WO2021194207A1 - Graphene channel member comprising nanovesicle containing trpa1, and biosensor - Google Patents

Graphene channel member comprising nanovesicle containing trpa1, and biosensor Download PDF

Info

Publication number
WO2021194207A1
WO2021194207A1 PCT/KR2021/003555 KR2021003555W WO2021194207A1 WO 2021194207 A1 WO2021194207 A1 WO 2021194207A1 KR 2021003555 W KR2021003555 W KR 2021003555W WO 2021194207 A1 WO2021194207 A1 WO 2021194207A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
trpa1
channel member
biocide
biosensor
Prior art date
Application number
PCT/KR2021/003555
Other languages
French (fr)
Korean (ko)
Inventor
권오석
송현석
김우근
곽지성
김경호
김다혜
김진영
박선주
박유신
박철순
서성은
유용상
윤석주
이상우
이지연
Original Assignee
한국생명공학연구원
한국과학기술연구원
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원, 한국과학기술연구원, 한국화학연구원 filed Critical 한국생명공학연구원
Publication of WO2021194207A1 publication Critical patent/WO2021194207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/554Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being a biological cell or cell fragment, e.g. bacteria, yeast cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/10Insecticides

Definitions

  • the present invention relates to a graphene channel member that can be used for detecting a biocide, and a graphene transistor and a biosensor including the same.
  • a transistor is a device capable of amplifying an electrical signal, and based on this, is widely applied in the sensor industry for the purpose of detecting a trace amount of a target material.
  • Graphene is one of the carbon allotropes made of carbon atoms, and while having electrically semi-metallic properties, since the charge acts as a zero effective mass particle therein, it has very high electrical conductivity (intrinsic electron mobility of 20,000 cm 2 /Vs). ) is known to have In particular, since it was reported that there is a field effect characteristic when graphene composed of two-dimensional carbon atoms having a hexagonal structure by mechanical exfoliation of graphite is used in a transistor, graphene is similar to conventional silicon. It is in the spotlight as a material that can replace semiconductor materials.
  • a biocide is a product used to kill or incapacitate living things such as pests, bacteria, and mice that can harm humans, livestock, crops, etc. Since it is composed of ingredients showing effects, it is known that when such biocides are introduced into the human body, they can adversely affect human health. In particular, the dangers and awareness of biocides are increasing day by day due to fatal accidents caused by biocides contained in humidifier disinfectants that have occurred in Korea. The need to develop a technology that can detect it is further emphasized. In addition, waste generated in the process of manufacturing products containing biocides or soil and water pollution by biocides may occur in the process of disposing of the products, so biocides may threaten not only people but also the ecosystem. is a substance in Accordingly, development and research of an efficient biocide sensor is urgent, but the development of a sensor capable of detecting it through a quick and simple method while having high selectivity and sensitivity to the biocide is still insufficient.
  • TRPA1 Transient receptor potential cation channel, subfamily A, member 1
  • Somatosensory receptors known to function in response.
  • As a ligand capable of detecting the binding of TRPA1 various substances such as phenolic compounds of olive oil, thymol, and menthol are known, but biocides such as those described above, for example, PHMG (polyhexamethyleneguanidine), etc. It has not been reported or disclosed that it can be used as a sensor capable of detecting it with high sensitivity by selectively binding to biological agents.
  • TRPA1 can bind with biocides including PHMG with high selectivity and sensitivity, and implements an environment similar to in vivo cells in the sensor for detecting it.
  • the present invention was completed by developing a novel biosensor capable of rapidly and sensitively detecting a biocide.
  • An object of the present invention is to provide a sensor capable of detecting a biocide such as polyhexamethyleneguanidine (PHMG) with high sensitivity, and a graphene channel member capable of selectively reacting with a biocide so that it can be used in the sensor, and the same
  • a biocide such as polyhexamethyleneguanidine (PHMG)
  • PHMG polyhexamethyleneguanidine
  • a graphene channel member capable of selectively reacting with a biocide so that it can be used in the sensor
  • one aspect of the present invention is a graphene channel member including a graphene film and a nanovesicle immobilized on the graphene film, wherein the nanovesicle is a TRPA1 (Transient receptor potential cation channel, It provides a graphene channel member that includes subfamily A, member 1).
  • TRPA1 Transient receptor potential cation channel
  • another aspect of the present invention is the graphene film; And a pair of electrodes; it provides a graphene transistor comprising a.
  • another aspect of the present invention is to provide a biosensor including the graphene transistor, and processing a sample in the biosensor; and measuring an electrical signal of the biosensor.
  • the graphene channel member of the present invention and the graphene transistor and biosensor including the same have selective and specific detection ability for various types of biocides such as PHMG, OIT, CMIT, and MIT by using TRPA1, It can detect even a very small amount of a biocide with a concentration of about 10 ⁇ g/L, which has the effect of being used as a highly sensitive biocide sensor.
  • Figure 2 shows the results of confirming the presence or absence of TRPA1 through western blotting by expressing the gene encoding TRPA1 in HEK-293 cells after transformation.
  • the leftmost part means the result of the marker
  • the middle part means the result of the control group, and it can be seen that a band is formed in the 151 kDa region, which means that TRPA1 is expressed and exists.
  • FIG. 4 is a photograph of a graphene transistor surface-modified with a poly-di-lysine linker.
  • FIG. 5 is a schematic diagram illustrating a graphene channel member in which nanovesicles including TRPA1 are immobilized on a graphene film and a graphene transistor including the same.
  • Nanovesicle/PDL/Gr indicates a transistor in which nanovesicles containing TRPA1 are immobilized on a graphene film through PDL (poly-di-lysine), and PDL/Gr indicates only the PDL linker layer without immobilizing the nanovesicles.
  • a transistor formed on a graphene film, pristine graphene means a transistor made of a graphene film in which the PDL linker layer is not formed.
  • Vds is a source/drain voltage
  • Vg is a gate voltage.
  • FIG. 7 is a graphene transistor (Nanovesicle with receptor) of the present invention and a graphene transistor (Nanovesicle w/p receptor) immobilized with a nanovesicle not containing TRPA1 by injecting PHMG by concentration to measure the value of change in current This is the graph shown.
  • FIG. 8 is a graph showing the measurement of the change amount of current by sequentially inputting OIT, CMIT, and PHMG at the same concentration to the graphene transistor of the present invention.
  • FIG. 9 is a graph showing the amount of change in current by inputting BNP, OIT, MIT, CA, CBDZ, and SPO to the graphene transistor of the present invention for each concentration.
  • FIG. 10 is a graph showing the amount of change in current by sequentially introducing a biocide of a combination of CMIT + OIT, CMIT + PHMG, OIT + PHMG, and CMIT + OIT + PHMG to the graphene transistor of the present invention.
  • 11 is a graphene transistor of the present invention MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC and DDAC + CA combinations of biocides by concentration, respectively, by measuring the amount of change in the current. It is a graph expressed as a sensitivity (sensitivity) numerical value.
  • FIG. 12 is a graph showing the amount of change in current as a sensitivity value by injecting samples of six commercially available household chemical products into the transistor of the present invention. The time of injection of each sample was indicated by an arrow.
  • One aspect of the present invention provides a graphene channel member.
  • the graphene channel member of the present invention includes a graphene film and a nanovesicle immobilized on the graphene film, and the nanovesicle includes a transient receptor potential channel, subfamily A, member 1 (TRPA1).
  • TRPA1 transient receptor potential channel, subfamily A, member 1
  • the nanovesicle of the present invention refers to a nanometer-sized vesicle having a shape surrounded by a membrane composed of a phospholipid bilayer, and may be used interchangeably with 'nanovesicles'.
  • Nanovesicles may have the same size and structure as exosomes, which are membrane-structured vesicles secreted from various types of cells, and are released to the outside of the cell and bind to other cells and tissues, and then protein in the vesicle Unlike exosomes, which serve to deliver substances such as , RNA, etc., nanovesicles are artificially obtained from cells.
  • the nanovesicle has the form of a vesicle surrounded by a membrane composed of a lipid bilayer, and the lipid bilayer membrane may be one or more.
  • the nanovesicle includes a transient receptor potential cation channel (TRPA1, subfamily A, member 1).
  • TRPA1 may be located on the membrane surface of the nanovesicle, and other proteins, glycoproteins, cholesterol, etc. may be bound to the membrane surface in addition to TRPA1.
  • nanovesicles have a cell-like structure, they can provide an environment similar to the actual intracellular environment and cell membrane. Therefore, as TRPA1, which originally exists on the surface of the cell membrane in vivo, is included in the nanovesicle, there is an advantage that TRPA1 can function identically or similarly to that of TRPA1 in vivo.
  • TRPA1 transient receptor potential cation channel
  • the TRPA1 is a kind of ion channel protein also called 'transient receptor potential ankyrin 1'. It is located on the surface of biological membranes of animal cells including humans, detects physical and chemical stress, and is a receptor related to somatosensory sensations such as pain, cold, itch. .
  • TRPA1 contained in the nanovesicles of the present invention can react selectively to biocides.
  • a biocide refers to an agent capable of killing or incapacitating living organisms such as bacteria and insects, and may include preservatives, fungicides, insecticides, rodenticides, preservatives, and the like. In particular, it may be used for the purpose of exterminating pathogens, pests, mice, etc. that damage people, crops, and livestock, but it may be toxic to people, animals, plants, etc. It can cause disease, disability, and even death.
  • the biocide is PHMG (polyhexamethyleneguanidine), BNP (2-bromo-2-nitropropane-1,3-diol), OIT (2-Octyl-3 (2H)-isothiazolone), CMIT (Chloromethylisothiazolinone), MIT (Methylisothiazolinone), CA (Citric acid), CBDZ (Carbendazim), SPO (Sodium 2-pyridinethiol 1-oxide), IPBC (iodopropynyl butylcarbamate) and DDAC (didecyldimethylammonium chloride) may be at least one selected from the group consisting of, and The same biocide may be contained in household chemicals or processed foods.
  • the TRPA1 may have the highest selectivity for PHMG among the biocides listed above. As the TRPA1 selectively binds to the biocide, the structure is changed and channels are opened so that ions existing outside the nanovesicles, such as calcium ions, can move into the nanovesicles. Accordingly, a change in the potential inside and outside the nanovesicle membrane may occur, and an electrical change may occur according to the potential difference before/after TRPA1 binds to the biocide. Therefore, by measuring a change in an electrical signal according to a change in the structure of TRPA1, the TRPA1 can be used for the purpose of confirming the presence of a biocide.
  • the TRPA1 may be a protein comprising the amino acid sequence of SEQ ID NO: 1, and the TRPA1 binds selectively to the biocide and does not affect the detectable activity, deletion or insertion of amino acid residues , may be variants or fragments of amino acids having different sequences by substitution or a combination thereof.
  • Amino acid exchange at the peptide level that selectively binds to the biocide and does not entirely alter its detectable activity is known in the art, and includes, for example, phosphorylation, sulfation, acrylation ( acrylation), glycosylation, methylation, farnesylation, and the like.
  • the present invention includes a protein comprising an amino acid sequence substantially identical to the protein comprising the amino acid sequence of SEQ ID NO: 1, and a variant thereof or an active fragment thereof.
  • the substantially identical protein means an amino acid sequence having 75% or more, for example, 80% or more, 90% or more, 95% or more sequence homology to the amino acid sequence of SEQ ID NO: 1, respectively.
  • the protein may further include a targeting sequence, a tag, a labeled residue, an amino acid sequence prepared for a specific purpose to increase half-life or protein stability.
  • the TRPA1 of the present invention can be obtained by various methods well known in the art. As an example, it may be prepared using polynucleotide recombination and protein expression systems, or synthesized in vitro through chemical synthesis such as peptide synthesis, and cell-free protein synthesis.
  • the N-terminal or A protecting group may be attached to the C-terminus.
  • the protecting group may be an acetyl group, a fluorenyl methoxycarbonyl group, a formyl group, a palmitoyl group, a myristyl group, a stearyl group, or polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the 'stability' refers to storage stability (eg, room temperature storage stability) as well as in vivo stability that protects the protein of the present invention from attack by a protein cleaving enzyme in vivo.
  • the nanovesicles containing TRPA1 may be prepared by producing and separating animal cells. Specifically, the animal cells are treated with a substance that expresses TRPA1 from animal cells transformed with the gene encoding the TRPA1 protein and reduces the stability of the cell membrane, such as cytochalasin B, and then centrifuged. Nanovesicles can be obtained through Transforming the gene encoding the TRPA1 protein may use any technique and method known in the art that can be used to transform a specific gene in an animal cell, for example, the TRPA1 protein into an expression vector. By cloning the coding gene, it may be transformed into animal cells through treatment with a lipofectamine solution.
  • the diameter of the nanovesicles including TRPA1 may be 100 nm to 200 nm, specifically, 120 nm to 200 nm, 140 nm to 180 nm, 120 nm to 180 nm, or 140 nm to 160 nm. .
  • the diameter of the nanovesicle is smaller than the above range, the amount of TRPA1 that can be included in the nanovesicle may be reduced than the target value, and if the diameter is larger than the above, in the process of immobilizing the nanovesicle to the graphene film can be an obstacle
  • the nanovesicles including the TRPA1 may be immobilized on the graphene film by chemical bonding.
  • the immobilization refers to fixing the nanovesicles so that they do not move at one position of the graphene film, and the structural change of TRPA1 caused by the binding of TRPA1 contained in the nanovesicles with a biocide and the resulting electrical signal. As long as the change is fixed so that it can be transmitted to the graphene film, it can be fixed through any method.
  • the chemical bond is from the group consisting of poly-D-lysine (or PDL), poly-L-lysine and poly-L-ornithine. It may be immobilized by using any one selected as a linker, but it is not limited thereto, and if there is a property that an electron carrier (electron or hole) can move through it and can bind to the graphene film and the nanovesicle, respectively, any It can be used in any form.
  • the poly-di-lysine is a polymer in which a plurality of D-lysine is linked, and forms ionic bonds on the surfaces of graphene films and nanovesicles, respectively, by using the properties of cations represented by lysine. can do.
  • the surface of the graphene film is modified by coating the graphene film with poly-di-lysine, and the nanovesicles of the present invention can be immobilized on the graphene film by binding the nanovesicles to the poly-di-lysine. have.
  • the graphene film may be a single layer or a bi-layer.
  • the graphene film may be patterned, specifically, micro-patterned.
  • the graphene film may be variously patterned in a polygonal shape such as a circle, a triangle, a square, a pentagon, or a hexagon (honeycomb).
  • the nanovesicles including the TRPA1 may be immobilized on the surface of the patterned graphene film.
  • the nanovesicles may be immobilized on the graphene film using poly-di-lysine as a linker.
  • the graphene channel member of the present invention includes a graphene film.
  • a high current flows even in the OFF state where no voltage is applied to the gate, so the on/off ratio of the operating current is very low. It has the advantage of being able to manufacture high-performance transistors.
  • the thickness of the graphene film may be 0.1 to 1 nm, specifically 0.2 to 0.8 nm, 0.3 to 0.8 nm, or 0.5 to 0.7 nm.
  • the thickness of the graphene film refers to the thickness of a single layer of graphene, and when the thickness of the graphene film is within the above range, it exhibits high conductivity and high charge mobility. Available.
  • Another aspect of the present invention provides a graphene transistor.
  • the graphene transistor may include a substrate; The graphene channel member of the present invention; and a pair of electrodes.
  • the substrate serves as a support on which the components of the graphene transistor of the present invention are supported, and an insulating inorganic substrate such as a Si substrate, a glass substrate, a GaN substrate, a silica (SiO 2 ) substrate, and a metal such as Ni, Cu, W A substrate or a plastic substrate may be used, and when an insulating substrate is used, a silica (SiO 2 ) substrate or a silicon wafer is preferable from the viewpoint of excellent affinity with the graphene channel member.
  • an insulating inorganic substrate such as a Si substrate, a glass substrate, a GaN substrate, a silica (SiO 2 ) substrate, and a metal such as Ni, Cu, W
  • a substrate or a plastic substrate may be used, and when an insulating substrate is used, a silica (SiO 2 ) substrate or a silicon wafer is preferable from the viewpoint of excellent affinity with the graphene channel member.
  • the substrate may be selected from various materials capable of depositing graphene, for example, may be made of a material such as silicon-germanium and silicon carbide (SiC), and an epitaxial layer, silicon-on.
  • SiC silicon-germanium and silicon carbide
  • the substrate may be selected from various materials capable of depositing graphene, for example, may be made of a material such as silicon-germanium and silicon carbide (SiC), and an epitaxial layer, silicon-on.
  • SiC silicon-germanium and silicon carbide
  • the graphene channel member may be formed on the substrate.
  • the graphene film may be formed by growing graphene on the substrate by a chemical vapor deposition method using a hydrocarbon gas as a carbon source.
  • the graphene film may be formed using, for example, chemical vapor deposition, and by using this, single to several layers of graphene having excellent crystallinity can be obtained over a large area.
  • the chemical vapor deposition method is a method of growing graphene by adsorbing, decomposing, or reacting a carbon precursor in the form of a gas or vapor having a high kinetic energy on the substrate surface to separate it into carbon atoms, and making the carbon atoms bond with each other. .
  • the chemical vapor deposition method may be at least one selected from the group consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD), and Low Pressure Chemical Vapor Deposition (LPCVD), and minimize defects in a large area
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • APCVD Atmospheric Pressure Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • a metal catalyst such as nickel, copper, aluminum, iron is deposited on a wafer having a silicon oxide layer using a sputtering device and an electron beam evaporation device to form a metal catalyst layer, CH 4 , C 2 H 2 It is put in a reactor together with a gas containing carbon, such as, heated, so that carbon is absorbed in the metal catalyst layer, cooled to separate carbon from the metal catalyst layer and crystallized, and finally the metal By removing the catalyst layer, a graphene film can be formed.
  • a gas containing carbon such as, heated, so that carbon is absorbed in the metal catalyst layer, cooled to separate carbon from the metal catalyst layer and crystallized
  • the method for forming the graphene film is not limited to the chemical vapor deposition method, and various methods may be used to form the graphene film.
  • a graphene film can be formed by using an epitaxial synthesis method in which a material is heat-treated at a high temperature of 1,500 °C.
  • the pair of electrodes may be a source electrode and a drain electrode formed to be spaced apart from each other on the graphene film in order to apply a voltage to the graphene channel member.
  • the source electrode and the drain electrode may be electrically connected through the graphene film, may include a material having conductivity, and may be formed of, for example, a metal, a metal alloy, a conductive metal oxide, or a conductive metal nitride. .
  • the source electrode and the drain electrode are each independently Cu, Co, Bi, Be, Ag, Al, Au, Hf, Cr, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, Pt, Re, Rh, Sb, Ta, Te, Ti, W, V, Zr, Zn, and may include at least one selected from the group consisting of Zn and combinations thereof, but is not limited thereto, in terms of contact with graphene and ease of etching. , Au, or a Cr/Au alloy is preferred.
  • the pair of electrodes may be formed by a method known in the art, but for example, photolithography, thermal deposition, E-beam deposition, and plasma enhanced (PECVD). It may be formed by a deposition method such as Chemical Vapor Deposition), LPCVD (Low Pressure Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sputtering, or ALD (Atomic Layer Deposition).
  • PECVD plasma enhanced
  • the graphene channel member may be one in which nanovesicles including TRPA1 are immobilized on the graphene film through a chemical bond, for example, poly-di-lysine.
  • Description of the graphene channel member, TRPA1, nanovesicle, poly-di-lysine, and graphene film is described in '1. It is the same as described in 'Graphene Channel Member'.
  • the graphene transistor including a graphene channel member in which TRPA1 is bonded to the graphene film in a form not included in the nanovesicle ie, TRPA1 is Compared to a graphene transistor immobilized on a graphene film or the like by a single physical or chemical bond), the sensitivity is higher and the detection limit is improved.
  • TRPA1 since nanovesicles have a cell-like structure, when TRPA1 contained in nanovesicles is used, TRPA1 can function identically or similarly to that of TRPA1 actually functioning in vivo, and the structural changes of TRPA1 It is possible to realize the difference in ion concentration inside and outside the nanovesicle by the inflow/outflow of ions that are generated accordingly. Therefore, when compared to a transistor or biosensor that uses only protein without using a nanovesicle, it is not possible to measure only the structural change of the protein itself or the resistance change according to it, but it is also possible to measure the movement of ions and the ion gradient inside and outside the nanovesicle.
  • the change of the electrical signal can be measured to be larger, and thus a higher sensitivity can be exhibited.
  • graphene since it has high charge mobility compared to materials having other semiconductor characteristics, it is possible to measure changes in electrical signals faster and with high sensitivity, which has the advantage that the detection limit can be improved accordingly.
  • Poly-D-lysine bound to the graphene film may form a linker layer in the form of a single layer, and the nanovesicles immobilized on the poly-D-lysine may also form an acceptor layer in the form of a single layer.
  • linker layer When the linker layer is formed as a single layer, graphene not only has excellent charge mobility, transparency and/or flexibility, but also has an effect of blocking noise signals due to the approach of external non-specific charges.
  • the linker layer may have a thickness of 0.1 to 2 nm.
  • the thickness of the linker layer is thinner than 0.1 nm, there is a problem in that resistance increases, and when it is thicker than 2 nm, there is a problem in that transparency is reduced.
  • Another aspect of the present invention provides a biosensor and a method for detecting a biocide using the same.
  • the biosensor includes the graphene transistor of the present invention.
  • the biosensor according to the present invention uses a semiconductor characteristic in which a current flowing in a graphene film between a source and a drain electrode is changed by an electric field effect.
  • the biosensor may be for detecting a biocide.
  • the description of the biocide that can be detected by the biosensor of the present invention is described in '1. It is the same as described in 'No graphene channel, for example, the biocide is PHMG (polyhexamethyleneguanidine), BNP (2-bromo-2-nitropropane-1,3-diol), OIT (2-Octyl-3 (2H)- from the group consisting of isothiazolone), CMIT (Chloromethylisothiazolinone), MIT (Methylisothiazolinone), CA (Citric acid), CBDZ (Carbendazim), SPO (Sodium 2-pyridinethiol 1-oxide), IPBC (iodopropynyl butylcarbamate) and DDAC (didecyldimethylammonium chloride) There may be one or more selected, and the biocide as described above may be included in household chemical products or processed foods.
  • the biosensor can detect even when the concentration of the biocide is 10 g/l or less, for example, 1 g/l or less, 100 mg/l or less, 10 mg/l or less, 1 mg/l or less, 100 ⁇ g/l or less A biocide of less than or equal to l, or less than or equal to 10 ⁇ g/l can be detected.
  • Such a biosensor is excellent in sensitivity, specificity, speed and/or portability by using the graphene transistor as described above, and in particular, due to the high charge carrier mobility and conductivity characteristics of graphene by using a graphene film as a channel layer. It has excellent sensitivity and real-time detection performance, thereby improving the detection limit of biocides that may be included in household chemicals or processed foods, thereby enabling detection with high sensitivity and reproducibility.
  • the above-mentioned graphene transistor is manufactured in the form of a SIM chip and can be applied to a miniaturized biosensor (portable electronic biocide sensor, etc.) It can be accurately identified in real time, and it can be used in various food industries and environmental evaluation industries.
  • the method for detecting a biocide from the sample includes: processing the sample with the biosensor of the present invention; and measuring an electrical signal of the biosensor.
  • the detection means confirming the presence of a target substance, and includes quantifying or semi-quantifying the concentration of a biocide that is a target substance.
  • the sample means any mixture or solution that contains or is suspected to contain a biocide, which is a target substance to be detected, and thus needs detection. It may be water, food, household products, by-products generated from household products, biological samples obtained from humans or animals, or processed products thereof that contain or are believed to contain biocides, such as household chemical products or processed foods.
  • the household chemical product may be, for example, an insecticide, a deodorant, and the like, but is not limited thereto.
  • the measurement of the electrical signal may be to measure the amount of change in the current, and specifically, by measuring the value obtained by dividing the value of the change in the current with time by the initial amount of current, the presence or absence of the biocide in the sample and / or the amount of the biocide Concentration and quantity can be detected.
  • the method of detecting the biocide from the sample may further include determining that the biocide is present in the sample when it is measured that the electrical signal of the biosensor changes.
  • the TRPA1 gene was transformed into HEK-293 cells, a type of mammalian cells, and the formation of nanovesicles was induced.
  • PCR is performed using the TRPA1 gene as a template to amplify it, and then rho-tag, an import sequence that induces the expression protein to move to the surface of the cell membrane. was fused with the PCR-amplified TRPA1 gene, and cloned into a mammalian expression vector, pCMV6-AC-GFP (CAT#: PS100010, OriGene).
  • the pCMV6-AC-GFP vector includes an ampicillin resistance gene, a CMV promoter, and a gene sequence encoding GFP, a green fluorescent protein.
  • 0.5 ⁇ g of the expression vector was diluted with 100 ⁇ l of Opti-MEM (Reduced Serum Media ) and mixed with 0.75 ⁇ l to 1.75 ⁇ l of a lipofectamine solution (Lipofectamine LTX TM , Invitrogen), followed by DNA-lipofectamine complex. was reacted at room temperature for 30 minutes to form Prior to introducing the expression vector into HEK-293 cells, the HEK-293 cells were humidified at 37 °C in DMEM medium (Dulbecco's Modified Eagle Medium, 4 mM L-glutamine, 10% FBS, 1% penicillin-streptomycin added).
  • DMEM medium Dulbecco's Modified Eagle Medium, 4 mM L-glutamine, 10% FBS, 1% penicillin-streptomycin added.
  • cytochalasin B cytochalasin B
  • B Sigma, USA
  • Cytochalasin B is a type of toxin (mycotoxin) capable of penetrating cell membranes, and can reduce the stability of cell membranes by interfering with the formation of contractile microfibers.
  • the expression vector was successfully introduced into HEK-293 cells and transformed, which means that the protein expressed therefrom is contained in the nanovesicle. . Since TRPA1 is encoded in the expression vector, it can be interpreted that TRPA1 fused with GFP is expressed in the nanovesicle through the above results.
  • a marker As a marker, a product from Bio-Rad was used, and as a control, a protein that was not solubilized by treatment with a surfactant was used. As a result of Western blotting, as shown in FIG. 2, a band was identified in the 151 kDa portion corresponding to the size of the TRPA1 protein (the combined size of 124 kDa TRPA1 and the 27 kDA GFP tag bound thereto), and TRPA1 was expressed and present. could confirm that
  • the nanovesicles prepared by the method of Preparation Example 1-1 were observed using a scanning electron microscope (Field Emission SEM, Magellan400). As a result, it was confirmed that the nanovesicles formed a spherical shape as shown in FIG. 3 . Combining the above measurement results, it can be seen that TRPA1 in a fused form with GFP is expressed and located on the surface film of the nanovesicle formed in the spherical shape of the present invention prepared by the method of Preparation Example 1-1. .
  • a copper foil was placed in the chamber, heated to 1,000 °C, and held at H 2 90 mTorr and 8 sccm for 30 min (20 min pre-annealing and 10 min stabilization), then CH 4 at 20 sccm 40 After applying a total pressure of 560 mTorr for minutes, it was cooled to 35 °C to 200 °C, and the furnace was cooled to room temperature to form a single graphene layer on the copper foil.
  • PMMA polymethyl methacrylate
  • the graphene layer washed as described above was transferred to a silicon wafer as a substrate, and then a PMMA solution was dropped on the graphene layer to remove the PMMA coating the graphene layer, thereby forming a graphene channel layer on the substrate. At this time, transparency was maintained at 97.8%.
  • a positive photoresist (AZ5214, Clariant Corp) was spin-coated on the graphene channel layer formed on the substrate, and then the graphene channel layer was patterned through UV exposure, baking and development processes.
  • a linker layer serving as a medium for fixing the graphene transistors and the nanovesicles was formed.
  • the linker poly-D-lysine (PDL) was used, the surface of the graphene layer was coated with a PDL solution of 0.1 mg/ml concentration, and the linker was reacted at 25° C. for 2 hours. layer was formed.
  • PDL poly-D-lysine
  • the nanoveg of the present invention A graphene transistor with a fixed claw was fabricated.
  • the electrical characteristics appearing in the graphene transistor in the form of a fixed nanovesicle containing TRPA1 prepared in Preparation Example 2 were measured using a source meter (Keithly 2412 sourcemteter) and a potentiometer (Wonatech 3000 potentiostat), Graphene transistor before fixing the nanovesicles (graphene transistors prepared up to Preparation Example 2-3, in which only a linker is coupled), graphene transistors before forming a linker layer (graphene transistors of Preparation Example 2-2) It is shown in FIG. 6 as compared with the measurement result of the electrical properties of .
  • the nano of the present invention In the graphene transistor with a fixed vesicle, the slope of the resistance increased. This is a result of resistance generated as nanovesicles containing TRPA1 are immobilized on the surface of graphene through a linker. It was confirmed that the immobilization of the nanovesicles was performed on the vesicles.
  • PHMG polyhexamethyleneguanidine
  • biocide a kind of biocide
  • the graphene transistor of the present invention has the effect of detecting PHMG according to the amount of PHMG, and a very high concentration of 10 ⁇ g/L It was confirmed that detection and detection were possible even at a small concentration.
  • OIT (2-Octyl-3(2H)-isothiazolone), CMIT (Chloromethylisothiazolinone) and PHMG as a biocide in a graphene transistor in which the nanovesicles containing TRPA1 prepared in Preparation Example 2 are fixed.
  • CMIT Chloromethylisothiazolinone
  • PHMG PHMG
  • the graphene transistor including the nanovesicles including TRPA1 of the present invention can detect and detect OIT and CMIT, but in particular, it has excellent detection effect on PHMG, and thus it can be confirmed that the selectivity is very large.
  • biocides As biocides, MIT, IPBC (iodopropynyl butylcarbamate), CA and DDAC (didecyldimethylammonium chloride) were used, and these were MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC and DDAC + CA combinations, respectively.
  • MIT iodopropynyl butylcarbamate
  • CA dodopropynyl butylcarbamate
  • DDAC didecyldimethylammonium chloride
  • the transistor of the present invention can detect whether a component acting as a biocide is contained in a commercially available household chemical product. 5 ⁇ l of a total of 6 kinds of household chemical samples was put into the transistor of the present invention to measure electrical characteristics, and the measured sensitivity based on the value of the change in current with time is shown in FIG. 12 .
  • the household chemical products were measured by injecting a liquid sample collected by spraying the disinfectant and deodorant products in the form of spraying into the transistor of the present invention.
  • the transistor of the present invention can detect the biocide contained in household chemical products, and it can be confirmed that the transistor of the present invention can be used to quickly and conveniently detect the biocide present in the product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Mycology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention relates to a graphene channel member comprising a graphene film and a nanovesicle (containing TRPA1) immobilized in the graphene film; a graphene transistor comprising a substrate, the graphene channel member, and a pair of electrodes; and a biosensor comprising the graphene transistor. In addition, the present invention relates to a method of detecting a biocide from a sample, the method comprising the steps of: processing the sample in the biosensor; and measuring an electric signal in the biosensor.

Description

TRPA1을 포함하는 나노베지클을 포함하는 그래핀 채널 부재, 및 바이오 센서Graphene channel member including nanovesicles including TRPA1, and biosensor
본 발명은 살생물제의 검출에 이용될 수 있는 그래핀 채널 부재와 이를 포함하는 그래핀 트랜지스터 및 바이오 센서에 관한 것이다.The present invention relates to a graphene channel member that can be used for detecting a biocide, and a graphene transistor and a biosensor including the same.
트랜지스터는 전기적 신호를 증폭시킬 수 있는 장치로, 이를 바탕으로 미량의 표적 물질을 검출하기 위한 목적으로 센서 산업에서 광범위하게 응용되고 있다. 그래핀은 탄소 원자로 이루어진 탄소 동소체 중의 하나로서, 전기적으로 반금속 성질을 가지면서도, 그 내부에서 전하가 제로 유효 질량 입자로 작용하기 때문에, 매우 높은 전기 전도도(20,000 cm2/Vs의 진성 전자 이동도)를 가지는 것으로 알려져 있다. 특히, 그라파이트를 기계적으로 박리하여 6각 구조의 2차원 형상의 탄소 원자로 구성된 그래핀을 트랜지스터에 이용한 경우에 전계효과(field effect) 특성이 있다는 것이 보고된 이후로, 그래핀은 종래의 실리콘과 같은 반도체 물질을 대체할 수 있는 물질로 각광받고 있다.A transistor is a device capable of amplifying an electrical signal, and based on this, is widely applied in the sensor industry for the purpose of detecting a trace amount of a target material. Graphene is one of the carbon allotropes made of carbon atoms, and while having electrically semi-metallic properties, since the charge acts as a zero effective mass particle therein, it has very high electrical conductivity (intrinsic electron mobility of 20,000 cm 2 /Vs). ) is known to have In particular, since it was reported that there is a field effect characteristic when graphene composed of two-dimensional carbon atoms having a hexagonal structure by mechanical exfoliation of graphite is used in a transistor, graphene is similar to conventional silicon. It is in the spotlight as a material that can replace semiconductor materials.
한편, 표적 물질을 검출할 수 있는 센서들 중에서, 악취의 감지, 오염물질의 감지, 부패의 감지 등 환경 부문에서도 다양한 종류의 센서가 개발되어 상용화되어 있지만, 일상에서 사용되는 생활화학제품 내에 포함되어 있을 수 있는 살생물제를 감지하기 위한 센서의 개발은 아직 진행되지 않은 상황이며, 세포실험을 통해서만 살생물제의 존재 여부를 검출하고 있을 뿐이다.On the other hand, among the sensors that can detect target substances, various types of sensors have been developed and commercialized in the environmental sector such as odor detection, pollutant detection, and decay detection, but they are included in everyday chemical products. The development of sensors to detect possible biocides has not yet progressed, and only the presence of biocides is detected through cell experiments.
살생물제(biocide)는 인간이나 가축, 농작물 등에 피해를 줄 수 있는 해충, 세균, 쥐와 같은 생물체를 죽이거나 무력화시키기 위한 용도로 사용하는 제품으로, 해로운 생물체를 죽이기 위한 목적에서 생물체에 대한 살상 효과를 나타내는 성분들로 이루어져 있으므로, 상기와 같은 살생물제가 인체 내에 유입될 경우 사람의 건강에도 악영향을 줄 수 있는 것으로 알려져 있다. 특히, 국내에서 발생했던 가습기 살균제에 포함된 살생물제로 인한 사망 사고 등으로 인해 살생물제의 위험성과 경각심이 날로 높아지고 있으며, 일상에서 이용하는 제품들에 살생물제가 포함되어 있는지 여부를 간편하면서도 정밀하게 검출할 수 있는 기술의 개발 필요성이 더욱 강조되고 있다. 또한, 살생물제가 함유된 제품을 제조하는 과정에서 발생하는 폐기물이나, 상기 제품을 폐기하는 과정에서 살생물제에 의한 토양, 수질 오염이 발생할 수 있어 살생물제는 사람뿐만 아니라 생태계를 위협할 수도 있는 물질이다. 이에, 효율적인 살생물제 센서의 개발과 연구가 시급하지만, 살생물제에 대해 높은 선택성 및 민감도를 가지면서도 신속하고 간단한 방법을 통해 이를 검출할 수 있는 센서의 개발은 아직 미흡한 실정이다.A biocide is a product used to kill or incapacitate living things such as pests, bacteria, and mice that can harm humans, livestock, crops, etc. Since it is composed of ingredients showing effects, it is known that when such biocides are introduced into the human body, they can adversely affect human health. In particular, the dangers and awareness of biocides are increasing day by day due to fatal accidents caused by biocides contained in humidifier disinfectants that have occurred in Korea. The need to develop a technology that can detect it is further emphasized. In addition, waste generated in the process of manufacturing products containing biocides or soil and water pollution by biocides may occur in the process of disposing of the products, so biocides may threaten not only people but also the ecosystem. is a substance in Accordingly, development and research of an efficient biocide sensor is urgent, but the development of a sensor capable of detecting it through a quick and simple method while having high selectivity and sensitivity to the biocide is still insufficient.
TRPA1(Transient receptor potential cation channel, subfamily A, member 1)은 동물세포 막에 존재하는 수용체의 일종으로, 고통, 추위, 가려움 등 기계적/화학적 자극 및 스트레스를 감지하고 눈물, 기침, 기도 저항 등의 방어 반응과 관련된 기능을 하는 것으로 알려진 체성감각수용체이다. 상기 TRPA1이 결합하여 감지할 수 있는 리간드로, 올리브 오일의 페놀 화합물, 티몰(thymol), 멘톨(menthol) 등 다양한 물질이 알려져 있으나, 전술한 것과 같은 살생물제, 예컨대 PHMG(polyhexamethyleneguanidine) 등의 살생물제에도 선택적으로 결합하여 고감도로 이를 감지해 낼 수 있는 센서로 이용할 수 있다는 점에 대해서는 보고되거나 공개된 바 없다.TRPA1 (Transient receptor potential cation channel, subfamily A, member 1) is a type of receptor that exists in animal cell membranes. Somatosensory receptors known to function in response. As a ligand capable of detecting the binding of TRPA1, various substances such as phenolic compounds of olive oil, thymol, and menthol are known, but biocides such as those described above, for example, PHMG (polyhexamethyleneguanidine), etc. It has not been reported or disclosed that it can be used as a sensor capable of detecting it with high sensitivity by selectively binding to biological agents.
이에, 본 발명의 발명자는 TRPA1이 PHMG를 비롯한 살생물제들과 높은 선택성, 민감도를 가지고 결합할 수 있다는 점을 새롭게 밝혀내고, 이를 검출하기 위한 센서에 생체 내 세포와 유사한 환경을 구현하여, 보다 신속하고 민감하게 살생물제를 검출할 수 있는 신규한 바이오센서를 개발하여 본 발명을 완성하였다.Accordingly, the inventor of the present invention newly found that TRPA1 can bind with biocides including PHMG with high selectivity and sensitivity, and implements an environment similar to in vivo cells in the sensor for detecting it, The present invention was completed by developing a novel biosensor capable of rapidly and sensitively detecting a biocide.
본 발명은 PHMG(polyhexamethyleneguanidine)와 같은 살생물제를 높은 감도로 검출 가능한 센서를 제공하는 것을 목적으로 하며, 상기 센서에 이용될 수 있도록 살생물제와 선택적으로 반응할 수 있는 그래핀 채널 부재 및 이를 포함하는 그래핀 트랜지스터를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a sensor capable of detecting a biocide such as polyhexamethyleneguanidine (PHMG) with high sensitivity, and a graphene channel member capable of selectively reacting with a biocide so that it can be used in the sensor, and the same An object of the present invention is to provide a graphene transistor comprising.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 그래핀 필름 및 상기 그래핀 필름에 고정화된 나노베지클을 포함하는 그래핀 채널 부재로서, 상기 나노베지클은 TRPA1(Transient receptor potential cation channel, subfamily A, member 1)을 포함하는 것인, 그래핀 채널 부재를 제공한다.In order to achieve the above object, one aspect of the present invention is a graphene channel member including a graphene film and a nanovesicle immobilized on the graphene film, wherein the nanovesicle is a TRPA1 (Transient receptor potential cation channel, It provides a graphene channel member that includes subfamily A, member 1).
또한, 상기의 목적을 달성하기 위하여, 본 발명의 다른 측면은 상기 그래핀 필름; 및 한 쌍의 전극;을 포함하는, 그래핀 트랜지스터를 제공한다.In addition, in order to achieve the above object, another aspect of the present invention is the graphene film; And a pair of electrodes; it provides a graphene transistor comprising a.
또한, 상기 목적을 달성하기 위하여, 본 발명의 또 다른 측면은 상기 그래핀 트랜지스터를 포함하는, 바이오 센서를 제공하고, 상기 바이오 센서에 시료를 처리하는 단계; 및 상기 바이오 센서의 전기적 신호를 측정하는 단계;를 포함하는, 시료로부터 살생물제를 검출하는 방법을 제공한다.In addition, in order to achieve the above object, another aspect of the present invention is to provide a biosensor including the graphene transistor, and processing a sample in the biosensor; and measuring an electrical signal of the biosensor.
본 발명의 그래핀 채널 부재와 이를 포함하는 그래핀 트랜지스터 및 바이오 센서는, TRPA1을 이용함에 따라, PHMG, OIT, CMIT, MIT 등 다양한 종류의 살생물제에 대해 선택적, 특이적 감지 능력이 있으며, 10 ㎍/ℓ 농도 정도의 매우 미량의 살생물제까지도 검출할 수 있는바, 고감도의 살생물제 센서로 이용할 수 있는 효과가 있다.The graphene channel member of the present invention and the graphene transistor and biosensor including the same have selective and specific detection ability for various types of biocides such as PHMG, OIT, CMIT, and MIT by using TRPA1, It can detect even a very small amount of a biocide with a concentration of about 10 μg/L, which has the effect of being used as a highly sensitive biocide sensor.
나아가, 본 발명에서는 표면의 개질을 통한 나노베지클의 부착, 고정의 안정성이 향상되고 전기 전도도가 우수한 그래핀 필름을 포함하는 그래핀 채널 부재와, 이를 이용한 소형화된 그래핀 트랜지스터를 이용함으로써 보다 간단하게 살생물제의 검출이 가능하며, 휴대성이 우수한 그래핀 트랜지스터를 제공할 수 있는 장점이 있다.Furthermore, in the present invention, it is simpler by using a graphene channel member including a graphene film having improved stability of attachment and fixation of nanovesicles through surface modification and excellent electrical conductivity, and a miniaturized graphene transistor using the same. There is an advantage in that it is possible to detect biocides and provide a graphene transistor with excellent portability.
도 1은 HEK-293 세포에 TRPA1을 암호화하는 유전자를 형질전환시킨 후 발현시켜 제조한 나노베지클의 막에, GFP와 융합된 TRPA1이 존재하는지 여부를 확인하기 위한 형광현미경 관찰 결과를 나타낸 것으로, 녹색의 형광이 나타나 있다.1 shows the results of fluorescence microscopy to determine whether TRPA1 fused with GFP is present in the membrane of nanovesicles prepared by transforming and expressing a gene encoding TRPA1 in HEK-293 cells. Green fluorescence is shown.
도 2는 HEK-293 세포에 TRPA1을 암호화하는 유전자를 형질전환시킨 후 발현시켜 TRPA1의 존재 여부를 웨스턴 블랏팅을 통해 확인한 결과를 나타낸 것이다. 가장 왼쪽은 마커, 가운데는 대조군의 결과를 의미하며, TRPA1이 발현되어 존재함을 의미하는 151 kDa 부분에 밴드가 형성되어 있음을 확인할 수 있다.Figure 2 shows the results of confirming the presence or absence of TRPA1 through western blotting by expressing the gene encoding TRPA1 in HEK-293 cells after transformation. The leftmost part means the result of the marker, and the middle part means the result of the control group, and it can be seen that a band is formed in the 151 kDa region, which means that TRPA1 is expressed and exists.
도 3은 HEK-293 세포로부터 제조한 TRPA1을 포함하는 나노베지클을 주사전자현미경(SEM)으로 확인한 결과를 나타낸 것이다.3 shows the results of confirming the nanovesicles containing TRPA1 prepared from HEK-293 cells with a scanning electron microscope (SEM).
도 4는 폴리-디-라이신 링커로 표면 개질화시킨 그래핀 트랜지스터 사진이다. 4 is a photograph of a graphene transistor surface-modified with a poly-di-lysine linker.
도 5는 TRPA1을 포함하는 나노베지클을 그래핀 필름 위에 고정화시킨 그래핀 채널 부재와 이를 포함하는 그래핀 트랜지스터를 나타낸 모식도이다.5 is a schematic diagram illustrating a graphene channel member in which nanovesicles including TRPA1 are immobilized on a graphene film and a graphene transistor including the same.
도 6은 본 발명의 그래핀 트랜지스터를 대상으로 전류의 변화량 값을 측정하여 나타낸 그래프이다. 그래프에서 Nanovesicle/PDL/Gr은 TRPA1을 포함하는 나노베지클을 PDL(폴리-디-라이신)을 통해 그래핀 필름에 고정화시킨 트랜지스터를, PDL/Gr은 나노베지클은 고정화시키지 않고 PDL 링커층만을 그래핀 필름에 형성시킨 트랜지스터를, Pristine graphene은 상기 PDL 링커층도 형성되지 않은 그래핀 필름으로 이루어진 트랜지스터를 의미한다. Vds는 소스/드레인(source/drain) 전압을, Vg는 게이트(gate) 전압을 의미한다. 6 is a graph showing the value of the change amount of the current measured for the graphene transistor of the present invention. In the graph, Nanovesicle/PDL/Gr indicates a transistor in which nanovesicles containing TRPA1 are immobilized on a graphene film through PDL (poly-di-lysine), and PDL/Gr indicates only the PDL linker layer without immobilizing the nanovesicles. A transistor formed on a graphene film, pristine graphene means a transistor made of a graphene film in which the PDL linker layer is not formed. Vds is a source/drain voltage, and Vg is a gate voltage.
도 7은 본 발명의 그래핀 트랜지스터(Nanovesicle with receptor)와 TRPA1을 포함하지 않는 나노베지클을 고정화시킨 그래핀 트랜지스터(Nanovesicle w/p receptor)에 PHMG를 농도 별로 투입하여 전류의 변화량 값을 측정하여 나타낸 그래프이다. 7 is a graphene transistor (Nanovesicle with receptor) of the present invention and a graphene transistor (Nanovesicle w/p receptor) immobilized with a nanovesicle not containing TRPA1 by injecting PHMG by concentration to measure the value of change in current This is the graph shown.
도 8은 본 발명의 그래핀 트랜지스터에 OIT, CMIT, 및 PHMG를 동일한 농도로 순차적 투입하여 전류의 변화량 값을 측정하여 나타낸 그래프이다.8 is a graph showing the measurement of the change amount of current by sequentially inputting OIT, CMIT, and PHMG at the same concentration to the graphene transistor of the present invention.
도 9는 본 발명의 그래핀 트랜지스터에 BNP, OIT, MIT, CA, CBDZ, 및 SPO를 각각 농도 별로 투입하여 전류의 변화량을 측정하여 나타낸 그래프이다.9 is a graph showing the amount of change in current by inputting BNP, OIT, MIT, CA, CBDZ, and SPO to the graphene transistor of the present invention for each concentration.
도 10은 본 발명의 그래핀 트랜지스터에 CMIT + OIT, CMIT + PHMG, OIT + PHMG, 및 CMIT + OIT + PHMG 조합의 살생물제를 순차적 투입하여 전류의 변화량을 측정하여 나타낸 그래프이다.10 is a graph showing the amount of change in current by sequentially introducing a biocide of a combination of CMIT + OIT, CMIT + PHMG, OIT + PHMG, and CMIT + OIT + PHMG to the graphene transistor of the present invention.
도 11은 본 발명의 그래핀 트랜지스터에 MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC 및 DDAC + CA 조합의 살생물제를 각각 농도 별로 투입하여 전류의 변화량을 측정하여 민감도(sensitivity) 수치로 나타낸 그래프이다.11 is a graphene transistor of the present invention MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC and DDAC + CA combinations of biocides by concentration, respectively, by measuring the amount of change in the current. It is a graph expressed as a sensitivity (sensitivity) numerical value.
도 12는 본 발명의 트랜지스터에 시판되는 6종의 생활화학제품 시료를 투입하여 전류의 변화량을 민감도(sensitivity) 수치로 나타낸 그래프이다. 각 시료의 투입(injection) 시점을 화살표로 나타냈다.12 is a graph showing the amount of change in current as a sensitivity value by injecting samples of six commercially available household chemical products into the transistor of the present invention. The time of injection of each sample was indicated by an arrow.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
1. 그래핀 채널 부재1. Graphene Channel Absence
본 발명의 일 측면은 그래핀 채널 부재를 제공한다.One aspect of the present invention provides a graphene channel member.
본 발명의 그래핀 채널 부재는 그래핀 필름 및 상기 그래핀 필름에 고정화된 나노베지클을 포함하는 것으로서, 상기 나노베지클은 TRPA1(Transient receptor potential channel, subfamily A, member 1)을 포함한다.The graphene channel member of the present invention includes a graphene film and a nanovesicle immobilized on the graphene film, and the nanovesicle includes a transient receptor potential channel, subfamily A, member 1 (TRPA1).
본 발명의 나노베지클(nanovesicle)이란 인지질 이중층으로 구성된 막으로 둘러싸인 형태를 갖는 나노미터 크기의 소포(vesicle)를 의미하며 '나노소포체'와 혼용되어 사용될 수 있다. 나노베지클은 다양한 종류의 세포들로부터 분비되는 막 구조의 소포인 엑소좀(exosome)과 동일, 유사한 크기 및 구조를 갖는 것일 수 있으며, 세포 외부로 방출되어 다른 세포 및 조직에 결합 후 소포 내 단백질, RNA 등의 물질을 전달하는 역할을 하는 엑소좀과는 달리, 나노베지클은 세포로부터 인위적으로 수득한 것이다. 상기 나노베지클은 지질 이중층으로 구성된 막으로 둘러싸인 소포의 형태를 가지며, 상기 지질 이중층 막은 하나 이상일 수 있다. The nanovesicle of the present invention refers to a nanometer-sized vesicle having a shape surrounded by a membrane composed of a phospholipid bilayer, and may be used interchangeably with 'nanovesicles'. Nanovesicles may have the same size and structure as exosomes, which are membrane-structured vesicles secreted from various types of cells, and are released to the outside of the cell and bind to other cells and tissues, and then protein in the vesicle Unlike exosomes, which serve to deliver substances such as , RNA, etc., nanovesicles are artificially obtained from cells. The nanovesicle has the form of a vesicle surrounded by a membrane composed of a lipid bilayer, and the lipid bilayer membrane may be one or more.
상기 나노베지클은 TRPA1(Transient receptor potential cation channel, subfamily A, member 1)을 포함한다. 상기 TRPA1은 상기 나노베지클의 막표면에 위치할 수 있으며, 상기 막표면에는 TRPA1 이외에도 다른 단백질, 당단백질, 콜레스테롤 등이 결합되어 있을 수 있다. 나노베지클은 세포와 유사한 구조를 가지고 있어 실제 세포 내 환경, 세포막과 유사한 환경을 제공할 수 있다. 따라서, 원래 생체 내에서 세포막 표면 존재하는 TRPA1이 나노베지클에 포함됨에 따라, TRPA1이 생체 내에서 기능하는 것과 동일하거나 유사하게 기능할 수 있는 장점이 있으며, TRPA1의 구조 변화에 따라 발생하는 이온의 유입/유출에 의해 나노베지클 내외의 이온 농도 차이를 구현해 낼 수 있어 이에 따른 전기적 신호의 변화를 측정함으로써 TRPA1을 포함하는 나노베지클을 센서로 이용하기에 유리한 장점이 있다.The nanovesicle includes a transient receptor potential cation channel (TRPA1, subfamily A, member 1). The TRPA1 may be located on the membrane surface of the nanovesicle, and other proteins, glycoproteins, cholesterol, etc. may be bound to the membrane surface in addition to TRPA1. Because nanovesicles have a cell-like structure, they can provide an environment similar to the actual intracellular environment and cell membrane. Therefore, as TRPA1, which originally exists on the surface of the cell membrane in vivo, is included in the nanovesicle, there is an advantage that TRPA1 can function identically or similarly to that of TRPA1 in vivo. There is an advantage in using a nanovesicle containing TRPA1 as a sensor by measuring a change in an electrical signal as a result of realizing a difference in ion concentration inside and outside the nanovesicle by inflow/outflow.
상기 TRPA1은 'Transient receptor potential ankyrin 1'라고도 불리는 이온 채널 단백질의 일종으로, 사람을 비롯한 동물세포의 생체막 표면에 위치하며 물리적, 화학적 스트레스를 감지하며 고통, 추위, 가려움 등의 체성감각과 관련된 수용체이다. The TRPA1 is a kind of ion channel protein also called 'transient receptor potential ankyrin 1'. It is located on the surface of biological membranes of animal cells including humans, detects physical and chemical stress, and is a receptor related to somatosensory sensations such as pain, cold, itch. .
본 발명의 나노베지클에 포함되는 TRPA1은 살생물제에 선택적으로 반응할 수 있다. 살생물제(biocide)는 세균, 곤충 등의 생물체를 죽이거나 무력화시킬 수 있는 제제를 말하며 보존제, 살균제, 살충제, 살서제, 방부제 등을 모두 포함할 수 있다. 특히 사람이나 농작물, 가축에게 피해를 주는 병원균, 해충, 쥐 등을 퇴치하기 위한 목적으로 이용되는 것일 수 있으나, 퇴치의 대상이 아닌 사람, 동물, 식물 등에 대해서도 독성이 있을 수 있어 건강을 악화시키거나 질병, 장애를 유발할 수 있고 죽음에 이르게 할 수도 있다. 구체적으로, 상기 살생물제는 PHMG(polyhexamethyleneguanidine), BNP(2-bromo-2-nitropropane-1,3-diol), OIT(2-Octyl-3(2H)-isothiazolone), CMIT(Chloromethylisothiazolinone), MIT(Methylisothiazolinone), CA(Citric acid), CBDZ(Carbendazim), SPO(Sodium 2-pyridinethiol 1-oxide), IPBC(iodopropynyl butylcarbamate) 및 DDAC(didecyldimethylammonium chloride)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상기와 같은 살생물제는 생활화학제품 또는 가공식품에 포함되어 있을 수 있다. 상기 TRPA1은 상기 나열된 살생물제 중에서도 PHMG에 대한 선택성이 가장 큰 것일 수 있다. 상기 TRPA1은 상기 살생물제와 선택적으로 결합함에 따라, 구조가 변화되고 채널이 열려 나노베지클의 외부에 존재하던 이온, 예컨대 칼슘 이온이 나노베지클의 내부로 이동할 수 있다. 이에 따라 나노베지클 막을 중심으로 내외부의 전위의 변화가 발생하게 되고, TRPA1이 살생물제와 결합하기 전/후의 전위 차이에 따른 전기적 변화가 발생할 수 있다. 따라서 TRPA1의 구조 변화에 따른 전기적 신호의 변화를 측정함으로써, 살생물제의 존재 여부를 확인하기 위한 용도로 상기 TRPA1을 이용할 수 있다.TRPA1 contained in the nanovesicles of the present invention can react selectively to biocides. A biocide refers to an agent capable of killing or incapacitating living organisms such as bacteria and insects, and may include preservatives, fungicides, insecticides, rodenticides, preservatives, and the like. In particular, it may be used for the purpose of exterminating pathogens, pests, mice, etc. that damage people, crops, and livestock, but it may be toxic to people, animals, plants, etc. It can cause disease, disability, and even death. Specifically, the biocide is PHMG (polyhexamethyleneguanidine), BNP (2-bromo-2-nitropropane-1,3-diol), OIT (2-Octyl-3 (2H)-isothiazolone), CMIT (Chloromethylisothiazolinone), MIT (Methylisothiazolinone), CA (Citric acid), CBDZ (Carbendazim), SPO (Sodium 2-pyridinethiol 1-oxide), IPBC (iodopropynyl butylcarbamate) and DDAC (didecyldimethylammonium chloride) may be at least one selected from the group consisting of, and The same biocide may be contained in household chemicals or processed foods. The TRPA1 may have the highest selectivity for PHMG among the biocides listed above. As the TRPA1 selectively binds to the biocide, the structure is changed and channels are opened so that ions existing outside the nanovesicles, such as calcium ions, can move into the nanovesicles. Accordingly, a change in the potential inside and outside the nanovesicle membrane may occur, and an electrical change may occur according to the potential difference before/after TRPA1 binds to the biocide. Therefore, by measuring a change in an electrical signal according to a change in the structure of TRPA1, the TRPA1 can be used for the purpose of confirming the presence of a biocide.
상기 TRPA1은 서열번호 1의 아미노산 서열을 포함하는 단백질일 수 있고, 상기 TRPA1은 상기 살생물제와 선택적으로 결합하여 이를 감지할 수 있는 활성에 영향을 미치지 않는 범위 내에서, 아미노산 잔기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체들 또는 단편들일 수 있다. 상기 살생물제와 선택적으로 결합하여 이를 감지할 수 있는 활성을 전체적으로 변경시키지 않는 펩타이드 수준에서의 아미노산 교환은 당해 분야에 공지되어 있으며, 예를 들어, 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 변형될 수 있다. 따라서 본 발명은 서열번호 1의 아미노산 서열을 포함하는 단백질과 실질적으로 동일한 아미노산 서열을 포함하는 단백질 및 이의 변이체 또는 이의 활성 단편을 포함한다. 상기 실질적으로 동일한 단백질이란 상기 서열번호 1의 아미노산 서열과 각각 75% 이상, 예컨대, 80% 이상, 90% 이상, 95% 이상의 서열 상동성을 가지는 아미노산 서열을 의미한다. 또한, 상기 단백질에는 표적화 서열, 태그(tag), 표지된 잔기, 반감기 또는 단백질 안정성을 증가시키기 위한 특정 목적으로 제조된 아미노산 서열이 추가적으로 포함할 수 있다.The TRPA1 may be a protein comprising the amino acid sequence of SEQ ID NO: 1, and the TRPA1 binds selectively to the biocide and does not affect the detectable activity, deletion or insertion of amino acid residues , may be variants or fragments of amino acids having different sequences by substitution or a combination thereof. Amino acid exchange at the peptide level that selectively binds to the biocide and does not entirely alter its detectable activity is known in the art, and includes, for example, phosphorylation, sulfation, acrylation ( acrylation), glycosylation, methylation, farnesylation, and the like. Accordingly, the present invention includes a protein comprising an amino acid sequence substantially identical to the protein comprising the amino acid sequence of SEQ ID NO: 1, and a variant thereof or an active fragment thereof. The substantially identical protein means an amino acid sequence having 75% or more, for example, 80% or more, 90% or more, 95% or more sequence homology to the amino acid sequence of SEQ ID NO: 1, respectively. In addition, the protein may further include a targeting sequence, a tag, a labeled residue, an amino acid sequence prepared for a specific purpose to increase half-life or protein stability.
또한, 본 발명의 상기 TRPA1은 당해 분야에서 널리 공지된 다양한 방법으로 획득할 수 있다. 일례로서, 폴리뉴클레오타이드 재조합과 단백질 발현 시스템을 이용하여 제조하거나 펩타이드 합성과 같은 화학적 합성을 통하여 시험관 내에서 합성하는 방법, 및 무세포 단백질 합성법 등으로 제조될 수 있다.In addition, the TRPA1 of the present invention can be obtained by various methods well known in the art. As an example, it may be prepared using polynucleotide recombination and protein expression systems, or synthesized in vitro through chemical synthesis such as peptide synthesis, and cell-free protein synthesis.
또한, 보다 나은 화학적 안정성, 강화된 약리 특성(반감기, 흡수성, 역가, 효능 등), 변경된 특이성(예를 들어, 광범위한 생물학적 활성 스펙트럼), 감소된 항원성을 획득하기 위하여, 단백질의 N-말단 또는 C-말단에 보호기가 결합되어 있을 수 있다. 예컨대, 상기 보호기는 아세틸기, 플루오레닐 메톡시 카르보닐기, 포르밀기, 팔미토일기, 미리스틸기, 스테아릴기 또는 폴리에틸렌글리콜(PEG)일 수 있으나, 단백질의 개질, 특히 단백질의 안정성을 증진시킬 수 있는 성분이라면, 제한없이 포함할 수 있다. 상기 '안정성'은 생체 내 단백질 절단 효소의 공격으로부터 본 발명의 단백질을 보호하는 인 비보에서의 안정성뿐만 아니라, 저장안정성(예컨대, 상온 저장 안정성)도 의미한다.In addition, to obtain better chemical stability, enhanced pharmacological properties (half-life, absorption, potency, potency, etc.), altered specificity (e.g., broad spectrum of biological activity), reduced antigenicity, the N-terminal or A protecting group may be attached to the C-terminus. For example, the protecting group may be an acetyl group, a fluorenyl methoxycarbonyl group, a formyl group, a palmitoyl group, a myristyl group, a stearyl group, or polyethylene glycol (PEG). As long as it is a possible component, it may be included without limitation. The 'stability' refers to storage stability (eg, room temperature storage stability) as well as in vivo stability that protects the protein of the present invention from attack by a protein cleaving enzyme in vivo.
상기 TRPA1을 포함하는 나노베지클은, 동물세포로부터 생산하여 분리함으로써 제조된 것일 수 있다. 구체적으로, 상기 TRPA1 단백질을 암호화하는 유전자로 형질전환시킨 동물세포로부터 TRPA1을 발현시키고 사이토칼라신 B(cytochalasin B)와 같이 세포막의 안정성을 감소시키는 물질을 상기 동물세포에 처리한 다음, 원심분리를 통해 나노베지클을 수득할 수 있다. 상기 TRPA1 단백질을 암호화하는 유전자를 형질전환시키는 것은 본 발명의 기술분야에서 동물세포에 특정 유전자를 형질전환시키기 위해 이용될 수 있는 것으로 알려진 어떠한 기술 및 방법이든 이용될 수 있으며, 예컨대 발현벡터에 상기 TRPA1 암호화 유전자를 클로닝하여, 리포펙타민 용액의 처리를 통해 동물세포 내로 형질전환시키는 것일 수 있다.The nanovesicles containing TRPA1 may be prepared by producing and separating animal cells. Specifically, the animal cells are treated with a substance that expresses TRPA1 from animal cells transformed with the gene encoding the TRPA1 protein and reduces the stability of the cell membrane, such as cytochalasin B, and then centrifuged. Nanovesicles can be obtained through Transforming the gene encoding the TRPA1 protein may use any technique and method known in the art that can be used to transform a specific gene in an animal cell, for example, the TRPA1 protein into an expression vector. By cloning the coding gene, it may be transformed into animal cells through treatment with a lipofectamine solution.
상기 TRPA1을 포함하는 나노베지클의 직경은 100 ㎚ 내지 200 ㎚일 수 있으며, 구체적으로, 120 ㎚ 내지 200 ㎚, 140 ㎚ 내지 180 ㎚, 120 ㎚ 내지 180 ㎚, 또는 140 ㎚ 내지 160 ㎚일 수 있다. 나노베지클의 직경이 상기 범위보다 더 작을 경우 나노베지클에 포함될 수 있는 TRPA1의 양이 목표치보다 감소될 수 있고, 직경이 상기보다 더 클 경우 상기 나노베지클을 그래핀 필름에 고정화시키는 과정에서 장애가 될 수 있다.The diameter of the nanovesicles including TRPA1 may be 100 nm to 200 nm, specifically, 120 nm to 200 nm, 140 nm to 180 nm, 120 nm to 180 nm, or 140 nm to 160 nm. . When the diameter of the nanovesicle is smaller than the above range, the amount of TRPA1 that can be included in the nanovesicle may be reduced than the target value, and if the diameter is larger than the above, in the process of immobilizing the nanovesicle to the graphene film can be an obstacle
상기 TRPA1을 포함하는 나노베지클은 상기 그래핀 필름에 화학적 결합으로 고정화되어 있을 수 있다. 상기 고정화는, 나노베지클이 그래핀 필름의 일 위치에서 이동하지 않도록 고정시키는 것을 의미하며, 나노베지클에 포함된 TRPA1이 살생물제와 결합함으로써 발생하는 TRPA1의 구조 변화 및 이에 따른 전기적 신호의 변화가 그래핀 필름에 전달될 수 있도록 고정되는 것이라면 어떠한 방법을 통해서도 고정될 수 있다.The nanovesicles including the TRPA1 may be immobilized on the graphene film by chemical bonding. The immobilization refers to fixing the nanovesicles so that they do not move at one position of the graphene film, and the structural change of TRPA1 caused by the binding of TRPA1 contained in the nanovesicles with a biocide and the resulting electrical signal. As long as the change is fixed so that it can be transmitted to the graphene film, it can be fixed through any method.
상기 화학적 결합은 폴리-디-라이신(poly-D-lysine, 또는 PDL), 폴리-엘-라이신(poly-L-lysine) 및 폴리-엘-오르니틴(poly-L-ornithine)으로 이루어진 군으로부터 선택되는 어느 하나를 링커로 하여서 고정화되어 있는 것일 수 있으나, 이에 제한되는 것은 아니며 전자 운반자(전자 또는 양공)가 이를 통해 이동할 수 있으면서 그래핀 필름 및 나노베지클에 각각 결합할 수 있는 특성이 있다면 어떠한 형태로든 이용될 수 있다. 상기 폴리-디-라이신은 D-라이신(D-lysine)이 복수 개 연결된 형태의 중합체로서, 라이신이 나타내는 양이온의 특성을 이용하여 그래핀 필름 및 나노베지클의 표면에 각각 이온결합을 형성하며 결합할 수 있다. 따라서, 폴리-디-라이신으로 그래핀 필름을 코팅하여 그래핀 필름의 표면을 개질하고, 폴리-디-라이신에 나노베지클을 결합시킴으로써 상기 그래핀 필름에 본 발명의 나노베지클을 고정화할 수 있다.The chemical bond is from the group consisting of poly-D-lysine (or PDL), poly-L-lysine and poly-L-ornithine. It may be immobilized by using any one selected as a linker, but it is not limited thereto, and if there is a property that an electron carrier (electron or hole) can move through it and can bind to the graphene film and the nanovesicle, respectively, any It can be used in any form. The poly-di-lysine is a polymer in which a plurality of D-lysine is linked, and forms ionic bonds on the surfaces of graphene films and nanovesicles, respectively, by using the properties of cations represented by lysine. can do. Therefore, the surface of the graphene film is modified by coating the graphene film with poly-di-lysine, and the nanovesicles of the present invention can be immobilized on the graphene film by binding the nanovesicles to the poly-di-lysine. have.
상기 그래핀 필름은 단층 또는 이층(bi-layer)일 수 있다. 이층의 그래핀 필름을 사용하면 표면저항의 감소로 인해 그래핀 트랜지스터의 민감도가 저하될 수 있는 점에서, 단층의 그래핀 필름을 포함하는 것이 보다 바람직하다.The graphene film may be a single layer or a bi-layer. When the two-layer graphene film is used, it is more preferable to include a single-layer graphene film in that the sensitivity of the graphene transistor may be lowered due to a decrease in surface resistance.
상기 그래핀 필름은 패턴화될 수 있고, 구체적으로는 미세 패턴화될 수 있다. 예를 들어, 상기 그래핀 필름을 원 또는 삼각형, 사각형, 오각형, 육각형(허니콤(honeycomb)) 등의 다각형의 형태로 다양하게 패턴화시킬 수 있다. 상기 패턴화된 그래핀 필름의 표면에 상기 TRPA1을 포함하는 나노베지클이 고정화되어 있을 수 있다. 이 때, 상기에서 설명한 바와 같이 상기 나노베지클이 폴리-디-라이신을 링커로 하여서 그래핀 필름에 고정화되어 있을 수 있다.The graphene film may be patterned, specifically, micro-patterned. For example, the graphene film may be variously patterned in a polygonal shape such as a circle, a triangle, a square, a pentagon, or a hexagon (honeycomb). The nanovesicles including the TRPA1 may be immobilized on the surface of the patterned graphene film. In this case, as described above, the nanovesicles may be immobilized on the graphene film using poly-di-lysine as a linker.
본 발명의 그래핀 채널 부재는 그래핀 필름을 포함하는데, 위와 같이 채널 부재로 그래핀을 이용하는 경우 게이트에 전압이 가해지지 않은 오프 상태에서도 높은 전류가 흘러 작동 전류의 온/오프 비율이 매우 낮으므로 고성능의 트랜지스터를 제조할 수 있는 장점이 있다.The graphene channel member of the present invention includes a graphene film. As above, when graphene is used as the channel member, a high current flows even in the OFF state where no voltage is applied to the gate, so the on/off ratio of the operating current is very low. It has the advantage of being able to manufacture high-performance transistors.
이 때 상기 그래핀 필름의 두께는 0.1 내지 1 ㎚일 수 있으며, 구체적으로 0.2 내지 0.8 ㎚, 0.3 내지 0.8 ㎚, 0.5 내지 0.7 ㎚일 수 있다. 상기 그래핀 필름의 두께는 단일층의 그래핀 두께를 의미하며, 그래핀 필름의 두께가 상기 범위 내일 경우 높은 전도도 및 높은 전하 이동도를 나타내므로 상기 그래핀 필름을 고감도의 센서 제조를 위한 반도체로 이용할 수 있다.In this case, the thickness of the graphene film may be 0.1 to 1 nm, specifically 0.2 to 0.8 nm, 0.3 to 0.8 nm, or 0.5 to 0.7 nm. The thickness of the graphene film refers to the thickness of a single layer of graphene, and when the thickness of the graphene film is within the above range, it exhibits high conductivity and high charge mobility. Available.
2. 그래핀 트랜지스터2. Graphene Transistor
본 발명의 또 다른 측면은 그래핀 트랜지스터를 제공한다.Another aspect of the present invention provides a graphene transistor.
상기 그래핀 트랜지스터는 기판; 본 발명의 상기 그래핀 채널 부재; 및 한 쌍의 전극;을 포함한다.The graphene transistor may include a substrate; The graphene channel member of the present invention; and a pair of electrodes.
상기 기판은 본 발명의 그래핀 트랜지스터의 구성들이 지지되는 지지대로서의 역할을 하는 것으로서, Si 기판, 유리 기판, GaN 기판, 실리카(SiO2) 기판 등의 절연성 무기물 기판, Ni, Cu, W 등의 금속 기판 또는 플라스틱 기판 등을 사용할 수 있으며, 절연성 기판을 사용하는 경우, 그래핀 채널 부재와의 친화력이 우수한 점에서, 실리카(SiO2) 기판, 또는 실리콘 웨이퍼인 것이 바람직하다.The substrate serves as a support on which the components of the graphene transistor of the present invention are supported, and an insulating inorganic substrate such as a Si substrate, a glass substrate, a GaN substrate, a silica (SiO 2 ) substrate, and a metal such as Ni, Cu, W A substrate or a plastic substrate may be used, and when an insulating substrate is used, a silica (SiO 2 ) substrate or a silicon wafer is preferable from the viewpoint of excellent affinity with the graphene channel member.
또한, 상기 기판은 그래핀의 증착이 가능한 다양한 물질 중에서 선택될 수 있으며, 예를 들어 실리콘-게르마늄, 실리콘 카바이드(SiC) 등의 물질로 구성될 수 있고, 에피택셜(epitaxial) 층, 실리콘-온-절연체(silicon-on-insulator) 층, 반도체-온-절연체(semiconductor-on-insulator) 층 등을 포함할 수 있다.In addition, the substrate may be selected from various materials capable of depositing graphene, for example, may be made of a material such as silicon-germanium and silicon carbide (SiC), and an epitaxial layer, silicon-on. - may include a silicon-on-insulator layer, a semiconductor-on-insulator layer, and the like.
상기 그래핀 채널 부재는 상기 기판 상에 형성될 수 있다.The graphene channel member may be formed on the substrate.
구체적으로는 상기 기판 상에 탄화수소 가스를 탄소 공급원으로 하여 화학 기상 증착법으로 그래핀을 성장시켜 그래핀 필름을 형성하는 것일 수 있다.Specifically, the graphene film may be formed by growing graphene on the substrate by a chemical vapor deposition method using a hydrocarbon gas as a carbon source.
상기 그래핀 필름은 예를 들면, 화학 기상 증착법을 이용하여 형성할 수 있으며, 이를 이용하면 뛰어난 결정질을 갖는 단층 내지 수층의 그래핀을 대면적으로 얻을 수 있다. 상기 화학 기상 증착법은 기판 표면에 높은 운동 에너지를 갖는 기체 또는 증기 형태의 탄소 전구체를 흡착, 분해 또는 반응시켜 탄소 원자로 분리시키고, 해당 탄소 원자들이 서로 원자간 결합을 이루게 함으로써 그래핀을 성장시키는 방법이다.The graphene film may be formed using, for example, chemical vapor deposition, and by using this, single to several layers of graphene having excellent crystallinity can be obtained over a large area. The chemical vapor deposition method is a method of growing graphene by adsorbing, decomposing, or reacting a carbon precursor in the form of a gas or vapor having a high kinetic energy on the substrate surface to separate it into carbon atoms, and making the carbon atoms bond with each other. .
상기 화학 기상 증착법은 PECVD(Plasma Enhanced Chemical Vapor Deposition), APCVD(Atmospheric Pressure Chemical Vapor Deposition) 및 LPCVD(Low Pressure Chemical Vapor Deposition)로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있으며, 넓은 면적에 결점을 최소화하여 증착이 가능한 점에서 상기 화학 기상 증착법은 LPCVD인 것이 바람직하다.The chemical vapor deposition method may be at least one selected from the group consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD), and Low Pressure Chemical Vapor Deposition (LPCVD), and minimize defects in a large area Thus, it is preferable that the chemical vapor deposition method is LPCVD in view of possible deposition.
상기 화학 기상 증착의 구체적인 방법으로서, 예를 들면 니켈, 구리, 알루미늄, 철 등의 금속 촉매를 스퍼터링 장치 및 전자빔 증발 장치를 이용하여 산화 실리콘층을 가지는 웨이퍼 상에 증착시켜 금속 촉매층을 형성하고, 이를 CH4, C2H2 등의 탄소를 포함하는 가스와 함께 반응기에 넣고 가열하여, 금속 촉매층에 탄소가 흡수되도록 하고, 이를 냉각하여 상기 금속 촉매층으로부터 탄소를 분리시켜 결정화시킨 후, 최종적으로 상기 금속 촉매층을 제거함으로써 그래핀 필름을 형성할 수 있다.As a specific method of the chemical vapor deposition, for example, a metal catalyst such as nickel, copper, aluminum, iron is deposited on a wafer having a silicon oxide layer using a sputtering device and an electron beam evaporation device to form a metal catalyst layer, CH 4 , C 2 H 2 It is put in a reactor together with a gas containing carbon, such as, heated, so that carbon is absorbed in the metal catalyst layer, cooled to separate carbon from the metal catalyst layer and crystallized, and finally the metal By removing the catalyst layer, a graphene film can be formed.
다만, 상기 그래핀 필름을 형성하는 방법은 화학 기상 증착법에 한정되는 것은 아니며, 여러 가지 방법을 이용하여 그래핀 필름을 형성할 수 있다.However, the method for forming the graphene film is not limited to the chemical vapor deposition method, and various methods may be used to form the graphene film.
예를 들어, 여러 층으로 구성된 흑연 결정에서 기계적인 힘으로 한 층을 벗겨내어 그래핀을 만드는 물리적 박리법, 산화-환원 특성을 활용한 화학적 박리법 또는 SiC와 같이 탄소가 결정에 흡착되거나 포함되어 있는 재료를 1,500 ℃의 고온 상태에서 열처리하는 에피텍셜 합성법을 이용하여 그래핀 필름을 형성시킬 수 있다.For example, from a graphite crystal composed of multiple layers, a physical exfoliation method to make graphene by peeling one layer off with mechanical force, a chemical exfoliation method utilizing oxidation-reduction properties, or SiC, where carbon is adsorbed or contained in the crystal A graphene film can be formed by using an epitaxial synthesis method in which a material is heat-treated at a high temperature of 1,500 °C.
상기 한 쌍의 전극은 그래핀 채널 부재에 전압을 인가하기 위해 상기 그래핀 필름 상에서 서로 이격되어 형성되는 소스 전극과 드레인 전극일 수 있다.The pair of electrodes may be a source electrode and a drain electrode formed to be spaced apart from each other on the graphene film in order to apply a voltage to the graphene channel member.
이러한 소스 전극과 드레인 전극은 상기 그래핀 필름을 통하여 전기적으로 연결될 수 있고, 도전성을 가지는 물질을 포함할 수 있으며, 예를 들어 금속, 금속 합금, 전도성 금속 산화물 또는 전도성 금속 질화물 등으로 형성될 수 있다.The source electrode and the drain electrode may be electrically connected through the graphene film, may include a material having conductivity, and may be formed of, for example, a metal, a metal alloy, a conductive metal oxide, or a conductive metal nitride. .
상기 소스 전극과 드레인 전극은 각각 독립적으로 Cu, Co, Bi, Be, Ag, Al, Au, Hf, Cr, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, Pt, Re, Rh, Sb, Ta, Te, Ti, W, V, Zr, Zn 및 이들의 조합으로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니며, 그래핀과의 접촉성 및 식각의 용이성 측면에서, Au, 또는 Cr/Au 합금인 것이 바람직하다.The source electrode and the drain electrode are each independently Cu, Co, Bi, Be, Ag, Al, Au, Hf, Cr, In, Mn, Mo, Mg, Ni, Nb, Pb, Pd, Pt, Re, Rh, Sb, Ta, Te, Ti, W, V, Zr, Zn, and may include at least one selected from the group consisting of Zn and combinations thereof, but is not limited thereto, in terms of contact with graphene and ease of etching. , Au, or a Cr/Au alloy is preferred.
상기 한 쌍의 전극은 당업계에 공지된 방법으로 형성할 수 있으나, 예를 들어, 포토리소그라피(photolithography), 열증착 공정(Thermal Deposition), 이빔증착 공정(E-beam Deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition), LPCVD(Low Pressure Chemical Vapor Deposition), PVD(Physical Vapor Deposition), 스퍼터링(sputtering), ALD(Atomic Layer Deposition) 등의 증착 방법에 의하여 형성할 수 있다.The pair of electrodes may be formed by a method known in the art, but for example, photolithography, thermal deposition, E-beam deposition, and plasma enhanced (PECVD). It may be formed by a deposition method such as Chemical Vapor Deposition), LPCVD (Low Pressure Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sputtering, or ALD (Atomic Layer Deposition).
상기 그래핀 채널 부재는 상기 그래핀 필름 상에 TRPA1을 포함하는 나노베지클이 화학적 결합, 예컨대 폴리-디-라이신을 매개로 고정화되어 있는 것일 수 있다. 상기 그래핀 채널 부재, TRPA1, 나노베지클, 폴리-디-라이신, 그래핀 필름에 관한 설명은 상기 '1. 그래핀 채널 부재'에서 설명한 바와 동일하다.The graphene channel member may be one in which nanovesicles including TRPA1 are immobilized on the graphene film through a chemical bond, for example, poly-di-lysine. Description of the graphene channel member, TRPA1, nanovesicle, poly-di-lysine, and graphene film is described in '1. It is the same as described in 'Graphene Channel Member'.
상기 TRPA1을 포함하는 나노베지클이 상기 그래핀 필름에 고정화되는 경우, 나노베지클에 포함되지 않은 형태로 TRPA1이 그래핀 필름에 결합된 그래핀 채널 부재를 포함하는 그래핀 트랜지스터(즉, TRPA1이 단독으로 물리적 또는 화학적 결합으로 그래핀 필름 등에 고정화된 형태의 그래핀 트랜지스터)와 비교할 때, 더 민감도가 높고 검출한계가 향상되는 효과가 있다. 전술한 바와 같이, 나노베지클은 세포와 유사한 구조를 가지고 있으므로 나노베지클에 포함된 TRPA1을 이용하는 경우, TRPA1이 실제 생체 내에서 기능하는 것과 동일하거나 유사하게 기능할 수 있으며, TRPA1의 구조 변화에 따라 발생하는 이온의 유입/유출에 의해 나노베지클 내외의 이온 농도 차이를 구현해 낼 수 있다. 따라서, 나노베지클을 이용하지 않고 단백질만을 이용하는 트랜지스터 또는 바이오센서와 비교할 때, 단백질 자체의 구조 변화나 이에 따른 저항 변화만을 측정할 수 있는 것이 아니라, 이온의 이동 및 나노베지클 내외부의 이온 구배에 따라 형성되는 전기적 차이를 측정할 수 있으므로 전기적 신호의 변화가 더 크게 측정될 수 있고, 이에 따라 보다 높은 민감도를 나타낼 수 있다. 또한, 그래핀의 경우 다른 반도체 특성을 가지는 물질에 비해 전하 이동도가 높은 특성이 있으므로 전기적 신호 변화를 보다 빠르고 높은 민감도로 측정할 수 있으며 이에 따라 검출한계가 향상될 수 있는 장점이 있다.When the nanovesicle containing the TRPA1 is immobilized on the graphene film, the graphene transistor including a graphene channel member in which TRPA1 is bonded to the graphene film in a form not included in the nanovesicle (ie, TRPA1 is Compared to a graphene transistor immobilized on a graphene film or the like by a single physical or chemical bond), the sensitivity is higher and the detection limit is improved. As described above, since nanovesicles have a cell-like structure, when TRPA1 contained in nanovesicles is used, TRPA1 can function identically or similarly to that of TRPA1 actually functioning in vivo, and the structural changes of TRPA1 It is possible to realize the difference in ion concentration inside and outside the nanovesicle by the inflow/outflow of ions that are generated accordingly. Therefore, when compared to a transistor or biosensor that uses only protein without using a nanovesicle, it is not possible to measure only the structural change of the protein itself or the resistance change according to it, but it is also possible to measure the movement of ions and the ion gradient inside and outside the nanovesicle. Since the electrical difference formed according to the measurement can be measured, the change of the electrical signal can be measured to be larger, and thus a higher sensitivity can be exhibited. In addition, in the case of graphene, since it has high charge mobility compared to materials having other semiconductor characteristics, it is possible to measure changes in electrical signals faster and with high sensitivity, which has the advantage that the detection limit can be improved accordingly.
상기 그래핀 필름 상에 결합된 폴리-디-라이신은 단일층의 형태로 링커층을 형성할 수 있고, 상기 폴리-디-라이신에 고정화된 나노베지클 역시 단일층의 형태로 수용체층을 형성할 수 있다.Poly-D-lysine bound to the graphene film may form a linker layer in the form of a single layer, and the nanovesicles immobilized on the poly-D-lysine may also form an acceptor layer in the form of a single layer. can
상기 링커층이 단일층으로 형성되는 경우, 그래핀 본연의 우수한 전하 이동도, 투명도 및/또는 유연성을 가질 뿐만 아니라, 외부의 비특이적 전하들의 접근에 의한 노이즈 신호를 차단할 수 있는 효과가 있다.When the linker layer is formed as a single layer, graphene not only has excellent charge mobility, transparency and/or flexibility, but also has an effect of blocking noise signals due to the approach of external non-specific charges.
또한, 상기 링커층은 그 두께가 0.1 내지 2 ㎚일 수 있다. 상기 링커층의 두께가 0.1 ㎚보다 얇은 경우 저항이 증가하는 문제점이 있고, 2 ㎚보다 두꺼운 경우 투명도가 감소하는 문제가 있다.In addition, the linker layer may have a thickness of 0.1 to 2 nm. When the thickness of the linker layer is thinner than 0.1 nm, there is a problem in that resistance increases, and when it is thicker than 2 nm, there is a problem in that transparency is reduced.
3. 바이오 센서 및 이를 이용한 살생물제의 검출 방법3. Biosensor and biocide detection method using the same
본 발명의 또 다른 측면은 바이오 센서 및 이를 이용한 살생물제의 검출 방법을 제공한다.Another aspect of the present invention provides a biosensor and a method for detecting a biocide using the same.
상기 바이오 센서는 본 발명의 상기 그래핀 트랜지스터를 포함한다. 본 발명에 따른 바이오 센서는, 전기장 효과에 의해 소스 및 드레인 전극 사이의 그래핀 필름에 흐르는 전류가 변하는 반도체 특성을 이용한 것이다.The biosensor includes the graphene transistor of the present invention. The biosensor according to the present invention uses a semiconductor characteristic in which a current flowing in a graphene film between a source and a drain electrode is changed by an electric field effect.
상기 바이오 센서는 살생물제의 검출용일 수 있다. 본 발명의 바이오 센서가 검출할 수 있는 살생물제에 관한 설명은 상기 '1. 그래핀 채널 부재'에서 설명한 바와 동일하며, 예컨대 상기 살생물제는 PHMG(polyhexamethyleneguanidine), BNP(2-bromo-2-nitropropane-1,3-diol), OIT(2-Octyl-3(2H)-isothiazolone), CMIT(Chloromethylisothiazolinone), MIT(Methylisothiazolinone), CA(Citric acid), CBDZ(Carbendazim), SPO(Sodium 2-pyridinethiol 1-oxide), IPBC(iodopropynyl butylcarbamate) 및 DDAC(didecyldimethylammonium chloride)로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 상기와 같은 살생물제는 생활화학제품 또는 가공식품에 포함되어 있을 수 있다.The biosensor may be for detecting a biocide. The description of the biocide that can be detected by the biosensor of the present invention is described in '1. It is the same as described in 'No graphene channel, for example, the biocide is PHMG (polyhexamethyleneguanidine), BNP (2-bromo-2-nitropropane-1,3-diol), OIT (2-Octyl-3 (2H)- from the group consisting of isothiazolone), CMIT (Chloromethylisothiazolinone), MIT (Methylisothiazolinone), CA (Citric acid), CBDZ (Carbendazim), SPO (Sodium 2-pyridinethiol 1-oxide), IPBC (iodopropynyl butylcarbamate) and DDAC (didecyldimethylammonium chloride) There may be one or more selected, and the biocide as described above may be included in household chemical products or processed foods.
구체적으로, 그래핀 필름의 표면에 고정화된 나노베지클에 포함되어 있는 TRPA1이 살생물제와 결합하여 반응하면, 이의 구조 변화 및 저항 변화로 인해 주변의 전기장에 변화가 일어날 수 있고, TRPA1의 구조 변화로 인해 이온의 이동이 가능하게 됨에 따라 나노베지클 내외부의 전위 변화가 발생할 수 있고, 이에 따라 소스 전극과 드레인 전극 사이의 그래핀 필름에 흐르는 전류 값이 함께 변하고, 이러한 전류의 변화를 측정하는 방식으로 표적물인 살생물제를 검출할 수 있다.Specifically, when TRPA1 contained in the nanovesicle immobilized on the surface of the graphene film reacts with a biocide, a change in the surrounding electric field may occur due to its structural change and resistance change, and the structure of TRPA1 As the movement of ions becomes possible due to the change, a change in potential inside and outside the nanovesicle may occur, and accordingly, the value of the current flowing in the graphene film between the source electrode and the drain electrode changes together, and this change in current is measured. In this way, the target biocide can be detected.
상기 바이오 센서는 살생물제의 농도가 10 g/ℓ 이하인 경우에도 감지할 수 있으며, 예컨대 1 g/ℓ 이하, 100 ㎎/ℓ 이하, 10 ㎎/ℓ 이하, 1 ㎎/ℓ 이하, 100 ㎍/ℓ 이하, 또는 10 ㎍/ℓ 이하인 살생물제를 감지할 수 있다.The biosensor can detect even when the concentration of the biocide is 10 g/l or less, for example, 1 g/l or less, 100 mg/l or less, 10 mg/l or less, 1 mg/l or less, 100 µg/l or less A biocide of less than or equal to l, or less than or equal to 10 μg/l can be detected.
이러한 바이오 센서는, 위와 같은 그래핀 트랜지스터를 이용함으로써 민감도, 특이성, 신속성 및/또는 휴대성이 우수하며, 특히, 그래핀 필름을 채널층으로 사용함으로써 그래핀의 높은 전하 캐리어 이동도와 전도도 특성으로 인하여 우수한 민감도와 실시간 감지 성능을 가지고, 이에 따라 생활화학제품이나 가공식품 등에 포함되어 있을 수 있는 살생물제의 검출 한계를 향상시켜서 높은 민감도와 재현성을 가지는 검출이 가능한 효과가 있다.Such a biosensor is excellent in sensitivity, specificity, speed and/or portability by using the graphene transistor as described above, and in particular, due to the high charge carrier mobility and conductivity characteristics of graphene by using a graphene film as a channel layer. It has excellent sensitivity and real-time detection performance, thereby improving the detection limit of biocides that may be included in household chemicals or processed foods, thereby enabling detection with high sensitivity and reproducibility.
또한, 위와 같이 링커층을 그래핀 트랜지스터 내의 그래핀 필름에 형성시켜 이에 고정화된 TRPA1을 포함하는 나노베지클을 그래핀 트랜지스터의 채널 영역에 존재시키는 경우에는 센서의 민감도가 더욱 향상될 뿐만 아니라, 도핑 처리와 나노베지클의 부착을 동시에 실시할 수 있게 되어 공정이 간소화되는 효과가 있다.In addition, when nanovesicles including TRPA1 immobilized thereon are present in the channel region of the graphene transistor by forming the linker layer on the graphene film in the graphene transistor as described above, the sensitivity of the sensor is further improved and the doping It has the effect of simplifying the process by being able to perform the treatment and the nanovesicle attachment at the same time.
나아가 전술한 그래핀 트랜지스터는 유심칩 형태로 제작이 되어서 소형화된 바이오 센서(휴대용 전자식 살생물제 센서 등)에 적용시킬 수 있어서, 생활화학제품이나 가공식품 등에 존재할 수 있는 살생물제를 매우 간편하고 정확하게 실시간으로 판별할 수 있고, 이를 다양한 식품 산업 및 환경 평가 산업 등에 활용할 수 있다.Furthermore, the above-mentioned graphene transistor is manufactured in the form of a SIM chip and can be applied to a miniaturized biosensor (portable electronic biocide sensor, etc.) It can be accurately identified in real time, and it can be used in various food industries and environmental evaluation industries.
상기 시료로부터 살생물제를 검출하는 방법은, 본 발명의 상기 바이오 센서에 시료를 처리하는 단계; 및 상기 바이오 센서의 전기적 신호를 측정하는 단계;를 포함한다.The method for detecting a biocide from the sample includes: processing the sample with the biosensor of the present invention; and measuring an electrical signal of the biosensor.
상기 검출은 표적 물질의 존재를 확인하는 것을 의미하며, 표적 물질인 살생물제의 농도를 정량 또는 반정량하는 것을 포함한다.The detection means confirming the presence of a target substance, and includes quantifying or semi-quantifying the concentration of a biocide that is a target substance.
상기 시료는 검출하고자 하는 표적 물질인 살생물제를 포함하거나 포함하고 있을 것으로 의심되어 검출의 필요성을 가지는 임의의 혼합물 또는 용액을 의미한다. 살생물제가 포함되어 있거나 포함되어 있을 것으로 여겨지는 물, 식품, 생활제품, 생활제품으로부터 발생되는 부산물, 인체나 동물로부터 얻어진 생체 시료, 또는 이들의 가공물일 수 있으며, 예컨대 생활화학제품 또는 가공식품일 수 있다. 상기 생활화학제품은 예컨대 살충제, 탈취제 등일 수 있으나, 이에 제한되는 것은 아니다. The sample means any mixture or solution that contains or is suspected to contain a biocide, which is a target substance to be detected, and thus needs detection. It may be water, food, household products, by-products generated from household products, biological samples obtained from humans or animals, or processed products thereof that contain or are believed to contain biocides, such as household chemical products or processed foods. can The household chemical product may be, for example, an insecticide, a deodorant, and the like, but is not limited thereto.
상기 전기적 신호의 측정은, 전류의 변화량을 측정하는 것일 수 있으며, 구체적으로 시간에 따른 전류의 변화량 값을 초기 전류량으로 나눈 값을 측정함으로써 시료 내 살생물제의 존재 여부 및/또는 살생물제의 농도, 양을 검출할 수 있다.The measurement of the electrical signal may be to measure the amount of change in the current, and specifically, by measuring the value obtained by dividing the value of the change in the current with time by the initial amount of current, the presence or absence of the biocide in the sample and / or the amount of the biocide Concentration and quantity can be detected.
상기 시료로부터 살생물제를 검출하는 방법은, 상기 바이오 센서의 전기적 신호가 변화하는 것으로 측정될 경우 시료 내에 살생물제가 존재하는 것으로 판단하는 단계를 더 포함할 수 있다.The method of detecting the biocide from the sample may further include determining that the biocide is present in the sample when it is measured that the electrical signal of the biosensor changes.
상기 그래핀 채널 부재, TRPA1, 나노베지클, 폴리-디-라이신, 그래핀 필름, 그래핀 트랜지스터 등에 관한 설명은 상기 '1. 그래핀 채널 부재' 및 '2. 그래핀 트랜지스터'에서 설명한 바와 동일하다.The description of the graphene channel member, TRPA1, nanovesicle, poly-di-lysine, graphene film, graphene transistor, etc. is described in '1. Graphene Channel Absence' and '2. It is the same as described in 'Graphene Transistor'.
이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of Examples.
[제조예 1][Production Example 1]
TRPA1을 포함하는 나노베지클의 제조Preparation of Nanovesicles Containing TRPA1
[1-1] TRPA1 유전자의 형질전환 및 나노베지클의 제조[1-1] Transformation of TRPA1 gene and preparation of nanovesicles
본 발명의 TRPA1을 발현시켜 나노베지클에 포함시킨 형태로 제조하기 위하여, 포유류 세포의 일종인 HEK-293 세포에 TRPA1의 유전자를 형질전환시키고, 나노베지클의 형성을 유도하였다.In order to express the TRPA1 of the present invention and prepare it to be included in the nanovesicles, the TRPA1 gene was transformed into HEK-293 cells, a type of mammalian cells, and the formation of nanovesicles was induced.
먼저, TRPA1을 발현할 수 있는 발현벡터를 제조하기 위하여, TRPA1의 유전자를 주형으로 하여 PCR을 수행해 증폭시킨 다음, 발현 단백질이 세포막의 표면으로 이동되도록 유도하는 임포트 시퀀스(import sequence)인 rho-tag를 상기 PCR 증폭된 TRPA1 유전자와 융합하고, 포유세포의 발현벡터인 pCMV6-AC-GFP(CAT#: PS100010, OriGene)에 클로닝하였다. 상기 pCMV6-AC-GFP 벡터는 앰피실린 저항성 유전자, CMV 프로모터를 포함하고 있으며, 녹색형광단백질인 GFP를 암호화하는 유전자 서열을 포함하는 것이다. 그리고, 0.5 ㎍의 상기 발현벡터를 100 ㎕의 Opti-MEM(Reduced Serum Media)로 희석시켜 0.75 ㎕ 내지 1.75 ㎕의 리포펙타민 용액(Lipofectamine LTXTM, Invitrogen)과 함께 혼합해 DNA-리포펙타민 복합체를 형성하도록 30분 동안 상온에서 반응시켰다. 발현벡터를 HEK-293 세포에 도입시키기에 앞서, HEK-293 세포를 DMEM 배지(Dulbecco's Modified Eagle Medium, 4 mM L-글루타민, 10% FBS, 1% 페니실린-스트렙토마이신 첨가)에서 37 ℃조건으로 가습 5% CO2 인큐베이터를 이용해 배양하였고, 24-well 세포 플레이트에 0.5 ㎖의 배지당 HEK-249 세포가 0.5 ~ 1.24 × 105 cell 만큼 포함되도록 분주한 후, 상기와 같이 제조된 발현벡터와 리포펙타민의 복합체를 각 well에 100 ㎖ 처리하여 도입시킨 후, 37 ℃조건으로 5% CO2 인큐베이터에서 18 ~ 24시간 동안 추가적으로 세포를 배양하였다.First, in order to prepare an expression vector capable of expressing TRPA1, PCR is performed using the TRPA1 gene as a template to amplify it, and then rho-tag, an import sequence that induces the expression protein to move to the surface of the cell membrane. was fused with the PCR-amplified TRPA1 gene, and cloned into a mammalian expression vector, pCMV6-AC-GFP (CAT#: PS100010, OriGene). The pCMV6-AC-GFP vector includes an ampicillin resistance gene, a CMV promoter, and a gene sequence encoding GFP, a green fluorescent protein. Then, 0.5 μg of the expression vector was diluted with 100 μl of Opti-MEM (Reduced Serum Media ) and mixed with 0.75 μl to 1.75 μl of a lipofectamine solution (Lipofectamine LTX TM , Invitrogen), followed by DNA-lipofectamine complex. was reacted at room temperature for 30 minutes to form Prior to introducing the expression vector into HEK-293 cells, the HEK-293 cells were humidified at 37 °C in DMEM medium (Dulbecco's Modified Eagle Medium, 4 mM L-glutamine, 10% FBS, 1% penicillin-streptomycin added). 5% CO 2 Culturing using an incubator, and aliquoted to contain 0.5 to 1.24 × 10 5 cells per 0.5 ml of medium in a 24-well cell plate, the expression vector prepared as above and lipofect After the tamine complex was introduced into each well by treatment with 100 ml, the cells were additionally cultured for 18 to 24 hours in a 5% CO 2 incubator at 37 ° C.
상기 방법을 통해 TRPA1 유전자가 형질전환된 HEK-293 세포로부터 TRPA1 단백질을 발현시키고 이를 포함하는 나노베지클을 제작하기 위하여, 형질전환된 HEK-293 세포를 10 ㎍/㎖의 사이토칼라신 B(cytochalasin B, Sigma, USA)가 첨가된 DMEM 배지에서 37 ℃, 300 rpm의 조건으로 30분 동안 교반시켰다. 사이토칼라신 B는 세포막을 투과할 수 있는 독소(mycotoxin)의 일종으로 수축성 미세섬유의 형성을 방해하여 세포막의 안정성을 감소시킬 수 있다 상기와 같이 배양된 HEK-293 세포 배양액을 먼저 1,000 g로 30분 동안 원심분리하여 세포와 나노베지클을 분리하였고, 원심분리된 상청액(supernatant)를 대상으로 15,000 g로 30분 동안 원심분리함으로써 나노베지클을 확보하였다. 상기 원심분리를 통해 가라앉은 침전물을 단백질분해효소 저해제를 포함하는 PBS(pH 7.4, Sigma-Aldrich, USA)에 재부유시켜, 나노베지클을 수득하였고 추가적인 실험에 사용하기 위해 -80 ℃에서 보관하여 이용하였다.In order to express TRPA1 protein from HEK-293 cells transformed with the TRPA1 gene through the above method and to prepare a nanovesicle containing the same, the transformed HEK-293 cells were treated with 10 μg/ml of cytochalasin B (cytochalasin B). B, Sigma, USA) was stirred in DMEM medium at 37 °C and 300 rpm for 30 minutes. Cytochalasin B is a type of toxin (mycotoxin) capable of penetrating cell membranes, and can reduce the stability of cell membranes by interfering with the formation of contractile microfibers. Cells and nanovesicles were separated by centrifugation for 1 minute, and nanovesicles were obtained by centrifuging the centrifuged supernatant at 15,000 g for 30 minutes. The precipitate settled through the centrifugation was resuspended in PBS (pH 7.4, Sigma-Aldrich, USA) containing a protease inhibitor to obtain nanovesicles and stored at -80 ° C for use in additional experiments. was used.
[1-2] TRPA1의 발현 확인 및 나노베지클의 형성 확인[1-2] Confirmation of expression of TRPA1 and formation of nanovesicles
상기 제조예 1-1의 방법을 통해 형질전환된 HEK-293 세포로부터 TRPA1 유전자가 성공적으로 발현되어 TRPA1 단백질이 합성되었는지 여부를 확인하고, 이로부터 생성된 나노베지클에 TRPA1이 포함되었는지 여부 및 상기 나노베지클의 형태를 확인하였다.It was confirmed whether the TRPA1 gene was successfully expressed from the HEK-293 cells transformed through the method of Preparation Example 1-1 to synthesize the TRPA1 protein, and whether TRPA1 was included in the resulting nanovesicles, and the The shape of the nanovesicle was confirmed.
먼저, 형질전환된 HEK-293 세포로부터 발현된 단백질이 성공적으로 발현되어, 상기 제조예 1-1을 통해 제조된 나노베지클 내에 포함되어 있는지 여부를 형광현미경을 통해 확인하였다. TRPA1을 HEK-293 세포에 도입하기 위해 제작한 발현벡터에는 GFP 유전자가 함께 융합되어 있는바, GFP의 녹색 형광을 관찰함으로써 상기 발현벡터로부터 발현된 단백질이 나노베지클의 막에 존재하는지 여부를 확인할 수 있다. 상기 제조예 1-1을 통해 제조한 나노베지클을 공초점 형광현미경(LSM 800, ZEISS)을 통해 Z축 스캔으로 관찰한 결과, 도 1의 그림과 같이 녹색의 형광이 나타나는 것을 확인할 수 있었다. 이는 녹색 형광을 내는 GFP가 나노베지클 내에 존재함을 의미하는 것이므로, HEK-293 세포에 발현벡터가 성공적으로 도입되어 형질전환되었으며, 이로부터 발현된 단백질이 나노베지클 내에 포함되어 있음을 의미한다. 상기 발현벡터에는 TRPA1이 함께 암호화되어 있는바 상기와 같은 결과를 통해 나노베지클 내에 GFP와 함께 융합된 TRPA1이 발현되어 있는 것으로 해석할 수 있다.First, it was confirmed through a fluorescence microscope whether the protein expressed from the transformed HEK-293 cells was successfully expressed and contained in the nanovesicles prepared in Preparation Example 1-1. Since the GFP gene is fused together in the expression vector prepared to introduce TRPA1 into HEK-293 cells, it can be confirmed whether the protein expressed from the expression vector is present in the membrane of the nanovesicle by observing the green fluorescence of GFP. can As a result of observing the nanovesicles prepared in Preparation Example 1-1 with a Z-axis scan through a confocal fluorescence microscope (LSM 800, ZEISS), it was confirmed that green fluorescence appeared as shown in the figure of FIG. 1 . Since this means that GFP emitting green fluorescence is present in the nanovesicle, the expression vector was successfully introduced into HEK-293 cells and transformed, which means that the protein expressed therefrom is contained in the nanovesicle. . Since TRPA1 is encoded in the expression vector, it can be interpreted that TRPA1 fused with GFP is expressed in the nanovesicle through the above results.
또한, 상기 나노베지클 내 TRPA1의 발현 여부를 정확히 확인하기 위하여, TRPA1 단백질을 대상으로 본 발명의 기술분야에서 통상적으로 이용되는 방법에 따라 웨스턴 블랏팅을 수행하였다. 상기 나노베지클로부터 분리된 단백질들을 대상으로, 10%의 폴리아크릴아마이드 겔을 이용하여 SDS-PAGE를 수행한 다음, 겔 내에 분리된 단백질을 PDFV 막(Bio-Rad, USA)으로 전이시켜 항-GFP 마우스 항체(Santa Cruz Biotechnology)를 이용해 반응시킨 후 세척하여 HRP(horseradish peroxidase)가 결합된 2차 항체(항-마우스 항체, Santa Cruz Biotechnology)를 결합시켜 ECL 반응을 수행하였다. 마커는 Bio-Rad 社의 제품을 이용하였고, 대조군으로는 계면활성제를 처리하여 가용화시키지 않은 단백질을 이용하였다. 웨스턴 블랏팅 수행 결과, 도 2의 결과와 같이 TRPA1 단백질의 크기에 해당하는 151 kDa 부분(124 kDa의 TRPA1과 이에 결합된 27 kDA의 GFP 태그를 합친 크기)에서 밴드를 확인하여 TRPA1이 발현되어 존재함을 확인할 수 있었다.In addition, in order to accurately confirm the expression of TRPA1 in the nanovesicles, Western blotting was performed on the TRPA1 protein according to a method commonly used in the art. For the proteins isolated from the nanovesicles, SDS-PAGE was performed using a 10% polyacrylamide gel, and then, the proteins separated in the gel were transferred to a PDFV membrane (Bio-Rad, USA) to anti- After reacting with GFP mouse antibody (Santa Cruz Biotechnology), the ECL reaction was performed by washing with a secondary antibody (anti-mouse antibody, Santa Cruz Biotechnology) bound to horseradish peroxidase (HRP). As a marker, a product from Bio-Rad was used, and as a control, a protein that was not solubilized by treatment with a surfactant was used. As a result of Western blotting, as shown in FIG. 2, a band was identified in the 151 kDa portion corresponding to the size of the TRPA1 protein (the combined size of 124 kDa TRPA1 and the 27 kDA GFP tag bound thereto), and TRPA1 was expressed and present. could confirm that
나아가, 나노베지클이 형성된 형태를 확인하기 위하여 상기 제조예 1-1의 방법을 통해 제조된 나노베지클을 대상으로 주사전자현미경(Field Emission SEM, Magellan400)을 이용해 관찰하였다. 그 결과, 도 3과 같이 나노베지클이 구형을 형성하고 있음을 확인하였다. 상기와 같은 측정 결과를 종합할 때, 제조예 1-1의 방법을 통해 제조된 본 발명의 구형으로 형성된 나노베지클의 표면 막에는 GFP와 융합된 형태의 TRPA1이 발현되어 위치하고 있음을 알 수 있다.Furthermore, in order to confirm the form in which the nanovesicles were formed, the nanovesicles prepared by the method of Preparation Example 1-1 were observed using a scanning electron microscope (Field Emission SEM, Magellan400). As a result, it was confirmed that the nanovesicles formed a spherical shape as shown in FIG. 3 . Combining the above measurement results, it can be seen that TRPA1 in a fused form with GFP is expressed and located on the surface film of the nanovesicle formed in the spherical shape of the present invention prepared by the method of Preparation Example 1-1. .
[제조예 2][Production Example 2]
그래핀 트랜지스터의 제조Fabrication of Graphene Transistors
[2-1] 기판 상에 그래핀 채널층의 형성[2-1] Formation of a graphene channel layer on a substrate
구리 호일을 챔버 내에 위치시키고, 이를 1,000 ℃까지 가열하고, 이를 H2 90 mTorr 및 8 sccm으로 30분(20분의 프리 어닐링과 10분의 안정화) 동안 유지한 후, CH4를 20 sccm으로 40분 동안 총 압력이 560 mTorr인 상태로 가한 다음, 이를 35 ℃로 200 ℃까지 냉각시키고, 로(furnace)를 상온까지 냉각하여 상기 구리 호일 상에 단일의 그래핀층을 형성하였다.A copper foil was placed in the chamber, heated to 1,000 °C, and held at H 2 90 mTorr and 8 sccm for 30 min (20 min pre-annealing and 10 min stabilization), then CH 4 at 20 sccm 40 After applying a total pressure of 560 mTorr for minutes, it was cooled to 35 °C to 200 °C, and the furnace was cooled to room temperature to form a single graphene layer on the copper foil.
다음으로, 상기 구리 호일 상에 형성된 그래핀층 상에 폴리메틸메타아크릴레이트(PMMA, MicroChem Corp, 950 PMMA A4, 4% in anisole) 용액을 분당 6,000 rpm의 속도로 스핀 코팅하고, 에천트(etchant)를 이용하여 상기 PMMA가 코팅된 그래핀층을 상기 구리 호일로부터 분리하였고, 상기와 같이 구리 호일로부티 분리된 그래핀층을 10분 동안 탈이온 증류수에 침지하여 상기 그래핀 층에 남아 있는 잔여 에천트 이온들을 제거하였다.Next, a polymethyl methacrylate (PMMA, MicroChem Corp, 950 PMMA A4, 4% in anisole) solution was spin-coated at a speed of 6,000 rpm per minute on the graphene layer formed on the copper foil, and an etchant was used. The PMMA-coated graphene layer was separated from the copper foil using were removed.
상기와 같이 세척된 그래핀층을 기판인 실리콘 웨이퍼로 전사한 다음, 상기 그래핀층 상에 PMMA 용액을 투하하여 상기 그래핀층을 코팅하고 있던 PMMA를 제거함으로써, 기판 상에 그래핀 채널층을 형성하였다. 이 때 투명성은 97.8%로 유지되었다.The graphene layer washed as described above was transferred to a silicon wafer as a substrate, and then a PMMA solution was dropped on the graphene layer to remove the PMMA coating the graphene layer, thereby forming a graphene channel layer on the substrate. At this time, transparency was maintained at 97.8%.
상기 기판 상에 형성된 그래핀 채널층에, 포지티브 포토레지스트(AZ5214, Clariant Corp)를 스핀 코팅한 다음, UV 노광, 베이킹 및 현상 과정을 거쳐 통해 그래핀 채널층을 패턴화하였다.A positive photoresist (AZ5214, Clariant Corp) was spin-coated on the graphene channel layer formed on the substrate, and then the graphene channel layer was patterned through UV exposure, baking and development processes.
[2-2] 전극 형성[2-2] electrode formation
상기와 같이 패턴화되어 정렬된 그래핀 채널층의 양 말단에 RIE(oxygen plasma treatment) 방법을 통해 패턴 전극(폭/길이=W/L=1, L=100 ㎛ 채널 길이)을 형성한 다음, 이미지 반전, 열 증착 및 리프트-오프(Lift-off)의 공정을 통해 상기 그래핀 채널층 상에 전극(W/L=5, L=100 ㎛ 채널 길이)이 형성된 그래핀 트랜지스터를 제조하였다.A pattern electrode (width/length=W/L=1, L=100 μm channel length) was formed on both ends of the graphene channel layer that was patterned and aligned as described above through an RIE (oxygen plasma treatment) method, A graphene transistor having an electrode (W/L=5, L=100 μm channel length) formed on the graphene channel layer was manufactured through the process of image inversion, thermal deposition, and lift-off.
[2-3] 링커층의 형성[2-3] Formation of linker layer
상기와 같이 제조된 그래핀 트랜지스터에 TRPA1을 포함하는 나노베지클을 고정시키기에 앞서, 그래핀 트랜지스터와 나노베지클을 고정시키기 위한 매개체가 되는 링커층을 형성시켰다. 구체적으로, 상기 링커는 폴리-디-라이신(poly-D-lysine, PDL)을 이용하였고, 0.1 ㎎/㎖ 농도의 PDL 용액으로 상기 그래핀층의 표면을 코팅하고 25 ℃에서 2시간 동안 반응시켜 링커층을 형성하였다.Prior to fixing the nanovesicles containing TRPA1 to the graphene transistors prepared as described above, a linker layer serving as a medium for fixing the graphene transistors and the nanovesicles was formed. Specifically, as the linker, poly-D-lysine (PDL) was used, the surface of the graphene layer was coated with a PDL solution of 0.1 mg/ml concentration, and the linker was reacted at 25° C. for 2 hours. layer was formed.
[2-4] TRPA1을 포함하는 나노베지클의 고정[2-4] Immobilization of nanovesicles containing TRPA1
상기 링커층에 상기 제조예 1-1의 방법에 따라 제조된 TRPA1을 포함하는 나노베지클(1 ㎎/㎖) 용액을 1 ㎕ 만큼 상기 PDL 코팅된 링커층 표면에 첨가함으로써, 본 발명의 나노베지클이 고정된 그래핀 트랜지스터를 제조하였다.By adding 1 μl of a nanovesicle (1 mg/ml) solution containing TRPA1 prepared according to the method of Preparation Example 1-1 to the linker layer to the surface of the PDL-coated linker layer, the nanoveg of the present invention A graphene transistor with a fixed claw was fabricated.
[실험예 1][Experimental Example 1]
TRPA1 포함 나노베지클 고정 전/후의 그래핀 트랜지스터의 전기적 특성 측정 차이 확인Check the difference in the measurement of electrical properties of graphene transistors before and after fixing nanovesicles with TRPA1
상기 제조예 2를 통해 제조된 TRPA1을 포함하는 나노베지클이 고정된 형태의 그래핀 트랜지스터에서 나타나는 전기적 특성을 소스미터(Keithly 2412 sourcemteter)와 전위차계(Wonatech 3000 potentiostat)를 이용해 측정하여, 상기 나노베지클을 고정시키기 전의 그래핀 트랜지스터(제조예 2-3까지 제조된, 링커만 결합된 그래핀 트랜지스터), 링커층을 형성하기 전의 그래핀 트랜지스터(제조예 2-2의 그래핀 트랜지스터)의 전기적 특성 측정 결과와 비교하여 도 6에 나타내었다.The electrical characteristics appearing in the graphene transistor in the form of a fixed nanovesicle containing TRPA1 prepared in Preparation Example 2 were measured using a source meter (Keithly 2412 sourcemteter) and a potentiometer (Wonatech 3000 potentiostat), Graphene transistor before fixing the nanovesicles (graphene transistors prepared up to Preparation Example 2-3, in which only a linker is coupled), graphene transistors before forming a linker layer (graphene transistors of Preparation Example 2-2) It is shown in FIG. 6 as compared with the measurement result of the electrical properties of .
상기 그래핀 트랜지스터에 대하여 전압의 변화에 따른 전류량을 측정한 결과, PDL 링커만 결합되고 나노베지클은 결합되지 않은 그래핀 트랜지스터 및 PDL 링커도 결합되지 않은 그래핀 트랜지스터와 비교할 때, 본 발명의 나노베지클이 고정된 형태의 그래핀 트랜지스터에서는 저항의 기울기가 증가하였다. 이는, TRPA1을 포함하는 나노베지클이 링커를 통해 그래핀의 표면 상에 고정화됨에 따라 발생하는 저항에 의한 결과이므로, 상기와 같은 결과를 통해 상기 제조예 2에 따라 제조된 본 발명의 그래핀 트랜지스터 상에 나노베지클의 고정화가 이루어졌음을 확인할 수 있었다.As a result of measuring the amount of current according to the change in voltage with respect to the graphene transistor, when compared to a graphene transistor in which only the PDL linker is bonded and the nanovesicle is not bonded and the graphene transistor to which the PDL linker is not bonded, the nano of the present invention In the graphene transistor with a fixed vesicle, the slope of the resistance increased. This is a result of resistance generated as nanovesicles containing TRPA1 are immobilized on the surface of graphene through a linker. It was confirmed that the immobilization of the nanovesicles was performed on the vesicles.
[실험예 2][Experimental Example 2]
본 발명의 그래핀 트랜지스터의 살생물제에 대한 검출 효과 확인Confirmation of the detection effect on the biocide of the graphene transistor of the present invention
[2-1] 살생물제 PHMG의 농도에 따른 검출 효과 확인[2-1] Confirmation of detection effect according to the concentration of biocide PHMG
본 발명의 그래핀 트랜지스터에 살생물제의 일종인 PHMG (polyhexamethyleneguanidine)를 다양한 농도로 투입하고, 이의 전류 변화를 측정함으로써 PHMG에 대한 감지 효과를 확인하였다.PHMG (polyhexamethyleneguanidine), a kind of biocide, was added to the graphene transistor of the present invention at various concentrations, and the sensing effect on PHMG was confirmed by measuring the change in current thereof.
구체적으로, 상기 제조예 2를 통해 제조된 TRPA1을 포함하는 나노베지클이 고정된 형태의 그래핀 트랜지스터에 PHMG를 각각 10 ㎍/ℓ, 100 ㎍/ℓ, 1 ㎎/ℓ, 10 ㎎/ℓ, 100 ㎎/ℓ, 1 g/ℓ, 및 10 g/ℓ의 농도로 순차적으로 투입하였다. 상기 실험예 1과 동일한 방식을 통해 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값(ΔI/I0 = (I-I0)/I0, I는 실시간으로 측정되는 전류 값, I0는 최초 측정된 전류 값)을 도 7에 나타내었다. 대조군으로는 TRPA1을 포함하지 않은 상태의 나노베지클을 제작해 이용하여 만든 그래핀 트랜지스터를 이용하였다.Specifically, 10 μg/L, 100 μg/L, 1 mg/L, 10 mg/L, and 10 mg/L of PHMG were added to the graphene transistor in which the nanovesicles containing TRPA1 prepared in Preparation Example 2 were fixed, respectively. They were sequentially added at concentrations of 100 mg/L, 1 g/L, and 10 g/L. By measuring the electrical characteristics in the same manner as in Experimental Example 1, the value of the amount of change in current with time (ΔI/I 0 = (II 0 )/I 0 , I is the current value measured in real time, I 0 is the first measured value current values) are shown in FIG. 7 . As a control group, a graphene transistor made by fabricating and using a nanovesicle without TRPA1 was used.
그 결과, 첨가되는 PHMG의 농도가 증가함에 따라 전류의 변화량 값이 증가하였고, 이에 따라 본 발명의 그래핀 트랜지스터는 PHMG의 양에 따라 PHMG를 감지할 수 있는 효과가 있으며, 10 ㎍/ℓ의 매우 소량의 농도에서도 감지 및 검출이 가능함을 확인할 수 있었다.As a result, as the concentration of the added PHMG increased, the value of the change amount of current increased. Accordingly, the graphene transistor of the present invention has the effect of detecting PHMG according to the amount of PHMG, and a very high concentration of 10 μg/L It was confirmed that detection and detection were possible even at a small concentration.
[2-2] 살생물제 PHMG 대한 검출 선택성 확인[2-2] Confirmation of detection selectivity for biocide PHMG
본 발명의 그래핀 트랜지스터에 상기 실험예 2-1에서 감지 효과를 확인한 PHMG를 비롯하여 다양한 살생물제를 투입하고, 이의 전류 변화를 측정함으로써 살생물제 중 어느 물질에 대해 가장 선택성이 높은지 여부를 확인하였다.In the graphene transistor of the present invention, various biocides including PHMG, the detection effect of which was confirmed in Experimental Example 2-1, were added, and the current change thereof was measured to determine whether any of the biocides had the highest selectivity. did.
구체적으로, 상기 제조예 2를 통해 제조된 TRPA1을 포함하는 나노베지클이 고정된 형태의 그래핀 트랜지스터에 살생물제로 OIT (2-Octyl-3(2H)-isothiazolone), CMIT (Chloromethylisothiazolinone) 및 PHMG를 각각 100 ㎍/ℓ의 농도로 첨가하여 순차적으로 투입하였다. 그리고 상기 실험예 1과 동일한 방식을 통해 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값을 도 8에 나타내었다.Specifically, OIT (2-Octyl-3(2H)-isothiazolone), CMIT (Chloromethylisothiazolinone) and PHMG as a biocide in a graphene transistor in which the nanovesicles containing TRPA1 prepared in Preparation Example 2 are fixed. were sequentially added at a concentration of 100 μg/L, respectively. In addition, the electrical characteristics were measured in the same manner as in Experimental Example 1, and the value of the change amount of the current with time is shown in FIG. 8 .
그 결과, OIT, CMIT의 첨가에 따라 전류의 변화가 나타났으나, PHMG를 첨가하였을 때의 경우 가장 전기적 신호가 크게 검출되었다. 따라서 본 발명의 TRPA1을 포함하는 나노베지클을 포함하는 그래핀 트랜지스터는 OIT 및 CMIT 역시 감지하여 검출할 수 있으나, 특히 PHMG에 대한 감지 효과가 우수하여 이에 대한 선택성이 매우 크다는 것을 확인할 수 있었다.As a result, a change in current appeared according to the addition of OIT and CMIT, but the largest electrical signal was detected when PHMG was added. Therefore, the graphene transistor including the nanovesicles including TRPA1 of the present invention can detect and detect OIT and CMIT, but in particular, it has excellent detection effect on PHMG, and thus it can be confirmed that the selectivity is very large.
[2-3] 각종 살생물제들의 농도에 따른 검출 효과 확인[2-3] Confirmation of the detection effect according to the concentration of various biocides
본 발명의 그래핀 트랜지스터에 다양한 종류의 살생물제들을 다양한 농도로 투입하고, 이의 전류 변화를 측정함으로써 각 살생물제들에 대한 감지 효과를 확인하였다.Various types of biocides were added at various concentrations to the graphene transistor of the present invention, and the sensing effect of each biocide was confirmed by measuring the change in current thereof.
구체적으로, 상기 제조예 2를 통해 제조된 TRPA1을 포함하는 나노베지클이 고정된 형태의 그래핀 트랜지스터에 BNP, OIT, MIT, CA, CBDZ, 및 SPO를 각각 10 ㎍/ℓ, 100 ㎍/ℓ, 1 ㎎/ℓ, 10 ㎎/ℓ, 100 ㎎/ℓ, 1 g/ℓ, 및 10 g/ℓ의 농도로 순차적으로 투입하였다. 상기 실험예 1과 동일한 방식을 통해 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값(ΔI/I0 = (I-I0)/I0, I는 실시간으로 측정되는 전류 값, I0는 최초 측정된 전류 값)을 도 9에 나타내었다. Specifically, BNP, OIT, MIT, CA, CBDZ, and SPO were respectively added to the nanovesicle-fixed graphene transistor comprising TRPA1 prepared in Preparation Example 2 at 10 μg/L and 100 μg/L, respectively. , 1 mg/L, 10 mg/L, 100 mg/L, 1 g/L, and 10 g/L were sequentially added. By measuring the electrical characteristics in the same manner as in Experimental Example 1, the value of the amount of change of current with time (ΔI/I 0 = (II 0 )/I 0 , I is the current value measured in real time, I 0 is the first measured value current values) are shown in FIG. 9 .
그 결과, 도 9에서 볼 수 있듯이, 각 살생물제에 따라 전류의 변화량 값의 크기가 서로 다르고, 농도에 따른 전기적 신호 발생의 정도 역시 서로 다르게 나타났으나, 소량의 살생물제를 처리한 경우에도 본 발명의 그래핀 트랜지스터를 이용할 경우 높은 민감도로 이들의 감지 및 검출이 가능함을 확인할 수 있었다.As a result, as can be seen in FIG. 9 , the magnitude of the change value of the current was different for each biocide, and the degree of electrical signal generation according to the concentration was also different, but when a small amount of the biocide was treated In the case of using the graphene transistor of the present invention, it was confirmed that their detection and detection were possible with high sensitivity.
[2-4] 복합적인 살생물제의 처리에 따른 검출 효과 확인[2-4] Confirmation of detection effect by treatment of complex biocides
상기 실험예의 결과에서 볼 수 있듯이, 본 발명의 그래핀 트랜지스터가 다양한 종류의 살생물제에 대한 검출 효과가 있음을 확인하였는바, 여러 종류의 살생물제를 복합적으로 함께 처리하였을 때에도 검출 효과가 나타나는지 여부를 확인하였다.As can be seen from the results of the above experimental examples, it was confirmed that the graphene transistor of the present invention has a detection effect on various types of biocides. It was checked whether
본 발명의 그래핀 트랜지스터에 CMIT + OIT, CMIT + PHMG, OIT + PHMG, 및 CMIT + OIT + PHMG 조합의 살생물제를 총량이 10 ㎎/ℓ이 되도록 각각 투입시키고 상기 실험예 1과 동일한 방식을 통해 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값(ΔI/I0 = (I-I0)/I0, I는 실시간으로 측정되는 전류 값, I0는 최초 측정된 전류 값)을 도 10에 나타내었다.The biocides of CMIT + OIT, CMIT + PHMG, OIT + PHMG, and CMIT + OIT + PHMG were added to the graphene transistor of the present invention so that the total amount was 10 mg/L, respectively, and the same method as in Experimental Example 1 was used. 10 shows the value of the change in current with time (ΔI/I 0 = (II 0 )/I 0 , I is the current value measured in real time, I 0 is the first measured current value) by measuring the electrical characteristics through It was.
그 결과, 여러 종류의 살생물제를 복합적으로 투입한 경우에도, 전기적 신호를 관찰할 수 있었으며 상기 실험예 2-2를 통해 확인한 바와 같이, PHMG를 포함하여 처리한 경우의 감지 효과가 가장 우수하였다. 따라서 본 발명의 TRPA1을 포함하는 나노베지클을 고정시킨 그래핀 트랜지스터를 바이오센서로 이용할 경우, 단일 물질의 살생물제 뿐만 아니라, 이들이 다양한 조합으로 복합적으로 혼합되어 있더라도 높은 민감도를 가지고 이들을 검출할 수 있음을 확인할 수 있었다.As a result, even when several types of biocides were compounded, electrical signals could be observed, and as confirmed in Experimental Example 2-2, the detection effect was the best when PHMG was treated. . Therefore, when the graphene transistor on which the nanovesicles containing TRPA1 of the present invention are immobilized is used as a biosensor, it is possible to detect them with high sensitivity even if they are complexly mixed in various combinations as well as a single biocide. could confirm that there was
또한, 다른 종류의 살생물제 조합을 대상으로 본 발명 트랜지스터의 검출 효과를 확인하였다. 살생물제로는 MIT, IPBC(iodopropynyl butylcarbamate), CA 및 DDAC(didecyldimethylammonium chloride)를 이용하였고, 이들을 각각 MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC 및 DDAC + CA 조합의 살생물제를 본 발명 트랜지스터에 각각 투입시키고 상기 실험예 1과 동일한 방식을 통해 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값을 바탕으로 측정된 민감도를 도 11에 나타내었다.In addition, the detection effect of the transistor of the present invention was confirmed for a combination of different types of biocides. As biocides, MIT, IPBC (iodopropynyl butylcarbamate), CA and DDAC (didecyldimethylammonium chloride) were used, and these were MIT + OIT, MIT + IPBC, MIT + CA, MIT + DDAC, DDAC + IPBC and DDAC + CA combinations, respectively. Each of the biocides was injected into the transistors of the present invention, and electrical characteristics were measured in the same manner as in Experimental Example 1, and the sensitivity measured based on the value of the change in current with time is shown in FIG. 11 .
그 결과, MIT, IPBC, CA 및 DDAC 살생물제를 복합 처리하였을 때 살생물제 농도에 따라 전기적 신호가 발생하는 것을 확인할 수 있었으며, 본 발명의 트랜지스터는 다양한 조합의 살생물제가 복합적으로 혼합되어 있더라도 높은 민감도를 가지고 이들을 검출할 수 있음을 다시 한 번 확인할 수 있었다.As a result, it was confirmed that an electrical signal was generated depending on the concentration of the biocide when the MIT, IPBC, CA and DDAC biocides were treated in combination. It was confirmed once again that they could be detected with high sensitivity.
[2-5] 본 발명 트랜지스터를 이용한 생활화학제품 내 살생물제의 검출 효과 확인[2-5] Confirmation of the detection effect of biocides in household chemical products using the transistor of the present invention
시중에 판매되는 생활화학제품 내에 살생물제로 작용하는 성분이 함유되어 있는지 여부를 본 발명의 트랜지스터로 검출 가능한지 여부를 확인하였다. 총 6종의 생활화학제품 시료 5 ㎕를 본 발명 트랜지스터에 투입하여 전기적 특성을 측정하여 시간에 따른 전류의 변화량 값을 바탕으로 측정된 민감도를 도 12에 나타내었다. 상기 생활화학제품은 스프레이로 분사되는 형태의 소독제 및 탈취제 제품을 이용하여 이를 분사하여 포집한 액체 형태의 시료를 본 발명의 트랜지스터에 투입하여 측정하였다.It was confirmed whether the transistor of the present invention can detect whether a component acting as a biocide is contained in a commercially available household chemical product. 5 μl of a total of 6 kinds of household chemical samples was put into the transistor of the present invention to measure electrical characteristics, and the measured sensitivity based on the value of the change in current with time is shown in FIG. 12 . The household chemical products were measured by injecting a liquid sample collected by spraying the disinfectant and deodorant products in the form of spraying into the transistor of the present invention.
그 결과, 6종의 생활화학제품을 투입시킨 시점에 전기적 특성의 변화가 발생하여 민감도 수치가 변화되는 것으로 측정되었다. 따라서 본 발명의 트랜지스터는 생활화학제품에 함유되어 있는 살생물제를 검출할 수 있음을 확인할 수 있었고, 제품 내 존재하는 살생물제를 신속하고 간편하게 검출하기 위해 본 발명의 트랜지스터를 이용할 수 있음을 확인할 수 있었다.As a result, it was measured that the sensitivity value was changed due to a change in electrical characteristics at the time when 6 kinds of household chemical products were injected. Therefore, it was confirmed that the transistor of the present invention can detect the biocide contained in household chemical products, and it can be confirmed that the transistor of the present invention can be used to quickly and conveniently detect the biocide present in the product. could
상기에서는 본 발명의 제조예 및 실험예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 제조예 및 실험예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above, the manufacturing examples and experimental examples of the present invention have been exemplarily described, but the scope of the present invention is not limited only to the specific preparation examples and experimental examples as described above, and those of ordinary skill in the art may claim the present invention. Appropriate changes may be made within the scope described in the scope.

Claims (13)

  1. 그래핀 필름 및 상기 그래핀 필름에 고정화된 나노베지클을 포함하는 그래핀 채널 부재로서,As a graphene channel member comprising a graphene film and nanovesicles immobilized on the graphene film,
    상기 나노베지클은 TRPA1(Transient receptor potential cation channel, subfamily A, member 1)을 포함하는 것인, 그래핀 채널 부재.The nanovesicle is TRPA1 (Transient receptor potential cation channel, subfamily A, member 1) will include, the graphene channel member.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 나노베지클은 상기 그래핀 필름에 화학적 결합으로 고정화되어 있는 것인, 그래핀 채널 부재.The nanovesicle is a graphene channel member that is immobilized by a chemical bond to the graphene film.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    상기 화학적 결합은 폴리-디-라이신(Poly-D-lysine)을 링커로 하여서 고정화되어 있는 것인, 그래핀 채널 부재.Wherein the chemical bond is immobilized using poly-D-lysine as a linker, graphene channel member.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 TRPA1은 상기 나노베지클의 막표면에 위치하는 것인, 그래핀 채널 부재.The TRPA1 is a graphene channel member that is located on the membrane surface of the nanovesicle.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 TRPA1은 살생물제에 선택적으로 반응하는 것인, 그래핀 채널 부재.The TRPA1 will selectively respond to a biocide, graphene channel member.
  6. 청구항 5에 있어서,6. The method of claim 5,
    상기 살생물제는 PHMG(polyhexamethyleneguanidine), BNP(2-bromo-2-nitropropane-1,3-diol), OIT(2-Octyl-3(2H)-isothiazolone), CMIT(Chloromethylisothiazolinone), MIT(Methylisothiazolinone), CA(Citric acid), CBDZ(Carbendazim), SPO(Sodium 2-pyridinethiol 1-oxide), IPBC(iodopropynyl butylcarbamate) 및 DDAC(didecyldimethylammonium chloride)로 이루어진 군으로부터 선택되는 하나 이상인 것인, 그래핀 채널 부재.The biocide is PHMG (polyhexamethyleneguanidine), BNP (2-bromo-2-nitropropane-1,3-diol), OIT (2-Octyl-3 (2H)-isothiazolone), CMIT (Chloromethylisothiazolinone), MIT (Methylisothiazolinone) , CA (Citric acid), CBDZ (Carbendazim), SPO (Sodium 2-pyridinethiol 1-oxide), IPBC (iodopropynyl butylcarbamate) and DDAC (didecyldimethylammonium chloride) to one or more selected from the group consisting of, the graphene channel member.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 그래핀 필름은 단층 또는 이층(bi-layer)인 것인, 그래핀 채널 부재.The graphene film is a single layer or a bi-layer (bi-layer), the graphene channel member.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 그래핀 필름은 패턴화된 것인, 그래핀 채널 부재.The graphene film is a patterned, graphene channel member.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 그래핀 필름은 두께가 0.1 내지 1 ㎚인 것인, 그래핀 채널 부재.The graphene film has a thickness of 0.1 to 1 nm, the graphene channel member.
  10. 기판;Board;
    청구항 1 내지 청구항 9 중 어느 한 항의 그래핀 채널 부재; 및The graphene channel member of any one of claims 1 to 9; and
    한 쌍의 전극;을 포함하는, 그래핀 트랜지스터.A pair of electrodes; including, a graphene transistor.
  11. 청구항 10의 그래핀 트랜지스터를 포함하는, 바이오 센서.A biosensor comprising the graphene transistor of claim 10 .
  12. 청구항 11에 있어서,12. The method of claim 11,
    상기 바이오 센서는 살생물제의 검출용인 것인, 바이오 센서.The biosensor is for the detection of a biocide, the biosensor.
  13. 청구항 12의 바이오 센서에 시료를 처리하는 단계; 및processing the sample in the biosensor of claim 12; and
    상기 바이오 센서의 전기적 신호를 측정하는 단계;를 포함하는, 시료로부터 살생물제를 검출하는 방법.Measuring the electrical signal of the biosensor; A method of detecting a biocide from a sample, comprising a.
PCT/KR2021/003555 2020-03-23 2021-03-23 Graphene channel member comprising nanovesicle containing trpa1, and biosensor WO2021194207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0035224 2020-03-23
KR1020200035224A KR102504692B1 (en) 2020-03-23 2020-03-23 Graphene Channel Member Comprising Nanovesicle Comprising TRPA1 Receptor and Biosensor comprising thereof

Publications (1)

Publication Number Publication Date
WO2021194207A1 true WO2021194207A1 (en) 2021-09-30

Family

ID=77890510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003555 WO2021194207A1 (en) 2020-03-23 2021-03-23 Graphene channel member comprising nanovesicle containing trpa1, and biosensor

Country Status (2)

Country Link
KR (1) KR102504692B1 (en)
WO (1) WO2021194207A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031747A (en) * 2013-09-16 2015-03-25 서울대학교산학협력단 Nanovesicle containing human dopamine receptor, and dopamine receptor and fet based dopamine sensor
KR20170051058A (en) * 2015-11-02 2017-05-11 국민대학교산학협력단 Method of Screening Insecticides or Repellents by using a Gustatory Receptor
WO2018116186A1 (en) * 2016-12-21 2018-06-28 The New Zealand Institute For Plant And Food Research Sensor device and methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839622B1 (en) * 2006-04-28 2008-06-19 재단법인서울대학교산학협력재단 Compositions for treatment of tooth pain containing TRP channels blockers and Methods of screening thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031747A (en) * 2013-09-16 2015-03-25 서울대학교산학협력단 Nanovesicle containing human dopamine receptor, and dopamine receptor and fet based dopamine sensor
KR20170051058A (en) * 2015-11-02 2017-05-11 국민대학교산학협력단 Method of Screening Insecticides or Repellents by using a Gustatory Receptor
WO2018116186A1 (en) * 2016-12-21 2018-06-28 The New Zealand Institute For Plant And Food Research Sensor device and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHN SAE RYUN, AN JI HYUN, SONG HYUN SEOK, PARK JIN WOOK, LEE SANG HUN, KIM JAE HYUN, JANG JYONGSIK, PARK TAI HYUN: "Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 8, 23 August 2016 (2016-08-23), US, pages 7287 - 7296, XP055852817, ISSN: 1936-0851, DOI: 10.1021/acsnano.6b02547 *
Y. WANG, ET AL.: "Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 5, 27 May 2014 (2014-05-27), US, pages 4228 - 4238, XP055512623, ISSN: 1936-0851, DOI: 10.1021/nn501376z *

Also Published As

Publication number Publication date
KR102504692B1 (en) 2023-03-02
KR20210118671A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US9029168B2 (en) Use and making of biosensors utilizing antimicrobial peptides for highly sensitive biological monitoring
Thevissen et al. Fungal membrane responses induced by plant defensins and thionins
Leite et al. Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus
McIlroy et al. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS
Han et al. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection
Lee et al. Mimicking the human smell sensing mechanism with an artificial nose platform
Orlandi-Pradines et al. Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa
Bayyareddy et al. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae
US8552748B2 (en) Electrical detection and/or quantification of organophosphorus compounds
Li et al. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@ Au nanoparticles
CN102369210A (en) Antibiotic peptides
Guo et al. A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defense-related early events in plant leaves
WO2016036145A1 (en) Norovirus detecting sensor and electrochemical sensing method using same
JP2020041947A (en) Chemical sensor and method for detecting target material
Moitra et al. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera
WO2021194207A1 (en) Graphene channel member comprising nanovesicle containing trpa1, and biosensor
Mikušová et al. Amperometric immunosensor for rapid detection of honeybee pathogen Melissococcus Plutonius
Byzova et al. Development of an immunochromatographic test system for the detection of Helicobacter pylori antigens
Mastore et al. Cuticular surface lipids are responsible for disguise properties of an entomoparasite against host cellular responses
Chiu et al. Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers
Ozaki et al. An antimicrobial peptide tachyplesin acts as a secondary secretagogue and amplifies lipopolysaccharide‐induced hemocyte exocytosis
Evans et al. Insect neuropeptides—identification, establishment of functional roles and novel target sites for pesticides
Liu et al. Increased talin–vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections
Cox et al. Susceptibility of Treponema pallidum to host-derived antimicrobial peptides
Hosseini et al. Fundamentals and history of ELISA: the evolution of the immunoassays until invention of ELISA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775224

Country of ref document: EP

Kind code of ref document: A1