodiment of the imaging device of the present technology.
 撮像装置(デジタルスチルカメラ)100は、取り込まれた光を電気信号に変換する光電変換機能を有する撮像素子10と、撮影された画像信号のアナログ-デジタル変換等の信号処理を行うカメラ信号処理部20と、画像信号の記録再生処理を行う画像処理部30とを有している。また、撮像装置100は、撮影された画像等を表示する表示部40と、メモリー90への画像信号の書込及び読出を行うR/W(リーダ/ライタ)50と、撮像装置100の全体を制御するCPU(Central Processing Unit)60と、ユーザーによって所要の操作が行われる各種のスイッチ等の入力部70と、ズームレンズ1(ズームレンズ2、ズームレンズ3及びズームレンズ4を含む。)の駆動を制御するレンズ駆動制御部80とを備えている。 The image pickup device (digital still camera) 100 includes an image pickup element 10 having a photoelectric conversion function for converting captured light into an electric signal, and a camera signal processing unit that performs signal processing such as analog-digital conversion of the captured image signal. 20 and an image processing unit 30 that performs recording / reproduction processing of an image signal. Further, the image pickup device 100 includes a display unit 40 for displaying a captured image and the like, an R / W (reader / writer) 50 for writing and reading an image signal to the memory 90, and the entire image pickup device 100. Driving of a CPU (Central Processing Unit) 60 to control, an input unit 70 such as various switches for which a user performs a required operation, and a zoom lens 1 (including a zoom lens 2, a zoom lens 3 and a zoom lens 4). It is provided with a lens drive control unit 80 for controlling the above.
 カメラ信号処理部20は、撮像素子10からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行う。 The camera signal processing unit 20 performs various signal processing such as conversion of the output signal from the image pickup element 10 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal.
 画像処理部30は、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行う。 The image processing unit 30 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
 表示部40はユーザーの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。 The display unit 40 has a function of displaying various data such as an operation state of the user's input unit 70 and a captured image.
 R/W50は、画像処理部30によって符号化された画像データのメモリー90への書込及びメモリー90に記録された画像データの読出を行う。 The R / W 50 writes the image data encoded by the image processing unit 30 to the memory 90 and reads the image data recorded in the memory 90.
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能し、入力部70からの指示入力信号等に基づいて各回路ブロックを制御する。 The CPU 60 functions as a control processing unit that controls each circuit block provided in the image pickup apparatus 100, and controls each circuit block based on an instruction input signal or the like from the input unit 70.
 入力部70はユーザーによる操作に応じた指示入力信号をCPU60に対して出力する。 The input unit 70 outputs an instruction input signal according to the operation by the user to the CPU 60.
 レンズ駆動制御部80は、CPU60からの制御信号に基づいてレンズ群を駆動する図示しないモータ等を制御する。 The lens drive control unit 80 controls a motor or the like (not shown) that drives a lens group based on a control signal from the CPU 60.
 メモリー90は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。尚、メモリー90は、スロットに対して着脱可能にされておらず、撮像装置100の内部に組み込まれていてもよい。 The memory 90 is, for example, a semiconductor memory that can be attached to and detached from the slot connected to the R / W 50. The memory 90 is not detachable from the slot and may be incorporated inside the image pickup apparatus 100.
 以下に、撮像装置100における動作を説明する。 The operation of the image pickup apparatus 100 will be described below.
 撮影の待機状態では、CPU60による制御の下で、撮影された画像信号がカメラ信号処理部20を介して表示部40に出力され、カメラスルー画像として表示される。 In the shooting standby state, under the control of the CPU 60, the shot image signal is output to the display unit 40 via the camera signal processing unit 20 and displayed as a camera-through image.
 入力部70からの指示入力信号により撮影が行われると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリー90に書き込まれる。 When shooting is performed by the instruction input signal from the input unit 70, the shot image signal is output from the camera signal processing unit 20 to the image processing unit 30, compressed and encoded, and converted into digital data in a predetermined data format. Will be done. The converted data is output to the R / W 50 and written to the memory 90.
 フォーカシングはCPU60からの制御信号に基づいてレンズ駆動制御部80がフォーカスレンズ群を移動させることにより行われる。 Focusing is performed by the lens drive control unit 80 moving the focus lens group based on the control signal from the CPU 60.
 メモリー90に記録された画像データを再生する場合には、入力部70に対する操作に応じてR/W50によってメモリー90から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後に、再生画像信号が表示部40に出力されて再生画像が表示される。 When the image data recorded in the memory 90 is reproduced, the R / W 50 reads out the predetermined image data from the memory 90 in response to the operation on the input unit 70, and the image processing unit 30 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 40 and the reproduced image is displayed.
 尚、本技術において、「撮像」とは、撮像素子10による取り込まれた光を電気信号に変換する光電変換処理から、カメラ信号処理部20による撮像素子10からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理、R/W50によるメモリー90への画像信号の書込処理までの一連の処理の一部のみ、又は全てを含む処理のことを言う。 In the present technology, "imaging" means converting the photoelectric conversion process of converting the light captured by the image pickup element 10 into an electric signal to the digital signal of the output signal from the image pickup element 10 by the camera signal processing unit 20. , Noise removal, image quality correction, conversion to brightness / color difference signals, etc., compression coding / decompression decoding processing of image signals based on a predetermined image data format by the image processing unit 30, and conversion processing of data specifications such as resolution. , A process including only a part or all of a series of processes up to the process of writing an image signal to the memory 90 by the R / W 50.
 即ち、「撮像」とは、撮像素子10による取り込まれた光を電気信号に変換する光電変換処理のみを指してもよく、撮像素子10による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子10からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理までを指してもよく、撮像素子10による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子10からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理を経て、画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理までを指してもよく、撮像素子10による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部20による撮像素子10からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、及び画像処理部30による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理を経て指してもよく、R/W50によるメモリー90への画像信号の書込処理までを指してもよい。上記の処理において各処理の順番は適宜入れ替わってもよい。 That is, "imaging" may refer only to the photoelectric conversion process for converting the light captured by the imaging element 10 into an electric signal, and from the photoelectric conversion process for converting the light captured by the imaging element 10 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 10 by the camera signal processing unit 20 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 10. After the photoelectric conversion process for converting light into an electric signal, the camera signal processing unit 20 converts the output signal from the image pickup element 10 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like. It may also refer to compression coding / decompression decoding processing of an image signal based on a predetermined image data format by the image processing unit 30 and conversion processing of data specifications such as resolution, and the light captured by the image pickup element 10 is an electric signal. The photoelectric conversion process of converting to It may be pointed out through compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and writing processing of an image signal to the memory 90 by the R / W 50. You may point. In the above processing, the order of each processing may be changed as appropriate.
 また、本技術において、撮像装置100は、上記の処理を行う撮像素子10、カメラ信号処理部20、画像処理部30、R/W50の一部のみ又は全てを含むように構成されていてもよい。 Further, in the present technology, the image pickup device 100 may be configured to include only a part or all of the image pickup element 10, the camera signal processing section 20, the image processing section 30, and the R / W 50 that perform the above processing. ..
 [その他]
 本技術ズームレンズ及び本技術撮像装置においては、第1レンズ群G1から第6レンズ群G6に加え又は第1レンズ群G1から第7レンズ群G7に加えて屈折力を有さないレンズ等の他の光学要素が配置されていてもよい。この場合において、本技術ズームレンズのレンズ構成は第1レンズ群G1から第6レンズ群G6又は第1レンズ群G1から第7レンズ群G7の実質的に6群又は7群のレンズ構成にされる。
[others]
In the present technology zoom lens and the present technology imaging device, in addition to the first lens group G1 to the sixth lens group G6 or in addition to the first lens group G1 to the seventh lens group G7, other lenses having no refractive power, etc. Optical elements may be arranged. In this case, the lens configuration of the zoom lens of the present technology is substantially a 6- or 7-group lens configuration of the 1st lens group G1 to the 6th lens group G6 or the 1st lens group G1 to the 7th lens group G7. ..
 尚、上記には、撮像装置をデジタルスチルカメラに適用した例を示したが、撮像装置の適用範囲はデジタルスチルカメラに限られることはなく、デジタルビデオカメラ、カメラが組み込まれた携帯電話等の携帯端末におけるデジタル入出力機器のカメラ部等として広く適用することができる。 Although an example in which the image pickup device is applied to a digital still camera is shown above, the scope of application of the image pickup device is not limited to the digital still camera, and a digital video camera, a mobile phone having a built-in camera, etc. It can be widely applied as a camera unit of a digital input / output device in a mobile terminal.
 [本技術]
 本技術は、以下の構成にすることもできる。
[Technology]
The present technology can also have the following configurations.
 <1>
 物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、
 前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、
 前記第1レンズ群は4枚以下のレンズによって構成され、
 以下の条件式(1)及び条件式(2)を満足する
 ズームレンズ。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
とする。
<1>
It has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
The first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
The first lens group is composed of four or less lenses.
A zoom lens that satisfies the following conditional expression (1) and conditional expression (2).
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
 <2>
 以下の条件式(3)を満足する
 前記<1>に記載のズームレンズ。
(3)-5.0<f1/f23w<-1.0
但し、
f23w:前記第2レンズ群と前記第3レンズ群の広角端における合成焦点距離
とする。
<2>
The zoom lens according to <1>, which satisfies the following conditional expression (3).
(3) -5.0 <f1 / f23w <-1.0
However,
f23w: The combined focal length at the wide-angle end of the second lens group and the third lens group.
 <3>
 以下の条件式(4)を満足する
 前記<1>又は前記<2>に記載のズームレンズ。
(4)0.35<f1/ft<1.20
但し、
ft:望遠端における全系の焦点距離
とする。
<3>
The zoom lens according to <1> or <2>, which satisfies the following conditional expression (4).
(4) 0.35 <f1 / ft <1.20
However,
ft: The focal length of the entire system at the telephoto end.
 <4>
 以下の条件式(5)を満足する
 前記<1>から前記<3>の何れかに記載のズームレンズ。
(5)2.1<d1t/d2t<9.9
但し、
d1t:望遠端における前記第1レンズ群と前記第2レンズ群の間隔
d2t:望遠端における前記第2レンズ群と前記第3レンズ群の間隔
とする。
<4>
The zoom lens according to any one of <1> to <3>, which satisfies the following conditional expression (5).
(5) 2.1 <d1t / d2t <9.9
However,
d1t: Distance between the first lens group and the second lens group at the telephoto end d2t: The distance between the second lens group and the third lens group at the telephoto end.
 <5>
 前記第3レンズ群より像側に位置する群の全体又は一部を光軸方向へ移動させることによりフォーカシングする
 前記<1>から前記<4>の何れかに記載のズームレンズ。
<5>
The zoom lens according to any one of <1> to <4>, which focuses by moving all or a part of a group located on the image side of the third lens group in the optical axis direction.
 <6>
 ズームレンズと前記ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
 前記ズームレンズは、
 物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、
 前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、
 前記第1レンズ群は4枚以下のレンズによって構成され、
 以下の条件式(1)及び条件式(2)を満足する
 撮像装置。
(1)1.00<f2/f1<11.00
(2)0.57<m2/m3<0.95
 但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
とする。
<6>
It includes a zoom lens and an image pickup device that converts an optical image formed by the zoom lens into an electrical signal.
The zoom lens is
It has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
The first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
The first lens group is composed of four or less lenses.
An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
(1) 1.00 <f2 / f1 <11.00
(2) 0.57 <m2 / m3 <0.95
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
1    ズームレンズ
2    ズームレンズ
3    ズームレンズ
4    ズームレンズ
100  撮像装置
G1   第1レンズ群
G2   第2レンズ群
G3   第3レンズ群
1 Zoom lens 2 Zoom lens 3 Zoom lens 4 Zoom lens 100 Imaging device G1 1st lens group G2 2nd lens group G3 3rd lens group

Claims (6)

  1.  物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、
     前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、
     前記第1レンズ群は4枚以下のレンズによって構成され、
     以下の条件式(1)及び条件式(2)を満足する
     ズームレンズ。
    (1)1.00<f2/f1<11.00
    (2)0.57<m2/m3<0.95
     但し、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
    m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
    とする。
    It has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
    The first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
    The first lens group is composed of four or less lenses.
    A zoom lens that satisfies the following conditional expression (1) and conditional expression (2).
    (1) 1.00 <f2 / f1 <11.00
    (2) 0.57 <m2 / m3 <0.95
    However,
    f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
  2.  以下の条件式(3)を満足する
     請求項1に記載のズームレンズ。
    (3)-5.0<f1/f23w<-1.0
    但し、
    f23w:前記第2レンズ群と前記第3レンズ群の広角端における合成焦点距離
    とする。
    The zoom lens according to claim 1, which satisfies the following conditional expression (3).
    (3) -5.0 <f1 / f23w <-1.0
    However,
    f23w: The combined focal length at the wide-angle end of the second lens group and the third lens group.
  3.  以下の条件式(4)を満足する
     請求項1に記載のズームレンズ。
    (4)0.35<f1/ft<1.20
    但し、
    ft:望遠端における全系の焦点距離
    とする。
    The zoom lens according to claim 1, which satisfies the following conditional expression (4).
    (4) 0.35 <f1 / ft <1.20
    However,
    ft: The focal length of the entire system at the telephoto end.
  4.  以下の条件式(5)を満足する
     請求項1に記載のズームレンズ。
    (5)2.1<d1t/d2t<9.9
    但し、
    d1t:望遠端における前記第1レンズ群と前記第2レンズ群の間隔
    d2t:望遠端における前記第2レンズ群と前記第3レンズ群の間隔
    とする。
    The zoom lens according to claim 1, which satisfies the following conditional expression (5).
    (5) 2.1 <d1t / d2t <9.9
    However,
    d1t: Distance between the first lens group and the second lens group at the telephoto end d2t: The distance between the second lens group and the third lens group at the telephoto end.
  5.  前記第3レンズ群より像側に位置する群の全体又は一部を光軸方向へ移動させることによりフォーカシングする
     請求項1に記載のズームレンズ。
    The zoom lens according to claim 1, wherein focusing is performed by moving all or a part of the group located on the image side of the third lens group in the optical axis direction.
  6.  ズームレンズと前記ズームレンズによって形成された光学像を電気的信号に変換する撮像素子とを備え、
     前記ズームレンズは、
     物体側より像側へ順に配置された正の第1レンズ群と正の第2レンズ群と負の第3レンズ群を有し、
     前記第1レンズ群は変倍時に固定され前記第2レンズ群と前記第3レンズ群は変倍時に移動され、
     前記第1レンズ群は4枚以下のレンズによって構成され、
     以下の条件式(1)及び条件式(2)を満足する
     撮像装置。
    (1)1.00<f2/f1<11.00
    (2)0.57<m2/m3<0.95
     但し、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
    m2:広角端から望遠端までの変倍時における前記第2レンズ群の移動量
    m3:広角端から望遠端までの変倍時における前記第3レンズ群の移動量
    とする。
    It includes a zoom lens and an image pickup device that converts an optical image formed by the zoom lens into an electrical signal.
    The zoom lens is
    It has a positive first lens group, a positive second lens group, and a negative third lens group arranged in order from the object side to the image side.
    The first lens group is fixed at the time of magnification change, and the second lens group and the third lens group are moved at the time of magnification change.
    The first lens group is composed of four or less lenses.
    An imaging device that satisfies the following conditional expression (1) and conditional expression (2).
    (1) 1.00 <f2 / f1 <11.00
    (2) 0.57 <m2 / m3 <0.95
    However,
    f1: Focal length of the first lens group f2: Focal length of the second lens group m2: Movement amount of the second lens group at the time of scaling from the wide-angle end to the telephoto end m3: From the wide-angle end to the telephoto end It is the amount of movement of the third lens group at the time of variable magnification.
PCT/JP2021/005992 2020-03-31 2021-02-17 Zoom lens and imaging device WO2021199758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511647A JPWO2021199758A1 (en) 2020-03-31 2021-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020065173 2020-03-31
JP2020-065173 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199758A1 true WO2021199758A1 (en) 2021-10-07

Family

ID=77928359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005992 WO2021199758A1 (en) 2020-03-31 2021-02-17 Zoom lens and imaging device

Country Status (2)

Country Link
JP (1) JPWO2021199758A1 (en)
WO (1) WO2021199758A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352113A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Zoom lens for infrared ray
JP2017040874A (en) * 2015-08-21 2017-02-23 株式会社タムロン Zoom lens and imaging apparatus
JP2018132675A (en) * 2017-02-16 2018-08-23 キヤノン株式会社 Zoom lens and imaging device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352113A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Zoom lens for infrared ray
JP2017040874A (en) * 2015-08-21 2017-02-23 株式会社タムロン Zoom lens and imaging apparatus
JP2018132675A (en) * 2017-02-16 2018-08-23 キヤノン株式会社 Zoom lens and imaging device having the same

Also Published As

Publication number Publication date
JPWO2021199758A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6883226B2 (en) Imaging lens and imaging device
JP4296520B2 (en) Zoom lens and imaging device
JP6917538B2 (en) Imaging optical system, imaging device, camera system
JP4903418B2 (en) Zoom lens
JP6984615B2 (en) Zoom lens and image pickup device
JP5915437B2 (en) Variable focal length lens system and imaging apparatus
WO2016056310A1 (en) Wide angle lens and image pickup device
CN102103253A (en) Zoom lens and image pickup apparatus
JPWO2012120875A1 (en) Magnification optical system and imaging device
JP2008164725A (en) Zoom lens and imaging apparatus
JP6747458B2 (en) Zoom lens and optical equipment
JP4656453B2 (en) Zoom lens and imaging device
JP2017116919A (en) Zoom lens system and image capturing device
JP4863046B2 (en) Zoom lens and imaging apparatus
JP2008158418A (en) Zoom lens and imaging apparatus
JP2014044249A (en) Variable focal length lens system and image pickup device
CN218383455U (en) Camera module and shooting device
JP2011164195A (en) Zoom lens and imaging apparatus
JP2019003074A (en) Converter lens and imaging apparatus having the same
JP2015090424A (en) Zoom lens and imaging apparatus
JP5143532B2 (en) Zoom lens and imaging device
JP6997599B2 (en) Imaging lenses, imaging optics and digital devices
US8730588B2 (en) Zoom lens and image pickup unit
WO2021199758A1 (en) Zoom lens and imaging device
JP7243713B2 (en) Imaging lens and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779486

Country of ref document: EP

Kind code of ref document: A1