WO2021195800A1 - Code block segmentation for downlink control information - Google Patents

Code block segmentation for downlink control information Download PDF

Info

Publication number
WO2021195800A1
WO2021195800A1 PCT/CN2020/081892 CN2020081892W WO2021195800A1 WO 2021195800 A1 WO2021195800 A1 WO 2021195800A1 CN 2020081892 W CN2020081892 W CN 2020081892W WO 2021195800 A1 WO2021195800 A1 WO 2021195800A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
code blocks
information bits
code
crc
Prior art date
Application number
PCT/CN2020/081892
Other languages
French (fr)
Inventor
Changlong Xu
Jing Sun
Xiaoxia Zhang
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/081892 priority Critical patent/WO2021195800A1/en
Publication of WO2021195800A1 publication Critical patent/WO2021195800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission.
  • DCI downlink control information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • the method generally includes receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and communicating based on the DCI.
  • DCI downlink control information
  • the method generally includes dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and communicating with a user equipment (UE) based on the DCI.
  • DCI downlink control information
  • the apparatus generally includes a processor configured to: receive a downlink control information (DCI) in a plurality of A code blocks; determine the DCI based on the A code blocks; and communicate based on the DCI; and a memory coupled with the processor.
  • DCI downlink control information
  • the apparatus generally includes a processor configured to: divide a downlink control information (DCI) into a plurality of A code blocks; transmit the A code blocks; and communicate with a user equipment (UE) based on the DCI; and a memory coupled with the processor.
  • DCI downlink control information
  • UE user equipment
  • the apparatus generally includes means for receiving a downlink control information (DCI) in a plurality of A code blocks; means for determining the DCI based on the A code blocks; and means for communicating based on the DCI.
  • DCI downlink control information
  • the apparatus generally includes means for dividing a downlink control information (DCI) into a plurality of A code blocks; means for transmitting the A code blocks; and means for communicating with a user equipment (UE) based on the DCI.
  • DCI downlink control information
  • UE user equipment
  • Certain aspects of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications by a user equipment (UE) including instructions that, when executed by a processing system, cause the processing system to perform operations.
  • the operations generally include receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and communicating based on the DCI.
  • DCI downlink control information
  • Certain aspects of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications by a base station (BS) including instructions that, when executed by a processing system, cause the processing system to perform operations.
  • the operations generally include dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and communicating with a user equipment (UE) based on the DCI.
  • DCI downlink control information
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example wireless communication network, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 3 is an example frame format for certain wireless communication systems (e.g., new radio (NR) ) , in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIG. 4 is a schematic illustration of a DCI segmentation technique assigning similar numbers of information bits to code blocks, according to aspects of the present disclosure.
  • FIG. 5 is a schematic illustration of a DCI segmentation technique assigning a maximum number of information bits to all but one code block, according to aspects of the present disclosure.
  • FIG. 6 is a schematic illustration of a DCI segmentation technique that uses a transport block (TB) level cyclic redundancy check (CRC) and a CRC per each code block (CB) , in accordance with certain aspects of the present disclosure.
  • TB transport block
  • CRC cyclic redundancy check
  • CB per each code block
  • FIG. 7 is a flow diagram illustrating example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 8 is a flow diagram illustrating example operations for wireless communication by a BS, in accordance with certain aspects of the present disclosure.
  • FIG. 9 illustrates a communications device that may include various components configured to perform the operations illustrated in FIG. 7, in accordance with aspects of the present disclosure.
  • FIG. 10 illustrates a communications device that may include various components configured to perform the operations illustrated in FIG. 8, in accordance with aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission.
  • polar codes may be adopted for coding control channels (e.g., physical downlink control channels (PDCCHs) ) in new radio (NR) communications systems.
  • a maximum coded block size is 512 bits for downlink control channel transmissions and 1024 bits for uplink control channel transmissions. These maximum coded block sizes are related to the size of a control resource set (CORESET) .
  • the minimum coding rate for transmissions in these systems is 1/8.
  • the maximum payload size (i.e., without CRC) of a DCI is 140 bits, and a 24-bit cyclic redundancy check (CRC) is appended to the payload.
  • Rate-matching schemes may include shortening, puncturing, and repetition.
  • the decoding complexity may be calculated as O (N ⁇ log_2 (N) ) , where N is the number of coded bits. In other words, complexity is not a direct function of the coding rate, though there may be a coding gain loss as the size of the payload (e.g., size in information bits) increases.
  • mmWave frequency band communications An issue for millimeter wavelength (mmWave) frequency band communications is transmitting DCI for the mmWave frequency band in PDSCHs, also referred to as “piggybacking” in PDSCH. It is desirable to have large DCI payload sizes (e.g., larger than 140 bits) for mmWave DCI piggybacking in PDSCHs. However, current techniques do not support payload sizes is larger than 140 bits.
  • transmission of a DCI on a control channel may use code block (CB) segmentation to enable transmission of large DCI payloads.
  • CB code block
  • code block segmentation of DCI may be implemented without changing (e.g., changing hardware or software) currently known polar decoders.
  • DCI downlink control information
  • Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • the techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
  • 3G, 4G, and/or new radio e.g., 5G NR
  • NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., e.g., 24 GHz to 53 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • NR supports beamforming and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE.
  • Multi-layer transmissions with up to 2 streams per UE may be supported.
  • Aggregation of multiple cells may be supported with up to 8 serving cells.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be an NR system (e.g., a 5G NR network) .
  • the wireless communication network 100 may be in communication with a core network 132.
  • the core network 132 may in communication with one or more base station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
  • BSs base station
  • UE user equipment
  • the BSs 110 and UEs 120 may be configured for segmenting a downlink control information (DCI) into code blocks for transmission and/or receiving a DCI that has been segmented into code blocks for transmission.
  • the BS 110a includes a DCI CB segment manager 112 that divides a downlink control information (DCI) into a plurality of A code blocks; transmits the A code blocks; and communicates (e.g., transmits a downlink data transmission to or receives an uplink transmission from) with (e.g., transmits a downlink data transmission to or receives an uplink transmission from) a user equipment (UE, e.g., UE 120a) based on the DCI, in accordance with aspects of the present disclosure.
  • UE user equipment
  • the UE 120a includes a DCI CB segment manager 122 that receives a downlink control information (DCI) in a plurality of A code blocks; determines the DCI based on the A code blocks; and communicates (e.g., receives a signal or transmits a signal) based on the DCI, in accordance with aspects of the present disclosure.
  • DCI downlink control information
  • the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces e.g., a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • the BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations e.g., relay station 110r
  • relays or the like that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • a network controller 130 may be in communication with a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) .
  • the network controller 130 may be in communication with a core network 132 (e.g., a 5G Core Network (5GC) ) , which provides various network functions such as Access and Mobility Management, Session Management, User Plane Function, Policy Control Function, Authentication Server Function, Unified Data Management, Application Function, Network Exposure Function, Network Repository Function, Network Slice Selection Function, etc.
  • 5GC 5G Core Network
  • FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • a medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be used for control command exchange between wireless nodes.
  • the MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSSCH physical sidelink shared channel
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , PBCH demodulation reference signal (DMRS) , and channel state information reference signal (CSI-RS) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DMRS PBCH demodulation reference signal
  • CSI-RS channel state information reference signal
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t.
  • MIMO modulation reference signal
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • a respective output symbol stream e.g., for OFDM, etc.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the memories 242 and 282 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein.
  • the controller/processor 240 of the BS 110a has a DCI CB segment manager 241 that divides a downlink control information (DCI) into a plurality of A code blocks; transmits the A code blocks; and communicates with a user equipment (UE) based on the DCI, according to aspects described herein.
  • DCI downlink control information
  • UE user equipment
  • the controller/processor 280 of the UE 120a has a DCI CB segment manager 281 that receives a downlink control information (DCI) in a plurality of A code blocks; determines the DCI based on the A code blocks; and communicates based on the DCI, according to aspects described herein.
  • DCI downlink control information
  • other components of the UE 120a and BS 110a may be used to perform the operations described herein.
  • NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink.
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • NR may support half-duplex operation using time division duplexing (TDD) .
  • OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth.
  • the minimum resource allocation may be 12 consecutive subcarriers.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs.
  • NR may support a base subcarrier spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
  • SCS base subcarrier spacing
  • FIG. 3 is a diagram showing an example of a frame format 300 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the SCS.
  • Each slot may include a variable number of symbol periods (e.g., 7, 12, or 14 symbols) depending on the SCS.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal block is transmitted.
  • SSBs may be transmitted in a burst where each SSB in the burst corresponds to a different beam direction for UE-side beam management (e.g., including beam selection and/or beam refinement) .
  • the SSB includes a PSS, a SSS, and a two symbol PBCH.
  • the SSB can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SSBs may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
  • the SSB can be transmitted up to sixty-four times, for example, with up to sixty-four different beam directions for mmWave.
  • the multiple transmissions of the SSB are referred to as a SS burst set.
  • SSBs in an SS burst set may be transmitted in the same frequency region, while SSBs in different SS bursts sets can be transmitted at different frequency regions.
  • DCI downlink control information
  • aspects of the present disclosure provide techniques for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission.
  • DCI downlink control information
  • transmission of a DCI on a control channel may use code block (CB) segmentation to enable transmission of large DCI payloads.
  • CB code block
  • a device may receive a DCI that has been segmented into code blocks, determine the DCI, and communicate according to the DCI.
  • a large DCI payload may be segmented into multiple CBs.
  • the maximum CB size is 164 bits, including a 24-bit CRC. This is fully compliant with currently known specifications.
  • a DCI may be segmented into code blocks having two sizes, according to two techniques described below.
  • a DCI payload having a size of L bits may be divided based on a maximum number of information bits to be included in each CB, without including CRC. For example, if the maximum number of information bits to be included in each CB is 140 bits, then
  • the two CB sizes as close as possible to each other. This may enable similar block error-rate (BLER) performance for each CB.
  • the first code blocks are assigned information bits + a CRC (e.g., a 24-bit CRC) .
  • the remaining code blocks are assigned information bits + a CRC (e.g., a 24-bit CRC) .
  • FIG. 4 is a schematic illustration 400 of the DCI segmentation technique described above, according to aspects of the present disclosure.
  • the technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI 402 of 808 information bits to transmit, with a maximum of 140 information bits in each code block.
  • the device determines to use code blocks to segment the DCI.
  • the device assigns information bits to the first code blocks and assigns information bits to the remaining code blocks.
  • the device also attaches a 24-bit CRC to each code block, thus the device forms 2 code blocks with 157 bits (133 information bits plus 24 CRC bits) and 4 code blocks with 158 bits (134 information bits plus 24 CRC bits) , as shown at 406.
  • the device then polar encodes the 6 code blocks at 408 before transmitting the code blocks.
  • the DCI is segmented by assigning the maximum CB size (e.g., 140 bits) to each CB in a first group of CBs, and any remaining bits are assigned to a last CB.
  • the maximum number of information bits to be included in each CB is 140 bits
  • the first A –1 CBs are each assigned 140 information bits + a CRC (e.g., a 24-bit CRC)
  • a last code block is assigned L – (A–1) *140 information bits + a CRC (e.g., a 24-bit CRC) .
  • This technique (assigning the maximum number of information bits to all but the last CB) of segmenting a DCI may result in better parallel decoding performance, because there are A –1 blocks having a same decoding structure (i.e., same number of information bits and coded bits) .
  • FIG. 5 is a schematic illustration 500 of the DCI segmentation technique described above, according to aspects of the present disclosure.
  • the technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI 502 of 808 information bits to transmit, with a maximum of 140 information bits in each code block.
  • the device determines to use code blocks to segment the DCI.
  • the device also attaches a 24-bit CRC to each code block, thus the device forms 5 code blocks with 164 bits (140 information bits plus 24 CRC bits) and 1 code block with 132 bits (108 information bits plus 24 CRC bits) , as shown at 506.
  • the device then polar encodes the 6 code blocks at 508 before transmitting the code blocks.
  • legacy receivers i.e., legacy receivers designed to decode PDCCHs according to previous techniques.
  • per CB payload sizes larger than 140 information bits may be used for DCI segmentation. Usage of larger payload sizes may be considered an extension from currently known communications specifications (e.g., 3GPP Release 15) by relaxing the maximum information bits restriction.
  • coding gain loss due to the increased coding rate.
  • Devices may determine a tradeoff between the coding gain loss and usage of transmission resources. For example, if coding gain from usage larger payload sizes is 2/3 instead of 1/3, then there may be a 1.2 dB additional coding gain loss.
  • either of the techniques described above with reference to FIGs. 4 and 5 may be used with a bigger maximum CB length (e.g., 256 bits) by using the above described CB segmentation algorithms with the bigger maximum CB length.
  • a maximum coded block size for PDCCH of 512 bits may be equivalent to defining a maximum supported code rate.
  • code block segmenting a DCI may include including CRC bits (e.g., a first CRC) for the transport block (TB) including the code blocks of the segmented DCI and additional CRC bits (e.g., a second CRC) for each CB of the DCI.
  • CRC bits e.g., a first CRC
  • additional CRC bits e.g., a second CRC
  • code block segmenting a DCI may use a 24-bit CRC for each CB and no CRC for the TB. This is similar to legacy operations, but with a larger overhead, because of the multiple CRCs (one for each CB) for each DCI.
  • code block segmenting a DCI may use a 16-bit CRC at the transport block (TB) level and another 24-bit CRC per each CB. This may enhance the protection of the whole TB.
  • code block segmenting a DCI may use a 16-bit CRC at the TB level and another 16-bit CRC per each CB.
  • the overhead for the CRCs is reduced, as compared to a 24-bit CRC per each CB and no CRC at the TB level, if there are more than two CBs.
  • a wireless communication device may use a TB level CRC for false alarm reduction.
  • a wireless communication device may use a CB level CRC for CRC-aided SCL (successive cancellation list) decoding and false alarm reduction.
  • CRC-aided SCL uccessive cancellation list
  • FIG. 6 is a schematic illustration 600 of a DCI segmentation technique that uses a TB level CRC and a CRC per each CB, according to aspects of the present disclosure.
  • the technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI payload 602 of information bits to transmit.
  • the device attaches a TB level CRC 604 (e.g., a 16-bit CRC) to the DCI.
  • the device segments the DCI payload and attached CRC into a plurality of CBs using one of the techniques in this disclosure (see FIGs. 4 and 5) .
  • the device attaches a CB CRC 612 (e.g., a 16-bit CRC) to each of the CBs 610.
  • the device then polar encodes the code blocks and attached CRCs before transmitting the code blocks.
  • FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 700 may be performed, for example, by UE (e.g., the UE 120a in the wireless communication network 100) .
  • the operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) .
  • the transmission and reception of signals by the UE in operations 700 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) .
  • the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
  • the operations 700 may begin, at block 702, by receiving a downlink control information (DCI) in a plurality of A code blocks.
  • DCI downlink control information
  • operations 700 continue by determining the DCI based on the A code blocks.
  • the operations 700 continue at block 706 by communicating based on the DCI.
  • a device performing operations 700 may extract a group of information bits from each of the A code blocks, and each group of information bits may include N bits or N –1 information bits.
  • a device performing operations 700 may extract a group of information bits from each of the A code blocks, and each of A –1 groups of the information bits may include 140 information bits.
  • a device performing operations 700 may extract a group of information bits from each of the A code blocks and may remove a cyclic redundancy check (CRC) from each code block.
  • CRC cyclic redundancy check
  • a device performing operations 700 may determine the DCI in block 704 by: extracting a group of information bits from each of the A code blocks; combining the A groups of information bits into a transport block; and removing a cyclic redundancy check (CRC) from the transport block.
  • a device performing operations 700 may extract the group of information bits from each of the code blocks by removing a 24-bit CRC from each code block.
  • a device performing operations 700 may extract the group of information bits from each of the code blocks by removing a 16-bit CRC from each code block.
  • a device performing operations 700 may remove the CRC from the transport block by removing a 16-bit CRC from the transport block.
  • FIG. 8 is a flow diagram illustrating example operations 800 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 800 may be performed, for example, by a BS (e.g., the BS 110a in the wireless communication network 100) .
  • the operations 800 may be complementary to the operations 700 performed by the UE.
  • the operations 800 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) .
  • the transmission and reception of signals by the BS in operations 800 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) .
  • the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
  • the operations 800 may begin, at block 802, by dividing a downlink control information (DCI) into a plurality of A code blocks.
  • DCI downlink control information
  • operations 800 continue by transmitting the A code blocks.
  • Operations 800 continue at block 804 by communicating with a user equipment (UE) based on the DCI.
  • UE user equipment
  • dividing the DCI as in block 802 may include determining a number of code blocks, A, based on a number of information bits, L, in the DCI and a maximum size of each code block.
  • determining A may include calculating and dividing the DCI may further include: determining a number of information bits, N, in first code blocks by calculating assigning N information bits of the DCI to each of first code blocks; and assigning N –1 information bits of the DCI to each of second code blocks.
  • dividing the DCI includes: assigning 140 information bits of the DCI to each of A –1 code blocks; and assigning L – (A–1) *140 information bits of the DCI to one code block.
  • a device performing operations 800 may divide the DCI into the plurality of A code blocks by assigning a group of information bits of the DCI to each of the A code blocks and attaching a cyclic redundancy check (CRC) to the group of information bits in each code block.
  • CRC cyclic redundancy check
  • a device performing operations 800 may divide the DCI into the plurality of A code blocks by attaching a first cyclic redundancy check (CRC) to the DCI to form a transport block; dividing the transport block into A groups of information bits; and attaching a second cyclic redundancy check (CRC) to each of the A groups of information bits to form A code blocks.
  • a device performing operations 800 may attach the second CRC to each of the code blocks by attaching a 24-bit CRC to each code block.
  • a device performing operations 800 may attach the second CRC to each of the code blocks by attaching a 16-bit CRC to each code block.
  • a device performing operations 800 may attaching the first CRC to the DCI by attaching a 16-bit CRC to the DCI.
  • FIG. 9 illustrates a communications device 900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7.
  • the communications device 900 includes a processing system 902 coupled to a transceiver 908 (e.g., a transmitter and/or a receiver) .
  • the transceiver 908 is configured to transmit and receive signals for the communications device 900 via an antenna 910, such as the various signals as described herein.
  • the processing system 902 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
  • the processing system 902 includes a processor 904 coupled to a computer-readable medium/memory 912 via a bus 906.
  • the computer-readable medium/memory 912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 904, cause the processor 904 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for receiving a DCI that has been segmented into code blocks for transmission.
  • computer-readable medium/memory 912 stores code 914 for receiving a downlink control information (DCI) in a plurality of A code blocks; code 916 for determining the DCI based on the A code blocks; and code 918 for communicating based on the DCI.
  • DCI downlink control information
  • the processor 904 has circuitry configured to implement the code stored in the computer-readable medium/memory 912.
  • the processor 904 includes circuitry 924 for receiving a downlink control information (DCI) in a plurality of A code blocks; circuitry 926 for determining the DCI based on the A code blocks; and circuitry 928 for communicating based on the DCI.
  • DCI downlink control information
  • FIG. 10 illustrates a communications device 1000 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 8.
  • the communications device 1000 includes a processing system 1002 coupled to a transceiver 1008 (e.g., a transmitter and/or a receiver) .
  • the transceiver 1008 is configured to transmit and receive signals for the communications device 1000 via an antenna 1010, such as the various signals as described herein.
  • the processing system 1002 may be configured to perform processing functions for the communications device 1000, including processing signals received and/or to be transmitted by the communications device 1000.
  • the processing system 1002 includes a processor 1004 coupled to a computer-readable medium/memory 1012 via a bus 1006.
  • the computer-readable medium/memory 1012 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1004, cause the processor 1004 to perform the operations illustrated in FIG. 8, or other operations for performing the various techniques discussed herein for segmenting a downlink control information (DCI) into code blocks for transmission.
  • computer-readable medium/memory 1012 stores code 1014 for dividing a downlink control information (DCI) into a plurality of A code blocks; code 1016 for transmitting the A code blocks; and code 1018 for communicating with a user equipment (UE) based on the DCI.
  • DCI downlink control information
  • the processor 1004 has circuitry configured to implement the code stored in the computer-readable medium/memory 1012.
  • the processor 1004 includes circuitry 1024 for dividing a downlink control information (DCI) into a plurality of A code blocks; circuitry 1026 for transmitting the A code blocks; and circuitry 1028 for communicating with a user equipment (UE) based on the DCI.
  • DCI downlink control information
  • UE user equipment
  • NR e.g., 5G NR
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA Universal Terrestrial Radio Access
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • NR e.g. 5G RA
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • NR is an emerging wireless communications technology under development.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • BS next generation NodeB
  • AP access point
  • DU distributed unit
  • TRP transmission reception point
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIG. 7 and/or FIG. 8.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for code block segmentation for downlink control information. A method that may be performed by a user equipment (UE) includes receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and communicating based on the DCI. A method that may be performed by a base station (BS) includes dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and communicating with a user equipment (UE) based on the DCI.

Description

CODE BLOCK SEGMENTATION FOR DOWNLINK CONTROL INFORMATION BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved transmission of downlink control information (DCI) by enabling segmentation of a DCI for transmission with a polar code.
Certain aspects of the subject matter described in this disclosure can be implemented in a method for wireless communication by a user equipment (UE) . The method generally includes receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and communicating based on the DCI.
Certain aspects of the subject matter described in this disclosure can be implemented in a method for wireless communication by a base station (BS) . The method generally includes dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and communicating with a user equipment (UE) based on the DCI.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus generally includes a processor configured to: receive a downlink control information (DCI) in a plurality of A code blocks; determine the DCI based on the A code blocks; and communicate based on the DCI; and a memory coupled with the processor.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus generally includes a processor configured to: divide a downlink control information (DCI) into a  plurality of A code blocks; transmit the A code blocks; and communicate with a user equipment (UE) based on the DCI; and a memory coupled with the processor.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus generally includes means for receiving a downlink control information (DCI) in a plurality of A code blocks; means for determining the DCI based on the A code blocks; and means for communicating based on the DCI.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communications. The apparatus generally includes means for dividing a downlink control information (DCI) into a plurality of A code blocks; means for transmitting the A code blocks; and means for communicating with a user equipment (UE) based on the DCI.
Certain aspects of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications by a user equipment (UE) including instructions that, when executed by a processing system, cause the processing system to perform operations. The operations generally include receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and communicating based on the DCI.
Certain aspects of the subject matter described in this disclosure can be implemented in a computer-readable medium for wireless communications by a base station (BS) including instructions that, when executed by a processing system, cause the processing system to perform operations. The operations generally include dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and communicating with a user equipment (UE) based on the DCI.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example wireless communication network, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 3 is an example frame format for certain wireless communication systems (e.g., new radio (NR) ) , in accordance with certain aspects of the present disclosure.
FIG. 4 is a schematic illustration of a DCI segmentation technique assigning similar numbers of information bits to code blocks, according to aspects of the present disclosure.
FIG. 5 is a schematic illustration of a DCI segmentation technique assigning a maximum number of information bits to all but one code block, according to aspects of the present disclosure.
FIG. 6 is a schematic illustration of a DCI segmentation technique that uses a transport block (TB) level cyclic redundancy check (CRC) and a CRC per each code block (CB) , in accordance with certain aspects of the present disclosure.
FIG. 7 is a flow diagram illustrating example operations for wireless communication by a UE, in accordance with certain aspects of the present disclosure.
FIG. 8 is a flow diagram illustrating example operations for wireless communication by a BS, in accordance with certain aspects of the present disclosure.
FIG. 9 illustrates a communications device that may include various components configured to perform the operations illustrated in FIG. 7, in accordance with aspects of the present disclosure.
FIG. 10 illustrates a communications device that may include various components configured to perform the operations illustrated in FIG. 8, in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission. In aspects of the present disclosure, polar codes may be adopted for coding control channels (e.g., physical downlink control channels (PDCCHs) ) in new radio (NR) communications systems. In these communications systems, a maximum coded block size is 512 bits for downlink control channel transmissions and 1024 bits for uplink control channel transmissions. These maximum coded block sizes are related to the size of a control resource set (CORESET) . The minimum coding rate for transmissions in these systems is 1/8. In these systems, the maximum payload size (i.e., without CRC) of a DCI is 140 bits, and a 24-bit cyclic redundancy check (CRC) is appended to the payload. Rate-matching schemes may include shortening, puncturing, and repetition. The decoding complexity may be calculated as O (N×log_2 (N) ) , where N is the number of coded bits. In other words, complexity is not a direct function of the coding rate, though there may be a coding gain loss as the size of the payload (e.g., size in information bits) increases.
An issue for millimeter wavelength (mmWave) frequency band communications is transmitting DCI for the mmWave frequency band in PDSCHs, also referred to as “piggybacking” in PDSCH. It is desirable to have large DCI payload sizes (e.g., larger than 140 bits) for mmWave DCI piggybacking in PDSCHs. However, current techniques do not support payload sizes is larger than 140 bits.
According to aspects of the present disclosure, transmission of a DCI on a control channel may use code block (CB) segmentation to enable transmission of large DCI payloads.
In aspects of the present disclosure, code block segmentation of DCI may be implemented without changing (e.g., changing hardware or software) currently known polar decoders.
The following description provides examples of segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission in communication systems, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
The techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., e.g., 24 GHz to 53 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe. NR supports beamforming and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be an NR system (e.g., a 5G NR network) . As shown in FIG. 1, the wireless communication network 100 may be in communication with a core network 132. The core network 132 may in communication with one or more base station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
According to certain aspects, the BSs 110 and UEs 120 may be configured for segmenting a downlink control information (DCI) into code blocks for transmission and/or receiving a DCI that has been segmented into code blocks for transmission. As shown in FIG. 1, the BS 110a includes a DCI CB segment manager 112 that divides a downlink control information (DCI) into a plurality of A code blocks; transmits the A code blocks; and communicates (e.g., transmits a downlink data transmission to or  receives an uplink transmission from) with (e.g., transmits a downlink data transmission to or receives an uplink transmission from) a user equipment (UE, e.g., UE 120a) based on the DCI, in accordance with aspects of the present disclosure. The UE 120a includes a DCI CB segment manager 122 that receives a downlink control information (DCI) in a plurality of A code blocks; determines the DCI based on the A code blocks; and communicates (e.g., receives a signal or transmits a signal) based on the DCI, in accordance with aspects of the present disclosure.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells.
The BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile. Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
network controller 130 may be in communication with a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) . In aspects, the  network controller 130 may be in communication with a core network 132 (e.g., a 5G Core Network (5GC) ) , which provides various network functions such as Access and Mobility Management, Session Management, User Plane Function, Policy Control Function, Authentication Server Function, Unified Data Management, Application Function, Network Exposure Function, Network Repository Function, Network Slice Selection Function, etc.
FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
At the BS 110a, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. A medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be used for control command exchange between wireless nodes. The MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , PBCH demodulation reference signal (DMRS) , and channel state information reference signal (CSI-RS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a-232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120a, the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120a, a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The  memories  242 and 282 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Antennas 252,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234,  processors  220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein. For example, as shown in FIG. 2, the controller/processor 240 of the BS 110a has a DCI CB segment manager 241 that divides a downlink control information (DCI) into a plurality of A code blocks; transmits the A code blocks; and communicates with a  user equipment (UE) based on the DCI, according to aspects described herein. As shown in FIG. 2, the controller/processor 280 of the UE 120a has a DCI CB segment manager 281 that receives a downlink control information (DCI) in a plurality of A code blocks; determines the DCI based on the A code blocks; and communicates based on the DCI, according to aspects described herein. Although shown at the controller/processor, other components of the UE 120a and BS 110a may be used to perform the operations described herein.
NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink. NR may support half-duplex operation using time division duplexing (TDD) . OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth. The minimum resource allocation, called a resource block (RB) , may be 12 consecutive subcarriers. The system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs. NR may support a base subcarrier spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
FIG. 3 is a diagram showing an example of a frame format 300 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the SCS. Each slot may include a variable number of symbol periods (e.g., 7, 12, or 14 symbols) depending on the SCS. The symbol periods in each slot may be assigned indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) . Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal block (SSB) is transmitted. In certain aspects, SSBs may be transmitted in a burst where each SSB in the burst corresponds to a different beam direction for UE-side beam management (e.g., including beam selection and/or beam refinement) . The SSB includes a PSS, a SSS, and a two symbol PBCH. The SSB can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SSBs may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes. The SSB can be transmitted up to sixty-four times, for example, with up to sixty-four different beam directions for mmWave. The multiple transmissions of the SSB are referred to as a SS burst set. SSBs in an SS burst set may be transmitted in the same frequency region, while SSBs in different SS bursts sets can be transmitted at different frequency regions.
Accordingly, what is needed are techniques and apparatus for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission..
Example Code Block Segmentation for Downlink Control Information
Aspects of the present disclosure provide techniques for segmenting a downlink control information (DCI) into code blocks for transmission and receiving a DCI that has been segmented into code blocks for transmission.
According to aspects of the present disclosure, transmission of a DCI on a control channel may use code block (CB) segmentation to enable transmission of large DCI payloads.
In aspects of the present disclosure, a device (e.g., a UE) may receive a DCI that has been segmented into code blocks, determine the DCI, and communicate according to the DCI.
According to aspects of the present disclosure, a large DCI payload may be segmented into multiple CBs.
In aspects of the present disclosure, the maximum CB size is 164 bits, including a 24-bit CRC. This is fully compliant with currently known specifications.
According to aspect of the present disclosure, a DCI may be segmented into code blocks having two sizes, according to two techniques described below. In both techniques, to determine a number of code blocks (CBs) , A, a DCI payload having a size of L bits may be divided based on a maximum number of information bits to be included in each CB, without including CRC. For example, if the maximum number of information bits to be included in each CB is 140 bits, then
Figure PCTCN2020081892-appb-000001
In one technique, the two CB sizes as close as possible to each other. This may enable similar block error-rate (BLER) performance for each CB. In this technique, the first
Figure PCTCN2020081892-appb-000002
code blocks are assigned
Figure PCTCN2020081892-appb-000003
information bits + a CRC (e.g., a 24-bit CRC) . The remaining
Figure PCTCN2020081892-appb-000004
code blocks are assigned
Figure PCTCN2020081892-appb-000005
information bits + a CRC (e.g., a 24-bit CRC) .
FIG. 4 is a schematic illustration 400 of the DCI segmentation technique described above, according to aspects of the present disclosure. The technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI 402 of 808 information bits to transmit, with a maximum of 140 information bits in each code block. At 404, the device determines to use
Figure PCTCN2020081892-appb-000006
code blocks to segment the DCI. The device assigns
Figure PCTCN2020081892-appb-000007
information bits to the first 
Figure PCTCN2020081892-appb-000008
code blocks and assigns
Figure PCTCN2020081892-appb-000009
information bits to the remaining
Figure PCTCN2020081892-appb-000010
code blocks. The device also attaches a 24-bit CRC to each code block, thus the device forms 2 code blocks with 157 bits (133 information bits plus 24 CRC bits) and 4 code blocks with 158 bits (134 information bits plus 24 CRC bits) , as shown at 406. The device then polar encodes the 6 code blocks at 408 before transmitting the code blocks.
In another technique, the DCI is segmented by assigning the maximum CB size (e.g., 140 bits) to each CB in a first group of CBs, and any remaining bits are assigned to a last CB. Thus, if the maximum number of information bits to be included in each CB is 140 bits, then the first A –1 CBs are each assigned 140 information bits + a CRC (e.g., a 24-bit CRC) . A last code block is assigned L – (A–1) *140 information bits + a CRC  (e.g., a 24-bit CRC) . This technique (assigning the maximum number of information bits to all but the last CB) of segmenting a DCI may result in better parallel decoding performance, because there are A –1 blocks having a same decoding structure (i.e., same number of information bits and coded bits) .
FIG. 5 is a schematic illustration 500 of the DCI segmentation technique described above, according to aspects of the present disclosure. The technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI 502 of 808 information bits to transmit, with a maximum of 140 information bits in each code block. At 504, the device determines to use
Figure PCTCN2020081892-appb-000011
code blocks to segment the DCI. The device assigns 140 (i.e., the maximum) information bits to the first (6 –1) = 5 code blocks and assigns 808 – (6 –1) *140 = 108 information bits to the last code block. The device also attaches a 24-bit CRC to each code block, thus the device forms 5 code blocks with 164 bits (140 information bits plus 24 CRC bits) and 1 code block with 132 bits (108 information bits plus 24 CRC bits) , as shown at 506. The device then polar encodes the 6 code blocks at 508 before transmitting the code blocks.
According to aspects of the present disclosure, the above-described techniques can be supported by legacy receivers (i.e., legacy receivers designed to decode PDCCHs according to previous techniques) .
In aspects of the present disclosure, per CB payload sizes larger than 140 information bits may be used for DCI segmentation. Usage of larger payload sizes may be considered an extension from currently known communications specifications (e.g., 3GPP Release 15) by relaxing the maximum information bits restriction.
According to aspects of the present disclosure, for polar coding, using larger payload sizes is effectively similar to reducing the number of frozen bits, so the coding rate is high. There may be a coding gain loss due to the increased coding rate. Devices may determine a tradeoff between the coding gain loss and usage of transmission resources. For example, if coding gain from usage larger payload sizes is 2/3 instead of 1/3, then there may be a 1.2 dB additional coding gain loss.
In aspects of the present disclosure, either of the techniques described above with reference to FIGs. 4 and 5 may be used with a bigger maximum CB length (e.g., 256 bits) by using the above described CB segmentation algorithms with the bigger  maximum CB length. For example, using a maximum coded block size for PDCCH of 512 bits may be equivalent to defining a maximum supported code rate.
According to aspects of the present disclosure, code block segmenting a DCI may include including CRC bits (e.g., a first CRC) for the transport block (TB) including the code blocks of the segmented DCI and additional CRC bits (e.g., a second CRC) for each CB of the DCI.
In aspects of the present disclosure, code block segmenting a DCI may use a 24-bit CRC for each CB and no CRC for the TB. This is similar to legacy operations, but with a larger overhead, because of the multiple CRCs (one for each CB) for each DCI.
According to aspects of the present disclosure, code block segmenting a DCI may use a 16-bit CRC at the transport block (TB) level and another 24-bit CRC per each CB. This may enhance the protection of the whole TB.
In aspects of the present disclosure, code block segmenting a DCI may use a 16-bit CRC at the TB level and another 16-bit CRC per each CB. The overhead for the CRCs is reduced, as compared to a 24-bit CRC per each CB and no CRC at the TB level, if there are more than two CBs.
According to aspects of the present disclosure, a wireless communication device may use a TB level CRC for false alarm reduction.
In aspects of the present disclosure, a wireless communication device may use a CB level CRC for CRC-aided SCL (successive cancellation list) decoding and false alarm reduction.
FIG. 6 is a schematic illustration 600 of a DCI segmentation technique that uses a TB level CRC and a CRC per each CB, according to aspects of the present disclosure. The technique starts with a wireless device (e.g., BS 110a, shown in FIGs. 1 and 2) having a DCI payload 602 of information bits to transmit. The device attaches a TB level CRC 604 (e.g., a 16-bit CRC) to the DCI. At 606, the device segments the DCI payload and attached CRC into a plurality of CBs using one of the techniques in this disclosure (see FIGs. 4 and 5) . At 608, the device attaches a CB CRC 612 (e.g., a 16-bit CRC) to each of the CBs 610. The device then polar encodes the code blocks and attached CRCs before transmitting the code blocks.
FIG. 7 is a flow diagram illustrating example operations 700 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 700 may be performed, for example, by UE (e.g., the UE 120a in the wireless communication network 100) . The operations 700 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 700 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
The operations 700 may begin, at block 702, by receiving a downlink control information (DCI) in a plurality of A code blocks.
At block 704, operations 700 continue by determining the DCI based on the A code blocks.
The operations 700 continue at block 706 by communicating based on the DCI.
According aspects of the present disclosure, a device performing operations 700 may extract a group of information bits from each of the A code blocks, and each group of information bits may include N bits or N –1 information bits.
In aspects of the present disclosure, a device performing operations 700 may extract a group of information bits from each of the A code blocks, and each of A –1 groups of the information bits may include 140 information bits.
According to aspects of the present disclosure, a device performing operations 700 may extract a group of information bits from each of the A code blocks and may remove a cyclic redundancy check (CRC) from each code block.
In aspects of the present disclosure, a device performing operations 700 may determine the DCI in block 704 by: extracting a group of information bits from each of the A code blocks; combining the A groups of information bits into a transport block; and removing a cyclic redundancy check (CRC) from the transport block. According to some aspects of the present disclosure, a device performing operations 700 may extract the group of information bits from each of the code blocks by removing a 24-bit CRC from  each code block. In some aspects of the present disclosure, a device performing operations 700 may extract the group of information bits from each of the code blocks by removing a 16-bit CRC from each code block. According to some aspects of the present disclosure, a device performing operations 700 may remove the CRC from the transport block by removing a 16-bit CRC from the transport block.
FIG. 8 is a flow diagram illustrating example operations 800 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 800 may be performed, for example, by a BS (e.g., the BS 110a in the wireless communication network 100) . The operations 800 may be complementary to the operations 700 performed by the UE. The operations 800 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) . Further, the transmission and reception of signals by the BS in operations 800 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
The operations 800 may begin, at block 802, by dividing a downlink control information (DCI) into a plurality of A code blocks.
At block 804, operations 800 continue by transmitting the A code blocks.
Operations 800 continue at block 804 by communicating with a user equipment (UE) based on the DCI.
According to aspects of the present disclosure, dividing the DCI as in block 802 may include determining a number of code blocks, A, based on a number of information bits, L, in the DCI and a maximum size of each code block. In some aspects of the present disclosure, determining A may include calculating
Figure PCTCN2020081892-appb-000012
and dividing the DCI may further include: determining a number of information bits, N, in first code blocks by calculating
Figure PCTCN2020081892-appb-000013
assigning N information bits of the DCI to each of
Figure PCTCN2020081892-appb-000014
first code blocks; and assigning N –1 information bits of the DCI to each of
Figure PCTCN2020081892-appb-000015
second code blocks. In some aspects of the present disclosure, dividing the DCI includes: assigning 140 information bits of the DCI to each of A –1 code blocks; and assigning L – (A–1) *140 information bits of the DCI to one code block.
In aspects of the present disclosure, a device performing operations 800 may divide the DCI into the plurality of A code blocks by assigning a group of information bits of the DCI to each of the A code blocks and attaching a cyclic redundancy check (CRC) to the group of information bits in each code block.
According to aspects of the present disclosure, a device performing operations 800 may divide the DCI into the plurality of A code blocks by attaching a first cyclic redundancy check (CRC) to the DCI to form a transport block; dividing the transport block into A groups of information bits; and attaching a second cyclic redundancy check (CRC) to each of the A groups of information bits to form A code blocks. In some aspects of the present disclosure, a device performing operations 800 may attach the second CRC to each of the code blocks by attaching a 24-bit CRC to each code block. According to some aspects of the present disclosure, a device performing operations 800 may attach the second CRC to each of the code blocks by attaching a 16-bit CRC to each code block. In some aspects of the present disclosure, a device performing operations 800 may attaching the first CRC to the DCI by attaching a 16-bit CRC to the DCI.
FIG. 9 illustrates a communications device 900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 7. The communications device 900 includes a processing system 902 coupled to a transceiver 908 (e.g., a transmitter and/or a receiver) . The transceiver 908 is configured to transmit and receive signals for the communications device 900 via an antenna 910, such as the various signals as described herein. The processing system 902 may be configured to perform processing functions for the communications device 900, including processing signals received and/or to be transmitted by the communications device 900.
The processing system 902 includes a processor 904 coupled to a computer-readable medium/memory 912 via a bus 906. In certain aspects, the computer-readable medium/memory 912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 904, cause the processor 904 to perform the operations illustrated in FIG. 7, or other operations for performing the various techniques discussed herein for receiving a DCI that has been segmented into code blocks for transmission. In certain aspects, computer-readable medium/memory 912 stores code 914 for receiving a downlink control information (DCI) in a plurality of A code blocks; code  916 for determining the DCI based on the A code blocks; and code 918 for communicating based on the DCI. In certain aspects, the processor 904 has circuitry configured to implement the code stored in the computer-readable medium/memory 912. The processor 904 includes circuitry 924 for receiving a downlink control information (DCI) in a plurality of A code blocks; circuitry 926 for determining the DCI based on the A code blocks; and circuitry 928 for communicating based on the DCI.
FIG. 10 illustrates a communications device 1000 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 8. The communications device 1000 includes a processing system 1002 coupled to a transceiver 1008 (e.g., a transmitter and/or a receiver) . The transceiver 1008 is configured to transmit and receive signals for the communications device 1000 via an antenna 1010, such as the various signals as described herein. The processing system 1002 may be configured to perform processing functions for the communications device 1000, including processing signals received and/or to be transmitted by the communications device 1000.
The processing system 1002 includes a processor 1004 coupled to a computer-readable medium/memory 1012 via a bus 1006. In certain aspects, the computer-readable medium/memory 1012 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1004, cause the processor 1004 to perform the operations illustrated in FIG. 8, or other operations for performing the various techniques discussed herein for segmenting a downlink control information (DCI) into code blocks for transmission. In certain aspects, computer-readable medium/memory 1012 stores code 1014 for dividing a downlink control information (DCI) into a plurality of A code blocks; code 1016 for transmitting the A code blocks; and code 1018 for communicating with a user equipment (UE) based on the DCI. In certain aspects, the processor 1004 has circuitry configured to implement the code stored in the computer-readable medium/memory 1012. The processor 1004 includes circuitry 1024 for dividing a downlink control information (DCI) into a plurality of A code blocks; circuitry 1026 for transmitting the A code blocks; and circuitry 1028 for communicating with a user equipment (UE) based on the DCI.
The techniques described herein may be used for various wireless communication technologies, such as NR (e.g., 5G NR) , 3GPP Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single-carrier frequency division multiple access (SC-FDMA) , time division synchronous code division multiple access (TD-SCDMA) , and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . LTE and LTE-Aare releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . NR is an emerging wireless communications technology under development.
In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro  cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS.
A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may  communicate directly with one another in addition to communicating with a scheduling entity.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly  recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more  general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various  functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020081892-appb-000016
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIG. 7 and/or FIG. 8.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the  methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (23)

  1. A method for wireless communications by a user equipment (UE) , comprising:
    receiving a downlink control information (DCI) in a plurality of A code blocks; determining the DCI based on the A code blocks; and
    communicating based on the DCI.
  2. The method of claim 1, further comprising extracting a group of information bits from each of the A code blocks, wherein each group of information bits comprises N bits or N –1 information bits.
  3. The method of claim 1, further comprising extracting a group of information bits from each of the A code blocks, wherein each of A –1 groups of the information bits comprises 140 information bits.
  4. The method of any one of claims 1 through 3, further comprising extracting a group of information bits from each of the A code blocks, wherein extracting each group of information bits comprises removing a cyclic redundancy check (CRC) from each code block.
  5. The method of any one of claims 1 through 4, wherein determining the DCI comprises:
    extracting a group of information bits from each of the A code blocks;
    combining the A groups of information bits into a transport block; and
    removing a cyclic redundancy check (CRC) from the transport block.
  6. The method of claim 5, wherein extracting the group of information bits from each of the code blocks comprises removing a 24-bit CRC from each code block.
  7. The method of claim 5, wherein extracting the group of information bits from each of the code blocks comprises removing a 16-bit CRC from each code block.
  8. The method of claim 5, wherein removing the CRC from the transport block comprises removing a 16-bit CRC from the transport block.
  9. A method for wireless communications by a base station (BS) , comprising:
    dividing a downlink control information (DCI) into a plurality of A code blocks; transmitting the A code blocks; and
    communicating with a user equipment (UE) based on the DCI.
  10. The method of claim 9, wherein dividing the DCI comprises:
    determining a number of code blocks, A, based on a number of information bits, L, in the DCI and a maximum size of each code block.
  11. The method of claim 10, wherein determining A comprises calculating
    Figure PCTCN2020081892-appb-100001
    Figure PCTCN2020081892-appb-100002
    and dividing the DCI further comprises:
    determining a number of information bits, N, in first code blocks by calculating
    Figure PCTCN2020081892-appb-100003
    Figure PCTCN2020081892-appb-100004
    assigning N information bits of the DCI to each of
    Figure PCTCN2020081892-appb-100005
    first code blocks; and
    assigning N –1 information bits of the DCI to each of
    Figure PCTCN2020081892-appb-100006
    second code blocks.
  12. The method of any one of claims 9 or 10, wherein dividing the DCI comprises:
    assigning 140 information bits of the DCI to each of A –1 code blocks; and
    assigning L – (A–1) *140 information bits of the DCI to one code block.
  13. The method of any one of claims 9 or 10, wherein dividing the DCI into the plurality of A code blocks comprises:
    assigning a group of information bits of the DCI to each of the A code blocks; and
    attaching a cyclic redundancy check (CRC) to the group of information bits in each code block.
  14. The method of any one of claims 9 or 10, wherein dividing the DCI into the plurality of A code blocks comprises:
    attaching a first cyclic redundancy check (CRC) to the DCI to form a transport block;
    dividing the transport block into A groups of information bits; and
    attaching a second cyclic redundancy check (CRC) to each of the A groups of information bits to form A code blocks.
  15. The method of claim 14, wherein attaching the second CRC to each of the code blocks comprises attaching a 24-bit CRC to each code block.
  16. The method of claim 14, wherein attaching the second CRC to each of the code blocks comprises attaching a 16-bit CRC to each code block.
  17. The method of claim 14, wherein attaching the first CRC to the DCI comprises attaching a 16-bit CRC to the DCI.
  18. An apparatus for wireless communications, comprising:
    a processor configured to:
    receive a downlink control information (DCI) in a plurality of A code blocks;
    determine the DCI based on the A code blocks; and
    communicate based on the DCI; and
    a memory coupled with the processor.
  19. An apparatus for wireless communications, comprising:
    a processor configured to:
    divide a downlink control information (DCI) into a plurality of A code blocks;
    transmit the A code blocks; and
    communicate with a user equipment (UE) based on the DCI; and
    a memory coupled with the processor.
  20. An apparatus for wireless communications, comprising:
    means for receiving a downlink control information (DCI) in a plurality of A code blocks;
    means for determining the DCI based on the A code blocks; and
    means for communicating based on the DCI.
  21. An apparatus for wireless communications, comprising:
    means for dividing a downlink control information (DCI) into a plurality of A code blocks;
    means for transmitting the A code blocks; and
    means for communicating with a user equipment (UE) based on the DCI.
  22. A computer-readable medium for wireless communications by a user equipment (UE) including instructions that, when executed by a processing system, cause the processing system to perform operations comprising:
    receiving a downlink control information (DCI) in a plurality of A code blocks;
    determining the DCI based on the A code blocks; and
    communicating based on the DCI.
  23. A computer-readable medium for wireless communications by a base station (BS) including instructions that, when executed by a processing system, cause the processing system to perform operations comprising:
    dividing a downlink control information (DCI) into a plurality of A code blocks;
    transmitting the A code blocks; and
    communicating with a user equipment (UE) based on the DCI.
PCT/CN2020/081892 2020-03-28 2020-03-28 Code block segmentation for downlink control information WO2021195800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081892 WO2021195800A1 (en) 2020-03-28 2020-03-28 Code block segmentation for downlink control information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081892 WO2021195800A1 (en) 2020-03-28 2020-03-28 Code block segmentation for downlink control information

Publications (1)

Publication Number Publication Date
WO2021195800A1 true WO2021195800A1 (en) 2021-10-07

Family

ID=77926975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081892 WO2021195800A1 (en) 2020-03-28 2020-03-28 Code block segmentation for downlink control information

Country Status (1)

Country Link
WO (1) WO2021195800A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679239A (en) * 2022-04-02 2022-06-28 北京诺芮集成电路设计有限公司 CRC (Cyclic redundancy check) segmented calculation method and device in high-speed network
WO2023207922A1 (en) * 2022-04-28 2023-11-02 华为技术有限公司 Control information transmission method, and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139318A1 (en) * 2014-03-21 2015-09-24 华为技术有限公司 Random access response method, base station, and terminal
CN106856613A (en) * 2015-12-09 2017-06-16 华为技术有限公司 The sending method and relevant apparatus of a kind of Downlink Control Information DCI
US20190074929A1 (en) * 2017-09-07 2019-03-07 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN110719638A (en) * 2014-05-30 2020-01-21 华为技术有限公司 Method and equipment for sending and receiving downlink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139318A1 (en) * 2014-03-21 2015-09-24 华为技术有限公司 Random access response method, base station, and terminal
CN110719638A (en) * 2014-05-30 2020-01-21 华为技术有限公司 Method and equipment for sending and receiving downlink control information
CN106856613A (en) * 2015-12-09 2017-06-16 华为技术有限公司 The sending method and relevant apparatus of a kind of Downlink Control Information DCI
US20190074929A1 (en) * 2017-09-07 2019-03-07 Sharp Laboratories Of America, Inc. User equipments, base stations and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679239A (en) * 2022-04-02 2022-06-28 北京诺芮集成电路设计有限公司 CRC (Cyclic redundancy check) segmented calculation method and device in high-speed network
CN114679239B (en) * 2022-04-02 2024-04-23 北京诺芮集成电路设计有限公司 CRC segmentation calculation method and device in high-speed network
WO2023207922A1 (en) * 2022-04-28 2023-11-02 华为技术有限公司 Control information transmission method, and apparatus

Similar Documents

Publication Publication Date Title
WO2021212456A1 (en) Qcl assumptions for combined single-dci and multi-dci multi-trp
US11979887B2 (en) Adaptive control channel aggregation restriction
US20230199557A1 (en) Compression techniques for data and reference signal resource elements (res)
WO2022021208A1 (en) Differential power parameter reporting in multi-panel uplink transmission
WO2021223089A1 (en) Physical layer cross-link interference measurement and reporting
WO2021195800A1 (en) Code block segmentation for downlink control information
WO2021184334A1 (en) Low complexity physical downlink control channel
WO2022036579A1 (en) Handling of orphan symbols in shared spectrum
US11595966B2 (en) Time domain positions for demodulation reference signal in a multi-slot transport block
US20230224940A1 (en) Dynamic slot management of radio frames
WO2022221277A1 (en) Multi-slot transmission for multi-transmission reception points
WO2021196148A1 (en) Physical downlink control channel (pdcch) aggregation across monitoring occasions
WO2020221338A1 (en) Control channel demodulation reference signal bundling
WO2021212315A1 (en) Physical uplink control channel enhancement for indoor coverage holes
WO2022087414A1 (en) Hybrid automatic repeat request (harq) codebook design
CN115516979A (en) Piggybacking Downlink Control Information (DCI) scheduling restrictions
WO2023056578A1 (en) Cell with combined noncontiguous spectrums
WO2022226864A1 (en) Interference avoidance in full duplex communications
WO2023004738A1 (en) Parallel qdm encoding
WO2021243725A1 (en) Avoiding random access issues in non-standalone new radio cells
WO2022040966A1 (en) Voice over new radio with time-division duplexing in dual connectivity
WO2021253320A1 (en) Mitigating incorrect carrier aggregation configuration
WO2022150958A1 (en) Downlink control information cooperation introduction
WO2021223044A1 (en) Techniques for recovering from a cell release event for dual connectivity
WO2021223203A1 (en) Ue self-adaptation for pdu session connection in a 5g standalone network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929180

Country of ref document: EP

Kind code of ref document: A1