WO2021199577A1 - Control device, control method, and program for fuel injection device - Google Patents

Control device, control method, and program for fuel injection device Download PDF

Info

Publication number
WO2021199577A1
WO2021199577A1 PCT/JP2021/001182 JP2021001182W WO2021199577A1 WO 2021199577 A1 WO2021199577 A1 WO 2021199577A1 JP 2021001182 W JP2021001182 W JP 2021001182W WO 2021199577 A1 WO2021199577 A1 WO 2021199577A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel
current
fuel injection
valve body
Prior art date
Application number
PCT/JP2021/001182
Other languages
French (fr)
Japanese (ja)
Inventor
亮 草壁
助川 義寛
猿渡 匡行
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021199577A1 publication Critical patent/WO2021199577A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device, a control method, and a program of a fuel injection device.
  • the engine of an internal combustion engine is required to reduce carbon dioxide (CO 2) during mode driving.
  • CO 2 carbon dioxide
  • lean combustion since it is necessary to ignite the air-fuel mixture in a state where the equivalent ratio in the cylinder is thin, the combustion speed becomes slow, combustion tends to become unstable, and a technique for suppressing combustion fluctuation is required. ..
  • Patent Document 1 There is a method disclosed in Patent Document 1 as a technique for suppressing combustion fluctuations.
  • Patent Document 1 describes a method of suppressing variation in injection amount for each cylinder by detecting the operation timing of the valve body of the fuel injection device for each combustion injection device of each cylinder and correcting the fuel injection amount for each cylinder. Is disclosed.
  • Combustion fluctuations include variations in the indicated mean effective pressure (IMEP) for each cylinder and variations in IMEP for each combustion cycle in each cylinder.
  • Factors that cause variations in IMEP for each combustion cycle include variations in air flow and variations in the injection amount of the fuel injection device.
  • the present invention has been made in view of such a situation, and an object of the present invention is to suppress combustion fluctuations by reducing variations in the injection amount of fuel injected from the fuel injection device in one combustion cycle. do.
  • the control device controls a fuel injection device that injects fuel a plurality of times in one combustion cycle.
  • This control device calculates the fuel injection amount at each injection performed in one combustion cycle, and the injection amount of the injection performed before the last injection from the injection amount of the last injection in one combustion cycle. The greater the number, the smaller the injection pulse width of the injection pulse supplied to the fuel injection device at the last injection than the injection pulse width of the injection pulse supplied to the fuel injection device in the injection performed before the last injection. It is equipped with a control unit that controls the fuel.
  • the injection amount of the fuel varies in the injection performed before the last injection in one combustion cycle
  • the injection amount can be adjusted in the last injection, so that the injection in one combustion cycle It is possible to reduce the variation in quantity and suppress the variation in combustion. Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
  • the relationship between the injection pulse width and the injection amount and the standard deviation of the shot variation of the injection amount when the control device according to the second embodiment of the present invention controls the fuel injection device with the drive current waveform of FIG. 10 is shown. It is a figure. It is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 2nd Embodiment of this invention in one combustion cycle. It is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 3rd Embodiment of this invention in one combustion cycle.
  • FIG. 1 is a diagram showing a configuration example of the fuel injection system 1.
  • the fuel injection system 1 is an example in which the present invention is applied to an in-cylinder direct injection engine (an example of an internal combustion engine), but the present invention is not limited to this example.
  • the in-cylinder direct injection engine may be simply referred to as an "engine”.
  • the fuel injection system 1 is composed of four fuel injection devices 101A to 101D and a control device 150.
  • the in-cylinder direct injection engine according to the present embodiment includes four cylinders 108 (engine cylinders).
  • the control device 150 is, for example, a control device for a vehicle that controls the fuel injection device 101.
  • This control device controls a fuel injection device (fuel injection device 101) that injects fuel a plurality of times in one combustion cycle.
  • fuel injection device 101 when the fuel injection devices 101A to 101D are not distinguished, they are referred to as "fuel injection device 101".
  • fuel injection devices 101A to 101D are installed so that atomized fuel is directly injected into the combustion chamber 107 from the injection holes 219 (see FIG. 2 described later). ..
  • the fuel is boosted by the fuel pump 106, sent to the fuel pipe 105, and delivered to the fuel injection devices 101A to 101D through the fuel pipe 105.
  • a pressure sensor 102 for measuring the fuel pressure in the fuel pipe 105 is installed at one end of the fuel pipe 105.
  • the fuel pressure varies depending on the balance between the flow rate of the fuel discharged by the fuel pump 106 and the injection amount of the fuel injected into each combustion chamber 107 by the fuel injection device 101. Based on the measurement result (fuel pressure) of the pressure sensor 102, the discharge amount of fuel discharged from the fuel pump 106 is controlled with a predetermined pressure as a target value.
  • a pressure sensor 109 is installed between the fuel pipe 105 and the fuel injection devices 101A to 101D, respectively.
  • the pressure sensor 109 detects the fuel pressure of the fuel injection device 101 provided in each cylinder 108 of the engine, and outputs the fuel pressure information to the engine control unit (hereinafter, referred to as “ECU”) 104.
  • ECU engine control unit
  • the fuel injection of the fuel injection devices 101A to 101D is controlled by the pulse width of the injection pulse (hereinafter referred to as "injection pulse width") transmitted from the ECU 104. That is, the injection amount of the fuel injected from the fuel injection device 101 is determined based on the injection pulse width supplied to the fuel injection device 101.
  • the command of the injection pulse width is input to the drive circuit 103 provided for each fuel injection device 101.
  • the drive circuit 103 determines a waveform (referred to as a "drive current waveform") of a drive current (sometimes abbreviated as "current”) based on a command from the ECU 104, and a fuel injection device for a time based on an injection pulse.
  • the drive current waveform is supplied to 101A to 101D.
  • the drive circuit 103 may be mounted as a component or a board integrated with the ECU 104.
  • a device in which the drive circuit 103 and the ECU 104 are integrated is referred to as a control device 150.
  • FIG. 2 is a vertical cross-sectional view of the fuel injection device 101 and a configuration example of a drive circuit 103 and an ECU 104 connected to drive the fuel injection device 101.
  • the same symbols are used for parts equivalent to those in FIG.
  • the ECU 104 takes in signals indicating the state of the engine from various sensors (not shown), and calculates the width of the injection pulse and the injection timing for controlling the injection amount to be injected from the fuel injection device 101 according to the operating conditions of the internal combustion engine. I do.
  • the ECU 104 is provided with an A / D converter and an I / O port (both not shown) for capturing signals from various sensors.
  • the injection pulse output from the ECU 104 is input to the drive circuit 103 of the fuel injection device 101 through the signal line 110.
  • the drive circuit 103 controls the voltage applied to the solenoid 205 (an example of a coil) and supplies a current.
  • the ECU 104 communicates with the drive circuit 103 through the communication line 111, switches the drive current generated by the drive circuit 103 according to the pressure of the fuel supplied to the fuel injection device 101 and operating conditions, and sets the current and time. It is possible to change the value.
  • FIG. 3 is an enlarged cross-sectional view showing an example of the drive unit structure of the fuel injection device 101.
  • the relationship between the mover 202, the valve body 214, and the stator 207 will be described.
  • the fuel injection device 101 shown in FIGS. 2 and 3 is an electromagnetic fuel injection device including a normally closed solenoid valve.
  • the fuel injection device 101 has a substantially rod-shaped valve body 214 inside, and an orifice cup 216 on which a valve seat 218 is formed is provided at a position facing the tip end portion of the valve body 214.
  • the valve seat 218 is formed with an injection hole 219 for injecting fuel.
  • a spring hereinafter referred to as "first spring" 210 for urging the valve body 214 in the valve closing direction (downward direction) is provided.
  • the solenoid (solenoid 205) is a stator (solenoid 205) that forms a space for introducing fuel between the valve seat (valve seat 218) and the valve body (valve body 214) when a drive current is supplied from the drive circuit 103.
  • a magnetic attraction force for attracting the mover 202) is generated in the stator (stator 207).
  • the stator (stator 207) attracts the mover (movable element 202) by magnetic attraction.
  • the mover (movable element 202) on which the magnetic attraction force acts moves, and the valve body (valve body 214) moves in conjunction with the mover 202.
  • valve body 214 When the solenoid 205 is not energized, the valve body 214 is urged in the valve closing direction by the first spring 210, and the valve body (valve body 214) seals the fuel in contact with the valve seat (valve seat 218). It has a structure (valve closed state).
  • a recess 202C is formed on the upper end surface 202A of the mover 202 toward the lower end surface 202B side.
  • An intermediate member 220 is provided inside the recess 202C.
  • the intermediate member 220 is a member located between the mover 202 and the stator 207.
  • a recess 220A is formed upward on the lower surface side of the intermediate member 220.
  • the recess 220A has a diameter (inner diameter) and a depth in which a stepped portion 329 (flange portion) formed in an annular shape on the outer peripheral surface of the head 214A is accommodated.
  • the diameter (inner diameter) of the recess 220A is larger than the diameter (outer diameter) of the stepped portion 329, and the depth dimension of the recess 220A is larger than the dimension between the upper end surface and the lower end surface of the stepped portion 329. big.
  • a through hole 220B through which the protrusion 331 of the head 214A penetrates is formed in the bottom portion (bottom surface 220E) of the recess 220A.
  • a spring (hereinafter referred to as "third spring") 234 is held between the intermediate member 220 and the cap 232.
  • the upper end surface 220C of the intermediate member 220 constitutes a spring seat with which one end of the third spring 234 abuts.
  • the third spring 234 urges the mover 202 from the stator 207 side in the valve closing direction.
  • a lid-shaped cap 232 is arranged above the intermediate member 220.
  • a flange portion 232A protruding in the radial direction is formed at the upper end portion of the cap 232, and a spring seat is formed in which the other end portion of the third spring 234 abuts on the lower end surface of the collar portion 232A. ..
  • a cylindrical portion 232B is formed downward on the lower end surface of the flange portion 232A of the cap 232, and the upper portion (head 214A) of the valve body 214 is press-fitted and fixed in the tubular portion 232B.
  • the cap 232 and the intermediate member 220 each form the spring seat of the third spring 234. Therefore, the diameter (inner diameter) of the through hole 220B of the intermediate member 220 is smaller than the diameter (outer diameter) of the flange portion 232A of the cap 232. Further, the diameter (outer diameter) of the tubular portion 232B of the cap 232 is smaller than the inner diameter of the third spring 234.
  • the cap 232 receives the urging force of the first spring 210 from above and the urging force (set load) of the third spring 234 from below.
  • the urging force of the first spring 210 is larger than the urging force of the third spring 234, and as a result, the cap 232 is the difference between the urging force of the first spring 210 and the urging force of the third spring 234. It is pressed against the protrusion 331 on the upper part of the valve body 214 by the urging force. No force is applied to the cap 232 in the direction in which the valve body 214 is removed from the protrusion 331 of the valve body 214 (lower direction in the drawing). Therefore, it is sufficient to press-fit and fix the cap 232 to the protrusion 331, and it is not necessary to weld the cap 232.
  • the third spring 234 it is necessary to provide a certain distance between the lower end surface of the flange portion 232A of the cap 232 and the upper end surface 220C of the intermediate member 220. Therefore, it is easy to secure the length of the tubular portion 232B of the cap 232.
  • the intermediate member 220 will be described again.
  • the state of the fuel injection device 101 shown in FIG. 2 is a state in which the valve body 214 receives the urging force by the first spring 210 and the magnetic attraction force does not act on the mover 202.
  • the tip portion 214B (seat portion) of the valve body 214 is in contact with the valve seat 218, and the fuel injection device 101 is closed to be in a stable state.
  • the intermediate member 220 receives the urging force of the third spring 234, and the bottom surface 220E of the recess 220A formed in the intermediate member 220 hits the upper end surface of the stepped portion 329 of the valve body 214. I'm in contact. That is, the size (dimension) of the gap G3 between the bottom surface 220E of the recess 220A and the upper end surface of the stepped portion 329 of the valve body 214 is zero.
  • the bottom surface 220E of the recess 220A formed in the intermediate member 220 and the upper end surface of the stepped portion 329 of the valve body 214 form contact surfaces where the intermediate member 220 and the stepped portion 329 of the valve body 214 come into contact with each other. ..
  • a zero spring (hereinafter referred to as "second spring") 212 is located between the lower end surface 202B of the mover 202 and the contact surface 303 formed inside the nozzle holder 201 (large diameter tubular portion 240). Is placed. Since the mover 202 receives the urging force of the second spring 212 and is urged toward the stator 207 side, the bottom surface 202D of the recess 202C formed in the mover 202 is the lower end surface 220D of the intermediate member 220. Contact. The urging force of the second spring 212 is smaller than the urging force of the third spring 234. Therefore, the mover 202 cannot push back the intermediate member 220 urged downward by the third spring 234, and moves upward (valve opening direction) by the intermediate member 220 and the third spring 234. Is stopped.
  • the depth dimension of the recess 220A of the intermediate member 220 is larger than the height of the stepped portion 329 of the valve body 214 (the dimension between the upper end surface and the lower end surface). Therefore, in the state shown in FIG. 3 (valve closed state), the bottom surface 202D of the recess 202C formed in the mover 202 and the lower end surface of the stepped portion 329 of the valve body 214 are not in contact with each other, and the recess 202C A gap G2 having a size (dimension) of D2 is formed between the bottom surface 202D of the above and the lower end surface of the stepped portion 329.
  • the size D2 of the gap G2 is the size of the gap G1 between the upper end surface 202A of the stator 202 (the surface facing the stator 207) and the lower end surface 207B of the stator 207 (the surface facing the stator 202). Dimensions) Smaller than D1 (D2 ⁇ D1).
  • the intermediate member 220 is a member that forms a gap G2 having a size of D2 between the mover 202 and the lower end surface of the stepped portion 329 of the valve body 214, and is a member that forms a gap G2. You may call it.
  • the third spring 234 urges the intermediate member (gap forming member) 220 in the valve closing direction (downward), and in the valve closing state of FIG. 3, the intermediate member 220 is the stepped portion 329 of the valve body 214. It is positioned on the upper end surface (reference position) of. In this state, when the lower end surface 220D of the intermediate member 220 comes into contact with the mover 202, the lower end surface of the stepped portion 329 which is the engaging part of the valve body 214 and the recess 202C which is the engaging part of the mover 202 A gap G2 having a size D2 is formed between the bottom surface 202D and the bottom surface 202D.
  • the intermediate member 220 is positioned at the upper end surface (reference position) of the stepped portion 329 by abutting the bottom surface 220E of the recess 220A with the upper end surface (reference position) of the stepped portion 329 of the valve body 214.
  • the spring force (urging force) of the first spring 210 is the largest.
  • the spring force (biasing force) of the third spring 234 is large, and the spring force (biasing force) of the second spring 212 is the smallest.
  • the diameter of the through hole formed in the mover 202 is smaller than the diameter of the stepped portion 329 of the valve body 214. Therefore, during the valve opening operation in which the valve body 214 shifts from the valve closed state to the valve open state, or during the valve closing operation in which the valve body 214 shifts from the valve open state to the valve closed state, the lower end surface of the stepped portion 329 of the valve body 214. Engages with the bottom surface 202D of the recess 202C formed in the mover 202, and the mover 202 and the valve body 214 move in cooperation with each other.
  • valve body 214 and the mover 202 can move in different directions.
  • the operations of the mover 202 and the valve body 214 will be described in detail later.
  • the outer peripheral surface of the mover 202 is in contact with the inner peripheral surface of the nozzle holder 201 (housing member) to guide the movement in the vertical direction (valve opening direction and valve closing direction). Further, the valve body 214 is guided to move in the vertical direction (valve opening direction and valve closing direction) by contacting the outer peripheral surface of the valve body 214 with the inner peripheral surface of the through hole of the mover 202. That is, the inner peripheral surface of the nozzle holder 201 functions as a guide when the mover 202 moves in the axial direction. Further, the inner peripheral surface of the through hole of the mover 202 functions as a guide when the valve body 214 moves in the axial direction.
  • the tip end portion 214B of the valve body 214 is guided by a guide hole of the annular guide member 215. In this way, the valve body 214 is guided so as to reciprocate straight in the axial direction by the inner peripheral surface of the nozzle holder 201, the through hole of the mover 202, and the guide member 215.
  • the upper end surface 202A of the mover 202 and the lower end surface 207B of the stator 207 are described as being in contact with each other, but the present invention is not limited to this example.
  • protrusions are provided on either one or both of the upper end surface 202A of the mover 202 and the lower end surface 207B of the stator 207 so that the protrusions and the end faces or the protrusions come into contact with each other. be.
  • the above-mentioned gap G1 becomes a gap between the contact portion on the mover 202 side and the contact portion on the stator 207 side.
  • a stator 207 is press-fitted into the inner peripheral portion of the large-diameter tubular portion 240 of the nozzle holder 201, and both members are welded and joined at the press-fitting contact position.
  • the stator 207 is a component that applies a magnetic attraction force to the mover 202 to attract and attract the mover 202 in the valve opening direction.
  • the gap formed between the inside of the large-diameter tubular portion 240 of the nozzle holder 201 and the outside air is sealed by welding the stator 207.
  • the stator 207 is provided with a through hole (center hole) having a diameter slightly larger than the diameter of the intermediate member 220 as a fuel passage at the center thereof.
  • the head 214A and the cap 232 of the valve body 214 are inserted through the inner circumference of the lower end of the through hole of the stator 207 in a non-contact state.
  • the lower end of the first spring 210 for setting the initial load is in contact with the spring receiving surface formed on the upper end surface of the cap 232 provided near the head 214A of the valve body 214.
  • the upper end of the first spring 210 is received by the adjusting pin 224 (see FIG. 2) that is press-fitted into the through hole of the stator 207, so that the first spring 210 is placed between the cap 232 and the adjusting pin 224. It is being held.
  • the initial load of the first spring 210 pressing the valve body 214 against the valve seat 218 can be adjusted.
  • the lower end surface 207B of the stator 207 faces the upper end surface 202A of the mover 202 with a magnetic attraction gap (gap G1) of about 40 to 100 ⁇ m. It is configured to do. In FIG. 2, the dimensional ratio is ignored and the image is enlarged.
  • a cup-shaped housing 203 is fixed to the outer periphery of the large-diameter cylindrical portion 240 of the nozzle holder 201.
  • a through hole 213 is provided in the center of the bottom of the housing 203, and a large-diameter tubular portion 240 of the nozzle holder 201 is inserted through the through hole 213.
  • the outer peripheral wall portion of the housing 203 forms an outer peripheral yoke portion facing the outer peripheral surface of the large-diameter tubular portion 240 of the nozzle holder 201.
  • An annular or cylindrical solenoid 205 is arranged in the annular space formed between the housing 203 and the large-diameter tubular portion 240.
  • the solenoid 205 is formed by an annular bobbin 204 having a groove having a U-shaped cross section that opens outward in the radial direction, and a copper wire 206 wound in the groove.
  • a rigid conductor 209 is fixed to the winding start end and the winding end end of the solenoid 205.
  • the outer periphery of the large-diameter tubular portion 240 of the conductor 209, the stator 207, and the nozzle holder 201 is molded by injecting an insulating resin from the inner peripheral side of the upper end opening of the housing 203, and is covered with the resin molded body.
  • An annular magnetic passage is formed in the stator 207, the mover 202, the large-diameter tubular portion 240 of the nozzle holder 201, and the housing (outer circumference yoke portion) 203 so as to surround the solenoid 205.
  • the fuel supplied to the fuel injection device 101 is supplied from the fuel pipe 105 provided upstream of the fuel injection device 101, and flows to the tip of the valve body 214 through the first fuel passage hole 231.
  • the fuel is sealed by the tip portion 214B (seat portion) formed at the end portion of the valve body 214 on the valve seat 218 side and the valve seat 218.
  • the fuel pressure creates a differential pressure between the upper part and the lower part of the valve body 214, and the valve body is formed by the fuel pressure and the force corresponding to the pressure receiving surface of the inner diameter of the seat portion (inner diameter of the tip portion 214B) at the valve seat position.
  • 214 is pushed in the valve closing direction.
  • a gap G2 is formed between the valve body 214 and the mover 202 at their contact surfaces (the lower end surface of the stepped portion 329 and the bottom surface 202D of the recess 202C) via the intermediate member 220.
  • the mover 202 is arranged with the valve body 214 in the axial direction via the gap G2.
  • the mover 202 Since the movement of the mover 202 is a free-running movement performed separately from the valve body 214 which is subjected to the differential pressure due to the fuel pressure, the mover 202 is not affected by the fuel pressure or the like. , It is possible to move at high speed.
  • the valve body 214 can move at high speed by configuring the valve body 214 so that the load by the first spring 210 does not act on the valve body 214.
  • the mover 202 transmits a force to the valve body 214 through the bottom surface 202D of the recess 202C and the lower end surface 220D of the intermediate member 220, and causes the valve body 214 to move. Pull up in the valve opening direction.
  • the mover 202 collides with the valve body 214 in a state of performing a free-running motion and having kinetic energy.
  • the valve body 214 receives the kinetic energy of the mover 202 and starts displacementing in the valve opening direction at high speed.
  • a differential pressure generated by the pressure of the fuel acts on the valve body 214.
  • the differential pressure acting on the valve body 214 is the pressure generated as the fuel flow velocity increases and the static pressure decreases due to the Bernoulli effect in a range where the flow path cross-sectional area near the tip portion 214B (seat portion) of the valve body 214 is small. It occurs when the pressure of the fuel in the vicinity of the tip portion 214B of the valve body 214 decreases due to the descent.
  • the differential pressure acting on the valve body 214 is greatly affected by the cross-sectional area of the flow path near the tip portion 214B (seat portion). Therefore, the differential pressure is large under the condition that the displacement amount of the valve body 214 is small, and the differential pressure is small under the condition that the displacement amount is large. Therefore, when the valve body 214 is started to open from the closed state, the displacement is small, and the valve opening operation becomes difficult due to the large differential pressure, the valve opening of the valve body 214 is impacted by the idling motion of the mover 202. Is done. As a result, the fuel injection device 101 can perform the valve opening operation even when a higher fuel pressure is applied.
  • the urging force of the first spring 210 can be set to a stronger force with respect to the fuel pressure range in which the valve opening operation is required. By setting the first spring 210 to a stronger force, the time required for the valve closing operation, which will be described later, can be shortened, which is effective in controlling the minute injection amount.
  • the mover 202 collides with the stator 207.
  • the mover 202 bounces off, but the mover 202 is attracted to the stator 207 by the magnetic attraction force acting on the mover 202, and eventually stops.
  • the displacement amount of the bounce can be reduced, and the time until the bounce converges can be shortened. can. Since the bounce motion is small, the time for which a gap is generated between the mover 202 and the stator 207 is shortened, and stable motion can be performed even for a smaller injection pulse width.
  • a gap (an example of a space) is formed between the valve body 214 and the valve seat 218, and fuel is injected from the injection hole 219 into the combustion chamber 107.
  • the fuel passes through the central hole (through hole) provided in the stator 207, the fuel passage hole provided in the mover 202, and the fuel passage hole provided in the guide member 215, and is injected in the downstream direction (injection). It is designed to flow into hole 219).
  • FIG. 5 is a diagram showing a detailed configuration example of the drive circuit 103 and the ECU 104 of the fuel injection device 101.
  • the control device 150 includes a drive circuit 103 and an ECU 104.
  • the ECU 104 has a drive IC (Integrated Circuit) 502 and a CPU (Central Processing Unit) 501 as an arithmetic processing device.
  • the CPU 501 captures signals indicating the state of the engine output by various sensors such as an A / F sensor, an oxygen sensor, and a crank angle sensor (not shown).
  • the CPU 501 is provided with a detection unit 541 that detects the operation in the fuel injection device 101 or calculates the fuel injection amount.
  • the drive IC 502 is provided with a current control unit 542 that controls the drive current supplied to the solenoid 205. The drive current is controlled, for example, by combining the injection pulse, the drive voltage, and the drive current supplied to the solenoid 205.
  • the CPU 501 and the drive IC 502 are referred to as a control unit 500.
  • the ECU 104 may include the drive circuit 103.
  • the CPU 501 may be configured with a detection unit 541 and a current control unit 542, and the drive IC 502 may drive the drive circuit 103 under the control of the current control unit 542 to supply a drive current to the fuel injection device 101.
  • the pressure sensor 102 is attached to the fuel pipe 105 upstream of the fuel injection device 101, and the pressure sensor 109 is attached between the fuel pipe 105 and the fuel injection device 101. ..
  • the A / F sensor measures the amount of inflow air into the cylinder 108 (engine cylinder).
  • the oxygen sensor detects the oxygen concentration of the exhaust gas discharged from the cylinder 108.
  • the CPU 501 controls the injection amount of fuel injected from the fuel injection device 101 according to the operating conditions of the internal combustion engine based on the signals captured from various sensors.
  • the pulse width of the injection pulse injection pulse width shown in FIG. 4). Ti) and injection timing are calculated.
  • the CPU 501 outputs the injection pulse width Ti to the drive IC 502 of the fuel injection device 101 through the communication line 504.
  • the drive IC 502 switches between energization and de-energization of the switching elements 505, 506, and 507 to supply a drive current to the fuel injection device 101 (that is, the solenoid 205).
  • the switching elements 505, 506, and 507 are composed of, for example, FETs, transistors, and the like, and can switch between energization and de-energization of the fuel injection device 101.
  • the ECU 104 is equipped with a register and a memory 501M (an example of a storage medium) for storing numerical data necessary for engine control such as calculation of an injection pulse width.
  • the register and the memory 501M are included in the control device 150 or the CPU 501 in the control device 150.
  • the memory 501M is arranged outside the CPU 501.
  • the memory 501M may store a computer program for the CPU 501 to control the drive of the fuel injection device 101.
  • the CPU 501 reads and executes the computer program recorded in the memory 501M, thereby realizing all or part of the function of controlling the drive of the fuel injection device 101.
  • another arithmetic processing device such as an MPU (Micro Processing Unit) may be used.
  • MPU Micro Processing Unit
  • control device 150 includes a control unit (control unit 500).
  • the control unit (control unit 500) calculates the fuel injection amount at each injection performed in one combustion cycle, and is performed before the injection amount of the last injection in one combustion cycle and before the last injection. The larger the injection amount of the injection, the more the last injection from the injection pulse width Ti (see FIG. 4) of the injection pulse supplied to the fuel injection device (fuel injection device 101) in the injection performed before the last injection. Controls so that the injection pulse width Ti of the injection pulse supplied to the fuel injection device (fuel injection device 101) is reduced.
  • the switching element 505 is connected between the booster circuit 514 (high voltage source) that supplies the boost voltage VH and the high voltage side terminal (power supply side terminal 590) of the solenoid 205 of the fuel injection device 101.
  • the boost voltage VH output by the boost circuit 514 is higher than the battery voltage VB supplied by the battery voltage source 520 (low voltage source) to the drive circuit 103.
  • the boost voltage VH which is the initial voltage output by the boost circuit 514, is 60 V, and is generated by boosting the battery voltage VB by the boost circuit 514.
  • a method of realizing the booster circuit 514 there are, for example, a method of configuring with a DC / DC converter and the like, and a method of configuring with a solenoid 530, a transistor 531 and a diode 532 and a capacitor 533 as shown in FIG.
  • the transistor 531 when the transistor 531 is turned on, the current due to the battery voltage VB flows to the ground potential 534 side via the solenoid 530.
  • the transistor 531 is turned off, the high voltage generated in the solenoid 530 is rectified through the diode 532, and the electric charge is accumulated in the capacitor 533.
  • the booster circuit 514 can increase the voltage of the capacitor 533 to the booster voltage VH by repeating ON / OFF of the transistor 531.
  • the transistor 531 is connected to the drive IC 502 or the CPU 501, and is configured so that the boost voltage VH output from the boost circuit 514 can be detected by the drive IC 502 or the CPU 501.
  • a diode 535 is provided between the power supply side terminal 590 of the solenoid 205 and the switching element 505 so that a current flows from the booster circuit 514 (high voltage source) in the direction of the solenoid 205 and the ground potential 515. ..
  • a diode 511 is also provided between the power supply side terminal 590 of the solenoid 205 and the switching element 507 so that a current flows from the battery voltage source 520 (low voltage source) in the direction of the solenoid 205 and the ground potential 515. There is. While the switching element 507 is energized, no current flows from the ground potential 515 toward the solenoid 205, the battery voltage source 520, and the booster circuit 514.
  • the switching element 507 is connected between the battery voltage source 520, which is a low voltage source, and the power supply side terminal 590 of the fuel injection device 101.
  • the value of the battery voltage VB output by the battery voltage source 520 is, for example, about 12V to 14V.
  • the switching element 506 is connected between the terminal on the low voltage side of the fuel injection device 101 and the ground potential 515.
  • the drive IC 502 detects the current value flowing through the fuel injection device 101 (each part of the drive circuit 103) by each of the current detection resistors 508, 521, and 513.
  • the drive circuit 103 switches between energization and de-energization of the switching elements 505, 506, and 507 according to the current value detected by the drive IC 502, and generates a desired drive current.
  • the diodes 509 and 510 are provided to apply a reverse voltage to the solenoid 205 of the fuel injection device 101 to rapidly reduce the current supplied to the solenoid 205.
  • the CPU 501 communicates with the drive IC 502 through the communication line 503, and can switch the drive current generated by the drive IC 502 depending on the pressure of the fuel supplied to the fuel injection device 101 and the operating conditions. Further, both ends of the resistors 508, 512 and 513 are connected to the A / D conversion port of the drive IC 502, and the voltage applied to both ends of the resistors 508, 512 and 513 can be detected by the drive IC 502.
  • FIG. 4 is a timing chart showing the relationship between a general injection pulse for driving the fuel injection device 101, a drive voltage and drive current supplied to the fuel injection device 101, displacement amounts of the valve body 214 and the mover 202, and time. Is.
  • the drive circuit 103 When the injection pulse 405 is input to the drive circuit 103, the drive circuit 103 energizes the switching elements 505 and 506 according to the input injection pulse width Ti. As a result, the drive circuit 103 applies a high voltage 401 to the solenoid 205 by the boosted voltage VH boosted to a voltage higher than the battery voltage VB, and starts supplying the drive current to the solenoid 205.
  • the drive current supplied by the drive circuit 103 to the solenoid 205 is held in a state where the peak current for driving the mover (movable element 202) and the mover (movable element 202) are attracted to the solenoid (solenoid 205). Therefore, it consists of a holding current that switches in a range lower than the maximum value of the peak current.
  • the drive circuit 103 stops applying the high voltage 401 when the current value of the current supplied to the solenoid 205 reaches the maximum drive current I peak (hereinafter referred to as “maximum current”) predetermined in the ECU 104.
  • the drive circuit 103 applies a voltage of substantially 0 V to the solenoid 205.
  • the current supplied to the solenoid 205 flows through the paths of the fuel injection device 101, the switching element 506, the resistor 508, the ground potential 515, and the fuel injection device 101, so that the current flowing through the solenoid 205 gradually decreases.
  • the current supplied to the solenoid 205 can be secured. Therefore, even when the fuel pressure supplied to the fuel injection device 101 increases, the fuel injection device 101 can stably open the valve until the mover 202 and the valve body 214 reach the maximum height position.
  • the holding current 403 is a holding current for holding the mover 202 at the maximum height position.
  • the switching elements 505, 506, and 507 are turned off during the transition period from the maximum current I peak to the holding current 403, the diode 509 and the diode 510 are energized by the counter electromotive force due to the inductance of the fuel injection device 101.
  • the diode 509 and the diode 510 are energized, the current of the solenoid 205 is returned to the booster circuit 514 side, and the current supplied to the fuel injection device 101 rapidly drops from the maximum current I peak like the current 402.
  • the time required for the current flowing through the solenoid 205 to reach the level of the holding current 403 is shortened. Therefore, when the switching elements 505, 506, and 507 are turned off, there is an effect of accelerating the time from when the current flowing through the solenoid 205 reaches the holding current 403 to when the magnetic attraction becomes constant after a certain delay time. ..
  • the drive circuit 103 energizes the switching element 506.
  • the switching element 507 is switched between energization and de-energization.
  • the battery voltage VB is applied to the solenoid 205, and the level of the holding current 403 is maintained.
  • a switching period is provided to control such a predetermined holding current 403 to be maintained.
  • the transition period until the shift to the hold current 403 from the maximum current I peak, after the drive current drops to the level of the holding current 403 is greater than the holding current 410 at a timing t 46, the holding current 410 is coercive It is shown that there is a switching period controlled by the controller 150 to hang down. However, there may be no switching period for maintaining this holding current 410.
  • the fluid force acting on the valve body 214 increases, and the time until the valve body 214 reaches the target opening due to the fluid resistance becomes long.
  • the arrival timing of the target opening degree may be delayed with respect to the arrival time of the set maximum current I peak.
  • the magnetic attraction acting on the mover 202 is also rapidly reduced, so that the behavior of the valve body 214 becomes unstable, and in some cases, the valve closing is started even when the power is on. It may end up.
  • the switching element 506 When the switching element 506 is energized and the current is gradually reduced during the transition from the maximum current I peak to the holding current 403, the decrease in magnetic attraction can be suppressed and the stability of the valve body 214 at high fuel pressure is ensured. There is an effect that can be done.
  • the maximum height position is the amount of displacement in which the mover 202 comes into contact with the stator 207.
  • the control that the mover 202 and the valve body 214 reach the maximum height position in this way is called "full lift".
  • control unit 500 sets the peak current supplied to the solenoid (solenoid 205) at the last injection from the peak current supplied to the solenoid (solenoid 205) at the injection performed before the last injection.
  • the valve body (valve body 214) is operated at full lift at the final injection.
  • the mover 202 collides with the stator 207 at the timing t 43 when the mover 202 reaches the maximum height position, the mover 202 makes a bouncing motion with the stator 207.
  • the valve body 214 is configured to be able to be displaced relative to the mover 202. Therefore, the valve body 214 is separated from the mover 202, and the displacement of the valve body 214 overshoots beyond the maximum height position. That is, the lower end surface of the stepped portion 329 of the valve body 214 is separated from the bottom surface 202D of the recess 202C formed in the mover 202.
  • the mover 202 is sucked into the stator 207 together with the valve body 214 again. Then, the mover 202 comes to rest at a predetermined maximum height position by the magnetic attraction generated by the holding current 403 and the force in the valve opening direction of the second spring 212. Further, the valve body 214 sits on the mover 202, stands still at a position corresponding to the maximum height position, and is in the valve open state (timing t 45 ).
  • the displacement amount of the valve body 214 does not become larger than the maximum height position, and after reaching the maximum height position.
  • the displacement amounts of the mover 202 and the valve body 214 are the same.
  • FIG. 6 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle.
  • the injection rate is a value representing the flow rate per unit time of the fuel injected from the fuel injection device 101 into the combustion chamber 107.
  • the configuration of three cylinders is shown in FIG. 6, the same effect can be obtained even if the number of cylinders is changed by using the present invention.
  • the fuel injection amount can be calculated based on the injection rate and the time, the injection amount may be referred to in the following description with reference to the graph of the injection rate.
  • the injection pulse, the drive current, and the injection rate of the fuel injection device 101 provided in the first cylinder are represented by a chain line, and the injection pulse of the fuel injection device 101 provided in the second cylinder.
  • the drive current and injection rate are represented by solid lines.
  • the injection pulse, the drive current, and the injection rate of the fuel injection device 101 provided in the third cylinder are represented by broken lines.
  • the control device 150 controls the injection amount of the fuel injection device 101 that injects fuel a plurality of times in one combustion cycle.
  • the control device 150 supplies a drive current having the same injection pulse width to each of the fuel injection devices 101 of each cylinder in the injection performed before the last injection in one combustion cycle, and fuels the fuel.
  • the injection device 101 has performed the injection 601.
  • the injection rate 603 of the first cylinder the injection rate 604 of the second cylinder, and the injection rate 605 of the third cylinder
  • the injection rate fluctuates for each cylinder 108. Therefore, the injection amount obtained by integrating the injection rate per unit time with time also varies from cylinder to cylinder 108. As a result, the variation in the injection amount during one combustion cycle becomes large, and the combustion variation becomes large.
  • the control device 150 calculates the injection amount of each injection by the fuel injection in one combustion cycle, and the larger the injection amount of the injection performed before the last injection in one combustion cycle, the more the pulse of the last injection.
  • a control unit 500 for controlling the width to be reduced is provided.
  • the current control unit current control unit 542
  • the more the injection amount of the injection performed before the last injection is larger than the appropriate injection amount, the more the fuel injection device (fuel injection device 101) is in the final injection.
  • the injection pulse width Ti supplied to the vehicle is reduced.
  • the current control unit tells the fuel injection device (fuel injection device 101) that the injection amount of the injection performed before the last injection is smaller than the appropriate injection amount at the last injection. Increase the injection pulse width Ti to be supplied.
  • the detection unit 541 calculates the injection amount for each fuel injection device 101 of each cylinder 108. do. Then, in the final injection during one combustion cycle, the current control unit 542 increases the injection pulse to the fuel injection device 101 of the first cylinder, which has a small injection amount, as in the injection pulse width 608, and injects the injection amount. For the fuel injection device 101 of the third cylinder, which has a large number of fuels, the injection pulse width is corrected to be as small as 606. However, the current control unit 542 does not correct the injection amount for the fuel injection device 101 of the second cylinder in which the injection amount is appropriate. In this way, the current control unit 542 can suppress combustion fluctuations during one combustion cycle by correcting the injection amount of the fuel injection device 101 for each cylinder 108 at the final injection during one combustion cycle.
  • the current control unit 542 makes the injection pulse width of the last injection 602 in one combustion cycle smaller than the injection pulse width of the injection 601 performed before the last injection 602. By such control, even if the shot variation of the injection amount occurs in the final injection 602, the current control unit 542 reduces the influence on the injection amount in one combustion cycle, so that the combustion fluctuation can be suppressed.
  • control device 150 can suppress shot variation in the injection amount during one combustion cycle, combustion variation in each cylinder 108 even under transient conditions in which the engine speed and load change.
  • the effect of suppressing the variation of the above can be obtained.
  • by suppressing the shot variation of the injection amount it is possible to suppress an increase in the amount of fuel adhering to the wall surface caused by the cylinder 108 having a large injection amount, so that HC and CO emitted from the engine can be reduced.
  • FIG. 7 is a diagram showing a time series of the injection pulse width of a cylinder 108, the displacement amount of the valve body 214, and the fuel pressure output from the pressure sensor 109 attached to the fuel injection device 101.
  • the detection unit 541 can estimate (calculate) the injection amount by detecting the change ⁇ P of the fuel pressure of the fuel injection device (fuel injection device 101) detected by the pressure sensor 109.
  • FIG. 7 shows a state from the timing t 71 when the valve body starts to open to the timing t 74 when the valve body 214 closes. The amount of displacement of the valve body and the change in the pressure of the fuel in the fuel injection device 101 due to the injection 701 will be described.
  • the valve body 214 starts moving and the amount of displacement of the valve body increases. Then, since the fuel is injected from the injection hole 219 shown in FIG. 2, the pressure of the fuel in the fuel injection device 101 decreases. When the valve body displacement reaches the maximum opening, the reduced fuel pressure becomes almost constant. After the fuel is injected at a predetermined injection amount, the valve body 214 starts closing, so that the valve body displacement amount is reduced. The pressure of the fuel in the fuel injection device 101 increases as the amount of displacement of the valve body decreases. When the amount of displacement of the valve body becomes zero, the pressure of the fuel in the fuel injection device 101 returns to almost the original value. However, as will be described later, the pressure drop 703 occurs by the amount of the fuel injected by the fuel injection device 101.
  • the detection unit 541 continuously detects the pressure 702 from the timing t 71 when the valve body starts to open to the timing t 74 when the valve body 214 closes, and calculates the valve body 214 by the formula of the orifice.
  • the injection amount can be calculated accurately by integrating the injection amount at each displacement amount.
  • the detection unit 541 detects the injection amount using the pressure detected by the pressure sensor 109, so that the valve body 214 can be subjected to variations in the valve opening start timing and the valve closing completion timing of the valve body 214. It is also possible to detect variations in the injection amount that occur when the eccentricity occurs. Therefore, the current control unit 542 can improve the correction accuracy of the injection amount.
  • the control device 150 is controlled so that the fuel is not supplied from the fuel pump 106 between the time when the valve body 214 starts to open and the time when the valve body 214 completes closing, so that the fuel injection device 101 injects fuel.
  • a pressure drop of 703 occurs by the amount of the fuel used.
  • the pressure drop 703 there is a correlation between the pressure drop 703 and the injection amount of the fuel injection device 101 of each cylinder 108.
  • the detection unit 541 detects the pressure drop 703
  • the current control unit 542 controls the injection pulse width of the final injection 602 to be smaller as the pressure drop 703 becomes larger. By controlling the injection pulse width of the final injection 602 in this way, the current control unit 542 can suppress variations in the injection amount during one combustion cycle.
  • FIG. 8 shows the relationship between the injection pulse width Ti, the terminal voltage V inj, the drive current, the second derivative value of the voltage VL1 , the current, that is, the second derivative value of the voltage VL2 , and the displacement amount of the valve body 214, and time. It is a figure shown.
  • the detection unit (detection unit 541) is a valve body (valve body) of the fuel injection device (fuel injection device 101) due to an electrical change caused by the collision of the mover (movable element 202) with the stator (stator 207).
  • the fuel injection period obtained from the valve opening start timing and the valve closing completion timing of 214) is estimated, and the injection amount is calculated based on the injection period.
  • the current control unit 542 applies the battery voltage VB to the stator 207 before the valve body 214 reaches the maximum height position.
  • the valve body 214 from the injection pulse is ON to start displaced the duration of moving the period T M801, the valve displacement is to the period T M802 a period including the moment in which the maximum height position ..
  • the detection unit 541 can detect an electrical change caused by the collision of the mover 202 with the stator 207, specifically, a change in inductance, at an inflection point of the current in the period T m 802. Therefore, the detection unit 541 can detect the valve opening completion timing t 81 at which the valve body 214 completes valve opening by detecting the timing at which the second derivative value of the current becomes maximum in the period T m 802.
  • the mover 202 is separated from the valve body 214 and parabolic in the valve closing direction.
  • the acceleration of the mover 202 changes and the inflection point 801 changes to the voltage between terminals. Occurs.
  • the period until immediately before the injection pulse valve body displacement since the OFF becomes 0 and the period T M803 the valve displacement is to the period T M804 a period including a moment became 0.
  • the detection unit 541 can detect the valve closing completion timing t 82 of the valve body 214 by detecting the minimum value of the second derivative value of the voltage VL1 between the terminals in the period T m804 .
  • the fuel injection period is from the start of valve opening to the completion of valve closing of the valve body 214, there is a positive correlation between the injection period and the injection amount. Then, as the injection period becomes longer, the fuel injection amount increases.
  • the following describes a detection method of the valve opening start timing t 80.
  • the valve opening completion timing t 81 and the valve opening start timing t 80 have a high correlation. Therefore, the detection unit 541 can detect the valve opening start timing t 80 by multiplying the detected valve opening completion timing t 81 by a correction constant set in advance by the ECU 104. Then, the current control unit (current control unit 542) supplies the injection pulse having the injection pulse width Ti changed to the fuel injection device (fuel injection device 101).
  • the fuel injection device 101 in which the current control unit 542 has a longer injection period from the valve opening start timing to the valve closing completion timing is such that the fuel injection device 101 has a longer injection period.
  • the injection pulse width of the last injection 602 is corrected to be smaller, and the fuel injection device 101 having a shorter injection period is corrected to have a larger injection pulse width of the last injection 602.
  • FIG. 9 is a diagram showing the relationship between the injection pulse width Ti of the fuel injection device 101 of a certain cylinder 108, the injection amount, and the shot variation of the injection amount.
  • the ECU 104 sets the injection pulse width of the last injection 602 shown in FIG. 6 to be shorter than the injection pulse width of the injection performed before the last. Further, in the final injection 602, as shown in FIG. 8, the valve body 214 may come into contact with the stator 207, that is, the valve body 214 may be driven to reach the maximum height position (referred to as “full lift”). ..
  • the valve body 214 starts to be displaced, and the fuel is discharged from the fuel injection device 101. Injection is started. Further, when the current control unit 542 increases the injection pulse width, the mover 202 comes into contact with the stator 207 after the injection pulse width 93, and thereafter, the injection amount increases according to the length of the injection pulse width.
  • the mover 202 collides with the stator 207, the mover 202 bounces. Therefore, in the section 902 of the injection pulse widths 92 to 93, the shot variation of the injection amount becomes large. Therefore, if the time from when the current control unit 542 stops the injection pulse until the valve body 214 closes changes for each injection pulse, a section 902 in which the shot variation of the injection amount becomes large occurs. In the section 903 after the injection pulse width 93 where the bounds of the mover 202 and the stator 207 converge, the shot variation of the injection amount becomes small.
  • the shot variation of the injection amount becomes large in the section 902 of the injection pulse width 92 to 93.
  • the valve body 214 is driven by a full lift that reaches the maximum height position.
  • the section 901 having the injection pulse widths 91 to 92 is driven by a half lift in which the valve body 214 does not reach the maximum height position.
  • the amount of displacement of the valve body 214 controlled by the half lift is not geometrically regulated.
  • the valve body 214 is affected by an external force such as the fluid force of the fuel, the displacement amount of the valve body 214 or the eccentric amount of the valve body 214 becomes large, so that the shot variation of the injection amount becomes large.
  • the mover 202 and the stator 207 bounce, so that the shot variation of the injection amount becomes large.
  • the last injection 602 in one combustion cycle for correcting the injection pulse width is injected under the condition of full lift after the injection pulse width 92. Control to do. By such control, the control device 150 can suppress the shot variation of the injection amount and reduce the variation of the injection amount during one combustion cycle.
  • the current control unit 542 may control the final injection 602 of the fuel injection device 101 by supplying an injection pulse larger than the injection pulse width 93 to the fuel injection device 101.
  • the current control unit 542 it is possible to further suppress the shot variation of the injection amount and enhance the effect of suppressing the combustion fluctuation.
  • Figure 10 is injection pulse according to the second embodiment of the present invention, the driving current supplied to the fuel injection device 101, the switching elements 505, 506 and 507 of the fuel injection device 101, the terminal voltage V inj solenoid 205 It is a figure which showed the relationship between the displacement amount of the valve body 214 and the mover 202, and time.
  • FIG. 10 describes how the current control unit 542 drives the fuel injection device 101 using three types of drive currents 1001, 1002, 1003. Then, the drive current, the behavior of the switching element, the voltage between terminals, and the displacement amount of the valve body when the drive current 1001 is used are represented by thick solid lines, and the drive current, the behavior of the switching element, and the distance between terminals when the drive current 1002 is used are shown. The voltage and the amount of displacement of the valve body are represented by thick broken lines. Further, the drive current, the behavior of the switching element, the voltage between terminals, and the amount of displacement of the valve body when the drive current 1003 is used are represented by thin broken lines.
  • FIG. 11 is a diagram showing the relationship between the injection pulse width Ti and the injection amount and the standard deviation ( ⁇ ) of the shot variation of the injection amount when the control device 150 controls the fuel injection device 101 with the drive current waveform of FIG. Is.
  • the injection amount characteristic (Q 1101 ) when the ECU 104 controls the fuel injection device 101 with the drive current 1001 (see FIG. 10) is represented by a thick line, and the injection when the fuel injection device 101 is controlled with the drive current 1002.
  • the quantity characteristic (Q 1102 ) is represented by a thin line.
  • the shot variation of the injection amount of the fuel injection device 101 changes depending on the individual difference of the fuel injection device 101 and the environmental conditions (temperature, etc.). For example, when the drive current 1001 is used, the injection amount rapidly increases until the injection pulse width Ti reaches the injection pulse width 1103, and in the section where the injection pulse width Ti is the injection pulse width 1103 to 1104, the reference indicated by the alternate long and short dash line. The injection amount increases or decreases with respect to the line. Therefore, the shot variation of the injection amount in the section where the injection pulse width Ti has the injection pulse width 1103 to 1104 becomes large.
  • the current control unit 542 applies a reverse voltage to the solenoid 205 to rapidly reduce the current waveform of the drive current 1001 and decelerate the valve body 214.
  • the waveform represented by the injection amount characteristic (Q 1101 ) shown in FIG. 11 is called a fast fall waveform.
  • the injection amount rapidly increases until the injection pulse width Ti becomes the injection pulse width 1103, which is the same as when the drive current 1001 is used.
  • the injection amount increases or decreases with respect to the reference line indicated by the alternate long and short dash line, but the increase or decrease is smaller than when the drive current 1001 is used. Therefore, the shot variation of the injection amount in the section where the injection pulse width Ti is the injection pulse width 1103 to 1104 is smaller than that when the drive current 1001 is used.
  • the current control unit 542 supplies a large drive current 1002 to the solenoid 205 before the valve body 214 opens, thereby suppressing the valve opening variation of the valve body 214.
  • the waveform represented by the injection amount characteristic (Q 1102 ) shown in FIG. 11 is referred to as a peak hold waveform.
  • the driving current 1003 is held for a predetermined period in the vicinity of the maximum driving current value I peak2 shown in FIG. Even if the drive current 1003 having such a current waveform is used, a predetermined current value can be given to the solenoid 205 until the valve body 214 opens, so that the same effect as when the drive current 1002 is used can be obtained. Be done. After that, the drive current 1003 decreases rapidly like the drive current 1002 and is held in the vicinity of the current value 1012, but the shot variation of the injection amount becomes larger than when the drive current 1001 is used.
  • control device 150 requires a technique for correcting the injection amount in one combustion cycle.
  • a magnetic attraction force acts between the mover 202 and the stator 207.
  • the mover 202 starts displacement at the timing when the resultant force of the magnetic attraction force, which is the force in the valve opening direction, and the load of the second spring 212 exceeds the load of the third spring 234, which is the force in the valve closing direction. do.
  • the mover 202 collides with the valve body 214 before the timing t 106 , so that the displacement of the valve body 214 is started and fuel is injected from the fuel injection device 101.
  • the switching element 506 When the drive current 1002 reaches a maximum current I peak 1 at the timing t 102, the switching element 506 is energized. At this time, the switching element 505 and the switching element 507 are de-energized. Then, a voltage of approximately 0 V is applied to both ends of the fuel injection device 101 by a so-called free wheel in which a current is regenerated between the ground potential 515, the switching element 506, the fuel injection device 101, and the ground potential 517, and the drive current 1002 is generated. The current gradually decreases as shown in 1011.
  • the control device 150 switches between energization and de-energization of the switching element 507, and controls the drive current 1002 so as to hold the current value 1012 at or near the current value 1004.
  • the period in which the control device 150 controls the drive current 1002 is referred to as a first current holding period 1055.
  • the control device 150 sets a current value (current value higher than the current value 1004) capable of holding the valve body 214 at the maximum height position until the timing t 104 when the valve body 214 reaches the maximum height position. It is preferable to supply the solenoid 205. Under the condition that the valve body 214 is at a height lower than the maximum height position, there is a magnetic gap between the mover 202 and the stator 207, so that the magnetic resistance increases and the mover 202 and the stator 207 come into contact with each other. The magnetic attraction is lower than when it is.
  • the control device 150 supplies a current value higher than the current value 1004 until the mover 202 and the valve body 214 reach the maximum height position, so that the valve body 214 stably reaches the maximum height position. It becomes reachable, and the timing at which the valve body 214 reaches the maximum height position becomes earlier.
  • the control device 150 uses the drive current 1002 to stabilize the behavior of the valve body 214 before reaching the maximum height position, and the variation in the displacement amount of the valve body 214 for each shot is suppressed. Therefore, the shot variation of the injection amount after the injection pulse width 1103 when the valve body 214 reaches the maximum height position can be reduced.
  • the relationship between the driving method and injection pulse width of the driving current 1001 and the injection amount and the shot variation of the injection amount according to the second embodiment of the present invention for solving the above problems will be described.
  • the current control unit 542 supplies the solenoid 205 with a drive current 1001 having a predetermined injection pulse width.
  • the mover movable element 202 starts displacement toward the stator (stator 207), and the mover (movable element 202) accelerates to a predetermined value at the timing.
  • the energization of the solenoid is turned off to reduce the speed at which the mover (movable element 202) collides with the stator (stator 207).
  • the current control unit 542 turns off the switching elements 505, 506, and 507 at the timing t 106 (FIG. 10) when the mover 202 starts displacement in the direction of the stator 207 and the mover 202 sufficiently accelerates. ..
  • the back electromotive force due to the inductance of the fuel injection device 101 energizes the diode 509 and the diode 510, and the current is fed back to the booster circuit 514 (high voltage source) side. Then, the current supplied to the fuel injection device 101 rapidly decreases from the maximum drive current value I peak2 as shown in the current 1051 of FIG.
  • the control device 150 applies a reverse voltage to the solenoid 205 to rapidly reduce the current, the magnetic flux generated in the magnetic circuit is reduced after a certain delay due to the eddy current, and the magnetic attraction acting on the mover 202 is reduced. The force becomes smaller.
  • the mover 202 and the valve body 214 decelerate at the timing t 107 (see FIG. 10) shown in the displacement amount of the valve body 214 and the mover 202, and the speed when the mover 202 collides with the stator 207 becomes smaller. Become. Therefore, the bounces of the mover 202 and the valve body 214 generated with respect to the stator 207 are reduced, and the timing at which the bounces of the valve body 214 converge is earlier than the timing t 108. As a result, the shot variation of the injection amount after the injection pulse width 1104 (see FIG. 11) after the valve body 214 reaches the maximum height position and a certain time has passed is smaller than that when the drive current 1002 is used. can do.
  • the current control unit 542 supplies the drive current 1001 to the fuel injection device 101, the speed at which the mover 202 collides with the stator 207 becomes smaller. Therefore, as compared with the case where the current control unit 542 supplies the drive current 1002 to the fuel injection device 101, there is also an effect that the drive noise generated from the fuel injection device 101 can be reduced.
  • the control device 150 uses the drive current 1001 in this way, the mover 202 and the valve body 214 decelerate before the valve body 214 reaches the maximum height position. Therefore, the behavior of the valve body 214 may become unstable until the valve body 214 reaches the maximum height position. Further, under the condition that the injection pulse width Ti is smaller than the injection pulse width 1104, the shot variation of the injection amount may be larger than that when the drive current 1002 is used.
  • FIG. 12 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. Also in FIG. 12, similarly to FIG. 6, the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
  • the ECU 104 performed the injection 1201 with the same injection pulse width for each fuel injection device 101 of each cylinder 108.
  • the injection rate 1203 of the first cylinder the injection rate 1204 of the second cylinder, and the injection rate 1205 of the third cylinder, the injection rate fluctuates for each cylinder 108.
  • the control device 150 has a detection unit 541 that calculates the injection amount of each injection by fuel injection in one combustion cycle, and before the last injection in one combustion cycle.
  • the current control unit 542 is provided to control so that the injection pulse width Ti of the last injection becomes smaller as the injection amount of the performed injection increases.
  • the current control unit 542 performs injection 1202 in which the ECU 104 has an injection pulse width different for each fuel injection device 101 of each cylinder 108.
  • the current control unit 542 supplies the fuel injection device 101 with the injection pulse width in the injection 1201 performed before the end of one combustion cycle, the third cylinder corresponding to the injection rate 1205 having a large injection amount.
  • the injection pulse of the last injection 1202 supplied to the fuel injection device 101 attached to the fuel injection device 101 is corrected to be as small as the injection pulse width 1206.
  • the current control unit 542 largely corrects the injection pulse of the last injection 1202 supplied to the fuel injection device 101 attached to the first cylinder corresponding to the injection rate 1203 with a small injection amount, such as the injection pulse width 1208. ..
  • the current control unit 542 sets the final injection supplied to the fuel injection device 101 attached to the second cylinder whose injection amount corresponds to the appropriate injection rate 1204 to the injection pulse width 1207 without correction.
  • the current control unit has a maximum drive current supplied to the solenoid (solenoid 205) by the injection performed before the last injection of one combustion cycle. After reaching, the solenoid (solenoid 205) is controlled to apply a reverse voltage. Then, in the final injection, the current control unit (current control unit 542) may supply a larger drive current to the solenoid (solenoid 205) up to the holding current than the first injection performed in one combustion cycle.
  • the current control unit 542 has a fast injection pulse width Ti with a long shot variation. It is controlled by using the drive current 1001 of the fall waveform. After that, the current control unit 542 controls the final injection 1202 by using the drive current 1002 having a peak hold waveform with a small shot variation in the injection amount under the condition that the injection pulse width Ti is short. In this way, the current control unit 542 switches the drive currents 1001 and 1002 in one combustion cycle according to the injection timing. By switching the drive currents 1001 and 1002 by the current control unit 542 in this way, the effect of suppressing shot variation in the injection amount in one combustion cycle can be obtained.
  • the current control unit 542 can suppress a decrease in the boost voltage VH by using a drive current 1001 having a small peak current value I peak in the injection 1201 performed before the final injection 1202. Therefore, the boosted voltage VH easily returns to the initial value 1070 shown in FIG. 10 at the final injection 1202, so that the accuracy of the injection amount at the final injection 1202 can be improved and the variation in the injection amount during one combustion cycle can be suppressed. ..
  • FIG. 13 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle.
  • the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
  • the fuel injection device 101 injects fuel at a number of injections more than two times in one combustion cycle.
  • the injection rate fluctuates for each cylinder 108.
  • the control device 150 is based on injection 1301 (referred to as “first injection”) and injection 1302 (referred to as “second injection”) performed before the end.
  • the injection amount of the fuel injection device 101 of each cylinder 108 when each injection pulse is supplied to the fuel injection device 101 is calculated.
  • the detection unit 541 calculates the injection amount from the fuel injection period from the start of valve opening to the completion of valve closing of the valve body 214 and the pressure detected by the pressure sensor 109 attached to the fuel injection device 101. ..
  • the current control unit causes the fuel injection device (fuel injection device 101) to inject three or more times in one combustion cycle, and a plurality of injections performed before the final injection.
  • the injection amount of the last injection is corrected based on the sum of the injection amounts in.
  • the current control unit has an injection pulse so that the larger the sum of the injection amounts in the plurality of injections performed before the last injection, the smaller the injection amount in the last injection. Reduce the width Ti.
  • the current control unit 542 sets a small correction pulse width 1306 for the fuel injection device 101 of the third cylinder, which has a large sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection. Supply and have the final injection 1303 performed.
  • the current control unit 542 applies a greatly corrected injection pulse width 1308 to the fuel injection device 101 of the first cylinder, which has a small sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection. Supply and have the final injection 1303 performed.
  • the current control unit 542 injects the fuel injection device 101 attached to the second cylinder in which the sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection is appropriate without correction.
  • a pulse width of 1307 is supplied to perform the final injection 1303.
  • the current control unit 542 suppresses shot variation in the injection amount when the number of injections in one combustion cycle is more than two, and suppresses injection amount variation in the fuel injection device of each cylinder 108. As a result, the effect of suppressing combustion fluctuations is enhanced.
  • FIG. 14 is a diagram showing another example of the control method according to the third embodiment.
  • FIG. 14 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle.
  • the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
  • FIG. 14 shows the state of two injections 1401 and 1402 in the intake step 1420 and one injection 1403 in the compression step 1421 in one combustion cycle.
  • the fuel injection device 101 injects more than two injections in one combustion cycle.
  • the injection rate 1410 of the first cylinder the injection rate 1411 of the second cylinder, and the injection rate 1412 of the third cylinder
  • the injection rate fluctuates for each cylinder 108.
  • the current control unit current control unit 542 causes the fuel injection device (fuel injection device 101) to inject before the final injection in the intake step 1420 in one combustion cycle, and fuels in the compression step 1421.
  • the injection device (fuel injection device 101) is made to perform the final injection.
  • the current control unit is a fuel injection device (fuel injection device 101) in the injection performed immediately before the last injection among the plurality of injections performed before the last injection. ) Is made smaller than the injection pulse width Ti supplied to the fuel injection device (fuel injection device 101) at the final injection. Since the fuel injection with the injection pulse width Ti of the first injection 1401 in the intake step 1420 is performed at the timing when the air flow in the cylinder 108 is strong, the control device 150 controls so that the injection amount is large.
  • the current control unit 542 sets the injection 1402 to the injection pulse width Ti shorter than the injection pulse width Ti in the first injection 1401 so that the fuel sprayed by the fuel injection device 101 can be appropriately placed on the weak air flow. Fuel is injected with a small injection amount. Such control makes it possible to improve the homogeneity of the fuel in the cylinder 108 in the intake step 1420.
  • the control device 150 is set before the last injection, that is, the sum of the injection pulse width of the first injection 1401 and the injection pulse width of the second injection 1402.
  • the injection pulse width of the final injection 1403 may be set to be small.
  • the control device 150 controls the injection amount of the injection 1402 performed before the injection amount of the last injection 1403 to be smaller, so that even if the injection amount of the last injection 1403 varies, the injection amount during one combustion cycle can be reached. The degree of contribution can be reduced. Therefore, it is possible to reduce the shot variation of the injection amount during one combustion cycle and suppress the combustion variation.
  • the current control unit (current control unit 542) supplies a plurality of peak currents supplied to the solenoid (solenoid 205) at the last injection before the last injection. It is made larger than the peak current supplied to the solenoid (solenoid 205) by one injection.
  • the current control unit 542 sets the peak current supplied to the solenoid 205 by the third injection 1403 to be larger than the peak current supplied to the solenoid 205 by the first injection 1401 and the second injection 1402. .
  • the current control unit 542 sets the peak current value of the current waveform corresponding to the injection pulse width in the second injection 1402 to the first injection 1401 and the third injection 1402. It is set lower than the peak current value of the current waveform corresponding to the injection pulse width in the injection 1403.
  • the current control unit halves the valve body (valve body 214) by the injection performed immediately before the last injection among the plurality of injections performed before the last injection. It is operated by a lift, and the valve body (valve body 214) is operated by a full lift at the final injection.
  • the current control unit 542 operates in the second injection 1402 with a half lift in which the valve body 214 does not reach the maximum height position. In this way, the current control unit 542 reduces the injection pulse width in the second injection 1402 to reduce the peak current, thereby suppressing the magnetic attraction force acting on the mover 202. Then, the current control unit 542 stably controls the injection period when the valve body 214 is operated by the half lift.
  • FIG. 15 is a diagram showing an injection pulse, an injection rate, and an ignition timing supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. Similar to FIG. 12, in FIG. 15, the injection pulse and the injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line. Further, the ignition timing before the control according to the fourth embodiment is represented by a dotted line, and the ignition timing after the control according to the fourth embodiment is represented by a solid line.
  • FIG. 15 shows the state of two injections 1501 and 1502 in the intake step 1520 and one injection 1503 in the compression step 1521 in one combustion cycle. Also in FIG. 15, the fuel injection device 101 injects more than two injections in one combustion cycle. In this case, as shown in the injection rate 1510 of the first cylinder, the injection rate 1511 of the second cylinder, and the injection rate 1512 of the third cylinder, the injection rate fluctuates for each cylinder 108.
  • control unit 500 causes the fuel injection device (fuel injection device 101) to inject three or more times in the intake step and the compression step of one combustion cycle, and sets the ignition timing to the top dead center in the combustion step 1522. It is retarded from (TDC). For example, at the time of starting the engine, under the condition of warming up the temperature of the three-way catalyst or the like, the control unit 500 causes the ignition timing to retard from the top dead center as shown in the ignition timings 1530 and 1531. By retarding the ignition timing in this way, it is possible to intentionally increase the exhaust loss, increase the amount of heat supplied to the three-way catalyst, and perform control to improve the temperature of the three-way catalyst. By raising the temperature of the three-way catalyst, the purification efficiency of the three-way catalyst is improved, so that the amount of exhaust gas discharged from the vehicle can be suppressed.
  • the ignition timing is delayed from the optimum ignition timing, so that there is a problem that the combustion speed becomes slow and the combustion fluctuation in each combustion cycle becomes large. Since the time until the three-way catalyst is activated becomes shorter as the ignition timing is retarded, it is required to suppress the combustion fluctuation under the condition of retarding the ignition timing.
  • the fuel of each cylinder to which the injection pulses having a predetermined injection pulse width are supplied in the injections 1501 and 1502 performed before the final injection 1503, respectively.
  • the injection amount of the injection device 101 is calculated from the injection period or pressure drop described in the first embodiment.
  • the control device 150 greatly corrects the injection pulse width of the last injection such as 1508 in the first cylinder having a small injection amount, and adjusts the injection pulse width of the last injection to 1506 in the third cylinder having a large injection amount.
  • the current control unit 542 is provided so as to make a small correction.
  • the control unit 542 controls to delay the ignition timing 1530 to the ignition timing 1531 as compared with before correcting the injection pulse width. ..
  • the control unit controls to delay the ignition timing 1530 to the ignition timing 1531 as compared with before correcting the injection pulse width. ..
  • each of the above-described embodiments describes in detail and concretely the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations.
  • it is possible to replace a part of the configuration of the embodiment described here with the configuration of another embodiment and further, it is possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
  • Fuel injection system 101 ... Fuel injection device, 103 ... Drive circuit, 104 ... ECU, 106 ... Fuel pump, 107 ... Combustion chamber, 108 ... Cylinder, 150 ... Control device, 202 ... Movable element, 207 ... Stator, 214 ... Valve body, 500 ... Control unit, 501 ... CPU, 502 ... Drive IC, 541 ... Detection unit, 542 ... Current control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

It has not been possible to minimize combustion fluctuation when the injection amount of a fuel injection device varies from cylinder to cylinder. A control device 150, which controls a fuel injection device 101 that injects fuel multiple times in one combustion cycle, is provided with a control unit 500 that calculates the fuel injection amount at each injection performed in one combustion cycle, and performs control so that as the injection amounts of injections performed before the final injection become larger than the injection amount of the final injection in one combustion cycle to a greater extent, the injection pulse width of an injection pulse supplied to the fuel injection device 101 at the final injection is made less than the injection pulse widths of injection pulses supplied to the fuel injection device 101 at injections performed before the final injection to a commensurately greater extent.

Description

燃料噴射装置の制御装置、制御方法及びプログラムFuel injection controller, control method and program
 本発明は、燃料噴射装置の制御装置、制御方法及びプログラムに関する。 The present invention relates to a control device, a control method, and a program of a fuel injection device.
 近年、地球温暖化防止や、化石燃料の資源枯渇抑制の観点から、内燃機関のエンジンでは、モード走行時の二酸化炭素(CO)を低減することが求められる。CO低減のためには燃料の消費量を抑制する必要があり、燃料が空気に対して希薄な状態で燃焼されるリーン燃焼が有効な技術である。とくに、リーン燃焼では、筒内の等量比が薄い状態で混合気に着火する必要があるため、燃焼速度が緩慢となり、燃焼が不安定となりやすく、燃焼変動を抑制する技術が求められていた。 In recent years, from the viewpoint of preventing global warming and suppressing the depletion of fossil fuel resources, the engine of an internal combustion engine is required to reduce carbon dioxide (CO 2) during mode driving. In order to reduce CO 2 , it is necessary to suppress fuel consumption, and lean combustion, in which fuel is burned in a state where it is diluted with respect to air, is an effective technology. In particular, in lean combustion, since it is necessary to ignite the air-fuel mixture in a state where the equivalent ratio in the cylinder is thin, the combustion speed becomes slow, combustion tends to become unstable, and a technique for suppressing combustion fluctuation is required. ..
 燃焼変動を抑制するための技術として、特許文献1に開示されている方法がある。特許文献1には、各気筒の燃焼噴射装置ごとに燃料噴射装置の弁体の動作タイミングを検知し、気筒ごとに燃料の噴射量を補正することで、気筒ごとに噴射量ばらつきを抑制する方法が開示されている。 There is a method disclosed in Patent Document 1 as a technique for suppressing combustion fluctuations. Patent Document 1 describes a method of suppressing variation in injection amount for each cylinder by detecting the operation timing of the valve body of the fuel injection device for each combustion injection device of each cylinder and correcting the fuel injection amount for each cylinder. Is disclosed.
特開2018-197548号公報JP-A-2018-197548
 燃焼変動には、気筒ごとの図示平均有効圧力(IMEP:Indicated Mean Effective Pressure)のばらつきと、それぞれの気筒での1燃焼サイクルごとのIMEPのばらつきがある。1燃焼サイクルごとのIMEPのばらつき要因として、空気流動のばらつきや、燃料噴射装置の噴射量のばらつきがある。燃焼変動を抑制するために、特許文献1に記載された技術を用いて気筒ごとの噴射量のばらつきを抑制しようと試みても、燃焼噴射装置の噴射量が1燃焼サイクルごとに変動すると、燃焼変動を抑制できない場合があった。 Combustion fluctuations include variations in the indicated mean effective pressure (IMEP) for each cylinder and variations in IMEP for each combustion cycle in each cylinder. Factors that cause variations in IMEP for each combustion cycle include variations in air flow and variations in the injection amount of the fuel injection device. Even if an attempt is made to suppress variations in the injection amount for each cylinder by using the technique described in Patent Document 1 in order to suppress combustion fluctuations, if the injection amount of the combustion injection device fluctuates in each combustion cycle, combustion occurs. In some cases, fluctuations could not be suppressed.
 本発明はこのような状況に鑑みて成されたものであり、1燃焼サイクルでの燃料噴射装置から噴射される燃料の噴射量のばらつきを低減することで、燃焼変動を抑制することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to suppress combustion fluctuations by reducing variations in the injection amount of fuel injected from the fuel injection device in one combustion cycle. do.
 本発明に係る制御装置は、1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置を制御する。この制御装置は、1燃焼サイクルで行われる噴射の各回での燃料の噴射量を算出し、1燃焼サイクルにおける最後の噴射の噴射量より、最後の噴射よりも前に行われた噴射の噴射量が多いほど、最後の噴射よりも前に行われた噴射で燃料噴射装置に供給した噴射パルスの噴射パルス幅より、最後の噴射で燃料噴射装置に供給する噴射パルスの噴射パルス幅を小さくするように制御する制御部を備える。 The control device according to the present invention controls a fuel injection device that injects fuel a plurality of times in one combustion cycle. This control device calculates the fuel injection amount at each injection performed in one combustion cycle, and the injection amount of the injection performed before the last injection from the injection amount of the last injection in one combustion cycle. The greater the number, the smaller the injection pulse width of the injection pulse supplied to the fuel injection device at the last injection than the injection pulse width of the injection pulse supplied to the fuel injection device in the injection performed before the last injection. It is equipped with a control unit that controls the fuel.
 本発明によれば、1燃焼サイクルにおける最後の噴射よりも前に行われた噴射で燃料の噴射量のばらつきが生じても、最後の噴射で噴射量を調整できるため、1燃焼サイクル中の噴射量のばらつきを低減し、燃焼変動を抑制できる。
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
According to the present invention, even if the injection amount of the fuel varies in the injection performed before the last injection in one combustion cycle, the injection amount can be adjusted in the last injection, so that the injection in one combustion cycle It is possible to reduce the variation in quantity and suppress the variation in combustion.
Issues, configurations and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態に係る燃料噴射システムの構成に例を示す図である。It is a figure which shows an example in the structure of the fuel injection system which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係る燃料噴射装置の縦断面図と、その燃料噴射装置を駆動するために接続される駆動回路及びECUの構成例を示す図である。It is a figure which shows the vertical sectional view of the fuel-injection apparatus which concerns on 1st Embodiment of this invention, and the structural example of the drive circuit and ECU which are connected to drive the fuel-injection apparatus. 本発明の第1の実施の形態に係る燃料噴射装置の駆動部構造の例を示した拡大断面図である。It is an enlarged cross-sectional view which showed the example of the drive part structure of the fuel injection device which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係る燃料噴射装置を駆動する一般的な噴射パルス、燃料噴射装置に供給する駆動電圧及び駆動電流、弁体及び可動子の変位量、並びに時間の関係を示したタイミングチャートである。The relationship between the general injection pulse for driving the fuel injection device according to the first embodiment of the present invention, the drive voltage and drive current supplied to the fuel injection device, the displacement amount of the valve body and the mover, and the time is shown. It is a timing chart. 本発明の第1の実施の形態に係る燃料噴射装置の駆動回路及びECUの詳細な構成例を示す図である。It is a figure which shows the detailed structural example of the drive circuit and ECU of the fuel injection device which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係るECUから気筒ごとの燃料噴射装置に1燃焼サイクルで供給される噴射パルスと駆動電流、及び噴射率を示した図である。It is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 1st Embodiment of this invention in one combustion cycle. 本発明の第1の実施の形態に係る、ある気筒の噴射パルス幅、弁体の変位量、燃料噴射装置に取り付けた圧力センサから出力される燃料の圧力の時系列を示した図である。It is a figure which showed the injection pulse width of a certain cylinder, the displacement amount of a valve body, and the time series of the fuel pressure output from the pressure sensor attached to the fuel injection device which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係る噴射パルス幅、端子間電圧、駆動電流、電圧の2階微分値、電流すなわち電圧の2階微分値、及び弁体の変位量と、時間との関係を示した図である。Relationship between time and injection pulse width, inter-terminal voltage, drive current, second-order differential value of voltage, current, that is, second-order differential value of voltage, displacement amount of valve body, and time according to the first embodiment of the present invention. It is a figure which showed. 本発明の第1の実施の形態に係る、ある気筒の燃料噴射装置の噴射パルス幅と、噴射量、及び噴射量のショットばらつきとの関係を示した図である。It is a figure which showed the relationship between the injection pulse width of the fuel injection device of a certain cylinder, the injection amount, and the shot variation of the injection amount which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る噴射パルス、燃料噴射装置に供給される駆動電流、燃料噴射装置のスイッチング素子、ソレノイドの端子間電圧、弁体及び可動子の変位量と、時間との関係を示した図である。The injection pulse according to the second embodiment of the present invention, the drive current supplied to the fuel injection device, the switching element of the fuel injection device, the voltage between the terminals of the solenoid, the displacement amount of the valve body and the mover, and the time. It is a figure which showed the relationship. 本発明の第2の実施の形態に係る制御装置が、図10の駆動電流波形で燃料噴射装置を制御した場合の噴射パルス幅と噴射量及び噴射量のショットばらつきの標準偏差の関係を示した図である。The relationship between the injection pulse width and the injection amount and the standard deviation of the shot variation of the injection amount when the control device according to the second embodiment of the present invention controls the fuel injection device with the drive current waveform of FIG. 10 is shown. It is a figure. 本発明の第2の実施の形態に係るECUから気筒ごとの燃料噴射装置に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。It is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 2nd Embodiment of this invention in one combustion cycle. 本発明の第3の実施の形態に係るECUから気筒ごとの燃料噴射装置に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。It is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 3rd Embodiment of this invention in one combustion cycle. 本発明の第3の実施の形態に係る制御方法の他の一例として、ECUから気筒ごとの燃料噴射装置に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。As another example of the control method according to the third embodiment of the present invention, it is a figure which showed the injection pulse, the drive current, and the injection rate which are supplied from the ECU to the fuel injection device for each cylinder in one combustion cycle. 本発明の第4の実施の形態に係るECUから気筒ごとの燃料噴射装置に1燃焼サイクルで供給される噴射パルス、噴射率及び点火時期を示した図である。It is a figure which showed the injection pulse, the injection rate and the ignition timing which are supplied to the fuel injection device for each cylinder from the ECU which concerns on 4th Embodiment of this invention in one combustion cycle.
 以下、本発明を実施するための形態について、添付図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same function or configuration are designated by the same reference numerals, and redundant description will be omitted.
[燃料噴射システムの構成例及び動作例] 以下、図1~図6を用いて、本発明に係る燃料噴射装置と制御装置で構成される燃料噴射システムの基本構成例及び動作例について説明する。 [Structure example and operation example of fuel injection system] Hereinafter, a basic configuration example and an operation example of a fuel injection system composed of a fuel injection device and a control device according to the present invention will be described with reference to FIGS. 1 to 6.
 最初に、図1を用いて、燃料噴射システムの構成について説明する。
 図1は、燃料噴射システム1の構成例を示す図である。燃料噴射システム1は本発明を筒内直接噴射式エンジン(内燃機関の一例)に適用した例であるが、本発明はこの例に限らない。本明細書において、筒内直接噴射式エンジンを単に「エンジン」と称することがある。
First, the configuration of the fuel injection system will be described with reference to FIG.
FIG. 1 is a diagram showing a configuration example of the fuel injection system 1. The fuel injection system 1 is an example in which the present invention is applied to an in-cylinder direct injection engine (an example of an internal combustion engine), but the present invention is not limited to this example. In the present specification, the in-cylinder direct injection engine may be simply referred to as an "engine".
 燃料噴射システム1は、図1に示すように、4つの燃料噴射装置101A~101D、及び制御装置150とで構成される。本実施形態に係る筒内直接噴射式エンジンは、4つの気筒108(エンジンシリンダ)を備える。制御装置150は、例えば燃料噴射装置101を制御する車両用の制御装置である。この制御装置(制御装置150)は、1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置(燃料噴射装置101)を制御する。以下の説明において、燃料噴射装置101A乃至101Dを区別しない場合には、「燃料噴射装置101」と称する。 As shown in FIG. 1, the fuel injection system 1 is composed of four fuel injection devices 101A to 101D and a control device 150. The in-cylinder direct injection engine according to the present embodiment includes four cylinders 108 (engine cylinders). The control device 150 is, for example, a control device for a vehicle that controls the fuel injection device 101. This control device (control device 150) controls a fuel injection device (fuel injection device 101) that injects fuel a plurality of times in one combustion cycle. In the following description, when the fuel injection devices 101A to 101D are not distinguished, they are referred to as "fuel injection device 101".
 燃料噴射システム1の各気筒108には、燃料噴射装置101A~101Dが、その噴射孔219(後述する図2参照)から霧状の燃料が燃焼室107に直接噴射されるように設置されている。燃料は、燃料ポンプ106によって昇圧されて燃料配管105に送出され、燃料配管105を通じて燃料噴射装置101A乃至101Dに配送される。燃料配管105の一端部には、燃料配管105内の燃料圧力を測定する圧力センサ102が設置されている。燃料圧力は、燃料ポンプ106によって吐出された燃料の流量と、燃料噴射装置101によって各燃焼室107内に噴射された燃料の噴射量とのバランスによって変動する。圧力センサ102の測定結果(燃料圧力)に基づいて、所定の圧力を目標値として燃料ポンプ106から吐出される燃料の吐出量が制御される。 In each cylinder 108 of the fuel injection system 1, fuel injection devices 101A to 101D are installed so that atomized fuel is directly injected into the combustion chamber 107 from the injection holes 219 (see FIG. 2 described later). .. The fuel is boosted by the fuel pump 106, sent to the fuel pipe 105, and delivered to the fuel injection devices 101A to 101D through the fuel pipe 105. At one end of the fuel pipe 105, a pressure sensor 102 for measuring the fuel pressure in the fuel pipe 105 is installed. The fuel pressure varies depending on the balance between the flow rate of the fuel discharged by the fuel pump 106 and the injection amount of the fuel injected into each combustion chamber 107 by the fuel injection device 101. Based on the measurement result (fuel pressure) of the pressure sensor 102, the discharge amount of fuel discharged from the fuel pump 106 is controlled with a predetermined pressure as a target value.
 また、燃料配管105と、燃料噴射装置101A~101Dとの間には、それぞれ圧力センサ109が設置される。圧力センサ109は、エンジンの各気筒108に供えられた燃料噴射装置101の燃料圧力を検出し、エンジンコントロールユニット(以下、「ECU」と呼ぶ)104に燃料圧力の情報を出力する。 Further, a pressure sensor 109 is installed between the fuel pipe 105 and the fuel injection devices 101A to 101D, respectively. The pressure sensor 109 detects the fuel pressure of the fuel injection device 101 provided in each cylinder 108 of the engine, and outputs the fuel pressure information to the engine control unit (hereinafter, referred to as “ECU”) 104.
 燃料噴射装置101A~101Dの燃料の噴射は、ECU104から送出される噴射パルスのパルス幅(以下「噴射パルス幅」と称する。)によって制御されている。すなわち、燃料噴射装置101から噴射される燃料の噴射量は、燃料噴射装置101に供給される噴射パルス幅に基づいて決定される。この噴射パルス幅の指令が、燃料噴射装置101ごとに設けられた駆動回路103に入力される。駆動回路103は、ECU104からの指令に基づいて駆動電流(「電流」と略称することがある。)の波形(「駆動電流波形」と呼ぶ)を決定し、噴射パルスに基づく時間だけ燃料噴射装置101A~101Dに駆動電流波形を供給する。なお、駆動回路103は、ECU104と一体の部品や基板として実装されている場合もある。駆動回路103とECU104が一体となった装置を制御装置150と称する。 The fuel injection of the fuel injection devices 101A to 101D is controlled by the pulse width of the injection pulse (hereinafter referred to as "injection pulse width") transmitted from the ECU 104. That is, the injection amount of the fuel injected from the fuel injection device 101 is determined based on the injection pulse width supplied to the fuel injection device 101. The command of the injection pulse width is input to the drive circuit 103 provided for each fuel injection device 101. The drive circuit 103 determines a waveform (referred to as a "drive current waveform") of a drive current (sometimes abbreviated as "current") based on a command from the ECU 104, and a fuel injection device for a time based on an injection pulse. The drive current waveform is supplied to 101A to 101D. The drive circuit 103 may be mounted as a component or a board integrated with the ECU 104. A device in which the drive circuit 103 and the ECU 104 are integrated is referred to as a control device 150.
 次に、燃料噴射装置101及びその制御装置150の構成と基本的な動作を説明する。
 図2は、燃料噴射装置101の縦断面図と、その燃料噴射装置101を駆動するために接続される駆動回路103及びECU104の構成例を示す図である。なお、図2において、図1と同等の部品には同じ記号を用いる。
Next, the configuration and basic operation of the fuel injection device 101 and its control device 150 will be described.
FIG. 2 is a vertical cross-sectional view of the fuel injection device 101 and a configuration example of a drive circuit 103 and an ECU 104 connected to drive the fuel injection device 101. In FIG. 2, the same symbols are used for parts equivalent to those in FIG.
 ECU104は、エンジンの状態を示す信号を各種センサ(図示略)から取り込み、内燃機関の運転条件に応じて燃料噴射装置101から噴射する噴射量を制御するための噴射パルスの幅や噴射タイミングの演算を行う。 The ECU 104 takes in signals indicating the state of the engine from various sensors (not shown), and calculates the width of the injection pulse and the injection timing for controlling the injection amount to be injected from the fuel injection device 101 according to the operating conditions of the internal combustion engine. I do.
 また、ECU104には、各種センサからの信号を取り込むためのA/D変換器とI/Oポート(いずれも不図示)が備えられている。ECU104より出力された噴射パルスは、信号線110を通して燃料噴射装置101の駆動回路103に入力される。駆動回路103は、ソレノイド205(コイルの一例)に印加する電圧を制御し、電流を供給する。ECU104は、通信ライン111を通して、駆動回路103と通信を行っており、燃料噴射装置101に供給する燃料の圧力や運転条件によって駆動回路103によって生成する駆動電流を切替えることや、電流及び時間の設定値を変更することが可能である。 Further, the ECU 104 is provided with an A / D converter and an I / O port (both not shown) for capturing signals from various sensors. The injection pulse output from the ECU 104 is input to the drive circuit 103 of the fuel injection device 101 through the signal line 110. The drive circuit 103 controls the voltage applied to the solenoid 205 (an example of a coil) and supplies a current. The ECU 104 communicates with the drive circuit 103 through the communication line 111, switches the drive current generated by the drive circuit 103 according to the pressure of the fuel supplied to the fuel injection device 101 and operating conditions, and sets the current and time. It is possible to change the value.
 次に、図2の燃料噴射装置101の縦断面と、図3の可動子202及び弁体214の近傍を拡大した断面図とを用いて、燃料噴射装置101の構成と動作について説明する。図3は、燃料噴射装置101の駆動部構造の例を示した拡大断面図である。特に、可動子202、弁体214、及び固定子207の関係について説明する。 Next, the configuration and operation of the fuel injection device 101 will be described with reference to the vertical cross section of the fuel injection device 101 of FIG. 2 and the enlarged cross section of the vicinity of the mover 202 and the valve body 214 of FIG. FIG. 3 is an enlarged cross-sectional view showing an example of the drive unit structure of the fuel injection device 101. In particular, the relationship between the mover 202, the valve body 214, and the stator 207 will be described.
 図2及び図3に示した燃料噴射装置101は、通常時閉型の電磁弁を備える電磁式燃料噴射装置である。燃料噴射装置101は、内部に略棒状の弁体214を有し、弁体214の先端部と対向する位置には、弁座218が形成されたオリフィスカップ216が設けられている。弁座218には、燃料を噴射する噴射孔219が形成されている。弁体214の上方には、弁体214を閉弁方向(下方向)に付勢するスプリング(以下「第1のばね」と称する。)210が設けられている。 The fuel injection device 101 shown in FIGS. 2 and 3 is an electromagnetic fuel injection device including a normally closed solenoid valve. The fuel injection device 101 has a substantially rod-shaped valve body 214 inside, and an orifice cup 216 on which a valve seat 218 is formed is provided at a position facing the tip end portion of the valve body 214. The valve seat 218 is formed with an injection hole 219 for injecting fuel. Above the valve body 214, a spring (hereinafter referred to as "first spring") 210 for urging the valve body 214 in the valve closing direction (downward direction) is provided.
 ソレノイド(ソレノイド205)は、駆動回路103から駆動電流が供給されると弁座(弁座218)と弁体(弁体214)との間に燃料を導入する空間を形成するように可動子(可動子202)を吸引する磁気吸引力を固定子(固定子207)に生じさせる。固定子(固定子207)は、磁気吸引力により可動子(可動子202)を吸引する。磁気吸引力が作用した可動子(可動子202)は移動し、可動子202と連動して弁体(弁体214)が移動する。ソレノイド205が通電されていないときには、弁体214は第1のばね210によって閉弁方向に付勢され、弁体(弁体214)は弁座(弁座218)に接した状態で燃料をシールする構造(閉弁状態)となっている。 The solenoid (solenoid 205) is a stator (solenoid 205) that forms a space for introducing fuel between the valve seat (valve seat 218) and the valve body (valve body 214) when a drive current is supplied from the drive circuit 103. A magnetic attraction force for attracting the mover 202) is generated in the stator (stator 207). The stator (stator 207) attracts the mover (movable element 202) by magnetic attraction. The mover (movable element 202) on which the magnetic attraction force acts moves, and the valve body (valve body 214) moves in conjunction with the mover 202. When the solenoid 205 is not energized, the valve body 214 is urged in the valve closing direction by the first spring 210, and the valve body (valve body 214) seals the fuel in contact with the valve seat (valve seat 218). It has a structure (valve closed state).
 可動子202の上端面202Aには、下端面202B側に向けて凹部202Cが形成されている。この凹部202Cの内側に、中間部材220が設けられている。中間部材220は、可動子202と固定子207の中間に位置する部材である。中間部材220の下面側には、上方に向けて凹部220Aが形成されている。この凹部220Aは、頭部214Aの外周面に環状に形成された段付き部329(鍔部)が収まる直径(内径)と深さを有している。すなわち、凹部220Aの直径(内径)は、段付き部329の直径(外径)よりも大きく、凹部220Aの深さ寸法は、段付き部329の上端面と下端面との間の寸法よりも大きい。凹部220Aの底部(底面220E)には、頭部214Aの突起部331が貫通する貫通孔220Bが形成されている。 A recess 202C is formed on the upper end surface 202A of the mover 202 toward the lower end surface 202B side. An intermediate member 220 is provided inside the recess 202C. The intermediate member 220 is a member located between the mover 202 and the stator 207. A recess 220A is formed upward on the lower surface side of the intermediate member 220. The recess 220A has a diameter (inner diameter) and a depth in which a stepped portion 329 (flange portion) formed in an annular shape on the outer peripheral surface of the head 214A is accommodated. That is, the diameter (inner diameter) of the recess 220A is larger than the diameter (outer diameter) of the stepped portion 329, and the depth dimension of the recess 220A is larger than the dimension between the upper end surface and the lower end surface of the stepped portion 329. big. A through hole 220B through which the protrusion 331 of the head 214A penetrates is formed in the bottom portion (bottom surface 220E) of the recess 220A.
 中間部材220とキャップ232との間には、スプリング(以下「第3のばね」と称する。)234が保持されている。中間部材220の上端面220Cは、第3のばね234の一端部が当接するばね座を構成する。第3のばね234は、可動子202を固定子207側から閉弁方向に付勢する。 A spring (hereinafter referred to as "third spring") 234 is held between the intermediate member 220 and the cap 232. The upper end surface 220C of the intermediate member 220 constitutes a spring seat with which one end of the third spring 234 abuts. The third spring 234 urges the mover 202 from the stator 207 side in the valve closing direction.
 中間部材220の上方には、蓋状のキャップ232が配置されている。キャップ232の上端部には、径方向に張り出した鍔部232Aが形成されており、その鍔部232Aの下端面に、第3のばね234の他端部が当接するばね座が構成されている。キャップ232の鍔部232Aの下端面には、下方に向かって筒状部232Bが形成されており、筒状部232B内に、弁体214の上部(頭部214A)が圧入固定されている。 A lid-shaped cap 232 is arranged above the intermediate member 220. A flange portion 232A protruding in the radial direction is formed at the upper end portion of the cap 232, and a spring seat is formed in which the other end portion of the third spring 234 abuts on the lower end surface of the collar portion 232A. .. A cylindrical portion 232B is formed downward on the lower end surface of the flange portion 232A of the cap 232, and the upper portion (head 214A) of the valve body 214 is press-fitted and fixed in the tubular portion 232B.
 このように、キャップ232と中間部材220とがそれぞれ、第3のばね234のばね座を構成する。そのため、中間部材220の貫通孔220Bの直径(内径)は、キャップ232の鍔部232Aの直径(外径)よりも小さい。また、キャップ232の筒状部232Bの直径(外径)は、第3のばね234の内径よりも小さい。 In this way, the cap 232 and the intermediate member 220 each form the spring seat of the third spring 234. Therefore, the diameter (inner diameter) of the through hole 220B of the intermediate member 220 is smaller than the diameter (outer diameter) of the flange portion 232A of the cap 232. Further, the diameter (outer diameter) of the tubular portion 232B of the cap 232 is smaller than the inner diameter of the third spring 234.
 キャップ232は、上方から第1のばね210の付勢力を受け、下方から第3のばね234の付勢力(セット荷重)を受ける。第1のばね210の付勢力は、第3のばね234の付勢力よりも大きく、結果的にキャップ232は、第1のばね210の付勢力と第3のばね234の付勢力との差分の付勢力によって弁体214の上部の突起部331に押し付けられている。キャップ232には、弁体214の突起部331から弁体214が抜ける方向(図中下方向)の力が加わらない。したがって、キャップ232は、突起部331に圧入固定するだけで十分であり、溶接する必要はない。 The cap 232 receives the urging force of the first spring 210 from above and the urging force (set load) of the third spring 234 from below. The urging force of the first spring 210 is larger than the urging force of the third spring 234, and as a result, the cap 232 is the difference between the urging force of the first spring 210 and the urging force of the third spring 234. It is pressed against the protrusion 331 on the upper part of the valve body 214 by the urging force. No force is applied to the cap 232 in the direction in which the valve body 214 is removed from the protrusion 331 of the valve body 214 (lower direction in the drawing). Therefore, it is sufficient to press-fit and fix the cap 232 to the protrusion 331, and it is not necessary to weld the cap 232.
また、第3のばね234を配置するために、キャップ232の鍔部232Aの下端面と中間部材220の上端面220Cとの間には、ある程度の間隔を設ける必要がある。このため、キャップ232の筒状部232Bの長さを確保することが容易である。 Further, in order to arrange the third spring 234, it is necessary to provide a certain distance between the lower end surface of the flange portion 232A of the cap 232 and the upper end surface 220C of the intermediate member 220. Therefore, it is easy to secure the length of the tubular portion 232B of the cap 232.
 再び、中間部材220について説明する。図2に示した燃料噴射装置101の状態は、弁体214が第1のばね210による付勢力を受け、且つ可動子202に磁気吸引力が作用していない状態である。この状態では、弁体214の先端部214B(シート部)が弁座218に当接し、燃料噴射装置101が閉弁して安定した状態にある。 The intermediate member 220 will be described again. The state of the fuel injection device 101 shown in FIG. 2 is a state in which the valve body 214 receives the urging force by the first spring 210 and the magnetic attraction force does not act on the mover 202. In this state, the tip portion 214B (seat portion) of the valve body 214 is in contact with the valve seat 218, and the fuel injection device 101 is closed to be in a stable state.
 この閉弁状態では、中間部材220は、第3のばね234の付勢力を受けて、中間部材220に形成された凹部220Aの底面220Eが、弁体214の段付き部329の上端面に当接している。すなわち、凹部220Aの底面220Eと、弁体214の段付き部329の上端面との間隙G3の大きさ(寸法)がゼロである。中間部材220に形成された凹部220Aの底面220Eと弁体214の段付き部329の上端面とはそれぞれ、中間部材220と弁体214の段付き部329とが当接する当接面を構成する。 In this valve closed state, the intermediate member 220 receives the urging force of the third spring 234, and the bottom surface 220E of the recess 220A formed in the intermediate member 220 hits the upper end surface of the stepped portion 329 of the valve body 214. I'm in contact. That is, the size (dimension) of the gap G3 between the bottom surface 220E of the recess 220A and the upper end surface of the stepped portion 329 of the valve body 214 is zero. The bottom surface 220E of the recess 220A formed in the intermediate member 220 and the upper end surface of the stepped portion 329 of the valve body 214 form contact surfaces where the intermediate member 220 and the stepped portion 329 of the valve body 214 come into contact with each other. ..
 可動子202の下端面202Bとノズルホルダ201(大径筒状部240)の内部に形成された当接面303との間には、ゼロスプリング(以下「第2のばね」と称す。)212が配置されている。可動子202は、第2のばね212の付勢力を受けて固定子207側に向けて付勢されるため、可動子202に形成された凹部202Cの底面202Dが、中間部材220の下端面220Dに当接する。第2のばね212の付勢力は第3のばね234の付勢力より小さい。そのため、可動子202は、第3のばね234により下方向へ付勢された中間部材220を押し返すことはできず、中間部材220と第3のばね234とにより上方(開弁方向)への動きが止められる。 A zero spring (hereinafter referred to as "second spring") 212 is located between the lower end surface 202B of the mover 202 and the contact surface 303 formed inside the nozzle holder 201 (large diameter tubular portion 240). Is placed. Since the mover 202 receives the urging force of the second spring 212 and is urged toward the stator 207 side, the bottom surface 202D of the recess 202C formed in the mover 202 is the lower end surface 220D of the intermediate member 220. Contact. The urging force of the second spring 212 is smaller than the urging force of the third spring 234. Therefore, the mover 202 cannot push back the intermediate member 220 urged downward by the third spring 234, and moves upward (valve opening direction) by the intermediate member 220 and the third spring 234. Is stopped.
 中間部材220の凹部220Aの深さ寸法は、弁体214の段付き部329の高さ(上端面と下端面との間の寸法)よりも大きい。このため、図3に示す状態(閉弁状態)では、可動子202に形成された凹部202Cの底面202Dと、弁体214の段付き部329の下端面とは当接しておらず、凹部202Cの底面202Dと段付き部329の下端面との間に、大きさ(寸法)がD2の間隙G2が形成されている。この間隙G2の大きさD2は、可動子202の上端面202A(固定子207との対向面)と固定子207の下端面207B(可動子202との対向面)との間隙G1の大きさ(寸法)D1よりも小さい(D2<D1)。ここで説明したように、中間部材220は、可動子202と弁体214の段付き部329の下端面との間に、D2の大きさの間隙G2を形成する部材であり、間隙形成部材と呼んでもよい。 The depth dimension of the recess 220A of the intermediate member 220 is larger than the height of the stepped portion 329 of the valve body 214 (the dimension between the upper end surface and the lower end surface). Therefore, in the state shown in FIG. 3 (valve closed state), the bottom surface 202D of the recess 202C formed in the mover 202 and the lower end surface of the stepped portion 329 of the valve body 214 are not in contact with each other, and the recess 202C A gap G2 having a size (dimension) of D2 is formed between the bottom surface 202D of the above and the lower end surface of the stepped portion 329. The size D2 of the gap G2 is the size of the gap G1 between the upper end surface 202A of the stator 202 (the surface facing the stator 207) and the lower end surface 207B of the stator 207 (the surface facing the stator 202). Dimensions) Smaller than D1 (D2 <D1). As described here, the intermediate member 220 is a member that forms a gap G2 having a size of D2 between the mover 202 and the lower end surface of the stepped portion 329 of the valve body 214, and is a member that forms a gap G2. You may call it.
 第3のばね234は、中間部材(間隙形成部材)220を閉弁方向(下方向)に付勢しており、図3の閉弁状態において中間部材220は、弁体214の段付き部329の上端面(基準位置)に位置づけられている。その状態で、中間部材220の下端面220Dが可動子202と当接することにより、弁体214の係合部である段付き部329の下端面と、可動子202の係合部である凹部202Cの底面202Dとの間に、大きさD2の間隙G2を形成する。中間部材220は、その凹部220Aの底面220Eが弁体214の段付き部329の上端面(基準位置)と当接することにより、段付き部329の上端面(基準位置)に位置づけられる。 The third spring 234 urges the intermediate member (gap forming member) 220 in the valve closing direction (downward), and in the valve closing state of FIG. 3, the intermediate member 220 is the stepped portion 329 of the valve body 214. It is positioned on the upper end surface (reference position) of. In this state, when the lower end surface 220D of the intermediate member 220 comes into contact with the mover 202, the lower end surface of the stepped portion 329 which is the engaging part of the valve body 214 and the recess 202C which is the engaging part of the mover 202 A gap G2 having a size D2 is formed between the bottom surface 202D and the bottom surface 202D. The intermediate member 220 is positioned at the upper end surface (reference position) of the stepped portion 329 by abutting the bottom surface 220E of the recess 220A with the upper end surface (reference position) of the stepped portion 329 of the valve body 214.
 ここで、以上説明した3つのばねの付勢力について改めて説明しておく。第1のばね210と第2のばね212と第3のばね234のうち、第1のばね210のスプリング力(付勢力)が最も大きい。次に第3のばね234のスプリング力(付勢力)が大きく、第2のばね212のスプリング力(付勢力)が最も小さい。 Here, the urging forces of the three springs explained above will be explained again. Of the first spring 210, the second spring 212, and the third spring 234, the spring force (urging force) of the first spring 210 is the largest. Next, the spring force (biasing force) of the third spring 234 is large, and the spring force (biasing force) of the second spring 212 is the smallest.
 本実施形態では、弁体214の段付き部329の直径よりも可動子202に形成された貫通孔の直径の方が小さい。そのため、弁体214が閉弁状態から開弁状態に移行する開弁動作時、或いは開弁状態から閉弁状態に移行する閉弁動作時においては、弁体214の段付き部329の下端面が可動子202に形成された凹部202Cの底面202Dと係合し、可動子202と弁体214とが協働して動く。しかし、弁体214を上方へ動かす力、或いは可動子202を下方へ動かす力が独立して作用した場合、弁体214と可動子202とは別々の方向に動くことができる。可動子202及び弁体214の動作については、後で詳細に説明する。 In the present embodiment, the diameter of the through hole formed in the mover 202 is smaller than the diameter of the stepped portion 329 of the valve body 214. Therefore, during the valve opening operation in which the valve body 214 shifts from the valve closed state to the valve open state, or during the valve closing operation in which the valve body 214 shifts from the valve open state to the valve closed state, the lower end surface of the stepped portion 329 of the valve body 214. Engages with the bottom surface 202D of the recess 202C formed in the mover 202, and the mover 202 and the valve body 214 move in cooperation with each other. However, when the force for moving the valve body 214 upward or the force for moving the mover 202 downward acts independently, the valve body 214 and the mover 202 can move in different directions. The operations of the mover 202 and the valve body 214 will be described in detail later.
 本実施形態では、可動子202は、その外周面がノズルホルダ201(ハウジング部材)の内周面と接することによって、上下方向(開弁方向及び閉弁方向)の動きを案内されている。さらに、弁体214は、その外周面が可動子202の貫通孔の内周面に接することによって、上下方向(開弁方向及び閉弁方向)の動きを案内されている。つまり、ノズルホルダ201の内周面は、可動子202が軸方向に移動するときのガイドとして機能する。また、可動子202の貫通孔の内周面は、弁体214が軸方向に移動するときのガイドとして機能する。弁体214の先端部214Bは、円環状のガイド部材215のガイド孔によってガイドされている。このように弁体214は、ノズルホルダ201の内周面と可動子202の貫通孔、並びにガイド部材215によって、軸方向に真っ直ぐに往復動するようガイドされている。 In the present embodiment, the outer peripheral surface of the mover 202 is in contact with the inner peripheral surface of the nozzle holder 201 (housing member) to guide the movement in the vertical direction (valve opening direction and valve closing direction). Further, the valve body 214 is guided to move in the vertical direction (valve opening direction and valve closing direction) by contacting the outer peripheral surface of the valve body 214 with the inner peripheral surface of the through hole of the mover 202. That is, the inner peripheral surface of the nozzle holder 201 functions as a guide when the mover 202 moves in the axial direction. Further, the inner peripheral surface of the through hole of the mover 202 functions as a guide when the valve body 214 moves in the axial direction. The tip end portion 214B of the valve body 214 is guided by a guide hole of the annular guide member 215. In this way, the valve body 214 is guided so as to reciprocate straight in the axial direction by the inner peripheral surface of the nozzle holder 201, the through hole of the mover 202, and the guide member 215.
 なお、本実施形態では、可動子202の上端面202Aと、固定子207の下端面207Bとが当接するものとして説明しているが、この例に限られない。可動子202の上端面202A又は固定子207の下端面207Bのいずれか一方、或いは両方に突起部が設けられ、突起部と端面とが、或いは突起部同士が当接するように構成される場合もある。この場合、上述した間隙G1は、可動子202側の当接部と、固定子207側の当接部との間の間隙になる。 In the present embodiment, the upper end surface 202A of the mover 202 and the lower end surface 207B of the stator 207 are described as being in contact with each other, but the present invention is not limited to this example. In some cases, protrusions are provided on either one or both of the upper end surface 202A of the mover 202 and the lower end surface 207B of the stator 207 so that the protrusions and the end faces or the protrusions come into contact with each other. be. In this case, the above-mentioned gap G1 becomes a gap between the contact portion on the mover 202 side and the contact portion on the stator 207 side.
 再び図2に戻って説明する。ノズルホルダ201の大径筒状部240の内周部には固定子207が圧入され、圧入接触位置で両部材が溶接接合されている。固定子207は、可動子202に対して磁気吸引力を作用させて、可動子202を開弁方向に吸引し、引きつける部品である。固定子207の溶接接合によりノズルホルダ201の大径筒状部240の内部と外気との間に形成される間隙が密閉される。固定子207は、その中心に中間部材220の直径よりわずかに大きい直径の貫通孔(中心孔)が燃料通路として設けられている。固定子207の貫通孔の下端部内周には、弁体214の頭部214A及びキャップ232が非接触状態で挿通されている。 Returning to FIG. 2 for explanation. A stator 207 is press-fitted into the inner peripheral portion of the large-diameter tubular portion 240 of the nozzle holder 201, and both members are welded and joined at the press-fitting contact position. The stator 207 is a component that applies a magnetic attraction force to the mover 202 to attract and attract the mover 202 in the valve opening direction. The gap formed between the inside of the large-diameter tubular portion 240 of the nozzle holder 201 and the outside air is sealed by welding the stator 207. The stator 207 is provided with a through hole (center hole) having a diameter slightly larger than the diameter of the intermediate member 220 as a fuel passage at the center thereof. The head 214A and the cap 232 of the valve body 214 are inserted through the inner circumference of the lower end of the through hole of the stator 207 in a non-contact state.
 弁体214の頭部214A付近に設けられた、キャップ232の上端面に形成されたスプリング受け面には、初期荷重設定用の第1のばね210の下端が当接している。第1のばね210の上端が固定子207の貫通孔の内部に圧入される調整ピン224(図2を参照)で受け止められることで、第1のばね210がキャップ232と調整ピン224の間に保持されている。調整ピン224の固定位置を調整することで、第1のばね210が弁体214を弁座218に押し付ける初期荷重を調整することができる。 The lower end of the first spring 210 for setting the initial load is in contact with the spring receiving surface formed on the upper end surface of the cap 232 provided near the head 214A of the valve body 214. The upper end of the first spring 210 is received by the adjusting pin 224 (see FIG. 2) that is press-fitted into the through hole of the stator 207, so that the first spring 210 is placed between the cap 232 and the adjusting pin 224. It is being held. By adjusting the fixed position of the adjusting pin 224, the initial load of the first spring 210 pressing the valve body 214 against the valve seat 218 can be adjusted.
 第1のばね210の初期荷重が調整された状態で、固定子207の下端面207Bが可動子202の上端面202Aに対して約40~100μm程度の磁気吸引ギャップ(間隙G1)を隔てて対面するように構成されている。なお、図2では寸法の比率を無視して拡大して表示している。 With the initial load of the first spring 210 adjusted, the lower end surface 207B of the stator 207 faces the upper end surface 202A of the mover 202 with a magnetic attraction gap (gap G1) of about 40 to 100 μm. It is configured to do. In FIG. 2, the dimensional ratio is ignored and the image is enlarged.
 また、ノズルホルダ201の大径筒状部240の外周には、カップ状のハウジング203が固定されている。ハウジング203の底部の中央には貫通孔213が設けられており、その貫通孔213にはノズルホルダ201の大径筒状部240が挿通されている。ハウジング203の外周壁の部分は、ノズルホルダ201の大径筒状部240の外周面に対面する外周ヨーク部を形成している。ハウジング203と大径筒状部240の間に形成される環状空間内には、環状若しくは筒状のソレノイド205が配置されている。 Further, a cup-shaped housing 203 is fixed to the outer periphery of the large-diameter cylindrical portion 240 of the nozzle holder 201. A through hole 213 is provided in the center of the bottom of the housing 203, and a large-diameter tubular portion 240 of the nozzle holder 201 is inserted through the through hole 213. The outer peripheral wall portion of the housing 203 forms an outer peripheral yoke portion facing the outer peripheral surface of the large-diameter tubular portion 240 of the nozzle holder 201. An annular or cylindrical solenoid 205 is arranged in the annular space formed between the housing 203 and the large-diameter tubular portion 240.
 ソレノイド205は、半径方向外側に向かって開口する、断面がU字状の溝を持つ環状のボビン204と、この溝の中に巻きつけられた銅線206とにより形成される。ソレノイド205の巻始め端部及び巻終わり端部には剛性のある導体209が固定されている。この導体209と固定子207、ノズルホルダ201の大径筒状部240の外周は、ハウジング203の上端開口部の内周側から絶縁樹脂を注入してモールド成形され、樹脂成形体で覆われる。ソレノイド205を囲むようにして、固定子207、可動子202、ノズルホルダ201の大径筒状部240及びハウジング(外周ヨーク部)203の部分に、環状の磁気通路が形成される。 The solenoid 205 is formed by an annular bobbin 204 having a groove having a U-shaped cross section that opens outward in the radial direction, and a copper wire 206 wound in the groove. A rigid conductor 209 is fixed to the winding start end and the winding end end of the solenoid 205. The outer periphery of the large-diameter tubular portion 240 of the conductor 209, the stator 207, and the nozzle holder 201 is molded by injecting an insulating resin from the inner peripheral side of the upper end opening of the housing 203, and is covered with the resin molded body. An annular magnetic passage is formed in the stator 207, the mover 202, the large-diameter tubular portion 240 of the nozzle holder 201, and the housing (outer circumference yoke portion) 203 so as to surround the solenoid 205.
 燃料噴射装置101に供給される燃料は、燃料噴射装置101の上流に設けられた燃料配管105から供給され、第1の燃料通路孔231を通って弁体214の先端まで流れる。弁体214の弁座218側の端部に形成された先端部214B(シート部)と弁座218とで、燃料をシールしている。閉弁状態では、燃料圧力によって弁体214の上部と下部で差圧が生じ、燃料圧力と弁座位置におけるシート部内径(先端部214Bの内径)の受圧面に応じた力とによって、弁体214が閉弁方向に押されている。また、閉弁状態においては、弁体214と可動子202の互いの当接面(段付き部329の下端面と凹部202Cの底面202D)の間には、中間部材220を介して間隙G2を有している。このように、弁体214が弁座218に着座している状態において、可動子202が弁体214と軸方向に間隙G2を介して配置されることになる。 The fuel supplied to the fuel injection device 101 is supplied from the fuel pipe 105 provided upstream of the fuel injection device 101, and flows to the tip of the valve body 214 through the first fuel passage hole 231. The fuel is sealed by the tip portion 214B (seat portion) formed at the end portion of the valve body 214 on the valve seat 218 side and the valve seat 218. In the valve closed state, the fuel pressure creates a differential pressure between the upper part and the lower part of the valve body 214, and the valve body is formed by the fuel pressure and the force corresponding to the pressure receiving surface of the inner diameter of the seat portion (inner diameter of the tip portion 214B) at the valve seat position. 214 is pushed in the valve closing direction. Further, in the valve closed state, a gap G2 is formed between the valve body 214 and the mover 202 at their contact surfaces (the lower end surface of the stepped portion 329 and the bottom surface 202D of the recess 202C) via the intermediate member 220. Have. In this way, in the state where the valve body 214 is seated on the valve seat 218, the mover 202 is arranged with the valve body 214 in the axial direction via the gap G2.
 上記のように構成された燃料噴射装置101の動作について説明する。ソレノイド205に電流が供給されると、磁気回路によって発生する磁界により、固定子207と可動子202との間に磁束が通過し、可動子202に対して磁気吸引力が作用する。可動子202に作用する磁気吸引力が、第3のばね234による荷重を超えるタイミングで、可動子202が、固定子207の方向に変位を開始する。このとき、弁体214と弁座218が接触しているため、可動子202の運動は、燃料の流れが無い状態で行われる。この可動子202の運動は、燃料圧力による差圧力を受けている弁体214とは分離して行われる空走運動であるため、可動子202は、燃料の圧力などの影響を受けることがなく、高速に移動することが可能である。 The operation of the fuel injection device 101 configured as described above will be described. When a current is supplied to the solenoid 205, a magnetic field generated by a magnetic circuit causes a magnetic flux to pass between the stator 207 and the mover 202, and a magnetic attraction force acts on the mover 202. When the magnetic attraction force acting on the mover 202 exceeds the load by the third spring 234, the mover 202 starts to be displaced in the direction of the stator 207. At this time, since the valve body 214 and the valve seat 218 are in contact with each other, the movement of the mover 202 is performed in a state where there is no fuel flow. Since the movement of the mover 202 is a free-running movement performed separately from the valve body 214 which is subjected to the differential pressure due to the fuel pressure, the mover 202 is not affected by the fuel pressure or the like. , It is possible to move at high speed.
 また、気筒108内の燃焼圧が増加した場合であっても燃料の噴射を抑制するため、第1のばね210による荷重を強く設定する必要がある。すなわち閉弁状態において、第1のばね210による荷重が弁体214に作用しないように構成することで、弁体214は高速に移動することが可能となる。 Further, in order to suppress fuel injection even when the combustion pressure in the cylinder 108 increases, it is necessary to strongly set the load by the first spring 210. That is, in the valve closed state, the valve body 214 can move at high speed by configuring the valve body 214 so that the load by the first spring 210 does not act on the valve body 214.
 そして、可動子202の変位量が間隙G2の大きさに達すると、可動子202が凹部202Cの底面202D、及び中間部材220の下端面220Dを通じて弁体214に力を伝達し、弁体214を開弁方向に引き上げる。このとき、可動子202は、空走運動を行って運動エネルギーを有した状態で弁体214と衝突する。これにより、弁体214は、可動子202の運動エネルギーを受け取り、高速に開弁方向に変位を開始する。 Then, when the displacement amount of the mover 202 reaches the size of the gap G2, the mover 202 transmits a force to the valve body 214 through the bottom surface 202D of the recess 202C and the lower end surface 220D of the intermediate member 220, and causes the valve body 214 to move. Pull up in the valve opening direction. At this time, the mover 202 collides with the valve body 214 in a state of performing a free-running motion and having kinetic energy. As a result, the valve body 214 receives the kinetic energy of the mover 202 and starts displacementing in the valve opening direction at high speed.
 弁体214には、燃料の圧力に伴って生じる差圧力が作用している。弁体214に作用する差圧力は、弁体214の先端部214B(シート部)近傍の流路断面積が小さい範囲において、燃料の流速が増加し、ベルヌーイ効果による静圧低下に伴って生じる圧力降下によって弁体214の先端部214B付近の燃料の圧力が低下することで生じる。 A differential pressure generated by the pressure of the fuel acts on the valve body 214. The differential pressure acting on the valve body 214 is the pressure generated as the fuel flow velocity increases and the static pressure decreases due to the Bernoulli effect in a range where the flow path cross-sectional area near the tip portion 214B (seat portion) of the valve body 214 is small. It occurs when the pressure of the fuel in the vicinity of the tip portion 214B of the valve body 214 decreases due to the descent.
 弁体214に作用する差圧力は、先端部214B(シート部)近傍の流路断面積の影響を大きく受ける。そのため、弁体214の変位量が小さい条件では、差圧力が大きくなり、変位量が大きい条件では、差圧力が小さくなる。したがって、弁体214が閉弁状態から開弁開始されて変位が小さく、差圧力が大きくなる開弁動作がし難くなるタイミングで、弁体214の開弁が可動子202の空走運動によって衝撃的に行われる。それにより、燃料噴射装置101は、より高い燃料圧力が作用している状態でも開弁動作を行うことができる。また、開弁動作することが必要な燃料圧力範囲に対して、第1のばね210の付勢力をより強い力に設定することができる。第1のばね210をより強い力に設定することで、後述する閉弁動作に要する時間を短縮することができ、微小噴射量の制御に有効である。 The differential pressure acting on the valve body 214 is greatly affected by the cross-sectional area of the flow path near the tip portion 214B (seat portion). Therefore, the differential pressure is large under the condition that the displacement amount of the valve body 214 is small, and the differential pressure is small under the condition that the displacement amount is large. Therefore, when the valve body 214 is started to open from the closed state, the displacement is small, and the valve opening operation becomes difficult due to the large differential pressure, the valve opening of the valve body 214 is impacted by the idling motion of the mover 202. Is done. As a result, the fuel injection device 101 can perform the valve opening operation even when a higher fuel pressure is applied. Further, the urging force of the first spring 210 can be set to a stronger force with respect to the fuel pressure range in which the valve opening operation is required. By setting the first spring 210 to a stronger force, the time required for the valve closing operation, which will be described later, can be shortened, which is effective in controlling the minute injection amount.
 弁体214が開弁動作を開始した後、可動子202は固定子207に衝突する。可動子202が固定子207に衝突した時には、可動子202は跳ね返る動作をするが、可動子202に作用する磁気吸引力によって可動子202が固定子207に吸引され、やがて停止する。このとき、可動子202には第2のばね212によって固定子207の方向に力が作用しているため、跳ね返りの変位量を小さくでき、また、跳ね返りが収束するまでの時間を短縮することができる。跳ね返り動作が小さいことで、可動子202と固定子207の間にギャップが生じる時間が短くなり、より小さい噴射パルス幅に対しても安定した動作が行えるようになる。 After the valve body 214 starts the valve opening operation, the mover 202 collides with the stator 207. When the mover 202 collides with the stator 207, the mover 202 bounces off, but the mover 202 is attracted to the stator 207 by the magnetic attraction force acting on the mover 202, and eventually stops. At this time, since a force acts on the mover 202 in the direction of the stator 207 by the second spring 212, the displacement amount of the bounce can be reduced, and the time until the bounce converges can be shortened. can. Since the bounce motion is small, the time for which a gap is generated between the mover 202 and the stator 207 is shortened, and stable motion can be performed even for a smaller injection pulse width.
 このようにして開弁動作を終えた可動子202及び弁体214は、開弁状態で静止する。開弁状態では、弁体214と弁座218との間には間隙(空間の一例)が生じており、燃料が噴射孔219から燃焼室107に噴射される。燃料は、固定子207に設けられた中心孔(貫通孔)と、可動子202に設けられた燃料通路孔と、ガイド部材215に設けられた燃料通路孔とを通過して、下流方向(噴射孔219)へ流れてゆくようになっている。 The mover 202 and the valve body 214 that have completed the valve opening operation in this way stand still in the valve opening state. In the valve open state, a gap (an example of a space) is formed between the valve body 214 and the valve seat 218, and fuel is injected from the injection hole 219 into the combustion chamber 107. The fuel passes through the central hole (through hole) provided in the stator 207, the fuel passage hole provided in the mover 202, and the fuel passage hole provided in the guide member 215, and is injected in the downstream direction (injection). It is designed to flow into hole 219).
 その後、ソレノイド205への通電が断たれると、磁気回路中に生じていた磁束が消滅し、可動子202に対する磁気吸引力も消滅する。可動子202に作用する磁気吸引力が消滅することによって、弁体214は、第1のばね210による荷重と燃料圧力による力によって、弁座218に接触する閉位置に押し戻される。 After that, when the energization of the solenoid 205 is cut off, the magnetic flux generated in the magnetic circuit disappears, and the magnetic attraction force on the mover 202 also disappears. When the magnetic attraction force acting on the mover 202 disappears, the valve body 214 is pushed back to the closed position in contact with the valve seat 218 by the load due to the first spring 210 and the force due to the fuel pressure.
[制御装置の駆動回路] 次に、図5を用いて、燃料噴射装置101の制御装置150の構成について説明する。
図5は、燃料噴射装置101の駆動回路103及びECU104の詳細な構成例を示す図である。
[Control device drive circuit] Next, the configuration of the control device 150 of the fuel injection device 101 will be described with reference to FIG.
FIG. 5 is a diagram showing a detailed configuration example of the drive circuit 103 and the ECU 104 of the fuel injection device 101.
 制御装置150は、駆動回路103及びECU104を備える。例えばECU104には、駆動IC(Integrated Circuit)502と、演算処理装置としてCPU(Central Processing Unit)501が内蔵されている。CPU501は、圧力センサ102,109に加え、図示しないA/Fセンサ、酸素センサ、及びクランク角センサ等の各種センサが出力するエンジンの状態を示す信号を取り込む。 The control device 150 includes a drive circuit 103 and an ECU 104. For example, the ECU 104 has a drive IC (Integrated Circuit) 502 and a CPU (Central Processing Unit) 501 as an arithmetic processing device. In addition to the pressure sensors 102 and 109, the CPU 501 captures signals indicating the state of the engine output by various sensors such as an A / F sensor, an oxygen sensor, and a crank angle sensor (not shown).
 CPU501には、燃料噴射装置101内の動作を検出し、又は燃料の噴射量を算出する検出部541が設けられる。また、駆動IC502には、ソレノイド205に供給する駆動電流を制御する電流制御部542が設けられる。駆動電流の制御は、例えば、ソレノイド205に供給する噴射パルス、駆動電圧、及び駆動電流を組み合わせて行われる。なお、CPU501と駆動IC502を含めて、制御部500と呼ぶ。また、ECU104が駆動回路103を内包してもよい。また、CPU501に、検出部541及び電流制御部542が構成され、駆動IC502は、電流制御部542の制御により駆動回路103を駆動して、燃料噴射装置101に駆動電流を供給してもよい。 The CPU 501 is provided with a detection unit 541 that detects the operation in the fuel injection device 101 or calculates the fuel injection amount. Further, the drive IC 502 is provided with a current control unit 542 that controls the drive current supplied to the solenoid 205. The drive current is controlled, for example, by combining the injection pulse, the drive voltage, and the drive current supplied to the solenoid 205. The CPU 501 and the drive IC 502 are referred to as a control unit 500. Further, the ECU 104 may include the drive circuit 103. Further, the CPU 501 may be configured with a detection unit 541 and a current control unit 542, and the drive IC 502 may drive the drive circuit 103 under the control of the current control unit 542 to supply a drive current to the fuel injection device 101.
 図1に示したように、圧力センサ102は、燃料噴射装置101の上流の燃料配管105に取り付けられており、圧力センサ109は、燃料配管105と燃料噴射装置101との間に取り付けられている。A/Fセンサは、気筒108(エンジンシリンダ)への流入空気量を測定する。酸素センサは、気筒108から排出された排気ガスの酸素濃度を検出する。CPU501は、各種センサから取り込んだ信号に基づいて、内燃機関の運転条件に応じて燃料噴射装置101から噴射する燃料の噴射量を制御するための噴射パルスのパルス幅(図4に示す噴射パルス幅Ti)や噴射タイミングの演算を行う。 As shown in FIG. 1, the pressure sensor 102 is attached to the fuel pipe 105 upstream of the fuel injection device 101, and the pressure sensor 109 is attached between the fuel pipe 105 and the fuel injection device 101. .. The A / F sensor measures the amount of inflow air into the cylinder 108 (engine cylinder). The oxygen sensor detects the oxygen concentration of the exhaust gas discharged from the cylinder 108. The CPU 501 controls the injection amount of fuel injected from the fuel injection device 101 according to the operating conditions of the internal combustion engine based on the signals captured from various sensors. The pulse width of the injection pulse (injection pulse width shown in FIG. 4). Ti) and injection timing are calculated.
 また、CPU501は、通信ライン504を通して燃料噴射装置101の駆動IC502に噴射パルス幅Tiを出力する。その後、駆動IC502は、スイッチング素子505,506,507の通電/非通電を切替えて燃料噴射装置101(すなわちソレノイド205)へ駆動電流を供給する。スイッチング素子505,506,507は、例えばFETやトランジスタ等によって構成され、燃料噴射装置101への通電/非通電を切り替えることができる。 Further, the CPU 501 outputs the injection pulse width Ti to the drive IC 502 of the fuel injection device 101 through the communication line 504. After that, the drive IC 502 switches between energization and de-energization of the switching elements 505, 506, and 507 to supply a drive current to the fuel injection device 101 (that is, the solenoid 205). The switching elements 505, 506, and 507 are composed of, for example, FETs, transistors, and the like, and can switch between energization and de-energization of the fuel injection device 101.
 ECU104には、噴射パルス幅の演算等のエンジンの制御に必要な数値データを記憶するレジスタ及びメモリ501M(記憶媒体の一例)が搭載されている。レジスタ及びメモリ501Mは、制御装置150もしくは制御装置150内のCPU501に内包されている。図5の例では、CPU501の外部にメモリ501Mが配置されている。メモリ501Mには、CPU501が燃料噴射装置101の駆動を制御するためのコンピュータープログラムが格納されていてもよい。この場合、CPU501が、メモリ501Mに記録されたコンピュータープログラムを読み出して実行することにより、燃料噴射装置101の駆動を制御する機能の全部又は一部が実現される。なお、CPU501に代えてMPU(Micro Processing Unit)等の他の演算処理装置を用いてもよい。 The ECU 104 is equipped with a register and a memory 501M (an example of a storage medium) for storing numerical data necessary for engine control such as calculation of an injection pulse width. The register and the memory 501M are included in the control device 150 or the CPU 501 in the control device 150. In the example of FIG. 5, the memory 501M is arranged outside the CPU 501. The memory 501M may store a computer program for the CPU 501 to control the drive of the fuel injection device 101. In this case, the CPU 501 reads and executes the computer program recorded in the memory 501M, thereby realizing all or part of the function of controlling the drive of the fuel injection device 101. Instead of the CPU 501, another arithmetic processing device such as an MPU (Micro Processing Unit) may be used.
 そして、制御装置(制御装置150)は、制御部(制御部500)を備える。制御部(制御部500)は、1燃焼サイクルで行われる噴射の各回での燃料の噴射量を算出し、1燃焼サイクルにおける最後の噴射の噴射量より、最後の噴射よりも前に行われた噴射の噴射量が多いほど、最後の噴射よりも前に行われた噴射で燃料噴射装置(燃料噴射装置101)に供給した噴射パルスの噴射パルス幅Ti(図4を参照)より、最後の噴射で燃料噴射装置(燃料噴射装置101)に供給する噴射パルスの噴射パルス幅Tiを小さくするように制御する。 Then, the control device (control device 150) includes a control unit (control unit 500). The control unit (control unit 500) calculates the fuel injection amount at each injection performed in one combustion cycle, and is performed before the injection amount of the last injection in one combustion cycle and before the last injection. The larger the injection amount of the injection, the more the last injection from the injection pulse width Ti (see FIG. 4) of the injection pulse supplied to the fuel injection device (fuel injection device 101) in the injection performed before the last injection. Controls so that the injection pulse width Ti of the injection pulse supplied to the fuel injection device (fuel injection device 101) is reduced.
 スイッチング素子505は、昇圧電圧VHを供給する昇圧回路514(高電圧源)と、燃料噴射装置101のソレノイド205の高電圧側の端子(電源側端子590)との間に接続されている。昇圧回路514が出力する昇圧電圧VHは、バッテリ電圧源520(低電圧源)が駆動回路103に供給するバッテリ電圧VBよりも高い。例えば、昇圧回路514が出力する初期電圧である昇圧電圧VHは60Vであり、バッテリ電圧VBを昇圧回路514によって昇圧することで生成する。 The switching element 505 is connected between the booster circuit 514 (high voltage source) that supplies the boost voltage VH and the high voltage side terminal (power supply side terminal 590) of the solenoid 205 of the fuel injection device 101. The boost voltage VH output by the boost circuit 514 is higher than the battery voltage VB supplied by the battery voltage source 520 (low voltage source) to the drive circuit 103. For example, the boost voltage VH, which is the initial voltage output by the boost circuit 514, is 60 V, and is generated by boosting the battery voltage VB by the boost circuit 514.
 昇圧回路514を実現する方法には、例えばDC/DCコンバータ等により構成する方法と、図5に示すようにソレノイド530、トランジスタ531、ダイオード532及びコンデンサ533で構成する方法がある。後者の昇圧回路514の場合、トランジスタ531をONにすると、バッテリ電圧VBによる電流はソレノイド530を介して接地電位534側へ流れる。一方、トランジスタ531をOFFにすると、ソレノイド530に発生する高い電圧がダイオード532を通して整流され、コンデンサ533に電荷が蓄積される。昇圧回路514は、トランジスタ531のON/OFFを繰り返すことで、コンデンサ533の電圧を昇圧電圧VHまで増加させることができる。トランジスタ531は、駆動IC502もしくはCPU501と接続され、昇圧回路514から出力される昇圧電圧VHが、駆動IC502もしくはCPU501で検出できるように構成されている。 As a method of realizing the booster circuit 514, there are, for example, a method of configuring with a DC / DC converter and the like, and a method of configuring with a solenoid 530, a transistor 531 and a diode 532 and a capacitor 533 as shown in FIG. In the case of the latter booster circuit 514, when the transistor 531 is turned on, the current due to the battery voltage VB flows to the ground potential 534 side via the solenoid 530. On the other hand, when the transistor 531 is turned off, the high voltage generated in the solenoid 530 is rectified through the diode 532, and the electric charge is accumulated in the capacitor 533. The booster circuit 514 can increase the voltage of the capacitor 533 to the booster voltage VH by repeating ON / OFF of the transistor 531. The transistor 531 is connected to the drive IC 502 or the CPU 501, and is configured so that the boost voltage VH output from the boost circuit 514 can be detected by the drive IC 502 or the CPU 501.
 また、ソレノイド205の電源側端子590とスイッチング素子505との間には、昇圧回路514(高電圧源)から、ソレノイド205及び接地電位515の方向へ電流が流れるようにダイオード535が設けられている。また、ソレノイド205の電源側端子590とスイッチング素子507との間にも、バッテリ電圧源520(低電圧源)から、ソレノイド205及び接地電位515の方向へ電流が流れるようにダイオード511が設けられている。スイッチング素子507が通電している間は、接地電位515から、ソレノイド205、バッテリ電圧源520及び昇圧回路514へ向けては電流が流れない構成となっている。 Further, a diode 535 is provided between the power supply side terminal 590 of the solenoid 205 and the switching element 505 so that a current flows from the booster circuit 514 (high voltage source) in the direction of the solenoid 205 and the ground potential 515. .. Further, a diode 511 is also provided between the power supply side terminal 590 of the solenoid 205 and the switching element 507 so that a current flows from the battery voltage source 520 (low voltage source) in the direction of the solenoid 205 and the ground potential 515. There is. While the switching element 507 is energized, no current flows from the ground potential 515 toward the solenoid 205, the battery voltage source 520, and the booster circuit 514.
 また、スイッチング素子507は、低電圧源であるバッテリ電圧源520と燃料噴射装置101の電源側端子590との間に接続されている。バッテリ電圧源520が出力するバッテリ電圧VBの値は、例えば12Vから14V程度である。スイッチング素子506は、燃料噴射装置101の低電圧側の端子と接地電位515との間に接続されている。駆動IC502は、電流検出用の抵抗508,512,513の各々により、燃料噴射装置101(駆動回路103の各部)に流れている電流値を検出する。駆動回路103は、駆動IC502が検出した電流値によってスイッチング素子505,506,507の通電/非通電を切替え、所望の駆動電流を生成している。 Further, the switching element 507 is connected between the battery voltage source 520, which is a low voltage source, and the power supply side terminal 590 of the fuel injection device 101. The value of the battery voltage VB output by the battery voltage source 520 is, for example, about 12V to 14V. The switching element 506 is connected between the terminal on the low voltage side of the fuel injection device 101 and the ground potential 515. The drive IC 502 detects the current value flowing through the fuel injection device 101 (each part of the drive circuit 103) by each of the current detection resistors 508, 521, and 513. The drive circuit 103 switches between energization and de-energization of the switching elements 505, 506, and 507 according to the current value detected by the drive IC 502, and generates a desired drive current.
 ダイオード509,510は、燃料噴射装置101のソレノイド205に逆電圧を印加し、ソレノイド205に供給されている電流を急速に低減するために備え付けられている。CPU501は、通信ライン503を通して、駆動IC502と通信を行っており、燃料噴射装置101に供給する燃料の圧力や運転条件によって駆動IC502によって生成する駆動電流を切替えることが可能である。また、抵抗508,512,513の両端は、駆動IC502のA/D変換ポートに接続されており、抵抗508,512,513の両端にかかる電圧を駆動IC502で検出できるように構成されている。 The diodes 509 and 510 are provided to apply a reverse voltage to the solenoid 205 of the fuel injection device 101 to rapidly reduce the current supplied to the solenoid 205. The CPU 501 communicates with the drive IC 502 through the communication line 503, and can switch the drive current generated by the drive IC 502 depending on the pressure of the fuel supplied to the fuel injection device 101 and the operating conditions. Further, both ends of the resistors 508, 512 and 513 are connected to the A / D conversion port of the drive IC 502, and the voltage applied to both ends of the resistors 508, 512 and 513 can be detected by the drive IC 502.
[一般的なタイミングチャート] 次に、図4を参照して、ECU104から出力される噴射パルスと、燃料噴射装置101のソレノイド205の端子両端の駆動電圧と駆動電流(励磁電流)、燃料噴射装置101の弁体214の変位量(弁体挙動)との関係について説明する。図4は、燃料噴射装置101を駆動する一般的な噴射パルス、燃料噴射装置101に供給する駆動電圧及び駆動電流、弁体214及び可動子202の変位量、並びに時間の関係を示したタイミングチャートである。 [General timing chart] Next, referring to FIG. 4, the injection pulse output from the ECU 104, the drive voltage and drive current (excitation current) at both ends of the solenoid 205 of the fuel injection device 101, and the fuel injection device. The relationship with the displacement amount (valve body behavior) of the valve body 214 of 101 will be described. FIG. 4 is a timing chart showing the relationship between a general injection pulse for driving the fuel injection device 101, a drive voltage and drive current supplied to the fuel injection device 101, displacement amounts of the valve body 214 and the mover 202, and time. Is.
 駆動回路103に噴射パルス405が入力されると、駆動回路103は、入力された噴射パルス幅Tiに応じてスイッチング素子505,506を通電する。これにより、駆動回路103は、バッテリ電圧VBよりも高い電圧に昇圧された昇圧電圧VHによりソレノイド205に高電圧401を印加し、ソレノイド205に駆動電流の供給を開始する。ここで、駆動回路103がソレノイド205に供給する駆動電流は、可動子(可動子202)を駆動させるピーク電流と、可動子(可動子202)をソレノイド(ソレノイド205)に吸引した状態で保持するためにピーク電流の最大値より低い範囲でスイッチングする保持電流とからなる。 When the injection pulse 405 is input to the drive circuit 103, the drive circuit 103 energizes the switching elements 505 and 506 according to the input injection pulse width Ti. As a result, the drive circuit 103 applies a high voltage 401 to the solenoid 205 by the boosted voltage VH boosted to a voltage higher than the battery voltage VB, and starts supplying the drive current to the solenoid 205. Here, the drive current supplied by the drive circuit 103 to the solenoid 205 is held in a state where the peak current for driving the mover (movable element 202) and the mover (movable element 202) are attracted to the solenoid (solenoid 205). Therefore, it consists of a holding current that switches in a range lower than the maximum value of the peak current.
 駆動回路103は、ソレノイド205に供給する電流の電流値が予めECU104に定められた最大駆動電流Ipeak(以降「最大電流」と称する。)に到達すると、高電圧401の印加を停止する。 The drive circuit 103 stops applying the high voltage 401 when the current value of the current supplied to the solenoid 205 reaches the maximum drive current I peak (hereinafter referred to as “maximum current”) predetermined in the ECU 104.
 駆動回路103は、最大電流Ipeakから保持電流403への移行期間にスイッチング素子506をONにし、スイッチング素子505,507を非通電にすると、ソレノイド205にはほぼ電圧0Vが印加される。ソレノイド205に供給される電流が燃料噴射装置101、スイッチング素子506、抵抗508、接地電位515、及び燃料噴射装置101の経路を流れることで、ソレノイド205に流れる電流は緩やかに減少する。ソレノイド205に流れる電流が緩やかに減少することで、ソレノイド205へ供給する電流を確保することができる。そのため、燃料噴射装置101に供給される燃料圧力が増加した場合であっても、燃料噴射装置101は、可動子202及び弁体214が最大高さ位置になるまで安定的に開弁動作できる。 When the switching element 506 is turned on and the switching elements 505 and 507 are de-energized during the transition period from the maximum current I peak to the holding current 403, the drive circuit 103 applies a voltage of substantially 0 V to the solenoid 205. The current supplied to the solenoid 205 flows through the paths of the fuel injection device 101, the switching element 506, the resistor 508, the ground potential 515, and the fuel injection device 101, so that the current flowing through the solenoid 205 gradually decreases. By gradually reducing the current flowing through the solenoid 205, the current supplied to the solenoid 205 can be secured. Therefore, even when the fuel pressure supplied to the fuel injection device 101 increases, the fuel injection device 101 can stably open the valve until the mover 202 and the valve body 214 reach the maximum height position.
 保持電流403は、可動子202を最大高さ位置に保持するための保持電流である。最大高さ位置は、可動子202が固定子207と接触する位置(G1=0)である。 The holding current 403 is a holding current for holding the mover 202 at the maximum height position. The maximum height position is the position where the mover 202 comes into contact with the stator 207 (G1 = 0).
 逆に、最大電流Ipeakから保持電流403への移行期間にスイッチング素子505,506,507をOFFにすると、燃料噴射装置101のインダクタンスによる逆起電力によって、ダイオード509とダイオード510が通電する。ダイオード509とダイオード510が通電すると、ソレノイド205の電流が昇圧回路514側へ帰還され、燃料噴射装置101に供給されていた電流は、電流402のように最大電流Ipeakから急速に低下する。その結果、ソレノイド205に流れる電流が保持電流403のレベルに到達するまでの時間が早くなる。したがって、スイッチング素子505,506,507をOFFにすると、ソレノイド205に流れる電流が保持電流403に到達してから一定の遅れ時間の後、磁気吸引力が一定となるまでの時間を早める効果がある。 On the contrary, when the switching elements 505, 506, and 507 are turned off during the transition period from the maximum current I peak to the holding current 403, the diode 509 and the diode 510 are energized by the counter electromotive force due to the inductance of the fuel injection device 101. When the diode 509 and the diode 510 are energized, the current of the solenoid 205 is returned to the booster circuit 514 side, and the current supplied to the fuel injection device 101 rapidly drops from the maximum current I peak like the current 402. As a result, the time required for the current flowing through the solenoid 205 to reach the level of the holding current 403 is shortened. Therefore, when the switching elements 505, 506, and 507 are turned off, there is an effect of accelerating the time from when the current flowing through the solenoid 205 reaches the holding current 403 to when the magnetic attraction becomes constant after a certain delay time. ..
 そして、ソレノイド205に流れる電流が、弁体214を最大高さ位置に保持するために必要な電流値404(保持電流403とほぼ同じレベル)より小さくなると、駆動回路103は、スイッチング素子506を通電するとともに、スイッチング素子507の通電/非通電の切り替えを行う。それにより、ソレノイド205にバッテリ電圧VBが印加され保持電流403のレベルが保たれる。このような所定の保持電流403が保たれるように制御するスイッチング期間が設けられる。 Then, when the current flowing through the solenoid 205 becomes smaller than the current value 404 (almost the same level as the holding current 403) required to hold the valve body 214 at the maximum height position, the drive circuit 103 energizes the switching element 506. At the same time, the switching element 507 is switched between energization and de-energization. As a result, the battery voltage VB is applied to the solenoid 205, and the level of the holding current 403 is maintained. A switching period is provided to control such a predetermined holding current 403 to be maintained.
 なお、図4では、最大電流Ipeakから保持電流403に移行するまでの移行期間に、タイミングt46で駆動電流が保持電流403より大きい保持電流410のレベルに低下した後、保持電流410が保たれるように制御装置150が制御するスイッチング期間があることが示される。しかし、この保持電流410を維持するスイッチング期間はなくてもよい。 In FIG. 4, the transition period until the shift to the hold current 403 from the maximum current I peak, after the drive current drops to the level of the holding current 403 is greater than the holding current 410 at a timing t 46, the holding current 410 is coercive It is shown that there is a switching period controlled by the controller 150 to hang down. However, there may be no switching period for maintaining this holding current 410.
 燃料噴射装置101に供給される燃料圧力が大きくなると、弁体214に作用する流体力が増加し、流体抵抗により弁体214が目標開度に到達するまでの時間が長くなる。この結果、設定された最大電流Ipeakの到達時間に対して目標開度への到達タイミングが遅れる場合がある。しかし、ソレノイド205の電流を急速に低減すると、可動子202に働く磁気吸引力も急速に低下するため、弁体214の挙動が不安定となり、場合によっては通電中にも関わらず閉弁を開始してしまうことがある。最大電流Ipeakから保持電流403の移行中にスイッチング素子506を通電状態にして電流を緩やかに減少させる場合、磁気吸引力の低下を抑制でき、高燃料圧力での弁体214の安定性を確保できる効果がある。 When the fuel pressure supplied to the fuel injection device 101 increases, the fluid force acting on the valve body 214 increases, and the time until the valve body 214 reaches the target opening due to the fluid resistance becomes long. As a result, the arrival timing of the target opening degree may be delayed with respect to the arrival time of the set maximum current I peak. However, when the current of the solenoid 205 is rapidly reduced, the magnetic attraction acting on the mover 202 is also rapidly reduced, so that the behavior of the valve body 214 becomes unstable, and in some cases, the valve closing is started even when the power is on. It may end up. When the switching element 506 is energized and the current is gradually reduced during the transition from the maximum current I peak to the holding current 403, the decrease in magnetic attraction can be suppressed and the stability of the valve body 214 at high fuel pressure is ensured. There is an effect that can be done.
 このようなソレノイド205に供給する駆動電流のプロファイルにより、燃料噴射装置101は駆動される。高電圧401の印加を開始してからソレノイド205の電流が最大電流Ipeakに達するまでの間に、可動子202がタイミングt41で変位を開始し、弁体214がタイミングt42で変位を開始する(G2=0)。その後、可動子202及び弁体214が最大高さ位置に到達する。可動子202が固定子207と接触する変位量を最大高さ位置とする。このように可動子202及び弁体214が最大高さ位置に到達する制御を「フルリフト」と呼ぶ。なお、可動子202が弁体214に接触し、弁体214が変位を開始したタイミングt42で噴射パルス406が、一点鎖線で示すようにOFFされると、可動子202の勢いが落ちる。この場合、可動子202及び弁体214が減速するので、可動子202及び弁体214は最大高さ位置に到達しない。このように可動子202及び弁体214が最大高さ位置に到達しない制御を「ハーフリフト」と呼ぶ。 The fuel injection device 101 is driven by the profile of the drive current supplied to the solenoid 205. Between the start of application of the high voltage 401 and the time when the current of the solenoid 205 reaches the maximum current I peak , the mover 202 starts displacement at timing t 41 , and the valve body 214 starts displacement at timing t 42. (G2 = 0). After that, the mover 202 and the valve body 214 reach the maximum height position. The maximum height position is the amount of displacement in which the mover 202 comes into contact with the stator 207. The control that the mover 202 and the valve body 214 reach the maximum height position in this way is called "full lift". When the mover 202 comes into contact with the valve body 214 and the injection pulse 406 is turned off as shown by the alternate long and short dash line at the timing t 42 when the valve body 214 starts to be displaced, the momentum of the mover 202 drops. In this case, since the mover 202 and the valve body 214 decelerate, the mover 202 and the valve body 214 do not reach the maximum height position. The control in which the mover 202 and the valve body 214 do not reach the maximum height position in this way is called a "half lift".
 そして、制御部(制御部500)は、最後の噴射でソレノイド(ソレノイド205)に供給するピーク電流を、最後の噴射よりも前に行われた噴射でソレノイド(ソレノイド205)に供給するピーク電流よりも多くして、最後の噴射で弁体(弁体214)をフルリフトで動作させる。 Then, the control unit (control unit 500) sets the peak current supplied to the solenoid (solenoid 205) at the last injection from the peak current supplied to the solenoid (solenoid 205) at the injection performed before the last injection. The valve body (valve body 214) is operated at full lift at the final injection.
 可動子202が最大高さ位置に到達したタイミングt43で、可動子202が固定子207に衝突すると、可動子202が固定子207との間でバウンド動作を行う。弁体214は可動子202に対して相対変位が可能に構成されている。そのため、弁体214は可動子202から離間し、弁体214の変位は、最大高さ位置を越えてオーバーシュートする。すなわち、弁体214の段付き部329の下端面が、可動子202に形成された凹部202Cの底面202Dから離れる。 When the mover 202 collides with the stator 207 at the timing t 43 when the mover 202 reaches the maximum height position, the mover 202 makes a bouncing motion with the stator 207. The valve body 214 is configured to be able to be displaced relative to the mover 202. Therefore, the valve body 214 is separated from the mover 202, and the displacement of the valve body 214 overshoots beyond the maximum height position. That is, the lower end surface of the stepped portion 329 of the valve body 214 is separated from the bottom surface 202D of the recess 202C formed in the mover 202.
 その後、タイミングt44で、再び可動子202が弁体214と共に固定子207に吸引される。そして、保持電流403によって生成される磁気吸引力と第2のばね212の開弁方向の力によって、可動子202は所定の最大高さ位置に静止する。また、弁体214は可動子202に着座して最大高さ位置に対応する位置で静止し、開弁状態となる(タイミングt45)。 Then, at timing t 44 , the mover 202 is sucked into the stator 207 together with the valve body 214 again. Then, the mover 202 comes to rest at a predetermined maximum height position by the magnetic attraction generated by the holding current 403 and the force in the valve opening direction of the second spring 212. Further, the valve body 214 sits on the mover 202, stands still at a position corresponding to the maximum height position, and is in the valve open state (timing t 45 ).
 なお、弁体214と可動子202が一体となっている可動弁を持つ燃料噴射装置の場合、弁体214の変位量は最大高さ位置よりも大きくならず、最大高さ位置に到達後の可動子202と弁体214の変位量は同等となる。 In the case of a fuel injection device having a movable valve in which the valve body 214 and the mover 202 are integrated, the displacement amount of the valve body 214 does not become larger than the maximum height position, and after reaching the maximum height position. The displacement amounts of the mover 202 and the valve body 214 are the same.
[第1の実施の形態] ここまで、本発明の各実施の形態に共通する構成及び動作例について説明した。ここからは、第1の実施の形態に係る制御装置及び制御方法について、図6~図9を参照して説明する。 [First Embodiment] Up to this point, the configuration and operation examples common to each embodiment of the present invention have been described. From here on, the control device and the control method according to the first embodiment will be described with reference to FIGS. 6 to 9.
図6は、ECU104から気筒108ごとの燃料噴射装置101に1燃焼サイクルで供給される噴射パルスと駆動電流、及び噴射率を示した図である。ここで、噴射率は、燃料噴射装置101から燃焼室107内に噴射される燃料の単位時間あたりの流量を表す値である。図6では、3気筒の構成を記載するが、本発明を用いることで、気筒数が変わっても同様の効果が得られる。また、噴射率と時間とに基づいて燃料の噴射量を算出できるので、以下の説明では噴射率のグラフを参照して噴射量に言及することがある。 FIG. 6 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. Here, the injection rate is a value representing the flow rate per unit time of the fuel injected from the fuel injection device 101 into the combustion chamber 107. Although the configuration of three cylinders is shown in FIG. 6, the same effect can be obtained even if the number of cylinders is changed by using the present invention. Further, since the fuel injection amount can be calculated based on the injection rate and the time, the injection amount may be referred to in the following description with reference to the graph of the injection rate.
 図6では、3気筒のうち、第1気筒に設けられた燃料噴射装置101の噴射パルス、駆動電流及び噴射率を一点鎖線で表し、第2気筒に設けられた燃料噴射装置101の噴射パルス、駆動電流及び噴射率を実線で表す。また、第3気筒に設けられた燃料噴射装置101の噴射パルス、駆動電流及び噴射率を破線で表す。 In FIG. 6, among the three cylinders, the injection pulse, the drive current, and the injection rate of the fuel injection device 101 provided in the first cylinder are represented by a chain line, and the injection pulse of the fuel injection device 101 provided in the second cylinder. The drive current and injection rate are represented by solid lines. Further, the injection pulse, the drive current, and the injection rate of the fuel injection device 101 provided in the third cylinder are represented by broken lines.
 第1の実施の形態に係る制御装置150は、1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置101の噴射量を制御する。ここで、制御装置150は、1燃焼サイクル中で、最後の噴射よりも前に行われた噴射において、各気筒の燃料噴射装置101ごとに同一の噴射パルス幅とした駆動電流を供給し、燃料噴射装置101が噴射601を行ったと想定する。この場合、第1気筒の噴射率603、第2気筒の噴射率604、第3気筒の噴射率605に示すように、気筒108ごとに噴射率が変動している。このため、単位時間当たりの噴射率を時間積分した噴射量についても気筒108ごとにばらつく。この結果、1燃焼サイクル中の噴射量のばらつきが大きくなり、燃焼変動が大きくなってしまう。 The control device 150 according to the first embodiment controls the injection amount of the fuel injection device 101 that injects fuel a plurality of times in one combustion cycle. Here, the control device 150 supplies a drive current having the same injection pulse width to each of the fuel injection devices 101 of each cylinder in the injection performed before the last injection in one combustion cycle, and fuels the fuel. It is assumed that the injection device 101 has performed the injection 601. In this case, as shown in the injection rate 603 of the first cylinder, the injection rate 604 of the second cylinder, and the injection rate 605 of the third cylinder, the injection rate fluctuates for each cylinder 108. Therefore, the injection amount obtained by integrating the injection rate per unit time with time also varies from cylinder to cylinder 108. As a result, the variation in the injection amount during one combustion cycle becomes large, and the combustion variation becomes large.
 そこで、制御装置150は、1燃焼サイクル中の燃料噴射による各噴射の噴射量を算出し、1燃焼サイクルの最後の噴射よりも前に行われた噴射の噴射量が多いほど最後の噴射のパルス幅を小さくするように制御する制御部500を備える構成とした。このとき、電流制御部(電流制御部542)は、最後の噴射よりも前に行われた噴射の噴射量が適正な噴射量より多いほど、最後の噴射で燃料噴射装置(燃料噴射装置101)に供給する噴射パルス幅Tiを小さくする。また、電流制御部(電流制御部542)は、最後の噴射よりも前に行われた噴射の噴射量が適正な噴射量より少ないほど、最後の噴射で燃料噴射装置(燃料噴射装置101)に供給する噴射パルス幅Tiを大きくする。 Therefore, the control device 150 calculates the injection amount of each injection by the fuel injection in one combustion cycle, and the larger the injection amount of the injection performed before the last injection in one combustion cycle, the more the pulse of the last injection. A control unit 500 for controlling the width to be reduced is provided. At this time, in the current control unit (current control unit 542), the more the injection amount of the injection performed before the last injection is larger than the appropriate injection amount, the more the fuel injection device (fuel injection device 101) is in the final injection. The injection pulse width Ti supplied to the vehicle is reduced. Further, the current control unit (current control unit 542) tells the fuel injection device (fuel injection device 101) that the injection amount of the injection performed before the last injection is smaller than the appropriate injection amount at the last injection. Increase the injection pulse width Ti to be supplied.
 具体的には、ECU104が、噴射601で示す噴射パルス幅の噴射パルスを各気筒108の燃料噴射装置101に供給した後、検出部541が各気筒108の燃料噴射装置101ごとに噴射量を算出する。そして、電流制御部542は、1燃焼サイクル中の最後の噴射において、噴射量が少ない第1気筒の燃料噴射装置101に対しては、噴射パルスを噴射パルス幅608のように大きくし、噴射量が多い第3気筒の燃料噴射装置101に対しては、噴射パルス幅606のように小さく補正する。ただし、電流制御部542は、噴射量が適正である第2気筒の燃料噴射装置101に対しては、噴射量を補正しない。このように電流制御部542は、1燃焼サイクル中の最後の噴射において、気筒108ごとに燃料噴射装置101の噴射量を補正することで、1燃焼サイクル中の燃焼変動を抑制することができる。 Specifically, after the ECU 104 supplies the injection pulse having the injection pulse width indicated by the injection 601 to the fuel injection device 101 of each cylinder 108, the detection unit 541 calculates the injection amount for each fuel injection device 101 of each cylinder 108. do. Then, in the final injection during one combustion cycle, the current control unit 542 increases the injection pulse to the fuel injection device 101 of the first cylinder, which has a small injection amount, as in the injection pulse width 608, and injects the injection amount. For the fuel injection device 101 of the third cylinder, which has a large number of fuels, the injection pulse width is corrected to be as small as 606. However, the current control unit 542 does not correct the injection amount for the fuel injection device 101 of the second cylinder in which the injection amount is appropriate. In this way, the current control unit 542 can suppress combustion fluctuations during one combustion cycle by correcting the injection amount of the fuel injection device 101 for each cylinder 108 at the final injection during one combustion cycle.
 このような制御により、各気筒108における1燃焼サイクル中の最後の噴射602では、噴射量のショットばらつきが生じる。そこで、電流制御部542は、1燃焼サイクル中の最後の噴射602の噴射パルス幅を、最後の噴射602よりも前に行われた噴射601の噴射パルス幅よりも小さくする。このような制御により、最後の噴射602で噴射量のショットばらつきが生じたとしても、電流制御部542は、1燃焼サイクル中の噴射量に与える影響を低減するので、燃焼変動を抑制できる。 Due to such control, shot variation in the injection amount occurs at the final injection 602 in one combustion cycle in each cylinder 108. Therefore, the current control unit 542 makes the injection pulse width of the last injection 602 in one combustion cycle smaller than the injection pulse width of the injection 601 performed before the last injection 602. By such control, even if the shot variation of the injection amount occurs in the final injection 602, the current control unit 542 reduces the influence on the injection amount in one combustion cycle, so that the combustion fluctuation can be suppressed.
 第1の実施の形態に係る制御装置150では、1燃焼サイクル中の噴射量のショットばらつきを抑制できるため、エンジンの回転数や負荷が変化する過渡の条件であっても各気筒108の燃焼変動のばらつきを抑制する効果を得られる。また、噴射量のショットばらつきを抑制することで、噴射量が多い気筒108で生じる燃料の壁面付着量の増加を抑制できるため、エンジンから排出されるHCやCOを低減できる。 Since the control device 150 according to the first embodiment can suppress shot variation in the injection amount during one combustion cycle, combustion variation in each cylinder 108 even under transient conditions in which the engine speed and load change. The effect of suppressing the variation of the above can be obtained. Further, by suppressing the shot variation of the injection amount, it is possible to suppress an increase in the amount of fuel adhering to the wall surface caused by the cylinder 108 having a large injection amount, so that HC and CO emitted from the engine can be reduced.
<第1の噴射量の検出方法> 次に、第1の実施の形態に係る制御方法及び制御装置150における噴射量の検出方法について説明する。始めに、第1の噴射量の検出方法について、図7を用いて説明する。
 図7は、ある気筒108の噴射パルス幅、弁体214の変位量、燃料噴射装置101に取り付けた圧力センサ109から出力される燃料の圧力の時系列を示した図である。
<Method of detecting the first injection amount> Next, the control method according to the first embodiment and the method of detecting the injection amount in the control device 150 will be described. First, a method of detecting the first injection amount will be described with reference to FIG. 7.
FIG. 7 is a diagram showing a time series of the injection pulse width of a cylinder 108, the displacement amount of the valve body 214, and the fuel pressure output from the pressure sensor 109 attached to the fuel injection device 101.
 ここで、周知のオリフィスの数式Q=cA√(2/ρ・ΔP)より、燃料の噴射量Qは、圧力降下ΔPの平方根に比例することが示される。式中のcは流量係数、Aはオリフィスの面積、ρは燃料の密度、ΔPは差圧である。このため、検出部541は、圧力センサ109が検出した燃料噴射装置(燃料噴射装置101)の燃料圧力の変化ΔPを検出することで、噴射量を推定(算出)することができる。 Here, from the well-known orifice formula Q = cA√ (2 / ρ · ΔP), it is shown that the fuel injection amount Q is proportional to the square root of the pressure drop ΔP. In the formula, c is the flow coefficient, A is the area of the orifice, ρ is the density of the fuel, and ΔP is the differential pressure. Therefore, the detection unit 541 can estimate (calculate) the injection amount by detecting the change ΔP of the fuel pressure of the fuel injection device (fuel injection device 101) detected by the pressure sensor 109.
 図7には、弁体が開弁開始するタイミングt71から弁体214が閉弁するタイミングt74までの様子が示される。噴射701に伴う、弁体変位量と、燃料噴射装置101内の燃料の圧力変化について説明する。 FIG. 7 shows a state from the timing t 71 when the valve body starts to open to the timing t 74 when the valve body 214 closes. The amount of displacement of the valve body and the change in the pressure of the fuel in the fuel injection device 101 due to the injection 701 will be described.
 噴射701にて、噴射パルスがOFFからONされて所定時間が経過後には、弁体214が移動開始し、弁体変位量が増加する。そして、図2に示した噴射孔219から燃料が噴射されるので、燃料噴射装置101内の燃料の圧力が低下する。弁体変位量が最大開度に達すると、低下した燃料の圧力はほぼ一定となる。所定の噴射量で燃料が噴射された後、弁体214が閉弁開始するため、弁体変位量が減少する。弁体変位量の減少に合わせて、燃料噴射装置101内の燃料の圧力が上昇する。弁体変位量がゼロになると、燃料噴射装置101内の燃料の圧力はほぼ元に戻る。ただし、後述するように燃料噴射装置101が噴射した燃料の分だけ圧力低下703が生じる。 In the injection 701, after the injection pulse is turned on from OFF and a predetermined time elapses, the valve body 214 starts moving and the amount of displacement of the valve body increases. Then, since the fuel is injected from the injection hole 219 shown in FIG. 2, the pressure of the fuel in the fuel injection device 101 decreases. When the valve body displacement reaches the maximum opening, the reduced fuel pressure becomes almost constant. After the fuel is injected at a predetermined injection amount, the valve body 214 starts closing, so that the valve body displacement amount is reduced. The pressure of the fuel in the fuel injection device 101 increases as the amount of displacement of the valve body decreases. When the amount of displacement of the valve body becomes zero, the pressure of the fuel in the fuel injection device 101 returns to almost the original value. However, as will be described later, the pressure drop 703 occurs by the amount of the fuel injected by the fuel injection device 101.
 ここで、検出部541は、弁体が開弁開始するタイミングt71から弁体214が閉弁するタイミングt74までの圧力702を連続的に検出し、オリフィスの数式により計算した弁体214の各変位量での噴射量を積分することで、噴射量を正確に算出できる。 Here, the detection unit 541 continuously detects the pressure 702 from the timing t 71 when the valve body starts to open to the timing t 74 when the valve body 214 closes, and calculates the valve body 214 by the formula of the orifice. The injection amount can be calculated accurately by integrating the injection amount at each displacement amount.
 また、検出部541は、圧力センサ109が検出した圧力を用いて噴射量を検出することで、弁体214の開弁開始のタイミングや閉弁完了のタイミングのばらつきに加えて、弁体214が偏心した場合に生じる噴射量のばらつきも検出することができる。このため、電流制御部542は、噴射量の補正精度を高めることができる。 Further, the detection unit 541 detects the injection amount using the pressure detected by the pressure sensor 109, so that the valve body 214 can be subjected to variations in the valve opening start timing and the valve closing completion timing of the valve body 214. It is also possible to detect variations in the injection amount that occur when the eccentricity occurs. Therefore, the current control unit 542 can improve the correction accuracy of the injection amount.
 なお、制御装置150は、弁体214が開弁開始してから弁体214が閉弁完了するまでの間に燃料ポンプ106からの燃料供給をしない制御を行うことで、燃料噴射装置101が噴射した燃料の分だけ圧力低下703が生じる。ただし、圧力低下703と各気筒108の燃料噴射装置101の噴射量には相関がある。例えば、圧力低下703が大きくなるほど、燃料噴射装置101の噴射量が少なくなる。そこで、検出部541が圧力低下703を検出すると、電流制御部542は、圧力低下703が大きくなるほど最後の噴射602の噴射パルス幅を小さく制御する。このように電流制御部542が最後の噴射602の噴射パルス幅を制御することで、1燃焼サイクル中の噴射量のばらつきを抑制できる。 The control device 150 is controlled so that the fuel is not supplied from the fuel pump 106 between the time when the valve body 214 starts to open and the time when the valve body 214 completes closing, so that the fuel injection device 101 injects fuel. A pressure drop of 703 occurs by the amount of the fuel used. However, there is a correlation between the pressure drop 703 and the injection amount of the fuel injection device 101 of each cylinder 108. For example, the larger the pressure drop 703, the smaller the injection amount of the fuel injection device 101. Therefore, when the detection unit 541 detects the pressure drop 703, the current control unit 542 controls the injection pulse width of the final injection 602 to be smaller as the pressure drop 703 becomes larger. By controlling the injection pulse width of the final injection 602 in this way, the current control unit 542 can suppress variations in the injection amount during one combustion cycle.
<第2の噴射量の検出方法> 次に、第2の噴射量の検出方法について、図8を用いて説明する。
 図8は、噴射パルス幅Ti、端子間電圧Vinj、駆動電流、電圧VL1の2階微分値、電流すなわち電圧VL2の2階微分値、及び弁体214の変位量と、時間との関係を示した図である。
<Second Injection Amount Detection Method> Next, a second injection amount detection method will be described with reference to FIG.
FIG. 8 shows the relationship between the injection pulse width Ti, the terminal voltage V inj, the drive current, the second derivative value of the voltage VL1 , the current, that is, the second derivative value of the voltage VL2 , and the displacement amount of the valve body 214, and time. It is a figure shown.
 検出部(検出部541)は、固定子(固定子207)に可動子(可動子202)が衝突して生じる電気的な変化により、燃料噴射装置(燃料噴射装置101)の弁体(弁体214)の開弁開始タイミングと、閉弁完了タイミングから求められる燃料の噴射期間を推定し、噴射期間に基づいて噴射量を算出する。例えば、電流制御部542は、弁体214が最大高さ位置に到達する前に、固定子207にバッテリ電圧VBを印加する。ここで、噴射パルスがONされてから弁体214が変位開始して移動中の期間を期間Tm801とし、弁体変位量が最大高さ位置になった瞬間を含む期間を期間Tm802とする。検出部541は、可動子202が固定子207に衝突することで生じる電気的な変化、具体的にはインダクタンスの変化を、期間Tm802における電流の変曲点で検出できる。このため、検出部541は、電流の2階微分値が最大となるタイミングを期間Tm802で検出することで、弁体214が開弁完了する開弁完了タイミングt81を検出できる。 The detection unit (detection unit 541) is a valve body (valve body) of the fuel injection device (fuel injection device 101) due to an electrical change caused by the collision of the mover (movable element 202) with the stator (stator 207). The fuel injection period obtained from the valve opening start timing and the valve closing completion timing of 214) is estimated, and the injection amount is calculated based on the injection period. For example, the current control unit 542 applies the battery voltage VB to the stator 207 before the valve body 214 reaches the maximum height position. Here, the valve body 214 from the injection pulse is ON to start displaced the duration of moving the period T M801, the valve displacement is to the period T M802 a period including the moment in which the maximum height position .. The detection unit 541 can detect an electrical change caused by the collision of the mover 202 with the stator 207, specifically, a change in inductance, at an inflection point of the current in the period T m 802. Therefore, the detection unit 541 can detect the valve opening completion timing t 81 at which the valve body 214 completes valve opening by detecting the timing at which the second derivative value of the current becomes maximum in the period T m 802.
 また、電流制御部542が噴射パルスをOFFにして弁体214が先端部214B(シート部)に接触すると、可動子202は弁体214から離間し、閉弁方向に放物運動する。このとき、可動子202には弁体214を通して作用していた第1のばね210の荷重と流体力が作用しなくなるため、可動子202の加速度が変化し、端子間電圧に変曲点801が生じる。ここで、噴射パルスがOFFされてから弁体変位量が0になる直前までの期間を期間Tm803とし、弁体変位量が0になった瞬間を含む期間を期間Tm804とする。検出部541は、端子間の電圧VL1の2階微分値の最小値を期間Tm804で検出することで、弁体214の閉弁完了タイミングt82を検出できる。 Further, when the current control unit 542 turns off the injection pulse and the valve body 214 comes into contact with the tip portion 214B (seat portion), the mover 202 is separated from the valve body 214 and parabolic in the valve closing direction. At this time, since the load and fluid force of the first spring 210 acting through the valve body 214 do not act on the mover 202, the acceleration of the mover 202 changes and the inflection point 801 changes to the voltage between terminals. Occurs. Here, the period until immediately before the injection pulse valve body displacement since the OFF becomes 0 and the period T M803, the valve displacement is to the period T M804 a period including a moment became 0. The detection unit 541 can detect the valve closing completion timing t 82 of the valve body 214 by detecting the minimum value of the second derivative value of the voltage VL1 between the terminals in the period T m804 .
 また、弁体214が開弁開始してから閉弁完了するまでを燃料の噴射期間とすると、噴射期間と噴射量には正の相関がある。そして、噴射期間が長くなるほど、燃料の噴射量が増加する。 Further, assuming that the fuel injection period is from the start of valve opening to the completion of valve closing of the valve body 214, there is a positive correlation between the injection period and the injection amount. Then, as the injection period becomes longer, the fuel injection amount increases.
 ここで、開弁開始タイミングt80の検出方法について説明する。開弁完了タイミングt81と開弁開始タイミングt80は相関が高い。このため、検出部541は、検出した開弁完了タイミングt81に予めECU104で設定した補正定数を乗じることで、開弁開始タイミングt80を検出できる。そして、電流制御部(電流制御部542)は、噴射パルス幅Tiを変更した噴射パルスを燃料噴射装置(燃料噴射装置101)に供給する。 The following describes a detection method of the valve opening start timing t 80. The valve opening completion timing t 81 and the valve opening start timing t 80 have a high correlation. Therefore, the detection unit 541 can detect the valve opening start timing t 80 by multiplying the detected valve opening completion timing t 81 by a correction constant set in advance by the ECU 104. Then, the current control unit (current control unit 542) supplies the injection pulse having the injection pulse width Ti changed to the fuel injection device (fuel injection device 101).
 本発明の第1の実施の形態に係る制御装置150で行われる制御方法によれば、電流制御部542が、開弁開始タイミングから閉弁完了タイミングまでの噴射期間が長い燃料噴射装置101ほど、最後の噴射602の噴射パルス幅を小さく補正し、噴射期間が短い燃料噴射装置101ほど最後の噴射602の噴射パルス幅を大きく補正する。このように電流制御部542が噴射パルス幅を補正することで、1燃焼サイクル中の噴射量のばらつきを抑制し、当量比のばらつきを低減するため、燃焼変動を抑制できる。 According to the control method performed by the control device 150 according to the first embodiment of the present invention, the fuel injection device 101 in which the current control unit 542 has a longer injection period from the valve opening start timing to the valve closing completion timing is such that the fuel injection device 101 has a longer injection period. The injection pulse width of the last injection 602 is corrected to be smaller, and the fuel injection device 101 having a shorter injection period is corrected to have a larger injection pulse width of the last injection 602. By correcting the injection pulse width by the current control unit 542 in this way, the variation in the injection amount during one combustion cycle is suppressed, and the variation in the equivalent ratio is reduced, so that the combustion fluctuation can be suppressed.
<最後の噴射をフルリフト噴射とする制御方法> 次に、1燃焼サイクルにおける最後の噴射602をフルリフト噴射とする制御方法について、図8と図9を用いて説明する。
 図9は、ある気筒108の燃料噴射装置101の噴射パルス幅Tiと、噴射量、及び噴射量のショットばらつきとの関係を示した図である。
<Control method in which the last injection is a full lift injection> Next, a control method in which the last injection 602 in one combustion cycle is a full lift injection will be described with reference to FIGS. 8 and 9.
FIG. 9 is a diagram showing the relationship between the injection pulse width Ti of the fuel injection device 101 of a certain cylinder 108, the injection amount, and the shot variation of the injection amount.
 ECU104は、図6に示した最後の噴射602の噴射パルス幅を、最後よりも前に行われた噴射の噴射パルス幅よりも短く設定する。さらに、最後の噴射602では、図8に示すように、弁体214が固定子207に接触する、すなわち弁体214が最大高さ位置に到達する駆動(「フルリフト」と呼ぶ)を行うとよい。 The ECU 104 sets the injection pulse width of the last injection 602 shown in FIG. 6 to be shorter than the injection pulse width of the injection performed before the last. Further, in the final injection 602, as shown in FIG. 8, the valve body 214 may come into contact with the stator 207, that is, the valve body 214 may be driven to reach the maximum height position (referred to as “full lift”). ..
 図9に示すように、電流制御部542が燃料噴射装置101に供給する噴射パルス幅が、ある一定の噴射パルス幅91を超えると弁体214が変位を開始し、燃料噴射装置101から燃料の噴射が開始される。さらに電流制御部542が噴射パルス幅を大きくすると、噴射パルス幅93以降で可動子202が固定子207と接触し、以降は噴射パルス幅の長さに応じて噴射量が増加する。 As shown in FIG. 9, when the injection pulse width supplied by the current control unit 542 to the fuel injection device 101 exceeds a certain injection pulse width 91, the valve body 214 starts to be displaced, and the fuel is discharged from the fuel injection device 101. Injection is started. Further, when the current control unit 542 increases the injection pulse width, the mover 202 comes into contact with the stator 207 after the injection pulse width 93, and thereafter, the injection amount increases according to the length of the injection pulse width.
 ただし、可動子202が固定子207に衝突すると、可動子202がバウンドする。このため、噴射パルス幅92~93の区間902では、噴射量のショットばらつきが大きくなる。このため、電流制御部542が噴射パルスを停止してから弁体214が閉弁するまでの時間が噴射パルスごとに変化すると、噴射量のショットばらつきが大きくなる区間902が生じてしまう。なお、可動子202と固定子207のバウンドが収束する噴射パルス幅93以降の区間903では、噴射量のショットばらつきが小さくなる。 However, when the mover 202 collides with the stator 207, the mover 202 bounces. Therefore, in the section 902 of the injection pulse widths 92 to 93, the shot variation of the injection amount becomes large. Therefore, if the time from when the current control unit 542 stops the injection pulse until the valve body 214 closes changes for each injection pulse, a section 902 in which the shot variation of the injection amount becomes large occurs. In the section 903 after the injection pulse width 93 where the bounds of the mover 202 and the stator 207 converge, the shot variation of the injection amount becomes small.
 噴射パルス幅92~93の区間902で噴射量のショットばらつきが大きくなるのは以下のように説明できる。例えば、噴射パルス幅92以降の区間902,903では、弁体214が最大高さ位置に到達するフルリフトで駆動される。一方、噴射パルス幅91~92の区間901は、弁体214が最大高さ位置に到達しないハーフリフトで駆動される。 It can be explained as follows that the shot variation of the injection amount becomes large in the section 902 of the injection pulse width 92 to 93. For example, in the sections 902 and 903 after the injection pulse width 92, the valve body 214 is driven by a full lift that reaches the maximum height position. On the other hand, the section 901 having the injection pulse widths 91 to 92 is driven by a half lift in which the valve body 214 does not reach the maximum height position.
 ハーフリフトで制御される弁体214の変位量は、幾何学的に規制されない。しかし、弁体214が燃料の流体力などの外力の影響を受けると、弁体214の変位量ないし、弁体214の偏心量が大きくなるので、噴射量のショットばらつきが大きくなる。また、フルリフトであっても、上述したように噴射パルス幅92~93の区間902では、可動子202と固定子207のバウンドが生じているので、噴射量のショットばらつきが大きくなる。 The amount of displacement of the valve body 214 controlled by the half lift is not geometrically regulated. However, when the valve body 214 is affected by an external force such as the fluid force of the fuel, the displacement amount of the valve body 214 or the eccentric amount of the valve body 214 becomes large, so that the shot variation of the injection amount becomes large. Further, even in the case of full lift, as described above, in the section 902 of the injection pulse width 92 to 93, the mover 202 and the stator 207 bounce, so that the shot variation of the injection amount becomes large.
 したがって、本発明の第1の実施の形態に係る制御装置150が行う制御手法では、噴射パルス幅を補正する1燃焼サイクル中の最後の噴射602を、噴射パルス幅92以降のフルリフトの条件で噴射するように制御する。このような制御により、制御装置150は、噴射量のショットばらつきを抑制し、1燃焼サイクル中の噴射量のばらつきを低減できる。 Therefore, in the control method performed by the control device 150 according to the first embodiment of the present invention, the last injection 602 in one combustion cycle for correcting the injection pulse width is injected under the condition of full lift after the injection pulse width 92. Control to do. By such control, the control device 150 can suppress the shot variation of the injection amount and reduce the variation of the injection amount during one combustion cycle.
 また、区間903よりも区間902の方が噴射量のショットばらつきが大きくなる。そこで、電流制御部542は、噴射パルス幅93より大きい噴射パルスを燃料噴射装置101に供給することで、燃料噴射装置101の最後の噴射602を制御してもよい。電流制御部542が噴射パルス幅93よりも大きい噴射パルス幅を用いることで、噴射量のショットばらつきをより抑制し、燃焼変動の抑制効果を高めることができる。 Also, the shot variation of the injection amount is larger in the section 902 than in the section 903. Therefore, the current control unit 542 may control the final injection 602 of the fuel injection device 101 by supplying an injection pulse larger than the injection pulse width 93 to the fuel injection device 101. By using the injection pulse width larger than the injection pulse width 93 by the current control unit 542, it is possible to further suppress the shot variation of the injection amount and enhance the effect of suppressing the combustion fluctuation.
[第2の実施の形態] 次に、本発明の第2の実施の形態に係る燃料噴射装置の制御方法の例について、図5、図10、図11及び図12を用いて、説明する。 [Second Embodiment] Next, an example of the control method of the fuel injection device according to the second embodiment of the present invention will be described with reference to FIGS. 5, 10, 11 and 12.
 図10は、本発明の第2の実施の形態に係る噴射パルス、燃料噴射装置101に供給される駆動電流、燃料噴射装置101のスイッチング素子505、506、507、ソレノイド205の端子間電圧Vinj、弁体214及び可動子202の変位量と、時間との関係を示した図である。 Figure 10 is injection pulse according to the second embodiment of the present invention, the driving current supplied to the fuel injection device 101, the switching elements 505, 506 and 507 of the fuel injection device 101, the terminal voltage V inj solenoid 205 It is a figure which showed the relationship between the displacement amount of the valve body 214 and the mover 202, and time.
 図10では、電流制御部542が3種類の駆動電流1001,1002,1003を用いて燃料噴射装置101を駆動する様子について説明する。そして、駆動電流1001を用いた場合の駆動電流、スイッチング素子の挙動、端子間電圧、弁体変位量を太い実線で表し、駆動電流1002を用いた場合の駆動電流、スイッチング素子の挙動、端子間電圧、弁体変位量を太い破線で表す。また、駆動電流1003を用いた場合の駆動電流、スイッチング素子の挙動、端子間電圧、弁体変位量を細い破線で表す。 FIG. 10 describes how the current control unit 542 drives the fuel injection device 101 using three types of drive currents 1001, 1002, 1003. Then, the drive current, the behavior of the switching element, the voltage between terminals, and the displacement amount of the valve body when the drive current 1001 is used are represented by thick solid lines, and the drive current, the behavior of the switching element, and the distance between terminals when the drive current 1002 is used are shown. The voltage and the amount of displacement of the valve body are represented by thick broken lines. Further, the drive current, the behavior of the switching element, the voltage between terminals, and the amount of displacement of the valve body when the drive current 1003 is used are represented by thin broken lines.
 図11は、制御装置150が、図10の駆動電流波形で燃料噴射装置101を制御した場合の噴射パルス幅Tiと噴射量及び噴射量のショットばらつきの標準偏差(σ)の関係を示した図である。なお、図11には、ECU104が、燃料噴射装置101を駆動電流1001(図10を参照)で制御した場合の噴射量特性(Q1101)を太線で表し、駆動電流1002で制御した場合の噴射量特性(Q1102)を細線で表す。 FIG. 11 is a diagram showing the relationship between the injection pulse width Ti and the injection amount and the standard deviation (σ) of the shot variation of the injection amount when the control device 150 controls the fuel injection device 101 with the drive current waveform of FIG. Is. In FIG. 11, the injection amount characteristic (Q 1101 ) when the ECU 104 controls the fuel injection device 101 with the drive current 1001 (see FIG. 10) is represented by a thick line, and the injection when the fuel injection device 101 is controlled with the drive current 1002. The quantity characteristic (Q 1102 ) is represented by a thin line.
 燃料噴射装置101の噴射量のショットばらつきは、燃料噴射装置101の個体差や環境条件(温度等)で変化する。例えば、駆動電流1001が用いられると、噴射パルス幅Tiが、噴射パルス幅1103になるまでは噴射量が急増し、噴射パルス幅Tiが噴射パルス幅1103~1104の区間では、一点鎖線で示す基準線に対して噴射量が増減する。このため、噴射パルス幅Tiが噴射パルス幅1103~1104の区間における噴射量のショットばらつきが大きくなる。しかし、噴射パルス幅Tiが噴射パルス幅1104以上になると、基準線に対する噴射量の増減が少なくなり、噴射量のショットばらつきも小さくなって一定値となる。このように噴射パルス幅Tiが大きい条件では、電流制御部542が、ソレノイド205に逆電圧を印加することで、駆動電流1001の電流波形を急速に低減して弁体214を減速させる。ここで、図11に示す噴射量特性(Q1101)で表される波形をファストフォール波形と呼ぶ。 The shot variation of the injection amount of the fuel injection device 101 changes depending on the individual difference of the fuel injection device 101 and the environmental conditions (temperature, etc.). For example, when the drive current 1001 is used, the injection amount rapidly increases until the injection pulse width Ti reaches the injection pulse width 1103, and in the section where the injection pulse width Ti is the injection pulse width 1103 to 1104, the reference indicated by the alternate long and short dash line. The injection amount increases or decreases with respect to the line. Therefore, the shot variation of the injection amount in the section where the injection pulse width Ti has the injection pulse width 1103 to 1104 becomes large. However, when the injection pulse width Ti becomes the injection pulse width 1104 or more, the increase / decrease in the injection amount with respect to the reference line becomes small, and the shot variation of the injection amount becomes small and becomes a constant value. Under the condition that the injection pulse width Ti is large as described above, the current control unit 542 applies a reverse voltage to the solenoid 205 to rapidly reduce the current waveform of the drive current 1001 and decelerate the valve body 214. Here, the waveform represented by the injection amount characteristic (Q 1101 ) shown in FIG. 11 is called a fast fall waveform.
 一方、駆動電流1002が用いられると、噴射パルス幅Tiが噴射パルス幅1103になるまでは噴射量が急増する点は、駆動電流1001が用いられた場合と同じである。しかし、噴射パルス幅Tiが噴射パルス幅1103~1104の区間では、一点鎖線で示す基準線に対して噴射量が増減するものの、駆動電流1001が用いられた場合より増減が少ない。このため、噴射パルス幅Tiが噴射パルス幅1103~1104の区間における噴射量のショットばらつきは、駆動電流1001が用いられた場合より小さくなる。しかし、噴射パルス幅Tiが噴射パルス幅1104以上になると、基準線に対する噴射量の増減が多くなるので、駆動電流1001が用いられた場合より噴射量のショットばらつきが大きくなる。このように噴射パルス幅Tiが小さい条件では、電流制御部542が、弁体214が開弁するまでに大きい駆動電流1002をソレノイド205に供給することで、弁体214の開弁ばらつきを抑制する。ここで、図11に示す噴射量特性(Q1102)で表される波形をピークホールド波形と呼ぶ。 On the other hand, when the drive current 1002 is used, the injection amount rapidly increases until the injection pulse width Ti becomes the injection pulse width 1103, which is the same as when the drive current 1001 is used. However, in the section where the injection pulse width Ti is the injection pulse width 1103 to 1104, the injection amount increases or decreases with respect to the reference line indicated by the alternate long and short dash line, but the increase or decrease is smaller than when the drive current 1001 is used. Therefore, the shot variation of the injection amount in the section where the injection pulse width Ti is the injection pulse width 1103 to 1104 is smaller than that when the drive current 1001 is used. However, when the injection pulse width Ti becomes the injection pulse width 1104 or more, the injection amount increases or decreases with respect to the reference line, so that the shot variation of the injection amount becomes larger than when the drive current 1001 is used. Under the condition that the injection pulse width Ti is small as described above, the current control unit 542 supplies a large drive current 1002 to the solenoid 205 before the valve body 214 opens, thereby suppressing the valve opening variation of the valve body 214. .. Here, the waveform represented by the injection amount characteristic (Q 1102 ) shown in FIG. 11 is referred to as a peak hold waveform.
 また、駆動電流1003は、図10に示される最大駆動電流値Ipeak2の付近で所定期間だけ保持される。このような電流波形とした駆動電流1003を用いても、弁体214が開弁するまでソレノイド205に所定の電流値を与えることができるので、駆動電流1002を用いた場合と同様の効果を得られる。その後、駆動電流1003は、駆動電流1002と同様に、急速に減少し、電流値1012の付近で保持されるが、駆動電流1001が用いられた場合より噴射量のショットばらつきが大きくなる。 The driving current 1003 is held for a predetermined period in the vicinity of the maximum driving current value I peak2 shown in FIG. Even if the drive current 1003 having such a current waveform is used, a predetermined current value can be given to the solenoid 205 until the valve body 214 opens, so that the same effect as when the drive current 1002 is used can be obtained. Be done. After that, the drive current 1003 decreases rapidly like the drive current 1002 and is held in the vicinity of the current value 1012, but the shot variation of the injection amount becomes larger than when the drive current 1001 is used.
 このように駆動電流の大きさによって、噴射量と、噴射量のショットばらつきが変わる。このため、制御装置150は、1燃焼サイクル中で噴射量を補正する技術を必要とする。 In this way, the injection amount and the shot variation of the injection amount change depending on the magnitude of the drive current. Therefore, the control device 150 requires a technique for correcting the injection amount in one combustion cycle.
 最初に、制御装置150が、駆動電流1002で燃料噴射装置101の噴射量を制御した場合の動作例について、図10を参照して説明する。図10に示すタイミングt101において、CPU501より噴射パルス幅Tiの噴射パルスが通信ライン504を通して駆動IC502に入力されると、スイッチング素子505とスイッチング素子506がONとなる。そして、バッテリ電圧VBよりも高い昇圧電圧VHがソレノイド205に印加されることで、燃料噴射装置101に供給される駆動電流1002が電流1010に示すように0Aから急速に立ち上がる。 First, an operation example when the control device 150 controls the injection amount of the fuel injection device 101 with the drive current 1002 will be described with reference to FIG. At the timing t 101 shown in FIG. 10, when an injection pulse having an injection pulse width Ti is input from the CPU 501 to the drive IC 502 through the communication line 504, the switching element 505 and the switching element 506 are turned on. Then, when a boost voltage VH higher than the battery voltage VB is applied to the solenoid 205, the drive current 1002 supplied to the fuel injection device 101 rapidly rises from 0A as shown in the current 1010.
 ソレノイド205に電流が供給されると、可動子202と固定子207との間に磁気吸引力が作用する。開弁方向の力である磁気吸引力と、第2のばね212の荷重との合力が、閉弁方向の力である第3のばね234の荷重を超えたタイミングで可動子202が変位を開始する。その後、可動子202が間隙G2を滑走した後、タイミングt106の手前で可動子202が弁体214に衝突することで、弁体214の変位が開始され、燃料噴射装置101から燃料が噴射される。 When a current is supplied to the solenoid 205, a magnetic attraction force acts between the mover 202 and the stator 207. The mover 202 starts displacement at the timing when the resultant force of the magnetic attraction force, which is the force in the valve opening direction, and the load of the second spring 212 exceeds the load of the third spring 234, which is the force in the valve closing direction. do. After that, after the mover 202 slides in the gap G2, the mover 202 collides with the valve body 214 before the timing t 106 , so that the displacement of the valve body 214 is started and fuel is injected from the fuel injection device 101. NS.
 駆動電流1002がタイミングt102で最大電流Ipeak1に達すると、スイッチング素子506が通電される。このとき、スイッチング素子505とスイッチング素子507が非通電となる。そして、接地電位515、スイッチング素子506、燃料噴射装置101、接地電位517の間で電流が回生するいわゆるフリーホイールによって、燃料噴射装置101の両端にはほぼ0Vの電圧が印加され、駆動電流1002が電流1011に示すように緩やかに減少する。 When the drive current 1002 reaches a maximum current I peak 1 at the timing t 102, the switching element 506 is energized. At this time, the switching element 505 and the switching element 507 are de-energized. Then, a voltage of approximately 0 V is applied to both ends of the fuel injection device 101 by a so-called free wheel in which a current is regenerated between the ground potential 515, the switching element 506, the fuel injection device 101, and the ground potential 517, and the drive current 1002 is generated. The current gradually decreases as shown in 1011.
 その後、タイミングt103に到達すると、制御装置150は、スイッチング素子507の通電/非通電の切替えを行い、電流値1004或いはその近傍で電流値1012を保持するように駆動電流1002を制御する。なお、制御装置150が駆動電流1002を制御する期間を、第1の電流保持期間1055と称する。 After that, when the timing t 103 is reached, the control device 150 switches between energization and de-energization of the switching element 507, and controls the drive current 1002 so as to hold the current value 1012 at or near the current value 1004. The period in which the control device 150 controls the drive current 1002 is referred to as a first current holding period 1055.
 ここで、制御装置150は、弁体214が最大高さ位置に到達するタイミングt104までは、弁体214を最大高さ位置で保持可能な電流値(電流値1004よりも高い電流値)をソレノイド205に供給するとよい。弁体214が最大高さ位置よりも低い高さ位置の条件では、可動子202と固定子207との間の磁気ギャップがあるため、磁気抵抗が大きくなり、可動子202と固定子207が接触している場合と比べて、磁気吸引力が低下する。 Here, the control device 150 sets a current value (current value higher than the current value 1004) capable of holding the valve body 214 at the maximum height position until the timing t 104 when the valve body 214 reaches the maximum height position. It is preferable to supply the solenoid 205. Under the condition that the valve body 214 is at a height lower than the maximum height position, there is a magnetic gap between the mover 202 and the stator 207, so that the magnetic resistance increases and the mover 202 and the stator 207 come into contact with each other. The magnetic attraction is lower than when it is.
 したがって、制御装置150は、可動子202と弁体214が最大高さ位置に到達するまで、電流値1004よりも高い電流値を供給することで、弁体214が安定して最大高さ位置まで到達可能となり、さらに弁体214が最大高さ位置に到達するタイミングが早くなる。そして、制御装置150が駆動電流1002を用いると、最大高さ位置に到達する前の弁体214の挙動が安定化して、ショットごとの弁体214の変位量のばらつきが抑制される。このため、弁体214が最大高さ位置に到達した噴射パルス幅1103以降の噴射量のショットばらつきを小さくできる。 Therefore, the control device 150 supplies a current value higher than the current value 1004 until the mover 202 and the valve body 214 reach the maximum height position, so that the valve body 214 stably reaches the maximum height position. It becomes reachable, and the timing at which the valve body 214 reaches the maximum height position becomes earlier. When the control device 150 uses the drive current 1002, the behavior of the valve body 214 before reaching the maximum height position is stabilized, and the variation in the displacement amount of the valve body 214 for each shot is suppressed. Therefore, the shot variation of the injection amount after the injection pulse width 1103 when the valve body 214 reaches the maximum height position can be reduced.
 一方で、可動子202が固定子207に大きな速度で衝突するため、弁体214及び可動子202の変位期間1060に示すように可動子202が固定子207又は弁体214との間でバウンドする期間がある。その結果、図11に示した噴射パルス幅1103以降においても噴射量のショットばらつきが小さくならないという課題があった。この課題は、図4に示した駆動電流の電流波形でも同様であり、制御装置150が、弁体214が最大高さ位置に到達するまでに高い電流波形の駆動電流をソレノイド205に供給する条件で同様の課題が生じることがあった。 On the other hand, since the mover 202 collides with the stator 207 at a high speed, the mover 202 bounces with the stator 207 or the valve body 214 as shown in the displacement period 1060 of the valve body 214 and the mover 202. There is a period. As a result, there is a problem that the shot variation of the injection amount is not reduced even after the injection pulse width 1103 shown in FIG. This problem is the same for the current waveform of the drive current shown in FIG. 4, and the condition that the control device 150 supplies the drive current of the high current waveform to the solenoid 205 before the valve body 214 reaches the maximum height position. In some cases, a similar problem occurred.
 上記の課題を解決する本発明の第2の実施の形態に係る駆動電流1001の駆動方法及び噴射パルス幅と、噴射量及び噴射量のショットばらつきの関係について説明する。
 まず、制御装置150により行われる、可動子202が固定子207に衝突する速度を抑制する制御について説明する。電流制御部542は、ソレノイド205に所定の噴射パルス幅からなる駆動電流1001を供給する。電流制御部(電流制御部542)は、可動子(可動子202)が、固定子(固定子207)に向けて変位を開始し、可動子(可動子202)が所定値まで加速したタイミングでソレノイド(ソレノイド205)への通電をオフして、可動子(可動子202)が固定子(固定子207)に衝突する速度を減速させる。例えば、電流制御部542は、可動子202が固定子207の方向に変位を開始し、可動子202が十分に加速したタイミングt106(図10)でスイッチング素子505、506、507をOFFにする。
The relationship between the driving method and injection pulse width of the driving current 1001 and the injection amount and the shot variation of the injection amount according to the second embodiment of the present invention for solving the above problems will be described.
First, the control performed by the control device 150 to suppress the speed at which the mover 202 collides with the stator 207 will be described. The current control unit 542 supplies the solenoid 205 with a drive current 1001 having a predetermined injection pulse width. In the current control unit (current control unit 542), the mover (movable element 202) starts displacement toward the stator (stator 207), and the mover (movable element 202) accelerates to a predetermined value at the timing. The energization of the solenoid (solenoid 205) is turned off to reduce the speed at which the mover (movable element 202) collides with the stator (stator 207). For example, the current control unit 542 turns off the switching elements 505, 506, and 507 at the timing t 106 (FIG. 10) when the mover 202 starts displacement in the direction of the stator 207 and the mover 202 sufficiently accelerates. ..
 この結果、燃料噴射装置101のインダクタンスによる逆起電力によって、ダイオード509とダイオード510が通電し、電流が昇圧回路514(高電圧源)側へ帰還される。そして、燃料噴射装置101に供給されていた電流は、図10の電流1051に示すように最大駆動電流値Ipeak2から急速に低下する。制御装置150がソレノイド205に逆電圧を印加して電流を急速に低減すると、渦電流による一定の遅れの後、磁気回路に生じていた磁束が減少し、可動子202に作用していた磁気吸引力が小さくなる。 As a result, the back electromotive force due to the inductance of the fuel injection device 101 energizes the diode 509 and the diode 510, and the current is fed back to the booster circuit 514 (high voltage source) side. Then, the current supplied to the fuel injection device 101 rapidly decreases from the maximum drive current value I peak2 as shown in the current 1051 of FIG. When the control device 150 applies a reverse voltage to the solenoid 205 to rapidly reduce the current, the magnetic flux generated in the magnetic circuit is reduced after a certain delay due to the eddy current, and the magnetic attraction acting on the mover 202 is reduced. The force becomes smaller.
 その後、弁体214及び可動子202の変位量に示すタイミングt107(図10を参照)で可動子202及び弁体214が減速し、可動子202が固定子207に衝突するときの速度が小さくなる。このため、固定子207に対して生じる、可動子202及び弁体214のバウンドが小さくなり、弁体214のバウンドが収束するタイミングが、タイミングt108まで早くなる。その結果、弁体214が最大高さ位置に到達して一定の時間が経過した噴射パルス幅1104(図11を参照)以降の噴射量のショットばらつきを、駆動電流1002を用いた場合よりも小さくすることができる。 After that, the mover 202 and the valve body 214 decelerate at the timing t 107 (see FIG. 10) shown in the displacement amount of the valve body 214 and the mover 202, and the speed when the mover 202 collides with the stator 207 becomes smaller. Become. Therefore, the bounces of the mover 202 and the valve body 214 generated with respect to the stator 207 are reduced, and the timing at which the bounces of the valve body 214 converge is earlier than the timing t 108. As a result, the shot variation of the injection amount after the injection pulse width 1104 (see FIG. 11) after the valve body 214 reaches the maximum height position and a certain time has passed is smaller than that when the drive current 1002 is used. can do.
 また、電流制御部542が駆動電流1001を燃料噴射装置101に供給すれば、可動子202が固定子207に衝突するときの速度が小さくなる。このため、電流制御部542が駆動電流1002を燃料噴射装置101に供給する場合に比べて、燃料噴射装置101から生じる駆動音を低減できる効果もある。 Further, if the current control unit 542 supplies the drive current 1001 to the fuel injection device 101, the speed at which the mover 202 collides with the stator 207 becomes smaller. Therefore, as compared with the case where the current control unit 542 supplies the drive current 1002 to the fuel injection device 101, there is also an effect that the drive noise generated from the fuel injection device 101 can be reduced.
 このように制御装置150が駆動電流1001を用いると、弁体214が最大高さ位置に到達する前に、可動子202及び弁体214が減速する。このため、弁体214が最大高さ位置に到達するまでにおける、弁体214の挙動が不安定になる場合がある。また、噴射パルス幅1104よりも噴射パルス幅Tiが小さい条件では、噴射量のショットばらつきが、駆動電流1002を用いた場合に比べて大きくなる場合がある。 When the control device 150 uses the drive current 1001 in this way, the mover 202 and the valve body 214 decelerate before the valve body 214 reaches the maximum height position. Therefore, the behavior of the valve body 214 may become unstable until the valve body 214 reaches the maximum height position. Further, under the condition that the injection pulse width Ti is smaller than the injection pulse width 1104, the shot variation of the injection amount may be larger than that when the drive current 1002 is used.
 そこで、本発明の第2の実施の形態に係る制御方法の一例について、図12を用いて説明する。
 図12は、ECU104から気筒108ごとの燃料噴射装置101に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。図12においても、図6と同様に、第1~第3気筒に設けられた各燃料噴射装置101の噴射パルス、駆動電流及び噴射率を一点鎖線、実線、破線で表す。
Therefore, an example of the control method according to the second embodiment of the present invention will be described with reference to FIG.
FIG. 12 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. Also in FIG. 12, similarly to FIG. 6, the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
 1燃焼サイクル中で、最後の噴射よりも前に行われた噴射において、ECU104が各気筒108の燃料噴射装置101ごとに同一の噴射パルス幅とした噴射1201を行ったと想定する。この場合、第1気筒の噴射率1203、第2気筒の噴射率1204、第3気筒の噴射率1205に示すように、気筒108ごとに噴射率が変動している。 It is assumed that in one combustion cycle, in the injection performed before the last injection, the ECU 104 performed the injection 1201 with the same injection pulse width for each fuel injection device 101 of each cylinder 108. In this case, as shown in the injection rate 1203 of the first cylinder, the injection rate 1204 of the second cylinder, and the injection rate 1205 of the third cylinder, the injection rate fluctuates for each cylinder 108.
 そこで、本発明の第2の実施の形態に係る制御装置150は、1燃焼サイクル中の燃料噴射による各噴射の噴射量を算出する検出部541と、1燃焼サイクルの最後の噴射よりも前に行われた噴射の噴射量が多いほど最後の噴射の噴射パルス幅Tiを小さくするように制御する電流制御部542を備える。この電流制御部542は、1燃焼サイクルにおける最後の噴射において、ECU104が各気筒108の燃料噴射装置101ごとに異なる噴射パルス幅とした噴射1202を行う。 Therefore, the control device 150 according to the second embodiment of the present invention has a detection unit 541 that calculates the injection amount of each injection by fuel injection in one combustion cycle, and before the last injection in one combustion cycle. The current control unit 542 is provided to control so that the injection pulse width Ti of the last injection becomes smaller as the injection amount of the performed injection increases. In the final injection in one combustion cycle, the current control unit 542 performs injection 1202 in which the ECU 104 has an injection pulse width different for each fuel injection device 101 of each cylinder 108.
 例えば、電流制御部542は、1燃焼サイクルの最後よりも前に行われた噴射1201における噴射パルス幅を燃料噴射装置101に供給する際に、噴射量が多い噴射率1205に対応する第3気筒に取り付けられた燃料噴射装置101に供給する最後の噴射1202の噴射パルスを噴射パルス幅1206のように小さく補正する。一方、電流制御部542は、噴射量が少ない噴射率1203に対応する第1気筒に取り付けられた燃料噴射装置101に供給する最後の噴射1202の噴射パルスを噴射パルス幅1208のように大きく補正する。なお、電流制御部542は、噴射量が適正な噴射率1204に対応する第2気筒に取り付けられた燃料噴射装置101に供給する最後の噴射を補正無の噴射パルス幅1207とする。 For example, when the current control unit 542 supplies the fuel injection device 101 with the injection pulse width in the injection 1201 performed before the end of one combustion cycle, the third cylinder corresponding to the injection rate 1205 having a large injection amount. The injection pulse of the last injection 1202 supplied to the fuel injection device 101 attached to the fuel injection device 101 is corrected to be as small as the injection pulse width 1206. On the other hand, the current control unit 542 largely corrects the injection pulse of the last injection 1202 supplied to the fuel injection device 101 attached to the first cylinder corresponding to the injection rate 1203 with a small injection amount, such as the injection pulse width 1208. .. The current control unit 542 sets the final injection supplied to the fuel injection device 101 attached to the second cylinder whose injection amount corresponds to the appropriate injection rate 1204 to the injection pulse width 1207 without correction.
 また、図10に示したように、電流制御部(電流制御部542)は、1燃焼サイクルの最後の噴射よりも前に行われた噴射でソレノイド(ソレノイド205)に供給する駆動電流が最大値に達した後で、ソレノイド(ソレノイド205)に逆電圧を印加するように制御する。そして、電流制御部(電流制御部542)は、最後の噴射では、1燃焼サイクルで行われる最初の噴射よりも保持電流に至るまでに大きな駆動電流をソレノイド(ソレノイド205)に供給するとよい。 Further, as shown in FIG. 10, the current control unit (current control unit 542) has a maximum drive current supplied to the solenoid (solenoid 205) by the injection performed before the last injection of one combustion cycle. After reaching, the solenoid (solenoid 205) is controlled to apply a reverse voltage. Then, in the final injection, the current control unit (current control unit 542) may supply a larger drive current to the solenoid (solenoid 205) up to the holding current than the first injection performed in one combustion cycle.
 この際、図12に示したように、電流制御部542は、最後の噴射1202よりも前に行われた噴射1201(最初の噴射)では、噴射パルス幅Tiが長い条件でショットばらつきの小さいファストフォール波形の駆動電流1001を用いて制御する。その後、電流制御部542は、最後の噴射1202にて、噴射パルス幅Tiが短い条件で噴射量のショットばらつきが小さいピークホールド波形の駆動電流1002を用いて制御する。このように電流制御部542は、噴射のタイミングに応じて、1燃焼サイクル中で駆動電流1001,1002を切り替える。このように電流制御部542が駆動電流1001,1002を切り替えることで、1燃焼サイクルの噴射量のショットばらつきを抑制する効果が得られる。 At this time, as shown in FIG. 12, in the injection 1201 (first injection) performed before the final injection 1202, the current control unit 542 has a fast injection pulse width Ti with a long shot variation. It is controlled by using the drive current 1001 of the fall waveform. After that, the current control unit 542 controls the final injection 1202 by using the drive current 1002 having a peak hold waveform with a small shot variation in the injection amount under the condition that the injection pulse width Ti is short. In this way, the current control unit 542 switches the drive currents 1001 and 1002 in one combustion cycle according to the injection timing. By switching the drive currents 1001 and 1002 by the current control unit 542 in this way, the effect of suppressing shot variation in the injection amount in one combustion cycle can be obtained.
 また、電流制御部542は、最後の噴射1202よりも前に行われた噴射1201にて、ピーク電流値Ipeakが小さい駆動電流1001を用いることで、昇圧電圧VHの低下を抑制できる。このため、最後の噴射1202で昇圧電圧VHが、図10に示す初期値1070に復帰しやすくなるので、最後の噴射1202における噴射量の精度を高め、1燃焼サイクル中の噴射量ばらつきを抑制できる。 Further, the current control unit 542 can suppress a decrease in the boost voltage VH by using a drive current 1001 having a small peak current value I peak in the injection 1201 performed before the final injection 1202. Therefore, the boosted voltage VH easily returns to the initial value 1070 shown in FIG. 10 at the final injection 1202, so that the accuracy of the injection amount at the final injection 1202 can be improved and the variation in the injection amount during one combustion cycle can be suppressed. ..
[第3の実施の形態] 次に、本発明の第3の実施の形態に係る燃料噴射装置の制御方法の一例について、図5、図13及び図14を用いて説明する。上述した第1及び第2の実施の形態では、1燃焼サイクル中に2回の噴射を行う場合における制御方法の例を示したが、第3の実施の形態では、1燃焼サイクル中に3回以上の噴射を行う場合の制御方法の例について説明する。 [Third Embodiment] Next, an example of the control method of the fuel injection device according to the third embodiment of the present invention will be described with reference to FIGS. 5, 13 and 14. In the first and second embodiments described above, an example of a control method in the case of performing injection twice in one combustion cycle is shown, but in the third embodiment, three times in one combustion cycle. An example of a control method in the case of performing the above injection will be described.
 図13は、ECU104から気筒108ごとの燃料噴射装置101に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。図13においても、図6と同様に、第1~第3気筒に設けられた各燃料噴射装置101の噴射パルス、駆動電流及び噴射率を一点鎖線、実線、破線で表す。 FIG. 13 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. In FIG. 13, as in FIG. 6, the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
 第3の実施の形態に係る燃料噴射装置101は、1燃焼サイクル中で2回よりも多い噴射回数で燃料を噴射する。この場合、第1気筒の噴射率1310、第2気筒の噴射率1311、第3気筒の噴射率1312に示すように、気筒108ごとに噴射率が変動している。 The fuel injection device 101 according to the third embodiment injects fuel at a number of injections more than two times in one combustion cycle. In this case, as shown in the injection rate 1310 of the first cylinder, the injection rate 1311 of the second cylinder, and the injection rate 1312 of the third cylinder, the injection rate fluctuates for each cylinder 108.
 そこで、本発明の第3の実施の形態に係る制御装置150は、最後よりも前に行われた噴射1301(「噴射1回目」と呼ぶ),噴射1302(「噴射2回目」と呼ぶ)による各噴射パルスを燃料噴射装置101に供給した場合の各気筒108の燃料噴射装置101の噴射量を算出する。例えば、検出部541は、弁体214が開弁開始してから閉弁完了するまでの燃料の噴射期間と、燃料噴射装置101に取り付けた圧力センサ109が検出した圧力とから噴射量を算出する。 Therefore, the control device 150 according to the third embodiment of the present invention is based on injection 1301 (referred to as "first injection") and injection 1302 (referred to as "second injection") performed before the end. The injection amount of the fuel injection device 101 of each cylinder 108 when each injection pulse is supplied to the fuel injection device 101 is calculated. For example, the detection unit 541 calculates the injection amount from the fuel injection period from the start of valve opening to the completion of valve closing of the valve body 214 and the pressure detected by the pressure sensor 109 attached to the fuel injection device 101. ..
 そして、電流制御部(電流制御部542)は、1燃焼サイクルで3回以上の噴射を燃料噴射装置(燃料噴射装置101)に行わせ、最後の噴射よりも前に行われた複数回の噴射における噴射量の和に基づいて、最後の噴射の噴射量を補正する。ここで、電流制御部(電流制御部542)は、最後の噴射よりも前に行われた複数回の噴射における噴射量の和が多いほど、最後の噴射における噴射量が少なくなるように噴射パルス幅Tiを小さくする。例えば、電流制御部542は、噴射1回目の噴射率1301と、噴射2回目の噴射率1302から算出した和が大きい第3気筒の燃料噴射装置101に対して、小さく補正した噴射パルス幅1306を供給し、最後の噴射1303を行わせる。一方、電流制御部542は、噴射1回目の噴射率1301と、噴射2回目の噴射率1302から算出した和が小さい第1気筒の燃料噴射装置101に対して、大きく補正した噴射パルス幅1308を供給し、最後の噴射1303を行わせる。 Then, the current control unit (current control unit 542) causes the fuel injection device (fuel injection device 101) to inject three or more times in one combustion cycle, and a plurality of injections performed before the final injection. The injection amount of the last injection is corrected based on the sum of the injection amounts in. Here, the current control unit (current control unit 542) has an injection pulse so that the larger the sum of the injection amounts in the plurality of injections performed before the last injection, the smaller the injection amount in the last injection. Reduce the width Ti. For example, the current control unit 542 sets a small correction pulse width 1306 for the fuel injection device 101 of the third cylinder, which has a large sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection. Supply and have the final injection 1303 performed. On the other hand, the current control unit 542 applies a greatly corrected injection pulse width 1308 to the fuel injection device 101 of the first cylinder, which has a small sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection. Supply and have the final injection 1303 performed.
 なお、電流制御部542は、噴射1回目の噴射率1301と、噴射2回目の噴射率1302から算出した和が適正な第2気筒に取り付けられた燃料噴射装置101に対して、補正なしの噴射パルス幅1307を供給し、最後の噴射1303を行わせる。 The current control unit 542 injects the fuel injection device 101 attached to the second cylinder in which the sum calculated from the injection rate 1301 of the first injection and the injection rate 1302 of the second injection is appropriate without correction. A pulse width of 1307 is supplied to perform the final injection 1303.
 このように電流制御部542は、1燃焼サイクル中の噴射回数を2回よりも多くした場合における噴射量のショットばらつきを抑制し、各気筒108の燃料噴射装置の噴射量ばらつきを抑制する。この結果、燃焼変動を抑制する効果が高まる。 In this way, the current control unit 542 suppresses shot variation in the injection amount when the number of injections in one combustion cycle is more than two, and suppresses injection amount variation in the fuel injection device of each cylinder 108. As a result, the effect of suppressing combustion fluctuations is enhanced.
 図14は、第3の実施の形態に係る制御方法の他の一例を示す図である。図14は、ECU104から気筒108ごとの燃料噴射装置101に1燃焼サイクルで供給される噴射パルスと駆動電流、噴射率を示した図である。図14においても、図6と同様に、第1~第3気筒に設けられた各燃料噴射装置101の噴射パルス、駆動電流及び噴射率を一点鎖線、実線、破線で表す。 FIG. 14 is a diagram showing another example of the control method according to the third embodiment. FIG. 14 is a diagram showing an injection pulse, a drive current, and an injection rate supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. In FIG. 14, as in FIG. 6, the injection pulse, drive current, and injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line.
 図14では、1燃焼サイクルにおける吸気工程1420における2回の噴射1401,1402と、圧縮工程1421における1回の噴射1403の様子が示される。図14においても、燃料噴射装置101は、1燃焼サイクル中で2回よりも多い噴射回数の噴射を行う。この場合、第1気筒の噴射率1410、第2気筒の噴射率1411、第3気筒の噴射率1412に示すように、気筒108ごとに噴射率が変動している。そして、電流制御部(電流制御部542)は、1燃焼サイクルのうち、吸気工程1420で燃料噴射装置(燃料噴射装置101)に最後の噴射よりも前の噴射を行わせ、圧縮工程1421で燃料噴射装置(燃料噴射装置101)に最後の噴射を行わせる。 FIG. 14 shows the state of two injections 1401 and 1402 in the intake step 1420 and one injection 1403 in the compression step 1421 in one combustion cycle. Also in FIG. 14, the fuel injection device 101 injects more than two injections in one combustion cycle. In this case, as shown in the injection rate 1410 of the first cylinder, the injection rate 1411 of the second cylinder, and the injection rate 1412 of the third cylinder, the injection rate fluctuates for each cylinder 108. Then, the current control unit (current control unit 542) causes the fuel injection device (fuel injection device 101) to inject before the final injection in the intake step 1420 in one combustion cycle, and fuels in the compression step 1421. The injection device (fuel injection device 101) is made to perform the final injection.
 図14を用いて説明する制御方法と、図13を用いて説明した制御方法との違いは、最後の噴射1403よりも前に行われた噴射1402における噴射パルス幅Tiを、最後の噴射1403における噴射パルス幅Tiよりも小さくする点である。このため、電流制御部(電流制御部542)は、最後の噴射よりも前に行われた複数回の噴射のうち、最後の噴射の直前で行われた噴射で燃料噴射装置(燃料噴射装置101)に供給する噴射パルス幅Tiを、最後の噴射で燃料噴射装置(燃料噴射装置101)に供給する噴射パルス幅Tiより小さくする。なお、吸気工程1420における最初の噴射1401の噴射パルス幅Tiによる燃料噴射は、気筒108内の空気流動が強いタイミングで行われるため、制御装置150は、噴射量が多くなるように制御する。 The difference between the control method described with reference to FIG. 14 and the control method described with reference to FIG. 13 is that the injection pulse width Ti in the injection 1402 performed before the final injection 1403 is set in the final injection 1403. The point is to make it smaller than the injection pulse width Ti. Therefore, the current control unit (current control unit 542) is a fuel injection device (fuel injection device 101) in the injection performed immediately before the last injection among the plurality of injections performed before the last injection. ) Is made smaller than the injection pulse width Ti supplied to the fuel injection device (fuel injection device 101) at the final injection. Since the fuel injection with the injection pulse width Ti of the first injection 1401 in the intake step 1420 is performed at the timing when the air flow in the cylinder 108 is strong, the control device 150 controls so that the injection amount is large.
 そして、最初の噴射1401より後(吸気工程1420の後半)の噴射1402は、気筒108内の空気流動が弱くなるタイミングで行われる。そこで、電流制御部542は、燃料噴射装置101が噴霧した燃料を弱い空気流動に適切に乗せられるようにするため、噴射1402を、最初の噴射1401における噴射パルス幅Tiよりも短い噴射パルス幅Tiとした小さな噴射量で燃料を噴射する。このような制御により、吸気工程1420における気筒108内の燃料の均質性を向上することが可能となる。 Then, the injection 1402 after the first injection 1401 (the latter half of the intake step 1420) is performed at the timing when the air flow in the cylinder 108 becomes weak. Therefore, the current control unit 542 sets the injection 1402 to the injection pulse width Ti shorter than the injection pulse width Ti in the first injection 1401 so that the fuel sprayed by the fuel injection device 101 can be appropriately placed on the weak air flow. Fuel is injected with a small injection amount. Such control makes it possible to improve the homogeneity of the fuel in the cylinder 108 in the intake step 1420.
 なお、図14を用いて説明した制御に際して、制御装置150は、最後の噴射よりも前、すなわち1回目の噴射1401の噴射パルス幅と、2回目の噴射1402の噴射パルス幅の和よりも、最後の噴射1403の噴射パルス幅が小さくなるように設定するとよい。
制御装置150が、最後の噴射1403の噴射量よりも前に行われる噴射1402の噴射量を少なく制御することで、最後の噴射1403の噴射量がばらついても1燃焼サイクル中の噴射量への寄与度を小さくすることができる。このため、1燃焼サイクル中の噴射量のショットばらつきを低減して、燃焼変動を抑止できる。
In the control described with reference to FIG. 14, the control device 150 is set before the last injection, that is, the sum of the injection pulse width of the first injection 1401 and the injection pulse width of the second injection 1402. The injection pulse width of the final injection 1403 may be set to be small.
The control device 150 controls the injection amount of the injection 1402 performed before the injection amount of the last injection 1403 to be smaller, so that even if the injection amount of the last injection 1403 varies, the injection amount during one combustion cycle can be reached. The degree of contribution can be reduced. Therefore, it is possible to reduce the shot variation of the injection amount during one combustion cycle and suppress the combustion variation.
 また、第3の実施の形態に係る制御装置150では、電流制御部(電流制御部542)は、最後の噴射でソレノイド(ソレノイド205)に供給するピーク電流を、最後より前に行われた複数回の噴射でソレノイド(ソレノイド205)に供給するピーク電流よりも多くする。図14に示すように、電流制御部542は、3回目の噴射1403でソレノイド205に供給するピーク電流を、1回目の噴射1401、2回目の噴射1402でソレノイド205に供給するピーク電流より多くする。ここで、電流制御部542は、逆に言えば、電流制御部542は、2回目の噴射1402における噴射パルス幅に対応する電流波形のピーク電流値を、1回目の噴射1401、及び3回目の噴射1403における噴射パルス幅に対応する電流波形のピーク電流値よりも低く設定している。 Further, in the control device 150 according to the third embodiment, the current control unit (current control unit 542) supplies a plurality of peak currents supplied to the solenoid (solenoid 205) at the last injection before the last injection. It is made larger than the peak current supplied to the solenoid (solenoid 205) by one injection. As shown in FIG. 14, the current control unit 542 sets the peak current supplied to the solenoid 205 by the third injection 1403 to be larger than the peak current supplied to the solenoid 205 by the first injection 1401 and the second injection 1402. .. Here, conversely, the current control unit 542 sets the peak current value of the current waveform corresponding to the injection pulse width in the second injection 1402 to the first injection 1401 and the third injection 1402. It is set lower than the peak current value of the current waveform corresponding to the injection pulse width in the injection 1403.
 そして、電流制御部(電流制御部542)は、最後の噴射よりも前に行われた複数回の噴射のうち、最後の噴射の直前で行われた噴射で弁体(弁体214)をハーフリフトで動作させ、最後の噴射で弁体(弁体214)をフルリフトで動作させる。例えば、電流制御部542は、2回目の噴射1402において、弁体214が最大高さ位置に到達しないハーフリフトで動作させる。このように電流制御部542が2回目の噴射1402における噴射パルス幅を小さくしてピーク電流を小さくすることで、可動子202に作用する磁気吸引力を抑制する。そして、電流制御部542は、弁体214をハーフリフトで動作させたときの噴射期間を安定的に制御する。 Then, the current control unit (current control unit 542) halves the valve body (valve body 214) by the injection performed immediately before the last injection among the plurality of injections performed before the last injection. It is operated by a lift, and the valve body (valve body 214) is operated by a full lift at the final injection. For example, the current control unit 542 operates in the second injection 1402 with a half lift in which the valve body 214 does not reach the maximum height position. In this way, the current control unit 542 reduces the injection pulse width in the second injection 1402 to reduce the peak current, thereby suppressing the magnetic attraction force acting on the mover 202. Then, the current control unit 542 stably controls the injection period when the valve body 214 is operated by the half lift.
[第4の実施の形態] 次に、本発明の第4の実施の形態に係る燃料噴射装置の制御方法の一例について、図15を用いて説明する。第4の実施の形態では、制御部が点火時期を遅角する制御方法の例について説明する。 [Fourth Embodiment] Next, an example of the control method of the fuel injection device according to the fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, an example of a control method in which the control unit retards the ignition timing will be described.
 図15は、ECU104から気筒108ごとの燃料噴射装置101に1燃焼サイクルで供給される噴射パルス、噴射率及び点火時期を示した図である。図12と同様に、図15においても、第1~第3気筒に設けられた各燃料噴射装置101の噴射パルス及び噴射率を一点鎖線、実線、破線で表す。また、第4の実施の形態係る制御を行う前の点火時期を点線で表し、第4の実施の形態に係る制御を行った後の点火時期を実線で表す。 FIG. 15 is a diagram showing an injection pulse, an injection rate, and an ignition timing supplied from the ECU 104 to the fuel injection device 101 for each cylinder 108 in one combustion cycle. Similar to FIG. 12, in FIG. 15, the injection pulse and the injection rate of each fuel injection device 101 provided in the first to third cylinders are represented by a chain line, a solid line, and a broken line. Further, the ignition timing before the control according to the fourth embodiment is represented by a dotted line, and the ignition timing after the control according to the fourth embodiment is represented by a solid line.
 図15では、1燃焼サイクルにおける吸気工程1520における2回の噴射1501,1502と、圧縮工程1521における1回の噴射1503の様子が示される。図15においても、燃料噴射装置101は、1燃焼サイクル中で2回よりも多い噴射回数の噴射を行う。この場合、第1気筒の噴射率1510、第2気筒の噴射率1511、第3気筒の噴射率1512に示すように、気筒108ごとに噴射率が変動している。 FIG. 15 shows the state of two injections 1501 and 1502 in the intake step 1520 and one injection 1503 in the compression step 1521 in one combustion cycle. Also in FIG. 15, the fuel injection device 101 injects more than two injections in one combustion cycle. In this case, as shown in the injection rate 1510 of the first cylinder, the injection rate 1511 of the second cylinder, and the injection rate 1512 of the third cylinder, the injection rate fluctuates for each cylinder 108.
 そこで、制御部(制御部500)は、1燃焼サイクルの吸気工程及び圧縮工程で3回以上の噴射を燃料噴射装置(燃料噴射装置101)に行わせ、燃焼工程1522で点火時期を上死点(TDC)よりリタードさせる。例えば、エンジンの始動時において、3元触媒等の温度を暖機する条件では、点火時期1530,1531に示すように、制御部500が点火時期を上死点よりもリタードさせる。このように点火時期をリタードすることで、意図的に排気損失を大きくして、3元触媒に供給する熱量を増加させ、3元触媒の温度を向上させる制御を行うことが可能となる。3元触媒の温度を上げることで、3元触媒の浄化効率が向上するため、車両から排出される排気ガス量を抑制することができる。 Therefore, the control unit (control unit 500) causes the fuel injection device (fuel injection device 101) to inject three or more times in the intake step and the compression step of one combustion cycle, and sets the ignition timing to the top dead center in the combustion step 1522. It is retarded from (TDC). For example, at the time of starting the engine, under the condition of warming up the temperature of the three-way catalyst or the like, the control unit 500 causes the ignition timing to retard from the top dead center as shown in the ignition timings 1530 and 1531. By retarding the ignition timing in this way, it is possible to intentionally increase the exhaust loss, increase the amount of heat supplied to the three-way catalyst, and perform control to improve the temperature of the three-way catalyst. By raising the temperature of the three-way catalyst, the purification efficiency of the three-way catalyst is improved, so that the amount of exhaust gas discharged from the vehicle can be suppressed.
 ただし、点火リタードを行う条件では、最適点火時期よりも点火時期が遅角するため、燃焼速度が遅くなり、燃焼サイクルごとの燃焼変動が大きくなる課題がある。点火時期を遅角するほど、3元触媒が活性化するまでの時間が短くなるため、点火時期を遅角する条件で燃焼変動を抑制することが求められる。 However, under the condition of performing ignition retardation, the ignition timing is delayed from the optimum ignition timing, so that there is a problem that the combustion speed becomes slow and the combustion fluctuation in each combustion cycle becomes large. Since the time until the three-way catalyst is activated becomes shorter as the ignition timing is retarded, it is required to suppress the combustion fluctuation under the condition of retarding the ignition timing.
 第4の実施の形態に係る制御方法及び制御装置150では、最後の噴射1503よりも前に行われた噴射1501,1502にて、それぞれ所定の噴射パルス幅の噴射パルスを供給した各気筒の燃料噴射装置101の噴射量を、第1の実施の形態で説明した噴射期間ないし、圧力降下から算出する。そして、制御装置150は、噴射量が少ない第1気筒では、最後の噴射の噴射パルス幅を1508のように大きく補正し、噴射量が多い第3気筒では最後の噴射の噴射パルス幅を1506のように小さく補正する電流制御部542を備える。 In the control method and control device 150 according to the fourth embodiment, the fuel of each cylinder to which the injection pulses having a predetermined injection pulse width are supplied in the injections 1501 and 1502 performed before the final injection 1503, respectively. The injection amount of the injection device 101 is calculated from the injection period or pressure drop described in the first embodiment. Then, the control device 150 greatly corrects the injection pulse width of the last injection such as 1508 in the first cylinder having a small injection amount, and adjusts the injection pulse width of the last injection to 1506 in the third cylinder having a large injection amount. The current control unit 542 is provided so as to make a small correction.
 また、エンジンの始動から電流制御部542が噴射パルス幅を補正した後に、制御部は、噴射パルス幅を補正する前に比べて点火時期1530を点火時期1531のように遅角化する制御を行う。1燃焼サイクル中の噴射量のショットばらつきを低減することで、点火時期を遅角しても燃焼変動を抑制でき、3元触媒の温度を向上できる。 Further, after the current control unit 542 corrects the injection pulse width from the start of the engine, the control unit controls to delay the ignition timing 1530 to the ignition timing 1531 as compared with before correcting the injection pulse width. .. By reducing the shot variation of the injection amount during one combustion cycle, the combustion fluctuation can be suppressed even if the ignition timing is delayed, and the temperature of the three-way catalyst can be improved.
 なお、本発明は上述した各実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
 例えば、上述した各実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various other application examples and modifications can be taken as long as the gist of the present invention described in the claims is not deviated.
For example, each of the above-described embodiments describes in detail and concretely the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment described here with the configuration of another embodiment, and further, it is possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
 1…燃料噴射システム、101…燃料噴射装置、103…駆動回路、104…ECU、106…燃料ポンプ、107…燃焼室、108…気筒、150…制御装置、202…可動子、207…固定子、214…弁体、500…制御部、501…CPU、502…駆動IC、541…検出部、542…電流制御部 1 ... Fuel injection system, 101 ... Fuel injection device, 103 ... Drive circuit, 104 ... ECU, 106 ... Fuel pump, 107 ... Combustion chamber, 108 ... Cylinder, 150 ... Control device, 202 ... Movable element, 207 ... Stator, 214 ... Valve body, 500 ... Control unit, 501 ... CPU, 502 ... Drive IC, 541 ... Detection unit, 542 ... Current control unit

Claims (15)

  1.  1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置を制御する制御装置において、 前記1燃焼サイクルで行われる噴射の各回での燃料の噴射量を算出し、前記1燃焼サイクルにおける最後の噴射の噴射量より、前記最後の噴射よりも前に行われた噴射の噴射量が多いほど、前記最後の噴射よりも前に行われた噴射で前記燃料噴射装置に供給した噴射パルスの噴射パルス幅より、前記最後の噴射で前記燃料噴射装置に供給する噴射パルスの噴射パルス幅を小さくするように制御する制御部を備える
     制御装置。
    In a control device that controls a fuel injection device that injects fuel a plurality of times in one combustion cycle, the fuel injection amount at each injection performed in the one combustion cycle is calculated, and the final injection in the one combustion cycle is performed. The larger the injection amount of the injection performed before the last injection than the injection amount, the wider the injection pulse width of the injection pulse supplied to the fuel injection device in the injection performed before the last injection. , A control device including a control unit that controls so as to reduce the injection pulse width of the injection pulse supplied to the fuel injection device at the final injection.
  2.  前記燃料噴射装置は、弁座に接した状態で燃料をシールする弁体と、前記弁体を駆動させる可動子と、磁気吸引力により前記可動子を吸引する固定子と、駆動電流が供給されると前記弁座と前記弁体との間に燃料を導入する空間を形成するように前記固定子に前記磁気吸引力を生じさせるソレノイドと、を備え、
     前記駆動電流は、前記可動子を駆動させるピーク電流と、前記可動子を前記ソレノイドに吸引した状態で保持するために前記ピーク電流の最大値より低い範囲でスイッチングする保持電流とからなり、
     前記制御部は、前記最後の噴射で前記ソレノイドに供給する前記ピーク電流を、前記最後の噴射よりも前に行われた噴射で前記ソレノイドに供給する前記ピーク電流よりも多くして、前記最後の噴射で前記弁体をフルリフトで動作させる
     請求項1に記載の制御装置。
    The fuel injection device is supplied with a valve body that seals fuel in contact with a valve seat, a mover that drives the valve body, a stator that sucks the mover by magnetic attraction, and a drive current. Then, the stator is provided with a solenoid that generates the magnetic attraction force in the stator so as to form a space for introducing fuel between the valve seat and the valve body.
    The drive current includes a peak current that drives the mover and a hold current that switches within a range lower than the maximum value of the peak current in order to hold the mover in a state of being attracted to the solenoid.
    The control unit makes the peak current supplied to the solenoid in the last injection larger than the peak current supplied to the solenoid in the injection performed before the last injection, and makes the last injection. The control device according to claim 1, wherein the valve body is operated with a full lift by injection.
  3.  前記制御部は、
     前記燃料噴射装置の燃料圧力の変化に基づいて前記噴射量を算出し、又は、前記固定子に前記可動子が衝突して生じる電気的な変化により、前記燃料噴射装置の前記弁体の開弁開始タイミングと、閉弁完了タイミングから求められる燃料の噴射期間を推定し、前記噴射期間に基づいて前記噴射量を算出する検出部と、
     前記噴射パルス幅を変更した前記噴射パルスを前記燃料噴射装置に供給する電流制御部と、を有する
     請求項2に記載の制御装置。
    The control unit
    The injection amount is calculated based on the change in the fuel pressure of the fuel injection device, or the valve body of the fuel injection device is opened due to an electrical change caused by the collision of the mover with the stator. A detection unit that estimates the fuel injection period obtained from the start timing and the valve closing completion timing and calculates the injection amount based on the injection period.
    The control device according to claim 2, further comprising a current control unit that supplies the injection pulse having a changed injection pulse width to the fuel injection device.
  4.  前記電流制御部は、前記最後の噴射よりも前に行われた噴射の噴射量が適正な噴射量より多いほど、前記最後の噴射で前記燃料噴射装置に供給する前記噴射パルス幅を小さくし、前記最後の噴射よりも前に行われた噴射の噴射量が前記適正な噴射量より少ないほど、前記最後の噴射で前記燃料噴射装置に供給する前記噴射パルス幅を大きくする 請求項3に記載の制御装置。 The current control unit reduces the injection pulse width supplied to the fuel injection device in the final injection as the injection amount of the injection performed before the last injection is larger than the appropriate injection amount. The third aspect of claim 3, wherein the injection amount of the injection performed before the last injection is smaller than the appropriate injection amount, the width of the injection pulse supplied to the fuel injection device at the last injection is increased. Control device.
  5.  前記電流制御部は、前記可動子が、前記固定子に向けて変位を開始し、前記可動子が所定値まで加速したタイミングで前記ソレノイドへの通電をオフして、前記可動子が前記固定子に衝突する速度を減速させる 請求項3に記載の制御装置。 In the current control unit, the mover starts displacement toward the stator, and when the mover accelerates to a predetermined value, the energization of the solenoid is turned off, and the mover moves the stator. The control device according to claim 3, which reduces the speed at which the vehicle collides with the vehicle.
  6.  前記電流制御部は、前記最後の噴射よりも前に行われた噴射にて前記ソレノイドに供給する前記駆動電流が最大値に達した後で、前記ソレノイドに逆電圧を印加するように制御し、前記最後の噴射では、前記1燃焼サイクルで行われる最初の噴射よりも前記保持電流に至るまでに大きな前記駆動電流を前記ソレノイドに供給する
     請求項5に記載の制御装置。
    The current control unit controls to apply a reverse voltage to the solenoid after the drive current supplied to the solenoid reaches a maximum value in the injection performed before the last injection. The control device according to claim 5, wherein in the final injection, the driving current is supplied to the solenoid so as to reach the holding current, which is larger than that of the first injection performed in the one combustion cycle.
  7.  前記電流制御部は、前記1燃焼サイクルで3回以上の噴射を前記燃料噴射装置に行わせ、前記最後の噴射よりも前に行われた複数回の噴射における噴射量の和に基づいて、前記最後の噴射の噴射量を補正する
     請求項3に記載の制御装置。
    The current control unit causes the fuel injection device to inject three or more times in the one combustion cycle, and based on the sum of the injection amounts in the plurality of injections performed before the last injection. The control device according to claim 3, wherein the injection amount of the last injection is corrected.
  8.  前記電流制御部は、前記最後の噴射よりも前に行われた複数回の噴射における噴射量の和が多いほど、前記最後の噴射における噴射量が少なくなるように前記噴射パルス幅を小さくする
     請求項7に記載の制御装置。
    The current control unit claims to reduce the injection pulse width so that the larger the sum of the injection amounts in the plurality of injections performed before the last injection, the smaller the injection amount in the last injection. Item 7. The control device according to item 7.
  9.  前記電流制御部は、前記最後の噴射よりも前に行われた複数回の噴射のうち、前記最後の噴射の直前で行われた噴射で前記燃料噴射装置に供給する前記噴射パルス幅を、前記最後の噴射で前記燃料噴射装置に供給する前記噴射パルス幅より小さくする
     請求項8に記載の制御装置。
    The current control unit determines the injection pulse width to be supplied to the fuel injection device in the injection performed immediately before the last injection among the plurality of injections performed before the last injection. The control device according to claim 8, wherein the width of the injection pulse supplied to the fuel injection device at the final injection is smaller than the width of the injection pulse.
  10.  前記電流制御部は、前記1燃焼サイクルのうち、吸気工程で前記燃料噴射装置に前記最後の噴射よりも前の噴射を行わせ、圧縮工程で前記燃料噴射装置に前記最後の噴射を行わせる 請求項8に記載の制御装置。 In the one combustion cycle, the current control unit causes the fuel injection device to inject before the last injection in the intake step, and causes the fuel injection device to perform the last injection in the compression step. Item 8. The control device according to item 8.
  11.  前記電流制御部は、前記最後の噴射で前記ソレノイドに供給する前記ピーク電流を、最後より前に行われた複数回の噴射で前記ソレノイドに供給する前記ピーク電流よりも多くする
     請求項8に記載の制御装置。
    The eighth aspect of the present invention, wherein the current control unit increases the peak current supplied to the solenoid by the last injection to be larger than the peak current supplied to the solenoid by a plurality of injections performed before the last injection. Control device.
  12.  前記電流制御部は、前記最後の噴射よりも前に行われた複数回の噴射のうち、前記最後の噴射の直前で行われた噴射で前記弁体をハーフリフトで動作させ、前記最後の噴射で前記弁体をフルリフトで動作させる
     請求項11に記載の制御装置。
    The current control unit operates the valve body with a half lift in the injection performed immediately before the last injection among the plurality of injections performed before the last injection, and the last injection. The control device according to claim 11, wherein the valve body is operated with a full lift.
  13.  前記制御部は、前記1燃焼サイクルの吸気工程及び圧縮工程で3回以上の噴射を前記燃料噴射装置に行わせ、燃焼工程で点火時期を上死点よりリタードさせる
     請求項2に記載の制御装置。
    The control device according to claim 2, wherein the control unit causes the fuel injection device to inject three or more times in the intake step and the compression step of the one combustion cycle, and retards the ignition timing from the top dead center in the combustion step. ..
  14.  1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置を制御する制御方法において、 前記1燃焼サイクルで行われる噴射の各回での燃料の噴射量を算出する処理と、
     前記1燃焼サイクルにおける最後の噴射の噴射量より、前記最後の噴射よりも前に行われた噴射の噴射量が多いほど、前記最後の噴射よりも前に行われた噴射で前記燃料噴射装置に供給した噴射パルスの噴射パルス幅より、前記最後の噴射で前記燃料噴射装置に供給する噴射パルスの噴射パルス幅を小さくするように制御する処理と、を含む
     制御方法。
    In a control method for controlling a fuel injection device that injects fuel a plurality of times in one combustion cycle, a process of calculating the fuel injection amount at each injection performed in the one combustion cycle and a process of calculating the fuel injection amount at each injection.
    The larger the injection amount of the injection performed before the last injection than the injection amount of the last injection in the one combustion cycle, the more the injection performed before the last injection is applied to the fuel injection device. A control method including a process of controlling the injection pulse width of the injection pulse supplied to the fuel injection device at the last injection to be smaller than the injection pulse width of the supplied injection pulse.
  15.  1燃焼サイクルで複数回、燃料を噴射する燃料噴射装置を制御する制御装置を動作させるコンピューターに、
     前記1燃焼サイクルで行われる噴射の各回での燃料の噴射量を算出する手順と、
     前記1燃焼サイクルにおける最後の噴射の噴射量より、前記最後の噴射よりも前に行われた噴射の噴射量が多いほど、前記最後の噴射よりも前に行われた噴射で前記燃料噴射装置に供給した噴射パルスの噴射パルス幅より、前記最後の噴射で前記燃料噴射装置に供給する噴射パルスの噴射パルス幅を小さくするように制御する手順と、を
     実行させるためのプログラム。
    A computer that operates a control device that controls a fuel injection device that injects fuel multiple times in one combustion cycle.
    The procedure for calculating the fuel injection amount at each injection performed in the one combustion cycle, and
    The larger the injection amount of the injection performed before the last injection than the injection amount of the last injection in the one combustion cycle, the more the injection performed before the last injection is applied to the fuel injection device. A program for executing a procedure for controlling the injection pulse width of the injection pulse supplied to the fuel injection device at the last injection to be smaller than the injection pulse width of the supplied injection pulse.
PCT/JP2021/001182 2020-03-30 2021-01-15 Control device, control method, and program for fuel injection device WO2021199577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020059925A JP7256772B2 (en) 2020-03-30 2020-03-30 CONTROL DEVICE, CONTROL METHOD AND PROGRAM FOR FUEL INJECTION DEVICE
JP2020-059925 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021199577A1 true WO2021199577A1 (en) 2021-10-07

Family

ID=77917643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001182 WO2021199577A1 (en) 2020-03-30 2021-01-15 Control device, control method, and program for fuel injection device

Country Status (2)

Country Link
JP (1) JP7256772B2 (en)
WO (1) WO2021199577A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027910A (en) * 2002-06-24 2004-01-29 Toyota Motor Corp Fuel injection controlling device
JP2009097385A (en) * 2007-10-15 2009-05-07 Denso Corp Fuel injection state detection device
JP2010101235A (en) * 2008-10-23 2010-05-06 Honda Motor Co Ltd Fuel injection device
JP2011112008A (en) * 2009-11-30 2011-06-09 Hitachi Automotive Systems Ltd Drive circuit of electromagnetic fuel injection valve
WO2015015541A1 (en) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 Drive device for fuel injection device, and fuel injection system
WO2016140150A1 (en) * 2015-03-05 2016-09-09 日立オートモティブシステムズ株式会社 Fuel injection valve, control device for fuel injection valve, and control method
JP2017129090A (en) * 2016-01-22 2017-07-27 日立オートモティブシステムズ株式会社 Control device of fuel injection device
JP2019203455A (en) * 2018-05-24 2019-11-28 日立オートモティブシステムズ株式会社 Controller of injector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027910A (en) * 2002-06-24 2004-01-29 Toyota Motor Corp Fuel injection controlling device
JP2009097385A (en) * 2007-10-15 2009-05-07 Denso Corp Fuel injection state detection device
JP2010101235A (en) * 2008-10-23 2010-05-06 Honda Motor Co Ltd Fuel injection device
JP2011112008A (en) * 2009-11-30 2011-06-09 Hitachi Automotive Systems Ltd Drive circuit of electromagnetic fuel injection valve
WO2015015541A1 (en) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 Drive device for fuel injection device, and fuel injection system
WO2016140150A1 (en) * 2015-03-05 2016-09-09 日立オートモティブシステムズ株式会社 Fuel injection valve, control device for fuel injection valve, and control method
JP2017129090A (en) * 2016-01-22 2017-07-27 日立オートモティブシステムズ株式会社 Control device of fuel injection device
JP2019203455A (en) * 2018-05-24 2019-11-28 日立オートモティブシステムズ株式会社 Controller of injector

Also Published As

Publication number Publication date
JP2021156256A (en) 2021-10-07
JP7256772B2 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP6400825B2 (en) Drive device for fuel injection device
JP6856387B2 (en) Fuel injection device drive
US10634083B2 (en) Drive device for fuel injection device
US9347393B2 (en) Fuel injection device
JP6381970B2 (en) Drive device for fuel injection device
JP6457908B2 (en) Control device and fuel injection system
JP2013234679A (en) Fuel injection device
JP2019074095A (en) Driving device of fuel injection device, and fuel injection system
JP6524206B2 (en) Fuel injection device, control device for fuel injection device, control method for fuel injection device, fuel injection system
WO2021199577A1 (en) Control device, control method, and program for fuel injection device
JP6751654B2 (en) Fuel injection device control device
WO2020195206A1 (en) Control device for fuel injection device
JP7235477B2 (en) Vehicle control device, vehicle fuel injection control method, and vehicle fuel injection control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781823

Country of ref document: EP

Kind code of ref document: A1