WO2021197019A1 - 一种无时隙测量方法及装置 - Google Patents

一种无时隙测量方法及装置 Download PDF

Info

Publication number
WO2021197019A1
WO2021197019A1 PCT/CN2021/080270 CN2021080270W WO2021197019A1 WO 2021197019 A1 WO2021197019 A1 WO 2021197019A1 CN 2021080270 W CN2021080270 W CN 2021080270W WO 2021197019 A1 WO2021197019 A1 WO 2021197019A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource unit
terminal device
radio frequency
slotless
resource
Prior art date
Application number
PCT/CN2021/080270
Other languages
English (en)
French (fr)
Inventor
金乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110091110.3A external-priority patent/CN113498090A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/995,252 priority Critical patent/US20230247460A1/en
Priority to EP21779184.7A priority patent/EP4117337A4/en
Priority to JP2022560177A priority patent/JP7405385B2/ja
Publication of WO2021197019A1 publication Critical patent/WO2021197019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • This application relates to the field of communication technology, and in particular, to a time slotless measurement method and device.
  • RRC Radio Resource Control
  • CONNECTED Radio Resource Control
  • the terminal device in the RRC_CONNECTED state, when the terminal device measures the neighboring cells of the serving cell of the terminal device according to the measurement time slot, if the neighboring cells are not synchronized, the measurement time slot configured by the base station does not include part or all of the neighboring cells.
  • synchronizing signals such as SSB (synchronization signal block) of NR
  • the terminal device will not be able to detect part or all of the neighboring cells.
  • the terminal can support slotless measurement, the terminal device can measure the neighboring cell SSB within a sufficiently long window, and all neighboring cells can be measured. Therefore, ensuring that the terminal device supports slotless measurement becomes an urgent problem to be solved.
  • the present application provides a time-slotless measurement method and device, which solves the problem that in the prior art, the terminal equipment does not have a radio frequency channel to receive signals from the neighboring cell, which causes the terminal equipment to be unable to perform time-slotless measurement of the neighboring cell.
  • a time-slotless measurement method includes: a terminal device receives from an access network device and is used to instruct the terminal device to perform a time-slotless measurement on a neighboring cell of a serving cell of the terminal device.
  • Configuration information According to the configuration information, the terminal equipment determines that part or all of the radio frequency paths in the radio frequency path of the second resource unit are radio frequency paths of the resource unit to be tested in the neighboring cell of the serving cell of the terminal equipment.
  • the terminal device performs slotless measurement on the neighboring cell of the serving cell of the terminal device on part or all of the radio frequency channel of the second resource unit.
  • the terminal device can determine according to the configuration information Some or all of the radio frequency paths in the radio frequency paths of the second resource unit in the first resource unit combination configured for the terminal device and in the activated resource unit are the radio frequency paths of the resource unit to be tested in the neighboring cell of the serving cell . In this way, the terminal device can receive the signal of the neighboring cell on the radio frequency path of the resource unit to be tested.
  • the terminal device can perform time-slotless measurement of the neighboring cell, which solves the problem in the prior art when the terminal device does not have a radio frequency path to receive the neighboring cell. Signals, resulting in the problem of not being able to perform slotless measurements on neighboring cells.
  • the configuration information is also used to indicate the second resource unit combination and the multi-input multi-output (multi-input multi-output, for each resource unit in the second resource unit combination).
  • MIMO multi-input multi-output
  • the second resource unit combination includes the updated first resource unit combination
  • the updated first resource unit combination does not include the second resource unit, or the second resource unit combination in the updated first resource unit combination
  • the MIMO capability of the resource unit is lower than the MIMO capability of the second resource unit in the first resource unit combination.
  • the terminal device can accurately determine the resource unit to be tested in the neighboring cell of the serving cell of the terminal device and the radio frequency path of the resource unit to be tested based on the configuration information, and the terminal device does not need to spend time to determine other
  • the radio frequency path of the resource unit to be tested reduces the power consumption of the terminal equipment.
  • the terminal device sends to the access network device the resource unit combination capabilities supported by the terminal device and the resource unit combinations supported by the terminal. Capability information of the MIMO capability corresponding to each resource unit.
  • the terminal device sends the capability information of the terminal device to the access network, so that the access network device can determine the resource unit combination capability supported by the terminal device and the resource unit supported by the terminal device according to the capability information of the terminal device
  • the MIMO capability corresponding to each resource unit in the combination to prevent the resource unit combination determined by the access network device from being a resource unit combination not supported by the terminal device, or the MIMO capability corresponding to the resource unit in the resource unit combination determined by the access network device It is larger than the MIMO capability corresponding to the resource unit supported by the terminal device, resulting in the problem that the terminal device cannot perform slotless measurement of the neighboring cell.
  • the configuration information is also used to indicate at least one resource unit included in the first resource unit combination, and the at least one resource unit includes The radio frequency path of each resource unit can be used as the radio frequency path of the first resource unit.
  • the terminal device can obtain the radio frequency path of the first resource unit from the configuration information sent by the access network device, avoiding the terminal device from selecting the first resource unit from the radio frequency path of the resource unit in the combination of other resource units
  • the radio frequency path of the first resource unit is reduced, and the time it takes for the terminal device to determine the radio frequency path of the first resource unit is reduced.
  • the terminal device uses, among at least one resource unit, all radio frequency paths of the second resource unit that meets one or more of the following conditions as Radio frequency path of the first resource unit: the second resource unit is the resource unit with the largest identification (ID) among the resource units in the active state; the second resource unit is the resource unit with the lowest data transmission rate among the resource units in the active state ;
  • the second resource unit is the reference signal receiving power (RSRP) or the reference signal receiving quality (RSRQ) or the signal to interference plus noise ratio (signal to interference plus) in the active resource unit
  • the terminal device can more accurately determine the second resource unit, so that the terminal device can accurately use all the radio frequency paths of the second resource unit that meets the multiple conditions as the radio frequency paths of the first resource unit.
  • the terminal device determines the accuracy of the radio frequency path of the first resource unit.
  • the terminal device combines at least one resource unit, and a part of the radio frequency of the second resource unit that meets one or more of the following conditions
  • the path is the radio frequency path of the first resource unit: the second resource unit is the resource unit with the RI less than or equal to the preset value among the resource units in the active state; the second resource unit is the resource unit with the smallest bandwidth among the resource units in the active state
  • the second resource unit is the resource unit with the smallest RSRP or RSRQ or SINR among the active resource units; the second resource unit is the resource unit with the lowest data transmission rate among the active resource units; the second resource unit is the active resource unit
  • the terminal device can more accurately determine the second resource unit, so that the terminal device can accurately use part of the radio frequency path of the second resource unit that meets the multiple conditions as the radio frequency path of the first resource unit.
  • the terminal device determines the accuracy of the radio frequency path of the first resource unit.
  • the terminal device sends to the access network device a message indicating the MIMO capability of the second resource unit and/or the second resource unit Configuration complete response.
  • the terminal device sends a configuration completion response indicating the second resource unit and/or the MIMO capability of the second resource unit to the access network device, so that the access network device determines the terminal according to the configuration completion response
  • the radio frequency path of the resource unit under test in the neighboring cell of the service cell of the equipment to avoid the problem that the access network equipment sends neighboring cell signals to the terminal equipment through the radio frequency path of other resource units, causing the terminal equipment to be out of synchronization with the access network equipment .
  • the terminal device on the radio frequency path of the first resource unit is larger than the synchronization signal block (synchronization signal block, SSB) occupancy
  • the SSB is continuously monitored for a preset period of time.
  • the terminal device can continuously monitor the SSB of the neighboring cell for a preset time longer than the time occupied by the SSB, which solves the problem that the terminal device in the prior art cannot detect the SSB of the neighboring cell or cannot detect it in the measurement time slot.
  • the SSB of all neighboring cells causes the terminal equipment to be unable to accurately measure the neighboring cells of the serving cell.
  • the preset time is SMTC.
  • the terminal device can monitor the SSB of all neighboring cells during the SMTC period; on the other hand, it prevents the terminal device from using a long measurement
  • the time length is measured in the neighboring cell without time slot, which can reduce the power consumption of the terminal equipment.
  • the terminal device's reduced MIMO capability receives or sends uplink and downlink signals on the second resource unit.
  • the terminal device can receive the signal of the neighboring cell on a part of the radio frequency path of the second resource unit, and further, the terminal device can perform slotless measurement of the neighboring cell. At the same time, it is still possible to continuously receive or send uplink and downlink signals on the second resource unit to maintain data transmission.
  • the terminal device stops receiving or sending uplink and downlink signals on the second resource unit.
  • the terminal device can receive signals of the neighboring cell on all radio frequency paths of the second resource unit, and further, the terminal device can perform slotless measurement of the neighboring cell.
  • a slotless measurement device is provided.
  • the slotless measurement device is applied to a terminal device or a chip or a system on a chip in a terminal device, and can also be a terminal device used to implement the first aspect or the first aspect. Any possible design of the functional module of the described method.
  • the slotless measurement device can implement the functions performed by the terminal equipment in the above aspects or various possible designs, and the functions can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the slotless measurement device includes a communication unit and a processing unit.
  • the communication unit is configured to receive configuration information from the access network device for instructing the terminal device to perform slotless measurement on the neighboring cell of the serving cell of the terminal device.
  • the processing unit is configured to determine, according to the configuration information, that part or all of the radio frequency paths in the radio frequency path of the second resource unit are radio frequency paths of the resource unit to be tested in the neighboring cell.
  • the second resource unit is included in the radio frequency path configured for the terminal device.
  • the resource units in the activated state are in the first combination of resource units.
  • the processing unit is further configured to perform slotless measurement on the neighboring cell on part or all of the radio frequency channels of the second resource unit.
  • the specific implementation of the slotless measurement device can refer to the behavior and function of the terminal device in the slotless measurement method provided in the first aspect or any possible design of the first aspect, which will not be repeated here. Therefore, the provided slotless measurement device can achieve the same beneficial effects as the first aspect or any possible design of the first aspect.
  • a slotless measurement device may be a terminal device or a chip or a system on a chip in the terminal device.
  • the time-slotless measurement device can implement the functions performed by the terminal equipment in the above-mentioned aspects or various possible designs.
  • the functions can be implemented by hardware.
  • the time-slot-free measurement device may include: A processor and a communication interface.
  • the processor is used to run a computer program or instruction to implement the slotless measurement method as described in the first aspect and any one of the possible implementation manners of the first aspect.
  • the slotless measurement device may further include a memory, and the memory is used to store the necessary computer-executed instructions and data of the slotless measurement device.
  • the processor executes the computer-executable instructions stored in the memory, so that the slotless measurement device executes the aforementioned first aspect or any one of the possible designs of the first aspect. No time slot measurement method.
  • a computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer-readable storage medium stores computer instructions or programs. During operation, the computer can execute the slotless measurement method described in the first aspect or any one of the possible designs of the foregoing aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the slotless measurement method described in the first aspect or any one of the possible designs of the foregoing aspects.
  • a slotless measurement device can be a terminal device or a chip or a system on a chip in the terminal device.
  • the slotless measurement device includes one or more processors and Or multiple memories.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the terminal device is caused to execute the slotless measurement method as described in the first aspect or any possible design of the first aspect.
  • a chip system in a seventh aspect, includes a processor and a communication interface.
  • the chip system can be used to implement the functions performed by the terminal device in the first aspect or any possible design of the first aspect,
  • the communication interface receives configuration information from the access network device for instructing the terminal device to perform slotless measurement on the neighboring cell of the serving cell of the terminal device on the first resource unit.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, or can include chips and other discrete devices, without limitation.
  • the technical effects brought about by any of the design methods of the second aspect to the seventh aspect may refer to the technical effects brought about by the above-mentioned first aspect or any possible design of the first aspect, and will not be repeated.
  • a time-slotless measurement method includes: the access network device determines that the radio frequency path of the resource unit to be measured in the neighboring cell of the serving cell of the terminal device is included in the configuration of the terminal device Part or all of the radio frequency channels of the second resource unit in the first resource unit combination of the resource unit in the activated state.
  • the access network device sends to the terminal device the information used to instruct the terminal device to perform non-slot measurement on the neighboring cell of the serving cell of the terminal device, and to indicate the second resource unit combination and each resource unit in the second resource unit combination.
  • the second resource unit combination includes the updated first resource unit combination
  • the updated first resource unit combination does not include the second resource unit, or the second resource unit in the updated first resource unit combination
  • the MIMO capability of is lower than the MIMO capability of the second combination unit in the first resource unit combination.
  • the access network device determines the radio frequency path of the resource unit to be measured in the neighboring cell of the service cell of the terminal device, and then sends the terminal device to indicate the terminal device’s service to the terminal device.
  • the neighboring cell of the cell performs slotless measurement, and the configuration information used to indicate the second resource unit combination and the MIMO capability of each resource unit in the second resource unit combination, so that the terminal device can determine the configuration information of the first resource unit according to the configuration information.
  • the radio frequency path, and then the terminal equipment can perform slotless measurement of the neighboring cell on the radio frequency path of the resource unit to be tested. Therefore, the problem in the prior art that when the terminal device does not have a radio frequency channel to receive the signal of the neighboring cell, the time-slotless measurement of the neighboring cell cannot be performed.
  • the access network device uses a part of the radio frequency path of the second resource unit that meets one or more of the following conditions as the first resource unit
  • the radio frequency path the second resource unit is the resource unit whose RI is less than or equal to the preset value among the resource units in the active state; the second resource unit is the resource unit with the smallest bandwidth among the resource units in the active state; the second resource unit is The resource unit with the smallest RSRP or RSRQ or SINR among the active resource units; the second resource unit is the resource unit with the lowest data transmission rate among the active resource units; the second resource unit is the ID of the active resource unit The largest resource unit.
  • the access network device can provide the terminal device with a more accurate second resource unit, so that the terminal device can accurately use the part of the radio frequency path of the second resource unit that meets the multiple conditions as the first resource unit.
  • the radio frequency path improves the accuracy of the access network equipment in determining the radio frequency path of the first resource unit.
  • the access network device uses all the radio frequency paths of the second resource unit that meets one or more of the following conditions as the first resource unit Radio frequency path: the second resource unit is the resource unit with the largest ID among the active resource units; the second resource unit is the resource unit with the lowest data transmission rate among the active resource units; the second resource unit is the active resource unit The resource unit with the smallest RSRP or RSRQ or SINR or RI among the resource units; the second resource unit is the resource unit with the smallest bandwidth among the resource units in the active state; the second resource unit is the resource unit with the smallest MIMO capability among the resource units in the active state Resource unit.
  • the access network device can provide the terminal device with a more accurate second resource unit, so that the terminal device can accurately use all the radio frequency paths of the second resource unit that meets the multiple conditions as the first resource unit.
  • the radio frequency path improves the accuracy of the access network equipment in determining the radio frequency path of the first resource unit.
  • the access network device determines that the third resource unit combination capability is greater than the resource unit combination capability supported by the terminal device, or when the access When the network access device determines that the MIMO capability of the third resource unit combination is greater than the MIMO capability of the resource unit combination supported by the terminal device, it determines the radio frequency path of the first resource unit according to the capability information of the terminal device; where the third resource unit combination is The first resource unit is added to the resource unit combination after the first resource unit combination.
  • the access network device determines that the resource unit combination capability after the first resource unit is added to the first resource combination is greater than the resource unit combination capability supported by the terminal device, or the first resource unit is added to the first resource combination
  • the radio frequency path of the first resource unit is determined according to the capability information of the terminal device, so as to avoid the determination of the access network device according to the capability information of the terminal device
  • the resource unit combination capability including the first resource unit is greater than the resource unit combination capability supported by the terminal device, or the MIMO capability of the resource unit combination including the first resource unit is greater than the MIMO capability of the resource unit combination supported by the terminal device.
  • the problem of performing non-slot measurement on the neighboring cell of the serving cell improves the accuracy of the terminal equipment performing the non-slot measurement on the neighboring cell of the serving cell.
  • the access network device receives each of the resource unit combinations supported by the terminal device and the resource unit combinations supported by the terminal device from the terminal device.
  • the access network device can obtain the capability information of the terminal device through the existing signaling interaction with the terminal device, which is simple and easy.
  • the access network device when the radio frequency path of the resource unit under test in the neighboring cell of the serving cell of the terminal device is part of the radio frequency path of the second resource unit At this time, the access network device receives or sends uplink and downlink signals on the second resource unit according to the reduced MIMO capability.
  • the access network device sends uplink and downlink signals to the terminal device with a reduced MIMO capability on the second resource unit.
  • the terminal device can receive signals from neighboring cells through a part of the radio frequency path of the second resource unit. So that the terminal equipment can perform slotless measurement of the neighboring cell.
  • the access network equipment Stop receiving or sending uplink and downlink signals on the second resource unit.
  • the access network device stops sending uplink and downlink signals to the terminal device on the second resource unit.
  • the terminal device can receive signals from the neighboring cell through the radio frequency path of the second resource unit, so that the terminal device can Perform slotless measurement on neighboring cells.
  • a slotless measurement device is provided.
  • the slotless measurement device is applied to an access network device or a chip or a system on a chip in an access network device, and can also be used in the access network device to implement the eighth
  • the slotless measurement device can realize the functions performed by the access network equipment in the above-mentioned aspects or various possible designs, and the functions can be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the slotless measurement device includes a communication unit and a processing unit.
  • the processing unit is used to determine that the radio frequency path of the resource unit to be tested in the neighboring cell of the serving cell of the terminal device is the second resource unit included in the first resource unit combination of the resource units in the active state configured for the terminal device Part or all of the radio frequency channels in the radio frequency channels.
  • the communication unit is used to send the terminal device to instruct the terminal device to perform slot-free measurement on the neighboring cell of the terminal device’s serving cell, and to indicate to include the second resource unit combination and each resource in the second resource unit combination
  • the MIMO capability of the resource unit is lower than the MIMO capability of the second resource unit in the first resource unit.
  • a slotless measurement device may be a terminal device or a chip or a system on a chip in the terminal device.
  • the time-slotless measurement device can implement the functions performed by the terminal equipment in the above-mentioned aspects or various possible designs.
  • the functions can be implemented by hardware.
  • the time-slot-free measurement device may include: Processor and communication interface.
  • the communication interface is coupled with the processor, and the processor is used to run a computer program or instruction to implement the slotless measurement method as described in any one of the eighth aspect and the eighth aspect.
  • the slotless measurement device may further include a memory, and the memory is used to store the necessary computer-executed instructions and data of the slotless measurement device.
  • the processor executes the computer-executable instructions stored in the memory, so that the slotless measurement device executes the eighth aspect or any one of the possible designs of the eighth aspect. No time slot measurement method.
  • a computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer-readable storage medium stores computer instructions or programs. When running on the computer, the computer can execute the slotless measurement method described in the eighth aspect or any one of the possible designs of the eighth aspect.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the no-time slot described in the eighth aspect or any one of the possible designs of the eighth aspect Measurement methods.
  • a slotless measurement device may be a first access network device or a chip or a system on a chip in the first access network device.
  • the slotless measurement device includes One or more processors and one or more memories.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the terminal device is caused to execute the slotless measurement method as described in the eighth aspect or any possible design of the eighth aspect.
  • a chip including: a processor and a communication interface, the processor is coupled to a memory through the communication interface, and when the processor executes a computer program or instruction in the memory, it causes The slotless measurement method as described in the eighth aspect and any one of the possible implementation manners of the eighth aspect is executed.
  • the technical effect brought by any one of the ninth aspect to the fourteenth aspect can refer to the technical effect brought about by the eighth aspect or any one of the possible designs of the eighth aspect, and will not be repeated here.
  • a time-slotless measurement method includes: an access network device sends to a terminal device to instruct the terminal device to perform a time-slotless measurement on a neighboring cell of the terminal device’s serving cell And configuration information for indicating at least one resource unit including the radio frequency channel that can be used as the radio frequency channel of the resource unit under test in the neighboring cell.
  • the access network device receives a configuration completion response from the terminal device for indicating the second resource unit including at least one resource unit and/or the MIMO capability of the second resource unit.
  • the access network device sends to the terminal equipment an instruction to instruct the terminal equipment to perform a time-slot measurement on a neighboring cell of the terminal device’s serving cell and to indicate that the neighboring cell can be used as the neighboring cell.
  • the terminal device can determine the radio frequency path of the resource unit to be tested in the neighboring cell based on the configuration information.
  • the information of the neighboring cell is received on the path, and then the terminal device can perform slotless measurement on the neighboring cell. It solves the problem that in the prior art, when the terminal device does not have a radio frequency channel to receive the signal of the neighboring cell, the terminal device cannot perform slotless measurement of the neighboring cell.
  • the access network device when the radio frequency path of the resource unit under test in the neighboring cell of the serving cell of the terminal device is part of the second resource unit In the radio frequency path, the access network device receives or sends uplink and downlink signals on the second resource unit according to the reduced MIMO capability.
  • the access network device sends uplink and downlink signals to the terminal device with a reduced MIMO capability on the second resource unit.
  • the terminal device can receive signals from neighboring cells through a part of the radio frequency path of the second resource unit. So that the terminal equipment can perform slotless measurement of the neighboring cell.
  • the access network device stops receiving or sending uplink and downlink signals on the second resource unit.
  • the access network device stops sending uplink and downlink signals to the terminal device on the second resource unit.
  • the access network device can send neighboring cell signals to the terminal device through the radio frequency path of the second resource unit. , So that the terminal equipment can perform non-slot measurement of neighboring cells.
  • a slotless measurement device is provided.
  • the device is applied to an access network device or a chip or a system on a chip in an access network device. It can also be used in an access network device to implement the fifteenth aspect. Or a functional module of the method described in any possible design of the fifteenth aspect.
  • the slotless measurement device can implement the functions performed by the terminal equipment in the above aspects or various possible designs, and the functions can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the slotless measurement device includes a communication unit and a processing unit.
  • the communication unit is used to send to the terminal equipment at least one of the radio frequency channels used to instruct the terminal equipment to perform non-slot measurement on the neighboring cell of the serving cell of the terminal equipment and to indicate the radio frequency channel including the radio frequency channel as the resource unit under test of the neighboring cell.
  • Configuration information of one resource unit also used to receive a configuration completion response from the terminal device for indicating the second resource unit included in the at least one resource unit and/or the MIMO capability of the second resource unit.
  • the provided slotless measurement device can achieve the same beneficial effects as the fifteenth aspect or any possible design of the fifteenth aspect.
  • a slotless measurement device may be an access network device or a chip or a system on a chip in the access network device.
  • the time-slotless measurement device can implement the functions performed by the access network equipment in the above aspects or various possible designs.
  • the functions can be implemented by hardware.
  • the time-slotless measurement device can It includes a processor and a communication interface.
  • the processor is used to run a computer program or instruction to implement the slotless measurement method as described in any one of the fifteenth aspect and the fifteenth aspect.
  • the slotless measurement device may further include a memory, and the memory is used to store the necessary computer-executed instructions and data of the slotless measurement device.
  • the processor executes the computer-executable instructions stored in the memory, so that the slotless measurement device executes the fifteenth aspect or any one of the possible designs of the fifteenth aspect. The slotless measurement method described above.
  • a computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer-readable storage medium stores computer instructions or programs. When running on the computer, the computer can execute the no-slot measurement method described in the fifteenth aspect or any one of the possible designs of the foregoing aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the time-slot measurement described in the fifteenth aspect or any one of the possible designs of the foregoing aspects method.
  • a slotless measurement device may be an access network device or a chip or a system on a chip in the access network device.
  • the slotless measurement device includes one or more The processor and one or more memories.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the terminal device is caused to execute the slotless measurement method as described in the fifteenth aspect or any possible design of the fifteenth aspect.
  • a chip system in a twenty-first aspect, includes a processor and a communication interface.
  • the chip system can be used to implement the above-mentioned fifteenth aspect or any possible design of the fifteenth aspect.
  • the executed function for example, the processor is configured to send configuration information for instructing the terminal device to perform slotless measurement on the neighboring cell of the serving cell of the terminal device on the first resource unit to the terminal device through the communication interface.
  • the chip system further includes a memory, and the memory is used to store program instructions and/or data.
  • the chip system can be composed of chips, or can include chips and other discrete devices, without limitation.
  • the technical effect brought by any one of the sixteenth aspect to the twenty-first aspect can refer to the technical effect brought by any possible design of the fifteenth aspect or the fifteenth aspect. No longer.
  • this application provides a communication system, including an access network device, and a terminal device that communicates with the access network device, and the access network device is used to perform any one of the first aspect and the first aspect
  • the slotless measurement method described in the possible implementation manners, or the access network device is used to implement the slotless measurement method described in any one of the fifteenth aspect and the fifteenth aspect
  • the terminal device is configured to execute the slotless measurement method as described in any possible implementation manner of the eighth aspect and the eighth aspect.
  • FIG. 1 is a schematic diagram of a dual connection scenario provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a measurement time slot configured by a base station according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a measurement time slot configured by a base station according to an embodiment of the application
  • FIG. 4 is a simplified schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a measurement time slot configured by a base station according to an embodiment of the application
  • FIG. 6 is a simplified schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the composition of a slotless measurement device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the composition of another slotless measurement device provided by an embodiment of the application.
  • FIG. 9 is a flowchart of a time-slotless measurement method provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a software architecture provided by an embodiment of this application.
  • FIG. 11 is a flowchart of another time-slotless measurement method provided by an embodiment of the application.
  • FIG. 12 is a flowchart of yet another slotless measurement method provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of the composition of a time slotless measurement device provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of the composition of another slotless measurement device provided by an embodiment of the application.
  • FIG. 15 is a simplified schematic diagram of another communication system architecture provided by an embodiment of this application.
  • the resource unit may refer to a frequency resource used for data transmission.
  • the terminal device may transmit uplink data and/or downlink data with the access network device through the resource unit.
  • the resource unit may include frequency resources such as component carrier (CC), bandwidth part (BWP), bandwidth (band), and cell, and may also include frequency resources of other granularities, which are not limited.
  • the terminal device can transmit uplink data and/or downlink data with the access network device on one resource unit, or it can transmit uplink data with the access network device on multiple resource units in order to improve the system's spectrum efficiency and user throughput. Data and/downstream data.
  • the description is made by taking the terminal device transmitting uplink data and/or downlink data with the access network device on multiple resource units as an example.
  • the resource unit combination may include multiple resource units and the MIMO capability corresponding to each resource unit.
  • Multiple resource units may be resource units of the same cell group, for example, may be multiple CCs in the case of carrier aggregation (CA).
  • the multiple resource units may also be resource units of different cell groups that the terminal device accesses in a dual connectivity (DC) mode, which is not limited.
  • DC dual connectivity
  • Cell can refer to an area used to provide wireless communication services for terminal equipment, where the access network equipment provides wireless communication services for terminal equipment in this area.
  • one access network device can manage the cell.
  • Each cell corresponds to a cell identifier (cell ID), which uniquely identifies the cell. If a terminal device camps on a certain cell and is about to access the camped cell, the cell can be called the camping cell or serving cell of the terminal device.
  • the surrounding area of the serving cell and the serving cell A cell adjacent to a cell may be referred to as a neighbor cell (neighborhood cell) or neighbor cell of the serving cell.
  • Carrier Aggregation Aggregate two or more CCs to support a larger transmission bandwidth (for example, 100 megahertz (MHz)).
  • each CC corresponds to an independent cell (cell), and one CC can be equivalent to one cell.
  • the 3rd generation partnership project (3GPP) protocol stipulates that a terminal device can be configured with multiple CCs (for example, it can be configured with up to 5 CCs or 32 CCs, etc.).
  • one of the CCs can be called the primary cell (primary cell, PCell), which is the cell where the terminal equipment establishes the initial connection, or the cell where the radio resource control (RRC) connection is reestablished, or The primary cell designated during the handover process.
  • PCell is responsible for RRC communication with terminal equipment.
  • the remaining CCs are called secondary cells (secondary cells, SCells), and the SCells are added during RRC reconfiguration of the terminal device to provide additional radio resources.
  • the two or more CCs are CCs in the same wireless access technology.
  • the wireless access technology may be long term evolution (LTE) or new radio (NR), and the wireless access technology may also be other wireless access technologies without limitation.
  • LTE long term evolution
  • NR new radio
  • CA includes 2 CCs (for example, CC1 and CC2) as an example
  • the representation form of CA may be: CA_[band indication][bandwidth level]-[band indication][bandwidth level].
  • the CA is divided into two parts with “_"" as the separator: the first part “CA” means that this combination is a CA combination; the second part “[band indication][bandwidth level]-[ Band indicator][bandwidth level]” means a combination of CC1 and CC2, and each CC may include "[band indicator][bandwidth level]”.
  • the band indication indicates the band where the CC is located.
  • Band can be represented by numbers or characters, and the carriers corresponding to different wireless access technologies can be represented by different symbols.
  • the band of the carrier in LTE can be represented by numbers.
  • 1 means that the band of the LTE CC is band1
  • 2 means that the band of the LTE CC is band2.
  • the band in NR can be represented by a combination of characters and numbers.
  • n1 indicates that the band where the CC of NR is located is band1
  • n78 indicates that the band where the CC of NR is located is band78.
  • the band can also be expressed in other forms, which are not limited.
  • the broadband level refers to the number of continuous CCs in the band supported by the band where the CC is located.
  • the bandwidth level of NR and the broadband level of LTE are shown in Table 1.
  • the bandwidth level of NR may include: A, B, C, D, E, F, G, H, I, and J.
  • the broadband grades of LTE can include: A, B, C, D, E, F, and I. Among them, the number of consecutive CCs supported by the carrier corresponding to each broadband class can be referred to Table 1.
  • the bandwidth level of NR and the broadband level of LTE may also include other broadband levels, which are not limited.
  • the representation form of the broadband level is only exemplary, and other representation forms, such as Roman numerals, etc., can also be used without limitation.
  • the number of continuous CCs in the band supported by each broadband level can also be other values, which are not limited.
  • CA means that the carrier combination is a CA combination
  • n1A-n3C means that the carrier combination is composed of CC1 and CC2
  • CC1 and CC2 are NR CCs
  • Band1 where CC1 is located supports 1 CC in the band
  • band3 where CC2 is located supports 2 consecutive CCs in the band.
  • band1 is the primary carrier in the carrier combination
  • band3 is the secondary component carrier (sencondary carrier component, SCC) in the carrier combination.
  • CA means that the carrier combination is a CA combination
  • 1A-3C means that the carrier combination is composed of LTE CC1 and CC2, and CC1 is supported by band1 There is 1 CC in the band, and band3 where CC2 is located supports 2 consecutive CCs in the band.
  • CC1 is the main carrier in the carrier combination
  • CC2 is the SCC in the carrier combination
  • Dual connectivity It can refer to supporting two access network devices to provide data transmission services for a terminal device at the same time; the access network device where the PCell is located is called the master access network device (e.g., Master gNB, for short) MgNB), another access network device (that is, the access network device where the primary and secondary cell (Primary and Secondary Cell, PSCell) is located) is called the secondary access network device (eg, Secondary gNB, SgNB for short), where the primary access
  • the network device is the control plane anchor point, that is, the terminal device establishes an RRC connection with the main access network device, and the control plane connection is established between the main access network device and the core network, and RRC messages are transmitted between the main access network device and the terminal device.
  • some RRC messages (such as configuration information, measurement reports, etc.) may also be sent between the secondary access network device and the terminal device.
  • LTE DC can exist in the same access technology or between different access technologies.
  • two groups of LTE can form LTE DC
  • two groups of NR can form NR DC
  • a group of LTE and one group of NR can form E-UTRA and NR dual connectivity (E-UTRAN NR-dual connectivity, EN-DC) or NR and LTE dual connectivity (NR E-UTRAN-dual connectivity, NE-DC).
  • the two access network equipment connected by the terminal equipment can be the primary access network equipment and the auxiliary access network equipment.
  • the cells under the coverage of each access network equipment can form a CA group, and two access network equipment It can be regarded as two CA groups.
  • the CA group covered by the main access network equipment can be the master cell group (MCG).
  • MCG can carry the control plane and the user plane of the terminal device, and can be responsible for the terminal device Sending services can also be responsible for sending control signaling to terminal equipment.
  • the CA group covered by the secondary access network device may be called a secondary cell group (SCG).
  • the SCG can carry the user plane of the terminal device and can be responsible for sending services to the terminal device.
  • the access network equipment of LTE is MCG
  • the access network equipment of NR is SCG
  • the access network equipment of NR is MCG
  • the access network equipment of LTE is SCG.
  • the terminal device can communicate with the access network device 1 and the access network device 2 at the same time.
  • the cells covered by access network device 1 form CA group 1
  • the cells covered by access network device 2 form CA group 2
  • CA group 1 is MCG
  • CA group 2 is SCG
  • access network device 1 can be in CA Group 1 sends control signaling and transmission services to the terminal equipment, and the access network equipment 2 can transmit services and so on to the terminal equipment on the CA group 2.
  • the access network device 1 may be the main access network device, and the access network device 2 may be the auxiliary access network device.
  • the access network device 1 can be a secondary access network device, and the access network device 1 can be a main access network device without limitation.
  • the DC is divided into three parts with “_"" as the separator: the first part “DC” means that this combination is a DC combination; the second part “[band indication][bandwidth level]-[ Band indicator][bandwidth level]” means the carrier combination of MCG, and the carrier combination of MCG includes one or more carriers; the third part “[band indicator][bandwidth level]-[band indicator][bandwidth level]” Indicates the carrier combination of the SCG, and the carrier combination of the SCG includes one or more.
  • the specific description of the band indication and the broadband level in the second part and the third part can refer to the description of the band indication and the broadband level of the CA, which will not be repeated here.
  • DC_1A-3C_n78C means that the carrier combination is a DC combination
  • 1A-3C means that the MCG in the carrier combination is composed of CC1 and CC2 of LTE, and the band of CC1 is band 1, the band where CC2 is located is band 3, which is composed of two consecutive CCs in the band
  • n78C means that the SCG in the carrier combination is composed of CC3 of NR, and the band where CC3 is located is band 78, which consists of continuous in-band 2 CC composition.
  • CA and DC can be collectively referred to as BC (band combination, frequency band combination).
  • the terminal equipment needs to work on multiple carriers (serving cells) at the same time. Therefore, the combination of CA and DC supported by the terminal equipment is limited by the design of the radio frequency path (or receiver) of the terminal equipment.
  • the frequency points of different bands may require different radio frequency paths, or they may share the same radio frequency path, depending on the terminal equipment.
  • the specific design Generally speaking, the more RF channels of a terminal device, the more CA or DC combinations that can be supported.
  • LTE and NR also support multi-input multi-output (Multi-input Multi-output, MIMO) multi-antenna technology.
  • MIMO Multi-input Multi-output
  • the terminal device supports 4 receptions, that is, 4 antennas are used for reception on the CC, and 4 radio frequency channels are correspondingly occupied.
  • the MIMO capability of each CC is also restricted by the design of the radio frequency path (or receiver) of the terminal device.
  • the more radio frequency channels of the terminal equipment the higher the MIMO capability that can theoretically be supported under the same CA/DC.
  • the downlink MIMO capability is usually expressed as xR, where "x" can be numbers 1, 2, 4, etc. For example, 4R means 4 close.
  • each CC has at least 2R capability.
  • the combination of the MIMO capabilities of each CC under a CA/DC is called the MIMO capability combination of the CA/DC.
  • the MIMO capability combination of DC_1A_3A_7A-n78 is 4R+2R+4R+4R, that is, the CCs of band 1, band 7, and band n78 support 4R MIMO capabilities, and the CC of band 3 supports 2R MIMO capabilities.
  • the maximum MIMO capability combination under each CA/DC is also determined.
  • the terminal device has the capability of DC_1A_3A-n78 (of course, DC_1A-n78 is also supported).
  • the CCs of band 1, band 3, and band n78 all support 4R, but do not support DC_1A_3C-n78 and DC_1A_3A_3A-n78.
  • the base station when the terminal device accesses the base station, the base station can be notified of the CA and DC combinations supported by the terminal device and the MIMO capability combination under each combination through RRC signaling (such as UECapabilityInformation).
  • the base station can configure the CC to form a CA or DC combination for the terminal device through RRC signaling (such as RRC connection reconfiguration (ConnectionReconfiguration)), and configure the MIMO capability of each CC.
  • RRC signaling such as RRC connection reconfiguration (ConnectionReconfiguration)
  • RRC connection reconfiguration ConnectionReconfiguration
  • it can also indicate whether the measurement of each band (including 2G, 3G, and 4G bands) under each LTE CA requires the ability to measure time slots.
  • the R15 protocol stipulates that the measurement time slot is required when the neighboring cell of the different frequency or the different system is an NR cell. Therefore, there is no field indicating whether the measurement time slot is required to measure each NR band under different CA/DC in the RRC signaling (Capability Information).
  • the configuration of the measurement time slot can be shown in Figure 2.
  • the configuration mainly includes three parameters: measurement gap repetition period (MGRP) configuration measurement measurement period; measurement gap length (MGL) configuration
  • the length of the measurement time slot, the maximum of the measurement time slot can be 6 ms; gap offset (gap offset) configures the start position of the measurement time slot.
  • the terminal device can determine the start position of the measurement time slot based on these three parameters on the system frame number (SFN) and subframe (subframe) that meet the following conditions:
  • subframe gap Offset mod 10
  • the measurement period T MGRP/10.
  • the terminal device when the terminal device measures the NR cell to be tested, it may perform the measurement based on the SSB. If the terminal equipment adopts the measurement method of measuring the time slot, the base station needs to configure an accurate measurement time slot position for the terminal equipment, and the position needs to include the SSB of the NR cell to be tested.
  • Synchronization signal block includes primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), and physical broadcast channel (physical broadcast bhannel, PBCH). It can be used for synchronization, time-frequency tracking, radio resource measurement, etc.
  • the SSB of the NR cell to be tested can be sent according to a time period (also referred to as an SSB period), where the time period can be set as required, for example, it can be 5ms, 10ms, 20ms, There is no limit to 40ms, 80ms or 160ms.
  • the NR cell to be tested can send multiple SSBs in one period, and the multiple SSBs can be sent in one time period. That is, multiple SSBs in one time period can be called a SSB burst set (Burst Set).
  • the SSB period of the NR cell to be tested is 20 ms, and the SSB period includes four 5 ms.
  • One SSB Burst Set of the NR cell is sent in one 5ms, and no SSB occurs in the other three 5ms. Therefore, when the base station configures the measurement time slot for the terminal equipment, the configured measurement time slot needs to include the SSB transmission time (the measurement time slot shown by the solid line in Figure 3). Otherwise, the terminal equipment will not receive the SSB of the NR cell to be tested in the measurement time slot (the measurement time slot shown by the dotted line in FIG. 3), and thus cannot perform measurement on the NR cell to be tested.
  • the base station may also configure a measurement time configuration (SS/PBCH block measurement time configuration, SMTC) for each frequency point to be tested.
  • SS/PBCH block measurement time configuration SS/PBCH block measurement time configuration
  • SMTC It is a window with a maximum period of 160ms and a maximum window length of 5ms.
  • the R15 protocol stipulates that the terminal device only performs SSB measurement where the SMTC window and the measurement time slot overlap, and the SMTC period configured by the base station is greater than the SSB period.
  • the base station configures the measurement time slot of the NR cell to be tested, it needs to ensure that the configured measurement time slot contains a complete SSB Burst Set of the NR cell to be tested.
  • the location of the measurement time slot configured by the base station is based on the timing of the serving cell, and the location of the SSB of the NR cell to be tested is based on the timing of the NR cell. If the serving cell and the NR cell to be tested are not synchronized, the base station needs to know the timing deviation between the serving cell and the NR cell to be tested in order to correctly configure the position of the measurement time slot for the terminal device.
  • a terminal device accesses cell 1.
  • Cell 2 and Cell 3 are different frequency adjacent cells of Cell 1, and Cell 1 and Cell 2 and Cell 3 are not synchronized. Therefore, the SSB of cell 2 and cell 3 are not in the same location.
  • the base station cannot determine whether the terminal device is at the edge of cell 2 or cell 3, the base station cannot determine whether the measurement time slot should be configured in the SSB position of cell 2 or the SSB position of cell 3.
  • the terminal equipment is at the edge of cell 3, and the measurement time slot configured by the base station only contains the SSB location of cell 2, the terminal equipment will not be able to detect cell 3 and cannot switch to cell 3.
  • Radio frequency channel In the embodiments of this application, the receiving radio frequency channel is specifically referred to as a receiver or a radio frequency channel.
  • the radio frequency path of the terminal equipment is used to receive signals from the access network equipment, and the radio frequency path of the access network equipment is used to receive signals from the terminal equipment.
  • the number of radio frequency channels of the terminal device can determine whether the terminal device supports slotless measurement.
  • the terminal device in the RRC_CONNECTED state, if the radio frequency path of the terminal device can receive the signal of the serving cell and the signal of the neighboring cell at the same time, the terminal device can complete the measurement of the neighboring cell without measuring the time slot, that is, the terminal device can communicate with the neighboring cell.
  • the zone performs no-slot measurement. If the radio frequency path of the terminal equipment cannot receive the signal of the serving cell and the signal of the neighboring cell at the same time, that is, the terminal equipment does not have an additional radio frequency path to receive the signal of the neighboring cell, then it will take a period of time to perform time slot measurement.
  • the terminal equipment can stop the radio frequency channel used to receive the serving cell from receiving the signal of the serving cell, and make the radio frequency channel work at the frequency point of the neighboring cell to receive the signal of the neighboring cell, and then complete the alignment. Measurement of neighboring area.
  • CA and DC terminal equipment needs to work on multiple carriers (serving cells) at the same time. Therefore, the combination of CA and DC supported by the terminal equipment is restricted by the design of the radio frequency path of the terminal equipment.
  • the frequency of different carriers may require different radio frequency paths or the same radio frequency path, which is related to the specific design of the terminal equipment. The more radio frequency channels of the terminal equipment, the more combinations of CA or DC that can be supported.
  • MIMO capability usually expressed as xR, where "x" is a number, such as 1, 2, 4, etc.
  • x is a number, such as 1, 2, 4, etc.
  • Each CC has at least 2R capability.
  • the MIMO capability of a CC is 4R, which means that the CC supports 4 receptions.
  • the MIMO capability of each resource unit in the resource unit combination supported by the terminal device refers to the number of antennas or radio frequency channels used by the terminal device to receive signals on each resource unit in the resource unit combination.
  • the resource unit combination can be the above-mentioned CA or DC.
  • the MIMO capability of the CCs is also limited by the design of the radio frequency path.
  • the combination of the MIMO capabilities of each CC under a CA or a DC is called the MIMO combined capability of the CA/DC.
  • the number of radio frequency channels of the terminal equipment is constant, and the terminal equipment works under CA or DC formed by CCs with different MIMO capabilities, the ability to measure the time slot corresponding to a certain band is also different.
  • the terminal device supports DC_1A_3A-n78.
  • the MIMO capability of the CCs of band 1, band 3, and band n78 in DC_1A_3A-n78 is 4R.
  • the terminal device does not support DC_1A_3A_7A-n78.
  • the MIMO capability of the CCs of band 1, band 7, and band n78 in DC_1A_3A_7A-n78 is 4R, and the MIMO capability of the CC of band 3 is 2R.
  • the terminal device When the terminal device is working under DC_1A-n78, it can perform non-slot measurement on the neighboring cell corresponding to band 3; when the terminal is working under DC_1A_3A-n78, the terminal device can perform non-slot measurement on the neighboring cell corresponding to band 7 At this time, since the terminal device has no remaining radio frequency channel for receiving the signal of the neighboring cell corresponding to band 7, the terminal device cannot perform slotless measurement on the neighboring cell corresponding to band 7.
  • a slotless measurement method which includes: a terminal The device receives configuration information from the access network device for instructing the terminal device to perform slotless measurement on the neighboring cell of the serving cell of the terminal device. According to the configuration information, the terminal device determines that part or all of the radio frequency paths of the radio frequency paths of the second resource unit are radio frequency paths of the resource unit to be tested in the neighboring cell.
  • the second resource unit is included in the first resource unit combination of resource units configured for the terminal device and in an activated state. In this way, the terminal device can perform slotless measurement on the neighboring cell of the serving cell of the terminal device on part or all of the radio frequency path of the second resource unit.
  • the slotless measurement method provided in the embodiments of the present application can be used in any communication system that supports communication.
  • the communication system can be a 3GPP communication system, for example, an LTE communication system, a 5G mobile communication system, and a new radio (NR) system.
  • NR new radio
  • V2X NR vehicle-to-everything
  • FIG. 6 uses FIG. 6 as an example to describe the slotless measurement method provided in the embodiment of the present application.
  • Fig. 6 shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include multiple access network devices and multiple terminal devices, such as user equipment (UE).
  • the UE may be located in the coverage area of the access network equipment and be connected to the access network equipment through the Uu port.
  • each access network device can cover one or more cells, the terminal device can work under CA or DC, and the terminal device can be located in one or more cells covered by the access network device.
  • the terminal device can receive the service provided by the access network device through the cell where it is located, or it can be described as the access network device can provide service for the terminal device through the cell covered by it.
  • the cell that provides services for the terminal device may be referred to as a serving cell.
  • the access network device 1 covers cell 1.1 and cell 1.2
  • UE1 can be located in cell 1.1 and cell 1.2, and can receive services provided by access network device 1 through cell 1.1 and cell 1.2, then cell 1.1
  • the cell 1.2 may be referred to as the serving cell of UE1.
  • Access network device 2 covers cells 2.1 and 2.2.
  • UE2 can be located in cell 1.1 and cell 2.1. It can receive services provided by access network device 1 through cell 1.1, and receive services provided by access network device 2 through cell 2.2. 1.1.
  • the cell 2.1 may be referred to as the serving cell of UE2.
  • Figure 6 is only an exemplary framework diagram.
  • the number of access network devices, the number of UEs, and the number of cells covered by the access network devices included in Figure 6 are not limited, and the names of each device are not limited.
  • other nodes may also be included, such as core network equipment, gateway equipment, application servers, etc., which are not limited.
  • the access network equipment in FIG. 6 is mainly used to implement functions such as resource scheduling, wireless resource management, and wireless access control of terminal equipment.
  • the access network device may be any one of a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the device used to implement the function of the access network device may be the access network device, or may be a device capable of supporting the access network device to implement the function, such as a chip system.
  • the device used to implement the function of the access network device is the access network device to describe the slotless measurement method provided in the embodiment of the present application.
  • the UE in FIG. 6 may be a terminal equipment (terminal equipment) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
  • the UE may be a mobile phone (mobile phone), a tablet computer, or a computer with wireless transceiver function, it may also be a virtual reality (VR) device, an augmented reality (AR) device, or wireless in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
  • the device used to implement the function of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system.
  • the terminal device that is used to implement the function of the terminal device as an example, the time-slotless measurement method provided in the embodiment of the present application is described.
  • Access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiment of the present application does not limit the application scenarios of the access network device and the terminal device.
  • each network element shown in FIG. 6, such as a terminal device and an access network device may have the components shown in FIG. 7.
  • FIG. 7 is a schematic diagram of the composition of a communication device 700 provided by an embodiment of this application.
  • the communication device 700 may be a terminal device or one of the terminal devices. Chip or system on chip.
  • the communication apparatus 700 may be an access network device or a chip or a system on a chip in the access network device.
  • the communication device 700 may include a memory, a processor, a transmit (TX) signal processing unit, and a receive (RX) signal processing unit.
  • the memory, the processor, the TX signal processing unit and the RX signal processing unit are connected through a communication line.
  • the memory may include static memory for storing executable code and data, and may also include dynamic memory for storing instructions and dynamic data.
  • the processor is used to control the TX signal processing unit to generate signals in a predefined manner, and to control the RX signal processing unit to receive signals in a predefined manner.
  • the TX signal processing unit is used to implement various signal processing functions for signal transmission, including processes such as channel coding, scrambling, modulation, layer mapping, precoding, and antenna mapping.
  • the RX signal processing unit implements various signal processing functions for signal reception, including synchronization, time-frequency tracking, measurement, channel estimation, equalization, demodulation, descrambling, and decoding.
  • the TX signal processing unit and the RX signal processing unit are respectively connected to the antenna through the TX radio frequency path and the RX radio frequency path.
  • the TX radio frequency channel modulates the baseband signal to the carrier frequency and sends it out through the antenna;
  • the RX radio frequency channel demodulates the radio frequency signal received from the antenna into a baseband signal, which is processed by the RX signal processing unit.
  • Some antennas can be configured to transmit and receive at the same time (antenna 1 and antenna 2 in Figure 7), so they are connected to the TX RF path and RX RF path at the same time; some antennas are configured to be used only for receiving (antenna s in Figure 7) And antenna m), so it is only connected to the RX radio frequency path.
  • the TX radio frequency channel and the RX radio frequency channel can be connected to any antenna, for example, the TX radio frequency channel 1 and the RX radio frequency channel 1 are connected to the antenna 3.
  • the RX radio frequency channel and the TX radio frequency channel are not necessarily connected to the antenna. If the current radio frequency channel is not used, the radio frequency channel is not connected to the antenna.
  • the same antenna can be connected to multiple RX radio frequency channels and/or TX radio frequency channels.
  • the antenna can work on multiple frequency points at the same time.
  • the RX radio frequency channel of the RX is sent to the RX signal processing unit for processing; during uplink transmission, the signals from different frequency points of different TX radio frequency channels are combined by the combiner and sent on the same antenna. All of the above can be flexibly configured according to business needs.
  • FIG. 8 is a schematic diagram of the composition of a time-slotless measuring apparatus 800 provided by an embodiment of the application.
  • the time-slotless measuring apparatus 800 has the function of the terminal equipment described in the embodiment of the present application
  • the time-slotless measuring apparatus 800 It can be a terminal device or a chip or a system on a chip in the terminal device.
  • the slotless measurement device 800 may be the access network device or a chip or a system on a chip in the access network device.
  • the slotless measurement device 800 includes a processor 801, a communication interface 802, and a communication line 803.
  • the slotless measurement device 800 may further include a memory 804. Among them, the processor 801, the memory 804, and the communication interface 802 may be connected through a communication line 803.
  • the processor 801 is a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processor (digital signal processing, DSP), a microprocessor, a microcontroller, Programmable logic device (PLD) or any combination of them.
  • the processor 801 may also be other devices with processing functions, such as circuits, devices, or software modules, without limitation.
  • the communication interface 802 is used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the communication interface 802 may be a module, a circuit, a communication interface, or any device capable of realizing communication.
  • the communication line 803 is used to transmit information between the components included in the slotless measuring device 800.
  • the memory 804 is used to store instructions. Among them, the instruction may be a computer program.
  • the memory 804 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and/or instructions, and it may also be a random access memory (RAM) or a random access memory (RAM).
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 804 may exist independently of the processor 801, or may be integrated with the processor 801.
  • the memory 804 may be used to store instructions or program codes or some data.
  • the memory 804 may be located in the slotless measuring device 800 or outside the slotless measuring device 800, and is not limited.
  • the processor 801 is configured to execute instructions stored in the memory 804 to implement the slotless measurement method provided in the following embodiments of the present application.
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 8.
  • the slotless measurement apparatus 800 includes multiple processors.
  • a processor 807 may also be included.
  • the slotless measurement apparatus 800 further includes an output device 805 and an input device 806.
  • the input device 806 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 805 is a device such as a display screen and a speaker.
  • the time slotless measurement device 800 can be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system, or a device with a similar structure in FIG. 8.
  • the composition structure shown in FIG. 8 does not constitute a limitation on the terminal device.
  • the terminal device may include more or less components than those shown in the figure, or combine certain components. , Or different component arrangements.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the access network equipment and terminal equipment described in the following embodiments may have the components shown in FIG. 7 or FIG. 8, which will not be described in detail.
  • the names of messages or parameter names in the messages that are exchanged between devices in the embodiments of the present application are just an example, and other names may also be used in specific implementations, which are not limited.
  • the actions involved in each embodiment of this application are just examples, and other names may also be used in specific implementations. For example, “carried on” in the embodiments of this application can also be replaced with "carried on” or "included in”.
  • FIG. 9 is a flowchart of a time-slotless measurement method provided by an embodiment of this application, as shown in FIG. 9, including:
  • Step 901 The access network device sends configuration information to the terminal device, and correspondingly, the terminal device receives the configuration information from the access network device.
  • the terminal device may be any terminal device in FIG. 6, the access network device may be a device that provides network services for the terminal device, and the access network device is an access network device corresponding to the serving cell of the terminal device.
  • the configuration information can be used to instruct the terminal device to perform slotless measurement on the first cell, or alternatively described as configuration information used to instruct the terminal device to perform slotless measurement on the first resource unit corresponding to the first cell, or,
  • the configuration information is used to instruct the terminal device to perform slotless measurement on the SSB on the first resource unit.
  • the first cell may be a neighboring cell of the serving cell of the terminal device.
  • the first resource unit may be a resource unit to be tested of the first cell.
  • the serving cell and the first cell may be cells covered by the same access network device, or may be cells covered by different access network devices.
  • the terminal device when the serving cell and the first cell are cells covered by the same access network device, the terminal device may be UE1 in FIG. 6, the access network device may be access network device 1 in FIG. 6, and the serving cell may be For cell 1.1 in FIG. 6, the first cell may be cell 1.2 in FIG. 6. Among them, the first resource unit is the resource unit to be tested in cell 1.2.
  • the terminal device When the serving cell and the first cell are cells covered by different access network devices, the terminal device may be UE2 in FIG. 6, and the access network device may be access network device 1 or access network device 2 in FIG. 6 .
  • the serving cell can be the cell 1.1 in Figure 6
  • the first cell can be the cell 2.1 in Figure 6
  • the first resource unit is the cell 2.1 under test Resource unit.
  • the serving cell may be the cell 2.1 in Fig. 6, the first cell is the cell 1.1 in Fig. 6, and the first resource unit is the resource to be tested in the cell 1.1 unit.
  • the access network device determines that the terminal device is located at the edge of the serving cell, the access network device is triggered to send configuration information to the terminal device.
  • the access network device may determine that the terminal device is located at the edge of the serving cell according to the signal quality of the serving cell reported by the terminal device.
  • the access network device may determine that it is located at the edge of the serving cell.
  • the threshold may be a preset value.
  • the access network device may send configuration information to the terminal device through an RRC message.
  • the configuration information can be carried in an RRC message and sent to the terminal device.
  • the RRC message may be an RRC connection reconfiguration message or an RRC connection recovery message
  • the RRC connection reconfiguration message may be abbreviated as an RRC reconfiguration message
  • the RRC connection recovery message may be abbreviated as an RRC recovery message.
  • Both the terminal equipment and the access network equipment may include the RRC layer, the L2 layer, and the PHY layer.
  • the dotted line in FIG. 10 can be used to represent the control signaling flow, and the solid line can be used to represent the data flow.
  • Both the terminal device and the access network device can configure the L2 layer and the PHY layer through the RRC layer, and the L2 layer and the PHY layer can indicate the configured structure and status information to the RRC layer.
  • the RRC information and L2 information between the terminal equipment and the access network equipment are all transmitted through the PHY layer.
  • the RRC information and L2 information between the access network device and the terminal device are transmitted in the form of data.
  • the access network device encapsulates the RRC message into a data packet in the form of an L2 group, and sends the data packet to the terminal device through the PHY layer of the access network device.
  • the terminal device can receive the data packet from the access network device through the PHY layer of the terminal device.
  • the PHY layer of the terminal device sends the data packet to the L2 layer of the terminal device.
  • the L2 layer of the terminal device sends the RRC message to the RRC layer of the terminal device.
  • the RRC layer of the terminal device After the RRC layer of the terminal device receives the RRC message from the L2 layer of the terminal device, it parses the RRC message to obtain the configuration information sent from the access network device. After obtaining the configuration information sent from the access network device, the RRC layer of the terminal device may send an internal configuration message to the PHY layer of the terminal device. The internal configuration message may be used to instruct the PHY layer of the terminal device to perform slotless measurement on the first cell. The PHY layer of the terminal device reports the measurement result to the RRC layer of the terminal device after performing slotless measurement on the cell to be tested. The RRC layer of the terminal device may generate a measurement report (MeasurementReport) after receiving the measurement result of the PHY layer of the terminal device.
  • MeasurementReport a measurement report after receiving the measurement result of the PHY layer of the terminal device.
  • the RRC layer of the terminal device may send the measurement report to the PHY layer of the access network device through the L2 layer and the PHY layer of the terminal device. After the PHY layer of the access network device receives the measurement report from the PHY layer of the terminal device, it can be transferred to the RRC layer of the access network device through the L2 layer of the access network device.
  • the access network device can also send configuration information to the terminal device through other messages, which is not limited.
  • the configuration information can also be used to indicate other information.
  • the configuration information can also be used to indicate the second resource unit combination and the second resource unit combination.
  • the second resource unit combination includes the updated first resource unit, and the updated first resource unit does not include the second resource unit, or the MIMO capability of the second resource unit in the updated first resource unit combination is lower than The MIMO capability of the second resource unit in the first resource unit combination.
  • the second resource unit combination may be determined by the access network device and only indicated to the terminal device.
  • the configuration information may include the second resource unit combination and the MIMO capability of each resource unit in the second resource unit combination.
  • the second resource unit combination and the MIMO capability of each resource unit in the second resource unit combination can be carried in configuration information and sent to the terminal device to reduce signaling overhead.
  • the second resource unit combination and the MIMO capability of each resource unit in the second resource unit combination may also not be carried in the configuration information and sent to the terminal device.
  • the access network device may send the second resource unit to the terminal device through separate signaling.
  • the resource unit combination and the MIMO capability of each resource unit in the second resource unit combination are used to reduce the power consumption caused by the terminal device parsing signaling.
  • the first resource unit combination is CA_1A-3A-7A
  • the second resource unit is band3
  • the first resource unit is band78
  • band78 is an NR resource unit.
  • the updated first resource unit combination is CA_1A-7A.
  • the first resource unit combination is CA_1A-3A-7A
  • the second resource unit band3 the MIMO capability of the first resource unit combination is 4R+4R+4R
  • the first resource unit is band78
  • band78 is the NR resource unit
  • the second resource unit is band3
  • the MIMO capability of band3 is 4R.
  • the updated first resource combination is CA_1A-3A-7A.
  • the updated MIMO capability of the first resource unit combination is 4R+2R+4R.
  • FIG. 6 the implementation of this example can be referred to as shown in FIG. 6 below.
  • the configuration information may also be used to indicate at least one resource unit, the at least one resource unit is included in the first resource unit combination, and the at least one resource unit includes a radio frequency channel that can be used as a resource unit of the radio frequency channel of the first resource unit , So that the terminal device selects the second resource unit from the at least one resource unit, and uses some or all of the radio frequency channels of the second resource unit as the radio frequency channels of the first resource unit.
  • the first resource unit combination is CA_1A-3A-7A
  • the at least one resource unit may include one or more of band1, band3, and band7.
  • the at least one resource unit may include band3 and/or band7.
  • Step 902 The terminal device determines the radio frequency path of the first resource unit according to the configuration information.
  • the radio frequency path of the first resource unit is part or all of the radio frequency path of the second resource unit.
  • the second resource unit is included in the first resource unit combination configured for the terminal device and in the active state.
  • the resource unit combination includes one or more resource units in an activated state.
  • a resource unit is in an active state may mean that uplink and downlink signals can be received or sent on the resource unit.
  • the terminal device may send uplink signals to the access network device through the radio frequency path of the resource unit in the activated state, and may receive downlink signals from the access network device through the radio frequency path of the resource unit in the activated state.
  • the resource units in the active state in the resource unit may include band1, band3, and band7.
  • the radio frequency path of the first resource unit is part of the radio frequency path of the second resource unit.
  • the radio frequency channels of the first resource unit are all radio frequency channels in the radio frequency channels of the second resource unit.
  • step 902 may include the following two ways:
  • the configuration information is used to indicate the second resource unit combination and the MIMO capability of each resource unit in the second resource unit combination.
  • the terminal device determining the radio frequency channel of the first resource unit according to the configuration information may include:
  • the terminal device compares the first resource unit combination with the second resource unit combination, and uses the radio frequency path of the resource unit included in the first resource combination but not included in the second resource combination as the radio frequency path of the first resource unit; or A part of the radio frequency channels of the same resource unit with different MIMO capabilities in a resource combination and a second resource unit combination are used as the radio frequency channels of the first resource unit.
  • the first resource unit combination is CA_1A-3A-7A
  • the second resource unit combination is DC_1A-7A
  • the first resource unit combination includes band3.
  • the second resource unit combination does not include band3.
  • the terminal equipment can use all the radio frequency paths of band3 as the radio frequency paths of the first resource unit.
  • the first resource unit combination is CA_1A-3A-7A
  • the second resource unit combination is DC_1A-3A-7A
  • the MIMO capability of band3 in the first resource unit combination is 4R
  • the MIMO capabilities of band1 and band7 are both 4R
  • the MIMO capability of band3 is 2R
  • the MIMO capability of band1 and band7 are both 4R.
  • the terminal device may use part of the radio frequency path of band3 as the radio frequency path of the first resource unit.
  • the first method can be referred to as shown in FIG. 11.
  • the configuration information is used to indicate at least one resource unit, and the terminal device determining the radio frequency channel of the first resource unit according to the configuration information may include the following scenario 1 or scenario 2:
  • the terminal device uses, among at least one resource unit, part of the radio frequency path of at least one resource unit that satisfies one or more of the following conditions 1 to 5 as the radio frequency of the first resource unit path:
  • the rank indication (RI) is less than or equal to a preset value.
  • the preset value can be a preset value, which is not limited.
  • the preset value can be 2.
  • the active resource unit combination configured for the terminal device is CA_1A-3A-7A, if the RI of band1 is 1, the RI of band3 is 2, and the RI of band7 is 4, and the default value is 2.
  • the terminal device may use part of the radio frequency path of band1 as the radio frequency path of the first resource unit.
  • the bandwidth of band1 is greater than the bandwidth of band3, and the bandwidth of band3 is greater than the bandwidth of band7.
  • the terminal equipment can use part of the radio frequency path of band7 as the radio frequency path of the first resource unit.
  • Condition 3 The resource unit with the smallest signal quality among the resource units in the active state.
  • the signal quality may include RSRP or RSRQ or SINR or other parameters without limitation.
  • the terminal equipment can use part of the radio frequency path of band7 as the radio frequency path of the first resource unit.
  • the terminal equipment can use part of the radio frequency path of band7 as the radio frequency path of the first resource unit.
  • the SINR of band1 is greater than the SINR of band3
  • the SINR of band3 is greater than the SINR of band7.
  • the terminal equipment can use part of the radio frequency path of band7 as the radio frequency path of the first resource unit.
  • the terminal device can be in the above three bands.
  • Part of the radio frequency path of any one of the bands is used as the radio frequency path of the first resource unit, and the terminal device can also select a band from the above three bands according to a preset priority.
  • RSRP has a higher priority than RSRQ
  • RSRQ has a higher priority than SINR.
  • the terminal device may use part of the radio frequency path of band1 as the radio frequency path of the first resource unit.
  • the preset priority is a preset priority, which is not limited.
  • Condition 4 The resource unit with the lowest data transmission rate among the resource units in the active state.
  • the terminal device can use part of the radio frequency path of band7 as the radio frequency of the first resource unit path.
  • Condition 5 The resource unit with the largest ID among the resource units in the active state.
  • the terminal device may use part of the radio frequency path of band3 as the radio frequency path of the first resource unit.
  • the terminal device may deactivate the at least one resource unit according to the configuration information, so that the terminal device stops performing data transmission with the serving cell on all radio frequency paths of the deactivated at least one resource unit.
  • the terminal device may use all radio frequency paths of the at least one resource unit that stops data transmission with the serving cell as the radio frequency paths of the first resource unit.
  • the resource unit combination configured for the terminal device and in the active state is CA_1A-3A-7A, and the at least one resource unit may include one or more of band3 and band7.
  • the terminal device can deactivate band3 and/or band7. For example, if the terminal device deactivates band3, the terminal device can stop data transmission with the serving cell on this band3.
  • the terminal equipment can use all the radio frequency paths of band3 as the radio frequency paths of the first resource unit.
  • the terminal device uses all the radio frequency paths of the second resource unit satisfying one or more of the following conditions 6 to 10 in at least one resource unit as the radio frequency of the first resource unit path:
  • Condition 6 The resource unit with the largest ID among the resource units in the active state.
  • condition 6 can refer to the above condition 5, which will not be repeated here.
  • Condition 7 The resource unit with the lowest data transmission rate among the resource units in the active state.
  • condition 7 can refer to the above condition 2, which will not be repeated here.
  • Condition 8 Among the resource units in the active state, the resource unit with the smallest signal quality or RI.
  • the signal quality may include RSRP or RSRQ or SINR or other parameters without limitation.
  • RSRP or RSRQ or SINR for the specific description of RSRP or RSRQ or SINR in the signal quality, refer to the above condition 3, and for the specific description of the RI, refer to the above condition 1. I won't repeat them here.
  • condition 9 can refer to the above condition 2, which will not be repeated here.
  • Condition 10 The resource unit with the largest MIMO capability among the resource units in the active state.
  • the MIMO capability of band3 is 4R
  • the MIMO capability of band7 is 8R.
  • the terminal device can use all radio frequency channels of band7 as the radio frequency channels of the first resource unit.
  • the terminal device can randomly or according to a preset order any one or more of the multiple resource units All the radio frequency paths of the two resource units are used as the radio frequency paths of the first resource unit.
  • the preset sequence can be preset.
  • the preset order is from left to right or from right to left, which is not limited.
  • the active resource unit combination configured for the terminal device is CA_1A-3A-7A.
  • band3 and band7 have the same MIMO capability.
  • the terminal device can use all radio frequency paths of band3 and/or band7 as the first The radio frequency path of a resource unit.
  • the terminal device can reduce the MIMO capability in the at least one resource unit, so that the terminal device stops performing data transmission with the serving cell on part of the radio frequency channels of the at least one resource unit.
  • the terminal device may use a part of the radio frequency path that stops data transmission with the serving cell as the radio frequency path of the first resource unit.
  • the resource unit combination configured for the terminal device and in the active state is CA_1A-3A-7A
  • the at least one resource unit may include one or more of band1, band3, and band7.
  • the MIMO capability of band1, the MIMO capability of band3 and the MIMO capability of band7 are all 4R. In other words, the number of radio frequency channels through which the terminal equipment performs data transmission with the serving cell on band1, band3, and band7 is 4.
  • the terminal device can reduce the MIMO capability of band1 from 4R to 2R; and/or the terminal device can reduce the MIMO capability of band3 from 4R to 2R; and/or the terminal device can reduce the MIMO capability of band7 from 4R to 2R,
  • the number is reduced to two, and/or, so that the number of radio frequency channels through which the terminal device performs data transmission with the serving cell on band7 is reduced from four to two.
  • the terminal device can use the two radio frequency channels that stop data transmission with the serving cell on band1 as the radio frequency channels of the first resource unit, and/or the two radio frequency channels that perform data transmission on band3 with the serving cell, As the radio frequency path of the first resource unit, and/or use the two radio frequency paths of band7 for data transmission with the serving cell as the radio frequency path of the first resource unit.
  • the terminal device may send a configuration completion response to the access network device, and the configuration completion response may be used to indicate the second resource unit, so that the access network device can determine the first resource unit according to the configuration completion response
  • the radio frequency paths of are all radio frequency paths of the second resource unit.
  • the configuration completion response may include the identifier of the second resource unit.
  • the configuration completion response may also include other information, such as the identification of the terminal device, etc., which is not limited.
  • the configuration completion response may also be used to indicate the MIMO capability of the second resource unit, so that the access network device can follow
  • the configuration completion response determines that the radio frequency path of the first resource unit is a partial radio frequency path of the second resource unit.
  • the second mode can be referred to as described in FIG. 12 below.
  • Step 903 The terminal device performs a slotless measurement on the first cell on the radio frequency path of the first resource unit.
  • the terminal device may continuously monitor the SSB on the radio frequency path of the first resource unit according to a preset time.
  • the preset time may be set to be greater than or equal to the SSB period of the first cell.
  • the preset time may be an SMTC period.
  • the terminal device can receive the signal of the neighboring cell of the serving cell during the SMTC period, that is, the terminal device can perform slotless measurement on the neighboring cell of the serving cell, thereby The problem in the prior art that the terminal device cannot detect the neighboring cell of the serving cell in the 6ms measurement time slot is solved.
  • the method shown in FIG. 9 is described by taking as an example that a terminal device performs a slotless measurement on the first cell or the first resource unit of the first cell. It is understandable that the terminal device can refer to the method shown in FIG. 9 The method performs slotless measurement on multiple resource units to be tested, which will not be described in detail. For example, the terminal device may refer to the method shown in FIG. 9 to perform slotless measurement on the resource units to be tested in the cell 1.1, the cell 1.2, the cell 2.1, and the cell 2.2 in FIG. 6.
  • the terminal device can follow The configuration information determines that part or all of the radio frequency paths of the second resource unit in the first resource unit combination of the resource unit in the activated state configured for the terminal device are the radio frequency paths of the first resource unit. In this way, the terminal device can receive the signal of the neighboring cell on the radio frequency path of the first resource unit, thereby solving the problem that when the terminal device does not have the radio frequency path to receive the signal of the neighboring cell in the prior art, the time slotless measurement of the neighboring cell cannot be performed. The problem.
  • the method further includes:
  • the access network device sends the first query information to the terminal device.
  • the terminal device receives the first query information from the access network device.
  • the first query information is used to query the capability information of the terminal device.
  • the capability information of the terminal device may include the resource unit combination supported by the terminal device and the MIMO capability corresponding to each resource unit in the resource unit combination supported by the terminal device.
  • the resource unit combination capability supported by the terminal device refers to the collection of all resource unit combinations supported by the terminal device.
  • the resource unit combinations supported by the terminal device include: CA_1A-3A-7A, DC_1A-3A_n78A, DC_1A-7A_n78A, DC_3A-7A_n78.
  • the resource unit combination capabilities supported by the terminal device are CA_1A-3A-7A, DC_1A-3A_n78A, DC_1A-7A_n78A, and DC_3A-7A_n78.
  • the MIMO capability of the resource unit combination CA_1A-3A-7A supported by the terminal device is 4R+4R+4R.
  • the resource unit combination includes band1, band3, and band7.
  • the MIMO capability corresponding to band1 is 4R
  • the MIMO capability corresponding to band3 is 4R
  • the MIMO capability corresponding to band7 is 4R.
  • the first query information may be RRC information, for example, the first query information is UE Capability Enqiry.
  • the terminal device can respond to information via RRC, such as the capability information of the terminal device (UE Capability Information), and return the capability information of the terminal device to the access network device.
  • RRC resource control protocol
  • the RRC response information may include multiple information elements, and each information element may carry capability information of one or more terminal devices.
  • the LTE CA combination supported by the terminal device and the MIMO capability of each resource unit in the LTE CA combination can be included in the cell UE-EUTRA-Capability; the NR CA combination supported by the terminal device and the MIMO capability of each resource unit in the NRCA combination
  • the MIMO capability can be included in the cell UE-NR-Capability; the EN-DC combination supported by the terminal device and the MIMO capability of each resource unit in the EN-DC combination are included in the cell UE-MRDC-Capability.
  • the access network device can obtain the capability information of the terminal device through signaling interaction with the terminal device, which is simple and easy.
  • the method further includes:
  • the access network equipment and terminal equipment receive or send uplink and downlink signals on the second resource unit according to the reduced MIMO capability.
  • the terminal device can receive the signal of the neighboring cell on a part of the radio frequency path of the second resource unit, and further, the terminal device can perform slotless measurement of the neighboring cell.
  • the access network equipment and terminal equipment stop receiving or sending uplink and downlink signals on the second resource unit.
  • the terminal device can receive signals of the neighboring cell on all radio frequency paths of the second resource unit, and further, the terminal device can perform slotless measurement of the neighboring cell.
  • the method further includes:
  • the terminal device sends a measurement report to the access network device.
  • the access network device receives the measurement report from the terminal device.
  • the terminal device may send a measurement report to the access network device when the terminal device's measurement of the neighboring cell and the serving cell meets the trigger measurement condition, or the measurement duration of the terminal device is greater than or equal to the preset measurement period.
  • the trigger measurement condition can be a preset condition.
  • the signal quality of the neighboring cell is stronger than the signal quality of the serving cell, or the signal quality of the serving cell is lower than the first preset threshold, or the signal quality of the neighboring cell is greater than the second preset threshold, and so on.
  • the first preset threshold and the second preset threshold may be preset thresholds and are not limited.
  • the preset measurement period can be a preset time length, which is not limited.
  • the access network device can accurately determine whether the terminal device needs to perform cell handover according to the measurement report, so as to avoid affecting the use of the terminal device when the signal quality of the serving cell of the terminal device is poor.
  • FIG. 11 is a flowchart of a time slotless measurement method provided by an embodiment of this application. As shown in FIG. 11, the method may include:
  • Step 1101 The terminal device sends the capability information of the terminal device to the access network device.
  • the access network device receives the capability information from the terminal device.
  • Step 1102. The access network device determines the radio frequency path of the first resource unit.
  • radio frequency path of the first resource unit For the radio frequency path of the first resource unit, reference may be made to the description of the radio frequency path of the first resource unit in step 902, which will not be repeated here.
  • step 1102 may include the following two situations:
  • Case 3 The access network equipment uses part of the radio frequency path of the second resource unit that meets one or more of the following conditions as the radio frequency path of the first resource unit:
  • Condition 14 The resource unit with the lowest data transmission rate among the resource units in the activated state
  • Condition 15 The resource unit with the largest ID among the resource units in the active state.
  • conditions 11 to 15 can be specifically referred to conditions 1 to 5, which will not be repeated here.
  • Case 4 The access network equipment uses all the radio frequency paths of the second resource unit that meet one or more of the following conditions as the radio frequency paths of the first resource unit:
  • Condition 16 The resource unit with the largest ID among the resource units in the active state.
  • Condition 17 The resource unit with the lowest data transmission rate among the resource units in the active state.
  • the signal quality can include RSRP or RSRQ or SINR, which is not limited.
  • Condition 20 The resource unit with the smallest MIMO capability among the resource units in the active state.
  • conditions 16 to 20 can be specifically referred to conditions 6 to 10, which will not be repeated here.
  • step 1102 may be specifically implemented through the following steps:
  • Step 11021 The access network device determines the radio frequency path of the first resource unit according to the capability information of the terminal device.
  • the access network device determines that the third resource unit combination capability is greater than the resource unit combination supported by the terminal device, or when the access network device determines that the MIMO capability of the third resource unit combination is greater than the resource unit supported by the terminal device
  • the radio frequency path of the first resource unit is determined according to the capability information of the terminal device.
  • the third resource unit combination is a resource unit combination obtained by adding the first resource unit to the first resource unit combination.
  • the third resource unit combination capability is greater than the resource unit combination supported by the terminal device, which means that the third resource unit combination is not included in the resource unit combination supported by the terminal device.
  • the third resource unit combination capability is greater than the resource unit combination supported by the terminal device and the MIMO capability of the third resource unit combination is greater than the MIMO capability of the resource unit combination supported by the terminal device:
  • the third resource unit combination capability is greater than the resource unit combination supported by the terminal device.
  • the resource combination capabilities supported by the terminal device are CA_1A-3A-7A, DC_1A-3A_n78A, DC_1A-7A_n78A, and DC_3A-7A_n78.
  • the resource combination not supported by the terminal device is DC_3A-7A_n78_n67.
  • the first resource unit is n67
  • the first resource unit combination is DC_3A-7A_n78
  • the third resource unit combination is DC_3A-7A_n78_n67.
  • the third resource unit combination is not included in the resource unit combination that is not supported by the terminal device. That is, the third resource unit combination is larger than the resource unit combination supported by the terminal device.
  • the first resource unit is n78
  • the first resource unit combination is CA_1A-3A
  • the third resource unit combination is DC_1A-3A_n78.
  • the third resource unit combination is included in the resource combination supported by the terminal device. That is, the third resource unit combination capability is less than or equal to the resource unit combination supported by the terminal device.
  • the MIMO capability of the third resource unit is greater than the MIMO capability of the resource unit combination supported by the terminal device.
  • the resource unit combination supported by the terminal device includes: CA_1A-3A-7A and DC_1A-3A-7A_n78A.
  • the MIMO capability combination of CA_1A-3A-7A is 4R+4R+4R
  • the MIMO capability combination of DC_1A-3A-7A_n78A is 4R+2R+2R+4R, 2R+4R+2R+4R or 2R+2R+4R+ 4R.
  • the first resource unit is n78, and the MIMO capability of the first resource unit is 2R.
  • the first resource unit combination is CA_1A-3A-7A, and the MIMO capability of the first resource unit combination is 4R+4R+4R.
  • the third resource unit combination is DC_1A-3A-7A_n78A, and the MIMO capability of the third resource unit combination is 4R+4R+4R+2R.
  • the MIMO capability of the third resource unit combination is greater than the MIMO capability of the resource unit combination supported by the terminal device.
  • the terminal device since the terminal device supports many resource unit combinations, if the resource combination of the terminal device acquired by the access network device is not all resource combinations supported by the terminal device, then when the access network device is based on the second resource unit When the radio frequency path determines the radio frequency path of the first resource unit, it may cause the determined radio frequency path of the first resource unit to be suboptimal.
  • Step 1103 The access network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information from the access network device.
  • step 1103 can refer to the above step 901, which will not be repeated here.
  • Step 1104 The terminal device determines the radio frequency path of the first resource unit according to the configuration information.
  • step 1104 For the specific description of step 1104, reference may be made to the above step 902, which will not be repeated here.
  • Step 1105 The terminal device performs a slotless measurement on the first cell on the radio frequency path of the first resource unit.
  • step 1105 For the specific description of step 1105, refer to the above step 903, which will not be repeated here.
  • step 1101 in FIG. 11 is an optional step, and step 1102, step 1103, step 1104, and step 1150 are required steps.
  • FIG. 12 is a flowchart of a time slotless measurement method provided by an embodiment of this application. As shown in FIG. 12, the method may include:
  • Step 1201 The terminal device sends the capability information of the terminal device to the access network device. Correspondingly, the terminal device receives the capability information from the terminal device.
  • step 1201 For the specific description of step 1201, reference may be made to the above step 1101, which will not be repeated here.
  • Step 1202 The access network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information from the access network device.
  • step 1202 For the specific description of step 1202, refer to step 901, which will not be repeated here.
  • Step 1203 The terminal device determines the radio frequency path of the first resource unit according to the configuration information.
  • step 1203 For the specific description of step 1203, reference may be made to the above step 902, which will not be repeated here.
  • Step 1204 The terminal device sends a configuration completion response to the access network device.
  • the access network device receives the configuration completion response from the terminal device.
  • the configuration completion response is used to indicate the second resource unit.
  • the configuration completion response may include the identification of the second resource unit.
  • the configuration completion response may also include other information, such as the identification of the terminal device, etc., which is not limited.
  • the configuration completion response when the radio frequency path of the first resource unit is all the radio frequency paths of the second resource unit, the configuration completion response may include the identifier of the second resource unit; when the radio frequency path of the first resource unit is the second resource unit When part of the radio frequency path is selected, the configuration completion response may include the identifier of the second resource unit and the MIMO capability of the second resource unit.
  • the MIMO capability of the second resource unit is the reduced MIMO capability of the second resource unit.
  • the identifier of the second resource unit is used to uniquely identify the second resource unit, so that the access network device can obtain the second resource unit according to the identifier of the second resource unit.
  • the identifier of the second resource unit may be a number or a character, or a combination of a number and a character, or a bit (bit) bitmap, etc., which is not limited.
  • the identifier of the first resource unit is n78, and the identifier of the second resource unit is 3A.
  • the configuration completion response may include 3A.
  • the first resource unit combination is DC_1A-3A-7A.
  • the bit of the bitmap is used to represent each of the first resource unit combination Resource unit.
  • bit is set to 1, it indicates that the corresponding resource unit is the second resource unit. If the second resource unit is 7A, the configuration complete response contains bitmap 001.
  • the reduced MIMO capability of the second resource unit may be a number, a combination of a number and a character, or a bitmap, etc., which is not limited.
  • the identifier of the first resource unit is n78
  • the identifier of the second resource unit is 3A.
  • the configuration completion response may include 3A ⁇ 2R ⁇ or 3A ⁇ 2 ⁇ , and 2R or 2 means that the second resource unit 3A is reduced
  • the MIMO capability is 2R.
  • the first resource unit combination is DC_1A-3A-7A
  • the bit of the bitmap is used to represent each of the first resource unit combination Resource unit.
  • the bit is set to 1, it means that the MIMO capability of the corresponding resource unit is reduced to 2R. If the second resource unit is 7A, the configuration complete response contains bitmap 001.
  • the terminal device sends a configuration completion response for indicating the second resource unit to the access network device, so that the access network device determines the second resource unit and the second resource unit according to the configuration completion response.
  • the MIMO capability of the resource unit Avoid the occurrence of the access network device sending a signal to the terminal device through the second resource unit, or sending a signal that exceeds the MIMO capability of the second resource unit to the terminal device through the second resource unit, causing the terminal device to be out of sync with the access network device problem.
  • Step 1205 The terminal device performs a slotless measurement on the first cell on the radio frequency path of the first resource unit.
  • step 1205 For the specific description of step 1205, refer to step 903, which will not be repeated here.
  • Step 1206 The terminal device sends a measurement report to the access network device.
  • the access network device receives the measurement report from the terminal device.
  • step 1206 reference may be made to the third implementation manner shown in FIG. 9, which will not be repeated here.
  • Step 1207 The access network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the access network device.
  • the first indication information is used to instruct the terminal device to switch from the serving cell to the first cell.
  • the access network device after the access network device receives the measurement report from the terminal device, it can determine whether to instruct the terminal device to perform cell handover according to the measurement report.
  • the access network device may determine whether to instruct the terminal device to perform cell handover according to the signal quality of the first cell in the measurement report. For example, when the signal quality of the first cell is higher than the signal quality of the serving cell, the access network device may determine to instruct the terminal device to perform cell handover, for example, instruct the terminal device to handover from the serving cell to the first cell.
  • the access network device may determine to instruct the terminal device to switch to the target neighboring cell according to the measurement results of the multiple neighboring cells.
  • the target neighboring cell may be a cell of the multiple neighboring cells.
  • the target neighboring cell may be the cell with the best signal quality among the plurality of neighboring cells, or the target neighboring cell may be the cell with the highest priority among the plurality of neighboring cells, or the target neighboring cell may be the cell of the plurality of neighboring cells.
  • the cell with the smallest load in the cell, or the target cell is the cell with the largest bandwidth among the multiple neighboring cells, etc., there is no restriction.
  • the access network device when the access network device determines that the measurement result of the first cell satisfies a preset condition, the access network device sends the first indication information to the terminal device.
  • the preset condition may be a condition pre-configured by the access network device.
  • the preset condition may be that the signal quality of the first cell is higher than the signal quality of the serving cell.
  • the access network device and the terminal device activate the second resource unit and restore the MIMO capability of the second resource unit.
  • the access network device when the access network device activates the second resource unit and restores the MIMO capability of the second resource unit, so that the access network device does not affect other subsequent services of the terminal device. Measurement of neighboring area.
  • step 1201, step 1206, and step 1207 in FIG. 12 are optional steps, and step 1202 to step 1205 are mandatory steps.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of the access network device, the terminal device, and the interaction between the access network device and the terminal device.
  • the access network equipment and terminal equipment include hardware structures and/or corresponding hardware structures that perform each function. Or software module.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the access network equipment and terminal equipment into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a possible structural diagram of the slotless measuring device (denoted as the slotless measuring device 130) involved in the above-mentioned embodiment.
  • the slotless measuring device 130 includes a communication unit 1302 and a processing unit 1301, and may also include a storage unit 1303.
  • the schematic structural diagram shown in FIG. 13 may be used to illustrate the structure of the terminal device involved in the foregoing embodiment.
  • the processing unit 1301 is used to control and manage the actions of the terminal device.
  • the processing unit 1301 is used to execute the operation shown in FIG. 9 Step 902 and step 903, step 1104 and step 1105 in FIG. 11, execute step 1101 in FIG. 11, step 1201 and step 1304 in FIG. 11 through the communication unit 1302, and/or other described in the embodiment of this application
  • the processing unit 1301 may communicate with other network entities through the communication unit 1302, for example, communicate with the access network device 1 shown in FIG. 6.
  • the storage unit 1303 is used to store the program code and data of the terminal device.
  • the time slotless measurement apparatus 130 may be a terminal device or a chip in the terminal device.
  • the processing unit 1301 may be a processor or a controller, and the communication unit 1302 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and so on.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1303 may be a memory.
  • the processing unit 1301 may be a processor or a controller, and the communication unit 1302 may be an input interface and/or output interface, a pin or a circuit, etc.
  • the storage unit 1303 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory (read-only memory)) located outside the chip in the terminal device or the first access network device. only memory, ROM for short), random access memory (random access memory, RAM for short), etc.).
  • FIG. 14 shows a possible structural diagram of the slotless measuring device (denoted as the slotless measuring device 140) involved in the above-mentioned embodiment.
  • the slotless measuring device 140 includes a communication unit 1402, and may also include a processing unit 1401 and a storage unit 1403.
  • the schematic structural diagram shown in FIG. 14 may be used to illustrate the structure of the access network device involved in the foregoing embodiment.
  • the processing unit 1401 is used to control and manage the actions of the access network device.
  • the processing unit 1401 is used to pass
  • the communication unit 1402 executes step 901 in FIG. 9, step 1103 in FIG. 11, step 1202 in FIG. 12, step 1206, step 1207, and/or access network equipment in other processes described in the embodiments of this application Action performed.
  • the processing unit 901 may communicate with other network entities through the communication unit 1402, for example, communicate with the terminal device shown in FIG. 6.
  • the storage unit 1403 is used to store the program code and data of the first access network device.
  • the time slotless measurement device 140 may be the access network equipment or a chip in the access network equipment.
  • the processing unit 1401 may be a processor or a controller, and the communication unit 1402 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, and a transceiver device.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 1403 may be a memory.
  • the processing unit 1401 may be a processor or a controller, and the communication unit 1402 may be an input interface and/or output interface, a pin or a circuit, etc.
  • the storage unit 1403 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory (read-only memory)) located outside the chip in the terminal device or the first access network device. only memory, ROM for short), random access memory (random access memory, RAM for short), etc.).
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the slotless measuring device 130 and the slotless measuring device 140 can be regarded as the communication unit of the slotless measuring device, and the processor with processing function can be regarded as the slotless measuring device.
  • the device for implementing the receiving function in the communication unit may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the device for implementing the sending function in the communication unit can be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiment of the present application, and the sending unit can be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated unit in FIG. 13 and FIG. 14 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to make a computer device (which can be a personal computer, a server, or a first access network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application .
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the units in FIGS. 13 and 14 may also be referred to as modules, for example, the processing unit may be referred to as a processing module.
  • FIG. 15 shows an example diagram of a communication system provided by an embodiment of the present application, including an access network device 11 and a terminal device 12.
  • the access network device 11 is used to perform the actions performed by the access network device in the foregoing embodiment.
  • the access network device 11 is used to perform step 901 in FIG. 9, step 1102 in FIG. 11, step 1103, and in FIG. Step 1204, step 1206, step 1207 of.
  • the terminal device 12 is used to perform the actions performed on the terminal device in the foregoing embodiment.
  • the terminal device 12 is used to perform step 902 and step 903 in FIG. 9, step 1101, step 1104, and step 1105 in FIG. Step 1203, step 1204, step 1205 of.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices such as artificial intelligence processors that run software.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). System), or it can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, and may also be electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiments of the present application also provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned access network equipment and terminal equipment.
  • the embodiment of the application also provides a chip, the chip includes a processor and an interface circuit, the interface circuit is coupled to the processor, the processor is used to run a computer program or instructions to implement the above method, and the interface circuit is used to communicate with Modules other than the chip communicate.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, referred to as DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无时隙测量方法及装置,涉及通信技术领域,解决了终端设备无法对邻区进行无时隙测量的问题。具体方案为:终端设备接收来自接入网设备的用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量的配置信息;终端设备根据该配置信息确定该邻区的待测资源单元的射频通路为第二资源单元的射频通路中的部分或者全部射频通路,第二资源单元包括在第一资源单元组合中,第一资源单元组合包括在为该终端设备配置的、处于激活状态的资源单元组合中;终端设备在第二资源单元的射频通路中的部分或者全部射频通路上对第一小区进行无时隙测量。本申请实施例用于终端设备对接入网设备的小区进行无时隙测量的过程。

Description

一种无时隙测量方法及装置
本申请要求于2020年4月3日提交国家知识产权局、申请号为202010259696.5、发明名称为“一种无时隙测量方法及装置”的中国专利申请的优先权,以及,于2021年1月22日提交国家知识产权局、申请号为202110091110.3、发明名称为“一种无时隙测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无时隙测量方法及装置。
背景技术
在移动通信中,测量是一个普遍而重要的过程。例如,在无线资源控制(radio resource control,RRC)RRC_连接(CONNECTED)态,终端设备需要对服务小区的邻区进行测量时,如果不支持无需测量时隙(measurement gap)的测量,则需要为终端设备配置准确的测量时隙,以使得终端设备根据该测量时隙对邻区进行测量。
现有技术中,在RRC_CONNECTED态,终端设备根据该测量时隙对终端设备的服务小区的邻区进行测量时,如果邻区不同步,导致基站配置的测量时隙中不包括部分或全部邻区同步信号时,如NR的SSB(synchronization signal block,同步信号块),终端设备将无法测到部分或全部邻区。如果终端能够支持无时隙测量,终端设备能够在足够长的窗口内测量邻区SSB,将能够测到全部邻区,因此,保证终端设备支持无时隙测量成为亟待解决的问题。
发明内容
本申请提供一种无时隙测量方法及装置,解决了现有技术在终端设备没有射频通路接收邻区的信号,导致终端设备无法对邻区进行无时隙测量的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供了一种无时隙测量方法,该无时隙测量方法包括:终端设备接收来自接入网设备的用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量的配置信息。终端设备根据该配置信息,确定第二资源单元的射频通路中的部分或者全部射频通路为终端设备的服务小区的邻区的待测资源单元的射频通路,其中,第二资源单元包括在为所述终端设备配置的、处于激活状态的资源单元的第一资源单元组合中。终端设备在第二资源单元的射频通路中的部分或者全部射频通路上,对终端设备的服务小区的邻区进行无时隙测量。
基于第一方面提供的无时隙测量方法,终端设备在接收到用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量的配置信息之后,终端设备可以根据该配置信息,确定为所述终端设备配置的、处于激活状态的资源单元的第一资源单元组合中的第二资源单元的射频通路中的部分或全部射频通路为服务小区的邻区的待测资源单元的射频通路。这样,终端设备可以在待测资源单元的射频通路上接收邻区的信号,从而,终端设备可以对邻区进行无时隙测量,解决了现有技术中当终端设备没有射频通路接收邻区的信号,导致无法对邻区进行无时隙测量的问题。
在一种可能的实现方式中,结合第一方面,该配置信息还用于指示第二资源单元组合以及第二资源单元组合中每个资源单元的多输入多输出(multi-input multi-output,MIMO)能力,其中,第二资源单元组合包括更新后的第一资源单元组合,更新后的第一资源单元组合不包括第二资源单元,或者,更新后的第一资源单元组合中的第二资源单元的MIMO能力低于第一资源单元组合中第二资源单元的MIMO能力。
基于该可能的实现方式,终端设备可以根据该配置信息,准确的确定终端设备的服务小区的邻区的待测资源单元以及待测资源单元的射频通路,终端设备也不需要耗费时间去确定其他待测资源单元的射频通路,降低了终端设备的功耗。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,终端设备向接入网设备发送包括终端设备支持的资源单元组合能力、以及终端支持的资源单元组合中每个资源单元对应的MIMO能力的能力信息。
基于该可能的实现方式,终端设备向接入网发送终端设备的能力信息,以使得接入网设备可以根据终端设备的能力信息,确定终端设备支持的资源单元组合能力以及终端设备支持的资源单元组合中每个资源单元对应的MIMO能力,避免接入网设备确定的资源单元组合为终端设备不支持的资源单元组合,或者,接入网设备确定的资源单元组合中的资源单元对应的MIMO能力大于终端设备支持的资源单元对应的MIMO能力,导致终端设备无法对邻区进行无时隙测量的问题。
在一种可能的实现方式中结合第一方面或第一方面的任一可能的设计,该配置信息还用于指示包括在第一资源单元组合中的至少一个资源单元,该至少一个资源单元包括的每一个资源单元的射频通路可作为第一资源单元的射频通路。
基于该可能的实现方式,终端设备可以从接入网设备发送的配置信息中获取第一资源单元的射频通路,避免终端设备从将其他资源单元组合中的资源单元的射频通路选择第一资源单元的射频通路,减少终端设备确定第一资源单元的射频通路时耗费的时间。
在一种可能的实现方式中结合第一方面或第一方面的任一可能的设计,终端设备将至少一个资源单元中,满足下述一个或多个条件的第二资源单元的全部射频通路作为第一资源单元的射频通路:第二资源单元为处于激活状态的资源单元中标识(identity,ID)最大的资源单元;第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;第二资源单元为处于激活状态的资源单元中参考信号接收功率(reference signal receiving power,RSRP)或参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)或秩指示(rank indication,RI)最小的资源单元;第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;第二资源单元为处于激活状态的资源单元中MIMO能力最小的资源单元。
基于该可能的实现方式,可以使终端设备更准确的确定第二资源单元,以便终端设备准确的将满足该多个条件的第二资源单元的全部射频通路作为第一资源单元的射频通路,提高终端设备确定第一资源单元的射频通路的准确性。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,终端设备将至少一个资源单元组合中,满足下述一个或多个条件的第二资源单元的部分射频 通路作为第一资源单元的射频通路:第二资源单元为处于激活状态的资源单元中RI小于或等于预设值的资源单元;第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;第二资源单元为处于激活状态的资源单元中RSRP或RSRQ或SINR最小的资源单元;第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;第二资源单元为处于激活状态的资源单元中ID最大的资源单元。
基于该可能的实现方式,可以使终端设备更准确的确定第二资源单元,以便终端设备准确的将满足该多个条件的第二资源单元的部分射频通路作为第一资源单元的射频通路,提高终端设备确定第一资源单元的射频通路的准确性。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,终端设备向接入网设备发送用于指示第二资源单元和/或第二资源单元的MIMO能力的配置完成响应。
基于该可能的实现方式,终端设备向接入网设备发送用于指示第二资源单元和/或第二资源单元的MIMO能力的配置完成响应,以使得接入网设备根据该配置完成响应确定终端设备的服务小区的邻区的待测资源单元的射频通路,避免出现接入网设备通过其他资源单元的射频通路向终端设备发送邻区的信号,使得终端设备与接入网设备不同步的问题。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,终端设备在第一资源单元的射频通路上,按照大于同步信号块(synchronization signal block,SSB)占用的时长的预设时间持续监测SSB。
基于该可能的实现方式,终端设备可以按照大于SSB占用的时长的预设时间持续监测邻区的SSB,解决现有技术中终端设备无法在测量时隙内监测到邻区的SSB或者无法监测到全部邻区的SSB,导致终端设备无法对服务小区的邻区进行准确的测量的问题。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,预设时间为SMTC。
基于该可能的实现方式,一方面,由于SMTC周期大于等于邻区的SSB周期,因此终端设备可以在该SMTC周期内监测到全部邻区的SSB;另一方面,避免终端设备使用较长的测量时长对邻区进行无时隙测量,从而可以降低终端设备的功耗。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,当终端设备的服务小区的邻区的待测资源单元的射频通路为第二资源单元的部分射频通路时,终端设备已降低的MIMO能力在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,终端设备可以在第二资源单元的部分射频通路上接收邻区的信号,进而,终端设备可以对邻区进行无时隙测量。同时在第二资源单元上仍可以持续进行接收或发送上下行信号,保持数据的传输。
在一种可能的实现方式中,结合第一方面或第一方面的任一可能的设计,当终端设备的服务小区的邻区的待测资源单元的射频通路为第二资源单元的全部射频通路时,终端设备停止在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,终端设备可以在第二资源单元的全部射频通路上接收邻区的信号,进而,终端设备可以对邻区进行无时隙测量。
第二方面,提供一种无时隙测量装置,该无时隙测量装置应用于终端设备或者终端设备中的芯片或者片上系统,还可以为终端设备中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。该无时隙测量装置可以实现上述各方面或者各可能的设计中终端设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该无时隙测量装置包括通信单元和处理单元。
通信单元,用于接收来自接入网设备的用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量的配置信息。处理单元,用于根据该配置信息,确定第二资源单元的射频通路中的部分或者全部射频通路为该邻区的待测资源单元的射频通路,第二资源单元包括在为终端设备配置的、处于激活状态的资源单元的第一资源单元组合中。处理单元,还用于在第二资源单元的射频通路中的部分或者全部射频通路上,对该邻区进行无时隙测量。
其中,该无时隙测量装置的具体实现方式可以参考第一方面或第一方面的任一可能的设计提供的无时隙测量方法中终端设备的行为功能,在此不再重复赘述。因此,该提供的无时隙测量装置可以达到与第一方面或者第一方面的任一可能的设计相同的有益效果。
第三方面,提供了一种无时隙测量装置,该无时隙测量装置可以为终端设备或者终端设备中的芯片或者片上系统。该无时隙测量装置可以实现上述各方面或者各可能的设计中终端设备所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该无时隙测量装置可以包括:处理器和通信接口,处理器用于运行计算机程序或指令,以实现如第一方面和第一方面的任一种可能的实现方式中所描述的无时隙测量方法。
在又一种可能的设计中,无时隙测量装置还可以包括存储器,存储器用于保存无时隙测量装置必要的计算机执行指令和数据。当该无时隙测量装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该无时隙测量装置执行上述第一方面或者第一方面的任一种可能的设计所述的无时隙测量方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质存储有计算机指令或者程序,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的无时隙测量方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的无时隙测量方法。
第六方面,提供了一种无时隙测量装置,该无时隙测量装置可以为终端设备或者终端设备中的芯片或者片上系统,该无时隙测量装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述终端设备执行如上述第一方面或者第一方面的任一可能的设计所述的无时隙测量方法。
第七方面,提供了一种芯片系统,该芯片系统包括处理器以及通信接口,该芯片系统可以用于实现上述第一方面或第一方面的任一可能的设计中终端设备所执行的功能,例如通信接口接收来自接入网设备的用于指示终端设备在第一资源单元上对终端设备的服务小区的邻区进行无时隙测量的配置信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,不予限制。
其中,第二方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第八方面,提供了一种无时隙测量方法,该无时隙测量方法包括:接入网设备确定终端设备的服务小区的邻区的待测资源单元的射频通路为包括在为终端设备配置的、处于激活状态的资源单元的第一资源单元组合中的第二资源单元的射频通路中的部分或者全部射频通路。接入网设备向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量、以及用于指示第二资源单元组合以及该第二资源单元组合中每个资源单元的MIMO能力,其中,第二资源单元组合包括更新后第一资源单元组合,更新后的第一资源单元组合不包括第二资源单元,或者,更新后的第一资源单元组合中的第二资源单元的MIMO能力低于第一资源单元组合中的第二组合单元的MIMO能力。
基于第八方面提供的无时隙测量方法,接入网设备在确定终端设备的服务小区的邻区的待测资源单元的射频通路后,向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量,以及用于指示第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力的配置信息,以便于终端设备根据配置信息确定第一资源单元的射频通路,进而终端设备可以在待测资源单元的射频通路上对邻区进行无时隙测量。从而,解决了现有技术中当终端设备没有射频通路接收邻区的信号,导致无法对邻区进行无时隙测量的问题。
一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,接入网设备将满足下述一个或多个条件的第二资源单元的部分射频通路作为第一资源单元的射频通路:第二资源单元为处于激活状态的资源单元中RI小于或等于预设值的资源单元;第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;第二资源单元为处于激活状态的资源单元中RSRP或RSRQ或SINR最小的资源单元;第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;第二资源单元为处于激活状态的资源单元中ID最大的资源单元。
基于该可能的实现方式,接入网设备可以为终端设备提供更准确的第二资源单元,以便终端设备准确的将满足该多个条件的第二资源单元的部分射频通路作为第一资源单元的射频通路,提高接入网设备确定第一资源单元的射频通路的准确性。
一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,接入网设备将满足下述一个或者多个条件的第二资源单元的全部射频通路作为第一资源单元的射频通路:第二资源单元为处于激活状态的资源单元中ID最大的资源单元;第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;第二资源单元为处于激活状态的资源单元中RSRP或RSRQ或SINR或RI最小的资源单元;第二资源单 元为处于激活状态的资源单元中带宽最小的资源单元;第二资源单元为处于激活状态的资源单元中MIMO能力最小的资源单元。
基于该可能的实现方式,接入网设备可以为终端设备提供更准确的第二资源单元,以便终端设备准确的将满足该多个条件的第二资源单元的全部射频通路作为第一资源单元的射频通路,提高接入网设备确定第一资源单元的射频通路的准确性。
一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,当接入网设备确定第三资源单元组合能力大于终端设备支持的资源单元组合能力时,或,当接入网设备确定第三资源单元组合的MIMO能力大于终端设备支持的资源单元组合的MIMO能力时,根据终端设备的能力信息,确定第一资源单元的射频通路;其中,第三资源单元组合为将第一资源单元加入第一资源单元组合后的资源单元组合。
基于该可能的实现方式,接入网设备确定将第一资源单元加入第一资源组合后的资源单元组合能力大于终端设备支持的资源单元组合能力时,或将第一资源单元加入第一资源组合后的资源单元组合的MIMO能力大于终端设备支持的资源单元组合的MIMO能力时,根据终端设备的能力信息,确定第一资源单元的射频通路,避免接入网设备根据终端设备的能力信息确定的包括第一资源单元的资源单元组合能力大于终端设备支持的资源单元组合能力,或者包括第一资源单元的资源单元组合的MIMO能力大于终端设备支持的资源单元组合的MIMO能力,导致终端设备无法在第一资源单元的射频通路上,对服务小区的邻区进行无时隙测量的问题,提高终端设备对服务小区的邻区进行无时隙测量的准确性。
一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,接入网设备接收来自终端设备的包括终端设备支持的资源单元组合以及终端设备支持的资源单元组合中每个资源单元对应的MIMO能力的能力信息。
基于该可能的实现方式,接入网设备可以通过已有的与终端设备的信令交互获取终端设备的能力信息,简单易行。
在一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,当终端设备的服务小区的邻区的待测资源单元的射频通路为第二资源单元的部分射频通路时,接入网设备按已降低的MIMO能力在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,接入网设备在第二资源单元上以降低的MIMO能力向终端设备发送上下行信号,这样,终端设备可以通过第二资源单元的部分射频通路接收邻区的信号,以使得终端设备可以对邻区进行无时隙测量。同时在第二资源单元上仍可以持续进行接收或发送上下行信号,保持数据的传输。
一种可能的实现方式中,结合第八方面或第八方面的任一可能的设计,当第一资源单元的射频通路为第二资源单元的射频通路中的全部射频通路时,接入网设备停止在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,接入网设备在第二资源单元上停止向终端设备发送上下行信号,这样,终端设备可以通过第二资源单元的射频通路接收邻区的信号,以使得终端设备可以对邻区进行无时隙测量。
第九方面,提供一种无时隙测量装置,该无时隙测量装置应用于接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第八方面或第八 方面的任一可能的设计所述的方法的功能模块。该无时隙测量装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该无时隙测量装置包括通信单元和处理单元。
该处理单元,用于确定终端设备的服务小区的邻区的待测资源单元的射频通路为包括在为终端设备配置的、处于激活状态的资源单元的第一资源单元组合中的第二资源单元的射频通路中的部分或者全部射频通路。
通信单元,用于向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量、以及用于指示包括第二资源单元组合以及该第二资源单元组合中每个资源单元的MIMO能力,其中,第二资源单元组合包括更新后的第一资源单元组合,更新后的第一资源单元组合不包括第二资源单元,或者,更新后的第一资源单元中的第二资源单元的MIMO能力低于第一资源单元中的第二资源单元的MIMO能力。
第十方面,提供了一种无时隙测量装置,该无时隙测量装置可以为终端设备或者终端设备中的芯片或者片上系统。该无时隙测量装置可以实现上述各方面或者各可能的设计中终端设备所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该无时隙测量装置可以包括:处理器和通信接口。通信接口和处理器耦合,处理器用于运行计算机程序或指令,以实现如第八方面和第八方面的任一种可能的实现方式中所描述的无时隙测量方法。
在又一种可能的设计中,无时隙测量装置还可以包括存储器,存储器用于保存无时隙测量装置必要的计算机执行指令和数据。当该无时隙测量装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该无时隙测量装置执行上述第八方面或者第八方面的任一种可能的设计所述的无时隙测量方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质存储有计算机指令或者程序,当其在计算机上运行时,使得计算机可以执行上述第八方面或者上述第八方面的任一种可能的设计所述的无时隙测量方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第八方面或者上述第八方面的任一种可能的设计所述的无时隙测量方法。
第十三方面,提供了一种无时隙测量装置,该无时隙测量装置可以为第一接入网设备或者第一接入网设备中的芯片或者片上系统,该无时隙测量装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述终端设备执行如上述第八方面或者第八方面的任一可能的设计所述的无时隙测量方法。
第十四方面,提供了一种芯片,包括:处理器和通信接口,所述处理器通过所述通信接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得如第八方面和第八方面的任一种可能的实现方式中所描述的无时隙测量方法被执行。
其中,第九方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第 八方面或者第八方面的任一种可能的设计所带来的技术效果,不再赘述。
第十五方面,提供了一种无时隙测量方法,该无时隙测量方法包括:接入网设备向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量以及用于指示包括射频通道可作为该邻区的待测资源单元的射频通道的至少一个资源单元的配置信息。接入网设备接收来自终端设备的用于指示包括至少一个资源单元的第二资源单元和/或第二资源单元的MIMO能力的配置完成响应。
基于第十五方面提供的无时隙测量方法,接入网设备向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量以及用于指示可作为该邻区的待测资源单元的射频通路的至少一个资源单元的配置信息后,以使得终端设备根据该配置信息,确定该邻区的待测资源单元的射频通路,终端设备可以在该待测资源单元的射频通路上接收邻区的信息,进而终端设备可以对该邻区进行无时隙测量。解决了现有技术中,当终端设备没有射频通路接收邻区的信号,导致终端设备无法对邻区进行无时隙测量的问题。
在一种可能的实现方式中,结合第十五方面或第十五方面的任一可能的设计,当终端设备的服务小区的邻区的待测资源单元的射频通路为第二资源单元的部分射频通路时,接入网设备按已降低的MIMO能力在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,接入网设备在第二资源单元上以降低的MIMO能力向终端设备发送上下行信号,这样,终端设备可以通过第二资源单元的部分射频通路接收邻区的信号,以使得终端设备可以对邻区进行无时隙测量。同时在第二资源单元上仍可以持续进行接收或发送上下行信号,保持数据的传输。
一种可能的实现方式中,结合第十五方面或第十五方面的任一可能的设计,当终端设备的服务小区的邻区的射频通路为第二资源单元的射频通路中的全部射频通路时,接入网设备停止在第二资源单元上接收或发送上下行信号。
基于该可能的实现方式,接入网设备在第二资源单元上停止向终端设备发送上下行信号,这样,接入网设备可以通过第二资源单元的射频通路将邻区的信号发送给终端设备,以使得终端设备可以对邻区进行无时隙测量。
第十六方面,提供了一种无时隙测量装置,该装置应用于接入网设备或者接入网设备中的芯片或者片上系统,还可以为接入网设备中用于实现第十五方面或第十五方面的任一可能的设计所述的方法的功能模块。该无时隙测量装置可以实现上述各方面或者各可能的设计中终端设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该无时隙测量装置包括通信单元和处理单元。
通信单元,用于向终端设备发送用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量以及用于指示包括射频通道可作为该邻区的待测资源单元的射频通道的至少一个资源单元的配置信息;还用于接收来自终端设备的用于指示包括在至少一个资源单元的第二资源单元和/或第二资源单元的MIMO能力的配置完成响应。
其中,该无时隙测量装置的具体实现方式可以参考第十五方面或第十五方面的任一可能的设计提供的无时隙测量方法中终端设备的行为功能,在此不再重复赘述。因此,该提供的无时隙测量装置可以达到与第十五方面或者第十五方面的任一可能的设 计相同的有益效果。
第十七方面,提供了一种无时隙测量装置,该无时隙测量装置可以为接入网设备或者接入网设备中的芯片或者片上系统。该无时隙测量装置可以实现上述各方面或者各可能的设计中接入网设备所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该无时隙测量装置可以包括:处理器和通信接口,处理器用于运行计算机程序或指令,以实现如第十五方面和第十五方面的任一种可能的实现方式中所描述的无时隙测量方法。
在又一种可能的设计中,无时隙测量装置还可以包括存储器,存储器用于保存无时隙测量装置必要的计算机执行指令和数据。当该无时隙测量装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该无时隙测量装置执行上述第十五方面或者第十五方面的任一种可能的设计所述的无时隙测量方法。
第十八方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质存储有计算机指令或者程序,当其在计算机上运行时,使得计算机可以执行上述第十五方面或者上述方面的任一种可能的设计所述的无时隙测量方法。
第十九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第十五方面或者上述方面的任一种可能的设计所述的无时隙测量方法。
第二十方面,提供了一种无时隙测量装置,该无时隙测量装置可以为接入网设备或者接入网设备中的芯片或者片上系统,该无时隙测量装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述终端设备执行如上述第十五方面或者第十五方面的任一可能的设计所述的无时隙测量方法。
第二十一方面,提供了一种芯片系统,该芯片系统包括处理器以及通信接口,该芯片系统可以用于实现上述第十五方面或第十五方面的任一可能的设计中终端设备所执行的功能,例如处理器用于通过通信接口向终端设备发送用于指示终端设备在第一资源单元上对终端设备的服务小区的邻区进行无时隙测量的配置信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,不予限制。
其中,第十六方面至第二十一方面中任一种设计方式所带来的技术效果可参见上述第十五方面或者第十五方面的任一种可能的设计所带来的技术效果,不再赘述。
第二十二方面,本申请提供一种通信系统,包括接入网设备,以及与接入网设备通信的终端设备,接入网设备用于执行如第一方面和第一方面的任一种可能的实现方式中所描述的无时隙测量方法,或者,接入网设备用于执行第十五方面和第十五方面的任一种可能的实现方式中所描述的无时隙测量方法,终端设备用于执行如第八方面和第八方面的任一种可能的实现方式中所描述的无时隙测量方法。
附图说明
图1为本申请实施例提供的双连接场景示意图;
图2为本申请实施例提供的一种基站配置的测量时隙的示意图;
图3为本申请实施例提供的一种基站配置的测量时隙结构示意图;
图4为本申请实施例提供的一种通信系统架构的简化示意图;
图5为本申请实施例提供的一种基站配置的测量时隙的结构示意图;
图6为本申请实施例提供的一种通信系统架构的简化示意图;
图7为本申请实施例提供的一种无时隙测量装置的组成示意图;
图8为本申请实施例提供的另一种无时隙测量装置的组成示意图;
图9为本申请实施例提供的一种无时隙测量方法的流程图;
图10为本申请实施例提供的一种软件架构示意图;
图11为本申请实施例提供的另一种无时隙测量方法的流程图;
图12为本申请实施例提供的又一种无时隙测量方法的流程图;
图13为本申请实施例提供的一种无时隙测量装置的组成示意图;
图14为本申请实施例提供的另一种无时隙测量装置的组成示意图;
图15为本申请实施例提供的另一种通信系统架构的简化示意图。
具体实施方式
在介绍本申请实施例之前,对本申请实施例涉及的一些名词进行解释:
资源单元,可以指用于传输数据的频率资源,如:终端设备可以通过资源单元与接入网设备传输上行数据和/或下行数据。资源单元可以包括组分载波(component carrier,CC)、带宽部分(band width part,BWP)、带宽(band)、小区等频率资源,还可以包括其他粒度的频率资源,不予限制。
其中,终端设备可以在一个资源单元上与接入网设备传输上行数据和/或下行数据,也可以为了提高系统的频谱效率和用户吞吐率,在多个资源单元上与接入网设备传输上行数据和/下行数据。本申请中,以终端设备在多个资源单元上与接入网设备传输上行数据和/下行数据为例进行描述。
其中,多个资源单元可以组合在一起构成资源单元组合。资源单元组合可以包括多个资源单元以及每个资源单元对应的MIMO能力。多个资源单元可以为同一小区组的资源单元,如:可以为载波聚合(Carrier Aggregation,CA)情况下的多个CC。多个资源单元还可以为双连接(dual connectivity,DC)模式下,终端设备接入的不同小区组的资源单元,不予限制。
小区(cell):可以指用于为终端设备提供无线通信业务的一片区域,其中,接入网设备在该区域中为终端设备提供无线通信业务。其中,一个接入网设备可以管理小区。每个小区对应一个小区标识(cell identifier,cell ID),由该小区标识唯一标识该小区。若终端设备驻留到某个小区,且待接入到该驻留的小区,则该小区可以称为该终端设备的驻留小区或服务小区(serving cell),该服务小区周围、与该服务小区相邻的小区可以称为该服务小区的邻居小区(neighborhood cell)或者邻区。
载波聚合(Carrier Aggregation,CA):将两个或者两个以上的CC聚合在一起以支持更大的传输带宽(如:100兆赫兹(MHz))。其中,每个CC对应一个独立的小区(cell),可以将1个CC等同于1个小区。第三代合作伙伴计划(3rd generation partnership project,3GPP)协议规定一个终端设备可以被配置多个CC,(如:最多可 以被配置5个CC或者32个CC等),在终端设备被配置的多个CC中,其中一个CC可以被称为主小区(primary cell,PCell),是终端设备进行初始连接建立的小区,或进行无线资源控制(radio resource control,RRC)连接重建的小区,或是在切换(handover)过程中指定的主小区。PCell负责与终端设备之间的RRC通信。其余CC被称为辅小区(secondary cell,SCell),SCell是在终端设备的RRC重配置时添加的,用于提供额外的无线资源。
其中,该两个或者两个以上的CC为同一种无线接入技术内的CC。例如,该无线接入技术可以为长期演进(long term evolution,LTE)或新空口(new radio,NR),该无线接入技术还可以为其他无线接入技术,不予限制。
一种示例,以CA包括2个CC(如,CC1和CC2)为例,CA的表示形式可以为:CA_[band指示][带宽等级]-[band指示][带宽等级]。
上述CA的表示形式中,以“_”“为分隔符,将CA划分为两个部分:第一部分“CA”表示这个组合为CA组合;第二部分“[band指示][带宽等级]-[band指示][带宽等级]”表示CC1和CC2的组合,每个CC可以包括“[band指示][带宽等级]”。
其中,band指示表示CC所在的band。band可以用数字或者字符表示,不同无线接入技术对应的载波可以用不同的符号表示。例如,LTE中载波所在的band可以用数字表示,如,1表示LTE的CC所在的band为band1,2表示LTE的CC所在的band为band2。NR中band可以用字符和数字的组合表示,例如,n1表示NR的CC所在的band为band1,n78表示NR的CC所在的band为band78。本申请实施例中,band还可以用其他形式表示,不予限制。
其中,宽带等级是指CC所在的band支持带内连续CC的数量。
一种示例中,NR的带宽等级以及LTE的宽带等级如表1所示,NR的带宽等级可以包括:A、B、C、D、E、F、G、H、I、J。LTE的宽带等级可以包括:A、B、C、D、E、F、I。其中,每个宽带等级对应的载波支持连续CC的数量可以参照表1所示。
表1
Figure PCTCN2021080270-appb-000001
需要说明的是,表1中,当NR的宽带等级为“A”时,表示band支持带内连续 CC的数量为1。当NR的宽带等级为“B”时,表示band支持带内连续CC的数量为2。当LTE的宽带等级为“A”时,表示band支持连续带内CC的数量为1。当LTE的宽带等级为“B”时,表示band支持带内连续CC的数量为2。NR的宽带等级“C”~“J”以及LTE的宽带等级“C”~“I”支持带内连续的CC可以参照表1,不再赘述。
本申请实施例中,NR的带宽等级以及LTE的宽带等级还可以包括其他宽带等级,不予限制。宽带等级的表示形式仅为示例性的,还可以为其他表示形式,例如,罗马数字等,不予限制。每个宽带等级支持带内连续CC的数量也可以为其他数值,不与限制。
一种示例中,结合表1,对于组合CA_n1A-n3C,“CA”表示该载波组合为CA组合,“n1A-n3C”表示该载波组合由CC1和CC2构成,CC1和CC2为NR的CC,且CC1所在的band1支持带内1个CC,CC2所在的band3支持带内2个连续的CC。其中,band1为该载波组合中主载波,band3为该载波组合中的辅成员载波(sencondary carrier component,SCC)。
又一种示例中,结合表1,对于组合CA_1A-3C,“CA”表示该载波组合为CA组合,“1A-3C”表示该载波组合由LTE的CC1和CC2构成,且CC1所在的band1支持带内1个CC,CC2所在的band3支持带内2个连续的CC。
其中,CC1为该载波组合中主载波,CC2为该载波组合中的SCC。
双连接(dual connectivity,DC):可以指支持两个接入网设备同时为一个终端设备提供数据传输服务;其中PCell所在的接入网设备称为主接入网设备(如,Master gNB,简称MgNB),另外一个接入网设备(即主辅小区(Primary Secondary Cell,PSCell)所在的接入网设备)称为辅接入网设备(如,Secondary gNB,简称SgNB),其中,主接入网设备为控制面锚点,即终端设备与主接入网设备建立RRC连接,且主接入网设备与核心网之间建立控制面连接,主接入网设备与终端设备间传输RRC消息,后续增强技术中,辅接入网设备与终端设备之间也可以进行部分RRC消息的发送(例如配置信息、测量报告等)。
DC可以存在于相同的接入技术内或不同的接入技术之间,例如,两组LTE可以构成LTE DC,两组NR可以构成NR DC,一组LTE和一组NR可以构成E-UTRA和NR双连接(E-UTRAN NR-dual connectivity,EN-DC)或NR和LTE双连接(NR E-UTRAN-dual connectivity,NE-DC)。
在DC下,终端设备连接的两个接入网设备可以为主接入网设备和辅接入网设备,每个接入网设备覆盖下的小区可以组成一个CA组,两个接入网设备可以看成两个CA组,其中主接入网设备覆盖下的CA组可以为主小区组(master cell group,MCG),MCG可以承载终端设备的控制面和用户面,既可以负责向终端设备发送业务,也可以负责向终端设备发送控制信令。辅接入网设备覆盖下的CA组可以称为辅小区组(secondary cell group,SCG),SCG可以承载终端设备的用户面,可以负责向终端设备发送业务。
例如,对于EN-DC,LTE的接入网设备为MCG,NR的接入网设备为SCG。对于NE-DC,NR的接入网设备为MCG,LTE的接入网设备为SCG。
例如,如图1所示,终端设备可以同时与接入网设备1和接入网设备2通信连接。假设接入网设备1覆盖下的小区组成CA组1,接入网设备2覆盖下的小区组成CA组2,CA组1为MCG,CA组2为SCG,则接入网设备1可以在CA组1上向终端设备发送控制信令以及传输业务,接入网设备2可以在CA组2上向终端设备传输业务等。接入网设备1可以为主接入网设备,接入网设备2可以为辅接入网设备。接入网设备1可以为辅接入网设备,接入网设备1可以为主接入网设备,不予限制。
一种示例,以资源单元为载波为例,DC的表示形式可以为:DC_[band指示][带宽等级]-[band指示][带宽等级]_[band指示][带宽等级]-[band指示][带宽等级]。
上述DC的表示形式中,以“_”“为分隔符,将DC划分为三个部分:第一部分“DC”表示这个组合为DC组合;第二部分“[band指示][带宽等级]-[band指示][带宽等级]”表示MCG的载波组合,且该MCG的载波组合包括1个或多个载波;第三部分“[band指示][带宽等级]-[band指示][带宽等级]”表示SCG的载波组合,且该SCG的载波组合包括1个或多。
其中,第二部分和第三部分中的band指示与宽带等级的具体描述可以参照CA的band指示与宽带等级的描述,此处不再赘述。
一种示例,结合表1,对于载波组合DC_1A-3C_n78C,“DC”表示该载波组合为DC组合,“1A-3C”表示该载波组合中的MCG由LTE的CC1和CC2构成,CC1所在band为band 1,CC2所在的band为band 3,由带内连续的2个CC构成;“n78C”表示该载波组合中的SCG由NR的CC3构成,CC3所在的band为band 78,由带内连续的2个CC构成。
需要说明的是,CA和DC可以统称为BC(band combination,频带组合)。
需要说明的是,不论是支持CA还是支持DC组合,终端设备都需要同时工作在多个载波(服务小区)上。因此,终端设备支持的CA和DC组合受到终端设备的射频通路(或接收机)设计的限制,不同band的频点可能需要不同的射频通路,也可能共享相同的射频通路,这取决于终端设备的具体设计。一般来说,终端设备的射频通路越多,可以支持的CA或DC组合越多。
同时LTE和NR中还支持多输入多输出(Multi-input Multi-output,MIMO)的多天线技术。在一个CC上,如果终端设备支持4收,即在该CC上使用4根天线进行接收,相应的需要占用4个射频通路。可见,不同CA或DC组合下,每个CC的MIMO能力,也受到终端设备的射频通路(或接收机)设计的限制。终端设备的射频通路越多,在相同的CA/DC下理论上能支持的MIMO能力越高。下行MIMO能力通常表示为xR,其中“x”可以为数字1、2、4等。例如,4R表示4收。一般每个CC至少具备2R能力。一个CA/DC下,各CC的MIMO能力的组合,称为该CA/DC的MIMO能力组合。例如,DC_1A_3A_7A-n78的MIMO能力组合为4R+2R+4R+4R,即band 1、band 7和band n78的CC支持4R的MIMO能力,而band 3的CC支持2R的MIMO能力。终端设备的射频通路设计一定时,每个CA/DC下的最大MIMO能力组合也是确定的。
因此当终端设备的射频通路设计一定时,终端设备工作在不同MIMO能力的CC构成的CA/DC组合下时,对某个band上的异频或异系统邻区的测量是否需要测量时 隙的能力也不同。例如,终端设备具有DC_1A_3A-n78的能力(当然也支持DC_1A-n78)。其中,band 1、band 3和band n78的CC都支持4R,但不支持DC_1A_3C-n78和DC_1A_3A_3A-n78,则当终端设备工作在DC_1A-n78下时,对band 3上异频邻区测量时能够支持无需测量时隙的测量;但当终端设备工作在DC_1A_3A-n78上,并且基站配置band 3为4R,再对band 3的异频邻区进行测量时,此时由于无剩余射频通道用于接收band 3异频邻区信号,因此终端设备仅支持需要测量时隙的测量。
一种示例中,在终端设备接入基站时,可以通过RRC信令(如终端设备的能力信息(UECapabilityInformation))告知基站终端设备支持的CA和DC组合,以及每个组合下的MIMO能力组合。基站可以通过RRC信令(如RRC连接重新配置(ConnectionReconfiguration))为终端设备配置CC构成CA或DC组合,并配置每个CC的MIMO能力。在UECapabilityInformation的LTE能力部分,还可以指示每个LTE CA下对每个band(包括2G、3G、4G的band)的测量是否需要测量时隙的能力。但R15协议规定当异频或异系统邻区为NR小区时都需要测量时隙,因此在RRC信令(CapabilityInformation)中没有指示不同CA/DC下测量各个NR band是否需要测量时隙的字段。
当终端设备不支持无需测量时隙的测量时,基站在配置终端设备的测量时需同时配置测量时隙。测量时隙的配置可以如图2所示,该配置主要包括3个参数:测量时隙重复周期(measurement gap repetition period,MGRP)配置测量测量周期;测量时隙长度(measurement gap length,MGL)配置测量时隙的长度,测量时隙的最大可以为6ms;间隙补偿(gap offset)配置测量时隙的起始位置。终端设备可以根据这3个参数,确定测量时隙起始位置在满足以下条件的系统帧号(system frame number,SFN)和子帧(subframe)上:
SFN mod T=FLOOR(gapOffset/10);
subframe=gap Offset mod 10;
测量周期T=MGRP/10。
需要说明的是,终端设备在对待测NR小区进行测量时,可以基于SSB进行测量。若终端设备采用测量时隙的测量方式,则基站需要为终端设备配置准确的测量时隙的位置,该位置需要包括待测NR小区的SSB。
同步信号块(synchronization signal block,SSB):包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast bhannel,PBCH)。可以用于同步,时频跟踪,无线资源测量等。
一种示例中,如图3所示,待测NR小区的SSB可以按照时间周期(也可以称为SSB周期)发送,其中,时间周期可以根据需要设置,比如,可以为5ms、10ms、20ms、40ms、80ms或160ms,不予限制。待测NR小区在一个周期内可以发送多个SSB,该多个SSB可以在一个时间周期内发送,也即,一个时间周期内的多个SSB可以称为一个SSB脉冲组(Burst Set)。例如,待测NR小区的SSB周期为20ms,该SSB周期包括4个5ms。NR小区的一个SSB Burst Set都集中在一个5ms中发送,其他3个5ms中不发生SSB。因此,基站在为终端设备配置测量时隙时,配置的测量时隙需要包括 SSB发送时刻(图3中的实线所示测量时隙)。否则,终端设备在测量时隙内将收不到待测NR小区的SSB(图3中虚线所示测量时隙),从而无法对待测NR小区进行测量。
进一步的,为了测量待测NR小区,基站还可以为每个待测频点配置测量时间配置(SS/PBCH block measurement time configuration,SMTC)。
SMTC:是一个周期最大为160ms、窗长最大为5ms的窗口。R15协议规定终端设备仅在SMTC窗口和测量时隙重叠的地方才进行SSB测量,并且基站配置的SMTC周期大于SSB周期。
因此,当基站配置待测NR小区的测量时隙时,需要保证配置的测量时隙内包含待测NR小区的一个完整的SSB Burst Set。但是,在实际中存在一定困难。具体来说,基站配置的测量时隙的位置是以服务小区的定时为参考,而待测NR小区的SSB的位置是以NR小区的定时为参考。如果服务小区和待测NR小区不同步,则基站需要知道服务小区和待测NR小区之间的定时偏差,才能正确的为终端设备配置测量时隙的位置。其次,即使基站确定了服务小区和各个邻区之间的定时偏差,在一些情况下也无法配置合适的测量时隙。例如,如图4所示,终端设备接入小区1。小区2和小区3为小区1的异频邻区,并且小区1和小区2、小区3不同步。因此,小区2和小区3的SSB上不在同一位置。若基站不能确定终端设备是在小区2还是小区3的边缘,则基站无法确定应该将测量时隙配置在小区2的SSB位置还是配置在小区3的SSB位置。如图5所示,若终端设备在小区3的边缘,而基站配置的测量时隙只包含小区2的SSB位置,将导致终端设备测不到小区3,也就无法向小区3切换。
射频通路:本申请实施例中特指接收射频通路,也可以称为接收机或者射频通道。终端设备的射频通路用于接收接入网设备的信号,接入网设备的射频通路用于接收终端设备的信号。
其中,终端设备的射频通路的数量可以确定终端设备是否支持无时隙测量。
例如,在RRC_CONNECTED态,如果终端设备的射频通路可以同时接收服务小区的信号和邻区的信号,则终端设备不需要测量时隙就可以完成对邻区的测量,也即,终端设备可以对邻区进行无时隙测量。如果终端设备的射频通路无法同时接收服务小区的信号和邻区的信号,也就是说,终端设备没有额外的射频通路接收邻区的信号,这时就需要一段时间进行时隙测量。在时隙测量过程中,终端设备可以将用于接收服务小区的射频通路停止接收服务小区的信号,并使该射频通路工作在邻区的频点,用以接收邻区的信号,进而完成对邻区的测量。
需要说明的是,对于CA以及DC,终端设备都需要同时工作在多个载波(服务小区)上。因此,终端设备支持的CA和DC组合受到终端设备设备的射频通路设计的限制,不同载波的频点可能需要不同的射频通路,也可能需要相同的射频通路,这与终端设备的具体设计相关。终端设备的射频通路越多,能支持的CA或DC的组合越多。
MIMO能力:通常表示为xR,其中“x”为数字,如,1、2、4等。每个CC至少具备2R能力。例如,一个CC的MIMO能力为4R,表示该CC支持4收。终端设备支持资源单元组合中每个资源单元的MIMO能力是指终端设备在资源单元组合中每个 资源单元上接收信号使用的天线或射频通路的数量。其中,该资源单元组合可以为上述的CA或DC。
对于不同CA或DC的CC,CC的MIMO能力也受到射频通路设计的限制。终端设备的射频通路越多,在相同的CA或DC下终端设备的MIMO能力越高。
一个CA或一个DC下的各CC的MIMO能力的组合,称为该CA/DC的MIMO组合能力。当终端设备的射频通路的数量一定时,终端设备工作在不同MIMO能力的CC构成的CA或DC下时,对某个band对应的邻区的测量是否需要测量时隙的能力也不同。
例如,终端设备支持的DC_1A_3A-n78。其中,DC_1A_3A-n78中band 1、band 3和band n78的CC的MIMO能力为4R。终端设备不支持DC_1A_3A_7A-n78。其中,DC_1A_3A_7A-n78中band 1、band 7和band n78的CC的MIMO能力为4R,band 3的CC的MIMO能力为2R。当终端设备工作在DC_1A-n78下时,可以对band 3对应的邻区进行无时隙测量;当终端工作在DC_1A_3A-n78下时,终端设备在对band 7对应的邻区进行无时隙测量时,此时由于终端设备没有剩余的射频通路用于接收band 7对应的邻区的信号,因此终端设备无法对band 7对应的邻区进行无时隙测量。
本申请实施例中,为了解决现有技术中终端设备没有射频通路接收邻区的信号,导致终端设备无法对邻区进行无时隙测量的问题,提供一种无时隙测量方法,包括:终端设备接收来自接入网设备的用于指示终端设备对终端设备的服务小区的邻区进行无时隙测量的配置信息。终端设备根据该配置信息,确定第二资源单元的射频通路中的部分或全部射频通路为个该邻区的待测资源单元的射频通路。第二资源单元包括在为终端设备配置的、处于激活状态的资源单元的第一资源单元组合中。这样,终端设备可以在第二资源单元的部分或者全部射频通路上,对终端设备的服务小区的邻区进行无时隙测量。
下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的无时隙测量方法可用于支持通信的任一通信系统,该通信系统可以为3GPP通信系统,例如,LTE通信系统、5G移动通信系统、新空口(new radio,NR)系统、NR车联网(vehicle-to-everything,V2X)系统以及其他下一代通信系统,也可以为非3GPP通信系统,不予限制。下面以图6为例,对本申请实施例提供的无时隙测量方法进行描述。
需要说明的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和其他通信系统的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图6示出的是本申请实施例提供的一种通信系统的示意图。如图6所示,该通信系统可以包括多个接入网设备以及多个终端设备,如:用户设备(user equipment,UE)。UE可以位于接入网设备的覆盖范围内,与接入网设备通过Uu口连接。在图6所示系统中,每个接入网设备可以覆盖一个或者多个小区,终端设备可以工作在CA下或者DC下,终端设备可以位于接入网设备覆盖的一个或者多个小区中,终端设备可以通过其所在的小区接收接入网设备提供的服务或者可以描述为接入网设备可以通过其覆盖 的小区为终端设备提供服务。本申请实施例中,可以将为终端设备提供服务的小区称为服务小区。例如,如图6所示,接入网设备1覆盖小区1.1以及小区1.2,UE1可以位于小区1.1以及小区1.2,可以通过小区1.1以及小区1.2接收接入网设备1提供的服务,则小区1.1、小区1.2可以称为UE1的服务小区。接入网设备2覆盖小区2.1以及小区2.2,UE2可以位于小区1.1以及小区2.1,可以通过小区1.1接收接入网设备1提供的服务,通过小区2.2接收接入网设备2提供的服务,则小区1.1、小区2.1可以称为UE2的服务小区。
需要说明的是,图6仅为示例性框架图,图6中包括的接入网设备的数量、UE的数量、接入网设备覆盖的小区的数量不受限制,各个设备的名称不受限制,且除图6所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
其中,图6中的接入网设备主要用于实现终端设备的资源调度、无线资源管理、无线接入控制等功能。具体的,接入网设备可以是小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备,也可以是能够支持接入网设备实现该功能的装置,例如芯片系统。下面以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的无时隙测量方法。
图6中的UE可以为终端设备(terminal equipment)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。下面以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的无时隙测量方法。
接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
在一种具体实现时,图6所示的各网元,如:终端设备以及接入网设备可以具有如图7所示的部件。图7为本申请实施例提供的一种通信装置700的组成示意图,当该通信装置700具有本申请实施例所述的终端设备的功能时,该通信装置700可以为终端设备或者终端设备中的芯片或者片上系统。当通信装置700具有本申请实施例所述的接入网设备的功能时,通信装置700可以为接入网设备或者接入网设备中的芯片或者片上系统。
如图7所示,该通信装置700可以包括:存储器、处理器、发送(transmit,TX)信号处理单元和接收(receive,RX)信号处理单元。存储器、处理器、TX信号处理单元以及RX信号处理单元之间通过通信线路连接。
其中,存储器可以包括用于存储可执行代码和数据的静态存储器,也可以包括用于存储指令和动态数据的动态存储器。
处理器用于控制TX信号处理单元按照预定义的方式发生信号,以及用于控制RX信号处理单元按照预定义的方式接收信号。
TX信号处理单元用于实现信号发送的各种信号处理功能,包括信道编码、加扰、调制、层映射、预编码和天线映射等过程。
RX信号处理单元实现信号接收的各种信号处理功能,包括同步、时频跟踪、测量、信道估计、均衡、解调、解扰、译码等过程。
TX信号处理单元和RX信号处理单元分别通过TX射频通路和RX射频通路和天线相连。TX射频通路将基带信号调制到载波频率,通过天线发送出去;RX射频通路将从天线接收到的射频信号解调为基带信号,交由RX信号处理单元处理。部分天线可配置为同时发送和接收(如图7中的天线1和天线2),因此同时与TX射频通路和RX射频通路相连;部分天线配置为只用于接收(如图7中的天线s和天线m),因此只与RX射频通路相连。TX射频通路和RX射频通路可与任一天线相连,如TX射频通路1和RX射频通路1与天线3相连。RX射频通路和TX射频通路并不一定和天线相连接,如果当前射频通路未被使用,则该射频通路不与天线相连接。并且同一天线可与多个RX射频通路和/或TX射频通路相连接,天线可同时工作在多个频点上,下行接收时通过滤波器将天线接收的多个频点的信号分离,通过不同的RX射频通路送给RX信号处理单元处理;上行发送时,来自不同TX射频通路的不同频点的信号通过合入器合并后,在同一天线上发送。以上都可根据业务需求灵活配置。
在另一种具体实现时,图6所示的各部件,如终端设备以及接入网设备可以采用图7所示的组成结构或者包括图8所示部件。图8为本申请实施例提供的一种无时隙测量装置800的组成示意图,当该无时隙测量装置800具有本申请实施例所述的终端设备的功能时,该无时隙测量装置800可以为终端设备或者终端设备中的芯片或者片上系统。当通信装置800具有本申请实施例所述的接入网设备的功能时,该无时隙测量装置800可以为接入网设备或接入网设备中的芯片或者片上系统。如图8所示,该无时隙测量装置800包括处理器801,通信接口802以及通信线路803。
进一步的,该无时隙测量装置800还可以包括存储器804。其中,处理器801,存储器804以及通信接口802之间可以通过通信线路803连接。
其中,处理器801是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器801还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
通信接口802,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口802可以是模块、电路、通信接口或者任何能够实现通信的装置。
通信线路803,用于在无时隙测量装置800所包括的各部件之间传送信息。
存储器804,用于存储指令。其中,指令可以是计算机程序。
其中,存储器804可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,不予限制。
需要指出的是,存储器804可以独立于处理器801存在,也可以和处理器801集成在一起。存储器804可以用于存储指令或者程序代码或者一些数据等。存储器804可以位于无时隙测量装置800内,也可以位于无时隙测量装置800外,不予限制。处理器801,用于执行存储器804中存储的指令,以实现本申请下述实施例提供的无时隙测量方法。
在一种示例中,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
作为一种可选的实现方式,无时隙测量装置800包括多个处理器,例如,除图8中的处理器801之外,还可以包括处理器807。
作为一种可选的实现方式,无时隙测量装置800还包括输出设备805和输入设备806。示例性地,输入设备806是键盘、鼠标、麦克风或操作杆等设备,输出设备805是显示屏、扬声器(speaker)等设备。
需要指出的是,无时隙测量装置800可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图8中类似结构的设备。此外,图8中示出的组成结构并不构成对该终端设备的限定,除图8所示部件之外,该终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
此外,本申请的各实施例之间涉及的动作、术语等均可以相互参考,不予限制。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合图6所示通信系统,对本申请实施例提供的无时隙测量方法进行描述。其中,下述实施例所述的接入网设备和终端设备可以具备图7或图8所示部件,不予赘述。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。本申请各实施例涉及的动作只是一个示例,具体实现中也可以采用其他的名称,如:本申请实施例所述的“携带 在”还可以替换为“承载于”或者“包括在”等。
图9为本申请实施例提供的一种无时隙测量方法的流程图,如图9所示,包括:
步骤901、接入网设备向终端设备发送配置信息,相应的,终端设备接收来自接入网设备的配置信息。
其中,终端设备可以为图6中任一终端设备,接入网设备可以是为终端设备提供网络服务的设备,接入网设备为终端设备的服务小区对应的接入网设备。
其中,配置信息可以用于指示终端设备对第一小区进行无时隙测量,或者可以替换描述为配置信息用于指示终端设备对第一小区对应的第一资源单元进行无时隙测量,或者,配置信息用于指示终端设备对第一资源单元上的SSB进行无时隙测量。第一小区可以为终端设备的服务小区的邻区。第一资源单元可以为第一小区的待测资源单元。
其中,服务小区和第一小区可以为同一接入网设备覆盖的小区,也可以为不同接入网设备覆盖的小区。
例如,当服务小区和第一小区为同一接入网设备覆盖的小区时,终端设备可以为图6中的UE1,接入网设备可以为图6中的接入网设备1,服务小区可以为图6中的小区1.1,第一小区可以为图6中的小区1.2。其中,第一资源单元为小区1.2的待测资源单元。当服务小区和第一小区为不同的接入网设备覆盖的小区时,终端设备可以为图6中的UE2,接入网设备可以为图6中的接入网设备1或接入网设备2。当接入网设备为图6中的接入网设备1时,服务小区可以为图6中的小区1.1,第一小区可以为图6中的小区2.1,第一资源单元为小区2.1的待测资源单元。当接入网设备为图6中的接入网设备2时,服务小区可以为图6中的小区2.1,第一小区为图6中的小区1.1,第一资源单元为小区1.1的待测资源单元。
示例性的,当接入网设备确定终端设备位于服务小区的边缘时,触发接入网设备向终端设备发送配置信息。
其中,接入网设备可以根据终端设备上报的服务小区的信号质量确定终端设备位于服务小区的边缘。
例如,当终端设备上报的服务小区的信号质量低于阈值时,接入网设备可以确定位于服务小区的边缘。其中,该阈值可以为预先设置的数值。
其中,接入网设备可以通过RRC消息向终端设备发送配置信息。如:配置信息可以承载于RRC消息中发送给终端设备。
其中,RRC消息可以为RRC连接重配置消息或RRC连接恢复消息,RRC连接重配置消息可以简称为RRC重配置消息,RRC连接恢复消息可以简称为RRC恢复消息。
一种示例中,如图10所示,为本申请实施例提供的一种软件框图。终端设备和接入网设备都可以包括RRC层、L2层以及PHY层。图10中虚线可以用于表示控制信令流,实线可以用于表示数据流。终端设备和接入网设备的均可以通过RRC层配置L2层和PHY层,L2层和PHY层可以向RRC层指示配置的结构以及状态信息。终端设备与接入网设备之间的RRC信息和L2信息都是通过PHY层传递。对于PHY层,接入网设备与终端设备之间的RRC信息和L2信息是以数据的形式传输。
下面以接入网设备通过RRC消息向终端设备发送配置信息,以及终端设备在接收到配置信息之后,向接入网设备发送测量结果为例,结合图9的示意图进行说明。
接入网设备将RRC消息以L2组的形式封装成数据包,并通过接入网设备的PHY层向终端设备发送该数据包。相应的,终端设备可以通过终端设备的PHY层接收来自接入网设备的数据包。终端设备的PHY层向终端设备的L2层发送该数据包。终端设备的L2层接收到来自终端设备的PHY层的数据包之后,对该数据包进行解封,得到RRC消息。终端设备的L2层向终端设备的RRC层发送该RRC消息。终端设备的RRC层接收到来自终端设备的L2层的RRC消息之后,解析该RRC消息,得到来自接入网设备发送的配置信息。终端设备的RRC层在得到来自接入网设备发送的配置信息之后,可以向终端设备的PHY层发送内部配置消息。该内部配置消息可以用于指示终端设备的PHY层对第一小区进行无时隙测量。终端设备的PHY层在对待测小区进行无时隙测量之后,向终端设备的RRC层上报测量结果。终端设备的RRC层在接收到终端设备的PHY层的测量结果之后,可以生成测量报告(MeasurementReport)。终端设备的RRC层可以通过终端设备的L2层、PHY层向接入网设备的PHY层发送该测量报告。接入网设备的PHY层在接收到来自终端设备的PHY层的测量报告之后,可以通过接入网设备的L2层传递给接入网设备的RRC层。
需要说明的是,接入网设备也可以通过其他消息向终端设备发送配置信息,不予限制。
配置信息除用于指示终端设备对第一小区进行无时隙测量之外,还可以用于指示其他信息,如:一种示例中,配置信息还可以用于指示第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力。
其中,第二资源单元组合包括更新后的第一资源单元,更新后的第一资源单元不包括第二资源单元,或者,更新后的第一资源单元组合中第二资源单元的MIMO能力低于第一资源单元组合中第二资源单元的MIMO能力。
其中,第二资源单元组合可以由接入网设备确定并只指示给终端设备。配置信息可以包括第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力。
需要说明的是,第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力可以携带在配置信息中发送给终端设备,以降低信令开销。第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力也可以不携带在配置信息中发送给终端设备,如:接入网设备可以通过单独的信令向终端设备发送第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力,以降低终端设备解析信令带来的功耗。
例如,第一资源单元组合为CA_1A-3A-7A,第二资源单元为band3,第一资源单元为band78,band78为NR的资源单元。则更新后的第一资源单元组合为CA_1A-7A。
又例如,第一资源单元组合为CA_1A-3A-7A,第二资源单元band3,第一资源单元组合的MIMO能力为4R+4R+4R,第一资源单元为band78,band78为NR的资源单元,第二资源单元为band3,band3的MIMO能力为4R。则更新后的第一资源组合为CA_1A-3A-7A。更新后的第一资源单元组合的MIMO能力为4R+2R+4R。
具体的,该一种示例的实现方式可参照下述图6所示。
又一种示例中,配置信息还可以用于指示至少一个资源单元,至少一个资源单元包括在第一资源单元组合中,至少一个资源单元包括射频通道可作为第一资源单元的 射频通道的资源单元,以便终端设备从至少一个资源单元中选择出第二资源单元,将第二资源单元的部分射频通道或者全部射频通道作为第一资源单元的射频通道。
例如,第一资源单元组合为CA_1A-3A-7A,该至少一个资源单元可以包括band1、band3以及band7中的一个或多个。或者,该至少一个资源单元可以包括band3和/或band7。
步骤902、终端设备根据配置信息,确定第一资源单元的射频通路。
其中,第一资源单元的射频通路为第二资源单元的射频通路中的部分或全部射频通路,第二资源单元包括在为终端设备配置的、处于激活状态的第一资源单元组合中,第一资源单元组合包括一个或者多个处于激活状态的资源单元。
需要说明的是,本申请中,资源单元处于激活状态可以指可以在该资源单元接收或发送上下行信号。例如,终端设备可以通过处于激活状态的资源单元的射频通路向接入网设备发送上行信号,以及可以通过处于激活状态的资源单元的射频通路接收来自接入网设备的下行信号。
例如,假设为终端设备配置的、处于激活状态的资源单元组合为CA_1A-3A-7A,该资源单元中处于激活状态的资源单元可以包括band1、band3以及band7。其中,当第二资源单元可以为band1、band3以及band7中的一个或多个时,第一资源单元的射频通路为第二资源单元的射频通路中的部分射频通路。当第二资源单元为band3和/或band7时,第一资源单元的射频通路为第二资源单元的射频通路中的全部射频通路。
示例性的,步骤902可以包括下述两种方式:
方式一、配置信息用于指示第二资源单元组合以及第二资源单元组合中每个资源单元的MIMO能力,终端设备根据配置信息确定第一资源单元的射频通道可以包括:
终端设备比较第一资源单元组合以及第二资源单元组合,将第一资源组合中包括但第二资源组合中不包括的资源单元的射频通路,作为第一资源单元的射频通路;或者,将第一资源组合与第二资源单元组合中MIMO能力不同的同一资源单元的射频通路的部分射频通路,作为第一资源单元的射频通路。
例如,第一资源单元组合为CA_1A-3A-7A,第二资源单元组合为DC_1A-7A,第一资源单元组合包括band3。第二资源单元组合不包括band3。终端设备可以将band3的全部射频通路作为第一资源单元的射频通路。
又例如,第一资源单元组合为CA_1A-3A-7A,第二资源单元组合为DC_1A-3A-7A,第一资源单元组合中band3的MIMO能力为4R,band1和band7的MIMO能力均为4R。第二资源单元组合中band3的MIMO能力为2R,band1和band7的MIMO能力均为4R。终端设备可以将band3的射频通路中的部分射频通路作为第一资源单元的射频通路。
具体的,该方式一可参照图11中所示。
方式二、配置信息用于指示至少一个资源单元,终端设备根据配置信息确定第一资源单元的射频通道可以包括下述情况一或者情况二:
情况一、一种可能的实现方式中,终端设备将至少一个资源单元中,满足下述条件1~条件5中一个或者多个条件的至少一个资源单元的部分射频通路作为第一资源单元的射频通路:
条件1、处于激活状态的资源单元中秩指示(rank indication,RI)小于或等于预设值的资源单元。
其中,预设值可以为预先设置的数值,不予限制。例如,预设值可以为2。
继续结合步骤902的示例,为终端设备配置的、处于激活状态的资源单元组合为CA_1A-3A-7A,若band1的RI为1,band3的RI为2,band7的RI为4,预设值为2。终端设备可以将band1的部分射频通路作为第一资源单元的射频通路。
条件2、处于激活状态的资源单元中带宽最小的资源单元。
继续结合上述条件1中的示例,band1的带宽大于band3的带宽,band3的带宽大于band7的带宽。终端设备可以将band7的部分射频通路作为第一资源单元的射频通路。
条件3、处于激活状态的资源单元中信号质量最小的资源单元。
其中,信号质量可以包括RSRP或RSRQ或SINR或者其他参数,不予限制。
继续结合上述条件1中的示例,若band1的RSRP大于band3的RSRP,band3的RSRP大于band7的RSRP。终端设备可以将band7的部分射频通路作为第一资源单元的射频通路。
若band1的RSRQ大于band3的RSRQ,band3的RSRQ大于band7的RSRP。终端设备可以将band7的部分射频通路作为第一资源单元的射频通路。
若band1的SINR大于band3的SINR,band3的SINR大于band7的SINR。终端设备可以将band7的部分射频通路作为第一资源单元的射频通路。
需要说明的是,若band1的RSRP为上述band中最小的RSRP,且band3的RSRP为上述band中最小的RSRQ,且band7的SINR为上述band中最小的SINR,则终端设备可以在上述三个band中任意一个band的部分射频通路作为第一资源单元的射频通路,终端设备也可以按预设优先级从上述三个band中选择一个band。例如,RSRP的优先级高于RSRQ,RSRQ的优先级高于SINR。结合上述描述,终端设备可以将band1的部分射频通路作为第一资源单元的射频通路。其中,预设优先级为预先设置的优先级,不予限制。
条件4、处于激活状态的资源单元中数据传输速率最低的资源单元。
继续结合上述条件1中的示例,若band1的数据传输速率大于band3的数据传输速率,band3的数据传输速率大于band7的数据传输速率,终端设备可以将band7的部分射频通路作为第一资源单元的射频通路。
条件5、处于激活状态的资源单元中ID最大的资源单元。
继续结合上述条件1中的示例,若band3为上述3个band中ID最大的资源单元,则终端设备可以将band3的部分射频通路作为第一资源单元的射频通路。
终端设备可以根据配置信息去激活该至少一个资源单元,以使得终端设备停止在去激活的至少一个资源单元的全部射频通路上与服务小区进行数据传输。终端设备可以将停止与服务小区进行数据传输的该至少一个资源单元的全部射频通路作为第一资源单元的射频通路。
例如,结合步骤902中的示例,为终端设备配置的、处于激活状态的资源单元组合为CA_1A-3A-7A,该至少一个资源单元可以包括band3、band7中的一个或多个。 终端设备可以去激活band3和/或band7。例如,终端设备去激活band3,终端设备可以该band3上停止与服务小区进行数据传输。终端设备可以将band3的全部射频通路作为第一资源单元的射频通路。
情况二、一种可能的实现方式中,终端设备将至少一个资源单元中,满足下述条件6~条件10中一个或者多个条件的第二资源单元的全部射频通路作为第一资源单元的射频通路:
条件6、处于激活状态的资源单元中ID最大的资源单元。
其中,条件6的具体描述可以参照上述条件5,此处不在赘述。
条件7、处于激活状态的资源单元中数据传输速率最低的资源单元。
其中,条件7的具体描述可以参照上述条件2,此处不在赘述。
条件8、处于激活状态的资源单元中信号质量或RI最小的资源单元。
其中,信号质量可以包括RSRP或RSRQ或SINR或者其他参数,不予限制。对于信号质量中的RSRP或RSRQ或SINR的具体描述可以参照上述条件3,对于RI的具体描述也可以参照上述条件1。此处不再赘述。
条件9、处于激活状态的资源单元中带宽最小的资源单元。
其中,条件9的具体描述可以参照上述条件2,此处不在赘述。
条件10、处于激活状态的资源单元中MIMO能力最大的资源单元。
继续结合上述条件1中的示例,band3的MIMO能力为4R,band7的MIMO能力为8R,终端设备可以将band7的全部射频通路作为第一资源单元的射频通路。
需要说明的是,若为终端设备配置的、处于激活状态的资源单元组合中多个资源单元的MIMO能力相同,终端设备可以随机或按照预设顺序将该多个资源单元中的任一个或多个资源单元的全部射频通路作为第一资源单元的射频通路。
其中,预设顺序可以为预先设置的。例如,预设顺序为从左到右或从右到左,不予限制。例如,为终端设备配置的、处于激活状态的资源单元组合为CA_1A-3A-7A,该资源单元组合中band3和band7的MIMO能力相同,终端设备可以将band3和/或band7的全部射频通路作为第一资源单元的射频通路。
如此,终端设备可以降低至少一个资源单元中的MIMO能力,以使得终端设备停止在该至少一个资源单元的射频通路中的部分射频通路上与服务小区进行数据传输。终端设备可以将停止与服务小区进行数据传输的部分射频通路作为第一资源单元的射频通路。
例如,结合步骤902中的示例,为终端设备配置的、处于激活状态的资源单元组合为CA_1A-3A-7A,该至少一个资源单元可以包括band1、band3以及band7中的一个或多个。其中。band1的MIMO能力、band3的MIMO能力以及band7的MIMO能力都为4R。也就是说,终端设备在band1、band3以及band7上与服务小区进行数据传输的射频通路的数量为4个。
终端设备可以将band1的MIMO能力从4R减少为2R;和/或,终端设备可以将band3的MIMO能力从4R减少为2R;和/或,终端设备可以将band7的MIMO能力从4R减少为2R,以使得终端设备在band1上与服务小区进行数据传输的射频通路的数量从4个减少为2个,和/或,以使得终端设备在band3上与服务小区进行数据传输的 射频通路的数量从4个减少为2个,和/或,以使得终端设备在band7上与服务小区进行数据传输的射频通路的数量从4个减少为2个。这样,终端设备就可以将band1上停止与服务小区进行数据传输的2个射频通路,作为第一资源单元的射频通路,和/或,将band3上与服务小区进行数据传输的2个射频通路,作为第一资源单元的射频通路,和/或,将band7上与服务小区进行数据传输的2个射频通路,作为第一资源单元的射频通路。
进一步可选的,方式二中,终端设备可以向接入网设备发送配置完成响应,配置完成响应可以用于指示第二资源单元,以便于接入网设备可以根据配置完成响应确定第一资源单元的射频通路为第二资源单元的全部射频通路。
其中,配置完成响应可以包括第二资源单元的标识。配置完成响应还可以包括其他信息,例如,终端设备的标识等,不予限制。
需要说明的是,在将第二资源单元的部分射频通道作为第一资源的射频通道的情况下,配置完成响应还可以用于指示第二资源单元的MIMO能力,以便于接入网设备可以根据配置完成响应确定第一资源单元的射频通路为第二资源单元的部分射频通路。
具体的,该方式二可参照下述图12中所述。
步骤903、终端设备在第一资源单元的射频通路上,对第一小区进行无时隙测量。
示例性的,终端设备可以在第一资源单元的射频通路上,按照预设时间持续监测SSB。
其中,预设时间可以设置为大于等于第一小区的SSB周期。
一种示例,预设时间可以为SMTC周期。
本申请实施例中,由于SMTC周期大于SSB周期,因此在SMTC周期内,终端设备可以接收到服务小区的邻区的信号,也即终端设备可以对服务小区的邻区进行无时隙测量,从而解决了现有技术中在6ms测量时隙内终端设备测不到服务小区的邻区的问题。
需要说明的是,图9所示方法以终端设备对第一小区或者第一小区的第一资源单元进行无时隙测量为例进行描述,可理解的是,终端设备可参照图9所示的方法对多个待测资源单元进行无时隙测量,不予赘述。例如,终端设备可参照图9所示的方法对图6中的小区1.1、小区1.2、小区2.1、小区2.2的待测资源单元进行无时隙测量。
基于本申请实施例提供的无时隙测量方法,终端设备在接收到用于指示在第一资源单元上对终端设备的服务小区的邻区进行无时隙测量的配置信息之后,终端设备可以根据该配置信息,确定为所述终端设备配置的、处于激活状态的资源单元的第一资源单元组合中的第二资源单元的射频通路中的部分或全部射频通路为第一资源单元的射频通路。这样,终端设备可以在第一资源单元的射频通路上接收邻区的信号,从而,解决了现有技术中当终端设备没有射频通路接收邻区的信号,导致无法对邻区进行无时隙测量的问题。
可选的,在图9所示方法的第一个实现方式中,所述方法还包括:
接入网设备向终端设备发送第一查询信息。相应的,终端设备接收来自接入网设备的第一查询信息。
其中,第一查询信息用于查询终端设备的能力信息。终端设备的能力信息可以包 括终端设备支持的资源单元组合以及终端设备支持的资源单元组合中每个资源单元对应的MIMO能力。终端设备支持的资源单元组合能力是指终端设备支持的全部资源单元组合的集合。
例如,终端设备支持的资源单元组合包括:CA_1A-3A-7A、DC_1A-3A_n78A、DC_1A-7A_n78A、DC_3A-7A_n78。也就是说,终端设备支持的资源单元组合能力为CA_1A-3A-7A、DC_1A-3A_n78A、DC_1A-7A_n78A、DC_3A-7A_n78。
又例如,终端设备支持的资源单元组合CA_1A-3A-7A的MIMO能力为4R+4R+4R。也就是说,该资源单元组合包括band1、band3以及band7。其中,band1对应的MIMO能力为4R,band3对应的MIMO能力为4R,band7对应的MIMO能力为4R。
例如,第一查询信息可以为RRC信息,如第一查询信息为终端设备能力查询(UE Capability Enqiry)。终端设备可以通过RRC响应信息,如终端设备的能力信息(UE Capability Information),将终端设备的能力信息返回给接入网设备。
其中,RRC响应信息可以包括多个信元,每个信元可以携带一个或多个终端设备的能力信息。
例如,终端设备支持的LTE CA组合以及LTE CA组合中每个资源单元的MIMO能力可以包含在信元UE-EUTRA-Capability中;终端设备支持的NR CA组合以及NR CA组合中每个资源单元的MIMO能力可以包含在信元UE-NR-Capability中;终端设备支持的EN-DC组合以及EN-DC组合中每个资源单元的MIMO能力包含在信元UE-MRDC-Capability中。
基于该实现方式,接入网设备可以通过与终端设备的信令交互获取终端设备的能力信息,简单易行。
可选的,在图9所示方法的第二个实现方式中,所述方法还包括:
当第一资源单元的射频通路为第二资源单元的部分射频通道时,接入网设备和终端设备按降低后的MIMO能力在第二资源单元上接收或发送上下行信号。
基于该实现方式,终端设备可以在第二资源单元的部分射频通路上接收邻区的信号,进而,终端设备可以对邻区进行无时隙测量。
当第一资源单元的射频通路为第二资源单元的全部射频通道时,接入网设备和终端设备停止在第二资源单元上接收或发送上下行信号。
基于该实现方式,终端设备可以在第二资源单元的全部射频通路上接收邻区的信号,进而,终端设备可以对邻区进行无时隙测量。
可选的,在图9所示方法的第三个实现方式中,所述方法还包括:
终端设备向接入网设备发送测量报告。相应的,接入网设备接收来自终端设备的测量报告。
本申请实施例中,终端设备可以在终端设备对邻区和服务小区的测量满足触发测量条件,或者终端设备的测量时长大于或等于预设测量周期时,向接入网设备发送测量报告。
其中,触发测量条件可以为预先设置的条件。例如,邻区的信号质量强于服务小区的信号质量,或者,服务小区的信号质量低于第一预设门限,或者,邻区的信号质量大于第二预设门限等。其中,第一预设门限和第二预设门限可以为预先设置的门限, 不予限制。
其中,预设测量周期可以为预先设置的时间长度,不予限制。
基于该实现方式,接入网设备可以根据测量报告,准确的确定终端设备是否需要进行小区切换,避免当终端设备的服务小区的信号质量较差的情况下,影响终端设备的使用。
下面结合图6所示系统,以接入网设备确定第一资源单元的射频通道并指示给终端设备为例,对图9所示方法进行详细介绍:
图11为本申请实施例提供的一种无时隙测量方法的流程图,如图11所示,该方法可以包括:
步骤1101、终端设备向接入网设备发送终端设备的能力信息。相应的,接入网设备接收来自终端设备的能力信息。
其中,终端设备的能力信息的具体描述可以参照上述步骤902中的终端设备的能力信息的描述,此处不再赘述。
步骤1102、接入网设备确定第一资源单元的射频通路。
其中,第一资源单元的射频通路可以参照上述步骤902中第一资源单元的射频通路的描述,此处不再赘述。
示例性的,步骤1102可以包括下述两种情况:
情况三、接入网设备将满足下述一个或者多个条件的第二资源单元的部分射频通路作为第一资源单元的射频通路:
条件11、处于激活状态的资源单元中RI小于或等于预设值的资源单元;
条件12、处于激活状态的资源单元中带宽最小的资源单元;
条件13、处于激活状态的资源单元中RSRP或RSRQ或SINR最小的资源单元;
条件14、处于激活状态的资源单元中数据传输速率最低的资源单元;
条件15、处于激活状态的资源单元中ID最大的资源单元。
其中,条件11~条件15具体可以参照条件1~条件5,此处不在赘述。
情况四、接入网设备将满足下述一个或者多个条件的第二资源单元的全部射频通路作为所述第一资源单元的射频通路:
条件16、处于激活状态的资源单元中ID最大的资源单元。
条件17、处于激活状态的资源单元中数据传输速率最低的资源单元。
条件18、处于激活状态的资源单元中信号质量最小的资源单元。
其中,信号质量可以包括RSRP或RSRQ或SINR,不予限制。
条件19、处于激活状态的资源单元中带宽最小的资源单元。
条件20、处于激活状态的资源单元中MIMO能力最小的资源单元。
其中,条件16~条件20具体可以参照条件6~条件10,此处不在赘述。
一种可能的实施例中,步骤1102具体可以通过以下步骤实现:
步骤11021、接入网设备根据终端设备的能力信息,确定第一资源单元的射频通路。
进一步的,当接入网设备确定第三资源单元组合能力大于终端设备支持的资源单元组合时,或,当接入网设备确定第三资源单元组合的MIMO能力大于所述终端设备 支持的资源单元组合的MIMO能力时,根据终端设备的能力信息,确定第一资源单元的射频通路。
其中,第三资源单元组合为将第一资源单元加入第一资源单元组合后的资源单元组合。
需要说明的是,第三资源单元组合能力大于终端设备支持的资源单元组合,是指第三资源单元组合不包括在终端设备支持的资源单元组合中。
下面结合具体例子对第三资源单元组合能力大于终端设备支持的资源单元组合以及第三资源单元组合的MIMO能力大于终端设备支持的资源单元组合的MIMO能力进行说明:
1、第三资源单元组合能力大于终端设备支持的资源单元组合。
一种示例,终端设备支持的资源组合能力为CA_1A-3A-7A、DC_1A-3A_n78A、DC_1A-7A_n78A、DC_3A-7A_n78。终端设备不支持的资源组合为DC_3A-7A_n78_n67。
例如,第一资源单元为n67,第一资源单元组合为DC_3A-7A_n78,则第三资源单元组合为DC_3A-7A_n78_n67。第三资源单元组合不包括在终端设备不支持的资源单元组合中。也就是说,第三资源单元组合大于终端设备支持的资源单元组合。
例如,第一资源单元为n78,第一资源单元组合为CA_1A-3A,则第三资源单元组合为DC_1A-3A_n78。第三资源单元组合包括在终端设备支持的资源组合中。也就是说,第三资源单元组合能力小于或等于终端设备支持的资源单元组合。
2、第三资源单元的MIMO能力大于终端设备支持的资源单元组合的MIMO能力。
一种示例,终端设备支持的资源单元组合包括:CA_1A-3A-7A以及DC_1A-3A-7A_n78A。其中,CA_1A-3A-7A的MIMO能力组合为4R+4R+4R;DC_1A-3A-7A_n78A的MIMO能力组合为4R+2R+2R+4R、2R+4R+2R+4R或2R+2R+4R+4R。
例如,第一资源单元为n78,第一资源单元的MIMO能力为2R。第一资源单元组合为CA_1A-3A-7A,第一资源单元组合的MIMO能力为4R+4R+4R。则第三资源单元组合为DC_1A-3A-7A_n78A,第三资源单元组合的MIMO能力为4R+4R+4R+2R。第三资源单元组合的MIMO能力大于终端设备支持的资源单元组合的MIMO能力。
本申请实施例中,由于终端设备支持的资源单元组合较多,若接入网设备获取的终端设备的资源组合不是终端设备支持的所有资源组合,这样当接入网设备根据第二资源单元的射频通路确定第一资源单元的射频通路时,可能会导致确定的第一资源单元的射频通路不是最优的。
步骤1103、接入网设备向终端设备发送配置信息。相应的,终端设备接收来自接入网设备的配置信息。
其中,步骤1103的具体描述可以参照上述步骤901,此处不再赘述。
步骤1104、终端设备根据配置信息,确定第一资源单元的射频通路。
其中,步骤1104的具体描述可以参照上述步骤902,此处不再赘述。
步骤1105、终端设备在第一资源单元的射频通路上,对第一小区进行无时隙测量。
其中,步骤1105的具体描述可以参照上述步骤903,此处不再赘述。
需要说明的是,图11中步骤1101为可选的步骤,步骤1102、步骤1103、步骤 1104以及步骤1150为必选的步骤。
下面结合图6所示系统,以图9中所述的方式二为例,对图9所示方法进行详细介绍:
图12为本申请实施例提供的一种无时隙测量方法的流程图,如图12所示,该方法可以包括:
步骤1201、终端设备向接入网设备发送终端设备的能力信息。相应的,终端设备接收来自终端设备的能力信息。
其中,步骤1201的具体描述可以参照上述步骤1101,此处不再赘述。
步骤1202、接入网设备向终端设备发送配置信息。相应的,终端设备接收来自接入网设备的配置信息。
其中,步骤1202的具体描述可以参照步骤901,此处不再赘述。
步骤1203、终端设备根据配置信息,确定第一资源单元的射频通路。
其中,步骤1203的具体描述可以参照上述步骤902,此处不再赘述。
步骤1204、终端设备向接入网设备发送配置完成响应。相应的,接入网设备接收来自终端设备的配置完成响应。
其中,配置完成响应用于指示第二资源单元。配置完成响应可以包括第二资源单元的标识。配置完成响应还可以包括其他信息,例如,终端设备的标识等,不予限制。
本申请实施例中,当第一资源单元的射频通路为第二资源单元的全部射频通路时,配置完成响应可以包括第二资源单元的标识;当第一资源单元的射频通路为第二资源单元的部分射频通路时,配置完成响应可以包括第二资源单元的标识以及第二资源单元的MIMO能力。第二资源单元的MIMO能力为第二资源单元降低后的MIMO能力。
其中,第二资源单元的标识用于唯一标识第二资源单元,以便于接入网设备可以根据第二资源单元的标识获取第二资源单元。示例性的,第二资源单元的标识可以为数字或者字符,也可以为数字与字符的组合,或比特(bit)位图等,不予限制。
例如,第一资源单元的标识为n78,第二资源单元的标识为3A。当第一资源单元的射频通路为第二资源单元的全部射频通路时,配置完成响应可以包括3A。
例如,第一资源单元组合为DC_1A-3A-7A,当第一资源单元的射频通路为第二资源单元的全部射频通路时,用bit位图的bit位表示第一资源单元组合中的每个资源单元。当bit为设置为1时,表示对应资源单元为第二资源单元。如果第二资源单元为7A,配置完成响应中包含bit位图001。
示例性的,第二资源单元降低后的MIMO能力可以为数字,也可以为数字与字符的组合,或bit位图等,不予限制。
例如,第一资源单元的标识为n78,第二资源单元的标识为3A。当第一资源单元的射频通路为第二资源单元的射频通路中的部分射频通路时,配置完成响应可以包括3A{2R}或3A{2},2R或2表示第二资源单元3A降低后的MIMO能力为2R。
例如,第一资源单元组合为DC_1A-3A-7A,当第一资源单元的射频通路为第二资源单元的部分射频通路时,用bit位图的bit位表示第一资源单元组合中的每个资源单元。当bit位设置为1时,表示对应资源单元的MIMO能力降低为2R。如果第二资源单元为7A,配置完成响应中包含bit位图001。
基于该实现方式,本申请实施例中,终端设备向接入网设备发送用于指示第二资源单元的配置完成响应,以使得接入网设备根据该配置完成响应确定第二资源单元及第二资源单元的MIMO能力。避免出现接入网设备通过第二资源单元向终端设备发送信号,或通过第二资源单元向终端设备发送超过第二资源单元的MIMO能力的信令,使得终端设备与接入网设备不同步的问题。
步骤1205、终端设备在第一资源单元的射频通路上,对第一小区进行无时隙测量。
其中,步骤1205的具体描述可以参照步骤903,此处不再赘述。
步骤1206、终端设备向接入网设备发送测量报告。相应的,接入网设备接收来自终端设备的测量报告。
步骤1206的具体描述可以参照上述图9所示的第三个实现方式,此处不再赘述。
步骤1207、接入网设备向终端设备发送第一指示信息。相应的,终端设备接收来自接入网设备的第一指示信息。
其中,第一指示信息用于指示终端设备从服务小区切换到第一小区。
本申请实施例中,接入网设备接收到来自终端设备的测量报告后,可以根据测量报告确定是否指示终端设备进行小区的切换。
示例性的,接入网设备可以根据测量报告中第一小区的信号质量,确定是否指示终端设备进行小区的切换。例如,在第一小区的信号质量高于服务小区的信号质量的情况下,接入网设备可以确定指示终端设备进行小区进行切换,如,指示终端设备从服务小区切换到第一小区。
接入网设备在接收到终端设备发送的多个邻区的测量结果后,接入网设备可以根据该多个邻区的测量结果,确定指示终端设备切换到目标邻区。目标邻区可以为该多个邻区的一个小区。例如,目标邻区可以为该多个邻区中信号质量最好的小区,或者,目标邻区可以为该多个邻区中优先级最高的小区,或者,目标邻区可以为该多个邻区中负载最小的小区,或者,目标小区为该多个邻区中带宽最大的小区等,不予限制。
一种可能的实现方式中,在接入网设备确定第一小区的测量结果满足预设条件的情况下,接入网设备向终端设备发送第一指示信息。
其中,预设条件可以为接入网设备预先配置的条件。例如,预设条件可以为第一小区的信号质量高于服务小区的信号质量。
一种可能的实施例中,当接入网设备确定终端设备切换到第一小区后,接入网设备和终端设备激活第二资源单元,以及恢复第二资源单元的MIMO能力。
基于该技术方案,本申请实施例中,当接入网设备通过激活第二资源单元,以及恢复第二资源单元的MIMO能力,以便于接入网设备不影响后续对终端设备的服务小区的其他邻区的测量。
需要说明的是,图12中的步骤1201、步骤1206、步骤1207为可选的步骤,步骤1202~步骤1205为必选的步骤。
本申请上述实施例中的各个方案在不矛盾的前提下,均可以进行结合。
上述本申请提供的实施例中,分别从接入网设备、终端设备、以及接入网设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。可以理解的是,各个网元,例如接入网设备、终端设备为了实现上述本申请实施例提供的方法中的各功 能,接入网设备和终端设备包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的无时隙测量装置(记为无时隙测量装置130)的一种可能的结构示意图,该无时隙测量装置130包括通信单元1302和处理单元1301,还可以包括存储单元1303。图13所示的结构示意图可以用于示意上述实施例中所涉及终端设备的结构。
当图13所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理单元1301用于对终端设备的动作进行控制管理,例如,处理单元1301用于执行图9中的步骤902和步骤903,图11中的步骤1104和步骤1105,通过通信单元1302执行图11中的步骤1101,图11中的步骤1201和步骤1304,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元1301可以通过通信单元1302与其他网络实体通信,例如,与图6中示出的接入网设备1通信。存储单元1303用于存储终端设备的程序代码和数据。
当图13所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,无时隙测量装置130可以是终端设备,也可以是终端设备内的芯片。
其中,当无时隙测量装置130为终端设备时,处理单元1301可以是处理器或控制器,通信单元1302可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1303可以是存储器。当无时隙测量装置130为终端设备内的芯片时,处理单元1301可以是处理器或控制器,通信单元1302可以是输入接口和/或输出接口、管脚或电路等。存储单元1303可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备或第一接入网设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,简称ROM)、随机存取存储器(random access memory,简称RAM)等)。
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的无时隙测量装置(记为无时隙测量装置140)的一种可能的结构示意图,该无时隙测量装置140包括通信单元1402,还可以包括处理单元1401和存储单元1403。图14所示的结构示意图可以用于示意上述实施例中所涉及接入网设备的结构。
当图14所示的结构示意图用于示意上述实施例中所涉及的接入网设备的结构时,处理单元1401用于对接入网设备的动作进行控制管理,例如,处理单元1401用于通过通信单元1402执行图9中的步骤901,图11中的步骤1103,图12中的步骤1202、 步骤1206、步骤1207,和/或本申请实施例中所描述的其他过程中的接入网设备执行的动作。处理单元901可以通过通信单元1402与其他网络实体通信,例如,与图6中示出的终端设备通信。存储单元1403用于存储第一接入网设备的程序代码和数据。
当图14所示的结构示意图用于示意上述实施例中所涉及的接入网设备的结构时,无时隙测量装置140可以是接入网设备,也可以是接入网设备内的芯片。
其中,当无时隙测量装置140为第一接入网设备时,处理单元1401可以是处理器或控制器,通信单元1402可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元1403可以是存储器。当无时隙测量装置140为第一接入网设备内的芯片时,处理单元1401可以是处理器或控制器,通信单元1402可以是输入接口和/或输出接口、管脚或电路等。存储单元1403可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备或第一接入网设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,简称ROM)、随机存取存储器(random access memory,简称RAM)等)。
其中,通信单元也可以称为收发单元。无时隙测量装置130和无时隙测量装置140中的具有收发功能的天线和控制电路可以视为无时隙测量装置的通信单元,具有处理功能的处理器可以视为无时隙测量装置的处理单元。可选的,通信单元中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图13和图14中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者第一接入网设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
图13和图14中的单元也可以称为模块,例如,处理单元可以称为处理模块。
如图15所示,图15示出了本申请实施例提供的一种通信系统示例图,包括接入网设备11和终端设备12。
接入网设备11用于执行上述实施例中接入网设备执行的动作,例如,接入网设备11用于执行图9中的步骤901,图11中的步骤1102、步骤1103,图12中的步骤1204、步骤1206、步骤1207。
终端设备12用于执行上述实施例在终端设备执行的动作,例如,终端设备12用于执行图9中的步骤902、步骤903,图11中的步骤1101、步骤1104、步骤1105,图12中的步骤1203、步骤1204、步骤1205。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接 体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述接入网设备和终端设备。
本申请实施例还提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现上述方法,该接口电路用于与该芯片之外的其它模块进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可 以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种无时隙测量方法,其特征在于,所述无时隙测量方法包括:
    终端设备接收来自接入网设备的配置信息,所述配置信息用于指示所述终端设备对第一小区进行无时隙测量,所述第一小区为所述终端设备的服务小区的邻区;
    所述终端设备根据所述配置信息,确定第一资源单元的射频通路,所述第一资源单元为所述第一小区的待测资源单元,所述第一资源单元的射频通路为第二资源单元的射频通路中的部分或者全部射频通路,所述第二资源单元包括在为所述终端设备配置的、处于激活状态的第一资源单元组合中;
    所述终端设备在所述第一资源单元的射频通路上,对所述第一小区进行无时隙测量。
  2. 根据权利要求1所述的无时隙测量方法,其特征在于,所述配置信息还用于指示第二资源单元组合以及所述第二资源单元组合中每个资源单元的多输入多输出MIMO能力;
    其中,所述第二资源单元组合包括更新后的所述第一资源单元组合,更新后的所述第一资源单元组合不包括所述第二资源单元,或者,更新后的所述第一资源单元组合中第二资源单元的MIMO能力低于更新前的所述第一资源单元组合中第二资源单元的MIMO能力。
  3. 根据权利要求2所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    所述终端设备向所述接入网设备发送所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持的资源单元组合以及所述终端设备支持的资源单元组合中每个资源单元对应的MIMO能力。
  4. 根据权利要求1所述的无时隙测量方法,其特征在于,所述配置信息还用于指示至少一个资源单元,所述至少一个资源单元包括在所述第一资源单元组合中,所述至少一个资源单元包括:射频通道可作为所述第一资源单元的射频通道的资源单元。
  5. 根据权利要求4所述的无时隙测量方法,其特征在于,所述终端设备根据所述配置信息,确定所述第一资源单元的射频通路,包括:所述终端设备将所述至少一个资源单元中,满足下述一个或者多个条件的第二资源单元的全部射频通路作为所述第一资源单元的射频通路:
    所述第二资源单元为处于激活状态的资源单元中标识ID最大的资源单元;
    所述第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;
    所述第二资源单元为处于激活状态的资源单元中参考信号接收功率RSRP或参考信号接收质量RSRQ或信号与干扰加噪声比SINR或秩指示RI最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中MIMO能力最小的资源单元。
  6. 根据权利要求4所述的无时隙测量方法,其特征在于,所述终端设备根据所述配置信息,确定所述第一资源单元的射频通路,包括:所述终端设备将所述至少一个资源单元中,满足下述一个或者多个条件的第二资源单元的部分射频通路作为所述第一资源单元的射频通路:
    所述第二资源单元为处于激活状态的资源单元中RI小于或等于预设值的资源单元;
    所述第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中RSRP或RSRQ或SINR最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;
    所述第二资源单元为处于激活状态的资源单元中ID最大的资源单元。
  7. 根据权利要求4-6任一项所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    所述终端设备向所述接入网设备发送配置完成响应,所述配置完成响应用于指示所述第二资源单元和/或所述第二资源单元的MIMO能力。
  8. 根据权利要求1-7任一项所述的无时隙测量方法,其特征在于,所述终端设备在所述第一资源单元的射频通路上,对所述第一小区进行无时隙测量,包括:
    所述终端设备在所述第一资源单元的射频通路上,按照预设时间持续监测同步信号块SSB,所述预设时间大于所述第一小区的SSB周期。
  9. 根据权利要求8所述的无时隙测量方法,其特征在于,所述预设时间为同步信号块测量时间配置SMTC周期。
  10. 根据权利要求1-9任一项所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    当所述第一资源单元的射频通路为第二资源单元的射频通路中的部分射频通路时,所述终端设备以降低后的MIMO能力在所述第二资源单元上接收或发送上下行信号;
    当所述第一资源单元的射频通路为第二资源单元的射频通路中的全部射频通路时,所述终端设备停止在所述第二资源单元上接收或发送上下行信号。
  11. 一种无时隙测量方法,其特征在于,所述无时隙测量方法包括:
    接入网设备确定第一资源单元的射频通路,所述第一资源单元为第一小区的待测资源单元,所述第一小区为终端设备的服务小区的邻区,所述第一资源单元的射频通路为第二资源单元的射频通路中的部分或者全部射频通路,所述第二资源单元包括在为所述终端设备配置的、处于激活状态的第一资源单元组合中;
    所述接入网设备向终端设备发送配置信息,所述配置信息用于指示所述终端设备对所述第一小区进行无时隙测量,以及用于指示第二资源单元组合以及所述第二资源单元组合中每个资源单元的多输入多输出MIMO能力,所述第二资源单元组合包括更新后的所述第一资源单元组合,更新后的所述第一资源单元组合不包括所述第二资源单元,或者,更新后的所述第一资源单元组合中第二资源单元的MIMO能力低于更新前的所述第一资源单元组合中第二资源单元的MIMO能力。
  12. 根据权利要求11所述的无时隙测量方法,其特征在于,所述接入网设备确定第一小区的射频通路,包括:所述接入网设备将满足下述一个或者多个条件的第二资源单元的全部射频通路作为所述第一资源单元的射频通路:
    所述第二资源单元为处于激活状态的资源单元中标识ID最大的资源单元;
    所述第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;
    所述第二资源单元为处于激活状态的资源单元中参考信号接收功率RSRP或参考信号接收质量RSRQ或信号与干扰加噪声比SINR或秩指示RI最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中MIMO能力最小的资源单元。
  13. 根据权利要求11所述的无时隙测量方法,其特征在于,所述接入网设备确定第一小区对应的第一资源单元的射频通路,包括:所述接入网设备将满足下述一个或者多个条件的第二资源单元的部分射频通路作为所述第一资源单元的射频通路:
    所述第二资源单元为处于激活状态的资源单元中RI小于或等于预设值的资源单元;
    所述第二资源单元为处于激活状态的资源单元中带宽最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中RSRP或RSRQ或SINR最小的资源单元;
    所述第二资源单元为处于激活状态的资源单元中数据传输速率最低的资源单元;
    所述第二资源单元为处于激活状态的资源单元中ID最大的资源单元。
  14. 根据权利要求要求11-13任一项所述的无时隙测量方法,其特征在于,所述接入网设备确定第一资源单元的射频通路,包括:
    当所述接入网设备确定第三资源单元组合能力大于所述终端设备支持的资源单元组合时,或,当所述接入网设备确定所述第三资源单元组合的MIMO能力大于所述终端设备支持的资源单元组合的MIMO能力时,根据所述终端设备的能力信息,确定所述第一资源单元的射频通路;
    其中,所述第三资源单元组合为将所述第一资源单元加入所述第一资源单元组合后的资源单元组合。
  15. 根据权利要求要求14所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    所述接入网设备接收来自所述终端设备的能力信息,所述终端设备的能力信息包括所述终端设备支持的资源单元组合以及所述终端设备支持的资源单元组合中每个资源单元对应的MIMO能力。
  16. 根据权利要求11-15任一项所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    当所述第一资源单元的射频通路为所述第二资源单元的射频通路中的部分射频通路时,所述接入网设备以降低后的MIMO能力在所述第二资源单元上接收或发送上下行信号;
    当所述第一资源单元的射频通路为所述第二资源单元的射频通路中的全部射频通路时,所述接入网设备停止在所述第二资源单元上接收或发送上下行信号。
  17. 一种无时隙测量方法,其特征在于,所述无时隙测量方法包括:
    接入网设备向终端设备发送配置信息,所述配置信息用于指示所述终端设备对第一小区进行无时隙测量以及用于指示至少一个资源单元,所述第一小区为所述终端设备的服务小区的邻区,所述至少一个资源单元包括在为所述终端设备配置的、处于激活状态的第一资源单元组合中,所述至少一个资源单元包括射频通道可作为第一资源 单元的射频通道的资源单元,所述第一资源单元为所述第一小区的待测资源单元;
    所述接入网设备接收来自所述终端设备的配置完成响应,所述配置完成响应用于指示第二资源单元和/或所述第二资源单元的MIMO能力,所述第二资源单元包括在所述至少一个资源单元中。
  18. 根据权利要求17所述的无时隙测量方法,其特征在于,所述无时隙测量方法还包括:
    当所述第一资源单元的射频通路为第二资源单元的射频通路中的部分射频通路时,所述接入网设备以降低后的MIMO能力在所述第二资源单元上接收或发送上下行信号;
    当所述第一资源单元的射频通路为第二资源单元的射频通路中的全部射频通路时,所述接入网设备停止在所述第二资源单元上接收或发送上下行信号。
  19. 一种无时隙测量装置,其特征在于,所述无时隙测量装置包括一个或多个处理器和一个或多个存储器;一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码或计算机指令;
    当一个或多个处理器执行计算机指令时,使得无时隙测量装置执行如权利要求1-10任一项所述的无时隙测量方法,或者,使得无时隙测量装置执行如权利要求11-16任一项所述的无时隙测量方法,或者,使得无时隙测量装置执行如权利要求17或18所述的无时隙测量方法。
  20. 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得计算机执行如权利要求1-10任一项所述的无时隙测量方法,或者使得计算机执行如权利要求11-16任一项所述的无时隙测量方法,或者使得计算机执行如权利要求17或18任一项所述的无时隙测量方法。
  21. 一种芯片,其特征在于,包括:处理器和通信接口,所述处理器通过所述通信接口与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得如权利要求1-10任一项所述的无时隙测量方法被执行,或者使得如权利要求11-16任一项所述的无时隙测量方法被执行,或者使得权利要求17或18任一项所述的无时隙测量方法被执行。
PCT/CN2021/080270 2020-04-03 2021-03-11 一种无时隙测量方法及装置 WO2021197019A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/995,252 US20230247460A1 (en) 2020-04-03 2021-03-11 Gap-free measurement method and apparatus
EP21779184.7A EP4117337A4 (en) 2020-04-03 2021-03-11 TIME-SLOT-FREE MEASUREMENT METHOD AND DEVICE
JP2022560177A JP7405385B2 (ja) 2020-04-03 2021-03-11 無間隙測定方法、無間隙測定装置、コンピュータプログラム及びチップ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010259696.5 2020-04-03
CN202010259696 2020-04-03
CN202110091110.3 2021-01-22
CN202110091110.3A CN113498090A (zh) 2020-04-03 2021-01-22 一种无时隙测量方法及装置

Publications (1)

Publication Number Publication Date
WO2021197019A1 true WO2021197019A1 (zh) 2021-10-07

Family

ID=77927265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080270 WO2021197019A1 (zh) 2020-04-03 2021-03-11 一种无时隙测量方法及装置

Country Status (4)

Country Link
US (1) US20230247460A1 (zh)
EP (1) EP4117337A4 (zh)
JP (1) JP7405385B2 (zh)
WO (1) WO2021197019A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117858201A (zh) * 2024-03-07 2024-04-09 荣耀终端有限公司 搜网方法、通信装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
US20190124647A1 (en) * 2017-10-23 2019-04-25 Mediatek Inc. Configuration and selection of pucch resource set
CN110431797A (zh) * 2017-03-23 2019-11-08 三星电子株式会社 用于终端的不同参考信号的测量配置和小区测量报告机制的方法、装置和系统
CN110945904A (zh) * 2017-07-31 2020-03-31 高通股份有限公司 用于共享频谱中的增强型机器类型通信的无线电资源管理和无线电链路监测

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750807B2 (en) * 2011-01-10 2014-06-10 Mediatek Inc. Measurement gap configuration in wireless communication systems with carrier aggregation
WO2014084638A1 (en) * 2012-11-28 2014-06-05 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in a wireless communication system
US11044650B2 (en) * 2017-03-23 2021-06-22 Convida Wireless, Llc Downlink measurement design in new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
CN110431797A (zh) * 2017-03-23 2019-11-08 三星电子株式会社 用于终端的不同参考信号的测量配置和小区测量报告机制的方法、装置和系统
CN110945904A (zh) * 2017-07-31 2020-03-31 高通股份有限公司 用于共享频谱中的增强型机器类型通信的无线电资源管理和无线电链路监测
US20190124647A1 (en) * 2017-10-23 2019-04-25 Mediatek Inc. Configuration and selection of pucch resource set

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Offline summary for AI 7.3.3.4 UL data transmission procedure", 3GPP DRAFT; R1-1801080, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 24 January 2018 (2018-01-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051385306 *
See also references of EP4117337A4

Also Published As

Publication number Publication date
EP4117337A1 (en) 2023-01-11
US20230247460A1 (en) 2023-08-03
JP2023519756A (ja) 2023-05-12
JP7405385B2 (ja) 2023-12-26
EP4117337A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US11737082B2 (en) Signal transmission method and communications apparatus
US20210329546A1 (en) Secondary cell activation method and communication apparatus
US11606706B2 (en) Cell measurement in communication systems, related configuration and devices
US11910218B2 (en) Beam reporting method and communications apparatus
US20210091900A1 (en) Communication method and communications apparatus
US10911997B2 (en) Radio resource management (RRM) measurement for new radio (NR) network
US20210258098A1 (en) Method for NR Radio Link Monitoring (RLM) and Evaluation Period Determination
US10771207B2 (en) Terminal and reception power measurement method
EP3809779A1 (en) Method for receiving and transmitting signal and communication device
EP4017078A1 (en) Method and device used for measurement
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
US20230019909A1 (en) Communication method, apparatus, and device
CN111107630B (zh) 通信方法和通信装置
US20200396627A1 (en) Method and user equipment for performing measurement by using multiple reception beams
US11564213B2 (en) Communication method and communications apparatus
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US11963205B2 (en) Resource management method and apparatus
US20230345285A1 (en) Communication method and apparatus
WO2018228593A1 (en) Radio resource managmenet (rrm) measurement for new radio (nr) network
US20240214838A1 (en) Measurement method, apparatus, and system
WO2021197019A1 (zh) 一种无时隙测量方法及装置
CN113498090A (zh) 一种无时隙测量方法及装置
US20210243614A1 (en) Communication method and apparatus
US20220053423A1 (en) Radio network node, user equipment (ue) and methods performed in a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560177

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021779184

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE