WO2021196365A1 - Tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication - Google Patents

Tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication Download PDF

Info

Publication number
WO2021196365A1
WO2021196365A1 PCT/CN2020/091129 CN2020091129W WO2021196365A1 WO 2021196365 A1 WO2021196365 A1 WO 2021196365A1 CN 2020091129 W CN2020091129 W CN 2020091129W WO 2021196365 A1 WO2021196365 A1 WO 2021196365A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
steel
manufacturing
controlled
pipeline steel
Prior art date
Application number
PCT/CN2020/091129
Other languages
English (en)
Chinese (zh)
Inventor
李恒坤
赵晋斌
邱保文
尹雨群
陈林恒
车马俊
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020227034098A priority Critical patent/KR20230009366A/ko
Publication of WO2021196365A1 publication Critical patent/WO2021196365A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a high-strength steel, in particular to a high-plasticity pipeline steel plate and a manufacturing method thereof.
  • thermomechanical controlled rolling technology TMCP
  • DIFT deformation induced ferrite transformation technology
  • the yield strength and tensile strength of steel are proportional to the -1/2 power of the grain diameter d.
  • Grain refinement will significantly increase the yield strength and tensile strength of the steel, but grain refinement has an effect on the yield strength.
  • the contribution of is greater than the contribution to the tensile strength, the finer the grain, the higher the yield ratio.
  • An increase in the yield ratio will result in a significant decrease in the cold forming performance of the steel.
  • the finer the crystal grains the higher the strength and the lower the room temperature elongation. Therefore, high yield ratio and low plasticity are problems that need to be solved in the existing ultrafine grain production technology.
  • the invention with publication number CN101225459A obtains an ultra-fine grain structure with bimodal size distribution in 14MnNb steel through a heat treatment + cold deformation method, which greatly improves the plasticity of the steel.
  • a bimodal grain size distribution ultra-fine grain structure is obtained in the hypoeutectoid steel through the process of heat treatment + warm deformation + cold deformation.
  • the yield ratio of the material obtained by the above process method is close to 0.9, which does not solve the problem of yield ratio.
  • the present invention provides a high-plasticity pipeline steel plate.
  • Another object of the present invention is to provide a method for manufacturing the above-mentioned high-plasticity pipeline steel sheet.
  • the high-plasticity pipeline steel plate of the present invention is composed of the following components by mass percentage: C: 0.02-0.07%, Si: 0.02-0.15%, Mn: 1.30-1.90%, P: ⁇ 0.010%, S: ⁇ 0.0020%, Cr: 0.10 ⁇ 0.50%, Ni: 0.10 ⁇ 0.50%, Cu: 0.10 ⁇ 0.50%, Mo: 0.10 ⁇ 0.50%, Nb: 0.015 ⁇ 0.060%, V: 0.010 ⁇ 0.060%, Alt: 0.045 ⁇ 0.090%, the balance Fe and impurities.
  • the main control alloy composition design mechanism of the steel plate is as follows:
  • Carbon is one of the main elements that affect the mechanical properties of high-strength steel.
  • the strength of the steel is improved by solid solution in the gap.
  • the present invention is designed with low C and is controlled at 0.02-0.07 wt.%.
  • Si Silicon is a necessary deoxidizing element for steelmaking and has a certain solid solution strengthening effect; excessive silicon content is not conducive to the surface quality and low temperature toughness of the steel plate. Therefore, the present invention also tries to control the lower Si content as much as possible, controlling it to 0.02-0.15 wt.%.
  • Mn Manganese has the effect of refining the structure, improving the strength and low temperature toughness, and is low in cost. When the manganese content is too high, it is easy to cause serious segregation of the continuous casting slab.
  • the Mn content of the present invention is controlled at 1.30 to 1.90 wt.%.
  • Ni Nickel can improve the strength, toughness and corrosion resistance of steel, inhibit the desolubilization of carbon from austenite, reduce the precipitation tendency of grain boundary carbides, and significantly reduce the number of intergranular carbides. Comprehensive cost and final effect, the Ni of the present invention is controlled at 0.10 to 0.50 wt.%.
  • Cu Copper can inhibit the formation of polygonal ferrite and pearlite, and promote the transformation of bainite or martensite in the low-temperature structure. Excessive copper content affects the toughness of steel and causes temper brittleness.
  • the Cu content of the present invention is controlled at 0.10 to 0.50 wt.%.
  • Mo The cost of molybdenum alloy is high, and when added in large amounts, it will increase the cost and reduce the toughness and weldability.
  • the content of Mo in the present invention is controlled at 0.10 to 0.50 wt.%.
  • Chromium makes steel have good hardenability, and chromium is a strong carbide forming element, which can increase the strength of steel.
  • the Cr content of the present invention is controlled to be 0.10 ⁇ 0.50wt.%.
  • Nb A small amount of niobium has a pinning effect on austenite grain boundaries, inhibits the recrystallization of deformed austenite, and forms precipitates during cooling or tempering to improve strength and toughness.
  • the amount of niobium is more than 0.060%, the toughness will decrease, and cause surface cracks of the continuous casting slab, and it will also have a deteriorating effect on the welding performance. Therefore, the present invention controls the Nb content to be 0.015 to 0.060 wt.%.
  • V A strengthening element in steel.
  • the precipitation strengthening of VC and V(CN) significantly improves the strength and low-temperature toughness of steel. Vanadium can significantly improve the welding performance of low-carbon alloy steel.
  • the content of V in the present invention is controlled to be 0.010 to 0.060 wt.%.
  • Al is an important deoxidizing element. Adding a small amount of aluminum to the molten steel can effectively reduce the content of inclusions in the steel and refine the grains. However, too much aluminum will promote surface cracks in the continuous casting slab and reduce the quality of the slab.
  • the Al content of the present invention is controlled to be 0.045-0.090wt.%.
  • S and P will seriously damage the low temperature toughness of the steel and the weld near the weld zone, and increase the segregation degree of the continuous casting billet.
  • Sulfur and phosphorus content should be controlled within S: ⁇ 0.0020wt.%, P: ⁇ 0.010wt.%.
  • the impurities in the composition of the steel plate are calculated as a mass percentage: O ⁇ 0.0010%, N ⁇ 0.0080%, and H ⁇ 0.00010%.
  • the metallographic structure is an acicular ferrite ultrafine grain structure with a bimodal grain size distribution.
  • crystal grains with a volume fraction of 1 ⁇ m or less 50-60% of crystal grains with a volume fraction of 1 ⁇ m or less, 30-40% of crystal grains with a volume fraction of 5-10 ⁇ m, and crystal grains of other sizes with a volume fraction of 10% or less are included.
  • the technical scheme adopted by the manufacturing method of the present invention includes: hot metal pretreatment ⁇ converter smelting ⁇ LF refining ⁇ RH vacuum treatment ⁇ continuous casting ⁇ heating ⁇ rolling ⁇ controlled cooling;
  • the sulfur content after hot metal pretreatment is controlled at S ⁇ 0.0020%, and the converter P content is controlled at P ⁇ 0.010%;
  • the heating temperature of continuous casting slab is 1150°C ⁇ 1200°C;
  • the austenite recrystallization zone and the non-recrystallized zone are used for rolling.
  • the rough rolling pass adopts low-speed and high-reduction technology to break the austenite grains.
  • the final rolling temperature of the rough rolling is controlled at 980 ⁇ 1100°C; the finishing rolling temperature is ⁇ 760°C; controlled cooling after rolling, the redness temperature is 450-600°C, followed by air cooling.
  • the final pass reduction ratio in the rough rolling stage is ⁇ 25%.
  • the thickness of the finished billet to be warmed is ⁇ 100mm.
  • the temperature of the cooling water after rolling is controlled at 400 ⁇ 500°C.
  • the high-plasticity pipeline steel plate obtains a bimodal distribution of grain structures with different thicknesses through a reasonable composition design and controlled rolling and controlled cooling process, so as to compensate for the low plasticity of pure ultra-fine grain steel .
  • the yield strength is 572-591MPa
  • the tensile strength is 736-764MPa
  • the elongation of the steel is ⁇ 29%, which significantly improves the plasticity index while ensuring that the yield ratio is below 0.80.
  • Fig. 1 is a photo of the metallographic structure of the steel sheet of Example 1 of the present invention, which shows that the steel sheet has an ultra-fine grained steel structure with a bimodal distribution.
  • Table 1 The mass percentage chemical composition of steel (the balance is Fe and impurities)
  • Examples 1-7 and Comparative Example 8 are in accordance with the low carbon + microalloy design of the present invention, and Comparative Example 9 does not adopt the alloy requirements of the present invention, and the contents of C, Si, Nb, and Alt are not in the design of the present invention. Scope.
  • Examples 1-7 and Comparative Example 9 were all performed according to the manufacturing method of the present invention, and the manufacturing method of Comparative Example 8 was not performed according to the present invention.
  • the yield strength of the pipeline steel obtained in Examples 1-7 is 572 ⁇ 591MPa
  • the tensile strength is 736 ⁇ 764MPa
  • the elongation is ⁇ 29%
  • the yield ratio Rt0.5/Rm ⁇ 0.80 has a good Matching strength and toughness, as well as excellent plasticity and low yield ratio.
  • the composition of Comparative Example 8 is not much different from that of Example 1, the manufacturing method is different and the technical effect produced is completely different.
  • the composition design mechanism of Comparative Example 9 is different, even if the same manufacturing method is used for control, it does not reach The same effect.
  • the structure of the pipeline steel sheet obtained by the present invention is an acicular ferrite ultrafine grain structure with a bimodal grain size distribution. Further inspection shows that the crystal grain structure specifically includes 50-60% crystal grains with a volume fraction of 1 ⁇ m or less, 30-40% crystal grains with a volume fraction of 5-10 ⁇ m, and other size crystal grains with a volume fraction of 10%.
  • This kind of grain size distribution just plays the role of the ultra-fine grain structure of the bimodal size distribution on the plasticity improvement, which improves the plasticity of the pipeline steel. In this case, it not only improves the plasticity index, but also ensures a lower yield ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne une tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication. La tôle d'acier est constituée des constituants suivants en pourcentage en masse : C : de 0,02 à 0,07 %, Si : de 0,02 à 0,15 %, Mn : de 1,30 à 1,90 %, P : ≤ 0,010 %, S : ≤ 0,0020 %, Cr : de 0,10 à 0,50 %, Ni : de 0,10 à 0,50 %, Cu : de 0,10 à 0,50 %, Mo : de 0,10 à 0,50 %, Nb : de 0,015 à 0,060 %, V : de 0,010 à 0,060 %, et Alt : de 0,045 à 0,090 %, le complément étant constitué de Fe et d'impuretés. Une structure à grains ultrafins ayant une répartition de taille bimodale est obtenue par la combinaison de technologies de processus de laminage contrôlé et de refroidissement contrôlé pour la production, de sorte que non seulement la résistance de la tôle d'acier est assurée, mais la ductilité à température normale de l'acier de la canalisation est également améliorée, le rapport d'élasticité à la rupture est réduit, les performances de formage à froid de l'acier sont améliorées et la plage d'application de la structure d'acier à grains ultrafins est élargie.
PCT/CN2020/091129 2020-03-30 2020-05-20 Tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication WO2021196365A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227034098A KR20230009366A (ko) 2020-03-30 2020-05-20 고가소성 파이프라인 강판 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010240014.6 2020-03-30
CN202010240014.6A CN111270152A (zh) 2020-03-30 2020-03-30 一种高塑性管线钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021196365A1 true WO2021196365A1 (fr) 2021-10-07

Family

ID=71000896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091129 WO2021196365A1 (fr) 2020-03-30 2020-05-20 Tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication

Country Status (3)

Country Link
KR (1) KR20230009366A (fr)
CN (1) CN111270152A (fr)
WO (1) WO2021196365A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411065A (zh) * 2021-12-08 2022-04-29 唐山中厚板材有限公司 一种大规格耐低温高强角钢及其生产方法
CN115287428A (zh) * 2021-11-19 2022-11-04 中南大学 一种x70级管线钢双相组织调控并增加低温韧性的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522618B (zh) * 2020-11-24 2022-02-18 首钢集团有限公司 一种全铁素体高强钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906568A (zh) * 2010-08-12 2010-12-08 中国石油天然气集团公司 一种高钢级大应变管线钢和钢管的制造方法
CN102080192A (zh) * 2011-01-07 2011-06-01 南京钢铁股份有限公司 一种低屈强比高塑性超细晶粒高强钢及其制造方法
CN102277539A (zh) * 2011-08-01 2011-12-14 南京钢铁股份有限公司 一种低屈强比高塑性超细晶粒高强钢及其制造方法
JP2013133524A (ja) * 2011-12-27 2013-07-08 Jfe Steel Corp 打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板およびその製造方法
CN103667905A (zh) * 2013-12-04 2014-03-26 武汉钢铁(集团)公司 塑韧性优良的超细晶粒结构用钢及生产方法
CN106591553A (zh) * 2016-11-25 2017-04-26 钢铁研究总院 一种具有双峰晶粒分布的超细晶管线钢的制造方法
CN107142427A (zh) * 2017-04-25 2017-09-08 中国石油天然气集团公司 一种螺旋成型x80钢级隔水管主管及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906568A (zh) * 2010-08-12 2010-12-08 中国石油天然气集团公司 一种高钢级大应变管线钢和钢管的制造方法
CN102080192A (zh) * 2011-01-07 2011-06-01 南京钢铁股份有限公司 一种低屈强比高塑性超细晶粒高强钢及其制造方法
CN102277539A (zh) * 2011-08-01 2011-12-14 南京钢铁股份有限公司 一种低屈强比高塑性超细晶粒高强钢及其制造方法
JP2013133524A (ja) * 2011-12-27 2013-07-08 Jfe Steel Corp 打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板およびその製造方法
CN103667905A (zh) * 2013-12-04 2014-03-26 武汉钢铁(集团)公司 塑韧性优良的超细晶粒结构用钢及生产方法
CN106591553A (zh) * 2016-11-25 2017-04-26 钢铁研究总院 一种具有双峰晶粒分布的超细晶管线钢的制造方法
CN107142427A (zh) * 2017-04-25 2017-09-08 中国石油天然气集团公司 一种螺旋成型x80钢级隔水管主管及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287428A (zh) * 2021-11-19 2022-11-04 中南大学 一种x70级管线钢双相组织调控并增加低温韧性的方法
CN115287428B (zh) * 2021-11-19 2023-06-02 中南大学 一种x70级管线钢双相组织调控并增加低温韧性的方法
CN114411065A (zh) * 2021-12-08 2022-04-29 唐山中厚板材有限公司 一种大规格耐低温高强角钢及其生产方法

Also Published As

Publication number Publication date
CN111270152A (zh) 2020-06-12
KR20230009366A (ko) 2023-01-17

Similar Documents

Publication Publication Date Title
CN110093552B (zh) 一种焊接性能优异的高强塑积q&p钢板及其制备方法
WO2021196365A1 (fr) Tôle d'acier de canalisation à ductilité élevée et son procédé de fabrication
WO2016045266A1 (fr) Acier à haute résistance pour laminage à chaud à haute ténacité présentant une limite d'élasticité de 800 mpa et son procédé de préparation
CN111996441B (zh) 一种高韧性折弯性能良好的TiC增强型马氏体耐磨钢板及其制造方法
CN108728743B (zh) 低温断裂韧性良好的海洋工程用钢及其制造方法
WO2014114160A1 (fr) Plaque d'acier patinable à haute résistance à la corrosion et haute résistance contenant de l'aluminium et procédé de fabrication associé
WO2021036271A1 (fr) Tôle d'acier résistant à l'usure 400hb résistante à haute température et procédé de production associé
WO2009056055A1 (fr) Tôle d'acier à limite d'élasticité de grade 800 mpa et faible sensibilité à la fissuration de soudure, et son procédé de fabrication
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN111748739B (zh) 一种抗拉强度>2100MPa耐热弹簧钢及其生产方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN109112429A (zh) 具有优良低温韧性的fh550级厚板及其制造方法
CN115386805A (zh) 一种低屈强比高韧性桥梁耐候钢及其制造方法
WO2020108595A1 (fr) Plaque d'acier à haute résistance laminée à chaud ayant une qualité de surface élevée et un faible rapport de rendement et son procédé de fabrication
CN113234993B (zh) 一种抗湿硫化氢腐蚀性能优异的q370r钢板及其制造方法
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
WO2021136352A1 (fr) Plaque d'acier/bande d'acier multiphase à très haute résistance, à faible coût et à faible teneur en carbone et son procédé de fabrication
WO2021136355A1 (fr) Plaque d'acier / bande d'acier multiphase de qualité gpa équivalente à faible teneur en silicium et à faible teneur en carbone et procédé de fabrication associé
CN104561825A (zh) 一种低成本x80管线用钢及其制造方法
WO2019222988A1 (fr) Plaque d'acier à résistance élevée à grains ultrafins présentant une limite d'élasticité de qualité 1100 mpa, et son procédé de production
CN113802054A (zh) 一种屈服强度420MPa级热轧钢板及其制造方法
CN111321340A (zh) 一种屈服强度450MPa级热轧钢板及其制造方法
WO2022206913A1 (fr) Acier biphase et acier biphase galvanisé par immersion à chaud ayant une résistance à la traction supérieure ou égale à 980 mpa et son procédé de fabrication au moyen d'un traitement thermique rapide
CN109055858A (zh) 一种屈服强度≥620MPa的焊接结构用耐火耐候钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929423

Country of ref document: EP

Kind code of ref document: A1