WO2021197203A1 - 超声成像系统的数据处理方法、超声成像系统及存储介质 - Google Patents

超声成像系统的数据处理方法、超声成像系统及存储介质 Download PDF

Info

Publication number
WO2021197203A1
WO2021197203A1 PCT/CN2021/083027 CN2021083027W WO2021197203A1 WO 2021197203 A1 WO2021197203 A1 WO 2021197203A1 CN 2021083027 W CN2021083027 W CN 2021083027W WO 2021197203 A1 WO2021197203 A1 WO 2021197203A1
Authority
WO
WIPO (PCT)
Prior art keywords
array element
data
array
interpolation
compensated
Prior art date
Application number
PCT/CN2021/083027
Other languages
English (en)
French (fr)
Inventor
黄继景
杨志明
刘宗民
吴琼
唐大伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/630,244 priority Critical patent/US20220280137A1/en
Publication of WO2021197203A1 publication Critical patent/WO2021197203A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device

Definitions

  • the present disclosure relates to the technical field of data processing. Specifically, the present disclosure relates to a data processing method of an ultrasound imaging system, an ultrasound imaging system, and a storage medium.
  • Ultrasound imaging is the use of ultrasonic sound beams to scan the human body, through the reception of reflected signals,
  • Imaging systems usually use multi-element ultrasound probes. Multiple array elements of the ultrasound probe generate ultrasonic waves under the excitation of electrical signals, and form a transmission beam into the human body, and then receive scattering or scattering from human tissues or organs through multiple array elements.
  • the reflected ultrasound echo signals are analyzed and processed by beam synthesis, dynamic filtering, envelope detection, logarithmic compression, etc., to obtain images of tissues or organs in the human body.
  • embodiments of the present disclosure provide a data processing method for an ultrasound imaging system, including:
  • an embodiment of the present disclosure provides an ultrasound imaging system, including: an ultrasound transducer array element and an ultrasound receiving circuit;
  • the ultrasonic transducer array element array includes a plurality of array elements
  • the ultrasound receiving circuit is in communication connection with each of the plurality of array elements, and is used to receive ultrasound echo signals collected by the plurality of array elements as array element data and perform data processing of the ultrasound imaging system described herein method.
  • the embodiments of the present disclosure provide a computer-readable storage medium that stores a computer program, and the computer program implements the data processing method of the ultrasound imaging system described herein when the computer program is executed by a processor.
  • Fig. 1 is a schematic structural diagram of an ultrasound imaging system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another ultrasonic imaging system according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the structure of an ultrasonic transducer array element array and the positional relationship between the ultrasonic transducer array element array and the acquisition center line according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a data processing method of an ultrasound imaging system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the change curve of the ratio of the sound path difference of the array element 1 to the sound path difference of the array element 4 and the change of the scanning depth according to an embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of the principle of data compensation according to an embodiment of the present disclosure.
  • the array element data collected by different array elements has the problem of misalignment, which cannot meet the requirements of beam synthesis. If the data of different array elements are directly synthesized without any processing, it will Affect the accuracy of ultrasound imaging.
  • the interpolation point of the array element to be compensated can be determined according to the reference array element, and the interpolation data of the array element to be compensated can be determined according to the position of the adjacent interpolation point and the array element data based on the interpolation point , So as to realize the compensation of the array element data of the array element to be compensated, so that the amount of data of each array element to be compensated and the reference array element within the same distance on the scan line is the same, and the array element data of each array element to be compensated and the reference
  • the array element data of the array elements can be aligned, so that the array element data of each array element meets the requirements of beam synthesis, and the accuracy of ultrasound imaging is improved.
  • Fig. 1 is a schematic structural frame diagram of an ultrasound imaging system according to an embodiment of the present disclosure.
  • the ultrasonic imaging system includes: an ultrasonic transducer array element 110 and an ultrasonic receiving circuit 120, wherein the ultrasonic transducer element array 110 includes a plurality of ultrasonic transducer elements (hereinafter referred to as As "array element").
  • the ultrasound receiving circuit 120 is in communication connection with each array element, and is used to receive ultrasound echo signals collected by multiple array elements as array element data and execute the data processing method of the ultrasound imaging system provided by the embodiments of the present disclosure. Partially detailed.
  • Fig. 2 is a schematic structural diagram of another ultrasonic imaging system provided according to an embodiment of the present disclosure. As shown in FIG. 2, in the embodiment, the ultrasound imaging system further includes: an ultrasound transmitting circuit 130 and a power supply circuit 140.
  • the ultrasonic transmitting circuit 130 is connected to each array element in communication, and is used to generate an electric signal and excite a plurality of array elements to emit ultrasonic waves through the electric signal.
  • the power supply circuit 140 (for example, through a power cable) is electrically connected to the ultrasonic receiving circuit 120 and the ultrasonic transmitting circuit 130, respectively, for supplying power to the ultrasonic receiving circuit 120 and the ultrasonic transmitting circuit 130, and can pass through the ultrasonic receiving circuit 120 and the ultrasonic transmitting circuit 130. Power is supplied to the ultrasonic transducer array 110.
  • the ultrasound imaging system provided by the embodiment of the present disclosure further includes: a display device, which is communicatively connected with the ultrasound receiving circuit 120, and is used to compare the data of the ultrasound imaging system provided by the ultrasound receiving circuit 120 according to the embodiment of the present disclosure. Processing method The processed data is displayed.
  • the ultrasonic transducer array 110 of the embodiment of the present disclosure may be an ultrasonic probe, and the embodiment of the present disclosure does not limit the type of the ultrasonic probe. It should be understood that the technical solutions of the embodiments of the present disclosure are applicable to a variety of ultrasound probes.
  • FIG. 3 is a schematic diagram of the structure of an ultrasonic transducer array element array and the positional relationship between the ultrasonic transducer array element array and the collection center line according to an embodiment of the present disclosure.
  • the ultrasonic transducer array element 110 may be an 80-element convex array probe, which includes 8 array elements (the 8 circles on the curve in FIG. 3) (Shown by dots), where 4 array elements and the other 4 array elements are arranged symmetrically with respect to the scan line (or the acquisition center line, as shown by the dotted line in Figure 3), and the 8 array elements can be arranged at a fixed interval.
  • the arrangement is arranged at a pitch of 0.78 mm, and it may also be arranged at a pitch of other values, which is not limited in the embodiment of the present disclosure.
  • Fig. 4 is a schematic structural frame diagram of an ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • the ultrasound receiving circuit 120 of the embodiment of the present disclosure includes a memory 121 and a processor 122, and the memory 121 and the processor 122 are electrically connected through a bus 123, for example.
  • a computer program is stored on the memory 121, and the computer program can be executed by the processor 122 to implement the data processing method of the ultrasound imaging system provided in the embodiment of the present disclosure.
  • the memory 121 may also be used to store the array element data of a plurality of array elements, the interpolation points and interpolation data obtained according to the data processing method of the ultrasound imaging system provided in the embodiment of the present disclosure, and the array element data after compensation. data.
  • the ultrasonic receiving circuit 120 may include 14 memories 121, of which 6 memories 121 can be used respectively.
  • the seventh memory 121 can be used to store the data of the ultrasound imaging system according to the embodiment of the present disclosure.
  • the eighth memory 121 can be used to store the element data of the reference element, and the remaining six memories 121 can respectively store the element data of the six elements to be compensated.
  • the seventh memory 121 and the eighth memory 121 described in the embodiment of the present disclosure are mainly used to distinguish different memories 121, and are not used to limit the order or serial number between the memories 121.
  • the processor 122 may include 6 multiplier circuits, which are respectively used to call the array element data of the 6 array elements to be compensated from the 6 memories 121, and the array element data of the 6 array elements to be compensated, Interpolation coefficients and correction coefficients are weighted to achieve compensation for array metadata.
  • the memory 121 may be ROM (Read-Only Memory) or other types of static storage devices that can store static information and instructions, and may be RAM (Random Access Memory, random access memory) or Other types of dynamic storage devices that store information and instructions.
  • the memory 121 may also be an EEPROM (Electrically Erasable Programmable Read Only Memory), a CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage or optical discs.
  • the processor 122 may be a CPU (Central Processing Unit, central processing unit), a general-purpose processor, a DSP (Digital Signal Processor, data signal processor), an ASIC (Application Specific Integrated Circuit, application specific integrated circuit), and FPGA (Field-Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor 122 may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the content of the present disclosure.
  • the processor 122 may also be a combination for realizing computing functions, for example, including one or more microprocessor combinations, DSP and microprocessor combinations, and so on.
  • the bus 123 may include a path for transferring information between the above-mentioned components.
  • the bus 123 may be a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of description, only one thick line is used to indicate in FIG. 4, but this does not mean that there is only one bus or one type of bus.
  • Fig. 5 is a schematic structural frame diagram of another ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • the ultrasound receiving circuit 120 of the embodiment of the present disclosure may further include: a data receiving unit 124 and a power supply unit 125, the data receiving unit 124 and the processor respectively 122 is in communication connection with each element in the ultrasonic transducer element array 110, and the power supply unit 125 is electrically connected with the memory 121, the processor 122, the data receiving unit 124, and the power circuit 140, respectively.
  • the data receiving unit 124 may be configured to receive the ultrasonic echo signal of each element in the ultrasonic transducer array element 110 under the control of the processor 122, and then amplify the ultrasonic echo signal and feed it back to the processor 122.
  • the power supply unit 125 can be used to convert the voltage output by the power supply circuit 140 into the voltage required by the memory 121, the processor 122 and the data receiving unit 124 and output electrical energy to the memory 121, the processor 122 and the data receiving unit 124, respectively.
  • the data receiving unit 124 usually includes an IC (Interated Circuit, integrated circuit), and its collection clock is fixed and not adjustable.
  • IC Interated Circuit, integrated circuit
  • the power supply circuit 140 may include: a main power supply circuit 141, a high-voltage sub-circuit 142 and a low-voltage sub-circuit 143.
  • the main power supply circuit 141 is connected to the high-voltage sub-circuit 142 and the low-voltage sub-circuit 143, respectively.
  • the high-voltage sub-circuit 142 is connected to the ultrasonic transmitter circuit 130 through a power cable
  • the low-voltage sub-circuit 143 is connected to the ultrasonic receiving circuit 120 through a power cable.
  • the sub-circuit 143 is connected to the power supply unit 124 through a power cable.
  • the main electronic supply circuit 141 may be a DC-DC (Direct Current-Direct Current, direct current-direct current) circuit.
  • DC-DC Direct Current-Direct Current, direct current-direct current
  • the main power supply circuit 141 can output a voltage of ⁇ 15V to the high-voltage sub-circuit 142 and the low-voltage sub-circuit 143, and the high-voltage sub-circuit 142 converts the voltage of ⁇ 15V into a high voltage of ⁇ 100V and outputs it to
  • the ultrasonic transmitting circuit 130 and the low-voltage sub-circuit 143 convert the voltage of ⁇ 15V into common voltages such as 10V, 5V, 3.3V, etc., and output them to the power supply unit 124.
  • Fig. 6 is a schematic structural frame diagram of yet another ultrasonic receiving circuit according to an embodiment of the present disclosure.
  • the ultrasound receiving circuit 120 may include: a data acquisition sub-circuit 125, an interpolation point determination sub-circuit 126 and a data compensation sub-circuit 127.
  • the data acquisition sub-circuit 125 can be used to acquire the array element data of each element in the ultrasonic transducer array element.
  • the interpolation point determination sub-circuit 126 can be used to determine one of the multiple array elements as the reference array element, and the other array elements in the multiple array elements except the reference array element are the array elements to be compensated, and according to the reference The scanning position of the array element data and the collection time of each array element data determine the interpolation point of the array element to be compensated.
  • the data compensation sub-circuit 127 can be used to perform data compensation on the interpolation point to obtain interpolation data.
  • the data compensation sub-circuit 127 may be used to determine the interpolation value corresponding to the interpolation point according to the distance between the scanning position of the interpolation point and the scanning position of the adjacent point of the interpolation point, and the array element data of the adjacent points. data.
  • the interpolation point determination sub-circuit 126 can be used to determine the element with the largest amount of data in each element as the reference element. In other words, the interpolation point determination sub-circuit 126 uses the array element including the largest number of array element data among the plurality of array elements as the reference array element.
  • the data acquisition sub-circuit 125 may also be used to acquire sound path data collected by each array element in multiple initial scanning segments.
  • the ultrasound receiving circuit 120 in addition to the data acquisition sub-circuit 125, the interpolation point determination sub-circuit 126, and the data compensation sub-circuit 127, the ultrasound receiving circuit 120 further includes a data segmentation circuit.
  • the data segmentation circuit can be used to determine the difference between the two sound path data corresponding to each array element in each initial scan segment, as the sound path difference of the array element in the initial scan segment; for each initial scan Segment, determine the ratio of the sound path difference of each element to be compensated to the sound path difference of the reference element; determine each element to be compensated according to the ratio of the sound path difference of each element to be compensated under multiple initial scanning segments
  • the change curve of the ratio of the sound path difference of the array element with the scanning depth; and for each array element, the scanning depth of the array element is segmented according to the change curve to obtain multiple compensation scanning segments, where the initial scanning segment is The depth range formed by taking two adjacent sound path data collection points as the endpoints.
  • the data segmentation circuit can be specifically used to determine the initial scan segment corresponding to the ratio of the sound path difference less than the sound path difference threshold as the first scan depth range; determine the sound path difference greater than or equal to the sound path difference threshold.
  • the initial scan segment corresponding to the ratio of the path difference is used as the second scan depth range; the first scan depth range is segmented at the interval of the first unit depth; and the second scan depth range is taken as the interval at the second unit depth Perform segmentation, where the first cell depth is smaller than the second cell depth.
  • the interpolation point determination sub-circuit 126 can be specifically used to determine that the array element to be compensated is in the same scanning position according to the scanning position of the element data of the reference element in each compensation scanning segment and the collection time of each element data. Compensate the interpolation points in the scan segment.
  • the interpolation point determination sub-circuit 126 can be specifically used to determine the same acquisition time for each array element to be compensated, according to the corresponding position of the reference array element on the scan line of the element data in each compensation scan segment The corresponding position of the array element to be compensated on the scanning line is used as the interpolation point of the array element to be compensated in the same compensation scanning segment.
  • the ultrasound receiving circuit 120 in the embodiment of the present disclosure further includes an interpolation data correction circuit.
  • the interpolation data correction circuit can be used to determine the correction coefficient according to the interpolation data in the determined compensation scan segment after the interpolation data corresponding to the interpolation point is determined, and to correct the interpolation data according to the correction coefficient.
  • Fig. 7 is a schematic flowchart of a data processing method of an ultrasound imaging system according to an embodiment of the present disclosure.
  • the data processing method of the ultrasound imaging system provided in FIG. 7 can be applied to data processing equipment.
  • the method includes steps S701 to S703:
  • step S701 multiple array element data of each of the multiple array elements in the ultrasonic transducer array element are acquired.
  • each array element data of the array element is the ultrasonic echo signal collected by the array element through a certain point in the scan line at a certain acquisition moment.
  • step S702 it is determined that one of the plurality of array elements is the reference array element, and the other array elements are the array elements to be compensated. According to the scanning position of each array element data of the reference array element and each array element At the time of data collection, the interpolation point corresponding to each of the array elements to be compensated is determined.
  • an array element including a larger number of array element data among the plurality of array elements may be determined as the reference array element.
  • the array element closest to the acquisition center line among the plurality of array elements can be determined as the reference array element, and the other array elements are used as the array element to be compensated. It is easy to understand that, for example, in the case of the same sampling rate, due to the difference in the sound path between each array element and the acquisition center line, the array element closest to the acquisition center line collects the largest amount of data. Use this array element as a benchmark to compensate data for other array elements. After compensation, each array element can retain data of the same amount of data as that of the reference array element, which is conducive to increasing the comprehensiveness and comprehensiveness of beam synthesis data. accuracy.
  • the method may also include:
  • the sound path data collected by each array element in multiple initial scanning segments determine the difference between the two sound path data corresponding to each array element in each initial scanning segment, and use it as the array element in the initial scanning segment
  • For each initial scan segment determine the ratio of the sound path difference of each element to be compensated to that of the reference element; according to the sound path difference of each element to be compensated in multiple initial scan segments
  • the ratio of path difference determines the change curve of the ratio of the sound path difference of each element to be compensated with the scanning depth; for each element, the scanning depth of the array element is segmented according to the change curve to obtain multiple compensations Scan segment.
  • the initial scan segment may be a depth range formed by two adjacent sound path data collection points (ie, focal points, as shown by the dots on the dashed line in FIG. 3) as the end points.
  • the scan depth represents the length of the scan line (shown by the dashed line in FIG. 3) corresponding to the array element, and each point on the scan line (for example, a focal point or a point between two focal points) to the scan line The distance between the intersection with the plane to which the array element belongs is the scanning depth value of that point.
  • the scanning position of the array element data represents the position of the array element data collection point on the scan line, and the position can be characterized by a scanning depth value, and the array element data collection point can be any point on the scan line.
  • the ultrasonic probe adopts an 80-element convex array probe
  • the sound path data of some of its array elements is shown in Table 1.
  • Table 1 the sound path data of 4 array elements (respectively called element 1, element 2, element 3, and element 4) are listed in Table 1 as an example.
  • element 1, element 2, element 3, and element 4 the sound path data of 4 array elements.
  • the sampling rate may represent the number of samples extracted from a continuous signal per second to form a discrete signal, and is usually expressed in Hertz (Hz).
  • the focal distance in Table 1 represents the distance from the focal point (ie, the sound path data collection point) to the intersection of the scan line and the plane to which the array element belongs, that is, the scan depth value of the focal point.
  • the focal distance corresponds to the adjacent focal points, and the depth range formed by taking every two adjacent focal points as endpoints is an initial scanning segment.
  • the first initial scan segment is 3mm-6mm, and the two sound path data of array element 1 corresponding to this initial scan segment are collected at a focal distance of 3mm.
  • the data of 4628ns and 8222ns collected at 6mm, the sound path difference of element 1 in the scanning depth segment is 3594ns; the two sound path data of the element 2 corresponding to the initial scanning segment are collected at a focal distance of 3mm.
  • Data 4306ns and 8021ns collected at a focal distance of 6mm have a sound path difference of 3715ns; the sound path data of array element 3 and array element 4 corresponding to the initial scan segment are shown in Table 1, and the sound path difference is 3819ns and 3880ns, respectively.
  • the second initial scan segment is 6mm-9mm
  • the third initial scan segment is 9mm-12mm
  • the sound path data of each element corresponding to each initial scan segment is shown in Table 1, and each initial scan segment corresponds to The calculation of the sound path difference of each array element is the same as that of the first initial scanning section, and will not be repeated.
  • segmenting the scanning depth of the array element to be compensated according to the change curve includes:
  • the sound path difference threshold can be set according to the actual situation.
  • the sound path difference threshold can be determined according to the trend of the change curve. For example, a value close to 1 (such as 0.98 or 0.99) can be set as the sound path.
  • Difference threshold; the first cell depth and the second cell depth can be set according to actual needs or empirical values, for example, the first cell depth can be set to 3mm, and the second cell depth can be set to 9mm.
  • the ordinate value corresponding to the 15th initial scan segment ie 42mm-45mm
  • 42mm or less can be used as the first scan depth range, and within this range, every 3mm As a compensation scan section; the second scan depth range is 42mm or more, and every 9mm in this range is regarded as a compensation scan section.
  • the array element data of the array element to be compensated and the array element data of the reference array element can be segmented based on the scanning depth in the following manner:
  • a slope threshold can be set as a reference value, and the slope threshold can be set according to actual conditions.
  • the interpolation point of the array element to be compensated is determined according to the scanning position of each element data of the reference array element and the collection time of each element data, including: The scanning position of the metadata and the collection time of each array element data determine the interpolation point of the array element to be compensated in the same compensation scanning segment.
  • the interpolation point of the to-be-compensated array element in the same compensation scanning segment is determined, including: For each array element to be compensated, according to the corresponding position on the scan line (shown by the dotted line in Figure 3) of the element data of the reference array element in each compensation scan segment, determine the array element to be compensated at the same acquisition time The corresponding position on the scan line is used as the interpolation point of the array element to be compensated in the same compensation scan segment.
  • the element 4 in Table 1 when the element 4 in Table 1 is used as the reference element, for the element data Da of a certain compensation scan segment received by the element 4, it can be determined that Da is on the scan line corresponding to the element 4.
  • Scanning position A0 at the acquisition time of Da, determine the position Ax corresponding to scanning position A0 on the scan line corresponding to array element 1, Ax is the interpolation point of array element 1 in the above-mentioned compensation scan segment, that is, the interpolation point is required Location.
  • step S703 data compensation is performed on the interpolation point to obtain interpolation data.
  • the interpolation data corresponding to the interpolation point is determined according to the distance between the scanning position of the interpolation point and the scanning position of the adjacent point of the interpolation point, and the array element data of the adjacent point.
  • adjacent points may refer to scanning positions with array element data that are adjacent to the interpolation point on the same scan line, and the interpolation point usually has two adjacent points on the same scan line.
  • the interpolation data corresponding to the interpolation point is determined according to the scanning distance between the interpolation point and the adjacent point and the element data of the adjacent point, so as to compensate the data of the element to be compensated, and make the data of the element to be compensated.
  • the data of the compensation array element is aligned with the data of the reference array element to facilitate beam synthesis.
  • the interpolation data Da (that is, the array element data that needs to be compensated at the interpolation point A) can be:
  • Db is the element data of position B
  • Dc is the element data of position C
  • K AC is an interpolation coefficient determined based on L AC (the distance between interpolation point A and position C)
  • K AB is an interpolation coefficient determined based on L AB (the distance between interpolation point A and position B).
  • K AC and K AB can be determined in the following manner:
  • the way of determining K AC and K AB is not limited by expression (2), and can also be determined in other ways according to actual requirements, for example, multiplying expression (2) by a certain coefficient.
  • the ratio of K AC and K AB may be equal to the ratio of L AC and L AB.
  • the method may further include: determining a correction coefficient according to the determined interpolation data in the compensation scan segment; correcting the determined interpolation data according to the correction coefficient, Get the corrected interpolation data.
  • the interpolation data obtained by expression (1) is corrected, and the corrected interpolation data Da′ is:
  • K is the correction coefficient, and other parameters have the same meaning as before.
  • the size of the interpolation data can be changed by the correction coefficient, for example, the interpolation data can be enlarged or reduced by a certain multiple.
  • the interpolation data calculated using the above expression (1) is thousands digits
  • the array element data of the reference array element is tens digits.
  • the correction coefficient needs to be set to Percentile (for example, 0.01).
  • the magnitude of the corrected interpolation data Da′ can be the same as the magnitude of the element data of the reference array element, thereby maintaining the unity of the order of magnitude and making the interpolation data more accurate.
  • the method may further include: correspondingly storing the interpolation point and the interpolation data for subsequent recall, which may be stored in one memory or stored in multiple memories, which is not limited in the present disclosure.
  • the array element data of each array element to be compensated can be stored in a corresponding memory 211, interpolation coefficients and correction coefficients can also be stored in a corresponding memory 211, multiplication
  • the processor circuit stores the processed element data of the element to be compensated into a corresponding memory 211 In preparation for subsequent data processing calls, the principle of the compensation process is shown in Figure 9.
  • Fig. 9 is a schematic diagram of the principle of data compensation according to an embodiment of the present disclosure.
  • RAM1 to RAM6 are memories for storing the array element data of 6 array elements to be compensated
  • ROM1 is a memory for storing interpolation coefficients and correction coefficients
  • MULT1 to MULT6 are memories respectively.
  • a multiplier circuit for weighting the array element data of the 6 array elements to be compensated, RAM1_1 to RAM6_1 are respectively used to store the weighted array element data (ie, interpolation data) of the 6 array elements to be compensated.
  • an embodiment of the present disclosure provides a computer storage medium with a computer program stored on the computer storage medium.
  • the computer program is executed by a processor, the data processing of any ultrasound imaging system provided by the embodiment of the present disclosure is realized. method.
  • the computer storage medium may also store the array element data of a plurality of array elements, and the interpolation points and the interpolation data are obtained according to the data processing method of the ultrasound imaging system provided in the embodiments of the present disclosure.
  • the computer storage medium includes but is not limited to any type of disk (including floppy disk, hard disk, optical disk, CD-ROM, and magneto-optical disk), ROM, RAM, EPROM (Erasable Programmable Read-Only Memory, rewritable and rewritable). Programmable read-only memory), EEPROM, flash memory, magnetic card or light card. That is, the storage medium includes any medium that stores or transmits information in a readable form by a device (for example, a computer).
  • a device for example, a computer.
  • the embodiments of the present disclosure provide a data processing method for a computer storage medium suitable for any of the above-mentioned ultrasound imaging systems and various implementation manners of the data processing method, which will not be repeated here.
  • the embodiments of the present disclosure can determine the interpolation point of the array element to be compensated based on the reference array element, and determine the interpolation value of the array element to be compensated based on the position of the adjacent point and the array element data based on the interpolation point Data, so as to realize the compensation of the array element data of the array element to be compensated, so that the amount of data of each array element to be compensated and the reference array element within the same distance on the scan line is the same, and the array element data of each array element to be compensated and The array element data of the reference array element can be aligned, so that the array element data of each array element meets the requirements of beam synthesis, and the accuracy of ultrasound imaging is improved.
  • the array element with the most data is selected as the reference array element, and data is compensated for other array elements based on this array element. After compensation, each array element can retain more data, which is beneficial to increase The data comprehensiveness and accuracy of beam synthesis.
  • the embodiments of the present disclosure can segment the scan depth, and compensate each array element data based on each compensation scan segment that is divided. Compared with the compensation method of the full scan segment, it can effectively improve the precision of data compensation. , And then improve the local clarity of ultrasound imaging.
  • the first segmentation process can be divided into two scanning depth ranges with a larger change rule and a different depth.
  • the two-segment process can further divide the two scanning depth ranges separately, finely divide the shallower scanning depth range, and coarsely divide the deeper scanning depth range, so as to make the entire scanning depth range more reasonable. Segmentation can refine the granularity of the data, while simplifying the calculation process and reducing the amount of calculation to improve the efficiency of data processing.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, unless otherwise specified, "plurality" means two or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像系统的数据处理方法、超声成像系统及存储介质。超声成像系统的数据处理方法包括:步骤S701,获取超声换能阵元阵列(110)中的多个阵元中的每一个的阵元数据;步骤S702,确定多个阵元中的一个阵元作为基准阵元,多个阵元中的除基准阵元之外的其它阵元作为待补偿阵元,根据基准阵元的各阵元数据的扫描位置和采集时刻,确定待补偿阵元的插值点;步骤S703,对所确定的插值点进行数据补偿,得到插值数据。

Description

超声成像系统的数据处理方法、超声成像系统及存储介质
相关申请的交叉引用
本申请要求于2020年3月31日在中国知识产权局提交的中国专利申请No.202010244551.8的优先权,其公开内容以引用方式整体并入本文中。
技术领域
本公开涉及数据处理技术领域,具体而言,本公开涉及一种超声成像系统的数据处理方法、超声成像系统及存储介质。
背景技术
超声成像是利用超声波声束扫描人体,通过对反射信号的接收、
处理,以获得人体内的组织或器官的图像的技术。当前的超声成像系统通常采用多阵元超声探头,超声探头的多个阵元在电信号的激励下产生超声波,并形成发射波束进入人体,然后通过多个阵元接收来自人体组织或器官散射或反射的超声回波信号,在对接收到的超声回波信号进行波束合成、动态滤波、包络检波、对数压缩等分析和处理得到人体内的组织或器官的图像。
发明内容
一方面,本公开实施例提供了一种超声成像系统的数据处理方法,包括:
获取超声换能阵元阵列中的多个阵元中的每一个的多个阵元数据;
确定多个阵元中的一个阵元为基准阵元,以及多个阵元中的除基准阵元之外的其它阵元为待补偿阵元;
根据基准阵元的各阵元数据的扫描位置和采集时刻,确定待补偿阵元的插值点;
对所确定的插值点进行数据补偿,得到插值数据。
另一方面,本公开实施例提供了一种超声成像系统,包括:超声 换能阵元阵列和超声接收电路;
所述超声换能阵元阵列包括多个阵元;
所述超声接收电路与所述多个阵元中的每一个通信连接,用于接收所述多个阵元采集的超声回波信号作为阵元数据并执行本文所述的超声成像系统的数据处理方法。
另一方面,本公开实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现本文所述的超声成像系统的数据处理方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,在附图中:
图1为根据本公开实施例提供的一种超声成像系统的结构框架示意图;
图2为根据本公开实施例提供的另一种超声成像系统的结构框架示意图;
图3为根据本公开实施例的一种超声换能阵元阵列的结构以及超声换能阵元阵列与采集中心线的位置关系示意图;
图4为根据本公开实施例的一种超声接收电路的结构框架示意图;
图5为根据本公开实施例的另一种超声接收电路的结构框架示意图;
图6为根据本公开实施例的又一种超声接收电路的结构框架示意图;
图7为根据本公开实施例提供的超声成像系统的数据处理方法的流程示意图;
图8为根据本公开实施例提供的阵元1的声程差和阵元4的声程差的比值随之扫描深度变化的变化曲线示意图;
图9为根据本公开实施例的数据补偿的原理示意图。
具体实施方式
下面详细描述本公开,本公开的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本公开的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
本领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或它们的组合。应该理解,当元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其它元件,或者也可以存在中间元件。此外,这里使用的术语“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一项和全部组合。
相关技术中,在现有的超声成像过程中,不同阵元采集到的阵元数据存在不对齐的问题,无法满足波束合成的要求,若不加任何处理直接将不同阵元的数据合成,会影响超声成像的准确性。
本公开实施例在确定基准阵元的基础上,可根据基准阵元确定待补偿阵元的插值点,并基于插值点根据相邻插值点的位置和阵元数据确定待补偿阵元的插值数据,从而实现对待补偿阵元的阵元数据的补偿,使各待补偿阵元和基准阵元在扫描线上同一段距离内的数据量相同,并使得各待补偿阵元的阵元数据与基准阵元的阵元数据能够对齐,从而使各阵元的阵元数据满足波束合成的要求,提高超声成像的准确 度。
下面以具体实施例对本公开的技术方案以及本公开的技术方案如何解决上述技术问题进行详细说明。
图1为根据本公开实施例提供的一种超声成像系统的结构框架示意图。如图1所示,在实施例中,超声成像系统包括:超声换能阵元阵列110和超声接收电路120,其中,超声换能阵元阵列110包括多个超声换能阵元(后文中简称为“阵元”)。
超声接收电路120与每个阵元通信连接,用于接收多个阵元采集的超声回波信号作为阵元数据并执行本公开实施例提供的超声成像系统的数据处理方法,该方法将在后续部分详述。
图2为根据本公开实施例提供的另一种超声成像系统的结构框架示意图。如图2所示,在实施例中,超声成像系统还包括:超声发射电路130和电源电路140。
超声发射电路130与每个阵元通信连接,用于生成电信号并通过该电信号激励多个阵元发射超声波。电源电路140(例如,通过电力电缆)分别与超声接收电路120和超声发射电路130电连接,用于为超声接收电路120和超声发射电路130供电,并且可通过超声接收电路120和超声发射电路130为超声换能阵元阵列110供电。
在实施例中,本公开实施例提供的超声成像系统还包括:显示设备,该显示设备与超声接收电路120通信连接,用于对超声接收电路120根据本公开实施例提供的超声成像系统的数据处理方法处理后的数据进行显示。
在实施例中,本公开实施例的超声换能阵元阵列110可以是超声探头,并且本公开实施例对超声探头的种类不作限定。应该理解的是,本公开实施例的技术方案可适用于多种超声探头。
图3为根据本公开实施例的一种超声换能阵元阵列的结构以及超声换能阵元阵列与采集中心线的位置关系示意图。如图3所示,在实施例中,超声换能阵元阵列110可以是80阵元凸阵探头,该80阵元凸阵探头包括8个阵元(如图3中曲线上的8个圆点所示),其中4个阵元与另外4个阵元相对于扫描线(或称采集中心线,如图3中的 虚线所示)对称设置,8个阵元可以以固定的间距排列,例如图3中以0.78mm为间距排列,也可以以其它数值为间距排列,本公开实施例对此不作限定。
图4为根据本公开实施例的一种超声接收电路的结构框架示意图。如图4所示,在实施例中,本公开实施例的超声接收电路120包括:存储器121和处理器122,存储器121与处理器122例如通过总线123电连接。存储器121上存储有计算机程序,该计算机程序可由处理器122执行以实现本公开实施例所提供的超声成像系统的数据处理方法。
在实施例中,存储器121还可用于存储多个阵元的阵元数据、根据本公开实施例提供的超声成像系统的数据处理方法得到的插值点和插值数据、以及对阵元数据进行补偿后的数据。
在实施例中,在超声换能阵元阵列110为80阵元凸阵探头的情况下,本公开实施例提供的超声接收电路120可以包括14个存储器121,其中,6个存储器121可分别用于存储6个待补偿阵元(考虑到阵元的对称性,基准阵元可以有2个)的阵元数据,第7个存储器121可用于存储根据本公开实施例提供的超声成像系统的数据处理方法得到的插值点和插值数据,第8个存储器121可用于存储基准阵元的阵元数据,剩余的6个存储器121可分别存储对6个待补偿阵元进行补偿后的阵元数据。
本公开实施例中所述的第7个存储器121和第8个存储器121主要用于区分不同的存储器121,而不用于限定存储器121之间的顺序或序号。
在实施例中,处理器122可包括6个乘法器电路,分别用于从6个存储器121中调用6个待补偿阵元的阵元数据,对该6个待补偿阵元的阵元数据、插值系数以及修正系数进行加权处理,以实现对阵元数据的补偿。
在实施例中,存储器121可以是ROM(Read-Only Memory,只读存储器)或可存储静态信息和指令的其它类型的静态存储设备,可以是RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其它类型的动态存储设备。在实施例中,存储器121也可以是 EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read-Only Memory,只读光盘)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但是本公开不限于此。
在实施例中,处理器122可以是CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器122可以实现或执行结合本公开的内容所描述的各种示例性的逻辑框、模块和电路。处理器122也可以是实现计算功能的组合,例如,包含一个或多个微处理器组合、DSP和微处理器的组合等。
在实施例中,总线123可以包括通路,用于在上述组件之间传送信息。总线123可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线。总线可以分为地址总线、数据总线、控制总线等。为便于描述,图4中仅用一条粗线表示,但这并不表示仅有一根总线或一种类型的总线。
图5为根据本公开实施例的另一种超声接收电路的结构框架示意图。如图5所示,在实施例中,除存储器121和处理器122外,本公开实施例的超声接收电路120还可包括:数据接收单元124和电源单元125,数据接收单元124分别与处理器122和超声换能阵元阵列110中的各个阵元通信连接,电源单元125分别与存储器121、处理器122、数据接收单元124和电源电路140电连接。
数据接收单元124可用于在处理器122的控制下接收超声换能阵元阵列110中的各个阵元的超声回波信号,将该超声回波信号放大后反馈至处理器122。电源单元125可用于将电源电路140输出的电压转 换为存储器121、处理器122和数据接收单元124所需的电压并分别输出电能至存储器121、处理器122和数据接收单元124。
数据接收单元124通常包括一个IC(Interated Circuit,集成电路),并且其采集时钟固定不可调。
再次参照图2,电源电路140可包括:主供电子电路141、高压子电路142和低压子电路143。
主供电子电路141分别与高压子电路142和低压子电路143连接,高压子电路142通过电力电缆与超声发射电路130连接,低压子电路143通过电力电缆与超声接收电路120连接,具体地,低压子电路143通过电力电缆与电源单元124连接。
在实施例中,主供电子电路141可以为DC-DC(Direct Current-Direct Current,直流-直流)电路。
继续参照图2,在一个示例中,主供电子电路141可输出±15V的电压至高压子电路142和低压子电路143,高压子电路142将±15V的电压转换为±100V的高压并输出至超声发射电路130,低压子电路143将±15V的电压转换为10V、5V、3.3V等常用电压并输出至电源单元124。
图6为根据本公开实施例的又一种超声接收电路的结构框架示意图。如图6所示,在实施例中,超声接收电路120可包括:数据获取子电路125、插值点确定子电路126以及数据补偿子电路127。
数据获取子电路125可用于获取超声换能阵元阵列中的每个阵元的阵元数据。插值点确定子电路126可用于确定多个阵元中的一个阵元为基准阵元,多个阵元中除基准阵元之外的其它阵元为待补偿阵元,并且根据基准阵元的阵元数据的扫描位置和各阵元数据的采集时刻,确定待补偿阵元的插值点。数据补偿子电路127可用于对插值点进行数据补偿,得到插值数据。
在实施例中,,数据补偿子电路127可用于根据插值点的扫描位置与该插值点相邻点的扫描位置之间的距离、以及相邻点的阵元数据,确定该插值点对应的插值数据。
在实施例中,插值点确定子电路126可用于确定各个阵元中数据 量最多的阵元作为基准阵元。换言之,插值点确定子电路126将多个阵元当中的包括最多数量的阵元数据的阵元作为基准阵元。
在实施例中,数据获取子电路125还可用于获取各个阵元在多个初始扫描段内采集的声程数据。
在实施例中,除了数据获取子电路125、插值点确定子电路126以及数据补偿子电路127之外,超声接收电路120还包括数据分段电路。
数据分段电路可用于:确定每个阵元在每个初始扫描段中对应的两个声程数据之间的差值,作为阵元在初始扫描段中的声程差;对于每个初始扫描段,确定每个待补偿阵元的声程差与基准阵元的声程差的比值;根据每个待补偿阵元在多个初始扫描段下的声程差的比值,确定每个待补偿阵元的声程差的比值随扫描深度变化的变化曲线;以及对于每个阵元,根据变化曲线对该阵元的扫描深度进行分段,得到多个补偿扫描段,其中,初始扫描段为以相邻的两个声程数据采集点为端点形成的深度范围。
在实施例中,数据分段电路具体可用于:确定出小于声程差阈值的声程差的比值对应的初始扫描段,作为第一扫描深度范围;确定出大于或等于声程差阈值的声程差的比值对应的初始扫描段,作为第二扫描深度范围;对第一扫描深度范围,以第一单元深度为间隔进行分段;以及对第二扫描深度范围,以第二单元深度为间隔进行分段,其中,第一单元深度小于第二单元深度。
在实施例中,插值点确定子电路126具体可用于:根据基准阵元在每一个补偿扫描段内的阵元数据的扫描位置和各阵元数据的采集时刻,确定待补偿阵元在同一个补偿扫描段内的插值点。
在实施例中,插值点确定子电路126具体可用于:对于每个待补偿阵元,根据基准阵元在每一个补偿扫描段内的阵元数据在扫描线上的对应位置,确定同一采集时刻下待补偿阵元在扫描线上的对应位置,作为待补偿阵元在同一个补偿扫描段内的插值点。
在实施例中,在上述数据获取子电路125、插值点确定子电路126以及数据补偿子电路127的基础上,本公开实施例中的超声接收电路 120还包括:插值数据修正电路。
该插值数据修正电路可用于在确定插值点对应的插值数据之后,根据确定出的补偿扫描段内的插值数据确定修正系数,根据该修正系数对该插值数据进行修正。
应该理解,图1至图6所示的系统或电路的结构框架并不构成对本公开实施例的限定。
图7为根据本公开实施例提供的超声成像系统的数据处理方法的流程示意图。图7提供的超声成像系统的数据处理方法可应用于数据处理设备。如图7所示,在实施例中,该方法包括步骤S701至S703:
在步骤S701,获取超声换能阵元阵列中的多个阵元中的每个阵元的多个阵元数据。
对于每个阵元来说,该阵元的每个阵元数据均为该阵元在某一个采集时刻通过扫描线中的某一个点采集到的超声回波信号。
在步骤S702,确定多个阵元中的一个阵元为基准阵元,基准阵元之外的其它阵元为待补偿阵元,根据基准阵元的各阵元数据的扫描位置和各阵元数据的采集时刻,确定待补偿阵元中的每一个对应的插值点。
在实施例中,可确定多个阵元当中的包括做多数量的阵元数据的阵元作为基准阵元。
具体地,可确定多个阵元当中的最靠近采集中心线的阵元作为基准阵元,其它阵元作为待补偿阵元。容易理解,例如,在相同的采样率的情况下,由于各阵元与采集中心线的声程的不同,最靠近采集中心线的阵元采集到的数据量最多。以该阵元为基准对其它阵元进行数据的补偿,补偿后每个阵元均可保留与基准阵元的数据量基本相同的数据量的的数据,有利于增加波束合成的数据全面性和准确性。
在实施例中,在确定多个阵元中的一个阵元为基准阵元,基准阵元之外的其它阵元为待补偿阵元之后,并且在根据基准阵元的各阵元数据的扫描位置和各阵元数据的采集时刻,确定待补偿阵元中的每一个对应的插值点之前,方法还可包括:
获取各个阵元在多个初始扫描段内采集的声程数据;确定每个阵 元在每个初始扫描段中对应的两个声程数据之间的差值,作为阵元在初始扫描段中的声程差;对于每个初始扫描段,确定每个待补偿阵元的声程差与基准阵元的声程差的比值;根据每个待补偿阵元在多个初始扫描段下的声程差的比值,确定每个待补偿阵元的声程差的比值随扫描深度变化的变化曲线;对于每个阵元,根据变化曲线对该阵元的扫描深度进行分段,得到多个补偿扫描段。在实施例中,初始扫描段可以是以相邻的两个声程数据采集点(即,焦点,如图3中虚线上的圆点所示)为端点形成的深度范围。
在实施例中,扫描深度表示阵元对应的扫描线(如图3中的虚线所示)的长度,扫描线上的每个点(例如,焦点或两个焦点之间的点)至扫描线和阵元所属平面的交点的距离为该点的扫描深度值。在实施例中,阵元数据的扫描位置表示扫描线上的阵元数据采集点的位置,该位置可以用扫描深度值来表征,阵元数据采集点可以是扫描线上的任意一个点。
在一个示例中,若超声探头采用80阵元凸阵探头,则其部分阵元的声程数据见表1。考虑到阵元的对称性,表1中只列出4个阵元(分别称为阵元1、阵元2、阵元3、阵元4)的声程数据作为示例,在采用同一采样率的情况下,不同阵元的声程数据必然不一致,具体如表1所示。
表1不同阵元的声程
Figure PCTCN2021083027-appb-000001
在实施例中,采样率可表示每秒从连续信号中提取并组成离散信号的采样个数,通常用赫兹(Hz)来表示。
参照图3的示例,表1中的焦点距离表示焦点(即,声程数据采集点)至扫描线和阵元所属平面的交点的距离,也即焦点的扫描深度值,表1中相邻的焦点距离对应相邻的焦点,以每两个相邻的焦点为端点形成的深度范围为一个初始扫描段。
以表1中所示的集点距离和声程数据为例,第一个初始扫描段为3mm-6mm,该初始扫描段对应的阵元1的两个声程数据分别为3mm焦点距离处采集的数据4628ns和6mm处采集的8222ns,则阵元1在该扫描深度段中的声程差为3594ns;该初始扫描段对应的阵元2的两个声程数据分别为3mm焦点距离处采集的数据4306ns和6mm焦点距离处采集的8021ns,声程差为3715ns;该初始扫描段对应的阵元3和阵元4的声程数据见表1,声程差分别为3819ns和3880ns。
第二个初始扫描段为6mm-9mm,第三个初始扫描段为9mm-12mm,依次类推,各初始扫描段对应的各阵元的声程数据如表1所示,各初始扫描段对应的各阵元的声程差的计算与第一个初始扫描段同理,不再赘述。
以表1中阵元1为例,计算阵元1在每个初始扫描段的声程差与阵元4在同一个初始扫描段的声程差的比值,进而可得到如图8所示的声程差的比值的变化曲线。图8所示的变化曲线以初始扫描段的序号为横坐标、计算得到的各个比值为纵坐标,图8中横坐标的1表示第一个初始扫描段,4表示第四个初始扫描段,依次类推;进而根据该变化曲线可对扫描深度重新分段。类似地,可以计算阵元2和阵元3与阵元4的声程差比值和变化曲线。
在实施例中,根据变化曲线对待补偿阵元的扫描深度进行分段,包括:
确定出小于声程差阈值的声程差的比值对应的初始扫描段,作为第一扫描深度范围;确定出大于或等于声程差阈值的声程差的比值对应的初始扫描段,作为第二扫描深度范围;对第一扫描深度范围,以第一单元深度为间隔进行分段;对第二扫描深度范围,以第二单元深 度为间隔进行分段;第一单元深度小于第二单元深度。
以图8所示的变化曲线为例,根据图8所示的变化曲线可以看出,随着扫描深度的加深,阵元1的声程差与阵元4的声程差的比值越来越趋近于1,即随着扫描深度的加深,阵元1的声程差和阵元4的声程差越来越一致,因此可对扫描深度范围进行分段处理,对较浅的扫描深度范围(即,两阵元声程差相差较大的范围)以一个较小的间隔进行细划分,对较深的扫描深度范围(即,两阵元声程差相差较小的范围)以一个较大的间隔进行粗划分。
声程差阈值可根据实际情况设置,在图8的示例中,可根据变化曲线的走向来确定声程差阈值,例如可以设置一个趋近于1的一个数值(如0.98或0.99)作为声程差阈值;第一单元深度和第二单元深度可根据实际需求或经验值来设置,例如第一单元深度可设置为3mm,第二单元深度可设置为9mm。
结合表1的示例,假设将第15个初始扫描段(即42mm-45mm)对应的纵坐标值作为声程差阈值,则可将42mm以下作为第一扫描深度范围,在该范围内以每3mm作为一个补偿扫描段;将42mm以上作为第二扫描深度范围,在该范围内以每9mm作为一个补偿扫描段。
在实施例中,在得到如图8所示的变化曲线后,可通过如下方式将待补偿阵元的阵元数据和基准阵元的阵元数据基于扫描深度进行分段:
确定变化曲线中每一点的斜率;根据每一点的斜率确定第一斜率范围和第二斜率范围;对第一斜率范围内对应的扫描深度范围,按照第一单元深度为间隔进行分段;对第二斜率范围内对应的扫描深度范围,按照第二单元深度为间隔进行分段;第一斜率范围内的斜率均大于第二斜率范围内的斜率,第一单元深度小于第二单元深度。
在确定第一斜率范围和第二斜率范围时,可设置一个斜率阈值作为参照值,该斜率阈值可根据实际情况进行设置。
在实施例中,根据基准阵元的各阵元数据的扫描位置和各阵元数据的采集时刻,确定待补偿阵元的插值点,包括:根据基准阵元在每一个补偿扫描段内的阵元数据的扫描位置和各阵元数据的采集时刻, 确定待补偿阵元在同一个补偿扫描段内的插值点。
在实施例中,根据基准阵元在每一个补偿扫描段内的阵元数据的扫描深度和各阵元数据的采集时刻,确定待补偿阵元在同一个补偿扫描段内的插值点,包括:对于每个待补偿阵元,根据基准阵元在每一个补偿扫描段内的阵元数据在扫描线(如图3中的虚线所示)上的对应位置,确定同一采集时刻下待补偿阵元在扫描线上的对应位置,作为待补偿阵元在同一个补偿扫描段内的插值点。
在一个示例中,以表1中的阵元4为基准阵元时,对于阵元4所接收的某个补偿扫描段的阵元数据Da,可确定Da在阵元4对应的扫描线上的扫描位置A0,在Da的采集时刻下,确定阵元1对应的扫描线上与扫描位置A0对应的位置Ax,Ax即为阵元1在上述补偿扫描段内的插值点,即需要进行插值的位置。
在步骤S703,对插值点进行数据补偿,得到插值数据。
在实施例中,根据插值点的扫描位置与该插值点的相邻点的扫描位置之间的距离、以及所述相邻点的阵元数据,确定该插值点对应的插值数据。
本实施例中,相邻点可指在同一个扫描线上与插值点相邻的、具有阵元数据的扫描位置,在同一个扫描线上,插值点通常有两个相邻点。
在实施例中,在确定插值点对应的插值数据之前,首先确定该插值点是否具有阵元数据。在确定有阵元数据时,无需确定插值数据并进行插值,从而减少不必要的计算,提高数据处理的速度。在确定无阵元数据时,根据插值点与相邻点之间的扫描距离、以及相邻点的阵元数据,确定插值点对应的插值数据,从而对待补偿阵元的数据进行补偿,使待补偿阵元的数据与基准阵元的数据对齐,便于实现波束合成。
在一个示例中,若确定出的插值点为A,与A相邻的扫描位置分别为B和C,则插值数据Da(即,需要补偿在插值点A的阵元数据)可为:
Da=K AC×Db+K AB×Dc           表达式(1)
在表达式(1)中,Db为位置B的阵元数据,Dc为位置C的阵元数据,K AC为基于L AC(插值点A与位置C之间的距离)确定出的一个插值系数,K AB为基于L AB(插值点A与位置B之间的距离)确定出的一个插值系数。
在实施例中,K AC和K AB可以通过如下方式确定:
Figure PCTCN2021083027-appb-000002
在实施例中,K AC和K AB的确定方式不受表达式(2)的限定,还可以根据实际需求以其它方式确定,例如在表达式(2)的基础上乘以一定的系数。
在实施例中,K AC和K AB的比值可以与L AC和L AB的比值相等。
在实施例中,在确定插值点对应的插值数据之后,方法还可包括:根据确定出的该补偿扫描段内的插值数据确定修正系数;根据该修正系数对确定出的该插值数据进行修正,得到修正后的插值数据。
在一个示例中,对表达式(1)得到的插值数据进行修正,修正后的插值数据Da′为:
Da′=K×(K AC×Db+K AB×Dc)          表达式(3)
在表达式(3)中,K为修正系数,其它参数含义同前。
在实施例中,可以通过修正系数改变插值数据的大小,例如,插值数据可以被扩大或缩小一定的倍数。在示例中,例如,利用上述表达式(1)计算的插值数据是千位数,而基准阵元的阵元数据是十位数,为了使插值数据的数量级保持一致,需要将修正系数设置为百分位数(例如,0.01)。
由此,采用修正系数K对插值数据Da进行修正后,可使得到的修正的插值数据Da′的数量级与基准阵元的阵元数据的数量级相同,从而保持数量级的统一,使插值数据更加准确。
在实施例中,方法还可包括:将插值点和插值数据对应存储,以供后续调用,可以存储于一个存储器中,也可以分别存储于多个存储器,本公开对此不作限定。
在一个示例中,对于8阵元的超声探头,各待补偿阵元的阵元数据可分别存储于相应的一个存储器211中,插值系数和修正系数也可存储于相应的一个存储器211中,乘法器电路对待补偿阵元的阵元数据、插值系数和修正系数进行加权处理(如表达式(3)的处理)后,将处理后的待补偿阵元的阵元数据分别存储相应的一个存储器211中以备后续数据处理调用,补偿过程的原理如图9所示。
图9为根据本公开实施例的数据补偿的原理示意图。如图9所示,在实施例中,RAM1至RAM6为分别用于存储6个待补偿阵元的阵元数据的存储器,ROM1为用于存储插值系数和修正系数的存储器,MULT1至MULT6为分别用于对6个待补偿阵元的阵元数据进行加权处理的乘法器电路,RAM1_1至RAM6_1为分别用于存储6个待补偿阵元的加权处理后的阵元数据(即,插值数据)。
另一方面,本公开实施例提供了一种计算机存储介质,该计算机存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例所提供的任一超声成像系统的数据处理方法。
在实施例中,该计算机存储介质还可存储有多个阵元的阵元数据、根据本公开实施例提供的超声成像系统的数据处理方法得到插值点和插值数据。
在实施例中,计算机存储介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM、RAM、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM、闪存、磁性卡片或光线卡片。也就是,存储介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。
本公开实施例提供了一种计算机存储介质适用于上述任一超声成像系统的数据处理方法及该数据处理方法的各种实施方式,在此不再赘述。
通过本公开实施例的技术方案,至少能够实现如下有益效果:
1)本公开实施例在确定基准阵元的基础上,可根据基准阵元确定待补偿阵元的插值点,并基于插值点根据相邻点的位置和阵元数据确定待补偿阵元的插值数据,从而实现对待补偿阵元的阵元数据的补偿, 使各待补偿阵元和基准阵元在扫描线上同一段距离内的数据量相同,并使得各待补偿阵元的阵元数据与基准阵元的阵元数据能够对齐,从而使各阵元的阵元数据满足波束合成的要求,提高超声成像的准确度。
2)本公开实施例选取数据量最多的阵元作为基准阵元,以该阵元为基准对其它阵元进行数据的补偿,补偿后每个阵元均可保留较多的数据,有利于增加波束合成的数据全面性和准确性。
3)本公开实施例可对扫描深度进行分段,对各阵元数据基于分好的每个补偿扫描段分别进行补偿,相比于全扫描段的补偿方式,可有效提高数据补偿的精细度,进而提升超声成像的局部清晰度。
4)本公开实施例在对扫描深度进行分段时,基于声程差进行两次分段,第一次分段过程可划分出变化规律相差较大以及深浅不同的两个扫描深度范围,第二分段过程可分别对两个扫描深度范围做进一分划分,对较浅的扫描深度范围进行细划分,对较深的扫描深度范围进行粗划分,从而对整个扫描深度范围进行更合理的分段以细化数据的颗粒度,同时可精简计算过程,减少计算量以提高数据处理的效率。
本技术领域技术人员可以理解,本公开中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本公开中已经讨论过的各种操作、方法、流程中的其它步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本公开中的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其它的顺序执行。而且,附图的流程图中的至少一部分步骤 可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上所述仅是本公开的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围

Claims (14)

  1. 一种超声成像系统的数据处理方法,包括:
    获取超声换能阵元阵列中的多个阵元中的每一个的多个阵元数据;
    确定所述多个阵元中的一个阵元作为基准阵元,以及所述多个阵元中的除所述基准阵元之外的其它阵元作为待补偿阵元;
    根据所述基准阵元的各所述阵元数据的扫描位置和采集时刻,确定所述待补偿阵元的插值点;
    对所确定的插值点进行数据补偿,得到插值数据。
  2. 根据权利要求1所述的数据处理方法,其中,所述对所述插值点进行数据补偿,得到插值数据,包括:
    根据所述插值点的扫描位置与所述插值点的相邻点的扫描位置之间的距离、以及所述相邻点的阵元数据,确定所述插值点对应的插值数据。
  3. 根据权利要求2所述的数据处理方法,其中,在确定所述插值点对应的插值数据之后,所述方法还包括:
    根据预先确定的补偿扫描段内的插值数据确定修正系数;以及
    根据所述修正系数对所述插值数据进行修正。
  4. 根据权利要求3所述的数据处理方法,其中,所述根据预先确定的补偿扫描段内的插值数据确定修正系数包括:
    根据预先确定的补偿扫描段内的插值数据的数量级确定所述修正系数;并且
    所述根据所述修正系数对所述插值数据进行修正包括:
    根据所述修正系数对所述插值数据进行修正,以使得经修正的插值数据的数量级与所述基准阵元的阵元数据的数量级相同。
  5. 根据权利要求1至4中的任一项所述的数据处理方法,其中, 所述确定所述多个阵元中的一个阵元为基准阵元,包括:
    确定所述多个阵元当中的包括最多数量的阵元数据的阵元作为所述基准阵元。
  6. 根据权利要求1至5中的任一项所述的数据处理方法,其中,在所述确定所述多个阵元中的一个阵元作为基准阵元,以及所述多个阵元中的除所述基准阵元之外的其它阵元作为待补偿阵元之后,并且在所述根据所述基准阵元的各所述阵元数据的扫描位置和采集时刻,确定所述待补偿阵元的插值点之前,所述方法还包括:
    获取所述多个阵元中的每一个在多个初始扫描段内采集的声程数据;
    确定所述多个阵元中的每一个在每个初始扫描段中对应的两个声程数据之间的差值,作为所述阵元在所述初始扫描段中的声程差,所述初始扫描段为以相邻的两个声程数据采集点为端点形成的深度范围;
    对于每个初始扫描段,确定所述待补偿阵元中的每一个的所述声程差与所述基准阵元的所述声程差的比值;
    根据所述待补偿阵元中的每一个在所述多个初始扫描段中的所述声程差的比值,确定对应的待补偿阵元的所述声程差的比值随扫描深度变化的变化曲线;
    对于所述阵元中的每一个,根据所述变化曲线对对应的阵元的所述扫描深度进行分段,得到多个补偿扫描段。
  7. 根据权利要求6所述的数据处理方法,其中,所述根据所述变化曲线对所述待补偿阵元的所述扫描深度进行分段,包括:
    确定出小于声程差阈值的所述声程差的比值对应的所述初始扫描段,作为第一扫描深度范围;
    确定出大于或等于所述声程差阈值的所述声程差的比值对应的所述初始扫描段,作为第二扫描深度范围;
    对所述第一扫描深度范围,以第一单元深度为间隔进行分段;
    对所述第二扫描深度范围,以第二单元深度为间隔进行分段;
    所述第一单元深度小于所述第二单元深度。
  8. 根据权利要求6所述的数据处理方法,其中,所述根据所述基准阵元的各所述阵元数据的扫描位置和采集时刻,确定所述待补偿阵元的插值点,包括:
    根据所述基准阵元在每一个补偿扫描段内的所述阵元数据的扫描位置和采集时刻,确定所述待补偿阵元在对应的补偿扫描段内的插值点。
  9. 根据权利要求8所述的数据处理方法,其中,所述根据所述基准阵元在每一个补偿扫描段内的所述阵元数据的扫描深度和采集时刻,确定所述待补偿阵元在对应的补偿扫描段内的插值点,包括:
    对于所述待补偿阵元中的每一个,根据所述基准阵元在每一个补偿扫描段内的所述阵元数据在扫描线上对应位置,确定同一采集时刻下对应的待补偿阵元在所述扫描线上对应位置,作为对应的待补偿阵元在对应的补偿扫描段内的插值点。
  10. 一种超声成像系统,包括:超声换能阵元阵列和超声接收电路;
    所述超声换能阵元阵列包括多个阵元;
    所述超声接收电路与所述多个阵元中的每一个通信连接,用于接收所述多个阵元采集的超声回波信号作为阵元数据并执行如权利要求1至9中的任一项所述的超声成像系统的数据处理方法。
  11. 根据权利要求10所述的超声成像系统,其中,所述超声成像系统还包括:超声发射电路和电源电路;
    所述超声发射电路与所述多个阵元中的每一个通信连接,用于生成电信号并通过所述电信号激励所述多个阵元发射超声波;并且
    所述电源电路分别与所述超声接收电路、所述超声发射电路电连接,用于为所述超声接收电路和所述超声发射电路供电。
  12. 根据权利要求10或11所述的超声成像系统,其中,所述超声接收电路包括:
    存储器;
    处理器,与所述存储器电连接;
    所述存储器存储有计算机程序,所述计算机程序由所述处理器执行以实现如权利要求1至9中的任一项所述的超声成像系统的数据处理方法。
  13. 根据权利要求10或11所述的超声成像系统,其中,所述超声接收电路包括:
    数据获取子电路,用于获取所述多个阵元中的每一个的阵元数据;
    插值点确定子电路,用于确定所述多个阵元中的一个阵元作为基准阵元,所述多个阵元中的除所述基准阵元之外的其它阵元作为待补偿阵元,根据所述基准阵元的所述阵元数据的扫描位置和采集时刻,确定所述待补偿阵元的插值点;
    数据补偿子电路,用于对所述插值点进行数据补偿,得到插值数据。
  14. 一种计算机存储介质,存储有计算机程序,所述计算机程序由处理器执行以实现根据权利要求1至9中的任一项所述的超声成像系统的数据处理方法。
PCT/CN2021/083027 2020-03-31 2021-03-25 超声成像系统的数据处理方法、超声成像系统及存储介质 WO2021197203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,244 US20220280137A1 (en) 2020-03-31 2021-03-25 Data processing method for ultrasonic imaging system, ultrasonic imaging system and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010244551.8A CN111248940B (zh) 2020-03-31 2020-03-31 超声成像系统的驱动方法、超声成像系统及存储介质
CN202010244551.8 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197203A1 true WO2021197203A1 (zh) 2021-10-07

Family

ID=70942168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083027 WO2021197203A1 (zh) 2020-03-31 2021-03-25 超声成像系统的数据处理方法、超声成像系统及存储介质

Country Status (3)

Country Link
US (1) US20220280137A1 (zh)
CN (1) CN111248940B (zh)
WO (1) WO2021197203A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248940B (zh) * 2020-03-31 2022-06-07 京东方科技集团股份有限公司 超声成像系统的驱动方法、超声成像系统及存储介质
CN111694004B (zh) * 2020-06-10 2023-08-29 京东方科技集团股份有限公司 波束合成的方法和装置
CN113647983A (zh) * 2021-09-08 2021-11-16 南京云石医疗科技有限公司 一种超声彩色血流成像控制方法
CN114305495B (zh) * 2022-01-07 2024-01-12 京东方科技集团股份有限公司 基于超声换能器的超声成像方法、超声换能器及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020129A1 (en) * 2000-02-16 2001-09-06 Medison Co., Ltd. Ultrasound imaging system for performing receiving focusing at points corresponding to display pixels and method thereof
US20050101867A1 (en) * 2003-10-28 2005-05-12 Johnson Jeremy A. Apparatus and method for phased subarray imaging
CN101664321A (zh) * 2009-09-07 2010-03-10 无锡祥生科技有限公司 组织声速实时可调的超声诊断设备及其波束合成方法
EP2453406A1 (en) * 2010-11-16 2012-05-16 Hitachi Aloka Medical, Ltd. Ultrasonic image processing apparatus
CN102579071A (zh) * 2011-01-14 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 一种三维超声成像的方法及系统
CN103837608A (zh) * 2014-03-12 2014-06-04 深圳市神视检验有限公司 一种相控阵接收动态聚焦补偿方法及系统
CN105662463A (zh) * 2016-01-06 2016-06-15 飞依诺科技(苏州)有限公司 超声探头扫查精度的自动校准方法及系统
CN107966694A (zh) * 2017-10-24 2018-04-27 苏州佳世达电通有限公司 一种超声波探头的校正方法和系统
CN111248940A (zh) * 2020-03-31 2020-06-09 京东方科技集团股份有限公司 超声成像系统的驱动方法、超声成像系统及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557913A (en) * 2016-12-16 2018-07-04 Imperial Innovations Ltd Ultrasonic imaging device
EP3615956A1 (en) * 2017-04-24 2020-03-04 Koninklijke Philips N.V. Systems and methods for beamforming ultrasound signals using elastic interpolation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010020129A1 (en) * 2000-02-16 2001-09-06 Medison Co., Ltd. Ultrasound imaging system for performing receiving focusing at points corresponding to display pixels and method thereof
US20050101867A1 (en) * 2003-10-28 2005-05-12 Johnson Jeremy A. Apparatus and method for phased subarray imaging
CN101664321A (zh) * 2009-09-07 2010-03-10 无锡祥生科技有限公司 组织声速实时可调的超声诊断设备及其波束合成方法
EP2453406A1 (en) * 2010-11-16 2012-05-16 Hitachi Aloka Medical, Ltd. Ultrasonic image processing apparatus
CN102579071A (zh) * 2011-01-14 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 一种三维超声成像的方法及系统
CN103837608A (zh) * 2014-03-12 2014-06-04 深圳市神视检验有限公司 一种相控阵接收动态聚焦补偿方法及系统
CN105662463A (zh) * 2016-01-06 2016-06-15 飞依诺科技(苏州)有限公司 超声探头扫查精度的自动校准方法及系统
CN107966694A (zh) * 2017-10-24 2018-04-27 苏州佳世达电通有限公司 一种超声波探头的校正方法和系统
CN111248940A (zh) * 2020-03-31 2020-06-09 京东方科技集团股份有限公司 超声成像系统的驱动方法、超声成像系统及存储介质

Also Published As

Publication number Publication date
CN111248940B (zh) 2022-06-07
CN111248940A (zh) 2020-06-09
US20220280137A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021197203A1 (zh) 超声成像系统的数据处理方法、超声成像系统及存储介质
EP1793343B1 (en) Image processing system and method of enhancing the quality of an ultrasound image
CN111329517B (zh) 超声成像方法及装置、存储介质
US8956298B2 (en) Providing an ultrasound spatial compound image in an ultrasound system
US11627940B2 (en) Ultrasound probe with digital microbeamformer using fir filters with no multipliers
US20190196012A1 (en) Ultrasound probe with low frequency, low voltage digital microbeamformer
US20180064419A1 (en) Ultrasound probe with thirty-two channel digital microbeamformer
US11937982B2 (en) 2D array ultrasound probe with 3 watt digital microbeamformer
Rolo et al. Fetal cardiac interventricular septum: volume assessment by 3D/4D ultrasound using spatio-temporal image correlation (STIC) and virtual organ computer-aided analysis (VOCAL)
US20110060223A1 (en) Providing a three-dimensional ultrasound image based on an ellipsoidal region of interest in an ultrasound system
US9216007B2 (en) Setting a sagittal view in an ultrasound system
US20110028842A1 (en) Providing A Plurality Of Slice Images In An Ultrasound System
Kalayci et al. Reference values of the ductus venosus pulsatility index for pregnant women between 11 and 13+ 6 weeks of gestation
US11841425B2 (en) Ultrasound probe with multiline digital microbeamformer
EP2196151A1 (en) Ultrasound system and method for forming a plurality of three-dimensional ultrasound images
CN116350270A (zh) 一种超声成像方法及装置
WO2018041635A1 (en) Ultrasound probe with digital microbeamformer having integrated circuits fabricated with different manufacturing processes
US20120302885A1 (en) Providing a measuring item candidate group for measuring size of a target object in an ultrasound system
CN112529852B (zh) 一种识别腹直肌分离类型的特征图像计算方法
Wang et al. An easily-achieved time-domain beamformer for ultrafast ultrasound imaging based on compressive sensing
CN1586409A (zh) 采用两种尺度的生物组织位移估计方法
CN108784736A (zh) 一种二维迭代的超声弹性成像应变估计方法
Randhawa et al. Prediction of liver cirrhosis using weighted fisher discriminant ratio algorithm
EP2189812A1 (en) Providing volume information on a periodically moving target object in an ultrasound system
WO2018041636A1 (en) Ultrasound probe with multiline digital microbeamformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780730

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21780730

Country of ref document: EP

Kind code of ref document: A1