WO2021196249A1 - Rrc状态设置方法、装置、通信设备及存储介质 - Google Patents

Rrc状态设置方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2021196249A1
WO2021196249A1 PCT/CN2020/083391 CN2020083391W WO2021196249A1 WO 2021196249 A1 WO2021196249 A1 WO 2021196249A1 CN 2020083391 W CN2020083391 W CN 2020083391W WO 2021196249 A1 WO2021196249 A1 WO 2021196249A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
user terminal
network device
uplink
inactive state
Prior art date
Application number
PCT/CN2020/083391
Other languages
English (en)
French (fr)
Inventor
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000670.7A priority Critical patent/CN111527774B/zh
Priority to PCT/CN2020/083391 priority patent/WO2021196249A1/zh
Priority to US17/916,385 priority patent/US20230156594A1/en
Publication of WO2021196249A1 publication Critical patent/WO2021196249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of mobile communications, and in particular to a method, device, communication device, and storage medium for setting a radio resource control (Radio Resource Control, RRC) state.
  • RRC Radio Resource Control
  • the User Equipment monitors the paging (Paging) message of the network equipment.
  • the UE receives the downlink data sent by the network device.
  • the above process will have the problem of high power consumption.
  • the embodiments of the present disclosure provide an RRC state setting method, device, communication device, and storage medium.
  • the RRC state is set to only the uplink inactive state through a user terminal, and there is no need to monitor the paging message of the network device, which effectively reduces The power consumption of the user terminal.
  • the technical solution is as follows:
  • a method for configuring an RRC state including:
  • the user terminal sets the radio resource control RRC state to only the uplink inactive state according to the configuration of the network device.
  • a method for configuring an RRC state including:
  • the network device configures the user terminal to set the RRC state to only the uplink inactive state.
  • a device for configuring an RRC state including:
  • the sending module is used to set the RRC state to only the uplink inactive state according to the configuration of the network device.
  • a method for configuring an RRC state including:
  • the processing module is used for the user terminal to set the RRC state to only the uplink inactive state.
  • a user terminal includes:
  • a transceiver connected to the processor
  • a memory for storing executable signaling of the processor
  • the processor is configured to load and execute the executable signaling to implement the steps on the user terminal side in the method for configuring the RRC state as described in the previous aspect.
  • a network device including:
  • a transceiver connected to the processor
  • a memory for storing executable signaling of the processor
  • the processor is configured to load and execute the executable signaling to implement the steps on the network device side in the method for configuring the RRC state as described in the previous aspect.
  • a computer-readable storage medium stores executable signaling, and the executable signaling is loaded and executed by a processor to realize the above-mentioned aspects.
  • a communication chip includes a programmable logic circuit and/or program instructions, and the chip is used to implement the RRC state configuration method described in the above aspect.
  • the RRC state is set to the uplink only inactive state through the user terminal. In this state, there is no need to monitor the paging message from the network device, which effectively reduces the power consumption of the user terminal.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a method for configuring an RRC state provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a flowchart of a method for configuring an RRC state provided by an exemplary embodiment of the present disclosure
  • Fig. 4 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • Fig. 5 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • Fig. 6 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 12 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 13 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 14 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 15 is a flowchart of a method for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 16 is a block diagram of a device for configuring an RRC state according to an exemplary embodiment of the present disclosure
  • FIG. 17 is a block diagram of a device for configuring an RRC state according to another exemplary embodiment of the present disclosure.
  • Fig. 18 is a block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • RRC state There are three RRC states in the New Radio (NR) system: RRC connected state (RRC_ACTIVE), RRC inactive state (RRC_INACTIVE) and RRC idle state (RRC_IDLE).
  • RRC connected state RRC_ACTIVE
  • RRC inactive state RRC_INACTIVE
  • RRC idle state RRC_IDLE
  • the three RRC states can be referred to simply as: connected state, inactive state and idle state.
  • Inactive state an RRC state newly introduced in NR. In this article, it is also called normal inactive state. Typical characteristics of ordinary inactive state:
  • ⁇ RAN saves the context of the UE
  • the network needs to know the location of the UE; this is achieved by the UE reporting periodic RNAU, or the UE reporting RNAU is updated;
  • the RAN can trigger the paging message of the UE
  • Enhanced Mobile Broadband Enhanced Mobile Broadband
  • Ultra-reliable and low latency communications Ultra-reliable and Low Latency Communications, (URLLC)
  • massive-scale machine type communication Massive Machine Type Communication, mMTC
  • the rate, delay, and reliability required by the new type of terminal are not covered by the above scenarios.
  • the rate is lower than eMBB, but higher than mMTC requirements, and the delay and reliability requirements are more relaxed than URLLC.
  • This type of terminal has the following characteristics:
  • the bandwidth is reduced, the typical value is 5MHz/10MHz when working in the FR1 frequency band, and the typical value is 40MHz when working in the FR2 frequency band;
  • the UE processing capacity is reduced; it may support smaller transport block TBsize and DCI size;
  • the inactive state is a working mode that is more suitable for the above-mentioned types of terminals, such as Internet of Things devices.
  • terminals such as Internet of Things devices.
  • IoT devices there are usually some special requirements. For example, some IoT devices only have uplink transmission requirements and do not need an independent downlink mode. That is, the transmission of downlink data only needs to be after the uplink transmission. Therefore, it can be optimized for the working mode of the Internet of Things devices working in the inactive state.
  • the embodiment of this application proposes a new RRC state: Up-Link only RRC_INACTIVE.
  • the UE When in the inactive state of the uplink mode, the UE does not need to monitor the paging message of the network device, which can save power consumption.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: a radio access network (Radio Access Network, RAN) 12 and a user terminal 14.
  • RAN Radio Access Network
  • the wireless access network 12 includes several network devices 120.
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a user terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR systems, they are called gNodeB or gNB.
  • the description of "base station” may change.
  • the above-mentioned devices for providing wireless communication functions for the user terminal 14 are collectively referred to as network devices.
  • the user terminal 14 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment, and mobile stations (Mobile Station, MS). , Terminal (terminal device) and so on.
  • Terminal terminal device
  • the network device 120 and the user terminal 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle networking
  • Fig. 2 shows a flowchart of a method for configuring an RRC state provided by an exemplary embodiment of the present application.
  • the method is applied to the UE shown in FIG. 1 as an example.
  • the UE may be a normal UE or an NR-Lite UE.
  • the method includes:
  • Step 204 The user terminal sets the RRC state to only the uplink inactive state according to the configuration of the network device.
  • Only the uplink inactive state can be understood as an RRC state that does not have an independent downlink mode; it can also be understood as an RRC state in which downlink transmission is always after uplink transmission; it can also be understood as no need to monitor paging messages An RRC state; it can also be understood as an RRC state in which the network equipment buffers the downlink data (including paging messages) of the user equipment until the user equipment performs uplink transmission and then sends it after a delay.
  • the uplink-only inactive state includes but is not limited to at least one of the following characteristics:
  • Feature 1 It is a sub-state of the ordinary inactive state (which can be referred to as the inactive state for short);
  • Feature 2 It is a state that runs independently from the normal inactive state
  • Feature 3 Downlink transmission is after uplink transmission
  • Feature 4 Cancel or not use the RAN Notification Area Update (RNAU) based on the radio access network.
  • RNAU RAN Notification Area Update
  • the uplink inactive state is a schematic name of the newly added inactive state (or new RRC state) proposed in this application.
  • the uplink-only inactive state can also have other names with equivalent meanings, for example, the inactive state with priority in the uplink mode (Up-Link priority RRC_INACTIVE), or the inactive state in the uplink mode, or the inactive state in the uplink only mode, Or the inactive state with priority in the uplink mode, etc.
  • This application does not limit the name of only the uplink inactive state.
  • the RRC state is set to the uplink only inactive state through the user terminal. In this state, there is no need to monitor the paging message from the network device, which effectively reduces the consumption of the user terminal. Power.
  • Fig. 3 shows a flowchart of a method for configuring an RRC state provided by an exemplary embodiment of the present application.
  • the method is applied to the network device shown in FIG. 1 as an example.
  • the method includes:
  • Step 202 The network device configures the user terminal to set the RRC state to only the uplink inactive state.
  • Only the uplink inactive state can be understood as an RRC state that does not have an independent downlink mode; it can also be understood as an RRC state in which downlink transmission is always after uplink transmission; it can also be understood as no need to monitor paging messages An RRC state; it can also be understood as an RRC state in which the network equipment buffers the downlink data (including paging messages) of the user equipment until the user equipment performs uplink transmission and then sends it after a delay.
  • the uplink-only inactive state includes but is not limited to at least one of the following characteristics:
  • Feature 1 It is a sub-state of the ordinary inactive state
  • Feature 2 It is a state that runs independently from the normal inactive state
  • Feature 3 Downlink transmission is after uplink transmission
  • Feature 4 Cancel or not use RAN Notification Area Update (RNAU).
  • RNAU RAN Notification Area Update
  • the method provided in this embodiment configures the user terminal to set the RRC state to only the uplink inactive state. In this state, there is no need to monitor paging messages from network devices, which effectively reduces the user terminal’s power consumption.
  • only the uplink inactive state is an RRC sub-state of the normal inactive state, and only after it has been switched to the normal inactive state can it be switched to Only the uplink is inactive.
  • the RRC state machine inside the user terminal includes: connected state, idle state, normal inactive state and uplink only inactive state.
  • the user terminal only has one RRC state in the NR at a time.
  • the network device configures the UE to switch between only the uplink inactive state or the Normal inactive state based on the type of the UE or the capabilities of the UE or the expectations of the UE.
  • the network device uses the RRC connection release message, and the RRC connection release message instructs the UE to enter the normal inactive state first; then, the network device uses the downlink control information (Downlink Control information, DCI) or Medium Access Control Control Element (MAC CE) notify the UE to switch between the uplink-only inactive state and the normal inactive state;
  • DCI Downlink Control information
  • MAC CE Medium Access Control Control Element
  • the uplink-only inactive state can be directly converted to the idle state: the network device sends an RRC connection release message to the UE to let the UE enter the idle state.
  • only the uplink inactive state is an RRC state that operates independently from the normal inactive state.
  • the RRC state machine inside the user terminal includes: connected state, idle state, inactive state, and uplink-only inactive state.
  • the user terminal only has one RRC state in the NR at a time.
  • the network device is configured to switch the UE from the connected state to the uplink-only inactive state or the normal inactive state based on the type of the UE or the capabilities of the UE or the expectations of the UE.
  • the network device uses the RRC connection release message, and the RRC connection release message instructs the UE to switch from the connected state to the uplink only inactive state;
  • the uplink-only inactive state can be directly converted to the idle state: the network device sends an RRC connection release message to the UE to let the UE enter the idle state.
  • only the uplink inactive state is an RRC sub-state of the ordinary inactive state.
  • the method includes:
  • Step 301 The network device sends an RRC connection release (Release) message to the user equipment;
  • Step 302 The user equipment receives the RRC connection release message sent by the network device, and switches the RRC state from the connected state to the normal inactive state according to the RRC connection release message;
  • Step 303 The network device sends the first configuration signaling to the user equipment
  • the first configuration signaling includes an RRC message, MAC CE or DCI.
  • Step 304 The user equipment receives the first configuration signaling sent by the network device, and switches the RRC state from a normal inactive state to an uplink-only inactive state according to the first configuration signaling.
  • Step 305 The network device sends second configuration signaling to the user equipment.
  • the second configuration signaling includes an RRC message, MAC CE or DCI.
  • Step 306 The user equipment receives the second configuration signaling sent by the network device, and switches the RRC state from the normal inactive state to the uplink-only inactive state according to the second configuration signaling.
  • the changes to the existing protocol can be minimized and the compatibility of technical solutions can be improved. sex.
  • the uplink-only inactive state is an RRC state that operates independently from the normal inactive state.
  • the method includes:
  • Step 402 The network device sends third configuration signaling to the user equipment.
  • the third configuration signaling includes an RRC connection release message.
  • Step 404 The user equipment receives the third configuration signaling sent by the network device, and changes the RRC state from the connected state to the uplink-only inactive state according to the third configuration signaling.
  • the method provided in this embodiment can design the uplink-only inactive state as an RRC sub-state that operates independently of the normal inactive state, so that fewer changes can be made to the common terminal, while The new type of terminal carries on the modification of the existing agreement, improves the compatibility of the technical scheme.
  • the method further includes:
  • Step 502 The network device sends the fourth configuration signaling to the user equipment.
  • the fourth configuration signaling is an RRC connection release message.
  • Step 504 The user equipment receives the fourth configuration signaling sent by the network device, and switches the RRC state from the uplink-only inactive state to the idle state according to the fourth configuration signaling.
  • the fourth configuration signaling as an RRC connection release message
  • changes to existing protocols can be minimized and the compatibility of technical solutions can be improved.
  • the method further includes:
  • Step 602 The user terminal sends a resume (Resume) request to the network device in the uplink-only inactive state;
  • the recovery request is not only used to request that the RRC state be transferred from the uplink-only inactive state to the connected state (or maintained in the uplink-only inactive state), but also used by the network device to determine where the user terminal is RNA.
  • Step 604 The network device receives the recovery request sent by the user equipment.
  • the network device determines the RNA where the user terminal is located according to the recovery request.
  • Step 606 The network device sends a recovery message to the user equipment
  • Step 608 The user terminal receives the recovery message sent by the network device
  • step 610 the user terminal transfers the RRC state from the uplink-only inactive state to the connected state according to the recovery message, or maintains the RRC state in the uplink-only inactive state.
  • the user terminal After receiving the recovery message, the user terminal can transfer the RRC state from the uplink-only inactive state to the connected state, or continue to maintain the uplink-only inactive state.
  • the changes to the existing protocol can be minimized and the compatibility of the technical solution can be improved.
  • the method further includes step 601 and step 611:
  • Step 601 The network device buffers the downlink data when the downlink data of the user terminal arrives;
  • the network device buffers the downlink data when the downlink data of the user terminal arrives and the user terminal is in the uplink-only inactive state.
  • the downlink data includes: at least one of downlink service data and paging messages.
  • Step 611 The network device sends downlink data to the user equipment.
  • the network device sends downlink data to the user equipment when the user terminal is in the connected state.
  • the method provided in this embodiment effectively reduces the power consumption of the user terminal by not monitoring the paging message from the network device in the uplink-only inactive state.
  • step 601 step 606 can be implemented as step 606-1
  • step 608 can be implemented as step 608-1:
  • Step 601 The network device buffers the downlink data when the downlink data of the user terminal arrives;
  • Step 606-1 the network device sends a recovery message to the user equipment, and the recovery message carries the buffered downlink data;
  • Step 608-1 The user terminal receives the recovery message sent by the network device, and the recovery message carries the buffered downlink data.
  • the user terminal may transfer the RRC state from the uplink-only inactive state to the connected state, or may continue to maintain the uplink-only inactive state.
  • the method provided in this embodiment effectively reduces the power consumption of the user terminal by not monitoring the paging message from the network device in the uplink-only inactive state. Moreover, the downlink data is carried in the recovery message, so that the user terminal can receive the downlink data as soon as possible.
  • the method further includes:
  • Step 702 The user equipment sends a resume (Resume) request to the first network device in the uplink-only inactive state;
  • the downlink data is buffered.
  • the first network device receives the recovery request sent by the user equipment.
  • Step 704 The user terminal receives the inactive wireless network identifier assigned by the first network device, where the inactive wireless network identifier is used for routing after the user equipment is switched to the second network device;
  • an inactive wireless network identifier assigned by the first network device to the user equipment.
  • the inactive wireless network identifier is used for routing after the user equipment is switched to the second network device.
  • the inactive wireless network identity is (I-Radio Network Tempory Identity, I-RNTI).
  • I-RNTI I-Radio Network Tempory Identity
  • the first half of the I-RNTI identifier is the base station identifier (eNB ID) of the first network device, and the second half is the UE identifier (UE ID) of the user equipment.
  • Step 706 The user terminal switches from the first network device to the second network device.
  • Step 708 The user terminal sends an inactive wireless network identifier to the second network device
  • Step 710 The second network device sends an inactive wireless network identifier to the first network device.
  • the first network device receives the inactive wireless network identifier sent by the second network device
  • Step 712 The first network device synchronizes at least one of the context of the user terminal and the buffered downlink data to the second network device according to the inactive wireless network identifier;
  • the first network device synchronizes the context of the user terminal with the second network device according to the inactive wireless network identifier.
  • the first network device synchronizes the downlink data buffered for the user equipment to the second network device according to the inactive state wireless network identifier.
  • Step 714 The second network device sends the buffered downlink data to the user equipment.
  • the second network device sends the buffered downlink data to the user equipment after the user equipment switches the RRC state from the uplink-only inactive state to the connected state.
  • the first network device allocates the inactive wireless network identifier to the user equipment, so that the user equipment can also receive the first network device cache after switching to the second network device.
  • the downstream data ensures the reliability of the business.
  • the method further includes:
  • Step 802 The user equipment sends UE capability report information to the network device.
  • the user terminal capability report information is used to indicate that the user equipment supports only the uplink inactive state, or the user equipment does not support the uplink only inactive state;
  • the network device sends a UE capability query to the user equipment, and the user equipment sends UE capability report information to the network device.
  • UE capability report information There are one or more bits in the UE capability report information, which are used to indicate that the user equipment supports only the uplink inactive state, or the user equipment does not support the uplink only inactive state.
  • the value of the information bit when the value of the information bit is 1, it is used to indicate that the user equipment supports the uplink-only inactive state; when the value of the information bit is 0, it is used to indicate that the user equipment does not support the uplink-only inactive state.
  • Step 804 The network device receives UE capability report information sent by the user equipment.
  • the network device configures the user equipment to set the RRC state to the uplink only inactive state.
  • the method provided in this embodiment can improve the ability of the network device to configure the user equipment to set the RRC state to the uplink only inactive state when the UE capability supports only the uplink inactive state. Compatibility of the capable UE.
  • the method further includes:
  • Step 902 The user equipment sends auxiliary information to the network device, where the auxiliary information is used to indicate that the user terminal expects to switch to the uplink-only inactive state, or expects to switch to the normal inactive state;
  • Step 904 The network device receives the auxiliary information sent by the user equipment.
  • the network device configures the user equipment to set the RRC state to the uplink-only inactive state.
  • the method provided in this embodiment can be further improved by configuring the user equipment to set the RRC state to the uplink-only inactive state by the network device when the user terminal expects to switch to the uplink-only inactive state. Meet the needs of user equipment well.
  • the method further includes:
  • step 1002 the user equipment cancels or does not use RNAU in the uplink-only inactive state.
  • This step includes at least one of the following two methods:
  • the user terminal cancels or does not use the periodic RNAU in the uplink-only inactive state.
  • the user terminal cancels or does not use the RNAU triggered by the RNA change in the uplink-only inactive state.
  • the method provided in this embodiment can help the UE to better save power consumption by canceling RNAU.
  • Fig. 16 shows a block diagram of a device for configuring an RRC state provided by an exemplary embodiment of the present application.
  • the device can be implemented as a user equipment, or implemented as a part of the user equipment, or applied in the user equipment.
  • the device includes:
  • the processing module 1620 is configured to set the radio resource control RRC state to only the uplink inactive state according to the configuration of the network device.
  • the uplink-only inactive state is an RRC sub-state of the inactive state.
  • the uplink-only inactive state is an RRC state that operates independently of the inactive state.
  • the device further includes:
  • a sending module 1660 configured to send a recovery request to the network device in the uplink-only inactive state
  • the receiving module 1640 is configured to receive the recovery message sent by the network device
  • the receiving module 1640 is further configured to receive the downlink data sent by the network device after transferring the RRC state from the uplink-only inactive state to the connected state according to the recovery message;
  • the downlink data is buffered by the network device before receiving the recovery request.
  • the device further includes:
  • a sending module 1660 configured to send a recovery request to the network device in the uplink-only inactive state
  • the receiving module 1640 is configured to receive a recovery message sent by the network device, where the recovery message carries downlink data;
  • the downlink data is buffered by the network device before receiving the recovery request.
  • the processing module 1620 is further configured to cancel or not use RNAU in the uplink-only inactive state.
  • the processing module 1620 is further configured to cancel or not use the periodic RNAU in the uplink-only inactive state.
  • the processing module 1620 is further configured to cancel or not use the RNAU triggered by the RNA change in the uplink-only inactive state.
  • the device further includes:
  • the sending module 1660 is configured to send a recovery request to the network device, where the recovery request is used by the network device to determine the RNA where the user terminal is located.
  • the device further includes:
  • the sending module 1660 is configured to send a recovery request to the first network device
  • the receiving module 1640 is configured to receive an inactive wireless network identifier assigned by the first network device, where the inactive wireless network identifier is used for routing after the user equipment is switched to the second network device.
  • the receiving module 1640 is further configured to receive downlink data sent by the second network device after switching to the second network device, where the downlink data is the second network device. Obtained by the network device from the first network device according to the inactive state wireless network identifier.
  • the receiving module 1640 is further configured to receive the first configuration signaling sent by the network device, and switch the RRC state from the inactive state to the RRC state according to the first configuration signaling.
  • the uplink-only inactive state is further configured to receive the first configuration signaling sent by the network device, and switch the RRC state from the inactive state to the RRC state according to the first configuration signaling.
  • the uplink-only inactive state is further configured to receive the first configuration signaling sent by the network device, and switch the RRC state from the inactive state to the RRC state according to the first configuration signaling.
  • the device further includes:;
  • the receiving module 1640 is further configured to receive the second configuration signaling sent by the network device;
  • the processing module 1620 is further configured to switch the RRC state from the uplink-only inactive state to the inactive state according to the second configuration signaling.
  • the first configuration signaling is an RRC message, a medium access control control unit MAC CE, or downlink control information DCI.
  • the second configuration signaling is an RRC message, a medium access control control unit MAC CE, or downlink control information DCI.
  • the receiving module 1640 is configured to receive the third configuration signaling sent by the network device
  • the processing module 1620 is configured to switch the RRC state from the connected state to the uplink-only inactive state according to the third configuration signaling.
  • the third configuration signaling is an RRC connection release message.
  • the device further includes:
  • the receiving module 1640 is configured to receive the fourth configuration signaling sent by the network device; the processing module 1620 is configured to change the RRC state from the uplink-only inactive state according to the fourth configuration signaling Switch to idle state;
  • the sending module 1660 is configured to send a recovery request to the network device; the receiving module 1640 is configured to receive a recovery message sent by the network device; the processing module 1620 is configured to change the RRC state from the network device according to the recovery message
  • the uplink-only inactive state is transferred to the connected state or maintained in the uplink-only inactive state.
  • the fourth configuration signaling is an RRC connection release message.
  • the device further includes:
  • the sending module 1660 is configured to send user terminal capability report information to the network device, where the user terminal capability report information is used to indicate that the user equipment supports the uplink-only inactive state.
  • the device further includes:
  • the sending module 1660 is configured to send auxiliary information to the network device, where the auxiliary information is used to indicate that the user terminal desires to switch to the uplink-only inactive state, or desires to switch to the inactive state state.
  • Fig. 17 shows a block diagram of a device for configuring an RRC state provided by an exemplary embodiment of the present application.
  • the device can be implemented as a network device, or implemented as a part of a network device, or used in a network device.
  • the device includes:
  • the sending module 1720 is configured to configure the user terminal to set the radio resource control RRC state to the uplink only inactive state.
  • the uplink-only inactive state is an RRC sub-state of the inactive state.
  • the uplink-only inactive state is an RRC state that operates independently of the inactive state.
  • the device further includes:
  • the storage module 1760 is configured to buffer the downlink data of the user terminal when the downlink data arrives;
  • the receiving module 1740 is configured to receive the recovery request of the user terminal
  • the sending module 1720 is configured to send a recovery message to the user terminal, where the recovery message is used to instruct the user equipment to transfer the RRC state from the uplink-only inactive state to the connected state;
  • the sending module 1720 is configured to send the downlink data to the user equipment.
  • the device further includes:
  • the storage module 1760 is configured to buffer the downlink data of the user terminal when the downlink data arrives;
  • the receiving module 1740 is configured to receive the recovery request of the user terminal
  • the sending module 1720 is configured to send a recovery message to the user terminal, where the recovery message carries the downlink data.
  • the device further includes:
  • the receiving module 1740 is configured to receive the recovery request of the user terminal
  • the processing module 1780 is configured to determine, according to the restoration request, the radio access network notification area RAN where the user terminal is located.
  • the device further includes:
  • the receiving module 1740 is configured to receive the recovery request of the user terminal
  • the sending module 1720 is configured to allocate an inactive wireless network identifier to the user terminal, where the inactive wireless network identifier is used for routing of the user equipment after it is switched to the second network device.
  • the device further includes:
  • the receiving module 1740 is configured to receive the inactive wireless network identifier sent by the second network device;
  • the sending module 1720 is configured to synchronize at least one of the context of the user terminal and the buffered downlink data to the second network device according to the inactive state wireless network identifier.
  • the sending module 1720 is configured to send first configuration signaling to the user terminal, and the first configuration signaling is used to instruct the user terminal to change the RRC state from non- The active state is switched to the uplink-only inactive state.
  • the sending module 1720 is configured to send second configuration signaling to the user terminal, and the second configuration signaling is used to instruct the user terminal to change the RRC state from the The uplink-only inactive state is switched to the inactive state.
  • the first configuration signaling is an RRC message, a medium access control control unit MAC CE, or downlink control information DCI.
  • the second configuration signaling is an RRC message, a medium access control control unit MAC CE, or downlink control information DCI.
  • the sending module 1720 is configured to send third configuration signaling to the user terminal, and the third configuration signaling is used to instruct the user terminal to change the RRC state from the connected Switch to the uplink-only inactive state.
  • the third configuration signaling is an RRC connection release message.
  • the device further includes:
  • the sending module 1720 is configured to send fourth configuration signaling to the user terminal, where the fourth configuration signaling switches the RRC state from the uplink-only inactive state to the idle state;
  • the receiving module 1740 is configured to receive a recovery request from the user terminal; the sending module 1720 is configured to send a recovery message to the user terminal, where the recovery message is used to instruct the user terminal to change the RRC state from the The uplink-only inactive state is transferred to the connected state or maintained in the uplink-only inactive state.
  • the fourth configuration signaling is an RRC connection release message.
  • the device further includes:
  • the receiving module 1740 is configured to receive capability information sent by the user equipment, where the capability information includes that the user equipment supports the uplink-only inactive state.
  • the capability information is carried in user terminal capability report information.
  • the device further includes:
  • the receiving module 1740 is configured to receive auxiliary information sent by the user equipment, where the auxiliary information is used to indicate that the user terminal desires to switch to the uplink-only inactive state, or desires to switch to the non-active state. Active state.
  • FIG. 18 shows a schematic structural diagram of a communication device (user terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one signaling, and the processor 101 is used to execute the at least one signaling to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • a computer-readable storage medium stores at least one piece of signaling, at least one piece of program, code set, or signaling set, and the at least one piece of signaling The at least one piece of program, the code set, or the signaling set is loaded and executed by the processor to implement the RRC state configuration method performed by the communication device provided in the foregoing method embodiments.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium mentioned can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种RRC状态的配置方法、装置、通信设备及存储介质,涉及通信技术领域。该方法应用于用户终端中,包括:用户终端根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态。本公开在仅上行链路非激活态下,无需监听寻呼消息,能够有效的节省用户终端的耗电量。

Description

RRC状态设置方法、装置、通信设备及存储介质 技术领域
本公开涉及移动通信领域,特别涉及一种无线资源控制(Radio Resource Control,RRC)状态设置方法、装置、通信设备及存储介质。
背景技术
用户终端(User Equipment,UE)会监听网络设备的寻呼(Paging)消息。在监听到寻呼消息时,UE接收网络设备发送的下行数据。
对于某些情况或某些终端来讲,上述过程会存在电量耗费大的问题。
发明内容
本公开实施例提供了一种RRC状态设置方法、装置、通信设备及存储介质,通过用户终端将RRC状态设置为仅上行链路非激活态,无需监听网络设备的寻呼消息,有效的减少了用户终端的耗电量。所述技术方案如下:
根据本公开的一个方面,提供了一种RRC状态的配置方法,所述方法包括:
用户终端根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态。
根据本公开的另一方面,提供了一种RRC状态的配置方法,所述方法包括:
网络设备配置用户终端将RRC状态设置为仅上行链路非激活态。
根据本公开的一个方面,提供了一种RRC状态的配置装置,所述装置包括:
发送模块,用于根据网络设备的配置,将RRC状态设置为仅上行链路非激活态。
根据本公开的另一方面,提供了一种RRC状态的配置方法,所述方法包括:
处理模块,用于用户终端将RRC状态设置为仅上行链路非激活态。
根据本公开的另一个方面,提供了一种用户终端,所述用户终端包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行信令的存储器;
其中,所述处理器被配置为加载并执行所述可执行信令以实现如上一个方面所述的RRC状态的配置方法中用户终端侧的步骤。
根据本公开的另一个方面,提供了一种网络设备,所述网络设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行信令的存储器;
其中,所述处理器被配置为加载并执行所述可执行信令以实现如上一个方面所述的RRC状态的配置方法中网络设备侧的步骤。
根据本公开的另一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行信令,所述可执行信令由处理器加载并执行以实现如上方面所述的RRC状态的配置方法。
根据本公开的另一个方面,提供了一种计算机程序产品,所述计算机程序产品中存储有可执行信令,所述可执行信令由处理器加载并执行以实现如上方面所述的RRC状态的配置方法。
根据本公开的另一个方面,提供了一种通信芯片,所述通信芯片包括:可编程逻辑电路和/或程序指令,所述芯片用于实现如上方面所述的RRC状态的配置方法。
本公开实施例提供的技术方案至少包括如下有益效果:
通过用户终端将RRC状态设置为仅上行链路非激活态,在该状态下无需监听来自网络设备的寻呼消息,有效的减少了用户终端的耗电量。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图3是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图4是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图5是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图6是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图7是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图8是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图9是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图10是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图11是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图12是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图13是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图14是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图15是本公开一个示例性实施例提供的RRC状态的配置方法的流程图;
图16是本公开一个示例性实施例提供的RRC状态的配置装置的框图;
图17是本公开另一个示例性实施例提供的RRC状态的配置装置的框图;
图18是本公开一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
首先对本申请涉及的若干个名词进行简介:
RRC状态:在新空口(New Radio,NR)系统中包括三种RRC状态:RRC连接态(RRC_ACTIVE)、RRC非激活态(RRC_INACTIVE)和RRC空闲态(RRC_IDLE)。三种RRC状态可简称为:连接态、非激活态和空闲态。
非激活态:在NR中新引入的一种RRC状态。在本文中也称普通(normal)的非激活态。普通的非激活态具有的典型特性:
·保持核心网连接;
·RAN保存了UE的上下文;
·网络需要知道UE的位置;通过UE上报周期性RNAU实现,或者UE上报RNAU发生更新;
·RAN可以触发UE的寻呼消息;
·没有专用资源。
在相关技术中的NR-Lite特性中,引入了一种新类型的终端,旨在应对增强型移动宽带(Enhanced Mobile Broadband,eMBB)、高可靠和低延迟通信(Ultra-reliable and Low Latency Communications,URLLC)、大规模机器类型通信(Massive Machine Type Communication,mMTC)之外的场景。即该新类型的终端要求的速率,时延,可靠性都在以上场景未覆盖到的情况。比如速率比eMBB要低,但是比mMTC要求要高,而时延和可靠性需求又比URLLC更加宽松。
新类型的终端的三种典型应用场景包括:工厂传感器、视频监控,可穿戴设备。因此可以认为该特性引入的是一种轻型终端。该类型的终端具有如下特性:
·接收天线RX的数量减少,从常规的4个降低为2个或者1个;
·带宽降低,在FR1频段工作时的典型值为5MHz/10MHz,而在FR2频段工作时的典型值为40MHz;
·UE处理能力降低;可能会支持更小的传输块TBsize和DCI size;
·较低的移动性。
因此,非激活态是一种比较适合上述类型的终端的工作模式,比如物联网设备。但是对于很多物联网设备而言,通常还具有一些特殊需求。比如一些物联网设备仅有上行传输需求,不需要独立的下行模式。也即,下行数据的传输只需要在上行传输之后。因此可以针对工作在非激活态的物联网设备的工作模式进行优化。
本申请实施例新提出了一种RRC状态:仅上行链路非激活态(Up-Link only RRC_INACTIVE)。在处于上行模式的非激活态时,UE无需监听网络设备的寻呼消息,能够节省耗电量。
图1示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:无线接入网(Radio Access Network,RAN)12和用户终端14。
无线接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为用户终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE 系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为用户终端14提供无线通信功能的装置统称为网络设备。
用户终端14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为用户终端。网络设备120与用户终端14之间通过某种空口技术互相通信,例如Uu接口。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本申请实施例也可以应用于这些通信系统。
图2示出了本申请一个示例性实施例提供的RRC状态的配置方法的流程图。本实施例以该方法应用在图1所示的UE来举例说明,该UE可以是普通UE,也可以是NR-Lite UE。所述方法包括:
步骤204,用户终端根据网络设备的配置,将RRC状态设置为仅上行链路非激活态。
仅上行链路非激活态,可以理解为不具有独立的下行模式的一种RRC状态;也可以理解为下行传输总是在上行传输之后的一种RRC状态;还可以理解为无需监听寻呼消息的一种RRC状态;还可以理解为网络设备会将用户设备的下行数据(含寻呼消息)进行缓存,直至用户设备进行上行传输滞后再发送的一种RRC状态。
针对仅上行链路非激活态,包括但不限于如下特性中的至少一种:
特性1:是普通的非激活态(可简称为非激活态)的一种子状态;
特性2:是和普通的非激活态独立运行的一种状态;
特性3:下行传输在上行传输之后;
特性4:取消或不使用基于无线接入网的通知区域更新(RAN Notification Area Update,RNAU)。
需要说明的是,仅上行链路非激活态是本申请提出的新增非激活态(或新的RRC状态)的一种示意性名称。仅上行链路非激活态还可以具有其他等同含义的名称,比如,上行模式优先的非激活态(Up-Link priority RRC_INACTIVE)、或上行模式的非激活态、或仅上行模式的非激活态、或上行模式优先的非激活态等等,本申请对仅上行链路非激活态的名称不做限定。
综上所述,本实施例提供的方法,通过用户终端将RRC状态设置为仅上行链路非激活态,在该状态下无需监听来自网络设备的寻呼消息,有效的减少了用户终端的耗电量。
图3示出了本申请一个示例性实施例提供的RRC状态的配置方法的流程图。本实施例以该方法应用在图1所示的网络设备来举例说明。所述方法包括:
步骤202,网络设备配置用户终端将RRC状态设置为仅上行链路非激活态。
仅上行链路非激活态,可以理解为不具有独立的下行模式的一种RRC状态;也可以理解为下行传输总是在上行传输之后的一种RRC状态;还可以理解为无需监听寻呼消息的一种RRC状态;还可以理解为网络设备会将用户设备的下行数据(含寻呼消息)进行缓存,直至用户设备进行上行传输滞后再发送的一种RRC状态。
针对仅上行链路非激活态,包括但不限于如下特性中的至少一种:
特性1:是普通的非激活态的一种子状态;
特性2:是和普通的非激活态独立运行的一种状态;
特性3:下行传输在上行传输之后;
特性4:取消或不使用无线接入网通知区域更新(RAN Notification Area Update,RNAU)。
综上所述,本实施例提供的方法,通过配置用户终端将RRC状态设置为仅上行链路非激活态,在该状态下无需监听来自网络设备的寻呼消息,有效的减少了用户终端的耗电量。
在基于图2或图3的可选实施例中,仅上行链路非激活态是普通的非激活态的一种RRC子状态,仅在已切换至普通的非激活态之后,才可以切换至仅上行链路非激活态。如图4所示,用户终端内部的RRC状态机包括:连接态、空闲态、普通的非激活态和仅上行链路非激活态。示例性的,用户终端一次仅在NR中具有一个RRC状态。
在图4所示的RRC状态机中,网络设备基于UE的类型或者UE能力或者UE的期望,配置UE在仅上行链路非激活态还是Normal的非激活态之间进行切换。示意性的:
1、从连接态切换至仅上行链路非激活态时:网络设备通过RRC连接释放消息,RRC连接释放消息中指示UE进入先进入普通的非激活态;然后,网络设备通过下行控制信息(Downlink Control information,DCI)或者媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)通知UE在仅上行链路非激活态和普通的非激活态之间进行切换;
2、从仅上行链路非激活态可以直接转化到连接态:当UE向网络设备发起恢复(Resume)请求时;
3、从仅上行链路非激活态可以直接转化到空闲态:网络设备向UE发送RRC连接释放消息,让UE进入空闲态。
在基于图2或图3的可选实施例中,仅上行链路非激活态是与普通的非激活态独立运行的一种RRC状态。如图5所示,用户终端内部的RRC状态机包括:连接态、空闲态、非激活态和仅上行链路非激活态。示例性的,用户终端一次仅在NR中具有一个RRC状态。
在图5所示的RRC状态机中,网络设备基于UE的类型或者UE能力或者UE的期望,配置让UE从连接态切换至仅上行链路非激活态,或者普通的非激活态。示意性的:
1、从连接态切换至仅上行链路非激活态时:网络设备通过RRC连接释放消息,RRC连接释放消息中指示UE从连接态切换至仅上行链路非激活态;
2、从仅上行链路非激活态可以直接转化到连接态:当UE向网络设备发起恢复(Resume)请求时;
3、从仅上行链路非激活态可以直接转化到空闲态:网络设备向UE发送RRC连接释放消息,让UE进入空闲态。
在基于图4的可选实施例中,仅上行链路非激活态是普通的非激活态的一种RRC子状态,如图6所示,所述方法包括:
步骤301,网络设备向用户设备发送RRC连接释放(Release)消息;
设用户设备的初始RRC状态为连接态。
步骤302,用户设备接收网络设备发送的RRC连接释放消息,根据RRC连接释放消息将RRC状态从连接态切换至普通的非激活态;
步骤303,网络设备向用户设备发送第一配置信令;
可选地,第一配置信令包括RRC消息、MAC CE或DCI。
步骤304,用户设备接收网络设备发送的第一配置信令,根据第一配置信令将RRC状态从普通的非激活态切换至仅上行链路非激活态。
步骤305,网络设备向用户设备发送第二配置信令;
可选地,第二配置信令包括RRC消息、MAC CE或DCI。
步骤306,用户设备接收网络设备发送的第二配置信令,根据第二配置信令将RRC状态从普通的非激活态切换至仅上行链路非激活态。
综上所述,本实施例提供的方法,通过将仅上行链路非激活态设计为普通的非激活态的一种RRC子状态,可以尽量减少对现有协议的改动,提高技术方案的兼容性。
在基于图5的可选实施例中,仅上行链路非激活态是与普通的非激活态独立运行的一种RRC状态,如图7所示,所述方法包括:
步骤402,网络设备向用户设备发送第三配置信令;
假设用户设备的初始RRC状态为连接态。
可选地,第三配置信令包括RRC连接释放消息。
步骤404,用户设备接收网络设备发送的第三配置信令,根据第三配置信令将RRC状态从连接态至仅上行链路非激活态。
综上所述,本实施例提供的方法,通过将仅上行链路非激活态设计为与普通的非激活态独立运行的一种RRC子状态,可以对普通终端进行较少的改动,而针对新类型的终端进行现有协议的改动,提高技术方案的兼容性。
在基于图4或图5的可选实施例中,如图8所示,所述方法还包括:
步骤502,网络设备向用户设备发送第四配置信令;
示意性的,第四配置信令是RRC连接释放消息。
步骤504,用户设备接收网络设备发送的第四配置信令,根据第四配置信令将RRC状态从仅上行链路非激活态切换至空闲态。
综上所述,本实施例提供的方法,通过将第四配置信令设计为RRC连接释放消息,可以尽量减少对现有协议的改动,提高技术方案的兼容性。
在基于图4或图5的可选实施例中,如图9所示,所述方法还包括:
步骤602,用户终端在仅上行链路非激活态下,向网络设备发送恢复(Resume)请求;
可选地,该恢复请求不仅用于请求将RRC状态从仅上行链路非激活态转移至连接态(或维持在仅上行链路非激活态),还用于被网络设备确定用户终端所处的RNA。
步骤604,网络设备接收用户设备发送的恢复请求;
作为可选功能或附加功能,网络设备根据恢复请求确定用户终端所处的RNA。
步骤606,网络设备向用户设备发送恢复消息;
步骤608,用户终端接收网络设备发送的恢复消息;
步骤610,用户终端根据恢复消息将RRC状态从仅上行链路非激活态转移至连接态,或维持在仅上行链路非激活态。
用户终端在接收到恢复消息后,可以将RRC状态从仅上行链路非激活态转移至连接态,也可以继续维持在仅上行链路非激活态。
综上所述,本实施例提供的方法,通过沿用Resume请求将RRC状态从仅上行链路非激活态转移至连接态,可以尽量减少对现有协议的改动,提高技术方案的兼容性。
在基于图9的可选实施例中,如图10所示,所述方法还包括步骤601和步骤611:
步骤601,网络设备在用户终端的下行数据到达时,缓存下行数据;
网络设备在用户终端的下行数据到达,且用户终端处于仅上行链路非激活态时,缓存下行数据。
下行数据包括:下行业务数据和寻呼消息中的至少一种。
步骤611,网络设备向用户设备发送下行数据。
网络设备在用户终端处于连接态时,向用户设备发送下行数据。
综上所述,本实施例提供的方法,通过在仅上行链路非激活态下无需监听来自网络设备的寻呼消息,有效的减少了用户终端的耗电量。
在基于图9的可选实施例中,如图11所示,所述方法还包括步骤601,步骤606可实现为步骤606-1,步骤608可实现为步骤608-1:
步骤601,网络设备在用户终端的下行数据到达时,缓存下行数据;
步骤606-1,网络设备向用户设备发送恢复消息,恢复消息携带有缓存的下行数据;
步骤608-1,用户终端接收网络设备发送的恢复消息,恢复消息携带有缓存的下行数据。
可选地,用户终端在接收到恢复消息后,可以将RRC状态从仅上行链路非激活态转移至连接态,也可以继续维持在仅上行链路非激活态。
综上所述,本实施例提供的方法,通过在仅上行链路非激活态下无需监听来自网络设备的寻呼消息,有效的减少了用户终端的耗电量。而且,将下行数据携带在恢复消息中,使得用户终端能够尽快地接收到下行数据。
在基于图2或图3的可选实施例中,如图12所示,所述方法还包括:
步骤702,用户设备在仅上行链路非激活态下,向第一网络设备发送恢复(Resume)请求;
在用户设备处于仅上行链路非激活态的情况下,若第一网络设备存在用户设备的下行数据到达,则缓存该下行数据。
可选地,第一网络设备接收用户设备发送的恢复请求。
步骤704,用户终端接收第一网络设备分配的非激活态无线网络标识,非激活态无线网络标识用于用户设备在切换至第二网络设备后的路由;
可选地,第一网络设备向用户设备分配的非激活态无线网络标识。该非激活态无线网络标识用于用户设备在切换至第二网络设备后的路由。
在一种可能的设计中,非激活态无线网络标识是(I-Radio Network Tempory Identity,I-RNTI)。该I-RNTI标识的前半部分为第一网络设备的基站标识(eNB ID),后半部分为用户设备的UE标识(UE ID)。
步骤706,用户终端从第一网络设备向第二网络设备切换;
步骤708,用户终端向第二网络设备发送非激活态无线网络标识;
步骤710,第二网络设备向第一网络设备发送非激活态无线网络标识;
第一网络设备接收第二网络设备发送的非激活态无线网络标识;
步骤712,第一网络设备根据非激活态无线网络标识向第二网络设备同步用户终端的上下文和缓存的下行数据中的至少一种;
可选地,第一网络设备根据非激活态无线网络标识向第二网络设备同步用户终端的上下文。
可选地,在第一网络设备缓存有用户设备的下行数据的情况下,第一网络设备根据非激活态无线网络标识向第二网络设备同步为该用户设备缓存的下行数据。
步骤714,第二网络设备向用户设备发送缓存的下行数据。
可选地,第二网络设备在用户设备将RRC状态从仅上行链路非激活态切换至连接态后,向用户设备发送缓存的下行数据。
综上所述,本实施例提供的方法,通过由第一网络设备向用户设备分配非激活态无线网络标识,使得用户设备在切换到第二网络设备后,也能接收到第一网络设备缓存的下行数据,保证了业务的可靠性。
在基于图2或图3的可选实施例中,如图13所示,所述方法还包括:
步骤802,用户设备向网络设备发送UE能力上报信息,用户终端能力上报信息用于指示用户设备支持仅上行链路非激活态,或用户设备不支持仅上行链 路非激活态;
可选地,网络设备向用户设备发送UE能力询问,用户设备向网络设备发送UE能力上报信息。在UE能力上报信息中存在一个或多个比特,用于指示用户设备支持仅上行链路非激活态,或用户设备不支持仅上行链路非激活态。
比如,该信息比特取值为1时,用于指示用户设备支持仅上行链路非激活态;该信息比特取值为0时,用于指示用户设备不支持仅上行链路非激活态。
步骤804,网络设备接收用户设备发送的UE能力上报信息。
在UE能力支持仅上行链路非激活态的情况下,网络设备配置用户设备将RRC状态设置为仅上行链路非激活态。
综上所述,本实施例提供的方法,通过在UE能力支持仅上行链路非激活态的情况下,网络设备配置用户设备将RRC状态设置为仅上行链路非激活态,能够提高对不同能力的UE的兼容性。
在基于图2或图3的可选实施例中,如图14所示,所述方法还包括:
步骤902,用户设备向网络设备发送辅助信息,辅助信息用于表示用户终端期望切换至仅上行链路非激活态,或者,期望切换至普通的非激活态;
步骤904,网络设备接收用户设备发送的辅助信息。
在用户终端期望切换至仅上行链路非激活态的情况下,网络设备配置用户设备将RRC状态设置为仅上行链路非激活态。
综上所述,本实施例提供的方法,通过在用户终端期望切换至仅上行链路非激活态的情况下,网络设备配置用户设备将RRC状态设置为仅上行链路非激活态,能够更好地满足用户设备的需求。
在基于图2或图3的可选实施例中,如图15所示,所述方法还包括:
步骤1002,用户设备在仅上行链路非激活态下取消或不使用RNAU。
本步骤包括如下两种方式中的至少一种:
可选地,用户终端在仅上行链路非激活态下取消或不使用周期性的RNAU。
可选地,用户终端在仅上行链路非激活态下取消或不使用RNA变更触发的RNAU。
本步骤中的“取消”可以理解为忽略,或不可用,或不执行,或不使用。
综上所述,本实施例提供的方法,通过取消RNAU可以帮助UE更好地节 省耗电。
需要说明的是,上述各个实施例还可以由本领域技术人员进行自由组合实施,每个附图或每个附图中的一部分步骤还可以实施成为单独的实施例,本申请对此不加以限定。
图16示出了本申请一个示例性实施例提供的RRC状态的配置装置的框图。该装置可以实现成为用户设备,或实现成为用户设备的一部分,或者应用在用户设备中。所述装置包括:
处理模块1620,用于根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态。
在一种可能的实施例中,所述仅上行链路非激活态是非激活态的一种RRC子状态。
在一种可能的实施例中,所述仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
在一种可能的实施例中,所述装置还包括:
发送模块1660,用于在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
接收模块1640,用于接收所述网络设备发送的恢复消息;
所述接收模块1640,还用于根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态转移至所述连接态后,接收所述网络设备发送的下行数据;
其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
在一种可能的实施例中,所述装置还包括:
发送模块1660,用于在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
接收模块1640,用于接收所述网络设备发送的恢复消息,所述恢复消息携带有下行数据;
其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
在一种可能的实施例中,所述处理模块1620,还用于在所述仅上行链路非激活态下取消或不使用RNAU。
在一种可能的实施例中,所述处理模块1620,还用于在所述仅上行链路非 激活态下取消或不使用周期性的RNAU。
在一种可能的实施例中,所述处理模块1620,还用于在所述仅上行链路非激活态下取消或不使用RNA变更触发的RNAU。
在一种可能的实施例中,所述装置还包括:
发送模块1660,用于向所述网络设备发送恢复请求,所述恢复请求用于被所述网络设备确定所述用户终端所处的RNA。
在一种可能的实施例中,所述装置还包括:
发送模块1660,用于向第一网络设备发送恢复请求;
接收模块1640,用于接收所述第一网络设备分配的非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
在一种可能的实施例中,所述接收模块1640,还用于在切换至所述第二网络设备后,接收所述第二网络设备发送的下行数据,所述下行数据是所述第二网络设备根据所述非激活态无线网络标识从所述第一网络设备获取到的。
在一种可能的实施例中,所述接收模块1640,还用于接收所述网络设备发送的第一配置信令,根据所述第一配置信令将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
在一种可能的实施例中,所述装置还包括:;
接收模块1640,还用于接收所述网络设备发送的第二配置信令;
所述处理模块1620,还用于根据所述第二配置信令将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
在一种可能的实施例中,所述第一配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
在一种可能的实施例中,所述第二配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
在一种可能的实施例中,所述接收模块1640,用于接收网络设备发送的第三配置信令;
所述处理模块1620,用于根据所述第三配置信令将所述RRC状态从连接态切换至所述仅上行链路非激活态。
在一种可能的实施例中,所述第三配置信令是RRC连接释放消息。
在一种可能的实施例中,所述装置还包括:
接收模块1640,用于接收所述网络设备发送的第四配置信令;所述处理模块1620,用于根据所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
或,
发送模块1660,用于向网络设备发送恢复请求;所述接收模块1640,用于接收所述网络设备发送的恢复消息;所述处理模块1620,用于根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或维持在所述仅上行链路非激活态。
在一种可能的实施例中,所述第四配置信令是RRC连接释放消息。
在一种可能的实施例中,所述装置还包括:
所述发送模块1660,用于向所述网络设备发送用户终端能力上报信息,所述用户终端能力上报信息用于指示所述用户设备支持所述仅上行链路非激活态。
在一种可能的实施例中,所述装置还包括:
所述发送模块1660,用于向所述网络设备发送辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至所述非激活态。
图17示出了本申请一个示例性实施例提供的RRC状态的配置装置的框图。该装置可以实现成为网络设备,或实现成为网络设备的一部分,或者应用在网络设备中。所述装置包括:
发送模块1720,用于配置用户终端将无线资源控制RRC状态设置为仅上行链路非激活态。
在一种可能的实施例中,所述仅上行链路非激活态是非激活态的一种RRC子状态。
在一种可能的实施例中,所述仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
在一种可能的实施例中,所述装置还包括:
存储模块1760,用于在所述用户终端的下行数据到达时,缓存所述下行数据;
接收模块1740,用于接收所述用户终端的恢复请求;
所述发送模块1720,用于向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户设备将所述RRC状态从所述仅上行链路非激活态转移至所述连接态;
所述发送模块1720,用于向所述用户设备发送所述下行数据。
在一种可能的实施例中,所述装置还包括:
存储模块1760,用于在所述用户终端的下行数据到达时,缓存所述下行数据;
接收模块1740,用于接收所述用户终端的恢复请求;
所述发送模块1720,用于向所述用户终端发送恢复消息,所述恢复消息携带有所述下行数据。
在一种可能的实施例中,所述装置还包括:
接收模块1740,用于接收所述用户终端的恢复请求;
处理模块1780,用于根据所述恢复请求确定所述用户终端所处的无线接入网通知区域RAN。
在一种可能的实施例中,所述装置还包括:
接收模块1740,用于接收所述用户终端的恢复请求;
所述发送模块1720,用于向所述用户终端分配非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
在一种可能的实施例中,所述装置还包括:
接收模块1740,用于接收所述第二网络设备发送的所述非激活态无线网络标识;
所述发送模块1720,用于根据所述非激活态无线网络标识向所述第二网络设备同步所述用户终端的上下文和缓存的下行数据中的至少一种。
在一种可能的实施例中,所述发送模块1720,用于向所述用户终端发送第一配置信令,所述第一配置信令用于指示所述用户终端将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
在一种可能的实施例中,所述发送模块1720,用于向所述用户终端发送第二配置信令,所述第二配置信令用于指示所述用户终端将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
在一种可能的实施例中,所述第一配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
在一种可能的实施例中,所述第二配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
在一种可能的实施例中,所述发送模块1720,用于向所述用户终端发送第三配置信令,所述第三配置信令用于指示所述用户终端将所述RRC状态从连接态切换至所述仅上行链路非激活态。
在一种可能的实施例中,所述第三配置信令是RRC连接释放消息。
在一种可能的实施例中,所述装置还包括:
所述发送模块1720,用于向所述用户终端发送第四配置信令,所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
或,
接收模块1740,用于接收所述用户终端的恢复请求;所述发送模块1720,用于向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户终端将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或维持在所述仅上行链路非激活态。
在一种可能的实施例中,所述第四配置信令是RRC连接释放消息。
在一种可能的实施例中,所述装置还包括:
所述接收模块1740,用于接收所述用户设备发送的能力信息,所述能力信息包括所述用户设备支持所述仅上行链路非激活态。
在一种可能的实施例中,所述能力信息携带在用户终端能力上报信息中。
在一种可能的实施例中,所述装置还包括:
所述接收模块1740,用于接收所述用户设备发送的辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至所述非激活态。
图18示出了本申请一个示例性实施例提供的通信设备(用户终端或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个信令,处理器101用于执行该至少一个信令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条信令、至少一段程序、代码集或信令集,所述至少一条信令、所述至少一段程序、所述代码集或信令集由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的RRC状态的配置方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来信令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (83)

  1. 一种RRC状态的配置方法,其特征在于,所述方法包括:
    用户终端根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态。
  2. 根据权利要求1所述的方法,其特征在于,所述仅上行链路非激活态是非激活态的一种RRC子状态。
  3. 根据权利要求1所述的方法,其特征在于,所述仅上行链路非激活态仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述用户终端在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
    所述用户终端接收所述网络设备发送的恢复消息;
    所述用户终端根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态仅上行链路非激活态转移至所述连接态后,接收所述网络设备发送的下行数据;
    其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
  5. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述用户终端在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
    所述用户终端接收所述网络设备发送的恢复消息,所述恢复消息携带有下行数据;
    其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
  6. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述用户终端在所述仅上行链路非激活态下取消或者不使用接入网通知区域更新RNAU。
  7. 根据权利要求6所述的方法,其特征在于,所述用户终端在所述仅上行链路非激活态下取消无线接入网通知区域更新RNAU,包括:
    所述用户终端在所述仅上行链路非激活态下取消或者不使用周期性的RNAU。
  8. 根据权利要求6所述的方法,其特征在于,所述用户终端在所述仅上行链路非激活态下取消无线接入网通知区域更新RNAU,包括:
    所述用户终端在所述仅上行链路非激活态下取消或者不使用无线接入网通知区域RNA变更触发的RNAU。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述用户终端在所述仅上行链路非激活态下向所述网络设备发送恢复请求,所述恢复请求用于被所述网络设备确定所述用户终端所处的RNA。
  10. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述用户终端在所述仅上行链路非激活态下向第一网络设备发送恢复请求;
    所述用户终端接收所述第一网络设备分配的非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述用户终端在切换至所述第二网络设备后,接收所述第二网络设备发送的下行数据,所述下行数据是所述第二网络设备根据所述非激活态无线网络标识从所述第一网络设备获取到的。
  12. 根据权利要求2所述的方法,其特征在于,所述用户终端根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态,包括:
    所述用户设备接收所述网络设备发送的第一配置信令,根据所述第一配置信令将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:;
    所述用户终端接收所述网络设备发送的第二配置信令;
    所述用户终端根据所述第二配置信令将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
  14. 根据权利要求12所述的方法,其特征在于,所述第一配置信令是RRC消息,媒体接入控制控制单元MAC CE或下行控制信息DCI。
  15. 根据权利要求13所述的方法,其特征在于,所述第二配置信令是RRC消息,媒体接入控制控制单元MAC CE或下行控制信息DCI。
  16. 根据权利要求3所述的方法,其特征在于,所述用户终端根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态,包括:
    所述用户终端接收网络设备发送的第三配置信令,根据所述第三配置信令将所述RRC状态从连接态切换至所述仅上行链路非激活态。
  17. 根据权利要求15所述的方法,其特征在于,所述第三配置信令是RRC连接释放消息。
  18. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述用户终端接收所述网络设备发送的第四配置信令;所述用户终端根据所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
    或,
    所述用户终端向所述网络设备发送恢复请求;所述用户终端接收所述网络设备发送的恢复消息;所述用户终端根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或者将所述RRC状态维持在所述仅上行链路非激活态。
  19. 根据权利要求18所述的方法,其特征在于,所述第四配置信令是RRC 连接释放消息。
  20. 根据权利要求1至19任一所述的方法,其特征在于,所述方法还包括:
    所述用户设备向所述网络设备发送用户终端能力上报信息,所述用户终端能力上报信息用于指示所述用户设备支持所述仅上行链路非激活态。
  21. 根据权利要求1至20任一所述的方法,其特征在于,所述方法还包括:
    所述用户设备向所述网络设备发送辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至非激活态。
  22. 一种RRC状态的配置方法,其特征在于,所述方法包括:
    网络设备配置用户终端将无线资源控制RRC状态设置为仅上行链路非激活态。
  23. 根据权利要求22所述的方法,其特征在于,所述仅上行链路非激活态是非激活态的一种RRC子状态。
  24. 根据权利要求22所述的方法,其特征在于,所述仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
  25. 根据权利要求22至24任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述用户终端的下行数据到达时,缓存所述下行数据;
    所述网络设备接收所述用户终端的恢复请求;
    所述网络设备向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户设备将所述RRC状态从所述仅上行链路非激活态转移至所述连接态;
    所述网络设备向所述用户设备发送所述下行数据。
  26. 根据权利要求22至24任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述用户终端的下行数据到达时,缓存所述下行数据;
    所述网络设备接收所述用户终端的恢复请求;
    所述网络设备向所述用户终端发送恢复消息,所述恢复消息携带有所述下行数据。
  27. 根据权利要求22至24任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述用户终端的恢复请求;
    所述网络设备根据所述恢复请求确定所述用户终端所处的无线接入网通知区域RAN。
  28. 根据权利要求22至24任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述用户终端的恢复请求;
    所述网络设备向所述用户终端分配非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第二网络设备发送的所述非激活态无线网络标识,根据所述非激活态无线网络标识向所述第二网络设备同步所述用户终端的上下文和缓存的下行数据中的至少一种。
  30. 根据权利要求23所述的方法,其特征在于,所述网络设备配置用户终端将无线资源控制RRC状态设置为仅上行链路非激活态,包括:
    所述网络设备向所述用户终端发送第一配置信令,所述第一配置信令用于指示所述用户终端将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:;
    所述网络设备向所述用户终端发送第二配置信令,所述第二配置信令用于 指示所述用户终端将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
  32. 根据权利要求30所述的方法,其特征在于,所述第一配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  33. 根据权利要求31所述的方法,其特征在于,所述第二配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  34. 根据权利要求24所述的方法,其特征在于,所述网络设备配置用户终端将无线资源控制RRC状态设置为仅上行链路非激活态,包括:
    所述网络设备向所述用户终端发送第三配置信令,所述第三配置信令用于指示所述用户终端将所述RRC状态从连接态切换至所述仅上行链路非激活态。
  35. 根据权利要求34所述的方法,其特征在于,所述第三配置信令是RRC连接释放消息。
  36. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述用户终端发送第四配置信令,所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
    或,
    所述网络设备接收所述用户终端的恢复请求;所述网络设备向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户终端将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或将所述RRC状态维持在所述仅上行链路非激活态。
  37. 根据权利要求36所述的方法,其特征在于,所述第四配置信令是RRC连接释放消息。
  38. 根据权利要求22至37任一所述的方法,其特征在于,所述方法还包 括:
    所述网络设备接收所述用户设备发送的能力信息,所述能力信息包括所述用户设备支持所述仅上行链路非激活态。
  39. 根据权利要求38所述的方法,其特征在于,所述能力信息携带在用户终端能力上报信息中。
  40. 根据权利要求22至39任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述用户设备发送的辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至所述非激活态。
  41. 一种RRC状态的配置装置,其特征在于,所述装置包括:
    处理模块,用于根据网络设备的配置,将无线资源控制RRC状态设置为仅上行链路非激活态。
  42. 根据权利要求41所述的装置,其特征在于,所述仅上行链路非激活态是非激活态的一种RRC子状态。
  43. 根据权利要求41所述的装置,其特征在于,所述仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
  44. 根据权利要求41至43任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
    接收模块,用于接收所述网络设备发送的恢复消息;
    所述接收模块,还用于根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态转移至所述连接态后,接收所述网络设备发送的下行数据;
    其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
  45. 根据权利要求41至43任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在所述仅上行链路非激活态下向所述网络设备发送恢复请求;
    接收模块,用于接收所述网络设备发送的恢复消息,所述恢复消息携带有下行数据;
    其中,所述下行数据是所述网络设备在收到所述恢复请求之前缓存的。
  46. 根据权利要求41至43任一所述的装置,其特征在于,
    所述处理模块,还用于在所述仅上行链路非激活态下取消或不使用接入网通知区域更新RNAU。
  47. 根据权利要求46所述的装置,其特征在于,所述处理模块,还用于在所述仅上行链路非激活态下取消或不使用周期性的RNAU。
  48. 根据权利要求46所述的装置,其特征在于,所述处理模块,还用于在所述仅上行链路非激活态下取消或不使用无线接入网通知区域RNA变更触发的RNAU。
  49. 根据权利要求46所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述网络设备发送恢复请求,所述恢复请求用于被所述网络设备确定所述用户终端所处的RNA。
  50. 根据权利要求41至43任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向第一网络设备发送恢复请求;
    接收模块,用于接收所述第一网络设备分配的非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
  51. 根据权利要求50所述的装置,其特征在于,
    所述接收模块,还用于在切换至所述第二网络设备后,接收所述第二网络设备发送的下行数据,所述下行数据是所述第二网络设备根据所述非激活态无线网络标识从所述第一网络设备获取到的。
  52. 根据权利要求42所述的装置,其特征在于,
    所述接收模块,还用于接收所述网络设备发送的第一配置信令,根据所述第一配置信令将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
  53. 根据权利要求52所述的装置,其特征在于,所述装置还包括:;
    接收模块,还用于接收所述网络设备发送的第二配置信令;
    所述处理模块,还用于根据所述第二配置信令将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
  54. 根据权利要求52所述的装置,其特征在于,所述第一配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  55. 根据权利要求53所述的装置,其特征在于,所述第二配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  56. 根据权利要求43所述的装置,其特征在于,
    所述接收模块,用于接收网络设备发送的第三配置信令;
    所述处理模块,用于根据所述第三配置信令将所述RRC状态从连接态切换至所述仅上行链路非激活态。
  57. 根据权利要求55所述的装置,其特征在于,所述第三配置信令是RRC连接释放消息。
  58. 根据权利要求42或43所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述网络设备发送的第四配置信令;所述处理模块,用于根据所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
    或,
    发送模块,用于向网络设备发送恢复请求;所述接收模块,用于接收所述网络设备发送的恢复消息;所述处理模块,用于根据所述恢复消息将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或维持在所述仅上行链路非激活态。
  59. 根据权利要求58所述的装置,其特征在于,所述第四配置信令是RRC连接释放消息。
  60. 根据权利要求41至59任一所述的装置,其特征在于,所述装置还包括:
    所述发送模块,用于向所述网络设备发送用户终端能力上报信息,所述用户终端能力上报信息用于指示所述用户设备支持所述仅上行链路非激活态。
  61. 根据权利要求41至60任一所述的装置,其特征在于,所述装置还包括:
    所述发送模块,用于向所述网络设备发送辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至所述非激活态。
  62. 一种RRC状态的配置装置,其特征在于,所述装置包括:
    发送模块,用于配置用户终端将无线资源控制RRC状态设置为仅上行链路非激活态。
  63. 根据权利要求62所述的装置,其特征在于,所述仅上行链路非激活态是非激活态的一种RRC子状态。
  64. 根据权利要求62所述的装置,其特征在于,所述仅上行链路非激活态是与非激活态独立运行的一种RRC状态。
  65. 根据权利要求62至64任一所述的装置,其特征在于,所述装置还包括:
    存储模块,用于在所述用户终端的下行数据到达时,缓存所述下行数据;
    接收模块,用于接收所述用户终端的恢复请求;
    所述发送模块,用于向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户设备将所述RRC状态从所述仅上行链路非激活态转移至所述连接态;
    所述发送模块,用于向所述用户设备发送所述下行数据。
  66. 根据权利要求62至64任一所述的装置,其特征在于,所述装置还包括:
    存储模块,用于在所述用户终端的下行数据到达时,缓存所述下行数据;
    接收模块,用于接收所述用户终端的恢复请求;
    所述发送模块,用于向所述用户终端发送恢复消息,所述恢复消息携带有所述下行数据。
  67. 根据权利要求62至64任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述用户终端的恢复请求;
    处理模块,用于根据所述恢复请求确定所述用户终端所处的无线接入网通知区域RAN。
  68. 根据权利要求62至64任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述用户终端的恢复请求;
    所述发送模块,用于向所述用户终端分配非激活态无线网络标识,所述非激活态无线网络标识用于所述用户设备在切换至第二网络设备后的路由。
  69. 根据权利要求68所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第二网络设备发送的所述非激活态无线网络标识;
    所述发送模块,用于根据所述非激活态无线网络标识向所述第二网络设备同步所述用户终端的上下文和缓存的下行数据中的至少一种。
  70. 根据权利要求63所述的装置,其特征在于,
    所述发送模块,用于向所述用户终端发送第一配置信令,所述第一配置信令用于指示所述用户终端将所述RRC状态从非激活态切换至所述仅上行链路非激活态。
  71. 根据权利要求70所述的装置,其特征在于,
    所述发送模块,用于向所述用户终端发送第二配置信令,所述第二配置信令用于指示所述用户终端将所述RRC状态从所述仅上行链路非激活态切换至所述非激活态。
  72. 根据权利要求70所述的装置,其特征在于,所述第一配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  73. 根据权利要求71所述的装置,其特征在于,所述第二配置信令是RRC消息、媒体接入控制控制单元MAC CE或下行控制信息DCI。
  74. 根据权利要求64所述的装置,其特征在于,所述发送模块,用于向所述用户终端发送第三配置信令,所述第三配置信令用于指示所述用户终端将所述RRC状态从连接态切换至所述仅上行链路非激活态。
  75. 根据权利要求74所述的装置,其特征在于,所述第三配置信令是RRC连接释放消息。
  76. 根据权利要求63或64所述的装置,其特征在于,所述装置还包括:
    所述发送模块,用于向所述用户终端发送第四配置信令,所述第四配置信令将所述RRC状态从所述仅上行链路非激活态切换至空闲态;
    或,
    接收模块,用于接收所述用户终端的恢复请求;所述发送模块,用于向所述用户终端发送恢复消息,所述恢复消息用于指示所述用户终端将所述RRC状态从所述仅上行链路非激活态转移至所述连接态,或维持在所述仅上行链路非激活态。
  77. 根据权利要求76所述的装置,其特征在于,所述第四配置信令是RRC连接释放消息。
  78. 根据权利要求62至77任一所述的装置,其特征在于,所述装置还包括:
    所述接收模块,用于接收所述用户设备发送的能力信息,所述能力信息包括所述用户设备支持所述仅上行链路非激活态。
  79. 根据权利要求78所述的装置,其特征在于,所述能力信息携带在用户终端能力上报信息中。
  80. 根据权利要求62至79任一所述的装置,其特征在于,所述装置还包括:
    所述接收模块,用于接收所述用户设备发送的辅助信息,所述辅助信息用于表示所述用户终端期望切换至所述仅上行链路非激活态,或者,期望切换至所述非激活态。
  81. 一种用户终端,其特征在于,所述用户终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行信令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行信令以实现如权利要求1 至21任一所述的RRC状态的配置方法。
  82. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行信令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行信令以实现如权利要求22至40任一所述的RRC状态的配置方法。
  83. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行信令,所述可执行信令由处理器加载并执行以实现如权利要求1至40任一所述的RRC状态的配置方法。
PCT/CN2020/083391 2020-04-04 2020-04-04 Rrc状态设置方法、装置、通信设备及存储介质 WO2021196249A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000670.7A CN111527774B (zh) 2020-04-04 2020-04-04 Rrc状态设置方法、装置、通信设备及存储介质
PCT/CN2020/083391 WO2021196249A1 (zh) 2020-04-04 2020-04-04 Rrc状态设置方法、装置、通信设备及存储介质
US17/916,385 US20230156594A1 (en) 2020-04-04 2020-04-04 Method and apparatus for configuring rrc state, communication device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083391 WO2021196249A1 (zh) 2020-04-04 2020-04-04 Rrc状态设置方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021196249A1 true WO2021196249A1 (zh) 2021-10-07

Family

ID=71910090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083391 WO2021196249A1 (zh) 2020-04-04 2020-04-04 Rrc状态设置方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230156594A1 (zh)
CN (1) CN111527774B (zh)
WO (1) WO2021196249A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061885A1 (zh) * 2020-09-28 2022-03-31 Oppo广东移动通信有限公司 数据传输方法、装置、终端设备和存储介质
CN114449687A (zh) * 2020-10-31 2022-05-06 华为技术有限公司 一种通信方法及装置
CN114980281A (zh) * 2021-02-22 2022-08-30 维沃移动通信有限公司 终端状态的控制方法、装置及终端
CN114980278A (zh) * 2021-02-22 2022-08-30 维沃移动通信有限公司 通信设备的工作方法、装置及通信设备
WO2023000296A1 (zh) * 2021-07-23 2023-01-26 Oppo广东移动通信有限公司 拒绝接收寻呼消息的控制方法、装置、设备及存储介质
CN117320125A (zh) * 2022-06-16 2023-12-29 华为技术有限公司 一种通信方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112871A1 (zh) * 2016-12-23 2018-06-28 富士通株式会社 数据发送/接收装置、方法以及通信系统
CN108616999A (zh) * 2017-01-04 2018-10-02 电信科学技术研究院 一种数据传输方法、装置及系统
CN109819487A (zh) * 2017-11-20 2019-05-28 电信科学技术研究院 一种连接管理方法及设备
US20200022044A1 (en) * 2017-01-29 2020-01-16 Lg Electronics Inc. Method for managing terminal context and device for supporting same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112871A1 (zh) * 2016-12-23 2018-06-28 富士通株式会社 数据发送/接收装置、方法以及通信系统
CN108616999A (zh) * 2017-01-04 2018-10-02 电信科学技术研究院 一种数据传输方法、装置及系统
US20200022044A1 (en) * 2017-01-29 2020-01-16 Lg Electronics Inc. Method for managing terminal context and device for supporting same
CN109819487A (zh) * 2017-11-20 2019-05-28 电信科学技术研究院 一种连接管理方法及设备

Also Published As

Publication number Publication date
US20230156594A1 (en) 2023-05-18
CN111527774A (zh) 2020-08-11
CN111527774B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2021196249A1 (zh) Rrc状态设置方法、装置、通信设备及存储介质
EP3386258B1 (en) Data sending method and apparatus
RU2578666C2 (ru) Уменьшение избыточной сигнализации при переходах между состояниями управления радиоресурсами (rrc)
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2020164613A1 (zh) 中继通信的方法和装置
US20220124859A1 (en) Data transmission method and apparatus, and communication device
US10887933B2 (en) Device-to-device communication method, terminal device, and network device
US20180027494A1 (en) Apparatus, system and method of neighbor awareness networking (nan) data link (ndl) power save
WO2020216133A1 (zh) 一种通信方法及设备
EP4266746A1 (en) Data transmission method and apparatus
WO2018233665A1 (zh) 一种信息交互方法、第一基站、第二基站和移动通信终端
WO2020024865A1 (zh) 一种会话对应关系的管理方法和终端设备
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2021000320A1 (zh) 一种数据传输方法及装置、网络设备、终端
CN110622578B (zh) 控制数据复制的方法及相关设备
WO2022183356A1 (zh) 一种定时器运行方法、终端设备和网络设备
WO2021213014A1 (zh) 一种通信方法及装置
WO2022006863A1 (zh) 无线通信方法、终端设备和网络设备
WO2023216935A1 (zh) 一种通信方法及设备
WO2023246544A1 (zh) 一种通信方法及装置
WO2022198597A1 (zh) 小区重选场景下的数据传输方法、装置、设备及存储介质
WO2022027638A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2023134332A1 (zh) 一种通信方法及系统
WO2023103958A1 (zh) 一种通信方法及装置
WO2022165752A1 (zh) 状态转换方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928641

Country of ref document: EP

Kind code of ref document: A1