WO2021195920A1 - Nonsensical cell measurements - Google Patents

Nonsensical cell measurements Download PDF

Info

Publication number
WO2021195920A1
WO2021195920A1 PCT/CN2020/082279 CN2020082279W WO2021195920A1 WO 2021195920 A1 WO2021195920 A1 WO 2021195920A1 CN 2020082279 W CN2020082279 W CN 2020082279W WO 2021195920 A1 WO2021195920 A1 WO 2021195920A1
Authority
WO
WIPO (PCT)
Prior art keywords
rat
band
mco
fulfilling
mode operation
Prior art date
Application number
PCT/CN2020/082279
Other languages
French (fr)
Inventor
Yuankun ZHU
Pan JIANG
Chaofeng HUI
Fojian ZHANG
Xiuqiu XIA
Jing Zhou
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/082279 priority Critical patent/WO2021195920A1/en
Publication of WO2021195920A1 publication Critical patent/WO2021195920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • Various aspects described herein generally relate to wireless communication systems, and more particularly, reducing nonsensical cell measurements.
  • Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., Long Term Evolution (LTE) or WiMax) .
  • 1G first-generation analog wireless phone service
  • 2G second-generation
  • 3G third-generation
  • 4G fourth-generation
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Mobile communications
  • PCS Personal Communications Service
  • Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
  • AMPS cellular Analog Advanced Mobile Phone System
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • GSM Global System for Mobile access
  • a fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements.
  • the 5G standard according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
  • NR connectivity or simply NR connectivity, has gained significant commercial traction in recent time.
  • UI user interface
  • UE user equipment
  • the UE may comprise a processor, a memory, and a transceiver.
  • the processor, the memory, and/or the transceiver may be configured to receive a measurement control order (MCO) from a network node while operating in the first RAT.
  • MCO measurement control order
  • the MCO may specify one or more measurements in the second RAT.
  • the processor, the memory, and/or the transceiver may also be configured to determine whether the UE is capable of fulfilling the MCO.
  • the processor, the memory, and/or the transceiver may further be configured to fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
  • the method may comprise receiving a measurement control order (MCO) from a network node while operating in the first RAT.
  • MCO measurement control order
  • the method may also comprise determining whether the UE is capable of fulfilling the MCO.
  • the method may further comprise fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
  • the UE may comprise means for receiving a measurement control order (MCO) from a network node while operating in the first RAT.
  • MCO measurement control order
  • the MCO may specify one or more measurements in the second RAT.
  • the UE may also comprise means for determining whether the UE is capable of fulfilling the MCO.
  • the UE may further comprise means for fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
  • a non-transitory computer-readable medium storing computer-executable instructions for a user equipment (UE) configured to operate in first and second radio access technologies (RATs) is disclosed.
  • the executable instructions may comprise one or more instructions instructing the UE to receive a measurement control order (MCO) from a network node while operating in the first RAT.
  • the MCO may specify one or more measurements in the second RAT.
  • the executable instructions may also comprise one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO.
  • the executable instructions may further comprise one or more instructions instructing the UE to fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
  • FIG. 1 illustrates an exemplary wireless communications system in accordance with one or more aspects of the disclosure
  • FIG. 2 is a simplified block diagram of several sample aspects of components that may be employed in wireless communication nodes and configured to support communication in accordance with one or more aspects of the disclosure;
  • FIG. 3 illustrates a flow chart of an exemplary method for fulfilling measurement control order with a user equipment capable of operating in multiple radio access technologies in accordance with one or more aspects of the disclosure
  • FIG. 4 illustrates a flow chart of an exemplary method performed by a UE configured to operate in multiple radio access technologies in accordance with one or more aspects of the disclosure
  • FIG. 5 illustrates a flow chart of an exemplary process performed by a UE to determine whether the UE is capable of fulfilling measurement control order from a network node in accordance with one or more aspects of the disclosure
  • FIG. 6 illustrates a simplified block diagram of several sample aspects of an apparatus configured to operate in multiple radio access technologies in accordance with one or more aspects of the disclosure.
  • various aspects may be described in terms of sequences of actions to be performed by, for example, elements of a computing device.
  • Those skilled in the art will recognize that various actions described herein can be performed by specific circuits (e.g., an application specific integrated circuit (ASIC) ) , by program instructions being executed by one or more processors, or by a combination of both.
  • these sequences of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable medium having stored thereon a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein.
  • the various aspects described herein may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter.
  • the corresponding form of any such aspects may be described herein as, for example, “logic configured to” and/or other structural components configured to perform the described action.
  • UE user equipment
  • base station base station
  • RAT Radio Access Technology
  • UEs may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network.
  • a UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a Radio Access Network (RAN) .
  • RAN Radio Access Network
  • UE may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof.
  • AT access terminal
  • client device a “client device
  • wireless device a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT
  • UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs.
  • WiFi networks e.g., based on Institute of Electrical and Electronics Engineers (IEEE) 802.11, etc.
  • IEEE Institute of Electrical and Electronics Engineers
  • a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an Access Point (AP) , a Network Node, a NodeB, an evolved NodeB (eNB) , a general Node B (gNodeB, gNB) , etc.
  • AP Access Point
  • eNB evolved NodeB
  • gNodeB gNodeB, gNB
  • a base station may provide edge node signaling functions while in other systems it may provide additional control and/or network management functions.
  • UEs can be embodied by any of a number of types of devices including but not limited to printed circuit (PC) cards, compact flash devices, external or internal modems, wireless or wireline phones, smartphones, tablets, tracking devices, asset tags, and so on.
  • a communication link through which UEs can send signals to a RAN is called an uplink channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) .
  • a communication link through which the RAN can send signals to UEs is called a downlink or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) .
  • traffic channel can refer to either an uplink /reverse or downlink /forward traffic channel.
  • FIG. 1 illustrates an exemplary wireless communications system 100 according to one or more aspects.
  • the wireless communications system 100 which may also be referred to as a wireless wide area network (WWAN) , may include various base stations 102 and various UEs 104.
  • the base stations 102 may include macro cells (high power cellular base stations) and/or small cells (low power cellular base stations) .
  • the macro cells may include Evolved NodeBs (eNBs) where the wireless communications system 100 corresponds to an LTE network, gNodeBs (gNBs) where the wireless communications system 100 corresponds to a 5G network, and/or a combination thereof, and the small cells may include femtocells, picocells, microcells, etc.
  • eNBs Evolved NodeBs
  • gNodeBs gNodeBs
  • the base stations 102 may collectively form a Radio Access Network (RAN) and interface with an Evolved Packet Core (EPC) or Next Generation Core (NGC) through backhaul links.
  • EPC Evolved Packet Core
  • NRC Next Generation Core
  • the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • the base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, although not shown in FIG. 1, coverage areas 110 may be subdivided into a plurality of cells (e.g., three) , or sectors, each cell corresponding to a single antenna or array of antennas of a base station 102. As used herein, the term “cell” or “sector” may correspond to one of a plurality of cells of a base station 102, or to the base station 102 itself, depending on the context.
  • While neighbor macro cell geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
  • a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102.
  • a network that includes both small cell and macro cells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home eNBs (HeNBs) and/or Home gNodeBs, which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • HeNBs Home eNBs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple input multiple output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • MIMO multiple input multiple output
  • the communication links may be through one or more carriers. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
  • the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) .
  • WLAN wireless local area network
  • AP access point
  • the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
  • LTE-U LTE-unlicensed
  • LAA licensed assisted access
  • MulteFire MulteFire
  • the wireless communications system 100 may further include a mmW base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182.
  • Extremely high frequency (EHF) is part of the radio frequency (RF) range in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • the mmW base station 180 may utilize beamforming 184 with the UE 182 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
  • the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links.
  • D2D device-to-device
  • P2P peer-to-peer
  • UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) .
  • the D2D P2P links 192-194 may be supported with any well-known D2D radio access technology (RAT) , such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , Bluetooth, and so on.
  • RAT D2D radio access technology
  • Any of the base stations 102, 102’ , 180 may send measurement requests (e.g., measurement control order (MCO) ) to the UEs 104, 182, 190, and the UE’s 104, 182, 190 may respond with measurement reports accordingly.
  • MCO measurement control order
  • FIG. 2 illustrates several sample components (represented by corresponding blocks) that may be incorporated into an apparatus 202 and an apparatus 204 (corresponding to, for example, a UE and a base station (e.g., eNB, gNB) , respectively, to support the operations as disclosed herein.
  • the apparatus 202 may correspond to a UE
  • the apparatus 204 may correspond to a network node such as a gNB and/or an eNB.
  • the components may be implemented in different types of apparatuses in different implementations (e.g., in an ASIC, in a System-on-Chip (SoC) , etc. ) .
  • the illustrated components may also be incorporated into other apparatuses in a communication system.
  • apparatuses in a system may include components similar to those described to provide similar functionality.
  • a given apparatus may contain one or more of the components.
  • an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
  • the apparatus 202 and the apparatus 204 each may include at least one wireless communication device (represented by the communication devices 208 and 214) for communicating with other nodes via at least one designated RAT (e.g., LTE, NR) .
  • Each communication device 208 may include at least one transmitter (represented by the transmitter 210) for transmitting and encoding signals (e.g., messages, indications, information, and so on) and at least one receiver (represented by the receiver 212) for receiving and decoding signals (e.g., messages, indications, information, pilots, and so on) .
  • Each communication device 214 may include at least one transmitter (represented by the transmitter 216) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 218) for receiving signals (e.g., messages, indications, information, and so on) .
  • signals e.g., messages, indications, information, pilots, and so on
  • receiver 2148 for receiving signals (e.g., messages, indications, information, and so on) .
  • a transmitter and a receiver may comprise an integrated device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, may comprise a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations.
  • a transmitter may include a plurality of antennas, such as an antenna array, that permits the respective apparatus to perform transmit “beamforming, ” as described further herein.
  • a receiver may include a plurality of antennas, such as an antenna array, that permits the respective apparatus to perform receive beamforming, as described further herein.
  • the transmitter and receiver may share the same plurality of antennas, such that the respective apparatus can only receive or transmit at a given time, not both at the same time.
  • a wireless communication device (e.g., one of multiple wireless communication devices) of the apparatus 204 may also comprise a Network Listen Module (NLM) or the like for performing various measurements.
  • NLM Network Listen Module
  • the apparatus 204 may include at least one communication device (represented by the communication device 220) for communicating with other nodes.
  • the communication device 220 may comprise a network interface (e.g., one or more network access ports) configured to communicate with one or more network entities via a wire-based or wireless backhaul connection.
  • the communication device 220 may be implemented as a transceiver configured to support wire-based or wireless signal communication. This communication may involve, for example, sending and receiving messages, parameters, or other types of information.
  • the communication device 220 is shown as comprising a transmitter 222 and a receiver 224 (e.g., network access ports for transmitting and receiving) .
  • the apparatuses 202 and 204 may also include other components used in conjunction with the operations as disclosed herein.
  • the apparatus 202 may include a processing system 232 for providing functionality relating to, for example, communication with the network.
  • the apparatus 204 may include a processing system 234 for providing functionality relating to, for example, communication with the UEs.
  • the processing systems 232 and 234 may include, for example, one or more general purpose processors, multi-core processors, ASICs, digital signal processors (DSPs) , field programmable gate arrays (FPGA) , or other programmable logic devices or processing circuitry.
  • the apparatuses 202 and 204 may include measurement components 252 and 254 that may be used to obtain channel related measurements.
  • the measurement component 252 may measure one or more downlink (DL) signals such as channel state information reference signal (CSI-RS) , phase tracking reference signal (PTRS) , primary synchronization signal (PSS) , secondary synchronization signal (SSS) , demodulation reference signal (DMRS) , etc.
  • the measurement component 254 may measure one or more uplink (UL) signals such as DMRS, sounding reference signal (SRS) , etc.
  • DL downlink
  • PTRS phase tracking reference signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DMRS demodulation reference signal
  • UL uplink
  • the apparatuses 202 and 204 may include memory components 238 and 240 (e.g., each including a memory device) , respectively, for maintaining information (e.g., information indicative of reserved resources, thresholds, parameters, and so on) .
  • memory 238 can comprise a computer-readable medium storing one or more computer-executable instructions for a user equipment (UE) where the one or more instructions instruct apparatus 202 (e.g., processing system 232 in combination with communications device 208 and/or other aspects of apparatus 202) to perform any of the functions of FIGs. 3, 4, and 5.
  • UE user equipment
  • the apparatuses 202 and 204 may include user interface devices 244 and 246, respectively, for providing indications (e.g., audible and/or visual indications) to a user and/or for receiving user input (e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) .
  • indications e.g., audible and/or visual indications
  • user input e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on.
  • apparatuses 202 and 204 are shown in FIG. 2 as including various components that may be configured according to the various examples described herein. It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
  • the components of FIG. 2 may be implemented in various ways.
  • the components of FIG. 2 may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) .
  • each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality.
  • some or all of the functionality represented by blocks 208, 232, 238, and 244 may be implemented by processor and memory component (s) of the apparatus 202 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
  • processor and memory component (s) of the apparatus 204 may be implemented by processor and memory component (s) of the apparatus 204 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
  • the apparatus 204 may correspond to a “small cell” or a Home gNodeB.
  • the apparatus 202 may transmit and receive messages via a wireless link 260 with the apparatus 204, the messages including information related to various types of communication (e.g., voice, data, multimedia services, associated control signaling, etc. ) .
  • the wireless link 260 may operate over a communication medium of interest, shown by way of example in FIG. 2 as the medium 262, which may be shared with other communications as well as other RATs.
  • a medium of this type may be composed of one or more frequency, time, and/or space communication resources (e.g., encompassing one or more channels across one or more carriers) associated with communication between one or more transmitter /receiver pairs, such as the apparatus 204 and the apparatus 202 for the medium 262.
  • space communication resources e.g., encompassing one or more channels across one or more carriers
  • the apparatus 202 and the apparatus 204 may operate via the wireless link 260 according to one or more radio access types, such as LTE, LTE-U, or NR, depending on the network in which they are deployed.
  • These networks may include, for example, different variants of CDMA networks (e.g., LTE networks, NR networks, etc. ) , TDMA networks, FDMA networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, and so on.
  • a UE may be capable of operating in multiple radio access technologies (RATs) .
  • RATs radio access technologies
  • a UE may be capable of operating in a first RAT (e.g., NR) and in a second RAT (e.g., LTE) .
  • first and second RATs may be any of the RATs currently known (e.g., WiMax, CDMA, WCDMA, UTRA, Evolved Universal Terrestrial Radio Access (E-UTRA) , GSM, FDMA, GSM, TDMA, etc. ) .
  • a UE may be may be capable of operating in multiple RATs at the same time.
  • a UE that can operate in both LTE and NR simultaneously is an E-UTRA-New Radio Dual Connectivity (ENDC) capable UE.
  • ENDC is an example of Multi-RAT DC (MRDC) capability.
  • MRDC Multi-RAT DC
  • eNB base station
  • gNB base station
  • NR second RAT
  • LTE defines bands 1–88 and NR defines bands n1–n95 in frequency range (FR) 1 and n257–n268 in FR2.
  • a UE may be limited in the LTE bands and/or limited in the NR bands it supports.
  • the UE may not be capable of simultaneously supporting band X and band Y, that is, the UE may not be MRDC capable in band X and band Y as only certain band combinations may be supported in MRDC for a given UE.
  • a UE when a UE is capable of operating in a first band of a first RAT (e.g., LTE) and in a second band of a second RAT (e.g., NR) simultaneously, the UE may be referred to as being MRDC capable in first and second RATs.
  • the first and second bands may or may not overlap.
  • the UE When the UE operates in the first RAT, it may communicate with a network node (e.g., base station, eNB, etc. ) of the first RAT.
  • a network node e.g., base station, gNB, etc.
  • the second RAT when the UE operates in the second RAT, it may communicate with a network node (e.g., base station, gNB, etc. ) of the second RAT.
  • the UE may be capable of operating in a standalone (SA) or in a non-standalone (NSA) mode within a given RAT.
  • SA standalone
  • NSA non-standalone
  • the UE is able to exchange both control and data plane information with the network node and/or the core network of the given RAT (e.g., NR) .
  • the UE is communicating with network nodes of the first and second RATs.
  • the UE can exchange data plane information with the network nodes of both the first RAT (e.g., LTE) and the second RAT (e.g., NR) .
  • the control plane information is exchanged only with the network node of the first RAT (e.g., LTE) .
  • the network may configure a second band of a second RAT measurement control order (MCO) to the UE.
  • MCO second RAT measurement control order
  • the network may configure 5G NR band Y cell MCO to the UE.
  • the UE can support both the first band of the first RAT (e.g., LTE band X) and the second band of the second RAT (e.g., NR band Y) , the UE may not be MRDC capable in the first and second bands (e.g., UE may not be LTE band X + NR band Y MRDC capable) .
  • This type of MCO can be nonsensical in that the UE may not be expected to work in the first and second band MRDC mode (e.g., not expected to work in the band X + NR band Y ENDC mode) . Attempting to fulfill such MCO can be harmful in that the UE’s power consumption can be high with meaningless heavy load in low layer.
  • measurement control in a network may be viewed as a series of common solutions which may not be accurately customized for each single specific mobile device.
  • the network can send MCOs to a UE even before performing a process to determine the capability of the UE. If the UE is capable of operating in the second band of the second RAT included in the MCO, in theory, the UE should be able to fulfill the MCO.
  • the UE when the UE receives the MCO while operating in the first band of the first RAT, it can have undesirable consequences.
  • a UE is working in 4G LTE band X (e.g., first band of first RAT) and receives a 5G NR band Y (e.g., second band of second RAT) MCO.
  • the UE can consume high power in 5G part compared with the single LTE mode.
  • the measurements tasks can last a long time since the network typically do not deal well with the MCO when the UE does not really have Band-X + Band-Y MRDC capability.
  • the network can be stuck in an abnormal status.
  • FIG. 3 illustrates an example flow of a scenario in which a smart filter is used to minimize nonsensical measurements.
  • the UE may be assumed to be a 5G UE that is also capable of operating in 4G LTE.
  • the UE may receive a 5G MCO for a 5G band Y.
  • the UE may determine whether it supports 5G SA mode. If so (Y branch from block 320) , then in block 330, then the UE may fulfill the 5G MCO. Presumably, if the UE does support the 5G SA mode, then it will be able to fulfill the 5G MCO without incurring the high power consumption penalty. In an aspect, the UE may determine that the 5G SA mode is supported if the 5G SA mode is enabled in the UE. But in another aspect, multiple conditions may need to be satisfied. For example, the UE may determine that the 5G SA mode is supported when the 5G SA mode is enabled and when a setting indicates that the 5G SA mode is preferred over the 5G NSA mode.
  • the UE may determine whether it supports the LTE band X +NR band Y MRDC. If so (Y branch from block 340) , then the UE may also fulfill the 5G MCO in block 330. If not (N branch from block 340) , the UE may ignore the 5G MCO.
  • FIG. 4 illustrates a flow chart of an exemplary method for fulfilling measurement control order with a UE capable of operating in multiple radio access technologies in accordance with one or more aspects of the disclosure.
  • FIG. 4 may be viewed as a generalization of the flow of FIG. 3.
  • the UE may receive an MCO from a network node.
  • the MCO may specify one or more measurements in the second RAT.
  • Means for performing the functionality of block 410 can, but not necessarily, include, for example, receiver 212, processing system 232, and/or memory component 238, or any combination thereof, with reference to FIG. 2.
  • the UE may determine whether it is capable of fulfilling the MCO.
  • FIG. 5 illustrates a flow chart of an example process that may be performed by the UE to implement block 420.
  • the UE may determine whether an SA mode operation in the second RAT is enabled in the UE. If so (left Y branch from block 510) , the UE may determine that it is capable of fulfilling the MCO.
  • the UE may apply further criteria to determine whether MCO may be fulfilled.
  • the UE may determine whether the SA mode operation in the second RAT is set as being preferred over the NSA mode operation. If so (Y branch from block 520) , the UE may determine that it is capable of fulfilling the MCO.
  • the method may proceed to block 530.
  • the SA mode operation in the second RAT may be disabled. In another aspect, there may be no indication of whether the SA mode operation in the second RAT is enabled or disabled.
  • the method may also proceed to block 530 from block 520 if it is determined that the SA mode operation in the second RAT is not set as being preferred (N branch from block 520) .
  • the SA mode operation in the second RAT may be non-preferred. In another aspect, there may be no indication of whether the SA mode operation in the second RAT is preferred or non-preferred.
  • the UE may determine whether it is MRDC capable in the first band of the first RAT and in the second band of the second RAT. If so (Y branch from block 530) , the UE may determine that it is capable of fulfilling the MCO. Otherwise (N branch from block 530) , the UE may determine that it is not capable of fulfilling the MCO.
  • Means for performing the functionality of blocks 420, 510, 520, 530, and/or 540 can, but not necessarily, include, for example, processing system 232 and/or memory component 238, or any combination thereof, with reference to FIG. 2.
  • the UE may fulfill the MCO in block 430. That is, the UE may make measurements according to the MCO and report back the results.
  • the UE may ignore the MCO in block 440.
  • Means for performing the functionality of block 430 can, but not necessarily, include, for example, receiver 212, processing system 232, memory component 238, and/or measurement component 252, or any combination thereof, with reference to FIG. 2.
  • FIG. 6 illustrates an example user equipment apparatus 600 represented as a series of interrelated functional modules connected by a common bus.
  • Each of the modules may be implemented in hardware or as a combination of hardware and software.
  • the modules may be implemented as any combination of the modules of the apparatus 202 of FIG. 2.
  • a module for receiving measurement control order 610 may correspond at least in some aspects to a communication device (e.g., communication device 208) , a processing system (e.g., processing system 232) , and/or a memory component (e.g., memory component 238) .
  • a module for determining whether UE is capable of fulfilling the MCO 620 may correspond at least in some aspects to a processing system (e.g., processing system 232) and/or a memory component (e.g., memory component 238) .
  • a module for fulfilling the MCO 630 may correspond at least in some aspects to communication device (e.g., communication device 208) , a processing system (e.g., processing system 232) , a memory component (e.g., memory component 238) , and/or a measurement component (e.g., measurement component 252) .
  • the functionality of the modules of FIG. 9 may be implemented in various ways consistent with the teachings herein.
  • the functionality of these modules may be implemented as one or more electrical components.
  • the functionality of these blocks may be implemented as a processing system including one or more processor components.
  • the functionality of these modules may be implemented using, for example, at least a portion of one or more integrated circuits (e.g., an ASIC) .
  • an integrated circuit may include a processor, software, other related components, or some combination thereof.
  • the functionality of different modules may be implemented, for example, as different subsets of an integrated circuit, as different subsets of a set of software modules, or a combination thereof.
  • a given subset e.g., of an integrated circuit and/or of a set of software modules
  • FIG. 9 may be implemented using any suitable means. Such means also may be implemented, at least in part, using corresponding structure as taught herein.
  • the components described above in conjunction with the “module for” components of FIG. 9 also may correspond to similarly designated “means for” functionality.
  • one or more of such means may be implemented using one or more of processor components, integrated circuits, or other suitable structure as taught herein.
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal (e.g., UE) .
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Abstract

Techniques to reduce non-sensical cell measurements are disclosed. For an Evolved Universal Terrestrial Radio Access (E-UTRA) -New Radio Dual Connectivity (ENDC) supported UE working in 4G LTE Band-X, the network may configure 5G NR Band-Y cell measurement order to a user equipment (UE). It may be that the UE can support both 4G Band-X and 5G Band-Y RF capability, but may not really have the capability to support Band-X and Band-Y simultaneously. In such instances, the 5G cell measurement order can be nonsensical since the UE may not be expected to work in 4G Band-X + 5G Band-Y ENDC mode. Such case can be undesirable in that the UE in high power consumption and meaningless heavy load in low layer.

Description

NONSENSICAL CELL MEASUREMENTS TECHNICAL FIELD
Various aspects described herein generally relate to wireless communication systems, and more particularly, reducing nonsensical cell measurements.
BACKGROUND
Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G) , a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks) , a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., Long Term Evolution (LTE) or WiMax) . There are presently many different types of wireless communication systems in use, including Cellular and Personal Communications Service (PCS) systems. Examples of known cellular systems include the cellular Analog Advanced Mobile Phone System (AMPS) , and digital cellular systems based on Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , the Global System for Mobile access (GSM) variation of TDMA, etc.
A fifth generation (5G) mobile standard calls for higher data transfer speeds, greater numbers of connections, and better coverage, among other improvements. The 5G standard, according to the Next Generation Mobile Networks Alliance, is designed to provide data rates of several tens of megabits per second to each of tens of thousands of users, with 1 gigabit per second to tens of workers on an office floor. Several hundreds of thousands of simultaneous connections should be supported in order to support large sensor deployments. Consequently, the spectral efficiency of 5G mobile communications should be significantly enhanced compared to the current 4G standard. Furthermore, signaling efficiencies should be enhanced and latency should be substantially reduced compared to current standards.
5G New Radio (NR) connectivity, or simply NR connectivity, has gained significant commercial traction in recent time. Thus, to attract more users to their network, network operators would like to show NR connectivity to users most of the time on the user interface (UI) of the mobile device such as the user equipment (UE) .
SUMMARY
This summary identifies features of some example aspects, and is not an exclusive or exhaustive description of the disclosed subject matter. Whether features or aspects are included in, or omitted from this summary is not intended as indicative of relative importance of such features. Additional features and aspects are described, and will become apparent to persons skilled in the art upon reading the following detailed description and viewing the drawings that form a part thereof.
An exemplary user equipment (UE) configured to operate in first and second radio access technologies (RATs) is disclosed. The UE may comprise a processor, a memory, and a transceiver. The processor, the memory, and/or the transceiver may be configured to receive a measurement control order (MCO) from a network node while operating in the first RAT. The MCO may specify one or more measurements in the second RAT. The processor, the memory, and/or the transceiver may also be configured to determine whether the UE is capable of fulfilling the MCO. The processor, the memory, and/or the transceiver may further be configured to fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
An exemplary method performed by a user equipment (UE) configured to operate in first and second radio access technologies (RATs) is disclosed. The method may comprise receiving a measurement control order (MCO) from a network node while operating in the first RAT. The MCO may specify one or more measurements in the second RAT. The method may also comprise determining whether the UE is capable of fulfilling the MCO. The method may further comprise fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
Another exemplary user equipment (UE) configured to operate in first and second radio access technologies (RATs) is disclosed. The UE may comprise means for receiving a measurement control order (MCO) from a network node while operating in the first RAT. The MCO may specify one or more measurements in the second RAT. The UE may also comprise means for determining whether the UE is capable of fulfilling the MCO. The UE may further comprise means for fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
A non-transitory computer-readable medium storing computer-executable instructions for a user equipment (UE) configured to operate in first and second radio access technologies (RATs) is disclosed. The executable instructions may comprise one or  more instructions instructing the UE to receive a measurement control order (MCO) from a network node while operating in the first RAT. The MCO may specify one or more measurements in the second RAT. The executable instructions may also comprise one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO. The executable instructions may further comprise one or more instructions instructing the UE to fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
Other objects and advantages associated with the aspects disclosed herein will be apparent to those skilled in the art based on the accompanying drawings and detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are presented to aid in the description of examples of one or more aspects of the disclosed subject matter and are provided solely for illustration of the examples and not limitation thereof:
FIG. 1 illustrates an exemplary wireless communications system in accordance with one or more aspects of the disclosure;
FIG. 2 is a simplified block diagram of several sample aspects of components that may be employed in wireless communication nodes and configured to support communication in accordance with one or more aspects of the disclosure;
FIG. 3 illustrates a flow chart of an exemplary method for fulfilling measurement control order with a user equipment capable of operating in multiple radio access technologies in accordance with one or more aspects of the disclosure;
FIG. 4 illustrates a flow chart of an exemplary method performed by a UE configured to operate in multiple radio access technologies in accordance with one or more aspects of the disclosure;
FIG. 5 illustrates a flow chart of an exemplary process performed by a UE to determine whether the UE is capable of fulfilling measurement control order from a network node in accordance with one or more aspects of the disclosure; and
FIG. 6 illustrates a simplified block diagram of several sample aspects of an apparatus configured to operate in multiple radio access technologies in accordance with one or more aspects of the disclosure.
DETAILED DESCRIPTION
Aspects of the subject matter are provided in the following description and related drawings directed to specific examples of the disclosed subject matter. Alternates may be devised without departing from the scope of the disclosed subject matter. Additionally, well-known elements will not be described in detail or will be omitted so as not to obscure the relevant details.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term “aspects” does not require that all aspects include the discussed feature, advantage, or mode of operation.
The terminology used herein describes particular aspects only and should not be construed to limit any aspects disclosed herein. As used herein, the singular forms “a, ” “an, ” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Those skilled in the art will further understand that the terms “comprises, ” “comprising, ” “includes, ” and/or “including, ” as used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, various aspects may be described in terms of sequences of actions to be performed by, for example, elements of a computing device. Those skilled in the art will recognize that various actions described herein can be performed by specific circuits (e.g., an application specific integrated circuit (ASIC) ) , by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequences of actions described herein can be considered to be embodied entirely within any form of non-transitory computer-readable medium having stored thereon a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects described herein may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the aspects described herein, the corresponding form of any such aspects may be described herein as, for example, “logic configured to” and/or other structural components configured to perform the described action.
As used herein, the terms “user equipment” (UE) and “base station” are not intended to be specific or otherwise limited to any particular Radio Access Technology (RAT) , unless otherwise noted. In general, such UEs may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, tracking device, Internet of Things (IoT) device, etc. ) used by a user to communicate over a wireless communications network. A UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a Radio Access Network (RAN) . As used herein, the term “UE” may be referred to interchangeably as an “access terminal” or “AT, ” a “client device, ” a “wireless device, ” a “subscriber device, ” a “subscriber terminal, ” a “subscriber station, ” a “user terminal” or UT, a “mobile terminal, ” a “mobile station, ” or variations thereof. Generally, UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs. Of course, other mechanisms of connecting to the core network and/or the Internet are also possible for the UEs, such as over wired access networks, WiFi networks (e.g., based on Institute of Electrical and Electronics Engineers (IEEE) 802.11, etc. ) and so on.
A base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an Access Point (AP) , a Network Node, a NodeB, an evolved NodeB (eNB) , a general Node B (gNodeB, gNB) , etc. In addition, in some systems a base station may provide edge node signaling functions while in other systems it may provide additional control and/or network management functions.
UEs can be embodied by any of a number of types of devices including but not limited to printed circuit (PC) cards, compact flash devices, external or internal modems, wireless or wireline phones, smartphones, tablets, tracking devices, asset tags, and so on. A communication link through which UEs can send signals to a RAN is called an uplink channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc. ) . A communication link through which the RAN can send signals to UEs is called a downlink or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc. ) . As used herein the term traffic channel (TCH) can refer to either an uplink /reverse or downlink /forward traffic channel.
FIG. 1 illustrates an exemplary wireless communications system 100 according to one or more aspects. The wireless communications system 100, which may also be referred to as a wireless wide area network (WWAN) , may include various base stations 102 and various UEs 104. The base stations 102 may include macro cells (high power cellular base stations) and/or small cells (low power cellular base stations) . The macro cells may include Evolved NodeBs (eNBs) where the wireless communications system 100 corresponds to an LTE network, gNodeBs (gNBs) where the wireless communications system 100 corresponds to a 5G network, and/or a combination thereof, and the small cells may include femtocells, picocells, microcells, etc.
The base stations 102 may collectively form a Radio Access Network (RAN) and interface with an Evolved Packet Core (EPC) or Next Generation Core (NGC) through backhaul links. In addition to other functions, the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC /NGC) over backhaul links 134, which may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. In an aspect, although not shown in FIG. 1, coverage areas 110 may be subdivided into a plurality of cells (e.g., three) , or sectors, each cell corresponding to a single antenna or array of antennas of a base station 102. As used herein, the term “cell” or “sector” may correspond to one of a plurality of cells of a base station 102, or to the base station 102 itself, depending on the context.
While neighbor macro cell geographic coverage areas 110 may partially overlap (e.g., in a handover region) , some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110. For example, a small cell base station 102' may have a coverage area 110' that substantially overlaps with the coverage area 110 of one or more macro cell base stations 102. A network that includes both  small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home eNBs (HeNBs) and/or Home gNodeBs, which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple input multiple output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) .
The wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz) . When communicating in an unlicensed frequency spectrum, the WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or 5G technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150. The small cell base station 102', employing LTE /5G in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U) , licensed assisted access (LAA) , or MulteFire.
The wireless communications system 100 may further include a mmW base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182. Extremely high frequency (EHF) is part of the radio frequency (RF) range in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in this band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.  Communications using the mmW/near mmW radio frequency band have high path loss and a relatively short range. The mmW base station 180 may utilize beamforming 184 with the UE 182 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein.
The wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links. In the embodiment of FIG. 1, UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity) . In an example, the D2D P2P links 192-194 may be supported with any well-known D2D radio access technology (RAT) , such as LTE Direct (LTE-D) , WiFi Direct (WiFi-D) , Bluetooth, and so on. Any of the  base stations  102, 102’ , 180 may send measurement requests (e.g., measurement control order (MCO) ) to the  UEs  104, 182, 190, and the UE’s 104, 182, 190 may respond with measurement reports accordingly.
FIG. 2 illustrates several sample components (represented by corresponding blocks) that may be incorporated into an apparatus 202 and an apparatus 204 (corresponding to, for example, a UE and a base station (e.g., eNB, gNB) , respectively, to support the operations as disclosed herein. As an example, the apparatus 202 may correspond to a UE, and the apparatus 204 may correspond to a network node such as a gNB and/or an eNB. It will be appreciated that the components may be implemented in different types of apparatuses in different implementations (e.g., in an ASIC, in a System-on-Chip (SoC) , etc. ) . The illustrated components may also be incorporated into other apparatuses in a communication system. For example, other apparatuses in a system may include components similar to those described to provide similar functionality. Also, a given apparatus may contain one or more of the components. For example, an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
The apparatus 202 and the apparatus 204 each may include at least one wireless communication device (represented by the communication devices 208 and 214) for communicating with other nodes via at least one designated RAT (e.g., LTE, NR) . Each communication device 208 may include at least one transmitter (represented by the transmitter 210) for transmitting and encoding signals (e.g., messages, indications, information, and so on) and at least one receiver (represented by the receiver 212) for receiving and decoding signals (e.g., messages, indications, information, pilots, and so on) . Each communication device 214 may include at least one transmitter (represented by the transmitter 216) for transmitting signals (e.g., messages, indications, information, pilots, and so on) and at least one receiver (represented by the receiver 218) for receiving signals (e.g., messages, indications, information, and so on) .
A transmitter and a receiver may comprise an integrated device (e.g., embodied as a transmitter circuit and a receiver circuit of a single communication device) in some implementations, may comprise a separate transmitter device and a separate receiver device in some implementations, or may be embodied in other ways in other implementations. In an aspect, a transmitter may include a plurality of antennas, such as an antenna array, that permits the respective apparatus to perform transmit “beamforming, ” as described further herein. Similarly, a receiver may include a plurality of antennas, such as an antenna array, that permits the respective apparatus to perform receive beamforming, as described further herein. In an aspect, the transmitter and receiver may share the same plurality of antennas, such that the respective apparatus can only receive or transmit at a given time, not both at the same time. A wireless communication device (e.g., one of multiple wireless communication devices) of the apparatus 204 may also comprise a Network Listen Module (NLM) or the like for performing various measurements.
The apparatus 204 may include at least one communication device (represented by the communication device 220) for communicating with other nodes. For example, the communication device 220 may comprise a network interface (e.g., one or more network access ports) configured to communicate with one or more network entities via a wire-based or wireless backhaul connection. In some aspects, the communication device 220 may be implemented as a transceiver configured to support wire-based or wireless signal communication. This communication may involve, for example, sending and receiving messages, parameters, or other types of information.  Accordingly, in the example of FIG. 2, the communication device 220 is shown as comprising a transmitter 222 and a receiver 224 (e.g., network access ports for transmitting and receiving) .
The  apparatuses  202 and 204 may also include other components used in conjunction with the operations as disclosed herein. The apparatus 202 may include a processing system 232 for providing functionality relating to, for example, communication with the network. The apparatus 204 may include a processing system 234 for providing functionality relating to, for example, communication with the UEs. In an aspect, the  processing systems  232 and 234 may include, for example, one or more general purpose processors, multi-core processors, ASICs, digital signal processors (DSPs) , field programmable gate arrays (FPGA) , or other programmable logic devices or processing circuitry.
The  apparatuses  202 and 204 may include  measurement components  252 and 254 that may be used to obtain channel related measurements. The measurement component 252 may measure one or more downlink (DL) signals such as channel state information reference signal (CSI-RS) , phase tracking reference signal (PTRS) , primary synchronization signal (PSS) , secondary synchronization signal (SSS) , demodulation reference signal (DMRS) , etc. The measurement component 254 may measure one or more uplink (UL) signals such as DMRS, sounding reference signal (SRS) , etc.
The  apparatuses  202 and 204 may include memory components 238 and 240 (e.g., each including a memory device) , respectively, for maintaining information (e.g., information indicative of reserved resources, thresholds, parameters, and so on) . In various implementations, memory 238 can comprise a computer-readable medium storing one or more computer-executable instructions for a user equipment (UE) where the one or more instructions instruct apparatus 202 (e.g., processing system 232 in combination with communications device 208 and/or other aspects of apparatus 202) to perform any of the functions of FIGs. 3, 4, and 5. In addition, the  apparatuses  202 and 204 may include  user interface devices  244 and 246, respectively, for providing indications (e.g., audible and/or visual indications) to a user and/or for receiving user input (e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on) .
For convenience, the  apparatuses  202 and 204 are shown in FIG. 2 as including various components that may be configured according to the various examples described herein.  It will be appreciated, however, that the illustrated blocks may have different functionality in different designs.
The components of FIG. 2 may be implemented in various ways. In some implementations, the components of FIG. 2 may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors) . Here, each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality. For example, some or all of the functionality represented by  blocks  208, 232, 238, and 244 may be implemented by processor and memory component (s) of the apparatus 202 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) . Similarly, some or all of the functionality represented by  blocks  214, 220, 234, 240, and 246 may be implemented by processor and memory component (s) of the apparatus 204 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components) .
In an aspect, the apparatus 204 may correspond to a “small cell” or a Home gNodeB. The apparatus 202 may transmit and receive messages via a wireless link 260 with the apparatus 204, the messages including information related to various types of communication (e.g., voice, data, multimedia services, associated control signaling, etc. ) . The wireless link 260 may operate over a communication medium of interest, shown by way of example in FIG. 2 as the medium 262, which may be shared with other communications as well as other RATs. A medium of this type may be composed of one or more frequency, time, and/or space communication resources (e.g., encompassing one or more channels across one or more carriers) associated with communication between one or more transmitter /receiver pairs, such as the apparatus 204 and the apparatus 202 for the medium 262.
In general, the apparatus 202 and the apparatus 204 may operate via the wireless link 260 according to one or more radio access types, such as LTE, LTE-U, or NR, depending on the network in which they are deployed. These networks may include, for example, different variants of CDMA networks (e.g., LTE networks, NR networks, etc. ) , TDMA networks, FDMA networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, and so on.
A UE may be capable of operating in multiple radio access technologies (RATs) . For example, a UE may be capable of operating in a first RAT (e.g., NR) and in a second  RAT (e.g., LTE) . These are merely examples, and first and second RATs may be any of the RATs currently known (e.g., WiMax, CDMA, WCDMA, UTRA, Evolved Universal Terrestrial Radio Access (E-UTRA) , GSM, FDMA, GSM, TDMA, etc. ) .
Also, a UE may be may be capable of operating in multiple RATs at the same time. For example, a UE that can operate in both LTE and NR simultaneously is an E-UTRA-New Radio Dual Connectivity (ENDC) capable UE. Note that ENDC is an example of Multi-RAT DC (MRDC) capability. In general, when an MRDC capable UE is operating in two RATs, it may be communicating with a base station (e.g., eNB) of a first RAT (e.g., LTE) and with a base station (e.g., gNB) of a second RAT (e.g., NR) .
Note that even if a UE is able to operate in first and second RATs, it may be limited in the bands that it can operate. For example, LTE defines bands 1–88 and NR defines bands n1–n95 in frequency range (FR) 1 and n257–n268 in FR2. A UE may be limited in the LTE bands and/or limited in the NR bands it supports. Also, even if the UE is capable of supporting a given LTE band (referred to herein, for ease of reference, as band X) and a given NR band (referred to herein, for ease of reference, as band Y) , it may not be capable of simultaneously supporting band X and band Y, that is, the UE may not be MRDC capable in band X and band Y as only certain band combinations may be supported in MRDC for a given UE.
For ease of reference, when a UE is capable of operating in a first band of a first RAT (e.g., LTE) and in a second band of a second RAT (e.g., NR) simultaneously, the UE may be referred to as being MRDC capable in first and second RATs. Note that the first and second bands may or may not overlap. When the UE operates in the first RAT, it may communicate with a network node (e.g., base station, eNB, etc. ) of the first RAT. Similarly, when the UE operates in the second RAT, it may communicate with a network node (e.g., base station, gNB, etc. ) of the second RAT.
The UE may be capable of operating in a standalone (SA) or in a non-standalone (NSA) mode within a given RAT. When operating in the SA mode, the UE is able to exchange both control and data plane information with the network node and/or the core network of the given RAT (e.g., NR) . When operating in the NSA mode, the UE is communicating with network nodes of the first and second RATs. In the NSA mode, the UE can exchange data plane information with the network nodes of both the first RAT (e.g., LTE) and the second RAT (e.g., NR) . However, the control plane information is exchanged only with the network node of the first RAT (e.g., LTE) .
When the UE is working in a first band of a first RAT, the network may configure a second band of a second RAT measurement control order (MCO) to the UE. For example, while an ENDC supported UE is working in 4G LTE band X, the network may configure 5G NR band Y cell MCO to the UE. It may be that the UE can support both the first band of the first RAT (e.g., LTE band X) and the second band of the second RAT (e.g., NR band Y) , the UE may not be MRDC capable in the first and second bands (e.g., UE may not be LTE band X + NR band Y MRDC capable) .
This type of MCO can be nonsensical in that the UE may not be expected to work in the first and second band MRDC mode (e.g., not expected to work in the band X + NR band Y ENDC mode) . Attempting to fulfill such MCO can be harmful in that the UE’s power consumption can be high with meaningless heavy load in low layer.
In an aspect, measurement control in a network may be viewed as a series of common solutions which may not be accurately customized for each single specific mobile device. In some occasions, the network can send MCOs to a UE even before performing a process to determine the capability of the UE. If the UE is capable of operating in the second band of the second RAT included in the MCO, in theory, the UE should be able to fulfill the MCO.
However, when the UE receives the MCO while operating in the first band of the first RAT, it can have undesirable consequences. As an illustration, assume that a UE is working in 4G LTE band X (e.g., first band of first RAT) and receives a 5G NR band Y (e.g., second band of second RAT) MCO. When 5G measurements are actively scheduled, the UE can consume high power in 5G part compared with the single LTE mode. Also, the measurements tasks can last a long time since the network typically do not deal well with the MCO when the UE does not really have  Band-X + Band-Y MRDC capability. Also, even when the UE responds with the 5G measurement report to the network, the network can be stuck in an abnormal status.
To address such issues, it is proposed to add a smart filter to the UE so as to minimize or even eliminate making nonsensical measurements. FIG. 3 illustrates an example flow of a scenario in which a smart filter is used to minimize nonsensical measurements. In FIG. 3, the UE may be assumed to be a 5G UE that is also capable of operating in 4G LTE. In box 310, while working in LTE band X, the UE may receive a 5G MCO for a 5G band Y.
In box 320, the UE may determine whether it supports 5G SA mode. If so (Y branch from block 320) , then in block 330, then the UE may fulfill the 5G MCO. Presumably, if the UE does support the 5G SA mode, then it will be able to fulfill the 5G MCO without incurring the high power consumption penalty. In an aspect, the UE may determine that the 5G SA mode is supported if the 5G SA mode is enabled in the UE. But in another aspect, multiple conditions may need to be satisfied. For example, the UE may determine that the 5G SA mode is supported when the 5G SA mode is enabled and when a setting indicates that the 5G SA mode is preferred over the 5G NSA mode.
If it is determined that the UE does not support the 5G SA mode (N branch from block 320) , then in block 340, the UE may determine whether it supports the LTE band X +NR band Y MRDC. If so (Y branch from block 340) , then the UE may also fulfill the 5G MCO in block 330. If not (N branch from block 340) , the UE may ignore the 5G MCO.
FIG. 4 illustrates a flow chart of an exemplary method for fulfilling measurement control order with a UE capable of operating in multiple radio access technologies in accordance with one or more aspects of the disclosure. FIG. 4 may be viewed as a generalization of the flow of FIG. 3. In block 410, while operating in the first RAT, the UE may receive an MCO from a network node. The MCO may specify one or more measurements in the second RAT. Means for performing the functionality of block 410 can, but not necessarily, include, for example, receiver 212, processing system 232, and/or memory component 238, or any combination thereof, with reference to FIG. 2.
In block 420, the UE may determine whether it is capable of fulfilling the MCO. FIG. 5 illustrates a flow chart of an example process that may be performed by the UE to implement block 420. In block 510, the UE may determine whether an SA mode operation in the second RAT is enabled in the UE. If so (left Y branch from block 510) , the UE may determine that it is capable of fulfilling the MCO.
Alternatively, (lower Y branch from block 510) the UE may apply further criteria to determine whether MCO may be fulfilled. In this alternative, in block 520, the UE may determine whether the SA mode operation in the second RAT is set as being preferred over the NSA mode operation. If so (Y branch from block 520) , the UE may determine that it is capable of fulfilling the MCO.
From block 510, if it is determined that the SA mode operation in the second RAT is not enabled (N branch from block 510) , the method may proceed to block 530. In one  aspect, the SA mode operation in the second RAT may be disabled. In another aspect, there may be no indication of whether the SA mode operation in the second RAT is enabled or disabled.
The method may also proceed to block 530 from block 520 if it is determined that the SA mode operation in the second RAT is not set as being preferred (N branch from block 520) . In one aspect, the SA mode operation in the second RAT may be non-preferred. In another aspect, there may be no indication of whether the SA mode operation in the second RAT is preferred or non-preferred.
In block 530, the UE may determine whether it is MRDC capable in the first band of the first RAT and in the second band of the second RAT. If so (Y branch from block 530) , the UE may determine that it is capable of fulfilling the MCO. Otherwise (N branch from block 530) , the UE may determine that it is not capable of fulfilling the MCO. Means for performing the functionality of  blocks  420, 510, 520, 530, and/or 540 can, but not necessarily, include, for example, processing system 232 and/or memory component 238, or any combination thereof, with reference to FIG. 2.
Referring back to FIG. 4, if it is determined that the UE is capable of fulfilling the MCO (Y branch from block 420) , then the UE may fulfill the MCO in block 430. That is, the UE may make measurements according to the MCO and report back the results. On the other hand, if it is determined that the UE is not capable of fulfilling the MCO (N branch from block 420) , then the UE may ignore the MCO in block 440. Means for performing the functionality of block 430 can, but not necessarily, include, for example, receiver 212, processing system 232, memory component 238, and/or measurement component 252, or any combination thereof, with reference to FIG. 2.
FIG. 6 illustrates an example user equipment apparatus 600 represented as a series of interrelated functional modules connected by a common bus. Each of the modules may be implemented in hardware or as a combination of hardware and software. For example, the modules may be implemented as any combination of the modules of the apparatus 202 of FIG. 2. A module for receiving measurement control order 610 may correspond at least in some aspects to a communication device (e.g., communication device 208) , a processing system (e.g., processing system 232) , and/or a memory component (e.g., memory component 238) . A module for determining whether UE is capable of fulfilling the MCO 620 may correspond at least in some aspects to a processing system (e.g., processing system 232) and/or a memory component (e.g.,  memory component 238) . A module for fulfilling the MCO 630 may correspond at least in some aspects to communication device (e.g., communication device 208) , a processing system (e.g., processing system 232) , a memory component (e.g., memory component 238) , and/or a measurement component (e.g., measurement component 252) .
The functionality of the modules of FIG. 9 may be implemented in various ways consistent with the teachings herein. In some designs, the functionality of these modules may be implemented as one or more electrical components. In some designs, the functionality of these blocks may be implemented as a processing system including one or more processor components. In some designs, the functionality of these modules may be implemented using, for example, at least a portion of one or more integrated circuits (e.g., an ASIC) . As discussed herein, an integrated circuit may include a processor, software, other related components, or some combination thereof. Thus, the functionality of different modules may be implemented, for example, as different subsets of an integrated circuit, as different subsets of a set of software modules, or a combination thereof. Also, it will be appreciated that a given subset (e.g., of an integrated circuit and/or of a set of software modules) may provide at least a portion of the functionality for more than one module.
In addition, the components and functions represented by FIG. 9, as well as other components and functions described herein, may be implemented using any suitable means. Such means also may be implemented, at least in part, using corresponding structure as taught herein. For example, the components described above in conjunction with the “module for” components of FIG. 9 also may correspond to similarly designated “means for” functionality. Thus, in some aspects one or more of such means may be implemented using one or more of processor components, integrated circuits, or other suitable structure as taught herein.
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects  disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
The various illustrative logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in random access memory (RAM) , flash memory, read-only memory (ROM) , erasable programmable ROM (EPROM) , electrically erasable programmable ROM (EEPROM) , registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal (e.g., UE) . In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software,  the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
While the foregoing disclosure shows illustrative aspects of the disclosure, it should be noted that various changes and modifications could be made herein without departing from the scope of the disclosure as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although elements of the disclosure may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.

Claims (30)

  1. A user equipment (UE) configured to operate in first and second radio access technologies (RATs) , comprising:
    a processor;
    a memory; and
    a transceiver,
    wherein the processor, the memory, and/or the transceiver are configured to:
    receive a measurement control order (MCO) from a network node while operating in the first RAT, the MCO specifying one or more measurements in the second RAT;
    determine whether the UE is capable of fulfilling the MCO; and
    fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
  2. The UE of claim 1, wherein the first RAT is 4G Long Term Evolution (LTE) and the second RAT is 5G New Radio (NR) .
  3. The UE of claim 1, wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are configured to:
    determine whether a standalone (SA) mode operation in the second RAT is enabled in the UE; and
    determine that the UE is capable of fulfilling the MCO when it is determined that the SA mode operation in the second RAT is enabled in the UE.
  4. The UE of claim 3,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are further configured to:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE, determine whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT; and
    determine that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  5. The UE of claim 4, wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are further configured to determine that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  6. The UE of claim 1, wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are configured to:
    determine whether a standalone (SA) mode operation in the second RAT is enabled in the UE;
    determine whether the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation when it is determined that the SA mode operation in the second RAT is enabled in the UE; and
    determine that the UE is capable of fulfilling the MCO when it is determined that
    the SA mode operation in the second RAT is enabled in the UE, and
    the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation.
  7. The UE of claim 6,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are further configured to:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE and/or when it is determined that the SA mode operation is not set in the UE as being preferred over the NSA mode operation, determine whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT; and
    determine that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  8. The UE of claim 7 wherein in determining whether the UE is capable of fulfilling the MCO, the processor, the memory, and/or the transceiver are further configured to determine that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  9. The UE of claim 1, wherein the processor, the memory, and/or the transceiver are further configured to ignore the MCO when it is determined that the UE is not capable of fulfilling the MCO.
  10. A method of a user equipment (UE) configured to operate in first and second radio access technologies (RATs) , the method comprising:
    receiving a measurement control order (MCO) from a network node while operating in the first RAT, the MCO specifying one or more measurements in the second RAT;
    determining whether the UE is capable of fulfilling the MCO; and
    fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
  11. The method of claim 10, wherein the first RAT is 4G Long Term Evolution (LTE) and the second RAT is 5G New Radio (NR) .
  12. The method of claim 10, wherein determining whether the UE is capable of fulfilling the MCO further comprises:
    determining whether a standalone (SA) mode operation in the second RAT is enabled in the UE; and
    determining that the UE is capable of fulfilling the MCO when it is determined that the SA mode operation in the second RAT is enabled in the UE.
  13. The method of claim 12,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein determining whether the UE is capable of fulfilling the MCO further comprises:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE, determining whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT; and
    determining that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  14. The method of claim 13, wherein determining whether the UE is capable of fulfilling the MCO further comprises determining that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  15. The method of claim 10, wherein determining whether the UE is capable of fulfilling the MCO further comprises:
    determining whether a standalone (SA) mode operation in the second RAT is enabled in the UE;
    determining whether the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation when it is determined that the SA mode operation in the second RAT is enabled in the UE; and
    determining that the UE is capable of fulfilling the MCO when it is determined that
    the SA mode operation in the second RAT is enabled in the UE, and
    the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation.
  16. The method of claim 15,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein determining whether the UE is capable of fulfilling the MCO further comprises:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE and/or when it is determined that the SA mode operation is not set in the UE as being preferred over the NSA mode operation, determining whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT; and
    determining that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  17. The method of claim 16, wherein determining whether the UE is capable of fulfilling the MCO further comprises determining that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  18. The method of claim 10, wherein the method further comprises ignoring the MCO when it is determined that the UE is not capable of fulfilling the MCO.
  19. A user equipment (UE) configured to operate in first and second radio access technologies (RATs) , comprising:
    means for receiving a measurement control order (MCO) from a network node while operating in the first RAT, the MCO specifying one or more measurements in the second RAT;
    means for determining whether the UE is capable of fulfilling the MCO; and
    means for fulfilling the MCO when it is determined that the UE is capable of fulfilling the MCO.
  20. The UE of claim 19, wherein the means for determining whether the UE is capable of fulfilling the MCO comprises:
    means for determining whether a standalone (SA) mode operation in the second RAT is enabled in the UE; and
    means for determining that the UE is capable of fulfilling the MCO when it is determined that the SA mode operation in the second RAT is enabled in the UE.
  21. The UE of claim 20,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein the means for determining whether the UE is capable of fulfilling the MCO comprises:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE, means for determining whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT;
    means for determining that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT; and
    means for determining that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  22. The UE of claim 19, wherein the means for determining whether the UE is capable of fulfilling the MCO comprises:
    means for determining whether a standalone (SA) mode operation in the second RAT is enabled in the UE;
    means for determining whether the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation when it is determined that the SA mode operation in the second RAT is enabled in the UE; and
    means for determining that the UE is capable of fulfilling the MCO when it is determined that
    the SA mode operation in the second RAT is enabled in the UE, and
    the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation.
  23. The UE of claim 22,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein the means for determining whether the UE is capable of fulfilling the MCO comprises:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE and/or when it is determined that the SA mode operation is not set in the UE as being preferred over the NSA mode operation, means for determining whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT;
    means for determining that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT; and
    means for determining that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  24. The UE of claim 19, further comprising means for ignoring the MCO when it is determined that the UE is not capable of fulfilling the MCO.
  25. A non-transitory computer-readable medium storing computer-executable instructions for a user equipment (UE) , the computer-executable instructions comprising:
    one or more instructions instructing the UE to receive a measurement control order (MCO) from a network node while operating in the first RAT, the MCO specifying one or more measurements in the second RAT;
    one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO; and
    one or more instructions instructing the UE to fulfill the MCO when it is determined that the UE is capable of fulfilling the MCO.
  26. The non-transitory computer-readable medium of claim 25, wherein in the one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO instruct the UE to:
    determine whether a standalone (SA) mode operation in the second RAT is enabled in the UE; and
    determine that the UE is capable of fulfilling the MCO when it is determined that the SA mode operation in the second RAT is enabled in the UE.
  27. The non-transitory computer-readable medium of claim 26,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein in the one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO further instruct the UE to:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE, determine whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT;
    determine that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT; and
    determine that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  28. The non-transitory computer-readable medium of claim 25, wherein in the one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO instruct the UE to:
    determine whether a standalone (SA) mode operation in the second RAT is enabled in the UE;
    determine whether the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation when it is determined that the SA mode operation in the second RAT is enabled in the UE; and
    determine that the UE is capable of fulfilling the MCO when it is determined that
    the SA mode operation in the second RAT is enabled in the UE, and
    the SA mode operation is set in the UE as being preferred over a non-standalone (NSA) mode operation.
  29. The non-transitory computer-readable medium of claim 28,
    wherein the UE is operating in a first band of the first RAT,
    wherein the MCO specifies one or more measurements in a second band of the second RAT, and
    wherein in the one or more instructions instructing the UE to determine whether the UE is capable of fulfilling the MCO further instruct the UE to:
    when it is determined that the SA mode operation in the second RAT is not enabled in the UE and/or when it is determined that the SA mode operation is not set in the UE as being preferred over the NSA mode operation, determine whether the UE is multi-RAT dual connectivity (MRDC) capable in the first band of the first RAT and in the second band of the second RAT, the MRDC capability indicating a capability of the UE to simultaneously operate in a band X of the first RAT and a band Y of the second RAT;
    determine that the UE is capable of fulfilling the MCO when it is determined that the UE is MRDC capable in the first band of the first RAT and in the second band of the second RAT; and
    determine that the UE is not capable of fulfilling the MCO when it is determined that the UE is not MRDC capable in the first band of the first RAT and in the second band of the second RAT.
  30. The non-transitory computer-readable medium of claim 25, the computer-executable instructions further comprising one or more instructions instructing the UE to ignore the MCO when it is determined that the UE is not capable of fulfilling the MCO.
PCT/CN2020/082279 2020-03-31 2020-03-31 Nonsensical cell measurements WO2021195920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082279 WO2021195920A1 (en) 2020-03-31 2020-03-31 Nonsensical cell measurements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082279 WO2021195920A1 (en) 2020-03-31 2020-03-31 Nonsensical cell measurements

Publications (1)

Publication Number Publication Date
WO2021195920A1 true WO2021195920A1 (en) 2021-10-07

Family

ID=77926945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082279 WO2021195920A1 (en) 2020-03-31 2020-03-31 Nonsensical cell measurements

Country Status (1)

Country Link
WO (1) WO2021195920A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550876A1 (en) * 2016-12-29 2019-10-09 LG Electronics Inc. -1- Method and apparatus for establishing drb
CN110351741A (en) * 2018-04-04 2019-10-18 华为技术有限公司 Measurement method, display control method and equipment
CN110912661A (en) * 2018-09-14 2020-03-24 华为技术有限公司 Capability information receiving and sending method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550876A1 (en) * 2016-12-29 2019-10-09 LG Electronics Inc. -1- Method and apparatus for establishing drb
CN110351741A (en) * 2018-04-04 2019-10-18 华为技术有限公司 Measurement method, display control method and equipment
CN110912661A (en) * 2018-09-14 2020-03-24 华为技术有限公司 Capability information receiving and sending method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "NR-NR DC architectural principles", 3GPP DRAFT; R2-1812037 NR-NR DC PRINCIPLES, vol. RAN WG2, 10 August 2018 (2018-08-10), Gothenburg, Sweden, pages 1 - 5, XP051521661 *

Similar Documents

Publication Publication Date Title
US11785514B2 (en) Key performance indicator improvements in wireless communication
US11388637B1 (en) Cell selection for conditional handover
US20210360545A1 (en) Methods and apparatuses for synchronization signal (ss) rasters and overlapping bands
TWI594653B (en) A method and apparatus for detecting the proximity of a user's device
US20220150035A1 (en) Dynamic and semi-persistent scheduling mixed multi-panel uplink precoding
WO2021243510A1 (en) Public land mobile network selection enhancement
WO2021237395A1 (en) Triggering an attach procedure after disablement of dual connectivity with new radio mode
WO2021237700A1 (en) Self-adaption in wireless network
US11711868B2 (en) System and method for radio frequency band selection for new radio standalone and non-standalone services
WO2022067474A1 (en) Enhanced recovery from radio link failure
EP4240084A1 (en) Random access method and apparatus, and communication device
WO2021223210A1 (en) Eps bearer reestablishment after handoff
US20230224806A1 (en) Recovery from authentication failure
WO2021195920A1 (en) Nonsensical cell measurements
WO2021253375A1 (en) Self-adaptive emergency calling
WO2021237698A1 (en) Stable service with multiple data subscriptions
WO2021227072A1 (en) Methods for communication, terminal device, network device, and computer readable media
WO2021243691A1 (en) Fast switching between radio access technologies in wireless communication
US20240080755A1 (en) Roaming optimization for non-standalone mode
WO2021237701A1 (en) Fast recovery in non-standalone mode wireless communication
WO2021248258A1 (en) Stable secondary cell group connection
WO2021248354A1 (en) Optimized access and mobility function relocation in devices with multiple subscriber identity modules
WO2021223055A1 (en) Self-adaption in wireless network
US20220248285A1 (en) Optimal cell changeover in multicell environment when conditional cell changeover is configured
WO2021232395A1 (en) Recovery from voice packet service registration failure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929040

Country of ref document: EP

Kind code of ref document: A1