WO2021194373A1 - Method for evaluating downhole gas inflow rates during multistage hydraulic fracturing - Google Patents

Method for evaluating downhole gas inflow rates during multistage hydraulic fracturing Download PDF

Info

Publication number
WO2021194373A1
WO2021194373A1 PCT/RU2020/000347 RU2020000347W WO2021194373A1 WO 2021194373 A1 WO2021194373 A1 WO 2021194373A1 RU 2020000347 W RU2020000347 W RU 2020000347W WO 2021194373 A1 WO2021194373 A1 WO 2021194373A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
well
hydraulic fracturing
dispersion
specified
Prior art date
Application number
PCT/RU2020/000347
Other languages
French (fr)
Russian (ru)
Inventor
Андрей Валерьевич ГУРЬЯНОВ
Павел Владимирович БУЗИН
Руслан Рашидович ГАЗИЗОВ
Кирилл Андреевич СУПРАНКОВ
Евгений МЕДВЕДЕВ
Original Assignee
Общество с ограниченной ответственностью "ГеоСплит"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ГеоСплит" filed Critical Общество с ограниченной ответственностью "ГеоСплит"
Publication of WO2021194373A1 publication Critical patent/WO2021194373A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention relates to the oil and gas industry and can be used to control the development of a productive formation.
  • the main task of the oil and gas production industry is to increase the efficiency of the development of the productive formation and increase the output of producing wells.
  • To optimize the operation of wells it is necessary to ensure the availability of reliable information on the rate of production of produced gas in a particular interval of the wellbore or reservoir. This information makes it possible to clarify the hydrodynamic state of the reservoir and optimize production.
  • tracers - indicators marks identified in the produced fluid
  • tracers - indicators marks identified in the produced fluid
  • the tracers, together with the injected fluid are introduced into the formation, pass through the formation and the bottomhole zone of the production well, are sampled and analyzed as part of the well fluid taken from the well.
  • methods for determining gas inflows in horizontal wells are poorly described and not very informative.
  • Indicators are also added to fracturing fluids, which are perfluorocarbon compounds of different molecular weights: perfluoroalkanes, perfluorocycloalkanes, perfluorinated aromatic compounds, perfluoro (meth) acrylates, etc.
  • Sample analysis is carried out by gas chromatography. The actual gas from the well is taken as samples.
  • the disadvantages of this method include a high concentration of tracers in the hydraulic fracturing fluid and work with expensive chemical compounds as tracers. - CN 107956470 A, publ. 04.24.2018.
  • containers are used, which are structural elements of the injection assembly, from which the tracer material is selectively dissolved in the corresponding phase of the formation fluid.
  • water-soluble matrices can be made from polyvinyl alcohol or other water-soluble material.
  • Oil-soluble matrices can be made, in particular, from viscous bitumen.
  • Gas matrices can begin to wear off due to the abrasive action of solid particles present in the gas.
  • the disadvantage of the described The invention is the dependence of the transition of the tracer material into the gas phase due to the presence of mechanical impurities in the gas flow, which may not be present in the flow.
  • abrasive fracture depends on the size of mechanical impurities, which are difficult to predict, and, accordingly, to draw a conclusion about the quantitative determination of gas inflows for each of the well intervals.
  • As indicators it is proposed to use various fluorescent compounds, radical indicators, substances with high magnetic or dielectric permeability, insoluble particles ranging in size from 1 to 100 ⁇ m, for example, metal or fluorescent and / or luminescent. - RU 2685601 C1, publ. 04/22/2019.
  • the technical result of the claimed method is to obtain reliable results for determining downhole gas inflows at multiphase flow of formation fluid.
  • the specified technical result is achieved by the fact that in the method for determining downhole fluid inflows during multi-stage hydraulic fracturing, including obtaining a fluorescent marker in the form of polymer microspheres with the preparation of a dispersion of resin and luminescent substances, combining the obtained marker with a carrier medium supplied to the well, introducing a marker with said carrier medium into the well, sampling from the well and their analysis with the determination of codes and the number of markers in samples representing a polymer membrane using flow cytofluorometry and determination based on the results of these analyzes of downhole fluid inflows, the specified marker is obtained using a luminescent substance that fluoresces after exposure to UV radiation or visible radiation with a wavelength from 320 to 760 nm in the wavelength range of 350-780 nm, both independent and in the form of binary mixtures of the indicated luminescent substances at their ratio and from 0.01: 0.99 to 0.99: 0.01, by radical copolymerization of styrene with divinylbenzene or dispersion poly
  • % of dry residue, aluminosilicate proppant and / or quartz sand is used as a carrier medium, where the specified marker is placed in a polymer coating made on the basis of epoxy resin, the specified introduction is carried out into a horizontal well, the specified determination of codes and concentrations of markers in samples is carried out using a flow-through cytofluorometry, according to the results of which the inflows are calculated according to the corresponding stages of hydraulic fracturing.
  • the size of the polymer microspheres is 0.2-50.0 microns
  • the luminescent substance is selected from the group including selenide, sulfide, zinc or cadmium telluride.
  • the claimed method involves the use of proppant and / or quartz sand as a carrier of fluorescent markers, which are monodisperse polymer microspheres obtained by the method indicated in the claimed method and incorporated into a polymer shell of aluminosilicate proppant and / or quartz sand.
  • the proppant and / or sand is marked with the appropriate code.
  • the code is set using a unique combination of fluorophores in the microspheres.
  • the corresponding code is injected, and the number of codes corresponds to the number of multistage hydraulic fracturing stages. Implementation of this approach makes it possible to reliably quantify gas inflows for each interval.
  • the analysis of the content of the encoded microspheres of each code is carried out by the method of flow cytofluorometry, the main advantage of which is the precise determination of the number of microspheres of each code. Further, the concentrations of markers of each code are recalculated into gas inflows for each stage of multistage fracturing.
  • fluorescent substances Nile blue, sodium fluorescein, fluorescein diacetate, dichlorofluorescein diacetate, fluorescein isothiocyanate, coumarin, diethylaminocoumarin, rhodamine group fluorophores can be used. Best results are obtained using selenide, sulfide, zinc telluride or cadmium.
  • cytofluorometry allows detecting the fluorescence intensity at specific excitation and emission wavelengths (they are called "channels") for each individual particle.
  • the number of such channels is usually large; in our case, there are 15 detection channels (2 light scattering channels and 13 luminescence channels).
  • each analyzed marker is a point in 15-dimensional space. The method allows, with a given accuracy, to classify markers by parameters of interest within a 15-dimensional space. Based on the obtained classification, in accordance with the information on the coding of markers, the quantitative ratios of each type of marker in the analyzed mixture are established.
  • Example 1 Melamine-formaldehyde microspheres are obtained by two-stage dispersion polycondensation of 2 mass. including melamine and 3 mass. including formaldehyde in 70 mass. including water in the presence of 1 mass. including sodium dodecyl sulfate and 1 mass. including polyvinyl alcohol.
  • the duration of the first stage is 45 minutes.
  • the duration of the second stage is 1 hour.
  • Adding an aqueous dispersion of a phosphor with a concentration of 10 wt% (lf 480 nm - selenide cadmium), is carried out in the first stage, while the amount of dispersion is about 5% (wt.).
  • the dispersion is concentrated by sedimentation to a dry residue of 40 to 60 wt%, where the dry residue is polymer microspheres with one or two luminescent substances integrated in them, and is divided into two parts.
  • the first part of the dispersion is a dispersion of hydrophilic markers.
  • the second part of the dispersion is used to obtain a dispersion of hydrophobic markers by sequential treatment of an aqueous dispersion with a non-polar organic solvent selected from a number of aromatic solvents benzene, toluene, xylene, then an amphiphilic copolymer of a number of acrylates, followed by removal of water, thus, water is replaced by a non-polar organic solvent, the concentration the dry residue of hydrophobic markers is from 40 to 60% (wt.). In this case, the markers become completely oleophilic, that is, they lose their ability to be dispersed in water, while at the same time they are easily dispersed in non-polar aromatic solvents.
  • a non-polar organic solvent selected from a number of aromatic solvents benzene, toluene, xylene, then an amphiphilic copolymer of a number of acrylates, followed by removal of water, thus, water is replaced by a non-polar organic solvent, the concentration the dry residue of hydro
  • a proppant with a marked polymer coating is obtained, and 1 marker code is used in each batch of proppant. Thus, 63 proppant codes are obtained.
  • a proppant with a marked polymer coating is prepared as follows. An aqueous dispersion of hydrophilic markers in a mixer is mixed with proppant, epoxy resin, hardener and functional filler. Epoxy resin is used as resin, amine hardener. A hydrophobic substance acts as a functional filler.
  • the proppant code number corresponds to the stage of multi-stage hydraulic fracturing of the formation.
  • the code Ns 1 is pumped into the first stage of hydraulic fracturing
  • the code Ns 2 is pumped into the second
  • Ns 3 is in the third, etc.
  • sampling is carried out using the filtration device shown in Figure 1.
  • the filtration device is installed on the bypass line, which must be equipped with taps, a pressure gauge, a flow meter and connecting elements.
  • the filtration device contains a compartment for the filter cartridge, which consists of polymer membranes connected in series. An individual cartridge is used for each sampling.
  • the complete sample package contains 8 samples taken at different flows and pressures and accumulation times. Then the obtained samples are subjected to analysis using flow cytofluorometry.
  • the analysis consists of three sequential stages: sample preparation, cytofluorometry and interpretation of the analysis data.
  • Sample preparation consists in transferring markers from a polymer membrane into a solution of an aqueous phase using surfactants.
  • the aqueous phase is dispersed on an ultrasonic disperser and fed for analysis by cytofluorometry. As a result, a spectral picture is obtained in 15-dimensional space.
  • the interpretation is carried out using software based on the obtained classification in accordance with the information on the coding of the markers, while the quantitative ratios of each type of marker in the analyzed mixture are established.
  • the obtained data on the quantitative ratio of each marker code in the analyzed mixture are recalculated into the inflow profiles for each stage of multistage hydraulic fracturing, taking into account the known regularities about the influence on the concentration of the corresponding markers of reservoir temperature, reservoir pressure and hydrodynamic parameters of the well.
  • the visualization of the calculation results is presented in the form of graphs of inflow by hydraulic fracturing stages in time and accumulated gas production rates in each of the stages.
  • the sampling criterion for visualization is the availability of data on the total gas flow rate and well operation mode, as well as the expected presence of hydrocarbons and water.
  • Example 2 Silica microspheres are obtained by the Stoeber method. Mix 70 masses. including ethanol, 7 mass. including an aqueous solution of ammonia, 3 parts by weight of water, and an aqueous dispersion, which is a mixture of cadmium sulfide and zinc selenide in a 1: 1 ratio (10% by weight aqueous dispersion), while the concentration of the dispersion is 10% (by weight). Then add 4 mass. including tetraethoxysilane. The reaction mixture is stirred until the change in particle size stops for 8 hours. Control for Particle growth is carried out using a flow cytofluorometer equipped with forward and side scattering sensors. In this way, an alcoholic dispersion of microspheres is obtained.
  • aqueous dispersion of a luminescent substance (quantum dots_ - cadmium sulfide, 10 wt%, while the amount of the dispersion is about 7 wt%.
  • the dispersion is concentrated by sedimentation to a dry residue of 50 wt%, where dry the remainder represents polymer microspheres with a mixture of luminescent substances integrated in them.
  • Quartz sand with a marked polymer coating is obtained, and 1 marker code is used in each batch of quartz sand. Thus, 63 sand codes are obtained. Quartz sand with a marked polymer coating is obtained as follows. An aqueous dispersion of hydrophilic markers in a mixer is mixed with quartz sand, epoxy resin, hardener and functional filler. Epoxy resin is used as resin, amine hardener. A hydrophobic substance acts as a functional filler.
  • quartz sand with a polymer coating is immersed in a horizontal well during multistage hydraulic fracturing.
  • the proppant code number corresponds to the stage of multi-stage hydraulic fracturing of the formation.
  • code Xa 1 is injected into stage 1 of hydraulic fracturing
  • code Xa 1 is injected into the second
  • code Xa 2 in the third stage, Xa 3, etc.
  • Microspheres of cross-linked polystyrene are obtained by the method of three-dimensional radical copolymerization of styrene and divinylbenzene in an aqueous medium. 10 wt. including styrene, 0.2 wt. including divinylbenzene, 0.8 wt. including sodium dodecyl sulfate, 1 wt. including polyvinylpyrrolidone and 0.2 wt. h. initiator - azobisisobutyronitrile. The temperature is brought to 70 ° C and the reaction is carried out for 24 hours.
  • the polymer coated proppant is prepared as in example 1.
  • the proppant code number corresponds to the stage of multi-stage hydraulic fracturing of the formation.
  • code N ° 1 is pumped into the 1st stage of hydraulic fracturing, the second - Ne 2, the third - ⁇ , etc.
  • sampling is carried out using a filtration device, the same as in example 1.
  • the filtration device is installed on the discharge line, which must be equipped with a valve, pressure gauge, flow meter and connecting elements.
  • Example 4 Microspheres, markers and polymer-coated proppant are prepared as in example 1.
  • the proppant code number corresponds to the stage of multi-stage hydraulic fracturing of the formation.
  • code N ° 1 is injected, in the second - J b 2, in the third - JV 3, etc.
  • sampling is carried out using a filtration device, as in example 1.
  • a filtration device as in example 1.
  • formation fluid samples are taken.
  • Sample preparation consists in separating the reservoir fluid sample into hydrocarbon and (if available) aqueous phases using demulsifiers.
  • the aqueous phase is centrifuged at a load of 1200 g, the remnants of the reverse microemulsion are removed, dispersed on an ultrasonic disperser and fed for analysis by cytofluorometry.
  • the hydrocarbon phase of the formation fluid is sequentially treated with organic solvents with gradually increasing dielectric constant values, with water being the last solvent.
  • the resulting aqueous phase is centrifuged at a load of 1200 g, the remnants of the reverse microemulsion are removed, dispersed on an ultrasound disperser and fed for analysis by cytofluorometry. At this stage, the water cut of each sample of the formation fluid and its viscosity are also determined.
  • the cytofluorometry of the samples is carried out separately for the aqueous and hydrocarbon, inverted into water, phases of the formation fluid. As a result, a spectral picture is obtained in 15-dimensional space.
  • the claimed method provides for obtaining reliable results of determining downhole gas inflows at multiphase flow of formation fluid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The invention relates to the oil and gas extraction industry and can be used to monitor exploitation of a productive formation. The method includes producing a fluorescent marker in the form of polymer microspheres, with preparation of a dispersion of resin and luminescent substances, combining the produced marker with a carrier, which can be fed into a well, introducing the marker with said carrier into the well, collecting samples from the well and analysing said samples, with determination of the codes and amount of markers in the samples, which constitute a polymer membrane, by using flow cytometry, and determining the downhole fluid inflow rates on the basis of the results of said analyses. The invention makes it possible to obtain reliable results when determining downhole gas inflow rates during multiphase flow of formation fluid.

Description

СПОСОБ ОЦЕНКИ ВНУТРИСКВАЖИННЫХ ПРИТОКОВ ГАЗА ПРИ МНОГОСТУПЕНЧАТОМ ГИДРОРАЗРЫВЕ ПЛАСТА METHOD FOR EVALUATION OF INNER WELL GAS FLOWS IN MULTIPLE HYDRAULIC FACING OF THE FORMATION
Изобретение относится к нефте- и газодобывающей промышленности и может быть использовано при контроле за разработкой продуктивного пласта. The invention relates to the oil and gas industry and can be used to control the development of a productive formation.
Основной задачей добычи нефте- и газодобывающей промышленности является повышение эффективности разработки продуктивного пласта и повышение отдачи добывающих скважин. Для оптимизации режима работы скважин необходимо обеспечение наличия достоверной информации об интенсивности поступления добываемого газа в том или ином интервале ствола скважины или продуктивного пласта. Эта информация позволяет уточнить гидродинамическое состояние залежи и оптимизировать добычу. Таким образом, актуальным является обеспечение достоверности количественного определения притока добываемого флюида в каждый отдельный интервал скважины. The main task of the oil and gas production industry is to increase the efficiency of the development of the productive formation and increase the output of producing wells. To optimize the operation of wells, it is necessary to ensure the availability of reliable information on the rate of production of produced gas in a particular interval of the wellbore or reservoir. This information makes it possible to clarify the hydrodynamic state of the reservoir and optimize production. Thus, it is important to ensure the reliability of the quantitative determination of the inflow of the produced fluid into each separate interval of the well.
Известны различные способы определения притока жидкости, в том числе с использованием трассеров — индикаторов, меток, идентифицируемых в добываемой жидкости, являющиеся наиболее прямыми и достоверными методам получения достоверной информации, основанными на использовании данных о перемещении трассеров вместе с жидкостью - носителем с учетом фильтрационно-емкостных параметров продуктивного пласта, изменения пластовых и забойных величин давления. В известных способах исследования трассеры вместе с нагнетаемой жидкостью вводятся в пласт, проходят через пласт и призабойную зону добывающей скважины, отбираются и анализируются в составе отбираемой из скважины скважинной жидкости. Однако, способы определения притоков газа в горизонтальных скважинах описаны слабо и малоинформативны. Известен способ определения внутрискважинных притоков газа с использованием с использованием химических трассеров, которые вводятся непосредственно с жидкость ГРП и в дальнейшем непрерывно испаряется под действием температуры. Трассеры составляют значительный процент от самой жидкости ГРП. В качестве трассеров выступают гексафторид серы, дифтодибромметан, октафторбутан и т.д. Недостатком настоящего изобретения является высокая концентрация дорогостоящих трассеров в жидкости ГРП, высокая продолжительность отбора проб, при этом в качестве проб используется собственно отобранный газ. - CN 108825226 А, опубл. 16.11.2018. Various methods are known for determining the inflow of liquid, including using tracers - indicators, marks identified in the produced fluid, which are the most direct and reliable methods for obtaining reliable information based on the use of data on the movement of tracers together with the liquid - the carrier, taking into account the filtration-capacitive reservoir parameters, changes in reservoir and bottomhole pressure values. In the known research methods, the tracers, together with the injected fluid, are introduced into the formation, pass through the formation and the bottomhole zone of the production well, are sampled and analyzed as part of the well fluid taken from the well. However, methods for determining gas inflows in horizontal wells are poorly described and not very informative. There is a known method for determining downhole gas inflows using chemical tracers, which are injected directly from the fracturing fluid and then continuously evaporate under the influence of temperature. Tracers make up a significant percentage of the fracturing fluid itself. Sulfur hexafluoride, diftodibromomethane, octafluorobutane, etc. act as tracers. The disadvantage of the present invention is the high concentration of expensive tracers in the hydraulic fracturing fluid, the long sampling time, while the actual sampled gas is used as samples. - CN 108825226 A, publ. 11/16/2018.
Известен способ для измерения величины вклада в добычу газа каждого интервала газовой скважины. Индикаторы также добавляются в жидкости ГРП, в качестве которых используются перфторуглеродные соединения разной молекулярной массы: перфторалканы, перфторциклоалканы, перфторированные ароматические соединения, перфтор(мет)акрилаты и т.д. Анализ проб осуществляется методом газовой хроматографии. В качестве проб отбирается собственно газ из скважины. К недостаткам настоящего способа можно отнести высокую концентрацию трассеров в жидкости ГРП и работа с дорогостоящими химическими соединениями в качестве трассеров. - CN 107956470 А, опубл. 24.04.2018. A known method for measuring the value of the contribution to gas production of each interval of a gas well. Indicators are also added to fracturing fluids, which are perfluorocarbon compounds of different molecular weights: perfluoroalkanes, perfluorocycloalkanes, perfluorinated aromatic compounds, perfluoro (meth) acrylates, etc. Sample analysis is carried out by gas chromatography. The actual gas from the well is taken as samples. The disadvantages of this method include a high concentration of tracers in the hydraulic fracturing fluid and work with expensive chemical compounds as tracers. - CN 107956470 A, publ. 04.24.2018.
Известен способ определения дебитов воды, нефти и газа по каждому интервалу при МГРП. Согласно заявленному способу, для оценки притоков флюида используются контейнеры, представляющие собой конструктивные элементы компоновки закачивания, из которых трассерный материал селективно растворяется в соответствующей ему фазе пластового флюида. Так, например, водорастворимые матрицы могут быть сделаны из поливинилового спирта или другого водорастворимого материала. Нефтерастворимые матрицы могут быть сделаны, в частности, из вязкого битума. Газовые матрицы могут начать истираться за счет абразовного действия твердых частиц, присутствующих в газе. Недостатком описываемого изобретения является зависимость перехода трассерного материала в газовую фазу за счет присутствия в газовом потоке механических примесей, которых может и не быть в потоке. Кроме того, абразивное разрушение зависит от размера механических примесей, которые сложно предсказать, а, соответственно, и сделать вывод о количественном определении притоков газа по каждому из интервалов скважины. В качестве индикаторов предлагается использовать различные флуоресцентные соединения, индикаторы радикального типа, вещества с высокой магнитной или диэлектрической проницаемостью, нерастворимые частицы размером от 1 до 100 мкм, например, металлические либо флуоресцентные и/или люминесцентные. - RU 2685601 С1, опубл. 22.04.2019. There is a known method for determining the flow rates of water, oil and gas for each interval during multistage hydraulic fracturing. According to the claimed method, to assess fluid inflows, containers are used, which are structural elements of the injection assembly, from which the tracer material is selectively dissolved in the corresponding phase of the formation fluid. For example, water-soluble matrices can be made from polyvinyl alcohol or other water-soluble material. Oil-soluble matrices can be made, in particular, from viscous bitumen. Gas matrices can begin to wear off due to the abrasive action of solid particles present in the gas. The disadvantage of the described The invention is the dependence of the transition of the tracer material into the gas phase due to the presence of mechanical impurities in the gas flow, which may not be present in the flow. In addition, abrasive fracture depends on the size of mechanical impurities, which are difficult to predict, and, accordingly, to draw a conclusion about the quantitative determination of gas inflows for each of the well intervals. As indicators, it is proposed to use various fluorescent compounds, radical indicators, substances with high magnetic or dielectric permeability, insoluble particles ranging in size from 1 to 100 μm, for example, metal or fluorescent and / or luminescent. - RU 2685601 C1, publ. 04/22/2019.
Техническим результатом заявленного способа является получение достоверных результатов определения внутрискважинных притоков газа при многофазном потоке пластового флюида. The technical result of the claimed method is to obtain reliable results for determining downhole gas inflows at multiphase flow of formation fluid.
Указанный технический результат достигается тем, что в способе определения внутрискважинных притоков флюида при многоступенчатом гидроразрыве пласта, включающем получение флюоресцентного маркера в виде полимерных микросфер с приготовлением дисперсии смолы и люминесцирующих веществ, объединение полученного маркера с несущей средой, подаваемой в скважину, введение маркера с указанной несущей средой в скважину, отбор проб из скважины и их анализ с определением кодов и количества маркеров в пробах, представляющих собой полимерную мембрану, с использованием проточной цитофлюорометрии и определение на основе результатов указанных анализов внутрискважинных притоков флюида, получение указанного маркера осуществляют с использованием люминесцирующего вещества, флюоресцирующего после воздействия УФ- излучения или видимого излучения с длиной волны от 320 до 760 нм в области длин волны 350-780 нм, как самостоятельного, так и в виде бинарных смесей указанных люминесцирующих веществ при их соотношении от 0,01 : 0,99 до 0,99 : 0,01, путем радикальной сополимеризации стирола с дивинилбензолом или дисперсионной поликонденсации меламиноформальдегидной смолы или карбамидоформальдегидной смолы, или гидролитической поликонденсации тетраэтоксисилана, вводимых в виде 10-20%-ной их водной суспензии при его количестве в смеси 0,1 -5,0 % от массы отвержденной смолы, с получением дисперсии, содержащей 40-60 мае. % сухого остатка, в качестве несущей среды используют алюмосиликатный проппант и/или кварцевый песок, где указанный маркер размещен в полимерном покрытии, выполненном на основе эпоксидной смолы, указанное введение осуществляют в горизонтальную скважину, указанное определение кодов и концентраций маркеров в пробах осуществляют с использованием проточной цитофлюорометрии, по полученным результатам которой осуществляют расчет притоков по соответствующим стадиям гидроразрыва. Причем, размер полимерных микросфер составляет 0,2-50,0 мкм, а люминесцирующее вещество выбрано из группы, включающей селенид, сульфид, теллурид цинка или кадмия. The specified technical result is achieved by the fact that in the method for determining downhole fluid inflows during multi-stage hydraulic fracturing, including obtaining a fluorescent marker in the form of polymer microspheres with the preparation of a dispersion of resin and luminescent substances, combining the obtained marker with a carrier medium supplied to the well, introducing a marker with said carrier medium into the well, sampling from the well and their analysis with the determination of codes and the number of markers in samples representing a polymer membrane using flow cytofluorometry and determination based on the results of these analyzes of downhole fluid inflows, the specified marker is obtained using a luminescent substance that fluoresces after exposure to UV radiation or visible radiation with a wavelength from 320 to 760 nm in the wavelength range of 350-780 nm, both independent and in the form of binary mixtures of the indicated luminescent substances at their ratio and from 0.01: 0.99 to 0.99: 0.01, by radical copolymerization of styrene with divinylbenzene or dispersion polycondensation of melamine-formaldehyde resin or urea-formaldehyde resin, or hydrolytic polycondensation of tetraethoxysilane, introduced in the form of 10-20% of their aqueous suspension with its amount in a mixture of 0.1-5.0% by weight of the hardened resin, to obtain a dispersion containing 40 -60 May. % of dry residue, aluminosilicate proppant and / or quartz sand is used as a carrier medium, where the specified marker is placed in a polymer coating made on the basis of epoxy resin, the specified introduction is carried out into a horizontal well, the specified determination of codes and concentrations of markers in samples is carried out using a flow-through cytofluorometry, according to the results of which the inflows are calculated according to the corresponding stages of hydraulic fracturing. Moreover, the size of the polymer microspheres is 0.2-50.0 microns, and the luminescent substance is selected from the group including selenide, sulfide, zinc or cadmium telluride.
Заявленный способ включает использование проппанта и/или кварцевого песка как носителя флюоресцирующих маркеров, в качестве которых используются монодисперсные полимерные микросферы, полученные указанным в заявленном способе путем и инкорпорированные в полимерную оболочку алюмосиликатного проппанта и/или кварцевого песка. При этом проппант и/или песок маркирован соответствующим кодом. Код задается использованием уникального сочетания флюорофоров в микросферах. В каждую стадию при многоступенчатом гидроразрыве пласта - МГРП закачивается соответствующий код, причем, количество кодов соответствует количеству стадий МГРП. Реализация данного подхода позволяет достоверно проводить количественное определение притоков газа по каждому интервалу. Анализ содержания кодированных микросфер каждого кода осуществляется методом проточной цитофлюорометрии, основным преимуществом которой является точное определение количества микросфер каждого кода. Далее концентрации маркеров каждого кода пересчитывают в притоки газа по каждой стадии МГРП. В качестве флюоресцирующих веществ могут быть использованы нильский синий, флюоресцеин натрия, флюоресцеин диацетат, дихлорфлюоресцеин диацетат, флюоресцеин изотиоцианат, кумарин, диэтиламинокумарин, флюорофоры группы родамина. Лучшие результаты обеспечиваются при использовании селенида, сульфида, теллурида цинка или кадмия. The claimed method involves the use of proppant and / or quartz sand as a carrier of fluorescent markers, which are monodisperse polymer microspheres obtained by the method indicated in the claimed method and incorporated into a polymer shell of aluminosilicate proppant and / or quartz sand. In this case, the proppant and / or sand is marked with the appropriate code. The code is set using a unique combination of fluorophores in the microspheres. In each stage of a multistage hydraulic fracturing - multistage hydraulic fracturing, the corresponding code is injected, and the number of codes corresponds to the number of multistage hydraulic fracturing stages. Implementation of this approach makes it possible to reliably quantify gas inflows for each interval. The analysis of the content of the encoded microspheres of each code is carried out by the method of flow cytofluorometry, the main advantage of which is the precise determination of the number of microspheres of each code. Further, the concentrations of markers of each code are recalculated into gas inflows for each stage of multistage fracturing. As fluorescent substances Nile blue, sodium fluorescein, fluorescein diacetate, dichlorofluorescein diacetate, fluorescein isothiocyanate, coumarin, diethylaminocoumarin, rhodamine group fluorophores can be used. Best results are obtained using selenide, sulfide, zinc telluride or cadmium.
В отличие от традиционной флюорометрии, где детектируется интегральная интенсивность флюоресценции для всех сортов частиц, цитофлюорометрия позволяет детектировать интенсивность флюоресценции с определенными длинами волн возбуждения и испускания (они называются «каналами») для каждой индивидуальной частицы. Число подобных каналов, как правило, велико, в нашем случае существует 15 каналов детектирования (2 канала светорассеяния и 13 каналов люминесценции). При этом каждый анализируемый маркер представляет собой точку в 15-ти мерном пространстве. Метод позволяет с заданной точностью классифицировать маркеры по интересующим параметрам внутри 15-ти мерного пространства. На основе полученной классификации в соответствии с информацией о кодировке маркеров устанавливаются количественные отношения каждого типа маркера в анализируемой смеси. Unlike traditional fluorometry, where the integral fluorescence intensity is detected for all types of particles, cytofluorometry allows detecting the fluorescence intensity at specific excitation and emission wavelengths (they are called "channels") for each individual particle. The number of such channels is usually large; in our case, there are 15 detection channels (2 light scattering channels and 13 luminescence channels). Moreover, each analyzed marker is a point in 15-dimensional space. The method allows, with a given accuracy, to classify markers by parameters of interest within a 15-dimensional space. Based on the obtained classification, in accordance with the information on the coding of markers, the quantitative ratios of each type of marker in the analyzed mixture are established.
Примеры осуществления Examples of implementation
Пример 1. Меламиноформальдегидные микросферы получают двухстадийной дисперсионной поликонденсацией 2 масс. ч. меламина и 3 масс. ч. формальдегида в 70 масс. ч. воды в присутствии 1 масс. ч. додецилсульфата натрия и 1 масс. ч. поливинилового спирта. На первой стадии при рН=9 получают метилольные производные меламина, при этом в качестве регулятора pH выступают водный раствор гидроксида калия. Длительность первой стадии составляет 45 мин. На второй стадии при рН=6 происходит получение полностью отвержденных микросфер, при этом в качестве регулятора pH выступает водный раствор ортофосфорной кислоты. Продолжительность второй стадии составляет 1 час. Добавление водной дисперсии люминофора с концентрацией 10 % масс (lf =480 нм - селенид кадмия), осуществляется на первой стадии, при этом количество дисперсии составляет примерно 5 % (масс.). После окончания второй стадии дисперсию седиментацией концентрируют до содержания сухого остатка от 40 до 60 % (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированными в них одним или двумя люминесцирующими веществами, и делят ее на две части. Первая часть дисперсии представляет собой дисперсию гидрофильных маркеров. Вторую часть дисперсии используют для получения дисперсии гидрофобных маркеров путем последовательной обработки водной дисперсии неполярным органическим растворителем, выбранным из ряда ароматических растворителей бензол, толуол, ксилол, затем амфифильным сополимером ряда акрилатов с последующим удалением воды, таким образом, вода замещается на неполярный органический растворитель, концентрация сухого остатка гидрофобных маркеров составляет от 40 до 60 % (масс.). При этом маркеры становятся полностью олеофильными, то есть теряют способность диспергироваться в воде, одновременно с этим они легко диспергируются в неполярных ароматических растворителях. Example 1. Melamine-formaldehyde microspheres are obtained by two-stage dispersion polycondensation of 2 mass. including melamine and 3 mass. including formaldehyde in 70 mass. including water in the presence of 1 mass. including sodium dodecyl sulfate and 1 mass. including polyvinyl alcohol. In the first stage, at pH = 9, methylol derivatives of melamine are obtained, while an aqueous solution of potassium hydroxide acts as a pH regulator. The duration of the first stage is 45 minutes. At the second stage, at pH = 6, fully cured microspheres are obtained, while an aqueous solution of phosphoric acid acts as a pH regulator. The duration of the second stage is 1 hour. Adding an aqueous dispersion of a phosphor with a concentration of 10 wt% (lf = 480 nm - selenide cadmium), is carried out in the first stage, while the amount of dispersion is about 5% (wt.). After the end of the second stage, the dispersion is concentrated by sedimentation to a dry residue of 40 to 60 wt%, where the dry residue is polymer microspheres with one or two luminescent substances integrated in them, and is divided into two parts. The first part of the dispersion is a dispersion of hydrophilic markers. The second part of the dispersion is used to obtain a dispersion of hydrophobic markers by sequential treatment of an aqueous dispersion with a non-polar organic solvent selected from a number of aromatic solvents benzene, toluene, xylene, then an amphiphilic copolymer of a number of acrylates, followed by removal of water, thus, water is replaced by a non-polar organic solvent, the concentration the dry residue of hydrophobic markers is from 40 to 60% (wt.). In this case, the markers become completely oleophilic, that is, they lose their ability to be dispersed in water, while at the same time they are easily dispersed in non-polar aromatic solvents.
Затем аналогичным путем получают дисперсии маркеров с другими флюорофорами в соответствии с таблицей 1. Then, in a similar way, dispersions of markers with other fluorophores are obtained in accordance with Table 1.
Таблица 1 — Кодирование маркеров
Figure imgf000007_0001
Figure imgf000008_0001
Table 1 - Coding of markers
Figure imgf000007_0001
Figure imgf000008_0001
Далее получают проппант с маркированным полимерным покрытием, причем в каждой партии проппанта используется 1 код маркеров. Таким образом, получается 63 кода проппанта. Проппант с маркированным полимерным покрытием получают следующим образом. Водную дисперсию гидрофильных маркеров в смесителе смешивают с проппантом, эпоксидной смолой, отвердителем и функциональным наполнителем. В качестве смолы используют эпоксидиановую смолу, отвердитель - аминный. Функциональным наполнителем выступает гидрофобное вещество. Next, a proppant with a marked polymer coating is obtained, and 1 marker code is used in each batch of proppant. Thus, 63 proppant codes are obtained. A proppant with a marked polymer coating is prepared as follows. An aqueous dispersion of hydrophilic markers in a mixer is mixed with proppant, epoxy resin, hardener and functional filler. Epoxy resin is used as resin, amine hardener. A hydrophobic substance acts as a functional filler.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код Ns 1, во вторую - Ns 2, в третью - Ns 3 и т.д. Then the proppant is immersed in a horizontal well during multistage hydraulic fracturing. In this case, the proppant code number, as a rule, corresponds to the stage of multi-stage hydraulic fracturing of the formation. For example, the code Ns 1 is pumped into the first stage of hydraulic fracturing, the code Ns 2 is pumped into the second, Ns 3 is in the third, etc.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, приведенного на рисунке 1. After the well reaches the mode, sampling is carried out using the filtration device shown in Figure 1.
Устройство фильтрации устанавливают на байпасной линии, которая должна быть оснащена кранами, манометром, расходомером и соединительными элементами. The filtration device is installed on the bypass line, which must be equipped with taps, a pressure gauge, a flow meter and connecting elements.
Устройство фильтрации содержит в себе отсек для фильтрующего патрона, который состоит из последовательно соединенных полимерных мембран. Для каждого отбора проб используется индивидуальный патрон. Полный пакет проб содержит 8 проб, отобранных при разных потоках и давлениях, а также времени накопления. Затем полученные пробы подвергают анализу с использованием проточной цитофлюорометрии. The filtration device contains a compartment for the filter cartridge, which consists of polymer membranes connected in series. An individual cartridge is used for each sampling. The complete sample package contains 8 samples taken at different flows and pressures and accumulation times. Then the obtained samples are subjected to analysis using flow cytofluorometry.
Анализ состоит из трех последовательных стадий: пробоподготовки, цитофлюорометрии и интерпретации данных анализа. The analysis consists of three sequential stages: sample preparation, cytofluorometry and interpretation of the analysis data.
Пробоподготовка состоит в переводе маркеров с полимерной мембраны в раствор водной фазы с использованием поверхностно-активных веществ Водную фазу диспергируют на УЗ-диспергаторе и подают на анализ методом цитофлуорометрии. В результате получают спектральную картину в 15-ти мерном пространстве. Sample preparation consists in transferring markers from a polymer membrane into a solution of an aqueous phase using surfactants. The aqueous phase is dispersed on an ultrasonic disperser and fed for analysis by cytofluorometry. As a result, a spectral picture is obtained in 15-dimensional space.
Интерпретацию проводят с помощью программного обеспечения на основе полученной классификации в соответствии с информацией о кодировке маркеров, при этом устанавливаются количественные отношения каждого типа маркера в анализируемой смеси. The interpretation is carried out using software based on the obtained classification in accordance with the information on the coding of the markers, while the quantitative ratios of each type of marker in the analyzed mixture are established.
Полученные данные о количественном соотношении каждого кода маркера в анализируемой смеси пересчитываются в профили притоков по каждой стадии МГРП с учетом известных закономерностей о влиянии на концентрацию соответствующих маркеров пластовой температуры, пластового давления и гидродинамических параметров скважины. Визуализация результатов расчета представляется в виде графиков притока по ступеням ГРП во времени и накопленных дебитах газа в каждой из ступеней. Критерием отбора проб для визуализации служит наличие данных по общему дебиту газа и режиму работы скважины, а также предполагаемом наличии УВ и воды. The obtained data on the quantitative ratio of each marker code in the analyzed mixture are recalculated into the inflow profiles for each stage of multistage hydraulic fracturing, taking into account the known regularities about the influence on the concentration of the corresponding markers of reservoir temperature, reservoir pressure and hydrodynamic parameters of the well. The visualization of the calculation results is presented in the form of graphs of inflow by hydraulic fracturing stages in time and accumulated gas production rates in each of the stages. The sampling criterion for visualization is the availability of data on the total gas flow rate and well operation mode, as well as the expected presence of hydrocarbons and water.
Пример 2. Кремнеземные микросферы получают по методу Штёбера. Смешивают 70 масс. ч. этанола, 7 масс. ч. водного раствора аммиака, 3 масс ч. воды, и водную дисперсию, представляющую собой смесь сульфида кадмия и селенида цинка в соотношении 1:1 (10 % масс водная дисперсия), при этом концентрация дисперсии составляет 10 % (масс.). После этого добавляют 4 масс. ч. тетраэтоксисилана. Реакционную смесь перемешивают до прекращения изменения размеров частиц в течение 8 часов. Контроль за ростом частиц проводят с помощью проточного цитофлюорометра, оснащенного датчиками прямого и бокового светорассеяния. Таким образом получают спиртовую дисперсию микросфер. Затем добавляют водную дисперсию люминесцирующего вещества (квантовых точек_ - сульфид кадмия, 10 % масс., при этом, количество дисперсии составляет примерно 7 % (масс.). После этого дисперсию седиментацией концентрируют до содержания сухого остатка 50 % (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированной в них смесью люминесцирующих веществ. Example 2. Silica microspheres are obtained by the Stoeber method. Mix 70 masses. including ethanol, 7 mass. including an aqueous solution of ammonia, 3 parts by weight of water, and an aqueous dispersion, which is a mixture of cadmium sulfide and zinc selenide in a 1: 1 ratio (10% by weight aqueous dispersion), while the concentration of the dispersion is 10% (by weight). Then add 4 mass. including tetraethoxysilane. The reaction mixture is stirred until the change in particle size stops for 8 hours. Control for Particle growth is carried out using a flow cytofluorometer equipped with forward and side scattering sensors. In this way, an alcoholic dispersion of microspheres is obtained. Then add an aqueous dispersion of a luminescent substance (quantum dots_ - cadmium sulfide, 10 wt%, while the amount of the dispersion is about 7 wt%. After that, the dispersion is concentrated by sedimentation to a dry residue of 50 wt%, where dry the remainder represents polymer microspheres with a mixture of luminescent substances integrated in them.
Далее получают кварцевый песок с маркированным полимерным покрытием, причем в каждой партии кварцевого песка используется 1 код маркеров. Таким образом, получается 63 кода песка. Кварцевый песок с маркированным полимерным покрытием получают следующим образом. Водную дисперсию гидрофильных маркеров в смесителе смешивают с кварцевым песком, эпоксидной смолой, отвердителем и функциональным наполнителем. В качестве смолы используют эпоксидиановую смолу, отвердитель - аминный. Функциональным наполнителем выступает гидрофобное вещество. Further, quartz sand with a marked polymer coating is obtained, and 1 marker code is used in each batch of quartz sand. Thus, 63 sand codes are obtained. Quartz sand with a marked polymer coating is obtained as follows. An aqueous dispersion of hydrophilic markers in a mixer is mixed with quartz sand, epoxy resin, hardener and functional filler. Epoxy resin is used as resin, amine hardener. A hydrophobic substance acts as a functional filler.
Далее кварцевый песок с нанесенным полимерным покрытием погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код Ха 1 , во вторую - а 2, в третью - Ха 3 и т.д. Next, quartz sand with a polymer coating is immersed in a horizontal well during multistage hydraulic fracturing. In this case, the proppant code number, as a rule, corresponds to the stage of multi-stage hydraulic fracturing of the formation. For example, code Xa 1 is injected into stage 1 of hydraulic fracturing, code Xa 1 is injected into the second, and code Xa 2, in the third stage, Xa 3, etc.
Далее проводят действия как в примере 1. Next, the actions are carried out as in example 1.
Пример 3. Микросферы из сшитого полистирола получают методом трехмерной радикальной сополимеризации стирола и дивинилбензола в водной среде. В подготовленную воду (80 масс, ч.) после удаления кислорода добавляют 10 масс. ч. стирола, 0,2 масс. ч. дивинилбензола, 0,8 масс. ч. додецилсульфата натрия, 1 масс. ч. поливинилпирролидона и 0,2 масс. ч. инициатора - азобисизобутиронитрила. Доводят температуру до 70°С и проводят реакцию в течение 24 ч. После окончания процесса сополимеризации отгоняют остаточный стирол и добавляют 10 %-ную водную дисперсию смеси люминесцирующих веществ - квантовых точек, представляющих собой смесь сульфида и селенида цинка (10 % масс.), при этом количество дисперсии составляет примерно 10 % (масс.). После этого дисперсию седиментацией концентрируют до содержания сухого остатка 60 % (масс.), где сухой остаток представляет собой полимерные микросферы с интегрированными в них смесевыми квантовыми точками. Example 3. Microspheres of cross-linked polystyrene are obtained by the method of three-dimensional radical copolymerization of styrene and divinylbenzene in an aqueous medium. 10 wt. including styrene, 0.2 wt. including divinylbenzene, 0.8 wt. including sodium dodecyl sulfate, 1 wt. including polyvinylpyrrolidone and 0.2 wt. h. initiator - azobisisobutyronitrile. The temperature is brought to 70 ° C and the reaction is carried out for 24 hours. After the end of the copolymerization process, residual styrene is distilled off and a 10% aqueous dispersion of a mixture of luminescent substances - quantum dots is added, which is a mixture of zinc sulfide and selenide (10 wt%), the amount of dispersion is about 10% (wt.). After that, the dispersion is concentrated by sedimentation to a dry residue content of 60% (wt.), Where the dry residue is polymer microspheres with mixed quantum dots integrated therein.
Полимернопокрытй проппант получают как в примере 1. The polymer coated proppant is prepared as in example 1.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код N° 1, во вторую - Ne 2, в третью - З и т.д. Then the proppant is immersed in a horizontal well during multistage hydraulic fracturing. In this case, the proppant code number, as a rule, corresponds to the stage of multi-stage hydraulic fracturing of the formation. For example, code N ° 1 is pumped into the 1st stage of hydraulic fracturing, the second - Ne 2, the third - З, etc.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, таким же как в примере 1. After the well reaches the mode, sampling is carried out using a filtration device, the same as in example 1.
Устройство фильтрации устанавливают на линии сброса, которая должна быть оснащена краном, манометром, расходомером и соединительными элементами. The filtration device is installed on the discharge line, which must be equipped with a valve, pressure gauge, flow meter and connecting elements.
Далее проводят действия как в примере 1. Next, the actions are carried out as in example 1.
Пример 4. Микросферы, маркеры и полимернопокрытй проппант получают как в примере 1. Example 4. Microspheres, markers and polymer-coated proppant are prepared as in example 1.
Далее проппант и погружают в горизонтальную скважину в процессе МГРП. При этом номер кода проппанта, как правило, соответствует стадии МГРП пласта. Например, в 1 стадию гидроразрыва закачивают код N° 1, во вторую - J b 2, в третью - JV 3 и т.д. Then the proppant is immersed in a horizontal well during multistage hydraulic fracturing. In this case, the proppant code number, as a rule, corresponds to the stage of multi-stage hydraulic fracturing of the formation. For example, in the 1st stage of hydraulic fracturing, code N ° 1 is injected, in the second - J b 2, in the third - JV 3, etc.
После выхода скважины на режим проводят отбор проб с использованием устройства фильтрации, как в примере 1. Параллельно производится отбор проб пластового флюида. Пробоподготовка состоит в разделении образца пластового флюида на углеводородную и (при наличии) водную фазы с использованием деэмульгаторов. Водную фазу центрифугируют при нагрузке 1200 g, удаляют остатки обратной микроэмульсии, диспергируют на УЗ-диспергаторе и подают на анализ методом цитофлуорометрии. Углеводородную фазу пластового флюида последовательно обрабатывают органическими растворителями с постепенно увеличивающимися значениями диэлектрической проницаемости, при этом последним растворителем является вода. Полученную водную фазу центрифугируют при нагрузке 1200 g, удаляют остатки обратной микроэмульсии, диспергируют на УЗ-диспергаторе и подают на анализ методом цитофлюорометрии. На этой стадии проводят также определение обводненности каждой пробы пластового флюида и его вязкость. After the well reaches the mode, sampling is carried out using a filtration device, as in example 1. In parallel, formation fluid samples are taken. Sample preparation consists in separating the reservoir fluid sample into hydrocarbon and (if available) aqueous phases using demulsifiers. The aqueous phase is centrifuged at a load of 1200 g, the remnants of the reverse microemulsion are removed, dispersed on an ultrasonic disperser and fed for analysis by cytofluorometry. The hydrocarbon phase of the formation fluid is sequentially treated with organic solvents with gradually increasing dielectric constant values, with water being the last solvent. The resulting aqueous phase is centrifuged at a load of 1200 g, the remnants of the reverse microemulsion are removed, dispersed on an ultrasound disperser and fed for analysis by cytofluorometry. At this stage, the water cut of each sample of the formation fluid and its viscosity are also determined.
Цитофлюорометрию образцов проводят отдельно для водной и углеводородной, инвертированной в водную, фаз пластового флюида. В результате получают спектральную картину в 15-ти мерном пространстве. The cytofluorometry of the samples is carried out separately for the aqueous and hydrocarbon, inverted into water, phases of the formation fluid. As a result, a spectral picture is obtained in 15-dimensional space.
Далее проводят действия как в примере 1. Next, the actions are carried out as in example 1.
Заявленный способ обеспечивает получение достоверных результатов определения внутрискважинных притоков газа при многофазном потоке пластового флюида. The claimed method provides for obtaining reliable results of determining downhole gas inflows at multiphase flow of formation fluid.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Способ качественной и количественной оценки внутрискважинных притоков газа при многоступенчатом гидроразрыве пласта в системе многофазного потока, включающий получение флюоресцентного маркера в виде полимерных микросфер с приготовлением дисперсии смолы и люминесцирующих веществ, объединение полученного маркера с несущей средой, подаваемой в скважину, введение маркера с указанной несущей средой в скважину, отбор проб из скважины и их анализ с определением кодов и количества маркеров в пробах, представляющих собой полимерную мембрану, с использованием проточной цитофлюорометрии и определение на основе результатов указанных анализов внутрискважинных притоков флюида, получение указанного маркера осуществляют с использованием люминесцирующего вещества, флюоресцирующего после воздействия УФ- излучения или видимого излучения с длиной волны от 320 до 760 нм в области длин волны 350-780 нм, как самостоятельного, так и в виде бинарных смесей указанных люминесцирующих веществ при их соотношении от 0,01 : 0,99 до 0,99 : 0,01, путем радикальной сополимеризации стирола с дивинилбензолом или дисперсионной поликонденсации меламиноформальдегидной смолы или карбамидоформальдегидной смолы, или гидролитической поликонденсации тетраэтоксисилана, вводимых в виде 10-20%-ной их водной суспензии при его количестве в смеси 0,1 -5,0 % от массы отвержденной смолы, с получением дисперсии, содержащей 40-60 мае. % сухого остатка, в качестве несущей среды используют алюмосиликатный проппант и/или кварцевый песок, где указанный маркер размещен в полимерном покрытии, выполненном на основе эпоксидной смолы, указанное введение осуществляют в горизонтальную скважину, указанное определение кодов и концентраций маркеров в пробах осуществляют с использованием проточной цитофлюорометрии, по полученным результатам которой осуществляют расчет притоков по соответствующим стадиям гидроразрыва. 1. A method for qualitative and quantitative assessment of downhole gas inflows during multi-stage hydraulic fracturing in a multiphase flow system, including obtaining a fluorescent marker in the form of polymer microspheres with the preparation of a dispersion of resin and luminescent substances, combining the obtained marker with a carrier medium supplied to the well, introducing the marker with the specified carrier medium into the well, sampling from the well and their analysis with the determination of codes and the number of markers in samples representing a polymer membrane using flow cytofluorometry and determination of downhole fluid inflows based on the results of these analyzes, the specified marker is obtained using a luminescent substance, fluorescent after exposure to UV radiation or visible radiation with a wavelength of 320 to 760 nm in the wavelength range of 350-780 nm, both independent and in the form of binary mixtures of the indicated luminescent substances at their ratio and from 0.01: 0.99 to 0.99: 0.01, by radical copolymerization of styrene with divinylbenzene or dispersion polycondensation of melamine-formaldehyde resin or urea-formaldehyde resin, or hydrolytic polycondensation of tetraethoxysilane, introduced in the form of a 10-20% aqueous suspension thereof when its amount in the mixture is 0.1 -5.0% by weight of the cured resin, to obtain a dispersion containing 40-60 wt. % of dry residue, aluminosilicate proppant and / or quartz sand is used as a carrier medium, where the specified marker is placed in a polymer coating made on the basis of epoxy resin, the specified introduction is carried out into a horizontal well, the specified determination of codes and concentrations of markers in samples is carried out using a flow-through cytofluorometry, according to the results of which the inflows are calculated according to the corresponding stages of hydraulic fracturing.
2. Способ по п.1, отличающийся тем, что размер полимерных микросфер составляет 0,2-50,0 мкм. 2. The method according to claim 1, characterized in that the size of the polymer microspheres is 0.2-50.0 microns.
3. Способ по п.п. 1 или 2, отличающийся тем, что люминесцирующее вещество выбрано из группы, включающей селенид, сульфид, теллурид цинка или кадмия. 3. The method according to PP. 1 or 2, characterized in that the luminescent substance is selected from the group consisting of selenide, sulfide, zinc or cadmium telluride.
PCT/RU2020/000347 2020-03-27 2020-07-16 Method for evaluating downhole gas inflow rates during multistage hydraulic fracturing WO2021194373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020112613 2020-03-27
RU2020112613A RU2749223C1 (en) 2020-03-27 2020-03-27 Method of qualitative and quantitative estimation of downhole gas inflows in multistage hydraulic fracturing in a multiphase flow system

Publications (1)

Publication Number Publication Date
WO2021194373A1 true WO2021194373A1 (en) 2021-09-30

Family

ID=76301268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2020/000347 WO2021194373A1 (en) 2020-03-27 2020-07-16 Method for evaluating downhole gas inflow rates during multistage hydraulic fracturing

Country Status (3)

Country Link
CN (1) CN113513314A (en)
RU (1) RU2749223C1 (en)
WO (1) WO2021194373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194663A3 (en) * 2021-12-10 2023-08-30 Chevron U.S.A. Inc. Surveillance using particulate tracers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837656A (en) * 2022-05-23 2022-08-02 河南省科学院同位素研究所有限责任公司 Preparation method of density controllable isotope carrier
CN115197358B (en) * 2022-08-04 2024-02-02 西安交通大学 Preparation method and application of microsphere suitable for deep gas reservoir horizontal well flowback tracing
CN117234091B (en) * 2023-11-14 2024-01-23 四川省威沃敦石油科技股份有限公司 Oil gas well test quantum dot delivery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201171265A1 (en) * 2009-04-22 2012-05-30 Шлюмбергер Текнолоджи Б.В. DETECTION OF GASEOUS COMPOUNDS FOR ANALYSIS OF WELL-FLUID MEDIA USING MICROFLYUID DEVICES AND REAGENT WITH OPTICAL REGISTRATION
WO2012091599A1 (en) * 2010-12-30 2012-07-05 Schlumberger Holdings Limited Method for tracking a treatment fluid in a subterranean formation
RU2667536C1 (en) * 2014-12-31 2018-09-21 Аркема Франс Composition of fluid for intensification of oil and gas production
RU2685601C1 (en) * 2018-06-26 2019-04-22 Общество с ограниченной ответственностью "ВОРМХОЛС Внедрение" Method for determining the flow rate of water, oil, gas
RU2685600C1 (en) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Method for determination of downhole fluid inflows at multi-stage hydraulic fracturing of formation
RU2707621C2 (en) * 2011-08-16 2019-11-28 Гушор Инк. Method for analysing samples

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989765A (en) * 1995-09-21 1997-04-04 Fisher & Paykel Ltd Infrared ray gas analyzer
FR2815120B1 (en) * 2000-10-09 2002-12-13 Inst Francais Du Petrole METHOD AND DEVICE FOR TAKING A CIRCULATING EMULSION IN A PIPELINE
US20050250209A1 (en) * 2004-04-21 2005-11-10 Petroleum Habitats, Llc Determining metal content of source rock during well logging
US20080047370A1 (en) * 2006-08-07 2008-02-28 Vickery James H Jr Sampling apparatus for constituents in natural gas lines
HUE032017T2 (en) * 2006-10-19 2017-08-28 Societa' Italiana Acetilene E Derivati S I A D S P A In Abbreviated Form Siad S P A Method based on the use of a gas mixture for sizing systems of gas diffusion in groundwater and evaluating the aquifer contamination
US8109157B2 (en) * 2008-06-30 2012-02-07 Schlumberger Technology Corporation Methods and apparatus of downhole fluids analysis
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US10501353B2 (en) * 2011-06-22 2019-12-10 Bl Technologies, Inc. Monitoring and control of unit operations for generating steam from produced water
CN104500047B (en) * 2014-12-31 2017-12-01 中国石油天然气股份有限公司 Probe material is to evaluate the method for fracturing effect in analysis multistage fracturing fluid recovery (backflow) liquid
CN106398683B (en) * 2016-08-29 2018-09-11 上海交通大学 A method of preparing three color coding microball compositions
CN108825226A (en) * 2018-07-02 2018-11-16 四川圣诺油气工程技术服务有限公司 A kind of method and device for assessing gas production after pressure using chemical tracer
CN110805432A (en) * 2019-11-06 2020-02-18 陕西海默油田服务有限公司 Method for testing horizontal well fluid production profile by adopting quantum dot tracer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201171265A1 (en) * 2009-04-22 2012-05-30 Шлюмбергер Текнолоджи Б.В. DETECTION OF GASEOUS COMPOUNDS FOR ANALYSIS OF WELL-FLUID MEDIA USING MICROFLYUID DEVICES AND REAGENT WITH OPTICAL REGISTRATION
EA021134B1 (en) * 2009-04-22 2015-04-30 Шлюмбергер Текнолоджи Б.В. Detecting gas compounds for downhole fluid analysis using microfluidics and reagent with optical signature
WO2012091599A1 (en) * 2010-12-30 2012-07-05 Schlumberger Holdings Limited Method for tracking a treatment fluid in a subterranean formation
RU2707621C2 (en) * 2011-08-16 2019-11-28 Гушор Инк. Method for analysing samples
RU2667536C1 (en) * 2014-12-31 2018-09-21 Аркема Франс Composition of fluid for intensification of oil and gas production
RU2685601C1 (en) * 2018-06-26 2019-04-22 Общество с ограниченной ответственностью "ВОРМХОЛС Внедрение" Method for determining the flow rate of water, oil, gas
RU2685600C1 (en) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Method for determination of downhole fluid inflows at multi-stage hydraulic fracturing of formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194663A3 (en) * 2021-12-10 2023-08-30 Chevron U.S.A. Inc. Surveillance using particulate tracers

Also Published As

Publication number Publication date
RU2749223C1 (en) 2021-06-07
CN113513314A (en) 2021-10-19

Similar Documents

Publication Publication Date Title
RU2749223C1 (en) Method of qualitative and quantitative estimation of downhole gas inflows in multistage hydraulic fracturing in a multiphase flow system
RU2685600C1 (en) Method for determination of downhole fluid inflows at multi-stage hydraulic fracturing of formation
Dudek et al. Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production
US5716855A (en) Fluorescent latex containing at least two fluorochromes, process for producing it and application thereof
EP1868725B1 (en) Use of microfluidic device for identification, quantification, and authentication of latent markers
US9260957B2 (en) Use of nanoparticles for labelling oil field injection waters
RU2315180C2 (en) Method for fluid chemistry determination during well drilling and fluid production
CN110805432A (en) Method for testing horizontal well fluid production profile by adopting quantum dot tracer
RU164347U1 (en) DEVICE WITH INDICATOR IN AN AMPOULE FOR TRACER RESEARCH OF HORIZONTAL WELL WITH SEPARATED INTERVAL PACKERS AND INTERMEDIATE HYDRAULIC BREAKING
CN111472745A (en) Horizontal well tectorial membrane proppant staged fracturing yield testing method
CN101233405A (en) Method and test kit for the determination or iron content of in-use lubricants
CN107740690A (en) A kind of inter-well test method using solid tracers
US20090023223A1 (en) Plug flow system for identification and authentication of markers
EP3298100A1 (en) Method for exploitation of a subterranean formation by injection of a fluid comprising an additive tagged by a luminescent semiconductor nanocrystal
US2431487A (en) Oil detection in drilling muds
WO2014091144A2 (en) Fluorescent tracers for marking oilfield injection waters
WO2022173323A1 (en) Method for determining the flow profile of oil and gas producing wells
CN116411949A (en) Method for monitoring multi-section fracturing fluid production profile of horizontal well
RU2810391C2 (en) Method for determining inflow profile of oil and gas producing wells using marker diagnostics
Dulkarnaev et al. The First comprehensive study of tracer-based technologies in reservoir conditions
RU2164599C2 (en) Method of investigation of liquid-phase dynamic processes in strata with anomalously low pressure
CN111380826B (en) Method and device for detecting drilling fluid performance
CN117418829A (en) Method for testing horizontal well liquid production profile by utilizing quantum dot tracer
US11788952B2 (en) Determining concentration of oil in water by extraction
US20230279770A1 (en) Method of using an ultrahigh resolution nanoparticle tracer additive in a wellbore, hydraulic fractures and subsurface reservoir

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927700

Country of ref document: EP

Kind code of ref document: A1