WO2021196156A1 - Hinge sliders - Google Patents

Hinge sliders Download PDF

Info

Publication number
WO2021196156A1
WO2021196156A1 PCT/CN2020/083169 CN2020083169W WO2021196156A1 WO 2021196156 A1 WO2021196156 A1 WO 2021196156A1 CN 2020083169 W CN2020083169 W CN 2020083169W WO 2021196156 A1 WO2021196156 A1 WO 2021196156A1
Authority
WO
WIPO (PCT)
Prior art keywords
hinge
interaction
shaft
slider
hinge arm
Prior art date
Application number
PCT/CN2020/083169
Other languages
French (fr)
Inventor
Shuang-Kun ZHU
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to PCT/CN2020/083169 priority Critical patent/WO2021196156A1/en
Publication of WO2021196156A1 publication Critical patent/WO2021196156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/1604Arrangement or disposition of the entire apparatus
    • G03G21/1623Means to access the interior of the apparatus
    • G03G21/1628Clamshell type

Definitions

  • Printing devices can utilize scanning devices such as image scanner assembly (ISAs) to digitize physical documents.
  • ISAs image scanner assembly
  • a scanning device can be utilized to scan a physical document and generate a digital copy of the physical document.
  • the printing devices may utilize a mechanism to release the scanning device from the printing device to allow a user to perform functions on the printing device and/or scanning device.
  • Figure 1 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
  • Figure 2 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
  • Figure 3 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
  • Figure 4 illustrates an example of a system for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
  • a printing device can be a device that can deposit a print substance (e.g., toner, ink, etc. ) on to a print medium (e.g., paper, plastic, etc. ) to generate an image on the print medium.
  • a printing device can include an inkjet printing device that can generate images (e.g., text, photo, etc. ) on the print medium by depositing droplets of printing fluid (e.g., ink, etc. ) on to particular locations on the print medium.
  • the printing device can include a print engine that includes a print zone (e.g., location to deposit print substance, etc. ) and/or other devices (e.g., rollers, print substance reservoirs, etc.
  • the printing device can include a scanning device (e.g., automatic document feeder (ADF) , flat bed (FB) , etc. ) that can be positioned on top of the print engine to receive physical documents and generate digital images of the physical documents.
  • ADF automatic document feeder
  • FB flat bed
  • the scanning device can be coupled to the print engine to provide a single device with the functions of printing, copying, scanning, faxing, etc.
  • the scanning device can be coupled to a top portion of the print engine.
  • a hinge can be utilized between the scanning device and the print engine to allow a user to access of an interior of the print engine. In this way, a user can lift the scanning device, perform a maintenance function (e.g., remove a paper jam, add printing substance to a reservoir, etc. ) , and lower the scanning device back onto the print engine.
  • a hinge may allow the scanning device to drop freely onto the print engine from a relatively large angle, which can cause a loud sound when the scanning device makes contact with the print engine, cause injury to a user when a portion of the user is caught between the scanning device and the print engine, and/or can cause damage to either device when they make contact.
  • a hinge slider can include an interaction surface that can interact with a corresponding interaction surface of a hinge arm.
  • the hinge arm can be rotated on a shaft as the scanning device is lowered onto the print engine and apply more force on the interaction surface of the hinge slider until the hinge arm reaches a threshold rotational angle.
  • the hinge slider interaction surface releases from the corresponding interaction surface on the hinge arm such that the hinge slider interaction surface is no longer providing rotational resistance.
  • the interaction surfaces can include alternating flat surfaces and helical surfaces to allow the helical surfaces to slide past the flat surfaces such that the interaction surfaces release when the hinge arm is rotated past a threshold rotational angle.
  • Figure 1 illustrates an example of a device 100 for a hinge assembly that includes a hinge slider 106, in accordance with the present disclosure, in accordance with the present disclosure.
  • the device 100 can be a hinge (e.g., horizontal hinge, etc. ) .
  • a hinge can include a movable joint or mechanism on which a door, gate, or lid swings as it opens and closes, or which connects linked objects.
  • the device 100 can be a hinge between a scanning device (e.g., ISA device, etc. ) and a print engine of a printing device.
  • a scanning device e.g., ISA device, etc.
  • the device 100 can be coupled to the scanning device on a first end and coupled to the print engine on a second end to allow the scanning device to rotate away from the print engine.
  • examples herein describe a device 100 that can be utilized in a printing device, the examples of this disclosure are not so limited.
  • the device 100 can be utilized within or on a plurality of other types of devices that utilize hinges.
  • the device 100 can include a shaft 102.
  • the shaft 102 can include a pin or cylindrical shaft.
  • the shaft 102 can be a cylindrical pin that can be coupled to a scanning device.
  • the shaft 102 can include a sleeve portion 118 that can be coupled to a protrusion 114.
  • the protrusion 114 can be a substantially flat portion that protrudes from the sleeve portion 118.
  • the protrusion 114 can include a shape that corresponds to a mounting surface of the scanning device or other type of device utilizing the device 100.
  • the protrusion 114 can include a concave or convex shape to fit within a corresponding concave or convex shape of a mounting surface.
  • the protrusion 114 can include an aperture 116.
  • the aperture 116 can be utilized to receive an attachment mechanism (e.g., screw, bolt, etc. ) that can pass through the aperture 116 and be coupled to a mounting surface.
  • the aperture 116 can be positioned at the mounting surface and a threaded bolt can pass through the aperture 116 and be threaded into a threaded aperture within the mounting surface.
  • an end of the shaft 102 can be positioned within an aperture of the mounting surface.
  • the protrusion 114 can be positioned on a first end of the shaft 102.
  • a second end of the shaft may not include additional protrusions and may be a cylindrical shape that can be positioned within an aperture to support the second end of the shaft 102.
  • the device 100 can include a hinge arm 104.
  • the hinge arm 104 includes a first end with a shaft 112 and a second end (e.g., opposite the first end, end coupled to the shaft 102, etc. ) with a first interaction surface.
  • the hinge arm 104 can include a first end that can include an aperture to receive the shaft 102. That is, the shaft 102 can be positioned through the aperture of the hinge arm 104 such that the hinge arm 104 is positioned in contact or close contact with the sleeve portion 118. In this way, the hinge arm 104 is able to rotate in a clockwise or counterclockwise direction around the shaft 102.
  • the hinge arm 104 can include a second end that can include a shaft 112.
  • the shaft 112 can be coupled within a rail of a second device when the shaft 102 is coupled to a first device.
  • the shaft 102 can be coupled to a scanning device and the shaft 112 can be coupled to a print engine such that the scanning device can rotate about the device 100.
  • the shaft 112 can be positioned within a rail such that movement of the shaft 112 within the rail rotates the first end of the hinge arm 104 positioned on the shaft 102.
  • the rotation of the hinge arm 104 on the shaft 102 can provide rotational resistance to a threshold rotational angle of the hinge arm 104 to prevent the device coupled to the shaft 102 from free falling on to the device coupled to the shaft 112 prior to the threshold rotational angle.
  • the device 100 can include a hinge slider 106.
  • the hinge slider 106 can be a separate element of the device 100.
  • the hinge arm 104 can be separate from the hinge slider 106.
  • the hinge slider 106 can include an aperture to receive the shaft 102.
  • the hinge arm 104 can be positioned on the shaft 102 as described herein.
  • the hinge slider 106 can be positioned on the shaft 102 such that the hinge slider 106 is in contact with the hinge arm 104.
  • the hinge slider 106 includes a first side with a second interaction surface to engage with the first interaction surface (e.g., interaction surface of hinge arm 104, etc. ) and a second side with a spring surface (e.g., surface to receive spring force from a spring mechanism 108, etc. ) to interact with the spring mechanism 108.
  • the hinge arm 104 can include a first interaction surface that is directed toward the hinge slider 106 and the hinge slider 106 can include a second interaction surface that is directed toward the hinge arm 104.
  • the interaction between the first interaction surface and the second interaction surface can provide a rotational resistance on the hinge arm 104 up to a threshold rotational angle of the hinge arm 104.
  • the hinge slider 106 can provide altering resistance to the hinge arm 104 as the hinge arm 104 is rotated to alter an angle between a first element coupled to the shaft 102 and a second element coupled to shaft 112.
  • altering resistance refers to different levels of resistance being provided for different angles of rotation for the hinge arm 104.
  • the resistance at a first point can be relatively greater than the resistance at a second point.
  • the first point can be when the element or scanning device is at a relatively larger distance from the print engine and the second point can be when the element or scanning device is at a relatively smaller distance from the print engine.
  • the altering resistance can be provided through the interaction surfaces of the hinge arm 104 and hinge slider 106 that include alternating flat and helical surfaces that apply different resistance on the hinge arm 104 as the hinge arm 104 rotates.
  • the device 100 can include a spring mechanism 108.
  • the spring mechanism 108 can be a spring like device that can provide a spring resistance on a surface of the hinge slider 106.
  • the spring mechanism 108 can be a spring with an aperture that can receive the shaft 102.
  • the spring mechanism 108 can be positioned on the shaft 102 once the hinge arm 104 and/or hinge slider 106 to provide a spring force on the hinge slider 106 such that the first interaction surface of the hinge arm 104 is forced into the second interaction surface of the hinge slider 106.
  • the device 100 can include a pin 110 positioned through the shaft 102 to capture the spring mechanism 108, hinge slider 106, and/or hinge arm 104 on the shaft 102.
  • the shaft 102 can include a first aperture (e.g., aperture 116, etc. ) to couple the shaft 102 to a scanning device on a first end and includes a second aperture (e.g., pin aperture, etc. ) to receive a pin 110 to capture the spring mechanism 108, hinge slider 106, and hinge arm 104 on the shaft 102.
  • a first aperture e.g., aperture 116, etc.
  • a second aperture e.g., pin aperture, etc.
  • the spring force provided by the spring mechanism 108 can provide resistance such that when a rotation of the hinge arm 104 occurs, the force provided by the spring mechanism 108 can create rotational resistance on the hinge arm 104 through the interaction of the first interaction surface and the second interaction surface.
  • the spring mechanism 108 can provide a force on the hinge slider 106 to increase an interaction force between the first interaction surface of the hinge arm 104 and the second interaction surface of the hinge slider 106.
  • the device 100 can be a hinge that provides a particular level of resistance based on the rotational angle of the hinge arm 104. In this way, a relatively greater level of resistance can be provided at a first angle rotation of the hinge arm 104 and a relatively lower level of resistance can be provided at a second angle of rotation by the hinge arm 104.
  • the device 100 can be utilized as a hinge that includes a device that rotates opposite to gravity without allowing gravity to increase a speed of the device as it rotates with gravity.
  • the device 100 can be utilized by a printing device that includes a scanning device that is moveable away from the print engine. In this example, the scanning device can be moved away from the print engine that is positioned below the scanning device.
  • the force of gravity may act to force the scanning device back on to the print engine. Without resistance on the force of gravity, the scanning device may hit the print engine with a relatively large force, which can create a large noise, injure a user, and/or damage to the devices.
  • the device 100 can be utilized to lower the interaction force between the scanning device and the print engine.
  • Figure 2 illustrates an example of a device 200 for a hinge assembly that includes a hinge slider 206, in accordance with the present disclosure.
  • the device 200 can be the same or similar device as device 100 referenced in Figure 1.
  • the device 200 can include a shaft 202 that includes a sleeve portion 208 with a protrusion 214 and an aperture 216.
  • Figure 2 illustrates the hinge slider 206 and the hinge arm 204 when they are positioned on the shaft 202 on the right and the hinge slider 206 and the hinge arm 204 removed from the shaft 202 to illustrate the interaction surfaces 222, 224.
  • the shaft 202 can be positioned through an aperture 225 of the hinge arm 204 and through an aperture 227 of the hinge slider 206.
  • the interaction surface 222 includes alternating flat surfaces 226 and helical surfaces 228 surrounding an aperture 225 to receive the shaft 202 and the interaction surface 224 includes alternating flat surfaces 232 and helical surfaces 234 surrounding an aperture 227 to receive the shaft 202.
  • the hinge arm 204 can be positioned on the shaft 202 such that an interaction surface 222 of the hinge arm 204 is positioned away from the sleeve portion 208 and/or towards an interaction surface 224 of the hinge slider 206.
  • the hinge slider 206 can be positioned on the shaft 202 by inserting the shaft 202 through the aperture 227.
  • the interaction surface 224 of the hinge slide 206 can be directed toward the interaction surface 222 of the hinge arm 204 and/or toward the sleeve portion 208 of the shaft 202.
  • a spring mechanism 208 can be positioned between a pin 210 and a surface of the hinge slider 206 to provide pressure on the hinge slider 206 in the direction of the hinge arm 204. In this way, the interaction surface 222 can interact with the interaction surface 224 under the applied spring pressure of the spring mechanism 208.
  • the interaction surface 222 (e.g., first interaction surface, etc. ) can include flat portions 226 and helical portions 228.
  • flat portions e.g., flat portions 226, flat portions 232, etc.
  • an interaction surface e.g., interaction surface 222, interaction surface 224, etc.
  • the flat portions of an interaction surface can be a raised portion of the surface with a relatively flat top portion.
  • the interaction surface 222 can include helical portions 226.
  • a helical portion e.g., helical portions 226, helical portions 234, etc.
  • the helical portions 228 can include a helical shape that beings at a low point and increases in height as it moves toward the top portions.
  • the interaction surface 222 can include alternating flat portions 226 and helical portions 228. In some examples, the interaction surface 222 can alternate between flat drops and helical increases.
  • the interaction surface 222 can include a first flat portion of the interaction surface 222.
  • the interaction surface can include a flat drop to a first helical portion when moving in a clockwise direction.
  • a flat drop can include a relatively straight drop from a first level to a second level with a relatively large slope.
  • the first helical portion can include a helical increase to a second flat portion.
  • a helical increase can be a sloped increase from a first level to a second level with a relatively small slope (e.g., smaller than the relatively large slope of the flat drop) or helical slop (e.g., exponential increasing, etc. ) .
  • the second flat portion can include a flat drop portion that leads to a second helical portion, which can include a helical increase back to the first flat portion.
  • the interaction surface 222 can include alternating flat portions 226 and helical portions 228.
  • the interaction surface 222 can include alternating flat drops and helical increases as described herein.
  • the interaction surface 224 of the hinge slider 206 can include alternating flat portions 232 and alternating helical portions 234 that can correspond to the alternating flat portions 226 and alternating helical portions 228.
  • the flat portions 232 of the hinge slider 206 can correspond to the shape of the helical portions 228 of the hinge arm 204.
  • the flat portions 226 of the hinge arm 204 can correspond to the helical portions 234 of the hinge slider 260. In this way, the interaction surface 224 of hinge slider 260 can be aligned with the interaction surface 222 of the hinge arm 204.
  • the device 200 can provide rotational resistance on the hinge arm 204 when the helical portion 234 of hinge slider 206 contacts the helical portion 228 of hinge arm 204.
  • the device 100 may not provide rotational resistance on the hinge arm 204 when the flat portions 226 of the hinge arm 204 interact with the flat portions 232 of the hinge slider 206.
  • Figure 2 illustrates when the device is not providing rotational resistance on the hinge arm 204 on the right side. That is, the hinge arm 204 is able to freely rotate without resistance provided by the hinge slider 206. This will be described further in reference to Figure 3.
  • Figure 3 illustrates an example of a device 300-1, 300-2 for a hinge assembly that includes a hinge slider 306-1, 306-2, in accordance with the present disclosure.
  • Figure 3 illustrates the device 300-1 in an engaged position and the device 300-2 in a disengaged position.
  • an engaged position is a position where the hinge slider 306-1 and spring mechanism 308-1 provide rotational resistance on the hinge arm 304-1.
  • a disengaged position is a position where the hinge slider 306-2 and spring mechanism 308-2 do not provide rotational resistance on the hinge arm 304-2.
  • the engaged interaction state allows the hinge slider 306-1 to provide resistance of rotation for the hinge arm 304-1 and the disengaged interaction state prevents the hinge slider 306-2 from providing resistance of rotation for the hinge arm 304-2.
  • the device 300-1 can include a shaft 302-1 that can receive a hinge arm 304-1, a hinge slider 306-1, and/or a spring mechanism 308-1.
  • Device 300-1 illustrates a hinge device in an engaged position.
  • the hinge arm 304-1 can include a shaft 312-1 that can be inserted into a channel that can rotate the hinge arm 304-1 in the direction of arrow 342-1.
  • the rotation of the hinge arm 304-1 can be a result of scanning device being lowered on top of a print engine as described herein.
  • rotation of the hinge arm 304-1 provides a first force (e.g., in the direction of arrow 325-1, etc.
  • the spring mechanism 308-1 can provide a second force (e.g., opposite the first force, opposite direction of arrow 325-1, etc. ) on the hinge slider 306-1 that is opposite to the first force applied by the hinge arm 304-1.
  • the rotation of the hinge arm 304-1 can force a top portion 326-1 to interact with a helical portion 334-1 and force the hinge slider 306-1 to move in the direction of arrow 325-1 and/or against the spring mechanism 308-1.
  • the spring mechanism 308-1 can provide a spring force in the opposite direction of arrow 325-1, which can allow the hinge slider 306-1 to provide a rotational force on the hinge arm 304-1 that prevents a portion of the force applied in the direction of arrow 342-1.
  • the top portion 326-1 of the hinge arm 304-1 can provide a force on the hinge slider 306-1 in the direction of arrow 325-1 and the spring mechanism can provide a force on the hinge slider 306-1 in the opposite direction of arrow 325-1.
  • the hinge arm 304-1 can reach a threshold angle when moved in the direction of 342-1 and disengage from the hinge slider 306-1.
  • the threshold angle can be based on an acceptable angle of free fall for a scanning device on a print engine.
  • the threshold angle can be adjusted based on a number of factors. For example, the threshold angle can be adjusted based on an angle between the helical portions and top portions of the interaction surfaces of the hinge arm 304-1 and/or the hinge slider 306-1, a spring strength of the spring mechanism 308-1, a quantity of top portions and helical portions on the interaction surfaces, and/or a diameter of the interaction surfaces, among other features.
  • Device 300-2 can be the same or similar device as device 300-1.
  • the device 300-2 can include a shaft 302-2 that can hold a hinge arm 304-2 with a shaft 312-2, a hinge slider 306-2, and/or a spring mechanism 308-2 that is captured by a pin protruding through the shaft 302-2.
  • Device 300-2 illustrates a disengaged position. As described herein, a disengaged position can occur when a top portion 326-2 is not positioned within a corresponding helical portion 334-2 or when a top portion of the hinge arm interacts with a top portion of the hinge slider 306-2.
  • the hinge arm 304-2 is capable of rotating in the direction of arrow 342-2 without rotational resistance from the hinge slider 306-2 and/or the spring mechanism 308-2.
  • the device 300-2 illustrates when the hinge slider 306-2 is at a maximum distance in the direction of arrow 325-2.
  • Figure 4 illustrates an example of a system 450 for a hinge assembly that includes a hinge slider 406, in accordance with the present disclosure.
  • the system 450 can illustrate a specific example for the device 400 described herein (e.g., device 100, device 200, device 300-1, 300-2, etc. ) . That is, the system 450 illustrates a printing system that can include a scanning device 456 and a print engine 458.
  • the system 450 can utilize the device 400 to couple the scanning device 456 to the print engine 458 to allow the scanning device 456 to be rotated in an upward direction away from the print engine 458.
  • the scanning device 456 may be raised from a surface of the print engine 458 to perform particular functions.
  • the scanning device 456 may be raised from the surface of the print engine to perform maintenance on the print engine 458.
  • gravity can affect the fall rate of the scanning device 456 when it moves in the direction of the print engine 458.
  • the device 400 can provide rotational resistance to provide resistance on the scanning device 456 as it is lowered onto the print engine 458.
  • the device 400 can include a shaft 402 that can be coupled to a bracket 472 of the scanning device.
  • the bracket 472 can include an aperture 474 to receive an end of the shaft 402.
  • the bracket 472 can include a mounting surface to receive a protrusion 414 of the shaft 402.
  • the protrusion 414 can include an aperture (e.g., aperture 116 as referenced in Figure 1, aperture 216 as referenced in Figure 2, etc. ) that can receive a threaded bolt 468 that can physically couple the protrusion 414 to the bracket 472.
  • the shaft 402 may not rotate and/or allow the hinge arm 404 to rotate along the shaft 402.
  • the hinge arm 404 can rotate in the direction of arrow 454 when a shaft 412 of the hinge arm 404 moves within a channel 462 in the direction of arrow 464.
  • the shaft 412 of the hinge arm 404 can move in the direction of arrow 464, which can rotate the hinge arm 404 in the direction of arrow 454 to lower the scanning device 456 on to the print engine 458.
  • the device 400 can include a hinge slider 406 and a spring mechanism 408 that can apply rotational resistance on the hinge arm 404 to resist the rotation in the direction of arrow 454 which can slow the movement of the shaft 412 in the direction of arrow 464.
  • a first interaction surface of the hinge arm 404 can interact with a corresponding second interaction surface of the hinge slider 406 to provide rotational resistance to a threshold rotation angle of the hinge arm 404 as described herein. In this way, the scanning device 456 can be lowered with resistance to slow the rate of falling up to a threshold angle or threshold distance between the scanning device 456 and the print engine 458.

Abstract

A hinge, comprising: a hinge arm (104) that includes a first end with a shaft (112) and a second end with a first interaction surface; and a hinge slider (106) that includes a first side with a second interaction surface to engage with the first interaction surface and a second side with a spring surface to interact with a spring mechanism (108), wherein rotation of the hinge arm (104) alters a position of the hinge slider (106) to alter an interaction state between the first interaction surface and the second interaction surface from an engaged interaction state to a disengaged interaction state. It also provides a system (450) which includes the said hinge.

Description

HINGE SLIDERS BACKGROUND
Printing devices can utilize scanning devices such as image scanner assembly (ISAs) to digitize physical documents. For example, a scanning device can be utilized to scan a physical document and generate a digital copy of the physical document. In some examples, the printing devices may utilize a mechanism to release the scanning device from the printing device to allow a user to perform functions on the printing device and/or scanning device.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
Figure 2 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
Figure 3 illustrates an example of a device for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
Figure 4 illustrates an example of a system for a hinge assembly that includes a hinge slider, in accordance with the present disclosure.
DETAILED DESCRIPTION
A printing device can be a device that can deposit a print substance (e.g., toner, ink, etc. ) on to a print medium (e.g., paper, plastic, etc. ) to generate an image on the print medium. For example, a printing device can include an inkjet printing device that can generate images (e.g., text, photo, etc. ) on the print medium by depositing droplets of printing fluid (e.g., ink, etc. ) on to particular locations on the print medium. In some examples, the printing device can include a print engine that includes a print zone (e.g., location to deposit print substance, etc. ) and/or other devices (e.g., rollers, print substance reservoirs, etc. ) associated with generating an image on the print medium. In these examples, the printing device can include a scanning device (e.g., automatic document feeder (ADF) , flat bed (FB) , etc. ) that can be positioned on top of the print engine to receive physical documents and generate digital images of the physical documents.
In some examples, the scanning device can be coupled to the print engine to provide a single device with the functions of printing, copying, scanning, faxing, etc. In some examples, the scanning device can be coupled to a top portion of the print engine. In these examples, a hinge can be utilized between the scanning device and the print engine to allow a user to access of an interior of the print engine. In this way, a user can lift the scanning device, perform a maintenance function (e.g., remove a paper jam, add printing substance to a reservoir, etc. ) , and lower the scanning device back onto the print engine. In previous systems and methods, a hinge may allow the scanning device to drop freely onto the print engine from a relatively large angle, which can cause a loud sound when the scanning device makes contact with the print engine, cause injury to a user when a portion of the user is caught between the scanning device and the print engine, and/or can cause damage to either device when they make contact.
The present disclosure relates to hinge assemblies that include hinge sliders that can be utilized to provide rotational resistance when the scanning device is being lowered onto the print engine until the scanning device reaches a threshold angle. For example, a hinge slider can include an interaction surface that can interact with a corresponding interaction surface of a  hinge arm. In this example, the hinge arm can be rotated on a shaft as the scanning device is lowered onto the print engine and apply more force on the interaction surface of the hinge slider until the hinge arm reaches a threshold rotational angle. In this example, the hinge slider interaction surface releases from the corresponding interaction surface on the hinge arm such that the hinge slider interaction surface is no longer providing rotational resistance. In some examples, the interaction surfaces can include alternating flat surfaces and helical surfaces to allow the helical surfaces to slide past the flat surfaces such that the interaction surfaces release when the hinge arm is rotated past a threshold rotational angle.
Figure 1 illustrates an example of a device 100 for a hinge assembly that includes a hinge slider 106, in accordance with the present disclosure, in accordance with the present disclosure. In some examples, the device 100 can be a hinge (e.g., horizontal hinge, etc. ) . As used herein, a hinge can include a movable joint or mechanism on which a door, gate, or lid swings as it opens and closes, or which connects linked objects. For example, the device 100 can be a hinge between a scanning device (e.g., ISA device, etc. ) and a print engine of a printing device. In some examples, the device 100 can be coupled to the scanning device on a first end and coupled to the print engine on a second end to allow the scanning device to rotate away from the print engine. Although examples herein describe a device 100 that can be utilized in a printing device, the examples of this disclosure are not so limited. For example, the device 100 can be utilized within or on a plurality of other types of devices that utilize hinges.
In some examples, the device 100 can include a shaft 102. In some examples, the shaft 102 can include a pin or cylindrical shaft. For example, the shaft 102 can be a cylindrical pin that can be coupled to a scanning device. In some examples, the shaft 102 can include a sleeve portion 118 that can be coupled to a protrusion 114. In some examples, the protrusion 114 can be a substantially flat portion that protrudes from the sleeve portion 118. In other examples, the protrusion 114 can include a shape that corresponds to a mounting surface of the scanning device or other type of device utilizing the  device 100. For example, the protrusion 114 can include a concave or convex shape to fit within a corresponding concave or convex shape of a mounting surface.
In some examples, the protrusion 114 can include an aperture 116. In some examples, the aperture 116 can be utilized to receive an attachment mechanism (e.g., screw, bolt, etc. ) that can pass through the aperture 116 and be coupled to a mounting surface. For example, the aperture 116 can be positioned at the mounting surface and a threaded bolt can pass through the aperture 116 and be threaded into a threaded aperture within the mounting surface. In some examples, an end of the shaft 102 can be positioned within an aperture of the mounting surface. For example, the protrusion 114 can be positioned on a first end of the shaft 102. In this example, a second end of the shaft may not include additional protrusions and may be a cylindrical shape that can be positioned within an aperture to support the second end of the shaft 102.
In some examples, the device 100 can include a hinge arm 104. In one example, the hinge arm 104 includes a first end with a shaft 112 and a second end (e.g., opposite the first end, end coupled to the shaft 102, etc. ) with a first interaction surface. In some examples, the hinge arm 104 can include a first end that can include an aperture to receive the shaft 102. That is, the shaft 102 can be positioned through the aperture of the hinge arm 104 such that the hinge arm 104 is positioned in contact or close contact with the sleeve portion 118. In this way, the hinge arm 104 is able to rotate in a clockwise or counterclockwise direction around the shaft 102. In some examples, the hinge arm 104 can include a second end that can include a shaft 112. In some examples, the shaft 112 can be coupled within a rail of a second device when the shaft 102 is coupled to a first device. For example, the shaft 102 can be coupled to a scanning device and the shaft 112 can be coupled to a print engine such that the scanning device can rotate about the device 100. In some examples, the shaft 112 can be positioned within a rail such that movement of the shaft 112 within the rail rotates the first end of the hinge arm 104 positioned on the shaft 102. As described further herein, the rotation of the hinge arm 104  on the shaft 102 can provide rotational resistance to a threshold rotational angle of the hinge arm 104 to prevent the device coupled to the shaft 102 from free falling on to the device coupled to the shaft 112 prior to the threshold rotational angle.
In some examples, the device 100 can include a hinge slider 106. In some examples, the hinge slider 106 can be a separate element of the device 100. For example, the hinge arm 104 can be separate from the hinge slider 106. In some examples, the hinge slider 106 can include an aperture to receive the shaft 102. For example, the hinge arm 104 can be positioned on the shaft 102 as described herein. In this example, the hinge slider 106 can be positioned on the shaft 102 such that the hinge slider 106 is in contact with the hinge arm 104. In one example, the hinge slider 106 includes a first side with a second interaction surface to engage with the first interaction surface (e.g., interaction surface of hinge arm 104, etc. ) and a second side with a spring surface (e.g., surface to receive spring force from a spring mechanism 108, etc. ) to interact with the spring mechanism 108.
As described further herein, the hinge arm 104 can include a first interaction surface that is directed toward the hinge slider 106 and the hinge slider 106 can include a second interaction surface that is directed toward the hinge arm 104. In some examples, the interaction between the first interaction surface and the second interaction surface can provide a rotational resistance on the hinge arm 104 up to a threshold rotational angle of the hinge arm 104. In some examples, the hinge slider 106 can provide altering resistance to the hinge arm 104 as the hinge arm 104 is rotated to alter an angle between a first element coupled to the shaft 102 and a second element coupled to shaft 112. As used herein, altering resistance refers to different levels of resistance being provided for different angles of rotation for the hinge arm 104. For example, the resistance at a first point can be relatively greater than the resistance at a second point. In this example, the first point can be when the element or scanning device is at a relatively larger distance from the print engine and the second point can be when the element or scanning device is at a relatively smaller distance from the print engine. In some examples, the  altering resistance can be provided through the interaction surfaces of the hinge arm 104 and hinge slider 106 that include alternating flat and helical surfaces that apply different resistance on the hinge arm 104 as the hinge arm 104 rotates.
In some examples, the device 100 can include a spring mechanism 108. As used herein, the spring mechanism 108 can be a spring like device that can provide a spring resistance on a surface of the hinge slider 106. For example, the spring mechanism 108 can be a spring with an aperture that can receive the shaft 102. In this example, the spring mechanism 108 can be positioned on the shaft 102 once the hinge arm 104 and/or hinge slider 106 to provide a spring force on the hinge slider 106 such that the first interaction surface of the hinge arm 104 is forced into the second interaction surface of the hinge slider 106. In some examples, the device 100 can include a pin 110 positioned through the shaft 102 to capture the spring mechanism 108, hinge slider 106, and/or hinge arm 104 on the shaft 102. Thus, in some examples, the shaft 102 can include a first aperture (e.g., aperture 116, etc. ) to couple the shaft 102 to a scanning device on a first end and includes a second aperture (e.g., pin aperture, etc. ) to receive a pin 110 to capture the spring mechanism 108, hinge slider 106, and hinge arm 104 on the shaft 102.
As discussed further herein, the spring force provided by the spring mechanism 108 can provide resistance such that when a rotation of the hinge arm 104 occurs, the force provided by the spring mechanism 108 can create rotational resistance on the hinge arm 104 through the interaction of the first interaction surface and the second interaction surface. In some examples, the spring mechanism 108 can provide a force on the hinge slider 106 to increase an interaction force between the first interaction surface of the hinge arm 104 and the second interaction surface of the hinge slider 106.
In some examples, the device 100 can be a hinge that provides a particular level of resistance based on the rotational angle of the hinge arm 104. In this way, a relatively greater level of resistance can be provided at a first angle rotation of the hinge arm 104 and a relatively lower level of resistance can be provided at a second angle of rotation by the hinge arm  104. Thus, the device 100 can be utilized as a hinge that includes a device that rotates opposite to gravity without allowing gravity to increase a speed of the device as it rotates with gravity. For example, the device 100 can be utilized by a printing device that includes a scanning device that is moveable away from the print engine. In this example, the scanning device can be moved away from the print engine that is positioned below the scanning device. In this example, the force of gravity may act to force the scanning device back on to the print engine. Without resistance on the force of gravity, the scanning device may hit the print engine with a relatively large force, which can create a large noise, injure a user, and/or damage to the devices. Thus, the device 100 can be utilized to lower the interaction force between the scanning device and the print engine.
Figure 2 illustrates an example of a device 200 for a hinge assembly that includes a hinge slider 206, in accordance with the present disclosure. In some examples, the device 200 can be the same or similar device as device 100 referenced in Figure 1. For example, the device 200 can include a shaft 202 that includes a sleeve portion 208 with a protrusion 214 and an aperture 216. Figure 2 illustrates the hinge slider 206 and the hinge arm 204 when they are positioned on the shaft 202 on the right and the hinge slider 206 and the hinge arm 204 removed from the shaft 202 to illustrate the interaction surfaces 222, 224. As described herein, the shaft 202 can be positioned through an aperture 225 of the hinge arm 204 and through an aperture 227 of the hinge slider 206. In some examples, the interaction surface 222 includes alternating flat surfaces 226 and helical surfaces 228 surrounding an aperture 225 to receive the shaft 202 and the interaction surface 224 includes alternating flat surfaces 232 and helical surfaces 234 surrounding an aperture 227 to receive the shaft 202.
In some examples, the hinge arm 204 can be positioned on the shaft 202 such that an interaction surface 222 of the hinge arm 204 is positioned away from the sleeve portion 208 and/or towards an interaction surface 224 of the hinge slider 206. In some examples, the hinge slider 206 can be positioned on the shaft 202 by inserting the shaft 202 through the aperture  227. In these examples, the interaction surface 224 of the hinge slide 206 can be directed toward the interaction surface 222 of the hinge arm 204 and/or toward the sleeve portion 208 of the shaft 202. As described herein, a spring mechanism 208 can be positioned between a pin 210 and a surface of the hinge slider 206 to provide pressure on the hinge slider 206 in the direction of the hinge arm 204. In this way, the interaction surface 222 can interact with the interaction surface 224 under the applied spring pressure of the spring mechanism 208.
As described herein, the interaction surface 222 (e.g., first interaction surface, etc. ) can include flat portions 226 and helical portions 228. As used herein, flat portions (e.g., flat portions 226, flat portions 232, etc. ) of an interaction surface (e.g., interaction surface 222, interaction surface 224, etc. ) can include a relatively flat surface compared to the surrounding surface. In some examples, the flat portions of an interaction surface can be a raised portion of the surface with a relatively flat top portion. In addition, the interaction surface 222 can include helical portions 226. As used herein, a helical portion (e.g., helical portions 226, helical portions 234, etc. ) can include portions of the surface that are in a helix shape. In some examples, the helical portions can be relatively lower portions compared to the flat portions. For example, the helical portions 228 can include a helical shape that beings at a low point and increases in height as it moves toward the top portions.
In some examples, the interaction surface 222 can include alternating flat portions 226 and helical portions 228. In some examples, the interaction surface 222 can alternate between flat drops and helical increases. For example, the interaction surface 222 can include a first flat portion of the interaction surface 222. In this example, the interaction surface can include a flat drop to a first helical portion when moving in a clockwise direction. As used herein, a flat drop can include a relatively straight drop from a first level to a second level with a relatively large slope. In this example, the first helical portion can include a helical increase to a second flat portion. As used herein, a helical increase can be a sloped increase from a first level to a second level with a relatively small slope (e.g., smaller than the relatively large slope of the flat drop)  or helical slop (e.g., exponential increasing, etc. ) . In this example, the second flat portion can include a flat drop portion that leads to a second helical portion, which can include a helical increase back to the first flat portion. In this way, the interaction surface 222 can include alternating flat portions 226 and helical portions 228. In addition, the interaction surface 222 can include alternating flat drops and helical increases as described herein.
In a similar way as the interaction surface 222 of the hinge arm 204, the interaction surface 224 of the hinge slider 206 can include alternating flat portions 232 and alternating helical portions 234 that can correspond to the alternating flat portions 226 and alternating helical portions 228. In some examples, the flat portions 232 of the hinge slider 206 can correspond to the shape of the helical portions 228 of the hinge arm 204. In these examples, the flat portions 226 of the hinge arm 204 can correspond to the helical portions 234 of the hinge slider 260. In this way, the interaction surface 224 of hinge slider 260 can be aligned with the interaction surface 222 of the hinge arm 204. As will be described further herein, the device 200 can provide rotational resistance on the hinge arm 204 when the helical portion 234 of hinge slider 206 contacts the helical portion 228 of hinge arm 204. In addition, the device 100 may not provide rotational resistance on the hinge arm 204 when the flat portions 226 of the hinge arm 204 interact with the flat portions 232 of the hinge slider 206. Figure 2 illustrates when the device is not providing rotational resistance on the hinge arm 204 on the right side. That is, the hinge arm 204 is able to freely rotate without resistance provided by the hinge slider 206. This will be described further in reference to Figure 3.
Figure 3 illustrates an example of a device 300-1, 300-2 for a hinge assembly that includes a hinge slider 306-1, 306-2, in accordance with the present disclosure. Figure 3 illustrates the device 300-1 in an engaged position and the device 300-2 in a disengaged position. As used herein, an engaged position is a position where the hinge slider 306-1 and spring mechanism 308-1 provide rotational resistance on the hinge arm 304-1. As used herein, a disengaged position is a position where the hinge slider 306-2 and spring mechanism 308-2 do not provide rotational resistance on the hinge arm  304-2. In some examples, the engaged interaction state allows the hinge slider 306-1 to provide resistance of rotation for the hinge arm 304-1 and the disengaged interaction state prevents the hinge slider 306-2 from providing resistance of rotation for the hinge arm 304-2.
In some examples, the device 300-1 can include a shaft 302-1 that can receive a hinge arm 304-1, a hinge slider 306-1, and/or a spring mechanism 308-1. Device 300-1 illustrates a hinge device in an engaged position. As described herein, the hinge arm 304-1 can include a shaft 312-1 that can be inserted into a channel that can rotate the hinge arm 304-1 in the direction of arrow 342-1. The rotation of the hinge arm 304-1 can be a result of scanning device being lowered on top of a print engine as described herein. In some examples, rotation of the hinge arm 304-1 provides a first force (e.g., in the direction of arrow 325-1, etc. ) on the hinge slider 306-1 through interaction surfaces (e.g., top portion 326-1, etc. ) of the hinge arm 304-1 and interaction surfaces (e.g., helical portion 334-1, etc. ) of the hinge slider 306-1. In this example, the spring mechanism 308-1 can provide a second force (e.g., opposite the first force, opposite direction of arrow 325-1, etc. ) on the hinge slider 306-1 that is opposite to the first force applied by the hinge arm 304-1.
In some examples, the rotation of the hinge arm 304-1 can force a top portion 326-1 to interact with a helical portion 334-1 and force the hinge slider 306-1 to move in the direction of arrow 325-1 and/or against the spring mechanism 308-1. In this way the spring mechanism 308-1 can provide a spring force in the opposite direction of arrow 325-1, which can allow the hinge slider 306-1 to provide a rotational force on the hinge arm 304-1 that prevents a portion of the force applied in the direction of arrow 342-1. That is, the top portion 326-1 of the hinge arm 304-1 can provide a force on the hinge slider 306-1 in the direction of arrow 325-1 and the spring mechanism can provide a force on the hinge slider 306-1 in the opposite direction of arrow 325-1.
In some examples, the hinge arm 304-1 can reach a threshold angle when moved in the direction of 342-1 and disengage from the hinge slider 306-1. In some examples, the threshold angle can be based on an acceptable angle of free fall for a scanning device on a print engine. In some  examples, the threshold angle can be adjusted based on a number of factors. For example, the threshold angle can be adjusted based on an angle between the helical portions and top portions of the interaction surfaces of the hinge arm 304-1 and/or the hinge slider 306-1, a spring strength of the spring mechanism 308-1, a quantity of top portions and helical portions on the interaction surfaces, and/or a diameter of the interaction surfaces, among other features.
Device 300-2 can be the same or similar device as device 300-1. For example, the device 300-2 can include a shaft 302-2 that can hold a hinge arm 304-2 with a shaft 312-2, a hinge slider 306-2, and/or a spring mechanism 308-2 that is captured by a pin protruding through the shaft 302-2. Device 300-2 illustrates a disengaged position. As described herein, a disengaged position can occur when a top portion 326-2 is not positioned within a corresponding helical portion 334-2 or when a top portion of the hinge arm interacts with a top portion of the hinge slider 306-2. Since a top portion of a first interaction surface is not interacting with a helical portion of a second interaction surface, the hinge arm 304-2 is capable of rotating in the direction of arrow 342-2 without rotational resistance from the hinge slider 306-2 and/or the spring mechanism 308-2. In some examples, the device 300-2 illustrates when the hinge slider 306-2 is at a maximum distance in the direction of arrow 325-2.
Figure 4 illustrates an example of a system 450 for a hinge assembly that includes a hinge slider 406, in accordance with the present disclosure. The system 450 can illustrate a specific example for the device 400 described herein (e.g., device 100, device 200, device 300-1, 300-2, etc. ) . That is, the system 450 illustrates a printing system that can include a scanning device 456 and a print engine 458. In some examples, the system 450 can utilize the device 400 to couple the scanning device 456 to the print engine 458 to allow the scanning device 456 to be rotated in an upward direction away from the print engine 458.
In some examples, the scanning device 456 may be raised from a surface of the print engine 458 to perform particular functions. For example, the scanning device 456 may be raised from the surface of the print engine to perform maintenance on the print engine 458. As described herein,  gravity can affect the fall rate of the scanning device 456 when it moves in the direction of the print engine 458. In this way, the device 400 can provide rotational resistance to provide resistance on the scanning device 456 as it is lowered onto the print engine 458.
As described herein, the device 400 can include a shaft 402 that can be coupled to a bracket 472 of the scanning device. In some examples, the bracket 472 can include an aperture 474 to receive an end of the shaft 402. In these examples, the bracket 472 can include a mounting surface to receive a protrusion 414 of the shaft 402. As described herein, the protrusion 414 can include an aperture (e.g., aperture 116 as referenced in Figure 1, aperture 216 as referenced in Figure 2, etc. ) that can receive a threaded bolt 468 that can physically couple the protrusion 414 to the bracket 472. In this way, the shaft 402 may not rotate and/or allow the hinge arm 404 to rotate along the shaft 402. For example, the hinge arm 404 can rotate in the direction of arrow 454 when a shaft 412 of the hinge arm 404 moves within a channel 462 in the direction of arrow 464. In this example, the shaft 412 of the hinge arm 404 can move in the direction of arrow 464, which can rotate the hinge arm 404 in the direction of arrow 454 to lower the scanning device 456 on to the print engine 458.
As described herein, the device 400 can include a hinge slider 406 and a spring mechanism 408 that can apply rotational resistance on the hinge arm 404 to resist the rotation in the direction of arrow 454 which can slow the movement of the shaft 412 in the direction of arrow 464. In some examples, a first interaction surface of the hinge arm 404 can interact with a corresponding second interaction surface of the hinge slider 406 to provide rotational resistance to a threshold rotation angle of the hinge arm 404 as described herein. In this way, the scanning device 456 can be lowered with resistance to slow the rate of falling up to a threshold angle or threshold distance between the scanning device 456 and the print engine 458.
The figures herein follow a numbering convention in which the first digit corresponds to the drawing figure number and the remaining digits identify an element or component in the drawing. Elements shown in the various figures herein can be added, exchanged, and/or eliminated so as to  provide a number of additional examples of the present disclosure. In addition, the proportion and the relative scale of the elements provided in the figures are intended to illustrate the examples of the present disclosure and should not be taken in a limiting sense. As used herein, the designator “N” , particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included with examples of the present disclosure. The designators can represent the same or different numbers of the particular features. Further, as used herein, "a number of” an element and/or feature can refer to one or more of such elements and/or features.
In the foregoing detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how examples of the disclosure may be practiced. These examples are described in sufficient detail to enable those of ordinary skill in the art to practice the examples of this disclosure, and it is to be understood that other examples may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.

Claims (15)

  1. A hinge, comprising:
    a hinge arm that includes a first end with a shaft and a second end with a first interaction surface; and
    a hinge slider that includes a first side with a second interaction surface to engage with the first interaction surface and a second side with a spring surface to interact with a spring mechanism, wherein rotation of the hinge arm alters a position of the hinge slider to alter an interaction state between the first interaction surface and the second interaction surface from an engaged interaction state to a disengaged interaction state.
  2. The hinge of claim 1, wherein the engaged interaction state allows the hinge slider to provide resistance of rotation for the hinge arm and the disengaged interaction state prevents the hinge slider from providing resistance of rotation for the hinge arm.
  3. The hinge of claim 1, wherein the spring mechanism provides a force on the hinge slider to increase an interaction force between the first interaction surface and the second interaction surface.
  4. The hinge of claim 1, wherein the first interaction surface includes a first flat surface and a first helical surface.
  5. The hinge of claim 4, wherein the second interaction surface includes a second flat surface and a second helical surface.
  6. The hinge of claim 5, wherein the first flat surface interacts with the second helical surface and the first helical surface interacts with the second flat surface in the engaged interaction state.
  7. The hinge of claim 5, wherein the first flat surface interacts with the  second flat surface and the first helical surface interacts with the second helical surface in the disengaged interaction state.
  8. A device, comprising
    a first element coupled to a second element via a hinge; and
    the hinge comprising:
    a shaft coupled to the first element, wherein the shaft includes a spring mechanism;
    a hinge arm coupled to the shaft at a first end and coupled to a rail of the second element at a second end;
    a hinge slider coupled to the shaft between the spring mechanism and the hinge arm to provide altering resistance with the hinge arm as the hinge arm is rotated to alter an angle between the first element and the second element.
  9. The device of claim 8, wherein the altering resistance is provided through interaction surfaces of the hinge arm and hinge slider that include alternating flat and helical surfaces that apply different resistance on the hinge arm as the hinge arm rotates.
  10. The device of claim 8, wherein rotation of the hinge arm provides a first force on the hinge slider through interaction surfaces of the hinge arm and hinge slider.
  11. The device of claim 10, wherein the spring mechanism provides a second force on the hinge slider that is opposite to the first force.
  12. The device of claim 8, wherein the hinge arm disengages from the hinge slider when the hinge arm is rotated to or beyond a threshold angle of rotation.
  13. A system, comprising:
    a scanning device;
    a printing device coupled to the scanning device; and
    a hinge comprising:
    a shaft coupled to the scanning device;
    a hinge arm that includes a first interaction surface positioned on the shaft at a first end and includes a protrusion positioned within a rail of the printing device at a second end;
    a hinge slider positioned on the shaft with a second interaction surface in contact with the first interaction surface to apply variable pressure on the hinge arm based on a rotation of the hinge arm; and
    a spring mechanism positioned on the shaft in contact with the hinge slider to apply a pressure on the hinge slider.
  14. The system of claim 13, wherein the first interaction surface includes alternating flat and helical surfaces surrounding a first aperture to receive the shaft and the second interaction surface includes alternating flat and helical surfaces surrounding a second aperture to receive the shaft.
  15. The system of claim 13, wherein the shaft includes a first aperture to couple the shaft to the scanning device on a first end and includes a second aperture to receive a pin to capture the spring mechanism, hinge slider, and hinge arm on the shaft.
PCT/CN2020/083169 2020-04-03 2020-04-03 Hinge sliders WO2021196156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083169 WO2021196156A1 (en) 2020-04-03 2020-04-03 Hinge sliders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083169 WO2021196156A1 (en) 2020-04-03 2020-04-03 Hinge sliders

Publications (1)

Publication Number Publication Date
WO2021196156A1 true WO2021196156A1 (en) 2021-10-07

Family

ID=77927189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083169 WO2021196156A1 (en) 2020-04-03 2020-04-03 Hinge sliders

Country Status (1)

Country Link
WO (1) WO2021196156A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321033A (en) * 2000-02-23 2001-11-07 摩托罗拉公司 Portable folding radio communication device
CN1540958A (en) * 2003-04-21 2004-10-27 明基电通股份有限公司 Hinge assembly and electronic equipment possessing the assembly
CN1567351A (en) * 2003-06-19 2005-01-19 明基电通股份有限公司 Electronic device with hinge mechanism linked to cover
CN2792110Y (en) * 2005-04-13 2006-06-28 鑫禾科技股份有限公司 Variable torque hinge
US20090034208A1 (en) * 2007-08-01 2009-02-05 Naokazu Suzuki Automatic Original Cover Closer and Office Equipment Having the Same
KR20090003139U (en) * 2007-09-28 2009-04-01 주식회사 새한하이텍 Door hinge for copy machine printer fax and scanner
CN106030130A (en) * 2014-02-24 2016-10-12 利富高(韩国)股份有限公司 Hinge device for opening and closing cover of office equipment
CN208569452U (en) * 2018-06-15 2019-03-01 宏碁股份有限公司 Electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321033A (en) * 2000-02-23 2001-11-07 摩托罗拉公司 Portable folding radio communication device
CN1540958A (en) * 2003-04-21 2004-10-27 明基电通股份有限公司 Hinge assembly and electronic equipment possessing the assembly
CN1567351A (en) * 2003-06-19 2005-01-19 明基电通股份有限公司 Electronic device with hinge mechanism linked to cover
CN2792110Y (en) * 2005-04-13 2006-06-28 鑫禾科技股份有限公司 Variable torque hinge
US20090034208A1 (en) * 2007-08-01 2009-02-05 Naokazu Suzuki Automatic Original Cover Closer and Office Equipment Having the Same
KR20090003139U (en) * 2007-09-28 2009-04-01 주식회사 새한하이텍 Door hinge for copy machine printer fax and scanner
CN106030130A (en) * 2014-02-24 2016-10-12 利富高(韩国)股份有限公司 Hinge device for opening and closing cover of office equipment
CN208569452U (en) * 2018-06-15 2019-03-01 宏碁股份有限公司 Electronic device

Similar Documents

Publication Publication Date Title
US7418766B2 (en) Hinge with tandem pivot structure motion lock and override
US7062197B2 (en) Image forming apparatus with rotatable control panel unit
US7663658B2 (en) Image forming apparatus to carry out position determination of a rotating body
US7920373B2 (en) Cover unit, electronic device, and image forming apparatus
US8511818B2 (en) Multifunction peripheral having opening and closing mechanism
US20060222435A1 (en) Cover locking apparatus for a multi-function device
US7382998B2 (en) Robust door panel breakaway mechanism for an image forming device
US5996989A (en) Sheet separator friction pad
US10781621B2 (en) Hinge device and office equipment using the same
US9197774B2 (en) Image forming apparatus
GB1565629A (en) Sheet feed mechanism employing a roller
US8908233B2 (en) Image processing apparatus
WO2021196156A1 (en) Hinge sliders
US4411418A (en) Document corner registration
GB1565628A (en) Combing wheel for use in sheet feeding apparatus
US6299157B1 (en) Paper feeding apparatus for printing apparatus
US20060000056A1 (en) Closure mechanism for hinged devices
US8651596B2 (en) Image formation apparatus
US9363398B2 (en) Interlocking assembly for a scanning unit
JP5883734B2 (en) Open / close cover lock mechanism and image forming apparatus
GB2069468A (en) Method of and apparatus for feeding and registering sheets for facsimile recording
KR20180012624A (en) Module return cushion device for reading and stamping machine
US20150352862A1 (en) Finisher transport assembly jam access cover for digital printers
US20220094803A1 (en) Hinge assemblies for image forming apparatuses
US11185161B2 (en) Soft close print paper drawer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928778

Country of ref document: EP

Kind code of ref document: A1