WO2021193976A1 - Powder for powder additive manufacturing method, powder additive manufacturing method, manufactured product, and production method for powder for powder additive manufacturing method - Google Patents

Powder for powder additive manufacturing method, powder additive manufacturing method, manufactured product, and production method for powder for powder additive manufacturing method Download PDF

Info

Publication number
WO2021193976A1
WO2021193976A1 PCT/JP2021/013150 JP2021013150W WO2021193976A1 WO 2021193976 A1 WO2021193976 A1 WO 2021193976A1 JP 2021013150 W JP2021013150 W JP 2021013150W WO 2021193976 A1 WO2021193976 A1 WO 2021193976A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
additive manufacturing
resin
water
less
Prior art date
Application number
PCT/JP2021/013150
Other languages
French (fr)
Japanese (ja)
Inventor
香 谷山
紀人 酒井
理規 杉原
奈央 山末
純 松井
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021052243A external-priority patent/JP2022149900A/en
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority claimed from JP2021054020A external-priority patent/JP2021154737A/en
Publication of WO2021193976A1 publication Critical patent/WO2021193976A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a powder for powder additive manufacturing method containing a thermoplastic resin, a powder additive manufacturing method and a modeled product using the powder, and a method for producing a powder for powder additive manufacturing method.
  • a thin layer of a powder material such as a resin is heated to a temperature near the melting point of the resin powder using a heating means, sintered, and formed.
  • a heating means sintered, and formed.
  • This is a method of obtaining a three-dimensional modeled product by repeatedly forming a laminated body.
  • spray the powder material on a modeling table also called a modeling stage
  • smooth it with a recorder blade or roller
  • this operation is "applied” or “applied” or ".
  • a powder layer having a uniform thickness (sometimes referred to as "filling").
  • the molding area of the powder layer is irradiated with a heating medium such as a laser by a heating means to melt-sinter the powder, and then the same operation is repeated to perform laminated molding.
  • a heating medium such as a laser
  • a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is used as the heating means.
  • the powder additive manufacturing method does not require the use of a mold, and various resin powders can be used as raw materials as long as they have a certain degree of heat resistance, and the resulting molded products are highly reliable, so they have been attracting attention in recent years. It is a technology that has been used.
  • a powder layer having a uniform thickness cannot be smoothly formed on the modeling table, and the thickness may be uneven or a part where the powder does not exist (void or defective part) may be formed. .. Even if such a non-uniform powder layer is irradiated with a heating medium, a uniform molten state cannot be obtained. In addition, the modeling accuracy is also impaired, and in many cases, the desired modeled product cannot be obtained.
  • the present invention has good powder stackability (spreadability) and good modeling accuracy (surface roughness of the modeled object, etc.) without impairing the inherent characteristics of the resin, that is, the thickness at the time of modeling is high.
  • An object of the present invention is to provide a powder for a powder laminated molding method, which can form a uniform and defect-free powder layer and can accurately produce a desired modeled product.
  • the present inventors performed powder additive manufacturing using a powder for powder additive manufacturing that can directly apply an auxiliary agent such as a dispersant to the resin powder itself, thereby producing a surplus auxiliary agent in powder additive manufacturing. Therefore, the present invention is completed by finding that the auxiliary agent does not adversely affect the characteristics of the modeled object, the powder layering formability (dispersability) is good, and the modeling accuracy (modeling property) is also good. It came to. That is, the present inventor has found that these problems can be solved by using a powder for additive manufacturing method containing a specific amount of a thermoplastic resin and a water-soluble resin having a specific hydroxyl group amount. The present invention has been completed.
  • the present inventors have solved the above-mentioned problems by performing powder laminating molding using a powder for powder laminating molding in which a dispersant is thinly and uniformly added to the surface of the resin powder.
  • the present invention has been completed.
  • the present invention relates to the following ⁇ 1> to ⁇ 12>.
  • ⁇ 1> On the particle surface measured by X-ray photoelectron spectroscopy measured under the following measurement condition [1], which contains a thermoplastic resin and a water-soluble resin and has a hydroxyl group content of 30 wt% or more in the water-soluble resin.
  • Measurement condition [1]: Measuring equipment: X-ray photoelectron spectroscopy K-Alpha (Thermo Fisher Scientific) Measurement mode: Narrow mode Excited X-ray: Monochrome Al K ⁇ (50 ⁇ m) X-ray irradiation area size: 400 x 200 ⁇ m
  • the amount of oxygen atoms in the water-soluble resin contained in the particle surface which contains a thermoplastic resin and a water-soluble resin and has a hydroxyl group content of 30 wt% or more in the water-soluble resin and is measured by organic element analysis.
  • Excited X-ray Monochrome Al K ⁇ (50 ⁇ m)
  • X-ray irradiation area size 400 x 200 ⁇ m
  • Element component X One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
  • ⁇ 4> Put it in a CW pot, heat it in an air atmosphere using a small box furnace (Koyo Thermo Systems Co., Ltd., KBF894N1) at 650 ° C for 2 hours, and weigh the residue to measure the ash content in the powder of 0.01%.
  • the powder for the powder laminated molding method according to ⁇ 3> which is 7% or more and is 7% or less.
  • ⁇ 5> The powder for additive manufacturing method according to any one of ⁇ 1> to ⁇ 4>, wherein D50 is 5 ⁇ m or more and 120 ⁇ m or less as a particle size distribution.
  • ⁇ 6> The powder for additive manufacturing method according to any one of ⁇ 1> to ⁇ 5>, wherein the mode of circularity is 0.6 or more.
  • thermoplastic resin in the powder for additive manufacturing method is 90 ° C. or higher and 230 ° C. or lower.
  • ⁇ 9> The powder for additive manufacturing method according to any one of ⁇ 1> to ⁇ 8>, wherein the weight average molecular weight of the thermoplastic resin in the powder for additive manufacturing method is 30,000 or more.
  • ⁇ 11> A modeled product using the powder for the powder additive manufacturing method according to any one of ⁇ 1> to ⁇ 9>.
  • the powder stackability is good and the molding accuracy (modeling property) is also good without impairing the inherent properties of the resin, that is, the thickness is uniform and there is no defect during molding. It is possible to provide a powder for a powder additive manufacturing method, which can form a powder layer and can accurately produce a desired modeled product. Further, according to the method for producing powder for additive manufacturing method of the present invention, such powder for additive manufacturing method can be easily and efficiently produced.
  • the first powder for the powder lamination molding method of the present invention contains a thermoplastic resin and a water-soluble resin, and the amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and is measured by X-ray photoelectron spectroscopy under predetermined conditions.
  • the amount of oxygen atoms in the water-soluble resin contained on the surface of the particles is 0.01 atm% to 15 atm%.
  • the second powder for the powder lamination molding method of the present invention contains a thermoplastic resin and a water-soluble resin, and the amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and the particle surface measured by organic element analysis.
  • the amount of oxygen atoms in the water-soluble resin contained in the water-soluble resin is 0.01 wt% to 10 wt%.
  • the third powder for the powder lamination molding method of the present invention contains a thermoplastic resin, and the content of the following elemental component X contained in the powder surface, which is identified by X-ray photoelectron spectroscopy under predetermined conditions, is high. It is characterized in that it is 7 atm% or more and 35 atm% or less.
  • the powder for the powder lamination molding method of the present invention is a powder containing a specific water-soluble resin
  • the water-soluble resin on the surface of the powder adsorbs the auxiliary agent, and the auxiliary agent is adhered more efficiently than the conventional product. Can be done.
  • the powder for the powder additive manufacturing method of the present invention which has been sprayed with good sprayability, not only has the powders densely laminated with each other, but also has an auxiliary agent or the like that does not adversely affect the formability. It is presumed that the formability) will also be good.
  • thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention can be appropriately selected according to the function to be imparted to the modeled product to be modeled.
  • amorphous resins, crystalline resins, and thermoplastic elastomers can be mentioned.
  • amorphous resins and crystalline resins are preferable from the viewpoint of good powder additive manufacturing. Specific examples of these are as follows.
  • Acrylo-nitrile resin acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polystyrene, polyvinyl chloride, polymethylmethacrylate, polycarbonate, modified polyphenylene ether, polyether Among these, imide and the like can be mentioned, and among these, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polystyrene, etc.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • polystyrene, polymethylmethacrylate and polycarbonate are more preferable
  • acrylonitrile-butadiene-styrene copolymer resin (ABS resin) and poly are more preferable
  • Methyl methacrylate and polycarbonate are more preferable, polymethyl methacrylate and polycarbonate are particularly preferable, and polycarbonate is most preferable.
  • Crystalline resin Polyester, polyolefins such as polypropylene, polyester, polyamide, polyvinyl alcohol, polyetherketone, polyetheretherketone, polyetherketoneketone, etc. Among these, powder laminate formability is good. , Polyetherketone, polyester, polyetherketone, polyetheretherketone, polyetherketoneketone are preferable, polyolefin, polyester, polyetherketone, polyetheretherketone are more preferable, polyolefin, polyester, polyetherketone are more preferable, polyolefin, Polyester is most preferred.
  • Thermoplastic elastomers olefin-based thermoplastic elastomers, styrene-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and mixtures thereof.
  • the thermoplastic resin used for the powder for additive manufacturing method of the present invention is not limited to these resins, and one type or two or more types may be contained in any combination and ratio.
  • the amount of heat of fusion in the DSC chart of the thermoplastic resin used for the powder for the powder laminated molding method of the present invention is preferably 20 J / g or more, more preferably 30 J / g or more, from the viewpoint of heat resistance and the amount of energy required for molding. More preferably 40 J / g or more, particularly preferably 50 J / g or more, preferably 140 J / g or less, more preferably 130 J / g or less, still more preferably 120 J / g or less, particularly preferably 110 J / g or less, most preferably. Is 90 J / g or less.
  • the lower limit of the melting point of the thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of the heat resistance of the obtained modeled product, it is preferably 90 ° C. or higher, preferably 100 ° C. or higher. Is more preferable, 110 ° C. or higher is more preferable, 115 ° C. or higher is further preferable, and 120 ° C. or higher is particularly preferable.
  • the upper limit of the melting point of the thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention is not particularly limited, but it is preferably 230 ° C. or lower from the viewpoint of the energy requirement for melting the material at the time of molding.
  • the temperature is more preferably 200 ° C. or lower, further preferably 185 ° C. or lower, particularly preferably 170 ° C. or lower, and most preferably 155 ° C. or lower.
  • the lower limit of the weight average molecular weight (Mw) of the thermoplastic resin used in the powder for the powder laminated molding method of the present invention is preferably 30,000 or more, more preferably 60,000 or more from the viewpoint of crystallinity. , 65,000 or more, more preferably 70,000 or more, and most preferably 75,000 or more.
  • the upper limit is not particularly limited, but from the viewpoint of formability, 350,000 or less is preferable, 300,000 or less is more preferable, and 250,000 or less is further preferable.
  • the heat of fusion, melting point, and weight average molecular weight (Mw) of the thermoplastic resin are measured, for example, by the method described in the section of Examples described later.
  • the lower limit of the content of the thermoplastic resin in the powder for additive manufacturing of the present invention is not particularly limited, but from the viewpoint of formability, it is preferably 85% or more, and more preferably 90% or more. , 92% or more, more preferably 94% or more, and most preferably 95% or more.
  • the upper limit of the content of the thermoplastic resin in the powder for additive manufacturing of the present invention is not particularly limited, but is usually preferably 99.9% or less.
  • the powder for the additive manufacturing method of the present invention has a water-soluble resin interposed in the manufacturing process thereof, and may contain the water-soluble resin.
  • the water-soluble resin used for the powder for the powder lamination molding method of the present invention has a hydroxyl group content of 30 wt% or more, and the amount of oxygen atoms of the water-soluble resin contained in the particle surface measured by X-ray photoelectron spectroscopy is 0. It is 01 atm% to 15 atm%.
  • the lower limit of the amount of hydroxyl groups in the water-soluble resin used for the powder for additive manufacturing method of the present invention is 30 wt% or more, preferably 32 wt% or more, preferably 34 wt% or more from the viewpoint of stabilizing the interface between multiple components. More preferably, 36 wt% or more is further preferable, and 37 wt% or more is particularly preferable.
  • the upper limit of the amount of hydroxyl groups contained in the water-soluble resin used for the powder for additive manufacturing method of the present invention is not particularly limited, but is preferably 50 wt% or less, preferably 48 wt% or less from the viewpoint of ensuring ease of purification. Is more preferable, 46 wt% or less is further preferable, and 44 wt% or less is particularly preferable.
  • the amount of hydroxyl groups in the water-soluble resin can be calculated by the 1H-NMR method (nuclear magnetic resonance method).
  • the water-soluble resin is not particularly limited as long as the above conditions are satisfied, and examples thereof include polyvinyl alcohols.
  • polyvinyl alcohols include a copolymer of a diol having a double bond such as a butenediol / vinyl alcohol copolymer and a vinyl alcohol, a sulfonic acid group-containing vinyl alcohol copolymer, and an oxyalkylene group-containing vinyl.
  • examples thereof include alcohol copolymers, carboxylic acid group-containing vinyl alcohol copolymers, and acetoacetyl group-containing vinyl alcohol copolymers.
  • butenediol / vinyl alcohol copolymers there are two types such as butenediol / vinyl alcohol copolymers.
  • a copolymer of a diol having a double bond and a vinyl alcohol a vinyl alcohol copolymer containing a sulfonic acid group is more preferable, and a copolymer of a diol having a double bond such as a butenediol / vinyl alcohol copolymer and a vinyl alcohol is used. More preferably, among them, a butenediol / vinyl alcohol copolymer is most preferable.
  • the lower limit of the content of the particle surface measured by X-ray photoelectron spectroscopic analysis of oxygen atoms in the water-soluble resin used for the powder for the powder lamination molding method of the present invention is 0.01 atm% or more, and the addition rate of the auxiliary agent. From the viewpoint of the above, 0.05 atm% or more is preferable, 0.1 atm% or more is more preferable, 0.2 atm% or more is further preferable, 0.5 atm% or more is particularly preferable, and 0. Most preferably, it is 8 atm% or more. Further, the upper limit is 30 atm% or less, preferably 20 atm% or less, more preferably 15 atm% or less, further preferably 10 atm% or less, and particularly preferably 7 atm% or less from the viewpoint of formability. preferable.
  • the content of oxygen atoms on the particle surface in the water-soluble resin used for the powder for the powder lamination molding method of the present invention may be measured by organic element analysis.
  • the lower limit of the content of the particle surface measured by the organic element analysis of oxygen atoms in the water-soluble resin used for the powder for the powder lamination molding method of the present invention is 0.01 wt% or more, and the viewpoint of the addition rate of the auxiliary agent Therefore, it is preferably 0.05 wt% or more, more preferably 0.1 wt% or more, and further preferably 0.15 wt% or more.
  • the upper limit is 10 wt% or less, preferably 8 wt% or less, more preferably 5 wt% or less, further preferably 2 wt% or less, and further preferably 1 wt% or less from the viewpoint of formability. It is preferably 0.5 wt% or less, and most preferably 0.35 wt% or less.
  • auxiliary agent examples include a dispersant, a stabilizer, and “other components” described below. Among these, it is preferable to use a dispersant or a stabilizer because it greatly affects the mechanism of action of the present invention.
  • the powder for additive manufacturing method of the present invention preferably contains a dispersant.
  • Dispersants include silica, alumina, aluminum silicate, colloidal silica gel, pearlite, vermiculite, calcium sulfate, talc, cement, chalk powder, clay, calcium carbonate, calcium carbonate / magnesium carbonate mixture, diatomaceous earth, silicic anhydride and the like. .. Among them, in the present invention, silica and alumina are preferable, and silica is more preferable, from the viewpoint of chemical and physical stability.
  • the powder for additive manufacturing method of the present invention preferably contains a stabilizer.
  • the stabilizer include a phenol-based stabilizer, an amine-based stabilizer, a phosphorus-based stabilizer, and a thioether-based stabilizer. Among them, in the present invention, phosphorus-based stabilizers and phenol-based stabilizers are preferable, and phenol-based stabilizers are more preferable.
  • a hindered phenol-based stabilizer is preferable, and for example, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,) 5-Di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythritol tetrakis ( ⁇ -laurylthiopropionate), thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], 2,4-dimethyl-6- (1-methylpenta) Decyl) Phenol, diethyl [[3,5-bis (1,1-dimethylethy
  • Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, Pentaerythritol tetrakis ( ⁇ -laurylthiopropionate) is preferred.
  • Specific examples of such phenolic stabilizers include "Irganox 1010" and “Irganox 1076" manufactured by BASF, "Adeka Stub AO-50" and “Adeka Stub AO” manufactured by ADEKA. -60 ”,“ Adeka Stub AO-412S ”and the like.
  • the lower limit of the content of the element component X on the powder surface of the powder for additive manufacturing method of the present invention is preferably 7 atm% or more, more preferably 8.5 atm% or more from the viewpoint of efficiently expressing the effect of the auxiliary agent. 10 atm% or more is more preferable, 15 atm% or more is particularly preferable, and 20 atm% or more is most preferable.
  • the upper limit of the content of the auxiliary agent on the powder surface of the powder for additive manufacturing method of the present invention is preferably 35 atm% or less, more preferably 33 atm% or less, and more preferably 30 atm% or less from the viewpoint of not impairing the characteristics of the resin. Is more preferable, 28 atm% or less is particularly preferable, and 26 atm% or less is most preferable.
  • the element component X represents one or more selected from the group consisting of Si, Al, Fe, Ca, and Mg.
  • the lower limit of the content of the auxiliary agent in the entire powder is preferably 0.01% by mass or more, preferably 0.1% by mass, from the viewpoint of efficiently expressing the effect of the auxiliary agent.
  • the above is more preferable, 0.3% by mass or more is further preferable, 0.8% by mass or more is particularly preferable, and 1% by mass or more is most preferable.
  • the upper limit of the content of the auxiliary agent on the powder surface of the powder for the powder lamination molding method of the present invention is preferably 7% by mass or less, more preferably 6% by mass or less, from the viewpoint of not impairing the characteristics of the resin. More preferably, it is more preferably mass% or less, particularly preferably 4 mass% or less, and most preferably 3 mass% or less.
  • the ash content in the powder is preferably 0.01% or more, more preferably 0.1% or more, further preferably 0.3% or more, particularly preferably 0.5% or more, and most preferably 1% or more. .. Further, it is preferably 7% or less, more preferably 5% or less, further preferably 4% or less, particularly preferably 3% or less, and most preferably 2% or less.
  • the ash content in the powder is an index for measuring the content of the auxiliary agent in the powder for additive manufacturing method, and is preferably at least the above lower limit from the viewpoint of efficiently expressing the effect of the auxiliary agent, and impairs the characteristics of the resin. It is preferable that the amount is equal to or less than the above upper limit from the viewpoint of preventing the problem.
  • the powder for additive manufacturing method of the present invention may be a powder for powder additive manufacturing method containing a resin component or an additive other than the above-mentioned components. This is sometimes referred to as the powder for the additive manufacturing method of the present invention.
  • Other additives include crystal nucleating agents, antioxidants, color inhibitors, pigments, dyes, UV absorbers, mold release agents, lubricants, flame retardants, antistatic agents, inorganic fibers, organic fibers, inorganic particles and Organic particles are exemplified.
  • the flame retardant include the compounds described in paragraphs 0033 to 0040 of Japanese Patent Application Laid-Open No. 2015-205127, which are incorporated in the present specification.
  • the method for producing a resin composition which is a precursor of the powder for additive manufacturing method of the present invention is not particularly limited as long as it contains each component.
  • the resin composition as a precursor can be produced by mixing each component and melt-kneading.
  • the thermoplastic resin described in the present invention, a stabilizer, and other components to be blended if necessary are premixed using various mixers such as a tumbler and a Henschel mixer, and then a Banbury mixer, a roll, a brabender, and the like.
  • the resin composition can be produced by melt-kneading with a single-screw kneading extruder, a twin-screw kneading extruder, a kneader or the like.
  • thermoplastic resin water-soluble resin
  • the blending ratio of the thermoplastic resin and the water-soluble resin in the resin composition is preferably 20 to 60% by mass: 40 to 80% by mass (thermoplastic resin: water-soluble resin), assuming that the entire resin composition is 100% by mass. , 30 to 50% by mass: more preferably 50 to 70% by mass.
  • a resin composition without premixing each component or by premixing only a part of the components and supplying the components to an extruder using a feeder for melt kneading.
  • a resin composition obtained by mixing some components in advance, supplying them to an extruder, and melt-kneading the resin composition is used as a masterbatch, and the masterbatch is mixed with the remaining components again and melt-kneaded to obtain a resin.
  • Compositions can also be produced.
  • the heating temperature for melt-kneading can be appropriately selected from the range of usually 150 to 300 ° C. If this heating temperature is too high, the resin may deteriorate and decomposition gas may be easily generated. Therefore, it is desirable to select a screw configuration in consideration of shear heat generation and the like. It is desirable to use stabilizers and antioxidants in order to suppress decomposition during kneading and molding in the subsequent process.
  • a powdering means for producing the powder for the powder laminated molding method of the present invention a melt granulation in which a resin composition melted near a melting point is made into a fibrous form and then cut, or a resin material composed of the resin composition can be used.
  • a method of producing resin particles by crushing or breaking by applying impact or shear, or by dispersing a resin incompatible with the matrix component in a meltable matrix component and then removing the matrix component.
  • the shape of the powder is rounded, that is, the roundness is large.
  • thermoplastic resin contained in the powder for the powder lamination molding method.
  • pulverized by pulverization it is preferable to perform a classification step after pulverization from the viewpoint of removing the stretched powder from the pulverized powder to expand the circularity.
  • examples of the classification method include wind power classification, sieve classification, and the like.
  • the method of adding the auxiliary agent to the powder for the powder lamination molding method of the present invention is not particularly limited, but the method of adding the auxiliary agent when removing the matrix component by the masterbatch method, the dry blending method, or the melt kneading method ( Blend-in-slurry) and the like. Above all, the blend-in slurry is preferable from the viewpoint of adding the auxiliary agent thinly and uniformly to the powder.
  • the melting point of the powder for additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of heat resistance of the obtained modeled product, the lower limit is preferably 90 ° C. or higher, more preferably 100 ° C. or higher. It is more preferably 110 ° C. or higher, particularly preferably 105 ° C. or higher, and most preferably 120 ° C. or higher.
  • the upper limit is preferably 230 ° C. or lower, more preferably 220 ° C. or lower, further preferably 215 ° C. or lower, particularly preferably 210 ° C. or lower, and 205 ° C. or lower. Is the most preferable.
  • the amount of heat of fusion of the powder for the powder additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of heat resistance of the obtained modeled product, it is preferably 30 J / g or more, more preferably 35 J / g or more, still more preferably 40 J / g. It is g or more, particularly preferably 45 J / g or more, and most preferably 50 J / g or more. Further, it is preferably 200 J / g or less, more preferably 150 J / g or less, further preferably 120 J / g or less, particularly preferably 90 J / g or less, and most preferably 75 J / g or less.
  • D10 in which the volume ratio occupies 10% is not particularly limited, but the uniform dispersability and dispersal rate at the time of forming the powder layer (here, the dispersal rate is It is obtained by the method described in the section of Examples described later and serves as an index of dispersability), and is usually preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, particularly preferably. Is 7 ⁇ m or more, most preferably 10 ⁇ m or more.
  • the upper limit of D10 is not particularly limited, but is usually preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, from the viewpoint of dispersability of the powders in the voids when the powder is applied on the modeling table. It is more preferably 25 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • D50 in which the volume ratio occupies 50% is not particularly limited, but is usually preferable from the viewpoint of applying the powder to a thickness within a predetermined range at the time of modeling.
  • D90 in which the volume ratio occupies 90% is not particularly limited, but is usually preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less from the viewpoint of resolution at the time of modeling. , More preferably 170 ⁇ m or less, still more preferably 130 ⁇ m or less, particularly preferably 80 ⁇ m or less, and most preferably 60 ⁇ m or less.
  • the lower limit of D90 is not particularly limited, but from the viewpoint of coating efficiency at the time of powder coating on a modeling table, it is usually preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably. It is 25 ⁇ m or more, particularly preferably 30 ⁇ m or more, and most preferably 35 ⁇ m or more.
  • the particle size distribution of the powder for additive manufacturing method is measured by the method described in the section of Examples described later.
  • the circularity (arithmetic average value) of the powder for the powder laminated molding method of the present invention is preferably 0.60 or more, more preferably 0.65 or more, still more preferably 0.65 or more, from the viewpoint of the dispersibility or spraying rate of the powder at the time of modeling. Is 0.66 or more, particularly preferably 0.67 or more, and most preferably 0.68 or more.
  • the upper limit of circularity (arithmetic mean) is usually preferably 1.0 or less.
  • the mode of the circularity of the powder for the powder laminated molding method of the present invention is preferably 0.50 or more, more preferably 0.60 or more, still more preferably 0.60 or more, from the viewpoint of the dispersibility or spraying rate of the powder at the time of modeling. It is 0.70 or more, particularly preferably 0.75 or more, and most preferably 0.8 or more.
  • the upper limit of the circularity is usually preferably 1.0 or less, more preferably 0.99 or less, more preferably 0.98 or less, still more preferably 0.97 or less, particularly preferably 0.96 or less, most preferably. It is 0.95 or less.
  • the circularity of a powder is a value obtained by dividing the circumference of a circle having the same area as the projected area of the corresponding particle by the length of the contour of the particle projection diagram of the corresponding particle, and is measured by a circularity measuring device.
  • the powder laminated molding method of the present invention is a method for producing a modeled product of the present invention using the above-mentioned powder for the powder laminated molding method of the present invention.
  • the powder additive manufacturing method of the present invention can be carried out according to a conventional method using an ordinary powder additive manufacturing device.
  • Examples of the powder laminated modeling apparatus include a modeling stage (modeling table), a thin layer forming means for forming a thin layer of powder material on the modeling stage, and heating by irradiating the formed thin layer with a laser.
  • the heating means for forming the shaped object layer by melt-bonding the particles of the powder material and the moving means for moving the molding stage in the stacking direction (vertical direction), and controlling these to form a thin layer, heat By repeatedly moving the stage, it is possible to use a powder laminating molding apparatus having a control means for laminating the shaped object layers.
  • this powder additive manufacturing device can be used to perform modeling through the following steps (1) to (4).
  • Step of forming a thin layer of powder material (2) Step of selectively irradiating a preheated thin layer with laser light to form a molded product layer formed by melt-bonding the powder material, or a preliminary A melting accelerator (a component that promotes melting of the resin) and a surface decoration agent (a component that forms the outline of the layer) are selectively sprayed on the heated thin layer, and then the infrared lamp, xenon lamp, and halogen lamp are applied as a whole.
  • the powder material is melt-bonded to form a molded product layer.
  • Step of lowering the modeling stage by the thickness of the formed modeling object layer (4) Steps (1) to (3) are repeated a plurality of times in this order to stack the modeling object layers.
  • step (1) a thin layer of the powder material is formed.
  • the powder material supplied from the powder supply unit is spread flat on the modeling stage by a recorder (blade or roll).
  • the thin layer is formed directly on the build stage or in contact with the powder material already spread or the already formed build layer.
  • the thickness of the thin layer can be set according to the thickness of the modeled object layer.
  • the thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured.
  • the thickness of the thin layer is usually about 0.01 to 0.3 mm.
  • a melting accelerator (a component that promotes melting of the resin) and a surface decoration agent (a component that forms the outline of the layer) are selectively sprayed, followed by an infrared lamp and xenon.
  • the entire surface is irradiated with a lamp or a halogen lamp to melt-bond the powder material.
  • the powder material that has not been melt-bonded is recovered as surplus powder and reused as the recovered powder.
  • the modeling stage is lowered by the thickness of the modeled object layer formed in the step (2) to prepare for the next step (1).
  • the temperature of the modeling area during additive manufacturing is preferably a temperature lower than the melting point of the resin composition used by about 5 to 20 ° C.
  • the modeling time varies depending on the size of the modeled product.
  • the width of the endothermic peak at the midpoint of the line segment in the vertical axis direction drawn from the endothermic peak to the baseline was set as the half-value width, and the area surrounded by the endothermic peak and the extension of the baseline was calculated as the amount of heat of fusion.
  • ⁇ Weight average molecular weight (Mw)> The measurement sample was dissolved in a solution of 1,1,1,3,3,3-hexafluoroisopropanol and chloroform in a 1/1 mass ratio to a concentration of 0.1% by mass. Further, it was diluted with chloroform to 0.02% by mass. The resulting solution was filtered through a 0.45 ⁇ m PTFE filter to prepare a sample for size exclusion chromatography (SEC) analysis.
  • SEC size exclusion chromatography
  • the molecular weight calibration was performed by dissolving 12 types of polystyrenes having known molecular weights in chloroform.
  • the SEC measurement was performed in the same manner as the sample.
  • the molecular weight calibration curve was created by plotting the elution times and Log molecular weights of 12 types of polystyrenes having known molecular weights.
  • the measurement conditions are as follows.
  • the molar ratio of the resin remaining on the surface to the water-soluble resin was calculated from the composition information and the C and O ratios obtained from the XPS measurement of the resin, and the oxygen atom of the water-soluble resin remaining on the surface was calculated from the molar ratio.
  • the derived peak area was determined, and the amount of oxygen atoms in the water-soluble resin on the particle surface was calculated from the following formula.
  • Atomic weight of oxygen in the water-soluble resin on the particle surface (peak area derived from oxygen atom of water-soluble resin) / ⁇ (peak area derived from carbon atom of water-soluble resin) + (peak area derived from carbon atom of resin) ) + (Peak area derived from oxygen atom of water-soluble resin) + (Peak area derived from oxygen atom of resin) ⁇
  • Organic elemental analysis The organic element analysis was carried out in CHNS mode and O mode using an elemental analyzer Vario EL cube (manufactured by Elemental). Evaluation of Oxygen Atomic Weight in Water-Soluble Resin Contained in Particles The mass ratio of resin and residual water-soluble resin was calculated from the elemental ratio (O / C) of oxygen to carbon measured by organic elemental analysis.
  • Element component X One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
  • thermoplastic resin ⁇ Thermal characteristics> (Chemical value of melting, melting point)
  • the heat of fusion and melting point of the powder for additive manufacturing method were measured by the same method as in the case of the above-mentioned thermoplastic resin.
  • ⁇ Mode of circularity> The circularity was measured using LA-960 (manufactured by HORIBA, Ltd.). Weigh 3 to 5 g of powder, measure the projected area and contour length (perimeter) from the projection drawing of the particles using a circularity measuring device (Sysmex, FPIA-3000S), and measure the circularity by the following formula. Calculated. This was calculated for 80 particles, and the average value of the values was taken as the circularity of the powder.
  • Circularity (perimeter of a circle having the same area as the projected area of the particle) / (length of the outline of the projection drawing of the particle)
  • the value having the largest ratio among all the particles measured when calculating the circularity was defined as the mode value of the circularity of the powder.
  • auxiliary agent addition rate The addition rate of the auxiliary agent contained in the particle surface of the powder was measured using X-ray photoelectron spectroscopy Thermo Fisher Scientific "K Alpha".
  • the excited X-ray is monochrome Al K ⁇ , and the X-ray irradiation area size is 400 ⁇ 200 ⁇ m.
  • a powder sample jig was used for the measurement. From the peak area of all elements measured by X-ray photoelectron spectroscopy of the powder for the powder laminated molding method, the ratio of the following specific elemental components X contained in the powder for the powder laminated molding method is calculated and contained on the powder surface. The content rate (atom%) of the element component X was determined.
  • Element component X One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
  • the spray rate is preferably 95% or more, more preferably 97% or more, and under the condition of the melting point of the thermoplastic resin of ⁇ 40 ° C., it is preferably 85% or more, more preferably 90% or more, and the melting point of the thermoplastic resin-.
  • 70% or more is preferable, 80% or more is more preferable, 90% or more is further preferable, and under the condition of the melting point of the thermoplastic resin of ⁇ 20 ° C., 70% or more is preferable, and 80% or more is more preferable. , 90% or more is more preferable.
  • the "melting point” such as "melting point ⁇ 40 ° C.” in the table means the melting point of the thermoplastic resin.
  • the altitude difference of the obtained sintered sample test piece was measured using a microscope (HiROX, DIGITAL MICROSCOPE KH-8700).
  • the altitude difference means the difference between the maximum altitude and the minimum altitude in the entire prepared test piece. The smaller the altitude difference is, the better the formability is, and it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • ⁇ Appearance> As the appearance of the obtained sintered sample, ⁇ : Sample that reproduces the shape of the set modeling data ⁇ : Sample that deviates from the shape of the modeling data.
  • ⁇ Arithmetic mean roughness> The arithmetic mean roughness of the obtained sintered sample test piece was measured using a microscope (HiROX, DIGITAL MICROSCOPE KH-8700). The smaller the arithmetic mean roughness is, the better the formability is, and 1.0 ⁇ m or less is preferable, and 0.9 ⁇ m or less is more preferable.
  • the tensile direction is not particularly limited, but is the longitudinal direction. The larger the maximum tensile strength, the better the characteristics of the modeled object, and the maximum tensile strength is preferably 15 MPa or more, more preferably 17 MPa or more.
  • the strength of the breaking point of the obtained sintered sample test piece was measured according to the method for measuring the tensile strength.
  • the greater the strength of the breaking point, the better the characteristics of the modeled object, and the strength is preferably 10 MPa or more, more preferably 13 MPa or more.
  • Example 1-1 As a water-soluble resin, BVOH (butenediol / vinyl alcohol copolymer, methanol, water-soluble resin synthesized from methyl acetate, amount of hydroxyl groups: 37.8%) pellets, and as a thermoplastic resin, PP (Nippon Polypro Co., Ltd.) Ltd. trade name Novatec FY6H) (heat of fusion: 101J / g, melting point: 169 ° C., a weight average molecular weight (Mw): 3.35 ⁇ 10 5 ) pellets in advance 7: after blended at a ratio of 3, biaxial It was put into the main hopper of the kneading extruder.
  • PP Nippon Polypro Co., Ltd.
  • Novatec FY6H thermoplastic resin
  • Mw weight average molecular weight
  • the mixed resin was melt-kneaded under the conditions of a discharge rate of 3 kg / h, a cylinder temperature of 190 ° C., and a screw rotation speed of 50 rpm. It was extruded by an extruder, and the obtained melt-kneaded product was cut with a pelletizer or the like and pelletized.
  • the obtained strand was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the condition of 200 rpm / 30 min.
  • the obtained solution is filtered by suction filtration, and the solid content (PP) is collected.
  • the collected solid content is put into water (or warm water) again, and the mixture is stirred so as to wash the BVOH adhering to the solid content.
  • the sprayability improving aid (nanosilica) is mixed with 0.5% of the solid content.
  • This solution is filtered again by suction filtration to obtain a solid content.
  • This washing step was repeated 6 times, and the solid content produced was 80 ° C./ovn.
  • classification classification was performed, and the mixture was classified into an appropriate particle size to obtain a PP powder to which nanosilica was attached. In this way, a powder for additive manufacturing was obtained.
  • the content of the water-soluble resin, the thermal characteristics, the particle size distribution, the mode of circularity, the addition rate of the auxiliary agent, and the spraying rate were measured. Furthermore, a 1BA type tensile test piece conforming to JIS K7161 was prepared from the obtained powder using a powder bed melt-bonding printer Lisa Pro (Sinterit) under the conditions of a modeling table temperature of 150 ° C. and a pitch of 0.125 mm. As a test piece for measuring altitude difference and appearance, the formability was evaluated and the results are shown in Table 1.
  • Example 1-2 Except that the mixing ratio of BVOH and PP was set to 6: 4, the mixed resin was set to a discharge rate of 5 kg / h, melt-kneaded under the conditions of a cylinder temperature of 210 ° C. and a screw rotation speed of 100 rpm, and the cleaning process was performed 5 times. , A powder was prepared in the same manner as in Example 1-1. Further, a modeled object was produced by the same method as in Example 1-1.
  • Example 1-3 The PP Japan Polypropylene Corporation, trade name WINTEC WFX4M pellets (heat of fusion: 65 J / g, melting point: 124 ° C., a weight average molecular weight (Mw): 2.30 ⁇ 10 5 ) changed to and the washing step three times Except for the above, a powder was prepared in the same manner as in Example 2. Further, a modeled object was produced under the same conditions as in Example 1-1 except that the modeling table temperature was changed to 105 ° C., and the formability was evaluated.
  • WINTEC WFX4M pellets heat of fusion: 65 J / g, melting point: 124 ° C., a weight average molecular weight (Mw): 2.30 ⁇ 10 5
  • Example 1-4 BVOH pellets and PC (polycarbonate) Mitsubishi Gas Chemical Company, Inc. trade name Iupiron H4000) pellets (glass transition temperature: 141 ° C., weight average molecular weight (Mw): 3.54 ⁇ 10 4 ) at a ratio of 7: 3 in advance. After blending, it was kneaded using brabender. The obtained resin composition was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the conditions of 200 rpm / 30 min to obtain a powder by the same method as in Example 1-3. rice field.
  • Example 1-1 a powder for additive manufacturing method was obtained in the same manner as in Example 1-1 except that the production method was changed to the freeze pulverization method.
  • the method of freeze crushing is as follows. Since it is generally difficult to pulverize a granular resin at room temperature, the PP raw material is first precooled with liquid nitrogen to freeze the raw material. The frozen raw material is quantitatively transported from the screw feeder to the mill portion, and the frozen raw material is crushed in the mill portion. A frozen finely pulverized product is obtained by pulverizing the resin by utilizing the low temperature brittleness of the resin. The crushed particles are collected in a cyclone by a blower. If necessary, it was classified (sieved) and classified into an appropriate particle size to obtain a powder for additive manufacturing method. For this powder, a modeled product was prepared in the same manner as in Example 1-1, evaluated, and the results are shown in Table 1.
  • Example 1-1 the cleaning step is performed three times, the sprayability improving aid (nanosilica) is not mixed during the cleaning step, and after obtaining a dry solid content, the nanosilica becomes 0.5% of the solid content.
  • the sprayability improving aid nanonosilica
  • a powder for additive manufacturing was obtained in the same manner as in Example 1-1, except that a PP powder to which nanosilica was attached was obtained by dry blending. Further, a modeled object was produced by the same method as in Example 1-1, and the formability was evaluated.
  • Example 1-3 powder for additive manufacturing method was obtained in the same manner as in Example 1-3 except that the number of times of filtration was one.
  • the powder for additive manufacturing method of the present invention contains a predetermined amount of a water-soluble resin having a specific hydroxyl group amount, and therefore has a high addition rate when an auxiliary agent is added after powdering. Can be realized. Further, since the powder for the powder laminated molding method of the present invention has the most frequent values of particle size distribution and circularity within a predetermined range, the accuracy of the thickness of the powder layer at the time of powder application in the molding area and the recess of the molding table. The dispersion rate of the powder on the powder is improved, and the uniformity when melting with a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is improved. As a result, the target three-dimensional modeled product can be manufactured with good formability and accuracy.
  • Example 2-1 BVOH (butenediol / vinyl alcohol copolymer, methanol, water-soluble resin synthesized from methyl acetate, amount of hydroxyl groups: 37.8%) pellets as water-soluble resin, and PP (metallocene-catalyzed polymer) as thermoplastic resin Propylene / ⁇ -olefin random copolymer (polypropylene): manufactured by Nippon Polypro Co., Ltd.
  • the mixed resin was melt-kneaded under the conditions of a discharge rate of 3 kg / h, a cylinder temperature of 210 ° C., and a screw rotation speed of 100 rpm. It was extruded by an extruder, and the obtained melt-kneaded product was cut with a pelletizer or the like and pelletized.
  • the obtained strand was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the condition of 200 rpm / 30 min.
  • the obtained solution was filtered by suction filtration, and the solid content (PP) was collected.
  • the collected solid content was put into water (or warm water) again, and the mixture was stirred to wash the BVOH adhering to the solid content.
  • the dispersant (nanosilica) was mixed so as to have a solid content of 0.5%.
  • This solution was filtered again by suction filtration to obtain a solid content.
  • This step was repeated several times, and the resulting solid content was dried at 80 ° C./ovn.
  • a powder for additive manufacturing was obtained.
  • the obtained powder was measured according to the above method, and the results are shown in Table 2.
  • Example 2-1 a powder for additive manufacturing was obtained by the same method as in Example 2-1 except that the dispersant (nanosilica) was mixed so as to have a solid content of 2%.
  • the dispersant nanosilica
  • Example 2-3 In Example 2-1 a powder for additive manufacturing was obtained by the same method as in Example 2-1 except that the dispersant (nanosilica) was mixed so as to have a solid content of 5%.
  • the dispersant nanosilica
  • Example 2-1 when cleaning the BVOH adhering to the solid content, the solid content was dried at 80 ° C./oven. Without mixing the dispersant, and after obtaining the PP powder, the dispersant ( A powder for additive manufacturing was obtained in the same manner as in Example 2-1 except that nanosilica) was added. This powder was measured and evaluated in the same manner as in Example 2-1 and the results are shown in Table 2.
  • the powder for the powder laminated molding method of the present invention has a powder layer at the time of powder application in the molding area because the powder surface is covered with an auxiliary agent component in a specific ratio.
  • the accuracy of the thickness of the powder and the rate of powder spraying into the recesses of the modeling table are improved. Therefore, in the powder laminated molding method, the molding uniformity of the modeled product when it is melted by a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is improved.
  • the target three-dimensional model can be accurately manufactured with good formability (appearance, altitude difference, roughness) and mechanical properties (tensile strength, breaking strength).

Abstract

Provided is a powder for a powder additive manufacturing method that has a good addition ratio of an auxiliary agent, a good addition formability (dispersibility) of the powder, and good manufacturing accuracy, or in other words, that is capable of forming, at the time of manufacturing, a powder layer of a uniform thickness without defects, and that is capable of accurately producing a desired manufactured product. The powder for a powder additive manufacturing method contains a thermoplastic resin and a water-soluble resin. The hydroxyl group content in the water-soluble resin is 30 wt% or greater, and the content of oxygen atoms in the water-soluble resin included in the particle surface, measured by X-ray photoelectron spectroscopic analysis using measurement condition [1], is 0.01 to 15 atm%. Measurement condition [1]: measurement device: X-ray photoelectron spectroscopic analyzer K-Alpha (ThermoFisher Scientific); measurement mode: narrow mode; excitation X-ray: monochromatic Al Kα (50 μm); X-ray irradiation area size: 400x200 μm.

Description

粉末積層造形法用粉末、粉末積層造形法、造形品、および、粉末積層造形法用粉末の製造方法Powder for powder additive manufacturing method, powder additive manufacturing method, modeled product, and powder for powder additive manufacturing method
 本発明は熱可塑性樹脂を含む粉末積層造形法用粉末、該粉末を用いる粉末積層造形法および造形品、ならびに、粉末積層造形法用粉末の製造方法に関する。 The present invention relates to a powder for powder additive manufacturing method containing a thermoplastic resin, a powder additive manufacturing method and a modeled product using the powder, and a method for producing a powder for powder additive manufacturing method.
 3次元造形法の一つである粉末積層造形法は、樹脂などの粉末材料の薄層を、加熱手段を用いて該樹脂粉末の融点近傍の温度に加熱、焼結して造形し、それを繰り返して積層体を形成することにより3次元造形品を得る方法である。
 粉末材料の薄層を形成するには、造形テーブル(造形ステージとも言う)上に粉末材料を散布し、これをリコータ(ブレード又はローラ)でならして(以下、この操作を「塗布」または「充填」と称す場合がある)均一厚みの粉末層とする。
In the powder additive manufacturing method, which is one of the three-dimensional modeling methods, a thin layer of a powder material such as a resin is heated to a temperature near the melting point of the resin powder using a heating means, sintered, and formed. This is a method of obtaining a three-dimensional modeled product by repeatedly forming a laminated body.
To form a thin layer of powder material, spray the powder material on a modeling table (also called a modeling stage) and smooth it with a recorder (blade or roller) (hereinafter, this operation is "applied" or "applied" or ". A powder layer having a uniform thickness (sometimes referred to as "filling").
 粉末層の造形エリアに、加熱手段によりレーザ等の加熱媒体を照射して、粉末を溶融焼結させた後、同様の操作を繰り返して積層造形を行う。この際、加熱手段としては、レーザあるいは赤外線ランプ、キセノンランプ、ハロゲンランプなどが用いられる。粉末を塗布して粉末層を形成した後、加熱媒体の吸収効率を向上させるため、粉末層の造形エリアに所定の媒体を塗布する手法もある。
 粉末積層造形法は金型を使用する必要がなく、ある程度耐熱性を有するものであれば多様な樹脂粉末を原料として使用することができ、得られる造形品の信頼性も高いことから、近年注目されている技術である。
The molding area of the powder layer is irradiated with a heating medium such as a laser by a heating means to melt-sinter the powder, and then the same operation is repeated to perform laminated molding. At this time, as the heating means, a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is used. After applying the powder to form the powder layer, there is also a method of applying a predetermined medium to the molding area of the powder layer in order to improve the absorption efficiency of the heating medium.
The powder additive manufacturing method does not require the use of a mold, and various resin powders can be used as raw materials as long as they have a certain degree of heat resistance, and the resulting molded products are highly reliable, so they have been attracting attention in recent years. It is a technology that has been used.
 このような粉末積層造形法において、特許文献1のように粉末に良好な滑り性あるいは流動性を付与し、粉末を薄層に展開する薄層形成を可能にしたり、微小粉末とすることで、かさ密度あるいは充填率を高め、造形物に高密度で高い機械的強度を付与しようという試みがなされている。 In such a powder laminated molding method, as in Patent Document 1, good slipperiness or fluidity is imparted to the powder to enable thin layer formation in which the powder is developed into a thin layer, or by forming a fine powder. Attempts have been made to increase the bulk density or filling rate to impart high density and high mechanical strength to the modeled object.
特開2006-321711号公報Japanese Unexamined Patent Publication No. 2006-321711
 一方で、本発明者の検討により、特許文献1のように滑り性や流動性を付与しているのみでは、粉末の積層形成性(散布性)が不良となったり、造形精度(造形物の表面粗度等)も不良となることが明らかになった。
 より具体的には、例えば、粉末積層造形法は粉末を造形する際、粉末粒子の平均粒子径が小さいため、粒子と粒子の接触面積が増加し、静電気的に粒子と粒子が引かれあうことにより粉末同士が凝集するという問題がある。粉末が凝集し塊状になると、造形テーブル上に均一な厚みの粉末層を円滑に形成することができず、厚みムラがあったり、粉末の存在しない箇所(ボイドまたは欠損箇所)が形成されたりする。このような不均一な粉末層に加熱媒体を照射しても、均一な溶融状態を得ることはできない。また、造形精度も損なわれ、多くの場合、目的とする造形品を得ることができない。
On the other hand, according to the study of the present inventor, if only the slipperiness and fluidity are imparted as in Patent Document 1, the stackability (spreadability) of the powder becomes poor and the molding accuracy (modeled object) is deteriorated. Surface roughness, etc.) was also found to be defective.
More specifically, for example, in the powder lamination molding method, when molding powder, the average particle size of the powder particles is small, so that the contact area between the particles increases and the particles are electrostatically attracted to each other. There is a problem that the powders agglomerate with each other. When the powder is agglomerated and agglomerated, a powder layer having a uniform thickness cannot be smoothly formed on the modeling table, and the thickness may be uneven or a part where the powder does not exist (void or defective part) may be formed. .. Even if such a non-uniform powder layer is irradiated with a heating medium, a uniform molten state cannot be obtained. In addition, the modeling accuracy is also impaired, and in many cases, the desired modeled product cannot be obtained.
 上記のような粉末の凝集を避ける方法として、助剤の添加、特にシリカ、アルミナ等の分散剤の添加が挙げられる。しかしながら、本発明者の検討の結果、樹脂粉末に分散剤を乾燥状態で混合し(以下、「ドライブレンド」という場合がある。)、粉末を分散剤で被覆しようとすると、ドライブレンドによって樹脂粉末に混合された分散剤のうち、いくつかの分散剤は粉末表面に凝集した状態で付着してしまうため、添加量に対して分散剤の効果を得づらく、また、樹脂粉末に未付着の分散性向上に寄与しない余剰の分散剤が存在し、これが造形物の特性に悪影響を及ぼし、耐熱性や機械特性といった樹脂が本来持つ特性が損なわれてしまうことが明らかになった。 As a method of avoiding the agglomeration of the powder as described above, addition of an auxiliary agent, particularly addition of a dispersant such as silica and alumina can be mentioned. However, as a result of the study of the present inventor, when a dispersant is mixed with the resin powder in a dry state (hereinafter, may be referred to as "dry blend") and the powder is to be coated with the dispersant, the resin powder is obtained by the dry blend. Of the dispersants mixed in, some of the dispersants adhere to the powder surface in an agglomerated state, so it is difficult to obtain the effect of the dispersant with respect to the amount added, and the dispersion is not adhered to the resin powder. It has been clarified that there is a surplus dispersant that does not contribute to the improvement of properties, which adversely affects the characteristics of the modeled object and impairs the inherent characteristics of the resin such as heat resistance and mechanical properties.
 そこで、本発明は、樹脂が本来持つ特性を損なうことなく、粉末の積層形成性(散布性)が良好であり、造形精度(造形物の表面粗度等)も良好、つまり、造形時に厚みが均一で欠損のない粉末層を形成することができ、目的とする造形品を精度よく製造することができる粉末積層造形法用粉末を提供することを課題とする。 Therefore, the present invention has good powder stackability (spreadability) and good modeling accuracy (surface roughness of the modeled object, etc.) without impairing the inherent characteristics of the resin, that is, the thickness at the time of modeling is high. An object of the present invention is to provide a powder for a powder laminated molding method, which can form a uniform and defect-free powder layer and can accurately produce a desired modeled product.
 本発明者らは鋭意検討の結果、樹脂粉末自体に分散剤等の助剤を直接付与できる粉末積層造形用粉末を用いて粉末積層造形を行うことにより、粉末積層造形において、余剰の助剤がないため、助剤が造形物の特性に悪影響を及ぼすことなく、粉末の積層形成性(散布性)が良好であり、造形精度(造形性)も良好となることを見出し、本発明を完成するに至った。つまり、本発明者は、熱可塑性樹脂と特定の水酸基量の水溶性樹脂を特定の量含有した粉末積層造形法用粉末を用いることにより、これらの課題を解決することができることを見出し、以下の本発明を完成するに至った。 As a result of diligent studies, the present inventors performed powder additive manufacturing using a powder for powder additive manufacturing that can directly apply an auxiliary agent such as a dispersant to the resin powder itself, thereby producing a surplus auxiliary agent in powder additive manufacturing. Therefore, the present invention is completed by finding that the auxiliary agent does not adversely affect the characteristics of the modeled object, the powder layering formability (dispersability) is good, and the modeling accuracy (modeling property) is also good. It came to. That is, the present inventor has found that these problems can be solved by using a powder for additive manufacturing method containing a specific amount of a thermoplastic resin and a water-soluble resin having a specific hydroxyl group amount. The present invention has been completed.
 また、本発明者らは鋭意検討の結果、樹脂粉末表面に薄く均一に分散剤が付加されている粉末積層造形用粉末を用いて粉末積層造形を行うことにより、上記課題が解決可能であることを見出し、以下の本発明を完成するに至った。 Further, as a result of diligent studies, the present inventors have solved the above-mentioned problems by performing powder laminating molding using a powder for powder laminating molding in which a dispersant is thinly and uniformly added to the surface of the resin powder. The present invention has been completed.
 すなわち、本発明は下記<1>~<12>に関するものである。
<1> 熱可塑性樹脂及び水溶性樹脂を含み、前記水溶性樹脂中の水酸基量が30wt%以上であり、下記の測定条件[1]で測定されるX線光電子分光分析で測定した粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01atm%~15atm%である粉末積層造形法用粉末。
測定条件[1]:
測定機器:X線光電子分光分析K-Alpha(サーモフィッシャーサイエンティフィック社)
測定モード:ナロウモード
励起X線:monochromatic Al Kα(50μm)
X線照射エリアサイズ:400×200μm
That is, the present invention relates to the following <1> to <12>.
<1> On the particle surface measured by X-ray photoelectron spectroscopy measured under the following measurement condition [1], which contains a thermoplastic resin and a water-soluble resin and has a hydroxyl group content of 30 wt% or more in the water-soluble resin. A powder for a powder laminated molding method in which the amount of oxygen atoms contained in the water-soluble resin is 0.01 atm% to 15 atm%.
Measurement condition [1]:
Measuring equipment: X-ray photoelectron spectroscopy K-Alpha (Thermo Fisher Scientific)
Measurement mode: Narrow mode Excited X-ray: Monochrome Al Kα (50 μm)
X-ray irradiation area size: 400 x 200 μm
<2> 熱可塑性樹脂及び水溶性樹脂を含み、前記水溶性樹脂中の水酸基量が30wt%以上であり、有機元素分析で測定した、粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01wt%~10wt%である粉末積層造形法用粉末。 <2> The amount of oxygen atoms in the water-soluble resin contained in the particle surface, which contains a thermoplastic resin and a water-soluble resin and has a hydroxyl group content of 30 wt% or more in the water-soluble resin and is measured by organic element analysis. A powder for a powder laminated molding method in which the content is 0.01 wt% to 10 wt%.
<3> 熱可塑性樹脂を含み、下記の測定条件[1]で測定されるX線光電子分光分析法により同定される、粉末表面に含まれる下記元素成分Xの含有率が7atm%以上35atm%以下である粉末積層造形法用粉末。
測定条件[1]:
測定機器:X線光電子分光分析K-Alpha(サーモフィッシャーサイエンティフィック社)
測定モード:ナロウモード
励起X線:monochromatic Al Kα(50μm)
X線照射エリアサイズ:400×200μm
元素成分X:Si、Al、Fe、Ca、Mgからなる群から選ばれる1つ以上
<3> The content of the following elemental component X contained in the powder surface, which contains a thermoplastic resin and is identified by the X-ray photoelectron spectroscopy measured under the following measurement condition [1], is 7 atm% or more and 35 atm% or less. Powder for laminated molding method.
Measurement condition [1]:
Measuring equipment: X-ray photoelectron spectroscopy K-Alpha (Thermo Fisher Scientific)
Measurement mode: Narrow mode Excited X-ray: Monochrome Al Kα (50 μm)
X-ray irradiation area size: 400 x 200 μm
Element component X: One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
<4>
 CWるつぼに入れ、小型ボックス炉(光洋サーモシステム社、KBF894N1)を用いて空気雰囲気下、650℃で2時間加温し、残渣を計量することによって測定される粉末中の灰分が0.01%以上7%以下である、<3>に記載の粉末積層造形法用粉末。
<4>
Put it in a CW pot, heat it in an air atmosphere using a small box furnace (Koyo Thermo Systems Co., Ltd., KBF894N1) at 650 ° C for 2 hours, and weigh the residue to measure the ash content in the powder of 0.01%. The powder for the powder laminated molding method according to <3>, which is 7% or more and is 7% or less.
<5> 粒度分布としてD50が5μm以上120μm以下である<1>~<4>のいずか1項に記載の粉末積層造形法用粉末。 <5> The powder for additive manufacturing method according to any one of <1> to <4>, wherein D50 is 5 μm or more and 120 μm or less as a particle size distribution.
<6> 円形度の最頻値が0.6以上である<1>~<5>のいずれか1項に記載の粉末積層造形法用粉末。 <6> The powder for additive manufacturing method according to any one of <1> to <5>, wherein the mode of circularity is 0.6 or more.
<7> 前記粉末積層造形法用粉末中の熱可塑性樹脂のDSCチャートにおける融解熱量が20J/g以上140J/g以下である<1>~<6>のいずれか1項に記載の粉末積層造形法用粉末。 <7> The powder lamination molding according to any one of <1> to <6>, wherein the heat of fusion of the thermoplastic resin in the powder for the powder lamination molding method in the DSC chart is 20 J / g or more and 140 J / g or less. Legal powder.
<8> 前記粉末積層造形法用粉末中の熱可塑性樹脂の融点が90℃以上230℃以下である<1>~<7>のいずれか1項に記載の粉末積層造形法用粉末。 <8> The powder for additive manufacturing method according to any one of <1> to <7>, wherein the melting point of the thermoplastic resin in the powder for additive manufacturing method is 90 ° C. or higher and 230 ° C. or lower.
<9> 前記粉末積層造形法用粉末中の熱可塑性樹脂の重量平均分子量が30,000以上である<1>~<8>のいずれか1項に記載の粉末積層造形法用粉末。 <9> The powder for additive manufacturing method according to any one of <1> to <8>, wherein the weight average molecular weight of the thermoplastic resin in the powder for additive manufacturing method is 30,000 or more.
<10> <1>~<9>のいずれか1項に記載の粉末積層造形法用粉末を用いる粉末積層造形法。 <10> A powder additive manufacturing method using the powder for the powder additive manufacturing method according to any one of <1> to <9>.
<11> <1>~<9>のいずれか1項に記載の粉末積層造形法用粉末を用いた造形品。 <11> A modeled product using the powder for the powder additive manufacturing method according to any one of <1> to <9>.
<12> 溶融可能なマトリックス成分に、該マトリックス成分とは相溶しない樹脂を分散させた後に、マトリックス成分を除去して樹脂粒子を製造する方法であって、
前記マトリックス成分を除去する際に助剤を添加する、粉末積層造形法用粉末の製造方法。
<12> A method for producing resin particles by dispersing a resin incompatible with the matrix component in a meltable matrix component and then removing the matrix component.
A method for producing a powder for additive manufacturing, in which an auxiliary agent is added when the matrix component is removed.
 本発明によれば、樹脂が本来もつ特性を損なうことなく、粉末の積層形成性(散布性)が良好であり、造形精度(造形性)も良好、つまり、造形時に厚みが均一で欠損のない粉末層を形成することができ、目的とする造形品を精度よく製造することができる粉末積層造形法用粉末を提供することができる。
 また、本発明の粉末積層造形法用粉末の製造方法によれば、このような粉末積層造形法用粉末を、簡便に効率良く製造できる。
According to the present invention, the powder stackability (spreadability) is good and the molding accuracy (modeling property) is also good without impairing the inherent properties of the resin, that is, the thickness is uniform and there is no defect during molding. It is possible to provide a powder for a powder additive manufacturing method, which can form a powder layer and can accurately produce a desired modeled product.
Further, according to the method for producing powder for additive manufacturing method of the present invention, such powder for additive manufacturing method can be easily and efficiently produced.
 以下に本発明を実施するための最良の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらの内容に限定されるものではない。 The best mode for carrying out the present invention will be described in detail below, but the description of the constituent elements described below is a typical example of the embodiment of the present invention, and the present invention is limited to these contents. It's not a thing.
 [粉末積層造形法用粉末]
 第1の本発明の粉末積層造形法用粉末は、熱可塑性樹脂及び水溶性樹脂を含み、前記水溶性樹脂中の水酸基量が30wt%以上であり、所定条件でのX線光電子分光分析で測定した粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01atm%~15atm%であることを特徴とする。
[Powder for additive manufacturing method]
The first powder for the powder lamination molding method of the present invention contains a thermoplastic resin and a water-soluble resin, and the amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and is measured by X-ray photoelectron spectroscopy under predetermined conditions. The amount of oxygen atoms in the water-soluble resin contained on the surface of the particles is 0.01 atm% to 15 atm%.
 また、第2の本発明の粉末積層造形法用粉末は、熱可塑性樹脂及び水溶性樹脂を含み、前記水溶性樹脂中の水酸基量が30wt%以上であり、有機元素分析で測定した、粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01wt%~10wt%であることを特徴とする。 The second powder for the powder lamination molding method of the present invention contains a thermoplastic resin and a water-soluble resin, and the amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and the particle surface measured by organic element analysis. The amount of oxygen atoms in the water-soluble resin contained in the water-soluble resin is 0.01 wt% to 10 wt%.
 また、第3の本発明の粉末積層造形法用粉末は、熱可塑性樹脂を含み、所定条件でのX線光電子分光分析法により同定される、粉末表面に含まれる下記元素成分Xの含有率が7atm%以上35atm%以下であることを特徴とする。 In addition, the third powder for the powder lamination molding method of the present invention contains a thermoplastic resin, and the content of the following elemental component X contained in the powder surface, which is identified by X-ray photoelectron spectroscopy under predetermined conditions, is high. It is characterized in that it is 7 atm% or more and 35 atm% or less.
 <本発明が効果を奏する理由>
 本発明が効果を奏する理由は、未だ明らかでないが、以下のように推察される。つまり、本発明の粉末積層造形法用粉末は、特定の水溶性樹脂を含む粉末であることにより、粉末表面の水溶性樹脂が助剤を吸着し、従来品より助剤を効率よく付着させることができる。また、助剤を効率よく付着させることにより、粉末に含まれる熱可塑性樹脂の特性を損ねることなく、造形時の散布性を向上させることができるものと推察される。さらに、散布性よく散布された本発明の粉末積層造形法用粉末は、粉末同士が密に積層されているのみならず、助剤等が造形性に悪影響を与えることがないため、造形精度(造形性)も良好となるものと推察される。
<Reason why the present invention is effective>
The reason why the present invention is effective is not clear yet, but it is presumed as follows. That is, since the powder for the powder lamination molding method of the present invention is a powder containing a specific water-soluble resin, the water-soluble resin on the surface of the powder adsorbs the auxiliary agent, and the auxiliary agent is adhered more efficiently than the conventional product. Can be done. Further, it is presumed that by efficiently adhering the auxiliary agent, it is possible to improve the dispersability at the time of molding without impairing the characteristics of the thermoplastic resin contained in the powder. Further, the powder for the powder additive manufacturing method of the present invention, which has been sprayed with good sprayability, not only has the powders densely laminated with each other, but also has an auxiliary agent or the like that does not adversely affect the formability. It is presumed that the formability) will also be good.
 <熱可塑性樹脂の組成>
 本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂は、造形する造形品に付与する機能に応じて適宜選択することができる。
 例えば、非晶性樹脂、結晶性樹脂、熱可塑性エラストマーが挙げられる。これらの中でも、粉末積層造形性が良好である点から、非晶性樹脂、結晶性樹脂が好ましい。これらの具体例は、以下のとおりである。
<Composition of thermoplastic resin>
The thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention can be appropriately selected according to the function to be imparted to the modeled product to be modeled.
For example, amorphous resins, crystalline resins, and thermoplastic elastomers can be mentioned. Among these, amorphous resins and crystalline resins are preferable from the viewpoint of good powder additive manufacturing. Specific examples of these are as follows.
 非晶性樹脂:アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリエーテルイミドなどが挙げられ、これらの中でも、粉末積層造形性が良好である点から、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリカーボネートが好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、ポリスチレン、ポリメチルメタクリレート、ポリカーボネートがより好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、ポリメチルメタクリレート、ポリカーボネートがさらに好ましく、ポリメチルメタクリレート、ポリカーボネートが特に好ましく、ポリカーボネートが最も好ましい。 Acrylo-nitrile resin: acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polystyrene, polyvinyl chloride, polymethylmethacrylate, polycarbonate, modified polyphenylene ether, polyether Among these, imide and the like can be mentioned, and among these, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polystyrene, etc. Polyvinyl chloride, polymethylmethacrylate and polycarbonate are preferable, and acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polystyrene, polymethylmethacrylate and polycarbonate are more preferable, and acrylonitrile-butadiene-styrene copolymer resin (ABS resin) and poly. Methyl methacrylate and polycarbonate are more preferable, polymethyl methacrylate and polycarbonate are particularly preferable, and polycarbonate is most preferable.
 結晶性樹脂:ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリアミド、ポリビニルアルコール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどが挙げられ、これらの中でも、粉末積層造形性が良好である点から、ポリオレフィン、ポリエステル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトンが好ましく、ポリオレフィン、ポリエステル、ポリエーテルケトン、ポリエーテルエーテルケトンがより好ましく、ポリオレフィン、ポリエステル、ポリエーテルケトンがさらに好ましく、ポリオレフィン、ポリエステルが最も好ましい。 Crystalline resin: Polyester, polyolefins such as polypropylene, polyester, polyamide, polyvinyl alcohol, polyetherketone, polyetheretherketone, polyetherketoneketone, etc. Among these, powder laminate formability is good. , Polyetherketone, polyester, polyetherketone, polyetheretherketone, polyetherketoneketone are preferable, polyolefin, polyester, polyetherketone, polyetheretherketone are more preferable, polyolefin, polyester, polyetherketone are more preferable, polyolefin, Polyester is most preferred.
 熱可塑性エラストマー:オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及びそれらの混合物が挙げられる。
 本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂は、これらの樹脂に限定されるものではなく、さらに1種、もしくは2種以上が任意の組み合わせおよび比率で含有されていてもよい。
Thermoplastic elastomers: olefin-based thermoplastic elastomers, styrene-based thermoplastic elastomers, polyester-based thermoplastic elastomers, and mixtures thereof.
The thermoplastic resin used for the powder for additive manufacturing method of the present invention is not limited to these resins, and one type or two or more types may be contained in any combination and ratio.
 <熱可塑性樹脂の物性>
 (融解熱量)
 本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂のDSCチャートにおける融解熱量は、耐熱性と造形時に必要なエネルギー量の観点から、好ましくは20J/g以上、より好ましくは30J/g以上、さらに好ましくは40J/g以上、特に好ましくは50J/g以上で、好ましくは140J/g以下、より好ましくは130J/g以下、さらに好ましくは120J/g以下、特に好ましくは110J/g以下、最も好ましくは90J/g以下である。
<Physical characteristics of thermoplastic resin>
(Chemical amount of melting)
The amount of heat of fusion in the DSC chart of the thermoplastic resin used for the powder for the powder laminated molding method of the present invention is preferably 20 J / g or more, more preferably 30 J / g or more, from the viewpoint of heat resistance and the amount of energy required for molding. More preferably 40 J / g or more, particularly preferably 50 J / g or more, preferably 140 J / g or less, more preferably 130 J / g or less, still more preferably 120 J / g or less, particularly preferably 110 J / g or less, most preferably. Is 90 J / g or less.
 (融点)
 本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂の融点の下限は特に限定されないが、得られる造形品の耐熱性の観点から、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがより好ましく、115℃以上であることがさらに好ましく、120℃以上であることが特に好ましい。本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂の融点の上限は特に限定されないが、造形時の材料融解に必要なエネルギー所要量の観点から、230℃以下であることが好ましく、215℃以下であることがより好ましく、200℃以下であることがさらに好ましく、185℃以下であることが尚好ましく、170℃以下であることが特に好ましく、155℃以下であることが最も好ましい。
(Melting point)
The lower limit of the melting point of the thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of the heat resistance of the obtained modeled product, it is preferably 90 ° C. or higher, preferably 100 ° C. or higher. Is more preferable, 110 ° C. or higher is more preferable, 115 ° C. or higher is further preferable, and 120 ° C. or higher is particularly preferable. The upper limit of the melting point of the thermoplastic resin used for the powder for the powder additive manufacturing method of the present invention is not particularly limited, but it is preferably 230 ° C. or lower from the viewpoint of the energy requirement for melting the material at the time of molding. The temperature is more preferably 200 ° C. or lower, further preferably 185 ° C. or lower, particularly preferably 170 ° C. or lower, and most preferably 155 ° C. or lower.
 (分子量)
 本発明の粉末積層造形法用粉末に用いる熱可塑性樹脂の重量平均分子量(Mw)の下限は、結晶性の観点から30,000以上であることが好ましく、60,000以上であることがより好ましく、65,000以上であることがさらに好ましく、70,000以上であることが特に好ましく、75,000以上であることが最も好ましい。上限については特に制限されないが、造形性の観点から、350,000以下が好ましく、300,000以下がより好ましく、250,000以下がさらに好ましい。
 熱可塑性樹脂の融解熱量、融点、重量平均分子量(Mw)は、例えば、後掲の実施例の項に記載の方法で測定される。
(Molecular weight)
The lower limit of the weight average molecular weight (Mw) of the thermoplastic resin used in the powder for the powder laminated molding method of the present invention is preferably 30,000 or more, more preferably 60,000 or more from the viewpoint of crystallinity. , 65,000 or more, more preferably 70,000 or more, and most preferably 75,000 or more. The upper limit is not particularly limited, but from the viewpoint of formability, 350,000 or less is preferable, 300,000 or less is more preferable, and 250,000 or less is further preferable.
The heat of fusion, melting point, and weight average molecular weight (Mw) of the thermoplastic resin are measured, for example, by the method described in the section of Examples described later.
 本発明の粉末積層造形用粉末中の熱可塑性樹脂の含有量の下限値は、特に限定されないが、造形性の観点から、85%以上であることが好ましく、90%以上であることがより好ましく、92%以上であることがさらに好ましく、94%以上であることが特に好ましく、95%以上であることが最も好ましい。本発明の粉末積層造形用粉末中の熱可塑性樹脂の含有量の上限値は、特に限定されないが、通常好ましくは99.9%以下である。 The lower limit of the content of the thermoplastic resin in the powder for additive manufacturing of the present invention is not particularly limited, but from the viewpoint of formability, it is preferably 85% or more, and more preferably 90% or more. , 92% or more, more preferably 94% or more, and most preferably 95% or more. The upper limit of the content of the thermoplastic resin in the powder for additive manufacturing of the present invention is not particularly limited, but is usually preferably 99.9% or less.
 <水溶性樹脂>
 本発明の粉末積層造形法用粉末は、その製造過程において水溶性樹脂を介在させるものであり、水溶性樹脂を含んでいても良い。
 本発明の粉末積層造形法用粉末に用いる水溶性樹脂は、水酸基量が30wt%以上であり、X線光電子分光分析で測定した粒子表面に含まれる前記水溶性樹脂の酸素原子の量が0.01atm%~15atm%である。
<Water-soluble resin>
The powder for the additive manufacturing method of the present invention has a water-soluble resin interposed in the manufacturing process thereof, and may contain the water-soluble resin.
The water-soluble resin used for the powder for the powder lamination molding method of the present invention has a hydroxyl group content of 30 wt% or more, and the amount of oxygen atoms of the water-soluble resin contained in the particle surface measured by X-ray photoelectron spectroscopy is 0. It is 01 atm% to 15 atm%.
 本発明の粉末積層造形法用粉末に用いられる水溶性樹脂中の水酸基量の下限値は、30wt%以上であり、多成分同士の界面を安定させる観点から32wt%以上が好ましく、34wt%以上がより好ましく、36wt%以上がさらに好ましく、37wt%以上が特に好ましい。また、本発明の粉末積層造形法用粉末に用いられる水溶性樹脂に含まれる水酸基量の上限値は特に限定されないが、精製の容易性を担保する観点から、50wt%以下が好ましく、48wt%以下がより好ましく、46wt%以下がさらに好ましく、44wt%以下が特に好ましい。 The lower limit of the amount of hydroxyl groups in the water-soluble resin used for the powder for additive manufacturing method of the present invention is 30 wt% or more, preferably 32 wt% or more, preferably 34 wt% or more from the viewpoint of stabilizing the interface between multiple components. More preferably, 36 wt% or more is further preferable, and 37 wt% or more is particularly preferable. The upper limit of the amount of hydroxyl groups contained in the water-soluble resin used for the powder for additive manufacturing method of the present invention is not particularly limited, but is preferably 50 wt% or less, preferably 48 wt% or less from the viewpoint of ensuring ease of purification. Is more preferable, 46 wt% or less is further preferable, and 44 wt% or less is particularly preferable.
 なお、水溶性樹脂の水酸基量については、1H-NMR法(核磁気共鳴法)により算出することができる。
 水溶性樹脂としては、前記条件を満たしていれば特に限定されないが、例えば、ポリビニルアルコール類が挙げられる。また、ポリビニルアルコール類の具体例としては、ブテンジオール・ビニルアルコール共重合体等の二重結合を有するジオールとビニルアルコールの共重合体、スルホン酸基含有ビニルアルコール共重合体、オキシアルキレン基含有ビニルアルコール共重合体、カルボン酸基含有ビニルアルコール共重合体、アセトアセチル基含有ビニルアルコール共重合体が挙げられ、これらの中でも、親水性が高いことから、ブテンジオール・ビニルアルコール共重合体等の二重結合を有するジオールとビニルアルコールの共重合体、スルホン酸基含有ビニルアルコール共重合体がより好ましく、ブテンジオール・ビニルアルコール共重合体等の二重結合を有するジオールとビニルアルコールの共重合体がさらに好ましく、中でも、ブテンジオール・ビニルアルコール共重合体が最も好ましい。
The amount of hydroxyl groups in the water-soluble resin can be calculated by the 1H-NMR method (nuclear magnetic resonance method).
The water-soluble resin is not particularly limited as long as the above conditions are satisfied, and examples thereof include polyvinyl alcohols. Specific examples of polyvinyl alcohols include a copolymer of a diol having a double bond such as a butenediol / vinyl alcohol copolymer and a vinyl alcohol, a sulfonic acid group-containing vinyl alcohol copolymer, and an oxyalkylene group-containing vinyl. Examples thereof include alcohol copolymers, carboxylic acid group-containing vinyl alcohol copolymers, and acetoacetyl group-containing vinyl alcohol copolymers. Among these, because of their high hydrophilicity, there are two types such as butenediol / vinyl alcohol copolymers. A copolymer of a diol having a double bond and a vinyl alcohol, a vinyl alcohol copolymer containing a sulfonic acid group is more preferable, and a copolymer of a diol having a double bond such as a butenediol / vinyl alcohol copolymer and a vinyl alcohol is used. More preferably, among them, a butenediol / vinyl alcohol copolymer is most preferable.
 本発明の粉末積層造形法用粉末に用いられる水溶性樹脂中の酸素原子のX線光電子分光分析で測定した粒子表面の含有量の下限は、0.01atm%以上であり、助剤の付加率の観点から、0.05atm%以上であることが好ましく、0.1atm%以上がより好ましく、0.2atm%以上であることがさらに好ましく、0.5atm%以上であることが特に好ましく、0.8atm%以上であることが最も好ましい。また、上限は30atm%以下であり、造形性の観点から、20atm%以下であることが好ましく、15atm%以下がより好ましく、10atm%以下であることがさらに好ましく、7atm%以下であることが特に好ましい。 The lower limit of the content of the particle surface measured by X-ray photoelectron spectroscopic analysis of oxygen atoms in the water-soluble resin used for the powder for the powder lamination molding method of the present invention is 0.01 atm% or more, and the addition rate of the auxiliary agent. From the viewpoint of the above, 0.05 atm% or more is preferable, 0.1 atm% or more is more preferable, 0.2 atm% or more is further preferable, 0.5 atm% or more is particularly preferable, and 0. Most preferably, it is 8 atm% or more. Further, the upper limit is 30 atm% or less, preferably 20 atm% or less, more preferably 15 atm% or less, further preferably 10 atm% or less, and particularly preferably 7 atm% or less from the viewpoint of formability. preferable.
 本発明の粉末積層造形法用粉末に用いる水溶性樹脂中の酸素原子の粒子表面における含有量は、有機元素分析によって測定されていても良い。 The content of oxygen atoms on the particle surface in the water-soluble resin used for the powder for the powder lamination molding method of the present invention may be measured by organic element analysis.
 本発明の粉末積層造形法用粉末に用いられる水溶性樹脂中の酸素原子の有機元素分析で測定した粒子表面の含有量の下限は、0.01wt%以上であり、助剤の付加率の観点から、0.05wt%以上であることが好ましく、0.1wt%以上がより好ましく、0.15wt%以上であることがさらに好ましい。また、上限は10wt%以下であり、造形性の観点から、8wt%以下であることが好ましく、5wt%以下がより好ましく、2wt%以下であることがさらに好ましく、1wt%以下であることがことさら好ましく、0.5wt%以下であることが特に好ましく、0.35wt%以下であることが最も好ましい。 The lower limit of the content of the particle surface measured by the organic element analysis of oxygen atoms in the water-soluble resin used for the powder for the powder lamination molding method of the present invention is 0.01 wt% or more, and the viewpoint of the addition rate of the auxiliary agent Therefore, it is preferably 0.05 wt% or more, more preferably 0.1 wt% or more, and further preferably 0.15 wt% or more. Further, the upper limit is 10 wt% or less, preferably 8 wt% or less, more preferably 5 wt% or less, further preferably 2 wt% or less, and further preferably 1 wt% or less from the viewpoint of formability. It is preferably 0.5 wt% or less, and most preferably 0.35 wt% or less.
 <助剤>
 本発明において、助剤としては、分散剤、安定剤、以下に記載する「他の成分」等が挙げられる。これらのなかでも、本発明の作用機序に大きく影響することから、分散剤、安定剤を用いることが好ましい。
<Auxiliary agent>
In the present invention, examples of the auxiliary agent include a dispersant, a stabilizer, and "other components" described below. Among these, it is preferable to use a dispersant or a stabilizer because it greatly affects the mechanism of action of the present invention.
 (分散剤)
 本発明の粉末積層造形法用粉末は分散剤を含有することが好ましい。
 分散剤としては、シリカ、アルミナ、珪酸アルミニウム、コロイダルシリカゲル、パーライト、バーミキュライト、硫酸カルシウム、タルク、セメント、チョーク粉末、クレー、炭酸カルシウム、炭酸カルシウム/炭酸マグネシウム混合物、珪藻土、無水ケイ酸などが挙げられる。中でも本発明においては、化学的、物理的な安定性から、シリカ、アルミナが好ましく、シリカがより好ましい。
(Dispersant)
The powder for additive manufacturing method of the present invention preferably contains a dispersant.
Dispersants include silica, alumina, aluminum silicate, colloidal silica gel, pearlite, vermiculite, calcium sulfate, talc, cement, chalk powder, clay, calcium carbonate, calcium carbonate / magnesium carbonate mixture, diatomaceous earth, silicic anhydride and the like. .. Among them, in the present invention, silica and alumina are preferable, and silica is more preferable, from the viewpoint of chemical and physical stability.
 (安定剤)
 本発明の粉末積層造形法用粉末は安定剤を含有することが好ましい。
 安定剤としては、フェノール系安定剤、アミン系安定剤、リン系安定剤、チオエーテル系安定剤などが挙げられる。中でも本発明においては、リン系安定剤およびフェノール系安定剤が好ましく、フェノール系安定剤がより好ましい。
(Stabilizer)
The powder for additive manufacturing method of the present invention preferably contains a stabilizer.
Examples of the stabilizer include a phenol-based stabilizer, an amine-based stabilizer, a phosphorus-based stabilizer, and a thioether-based stabilizer. Among them, in the present invention, phosphorus-based stabilizers and phenol-based stabilizers are preferable, and phenol-based stabilizers are more preferable.
 フェノール系安定剤としては、ヒンダードフェノール系安定剤が好ましく、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトールテトラキス(β-ラウリルチオプロピオネート)、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォネート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。 As the phenol-based stabilizer, a hindered phenol-based stabilizer is preferable, and for example, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,) 5-Di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythritol tetrakis (β-laurylthiopropionate), thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide], 2,4-dimethyl-6- (1-methylpenta) Decyl) Phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate, 3,3', 3 ", 5,5', 5" -hexa-tert- Butyl-a, a', a "-(methicylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [ 3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5 -Tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert- Butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2-ylamino) phenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl ] -4,6-di-tert-pentylphenyl acrylate and the like.
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトールテトラキス(β-ラウリルチオプロピオネート)が好ましい。
 このようなフェノール系安定剤としては、具体的には、BASF社製(商品名、以下同じ)「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」、「アデカスタブAO-412S」等が挙げられる。
Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, Pentaerythritol tetrakis (β-laurylthiopropionate) is preferred.
Specific examples of such phenolic stabilizers include "Irganox 1010" and "Irganox 1076" manufactured by BASF, "Adeka Stub AO-50" and "Adeka Stub AO" manufactured by ADEKA. -60 ”,“ Adeka Stub AO-412S ”and the like.
 本発明の粉末積層造形法用粉末の粉末表面の元素成分Xの含有率の下限は、助剤の効果を効率的に発現させる観点から、7atm%以上が好ましく、8.5atm%以上がより好ましく、10atm%以上がさらに好ましく、15atm%以上が特に好ましく、20atm%以上が最も好ましい。また、本発明の粉末積層造形法用粉末の粉末表面の助剤の含有率の上限は、樹脂の特性を損なわせない観点から、35atm%以下が好ましく、33atm%以下がより好ましく、30atm%以下がさらに好ましく、28atm%以下が特に好ましく、26atm%以下が最も好ましい。
 またこの際、元素成分Xは、Si、Al、Fe、Ca、Mgからなる群をから選ばれる1つ以上を表す。
The lower limit of the content of the element component X on the powder surface of the powder for additive manufacturing method of the present invention is preferably 7 atm% or more, more preferably 8.5 atm% or more from the viewpoint of efficiently expressing the effect of the auxiliary agent. 10 atm% or more is more preferable, 15 atm% or more is particularly preferable, and 20 atm% or more is most preferable. Further, the upper limit of the content of the auxiliary agent on the powder surface of the powder for additive manufacturing method of the present invention is preferably 35 atm% or less, more preferably 33 atm% or less, and more preferably 30 atm% or less from the viewpoint of not impairing the characteristics of the resin. Is more preferable, 28 atm% or less is particularly preferable, and 26 atm% or less is most preferable.
At this time, the element component X represents one or more selected from the group consisting of Si, Al, Fe, Ca, and Mg.
 本発明の粉末積層造形法用粉末は、粉末全体の助剤の含有率の下限は、助剤の効果を効率的に発現させる観点から、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.3%質量以上がさらに好ましく、0.8質量%以上が特に好ましく、1質量%以上が最も好ましい。また、本発明の粉末積層造形法用粉末の粉末表面の助剤の含有率の上限は、樹脂の特性を損なわせない観点から、7質量%以下が好ましく、6質量%以下がより好ましく、5質量%以下がさらに好ましく、4質量%以下が特に好ましく、3質量%以下が最も好ましい。 In the powder for the powder laminated molding method of the present invention, the lower limit of the content of the auxiliary agent in the entire powder is preferably 0.01% by mass or more, preferably 0.1% by mass, from the viewpoint of efficiently expressing the effect of the auxiliary agent. The above is more preferable, 0.3% by mass or more is further preferable, 0.8% by mass or more is particularly preferable, and 1% by mass or more is most preferable. Further, the upper limit of the content of the auxiliary agent on the powder surface of the powder for the powder lamination molding method of the present invention is preferably 7% by mass or less, more preferably 6% by mass or less, from the viewpoint of not impairing the characteristics of the resin. More preferably, it is more preferably mass% or less, particularly preferably 4 mass% or less, and most preferably 3 mass% or less.
 本発明の粉末積層造形法用粉末をCWるつぼに入れ、小型ボックス炉(光洋サーモシステム社、KBF894N1)を用いて空気雰囲気下、650℃で2時間加温し、残渣を計量することによって測定される粉末中の灰分が0.01%以上であることが好ましく、0.1%以上がより好ましく、0.3%以上がさらに好ましく、0.5%以上が特に好ましく、1%以上が最も好ましい。また、7%以下であることが好ましく、5%以下がより好ましく、4%以下がさらに好ましく、3%以下が特に好ましく、2%以下が最も好ましい。粉末中の灰分は、粉末積層造形法用粉末中の助剤の含有量を測る指標であり、助剤の効果を効率的に発現させる観点上記下限以上であることが好ましく、樹脂の特性を損なわせない観点から上記上限以下であることが好ましい。 Measured by putting the powder for the powder lamination molding method of the present invention into a CW pot, heating it in an air atmosphere using a small box furnace (Koyo Thermo System Co., Ltd., KBF894N1) for 2 hours at 650 ° C., and measuring the residue. The ash content in the powder is preferably 0.01% or more, more preferably 0.1% or more, further preferably 0.3% or more, particularly preferably 0.5% or more, and most preferably 1% or more. .. Further, it is preferably 7% or less, more preferably 5% or less, further preferably 4% or less, particularly preferably 3% or less, and most preferably 2% or less. The ash content in the powder is an index for measuring the content of the auxiliary agent in the powder for additive manufacturing method, and is preferably at least the above lower limit from the viewpoint of efficiently expressing the effect of the auxiliary agent, and impairs the characteristics of the resin. It is preferable that the amount is equal to or less than the above upper limit from the viewpoint of preventing the problem.
 <他の成分>
 本発明の粉末積層造形法用粉末は、上述した成分以外の樹脂成分や添加剤を含んだ粉末積層造形法用粉末としてもよい。これを本発明の粉末積層造形法用粉末ということがある。
 他の添加剤としては、結晶核剤、酸化防止剤、着色防止剤、顔料、染料、紫外線吸収剤、離型剤、易滑剤、難燃剤、帯電防止剤、無機繊維、有機繊維、無機粒子および有機粒子が例示される。
 難燃剤としては、例えば、特開2015-025127号公報の段落0033~0040に記載の化合物を挙げることができ、本明細書に組み込まれる。
<Other ingredients>
The powder for additive manufacturing method of the present invention may be a powder for powder additive manufacturing method containing a resin component or an additive other than the above-mentioned components. This is sometimes referred to as the powder for the additive manufacturing method of the present invention.
Other additives include crystal nucleating agents, antioxidants, color inhibitors, pigments, dyes, UV absorbers, mold release agents, lubricants, flame retardants, antistatic agents, inorganic fibers, organic fibers, inorganic particles and Organic particles are exemplified.
Examples of the flame retardant include the compounds described in paragraphs 0033 to 0040 of Japanese Patent Application Laid-Open No. 2015-205127, which are incorporated in the present specification.
 <前駆体である樹脂組成物およびその製造>
 本発明の粉末積層造形法用粉末の前駆体である樹脂組成物の製造方法は、各成分を含有するものとなれば特に限定されない。前駆体である樹脂組成物は、各成分を混合し溶融混練して製造することができる。例えば、本発明記載の熱可塑性樹脂と、安定剤と、さらに必要により配合する他の成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用いて予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって樹脂組成物を製造することができる。
<Resin composition as a precursor and its production>
The method for producing a resin composition which is a precursor of the powder for additive manufacturing method of the present invention is not particularly limited as long as it contains each component. The resin composition as a precursor can be produced by mixing each component and melt-kneading. For example, the thermoplastic resin described in the present invention, a stabilizer, and other components to be blended if necessary are premixed using various mixers such as a tumbler and a Henschel mixer, and then a Banbury mixer, a roll, a brabender, and the like. The resin composition can be produced by melt-kneading with a single-screw kneading extruder, a twin-screw kneading extruder, a kneader or the like.
 樹脂組成物における、熱可塑性樹脂と、水溶性樹脂の配合割合は、樹脂組成物全体を100質量%として、20~60質量%:40~80質量%(熱可塑性樹脂:水溶性樹脂)が好ましく、30~50質量%:50~70質量%がより好ましい。 The blending ratio of the thermoplastic resin and the water-soluble resin in the resin composition is preferably 20 to 60% by mass: 40 to 80% by mass (thermoplastic resin: water-soluble resin), assuming that the entire resin composition is 100% by mass. , 30 to 50% by mass: more preferably 50 to 70% by mass.
 また、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、樹脂組成物を製造することもできる。
 さらに、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合して溶融混練することによって、樹脂組成物を製造することもできる。
 溶融混練に際しての加熱温度は、通常150~300℃の範囲から適宜選ぶことができる。この加熱温度が高すぎると樹脂の劣化が進んだり、分解ガスが発生しやすくなる恐れがあるそのため、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練時や、後工程の成形時の分解を抑制するため、安定剤や酸化防止剤の使用が望ましい。
It is also possible to produce a resin composition without premixing each component or by premixing only a part of the components and supplying the components to an extruder using a feeder for melt kneading.
Further, a resin composition obtained by mixing some components in advance, supplying them to an extruder, and melt-kneading the resin composition is used as a masterbatch, and the masterbatch is mixed with the remaining components again and melt-kneaded to obtain a resin. Compositions can also be produced.
The heating temperature for melt-kneading can be appropriately selected from the range of usually 150 to 300 ° C. If this heating temperature is too high, the resin may deteriorate and decomposition gas may be easily generated. Therefore, it is desirable to select a screw configuration in consideration of shear heat generation and the like. It is desirable to use stabilizers and antioxidants in order to suppress decomposition during kneading and molding in the subsequent process.
 <粉末積層造形法用粉末の製造方法>
 (粉末化)
 本発明の粉末積層造形法用粉末を製造するための粉末化手段としては、融点付近で溶融させた樹脂組成物を繊維状にした後切断する溶融造粒や、樹脂組成物よりなる樹脂材料に衝撃やせん断を加えることにより切断または破壊する粉砕や、溶融可能なマトリックス成分に、マトリックス成分とは相溶しない樹脂を分散させた後に、マトリックス成分を除去して樹脂粒子を製造方法がある。3次元造形における粉末の塗布性向上のため、粉末の形状は丸みを帯びていること、即ち円形度が大きいことが好ましいことから、このような好適形状の粉末が得られるように、本発明の粉末積層造形法用粉末に含まれる熱可塑性樹脂に対して好適な粉末方式を選択することが好ましい。
 粉砕による粉末化を行った場合には、粉砕された粉末の中から延伸された粉末を除去して円形度を拡大する観点から、粉砕後に分級工程を行うことが好ましい。
 この場合、分級方法としては、風力分級、篩分級等が挙げられる。
<Powder manufacturing method for additive manufacturing method>
(Powdered)
As a powdering means for producing the powder for the powder laminated molding method of the present invention, a melt granulation in which a resin composition melted near a melting point is made into a fibrous form and then cut, or a resin material composed of the resin composition can be used. There is a method of producing resin particles by crushing or breaking by applying impact or shear, or by dispersing a resin incompatible with the matrix component in a meltable matrix component and then removing the matrix component. In order to improve the coatability of the powder in three-dimensional modeling, it is preferable that the shape of the powder is rounded, that is, the roundness is large. It is preferable to select a powder method suitable for the thermoplastic resin contained in the powder for the powder lamination molding method.
When pulverized by pulverization, it is preferable to perform a classification step after pulverization from the viewpoint of removing the stretched powder from the pulverized powder to expand the circularity.
In this case, examples of the classification method include wind power classification, sieve classification, and the like.
 (助剤の添加方法)
 本発明の粉末積層造形法用粉末に添加する助剤の添加方法は、特に限定されないが、マスターバッチ法、ドライブレンド法、溶融混錬でマトリックス成分を除去する際に助剤を添加する方法(ブレンドインスラリー)などが挙げられる。中でも、粉末に薄く均一に助剤を添加する観点からブレンドインスラリーが好ましい。
(Method of adding auxiliary agent)
The method of adding the auxiliary agent to the powder for the powder lamination molding method of the present invention is not particularly limited, but the method of adding the auxiliary agent when removing the matrix component by the masterbatch method, the dry blending method, or the melt kneading method ( Blend-in-slurry) and the like. Above all, the blend-in slurry is preferable from the viewpoint of adding the auxiliary agent thinly and uniformly to the powder.
 <粉末積層造形法用粉末の物性>
 本発明の粉末積層造形法用粉末の融点は、特に限定されないが、得られる造形品の耐熱性の観点から、下限は90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、105℃以上であることが特に好ましく、120℃以上であることが最も好ましい。また、上限は、230℃以下であることが好ましく、220℃以下であることがより好ましく、215℃以下であることがさらに好ましく、210℃以下であることが特に好ましく、205℃以下であることが最も好ましい。
<Physical characteristics of powder for additive manufacturing method>
The melting point of the powder for additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of heat resistance of the obtained modeled product, the lower limit is preferably 90 ° C. or higher, more preferably 100 ° C. or higher. It is more preferably 110 ° C. or higher, particularly preferably 105 ° C. or higher, and most preferably 120 ° C. or higher. The upper limit is preferably 230 ° C. or lower, more preferably 220 ° C. or lower, further preferably 215 ° C. or lower, particularly preferably 210 ° C. or lower, and 205 ° C. or lower. Is the most preferable.
 本発明の粉末積層造形法用粉末の融解熱量は、特に限定されないが、得られる造形品の耐熱性の観点から、好ましくは30J/g以上、より好ましくは35J/g以上、さらに好ましくは40J/g以上、特に好ましくは45J/g以上、最も好ましくは50J/g以上である。また、好ましくは200J/g以下、より好ましくは150J/g以下、さらに好ましくは120J/g以下、特に好ましくは90J/g以下、最も好ましくは75J/g以下である。 The amount of heat of fusion of the powder for the powder additive manufacturing method of the present invention is not particularly limited, but from the viewpoint of heat resistance of the obtained modeled product, it is preferably 30 J / g or more, more preferably 35 J / g or more, still more preferably 40 J / g. It is g or more, particularly preferably 45 J / g or more, and most preferably 50 J / g or more. Further, it is preferably 200 J / g or less, more preferably 150 J / g or less, further preferably 120 J / g or less, particularly preferably 90 J / g or less, and most preferably 75 J / g or less.
 本発明の粉末積層造形法用粉末の粒度分布のうち、体積比率が10%を占めるD10は、特に限定されないが、粉末層形成時の均一な散布性、散布率(ここで、散布率は、後述の実施例の項に記載の方法で求められるものであり、散布性の指標となる。)の観点から、通常、好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上、特に好ましくは7μm以上、最も好ましくは10μm以上である。D10の上限は、特に限定されないが、造形テーブル上での粉末塗布時、粉末同士の空隙への散布性の観点から、通常、好ましくは50μm以下、より好ましくは40μm以下、より好ましくは30μm以下、さらに好ましくは25μm以下、特に好ましくは20μm以下である。 Of the particle size distribution of the powder for the powder additive manufacturing method of the present invention, D10 in which the volume ratio occupies 10% is not particularly limited, but the uniform dispersability and dispersal rate at the time of forming the powder layer (here, the dispersal rate is It is obtained by the method described in the section of Examples described later and serves as an index of dispersability), and is usually preferably 1 μm or more, more preferably 3 μm or more, still more preferably 5 μm or more, particularly preferably. Is 7 μm or more, most preferably 10 μm or more. The upper limit of D10 is not particularly limited, but is usually preferably 50 μm or less, more preferably 40 μm or less, more preferably 30 μm or less, from the viewpoint of dispersability of the powders in the voids when the powder is applied on the modeling table. It is more preferably 25 μm or less, and particularly preferably 20 μm or less.
 本発明の粉末積層造形法用粉末の粒度分布のうち、体積比率が50%を占めるD50は、特に限定されないが、造形時において粉末を所定範囲内の厚さで塗布する観点から、通常、好ましくは5μm以上、より好ましくは8μm以上、より好ましくは10μm以上、さらに好ましくは12μm以上、特により好ましくは15μm以上、尚好ましくは17μm以上、最も20μm以上であり、通常、好ましくは120μm以下、より好ましくは95μm以下、より好ましくは80μm以下、より好ましくは70μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下、最も好ましくは40μm以下である。 Of the particle size distribution of the powder for additive manufacturing method of the present invention, D50 in which the volume ratio occupies 50% is not particularly limited, but is usually preferable from the viewpoint of applying the powder to a thickness within a predetermined range at the time of modeling. Is 5 μm or more, more preferably 8 μm or more, more preferably 10 μm or more, still more preferably 12 μm or more, particularly more preferably 15 μm or more, still more preferably 17 μm or more, most 20 μm or more, and usually preferably 120 μm or less, more preferably. Is 95 μm or less, more preferably 80 μm or less, more preferably 70 μm or less, still more preferably 60 μm or less, particularly preferably 50 μm or less, and most preferably 40 μm or less.
 本発明の粉末積層造形法用粉末の粒度分布のうち、体積比率が90%を占めるD90は、特に限定されないが、造形時における解像度の観点から、通常、好ましくは250μm以下、より好ましくは200μm以下、より好ましくは170μm以下、さらに好ましくは130μm以下、特に好ましくは80μm以下、最も好ましくは60μm以下である。D90の下限については特に制限はないが、造形テーブル上での粉末塗布時における塗布の効率性の観点から、通常、好ましくは10μm以上、より好ましくは15μm以上、より好ましくは20μm以上、さらに好ましくは25μm以上、特に好ましくは30μm以上、最も好ましくは35μm以上である。 Of the particle size distribution of the powder for additive manufacturing method of the present invention, D90 in which the volume ratio occupies 90% is not particularly limited, but is usually preferably 250 μm or less, more preferably 200 μm or less from the viewpoint of resolution at the time of modeling. , More preferably 170 μm or less, still more preferably 130 μm or less, particularly preferably 80 μm or less, and most preferably 60 μm or less. The lower limit of D90 is not particularly limited, but from the viewpoint of coating efficiency at the time of powder coating on a modeling table, it is usually preferably 10 μm or more, more preferably 15 μm or more, more preferably 20 μm or more, still more preferably. It is 25 μm or more, particularly preferably 30 μm or more, and most preferably 35 μm or more.
 粉末積層造形法用粉末の粒度分布は、後掲の実施例の項に記載の方法で測定される。
 本発明の粉末積層造形法用粉末の円形度(算術平均値)は、造形時における粉末の散布性ないしは散布率の観点から、好ましくは0.60以上、より好ましくは0.65以上、さらに好ましくは0.66以上、特に好ましくは0.67以上、最も好ましくは0.68以上である。円形度(算術平均値)の上限は通常好ましくは1.0以下である。
The particle size distribution of the powder for additive manufacturing method is measured by the method described in the section of Examples described later.
The circularity (arithmetic average value) of the powder for the powder laminated molding method of the present invention is preferably 0.60 or more, more preferably 0.65 or more, still more preferably 0.65 or more, from the viewpoint of the dispersibility or spraying rate of the powder at the time of modeling. Is 0.66 or more, particularly preferably 0.67 or more, and most preferably 0.68 or more. The upper limit of circularity (arithmetic mean) is usually preferably 1.0 or less.
 本発明の粉末積層造形法用粉末の円形度の最頻値は、造形時における粉末の散布性ないしは散布率の観点から、好ましくは0.50以上、より好ましくは0.60以上、さらに好ましくは0.70以上、特に好ましくは0.75以上、最も好ましくは0.8以上である。円形度の上限は通常好ましくは1.0以下であり、より好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.97以下、特に好ましくは0.96以下、最も好ましくは0.95以下である。
 粉末の円形度とは該当粒子の投影面積と同じ面積を有する円の周長を、該当粒子の粒子投影図の輪郭の長さで割った数値であり、円形度測定装置により測定される。
The mode of the circularity of the powder for the powder laminated molding method of the present invention is preferably 0.50 or more, more preferably 0.60 or more, still more preferably 0.60 or more, from the viewpoint of the dispersibility or spraying rate of the powder at the time of modeling. It is 0.70 or more, particularly preferably 0.75 or more, and most preferably 0.8 or more. The upper limit of the circularity is usually preferably 1.0 or less, more preferably 0.99 or less, more preferably 0.98 or less, still more preferably 0.97 or less, particularly preferably 0.96 or less, most preferably. It is 0.95 or less.
The circularity of a powder is a value obtained by dividing the circumference of a circle having the same area as the projected area of the corresponding particle by the length of the contour of the particle projection diagram of the corresponding particle, and is measured by a circularity measuring device.
 [粉末積層造形法、造形品]
 本発明の粉末積層造形法は、上記の本発明の粉末積層造形法用粉末を用いて本発明の造形品を製造する方法である。
 本発明の粉末積層造形法は、通常の粉末積層造形装置を用いて常法に従って行うことができる。
[Powder additive manufacturing method, modeled product]
The powder laminated molding method of the present invention is a method for producing a modeled product of the present invention using the above-mentioned powder for the powder laminated molding method of the present invention.
The powder additive manufacturing method of the present invention can be carried out according to a conventional method using an ordinary powder additive manufacturing device.
 粉末積層造形装置としては、例えば、造形ステージ(造形テーブル)と、粉末材料の薄層をこの造形ステージ上に形成する薄層形成手段と、形成された薄層にレーザを照射するなどして加熱することで、粉末材料の粒子を溶融結合させて造形物層を形成する加熱手段と、造形ステージを積層方向(上下方向)に移動させる移動手段と、これらを制御して薄層形成、加熱、ステージの移動を繰り返し行うことで、造形物層を積層させる制御手段とを有する粉末積層造形装置を用いることができる。 Examples of the powder laminated modeling apparatus include a modeling stage (modeling table), a thin layer forming means for forming a thin layer of powder material on the modeling stage, and heating by irradiating the formed thin layer with a laser. By doing so, the heating means for forming the shaped object layer by melt-bonding the particles of the powder material and the moving means for moving the molding stage in the stacking direction (vertical direction), and controlling these to form a thin layer, heat, By repeatedly moving the stage, it is possible to use a powder laminating molding apparatus having a control means for laminating the shaped object layers.
 例えば、レーザ加熱の場合、この粉末積層造形装置を用いて、以下の工程(1)~(4)を経て造形を行うことができる。
(1)粉末材料の薄層を形成する工程
(2)予備加熱された薄層にレーザ光を選択的に照射して、粉末材料が溶融結合してなる造形物層を形成する工程
 あるいは、予備加熱された薄層に選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料が溶融結合してなる造形物層を形成する工程の場合もある。
For example, in the case of laser heating, this powder additive manufacturing device can be used to perform modeling through the following steps (1) to (4).
(1) Step of forming a thin layer of powder material (2) Step of selectively irradiating a preheated thin layer with laser light to form a molded product layer formed by melt-bonding the powder material, or a preliminary A melting accelerator (a component that promotes melting of the resin) and a surface decoration agent (a component that forms the outline of the layer) are selectively sprayed on the heated thin layer, and then the infrared lamp, xenon lamp, and halogen lamp are applied as a whole. In some cases, the powder material is melt-bonded to form a molded product layer.
(3)造形ステージを形成された造形物層の厚み分だけ下降させる工程
(4)工程(1)~工程(3)をこの順に複数回繰り返し、造形物層を積層する工程
(3) Step of lowering the modeling stage by the thickness of the formed modeling object layer (4) Steps (1) to (3) are repeated a plurality of times in this order to stack the modeling object layers.
 工程(1)では、前記粉末材料の薄層を形成する。例えば、粉末供給部から供給された前記粉末材料を、リコータ(ブレード又はロール)によって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成されるか、既に敷き詰められている粉末材料又は既に形成されている造形物層の上に接するように形成される。 In step (1), a thin layer of the powder material is formed. For example, the powder material supplied from the powder supply unit is spread flat on the modeling stage by a recorder (blade or roll). The thin layer is formed directly on the build stage or in contact with the powder material already spread or the already formed build layer.
 薄層の厚さは、造形物層の厚さに準じて設定できる。薄層の厚さは、製造しようとする3次元造形物の精度に応じて任意に設定することができる。薄層の厚さは、通常0.01~0.3mm程度である。
 工程(2)では、形成された薄層のうち、造形物層を形成すべき位置にレーザを選択的に照射し、照射された位置の粉末材料を溶融結合させる。これにより、隣接する粉末材料が溶融し合って溶融結合体を形成し、造形物層となる。このとき、レーザのエネルギーを受け取った粉末材料は、すでに形成された層とも溶融結合するため、隣接する層間の接着も生じる。レーザが照射されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。
The thickness of the thin layer can be set according to the thickness of the modeled object layer. The thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured. The thickness of the thin layer is usually about 0.01 to 0.3 mm.
In the step (2), the laser is selectively irradiated to the position where the modeled object layer should be formed among the formed thin layers, and the powder material at the irradiated position is melt-bonded. As a result, the adjacent powder materials are melted together to form a melt-bonded body, which becomes a modeled object layer. At this time, since the powder material that has received the energy of the laser is melt-bonded to the already formed layer, adhesion between adjacent layers also occurs. The powder material that has not been irradiated with the laser is recovered as surplus powder and reused as the recovered powder.
 あるいは、レーザを選択的に照射する代わりに、選択的に溶融促進剤(樹脂の溶融を促進する成分)、表面装飾剤(層のアウトラインを形成させる成分)を噴霧し、その後に赤外線ランプ、キセノンランプ、ハロゲンランプを全体に照射して、粉末材料を溶融結合させる。レーザの場合と同様に溶融結合されなかった粉末材料は余剰粉末として回収され、回収粉末として再利用される。 Alternatively, instead of selectively irradiating the laser, a melting accelerator (a component that promotes melting of the resin) and a surface decoration agent (a component that forms the outline of the layer) are selectively sprayed, followed by an infrared lamp and xenon. The entire surface is irradiated with a lamp or a halogen lamp to melt-bond the powder material. As in the case of the laser, the powder material that has not been melt-bonded is recovered as surplus powder and reused as the recovered powder.
 工程(3)では、工程(2)で形成された造形物層の厚さ分だけ造形ステージを下降させて次の工程(1)にそなえる。
 粉末積層造形時の造形エリアの温度は、用いる樹脂組成物の融点より5~20℃程度低い温度であることが好ましい。造形時間は、造形品の大きさによって様々である。
In the step (3), the modeling stage is lowered by the thickness of the modeled object layer formed in the step (2) to prepare for the next step (1).
The temperature of the modeling area during additive manufacturing is preferably a temperature lower than the melting point of the resin composition used by about 5 to 20 ° C. The modeling time varies depending on the size of the modeled product.
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
 [熱可塑性樹脂の物性測定方法]
 <融点・融解熱量>
 樹脂組成物5~7mgを計量し、サンプルパンに詰め、測定用パンを作製した。示差走査熱量計(パーキンエルマー社 DiamondDSC、入力補償方式)を用いて窒素雰囲気下、昇温速度10℃/分で20℃から250℃まで昇温した。1回目の昇温測定で得られたDSC曲線の解析を行い、吸熱ピーク立ち上がりの開始点および立ち下りの終了点を結ぶ直線をベースラインとすることで、吸熱ピークの頂点の温度を融点として算出した。また、吸熱ピークからベースラインに引いた縦軸方向の線分の中点における吸熱ピークの幅を半値幅とし、吸熱ピークとベースラインの延長で囲まれた面積を融解熱量として算出した。
[Method for measuring physical properties of thermoplastic resin]
<Melting point / heat of fusion>
5 to 7 mg of the resin composition was weighed and packed in a sample pan to prepare a pan for measurement. Using a differential scanning calorimeter (PerkinElmer's Diamond DSC, input compensation method), the temperature was raised from 20 ° C. to 250 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere. The DSC curve obtained in the first temperature rise measurement is analyzed, and the temperature at the apex of the endothermic peak is calculated as the melting point by using the straight line connecting the start point of the endothermic peak and the end point of the endothermic peak as the baseline. bottom. Further, the width of the endothermic peak at the midpoint of the line segment in the vertical axis direction drawn from the endothermic peak to the baseline was set as the half-value width, and the area surrounded by the endothermic peak and the extension of the baseline was calculated as the amount of heat of fusion.
 <重量平均分子量(Mw)>
 測定試料を1,1,1,3,3,3-ヘキサフルオロイソプロパノールとクロロホルムの1/1質量比の溶液に0.1質量%の濃度に溶解させた。さらにクロロホルムで0.02質量%に希釈した。得られた溶液を0.45μmのPTFEフィルターで濾過し、サイズ排除クロマトグラフィー(SEC)分析用の試料とした。
<Weight average molecular weight (Mw)>
The measurement sample was dissolved in a solution of 1,1,1,3,3,3-hexafluoroisopropanol and chloroform in a 1/1 mass ratio to a concentration of 0.1% by mass. Further, it was diluted with chloroform to 0.02% by mass. The resulting solution was filtered through a 0.45 μm PTFE filter to prepare a sample for size exclusion chromatography (SEC) analysis.
 分子量の校正は、分子量既知の12種類のポリスチレンをクロロホルムに溶解して行った。SEC測定は、試料と同じ方法で行った。
 分子量の校正曲線は、分子量既知の12種類のポリスチレンの溶出時間とLog分子量でプロットして作成した。
 測定条件は以下の通りである。
The molecular weight calibration was performed by dissolving 12 types of polystyrenes having known molecular weights in chloroform. The SEC measurement was performed in the same manner as the sample.
The molecular weight calibration curve was created by plotting the elution times and Log molecular weights of 12 types of polystyrenes having known molecular weights.
The measurement conditions are as follows.
 カラム:TSK Gel G5000HHR+G3000HHR
(7.8mm diameter×300mm length×2)
温度:40℃
移動相:0.5%酢酸クロロホルム溶液
流量:1.0mL/min
試料濃度:0.02重量%
注入量:50μL
検出器:UV
検出波長:254nm
分子量校正標準試料:単分散ポリスチレン
Column: TSK Gel G5000HHR + G3000HHR
(7.8 mm diameter x 300 mm lens x 2)
Temperature: 40 ° C
Mobile phase: 0.5% chloroform acetate solution Flow rate: 1.0 mL / min
Sample concentration: 0.02% by weight
Injection volume: 50 μL
Detector: UV
Detection wavelength: 254 nm
Molecular Weight Calibration Standard Sample: Monodisperse Polystyrene
 [水溶性樹脂の物性測定方法]
 <水溶性樹脂の水酸基量>
 1H-NMR法(核磁気共鳴法)により算出することができる。
 Bruker社のAV400を用い、溶媒にDMSO(ジメチルスルホキシド)‐d6とTFA(トリフルオロ酢酸)の混合溶媒を使用して、80℃のもと1時間で測定した。
[Method of measuring physical properties of water-soluble resin]
<Amount of hydroxyl groups in water-soluble resin>
It can be calculated by the 1H-NMR method (nuclear magnetic resonance method).
Measurement was performed at 80 ° C. for 1 hour using Bruker's AV400 and a mixed solvent of DMSO (dimethyl sulfoxide) -d6 and TFA (trifluoroacetic acid) as a solvent.
 [粉末積層造形法用粉末の評価方法]
 <水溶性樹脂中の酸素原子含有量>
 (X線光電子分光(XPS))
 粉末の粒子表面に含まれる水溶性樹脂中の酸素原子の含有量は、X線光電子分光分析サーモフィッシャーサイエンティフィック「Kアルファ」を用いてで測定した。励起X線は、monochromatic Al Kαであり、X線照射エリアサイズは400×200μmである。また、測定には、粉末サンプル治具を使用した。
 XPS測定で観測される酸素原子及び炭素原子は、表面に残存する水溶性樹脂及び水溶性樹脂とは相溶しない熱可塑性樹脂(単に樹脂と呼ぶ)に由来する。そこで、組成情報と樹脂のXPS測定から得られたC,O比率から表面に残存する樹脂と水溶性樹脂とのモル比を計算し、そのモル比から表面に残存する水溶性樹脂の酸素原子に由来するピーク面積を求め、下記式から粒子表面の水溶性樹脂中の酸素原子の量を算出した。
 粒子表面の水溶性樹脂中の酸素原子量=(水溶性樹脂の酸素原子に由来するピーク面積)/{(水溶性樹脂の炭素原子に由来するピーク面積)+(樹脂の炭素原子に由来するピーク面積)+(水溶性樹脂の酸素原子に由来するピーク面積)+(樹脂の酸素原子に由来するピーク面積)}
[Powder evaluation method for additive manufacturing method]
<Oxygen atom content in water-soluble resin>
(X-ray photoelectron spectroscopy (XPS))
The content of oxygen atoms in the water-soluble resin contained on the surface of the powder particles was measured using X-ray photoelectron spectroscopy Thermo Fisher Scientific "K Alpha". The excited X-ray is monochrome Al Kα, and the X-ray irradiation area size is 400 × 200 μm. In addition, a powder sample jig was used for the measurement.
The oxygen and carbon atoms observed in the XPS measurement are derived from the water-soluble resin remaining on the surface and the thermoplastic resin (simply called resin) that is incompatible with the water-soluble resin. Therefore, the molar ratio of the resin remaining on the surface to the water-soluble resin was calculated from the composition information and the C and O ratios obtained from the XPS measurement of the resin, and the oxygen atom of the water-soluble resin remaining on the surface was calculated from the molar ratio. The derived peak area was determined, and the amount of oxygen atoms in the water-soluble resin on the particle surface was calculated from the following formula.
Atomic weight of oxygen in the water-soluble resin on the particle surface = (peak area derived from oxygen atom of water-soluble resin) / {(peak area derived from carbon atom of water-soluble resin) + (peak area derived from carbon atom of resin) ) + (Peak area derived from oxygen atom of water-soluble resin) + (Peak area derived from oxygen atom of resin)}
 (有機元素分析)
 有機元素分析は、元素分析装置Vario EL cube(エレメンタール社製)を用いて、CHNSモード、Oモードで実施した。
 粒子に含まれる水溶性樹脂中の酸素原子量の評価
 有機元素分析で測定される炭素に対する酸素の元素比(O/C)から、樹脂と残存水溶性樹脂中の質量比を算出した。
(Organic elemental analysis)
The organic element analysis was carried out in CHNS mode and O mode using an elemental analyzer Vario EL cube (manufactured by Elemental).
Evaluation of Oxygen Atomic Weight in Water-Soluble Resin Contained in Particles The mass ratio of resin and residual water-soluble resin was calculated from the elemental ratio (O / C) of oxygen to carbon measured by organic elemental analysis.
 <灰分>
 粉末積層造形法用粉末をCWるつぼに入れ、小型ボックス炉(光洋サーモシステム社、KBF894N1)を用いて空気雰囲気下、650℃で2時間加温し、残渣を計量することで粉末積層造形法用粉末の灰分とした。
<Ash>
For powder lamination molding method Put powder in a CW crucible, heat it in an air atmosphere using a small box furnace (Koyo Thermo System Co., Ltd., KBF894N1) for 2 hours at 650 ° C, and measure the residue for powder lamination molding method. The ash content of the powder was used.
 <X線光電子分光(ESCA)>
 粉末積層造形法用粉末のX線光電子分光測定は、X線光電子分光分析K-Alpha(サーモフィッシャーサイエンティフィック社)を用いて実施した。励起X線は、monochromatic Al Kαであり、X線照射エリアサイズは400×200μmである。粉末積層造形法用粉末のX線光電子分光測定で測定される全元素のピーク面積から、粉末積層造形法用粉末に含まれる以下の特定の元素成分Xの比率を算出し、粉末表面に含まれる元素成分Xの含有率(atom%)を求めた。
元素成分X:Si、Al、Fe、Ca、Mgからなる群から選ばれる1つ以上
<X-ray Photoelectron Spectroscopy (ESCA)>
The X-ray photoelectron spectroscopy measurement of the powder for the powder lamination molding method was carried out using X-ray photoelectron spectroscopy analysis K-Alpha (Thermo Fisher Scientific Co., Ltd.). The excited X-ray is monochrome Al Kα, and the X-ray irradiation area size is 400 × 200 μm. From the peak area of all elements measured by X-ray photoelectron spectroscopy of the powder for the powder laminated molding method, the ratio of the following specific elemental components X contained in the powder for the powder laminated molding method is calculated and contained on the powder surface. The content rate (atom%) of the element component X was determined.
Element component X: One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
 <熱特性>
 (融解熱量、融点)
 上記した熱可塑性樹脂における場合と同様の方法により、粉末積層造形法用粉末の融解熱量および融点を測定した。
<Thermal characteristics>
(Chemical value of melting, melting point)
The heat of fusion and melting point of the powder for additive manufacturing method were measured by the same method as in the case of the above-mentioned thermoplastic resin.
<粒度分布>
 粉末5gを計量し、粒度分布測定装置(マイクロテック社、MT3300)にて粉末の粒度分布を測定した。検出された粒度分布のうち粉末の度数分布10%、50%、90%に位置する粒径D10、D50、D90をそれぞれ求めた。
<Particle size distribution>
5 g of the powder was weighed, and the particle size distribution of the powder was measured with a particle size distribution measuring device (Microtech, MT3300). Of the detected particle size distributions, the particle sizes D10, D50, and D90 located at the powder frequency distributions of 10%, 50%, and 90% were determined, respectively.
 <円形度の最頻値>
 円形度についてはLA-960(堀場製作所社製)を用いて測定した。粉末3~5gを計量し、円形度測定装置(Sysmex社、FPIA-3000S)を用いて、粒子の投影図から投影面積と輪郭の長さ(周長)を測定し、次式により円形度を算出した。80個の粒子についてこれを算出し、その値の平均値を当該粉末の円形度とした。
 円形度=(粒子の投影面積と同じ面積を有する円の周長)/(粒子投影図の輪郭の長さ)
 円形度の最頻値については、円形度を算出する際に測定した全粒子の中で最も割合が大きい値を当該粉末の円形度の最頻値とした。
<Mode of circularity>
The circularity was measured using LA-960 (manufactured by HORIBA, Ltd.). Weigh 3 to 5 g of powder, measure the projected area and contour length (perimeter) from the projection drawing of the particles using a circularity measuring device (Sysmex, FPIA-3000S), and measure the circularity by the following formula. Calculated. This was calculated for 80 particles, and the average value of the values was taken as the circularity of the powder.
Circularity = (perimeter of a circle having the same area as the projected area of the particle) / (length of the outline of the projection drawing of the particle)
Regarding the mode value of the circularity, the value having the largest ratio among all the particles measured when calculating the circularity was defined as the mode value of the circularity of the powder.
 <助剤付加率>
 粉末の粒子表面に含まれる助剤付加率は、X線光電子分光分析サーモフィッシャーサイエンティフィック「Kアルファ」を用いて測定した。励起X線は、monochromatic Al Kαであり、X線照射エリアサイズは400×200μmである。また、測定には、粉末サンプル治具を使用した。
 粉末積層造形法用粉末のX線光電子分光測定で測定される全元素のピーク面積から、粉末積層造形法用粉末に含まれる以下の特定の元素成分Xの比率を算出し、粉末表面に含まれる元素成分Xの含有率(atom%)を求めた。
元素成分X:Si、Al、Fe、Ca、Mgからなる群から選ばれる1つ以上
<Auxiliary agent addition rate>
The addition rate of the auxiliary agent contained in the particle surface of the powder was measured using X-ray photoelectron spectroscopy Thermo Fisher Scientific "K Alpha". The excited X-ray is monochrome Al Kα, and the X-ray irradiation area size is 400 × 200 μm. In addition, a powder sample jig was used for the measurement.
From the peak area of all elements measured by X-ray photoelectron spectroscopy of the powder for the powder laminated molding method, the ratio of the following specific elemental components X contained in the powder for the powder laminated molding method is calculated and contained on the powder surface. The content rate (atom%) of the element component X was determined.
Element component X: One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
 <散布率>
 大きさ20mm×20mm、深さ0.2mmの凹部を有するテーブルの該凹部内に粉末1gを置いた後、該テーブル上でローラーを3mm/秒の速度で転がすことにより該凹部内の粉末をならしたときに、該凹部に充填された粉末の重量と比重から、該凹部に充填された粉末の体積を算出し、該凹部容積に対する充填粉末が占める体積割合を求め、これを当該粉末の散布率とした。
 散布率が高いほど、粉末の積層形成性(散布性)が良好であることを意味し、高温では散布性は悪い傾向を示す。室温では、散布率は95%以上が好ましく、97%以上がより好ましく、熱可塑性樹脂の融点-40℃の条件では、85%以上が好ましく、90%以上がより好ましく、熱可塑性樹脂の融点-30℃の条件では、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、熱可塑性樹脂の融点-20℃の条件では、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。なお、表中の「融点-40℃」等の「融点」とは、熱可塑性樹脂の融点を意味する。
<Spray rate>
After placing 1 g of powder in the recess of a table having a recess of 20 mm × 20 mm in size and 0.2 mm in depth, the powder in the recess is smoothed by rolling a roller on the table at a speed of 3 mm / sec. Then, the volume of the powder filled in the recess was calculated from the weight and specific gravity of the powder filled in the recess, the volume ratio of the filled powder to the volume of the recess was obtained, and this was calculated as the spraying rate of the powder. And said.
The higher the spraying rate, the better the stackability (spreadability) of the powder, and the worse the sprayability tends to be at high temperatures. At room temperature, the spray rate is preferably 95% or more, more preferably 97% or more, and under the condition of the melting point of the thermoplastic resin of −40 ° C., it is preferably 85% or more, more preferably 90% or more, and the melting point of the thermoplastic resin-. Under the condition of 30 ° C., 70% or more is preferable, 80% or more is more preferable, 90% or more is further preferable, and under the condition of the melting point of the thermoplastic resin of −20 ° C., 70% or more is preferable, and 80% or more is more preferable. , 90% or more is more preferable. The "melting point" such as "melting point −40 ° C." in the table means the melting point of the thermoplastic resin.
 [造形性の評価方法]
 <造形物の作製>
 粉末床溶融結合方式のプリンターLisa Pro(Sinterit社)を用いて、造形テーブル温度、ピッチを設定し、JIS K7161に準拠した1BA形引張試験片を作製し、高度差・外観測定用の試験片とした。
[Evaluation method of formability]
<Making a modeled object>
Using the powder bed melt-bonding printer Lisa Pro (Sinterit), set the modeling table temperature and pitch, prepare a 1BA type tensile test piece conforming to JIS K7161 and use it as a test piece for altitude difference / appearance measurement. bottom.
 <高度差>
 得られた焼結サンプル試験片の高度差を、マイクロスコープ(HiROX社、DIGITAL MICROSCOPE KH-8700)を用いて測定した。高度差とは、作製した試験片全体における最大高度と最低高度との差を意味する。高度差は、小さいほど造形性が良好であることを意味し、100μm以下が好ましく、50μm以下がより好ましい。
<Altitude difference>
The altitude difference of the obtained sintered sample test piece was measured using a microscope (HiROX, DIGITAL MICROSCOPE KH-8700). The altitude difference means the difference between the maximum altitude and the minimum altitude in the entire prepared test piece. The smaller the altitude difference is, the better the formability is, and it is preferably 100 μm or less, more preferably 50 μm or less.
 <外観>
 得られた焼結サンプルの外観として、
 〇:設定した造形データの形状を再現しているサンプル
 △:造形データの形状から外れているサンプル
とした。
<Appearance>
As the appearance of the obtained sintered sample,
〇: Sample that reproduces the shape of the set modeling data Δ: Sample that deviates from the shape of the modeling data.
 <算術平均粗さ>
 得られた焼結サンプル試験片の算術平均粗さを、マイクロスコープ(HiROX社、DIGITAL MICROSCOPE KH-8700)を用いて測定した。
 算術平均粗さは小さいほど造形性が良好であることを意味し、1.0μm以下が好ましく、0.9μm以下がより好ましい。
<Arithmetic mean roughness>
The arithmetic mean roughness of the obtained sintered sample test piece was measured using a microscope (HiROX, DIGITAL MICROSCOPE KH-8700).
The smaller the arithmetic mean roughness is, the better the formability is, and 1.0 μm or less is preferable, and 0.9 μm or less is more preferable.
 <最大引張強度>
 得られた焼結サンプル試験片の引張強度を、万能引張圧縮試験機(Intesco社 Model2050)を用いて測定した。初期のチャック間距離45mm、速度50mm/minで引張試験を行い、検出された最大の引張強度を最大引張強度とした。引張方向は、特に限定されないが、長手方向とした。
 最大引張強度は、大きいほど造形物の特性が良好であることを意味し、15MPa以上が好ましく、17MPa以上がより好ましい。
<Maximum tensile strength>
The tensile strength of the obtained sintered sample test piece was measured using a universal tensile compression tester (Model 2050 manufactured by Intesco). A tensile test was performed at an initial chuck-to-chuck distance of 45 mm and a speed of 50 mm / min, and the maximum detected tensile strength was defined as the maximum tensile strength. The tensile direction is not particularly limited, but is the longitudinal direction.
The larger the maximum tensile strength, the better the characteristics of the modeled object, and the maximum tensile strength is preferably 15 MPa or more, more preferably 17 MPa or more.
 <破断点の強度>
 得られた焼結サンプル試験片の破断点の強度は、引張強度の測定方法に準拠して測定した。
 破断点の強度は、大きいほど造形物の特性が良好であることを意味し、10MPa以上が好ましく、13MPa以上がより好ましい。
 <第1実施例>
<Strength of breaking point>
The strength of the breaking point of the obtained sintered sample test piece was measured according to the method for measuring the tensile strength.
The greater the strength of the breaking point, the better the characteristics of the modeled object, and the strength is preferably 10 MPa or more, more preferably 13 MPa or more.
<First Example>
 [実施例1-1]
 水溶性樹脂として、BVOH(ブテンジオール・ビニルアルコール共重合体、メタノール、酢酸メチルから合成される水溶性樹脂、水酸基量:37.8%)ペレットと、熱可塑性樹脂として、PP(日本ポリプロ株式会社 製商品名ノバテック FY6H)(融解熱量:101J/g、融点:169℃、重量平均分子量(Mw):3.35×10)ペレットを事前に7:3の割合でブレンドさせた後、二軸混練押出機のメインホッパーに投入した。
[Example 1-1]
As a water-soluble resin, BVOH (butenediol / vinyl alcohol copolymer, methanol, water-soluble resin synthesized from methyl acetate, amount of hydroxyl groups: 37.8%) pellets, and as a thermoplastic resin, PP (Nippon Polypro Co., Ltd.) Ltd. trade name Novatec FY6H) (heat of fusion: 101J / g, melting point: 169 ° C., a weight average molecular weight (Mw): 3.35 × 10 5 ) pellets in advance 7: after blended at a ratio of 3, biaxial It was put into the main hopper of the kneading extruder.
 混合樹脂を吐出量3kg/hに設定し、シリンダー温度190℃、スクリュー回転数50rpmの条件下で溶融混練した。
 押出機により押出し、得られた溶融混練物をペレタイザー等でカットしてペレット化した。
 得られたストランドを20wt%となるよう水(または50℃の温水)に投入し、200rpm/30minの条件で攪拌させながらBVOHを溶かした。
The mixed resin was melt-kneaded under the conditions of a discharge rate of 3 kg / h, a cylinder temperature of 190 ° C., and a screw rotation speed of 50 rpm.
It was extruded by an extruder, and the obtained melt-kneaded product was cut with a pelletizer or the like and pelletized.
The obtained strand was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the condition of 200 rpm / 30 min.
 得られた溶液を吸引ろ過によりろ過し、固形分(PP)を採取する。採取した固形分を再度水(または温水)に投入し、固形分に付着しているBVOHを洗浄するよう攪拌する。この時、散布性向上助剤(ナノシリカ)を固形分の0.5%混合させる。この溶液を再度吸引ろ過によりろ過し固形分を得る。この洗浄工程を6回繰り返し、できた固形分を80℃/ovn.で乾燥させ、必要に応じて分級(篩分け)を行い、適度な粒径に分級して、ナノシリカが付着したPP粉末を得た。
 このようにして粉末積層造形法用粉末を得た。
 得られた粉末について、水溶性樹脂の含有量、熱特性、粒度分布、円形度の最頻値、助剤付加率、散布率を測定した。
 さらに、得られた粉末で粉末床溶融結合方式のプリンターLisa Pro(Sinterit社)を用いて、造形テーブル温度150℃、ピッチ0.125mmの条件でJIS K7161に準拠した1BA形引張試験片を作製し、高度差・外観測定用の試験片とし、造形性の評価を行って結果を表1に示した。
The obtained solution is filtered by suction filtration, and the solid content (PP) is collected. The collected solid content is put into water (or warm water) again, and the mixture is stirred so as to wash the BVOH adhering to the solid content. At this time, the sprayability improving aid (nanosilica) is mixed with 0.5% of the solid content. This solution is filtered again by suction filtration to obtain a solid content. This washing step was repeated 6 times, and the solid content produced was 80 ° C./ovn. After drying with, if necessary, classification (sieving) was performed, and the mixture was classified into an appropriate particle size to obtain a PP powder to which nanosilica was attached.
In this way, a powder for additive manufacturing was obtained.
For the obtained powder, the content of the water-soluble resin, the thermal characteristics, the particle size distribution, the mode of circularity, the addition rate of the auxiliary agent, and the spraying rate were measured.
Furthermore, a 1BA type tensile test piece conforming to JIS K7161 was prepared from the obtained powder using a powder bed melt-bonding printer Lisa Pro (Sinterit) under the conditions of a modeling table temperature of 150 ° C. and a pitch of 0.125 mm. As a test piece for measuring altitude difference and appearance, the formability was evaluated and the results are shown in Table 1.
 [実施例1-2]
 BVOHとPPの配合比を6:4にし、混合樹脂を吐出量5kg/hに設定し、シリンダー温度210℃、スクリュー回転数100rpmの条件下で溶融混練し、洗浄工程を5回にした以外は、実施例1-1と同様の手法で粉末を作製した。また実施例1-1と同様の手法で造形物を作製した。
[Example 1-2]
Except that the mixing ratio of BVOH and PP was set to 6: 4, the mixed resin was set to a discharge rate of 5 kg / h, melt-kneaded under the conditions of a cylinder temperature of 210 ° C. and a screw rotation speed of 100 rpm, and the cleaning process was performed 5 times. , A powder was prepared in the same manner as in Example 1-1. Further, a modeled object was produced by the same method as in Example 1-1.
 [実施例1-3]
 PPを日本ポリプロ株式会社 製商品名ウィンテック WFX4Mペレット(融解熱量:65J/g、融点:124℃、重量平均分子量(Mw):2.30×10)に変え、洗浄工程を3回にした以外は、実施例2と同様の手法で粉末を作製した。また造形テーブル温度を105℃に変更した以外は実施例1-1と同条件で造形物を作製し、造形性を評価した。
[Example 1-3]
The PP Japan Polypropylene Corporation, trade name WINTEC WFX4M pellets (heat of fusion: 65 J / g, melting point: 124 ° C., a weight average molecular weight (Mw): 2.30 × 10 5 ) changed to and the washing step three times Except for the above, a powder was prepared in the same manner as in Example 2. Further, a modeled object was produced under the same conditions as in Example 1-1 except that the modeling table temperature was changed to 105 ° C., and the formability was evaluated.
 [実施例1-4]
 BVOHペレットとPC(ポリカーボネート)三菱ガス化学株式会社 製商品名ユーピロンH4000)ペレット(ガラス転移温度:141℃、重量平均分子量(Mw):3.54×10)を事前に7:3の割合でブレンドさせた後、ブラベンダーを用いて混錬した。
 得られた樹脂組成物を20wt%となるよう水(または50℃の温水)に投入し、200rpm/30minの条件で攪拌させながらBVOHを溶かし、実施例1-3と同様の手法で粉末を得た。
[Example 1-4]
BVOH pellets and PC (polycarbonate) Mitsubishi Gas Chemical Company, Inc. trade name Iupiron H4000) pellets (glass transition temperature: 141 ° C., weight average molecular weight (Mw): 3.54 × 10 4 ) at a ratio of 7: 3 in advance. After blending, it was kneaded using brabender.
The obtained resin composition was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the conditions of 200 rpm / 30 min to obtain a powder by the same method as in Example 1-3. rice field.
 [比較例1-1]
 実施例1-1において、製造方法を凍結粉砕法に変えた他は実施例1-1と同様にして、粉末積層造形法用粉末を得た。
 凍結粉砕の方法は以下の通りである。
 一般的に粒状樹脂を常温にて粉砕するのは困難なため、まずPP原料は液体窒素にて予冷し、原料を凍結させる。凍結した原料が定量的にスクリューフィーダーよりミル部へ運ばれ、ミル部にて凍結原料の粉砕が実施される。樹脂の低温脆性を利用して粉砕することにより凍結微粉砕品となる。粉砕された粒子はブロワーによりサイクロンへ捕集される。必要に応じて分級(篩分け)を行い、適度な粒径に分級して、粉末積層造形法用粉末を得た。
 この粉末について、実施例1-1と同様にして造形物を作製し、評価を行い、結果を表1に示した。
[Comparative Example 1-1]
In Example 1-1, a powder for additive manufacturing method was obtained in the same manner as in Example 1-1 except that the production method was changed to the freeze pulverization method.
The method of freeze crushing is as follows.
Since it is generally difficult to pulverize a granular resin at room temperature, the PP raw material is first precooled with liquid nitrogen to freeze the raw material. The frozen raw material is quantitatively transported from the screw feeder to the mill portion, and the frozen raw material is crushed in the mill portion. A frozen finely pulverized product is obtained by pulverizing the resin by utilizing the low temperature brittleness of the resin. The crushed particles are collected in a cyclone by a blower. If necessary, it was classified (sieved) and classified into an appropriate particle size to obtain a powder for additive manufacturing method.
For this powder, a modeled product was prepared in the same manner as in Example 1-1, evaluated, and the results are shown in Table 1.
 [比較例1-2]
 実施例1-1において、洗浄工程を3回にし、洗浄工程時に散布性向上助剤(ナノシリカ)を混合させず、乾燥した固形分を得た後に、ナノシリカを固形分の0.5%となるようにドライブレンドさせ、ナノシリカが付着したPP粉末を得た以外は実施例1-1と同様にして粉末積層造形法用粉末を得た。
 また実施例1-1と同様の手法で造形物を作製し、造形性の評価を行った。
[Comparative Example 1-2]
In Example 1-1, the cleaning step is performed three times, the sprayability improving aid (nanosilica) is not mixed during the cleaning step, and after obtaining a dry solid content, the nanosilica becomes 0.5% of the solid content. As described in Example 1-1, a powder for additive manufacturing was obtained in the same manner as in Example 1-1, except that a PP powder to which nanosilica was attached was obtained by dry blending.
Further, a modeled object was produced by the same method as in Example 1-1, and the formability was evaluated.
 [比較例1-3]
 実施例1-3において、濾過回数を1回とした他は実施例1-3と同様にして、粉末積層造形法用粉末を得た。
[Comparative Example 1-3]
In Example 1-3, powder for additive manufacturing method was obtained in the same manner as in Example 1-3 except that the number of times of filtration was one.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、本発明の粉末積層造形法用粉末は、特定の水酸基量の水溶性樹脂を所定の量含むため、粉末化後の助剤添加の際に、高い付加率を実現することができる。また、本発明の粉末積層造形法用粉末は粒度分布及び円形度の最頻値が所定範囲内にあるため、造形エリア内での粉末塗布時における粉末層の厚みの精度、および造形テーブルの凹部への粉末の散布率が向上し、レーザあるいは赤外線ランプ、キセノンランプ、ハロゲンランプなどで溶融する際の均一性が向上する。この結果、目的の3次元造形品を、良好な造形性で精度よく製造することができる。 As is clear from the results in Table 1, the powder for additive manufacturing method of the present invention contains a predetermined amount of a water-soluble resin having a specific hydroxyl group amount, and therefore has a high addition rate when an auxiliary agent is added after powdering. Can be realized. Further, since the powder for the powder laminated molding method of the present invention has the most frequent values of particle size distribution and circularity within a predetermined range, the accuracy of the thickness of the powder layer at the time of powder application in the molding area and the recess of the molding table. The dispersion rate of the powder on the powder is improved, and the uniformity when melting with a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is improved. As a result, the target three-dimensional modeled product can be manufactured with good formability and accuracy.
 <第2実施例> <Second Example>
 [実施例2-1]
 水溶性樹脂として、BVOH(ブテンジオール・ビニルアルコール共重合体、メタノール、酢酸メチルから合成される水溶性樹脂、水酸基量:37.8%)ペレットと、熱可塑性樹脂として、PP(メタロセン触媒で重合したプロピレン・α-オレフィンランダム共重合体(ポリプロピレン):日本ポリプロ株式会社 製商品名ウィンテック WFX4M)(融解熱量:65J/g、融点:124℃、重量平均分子量(Mw):2.30×10)ペレットを事前に6:4の割合でブレンドさせた後、二軸混練押出機(ラボテック社)のメインホッパーに投入した。
[Example 2-1]
BVOH (butenediol / vinyl alcohol copolymer, methanol, water-soluble resin synthesized from methyl acetate, amount of hydroxyl groups: 37.8%) pellets as water-soluble resin, and PP (metallocene-catalyzed polymer) as thermoplastic resin Propylene / α-olefin random copolymer (polypropylene): manufactured by Nippon Polypro Co., Ltd. Brand name Wintech WFX4M) (heat of fusion: 65 J / g, melting point: 124 ° C., weight average molecular weight (Mw): 2.30 × 10 5 ) The pellets were pre-blended at a ratio of 6: 4, and then charged into the main hopper of a twin-screw kneading extruder (Labotech).
 混合樹脂を吐出量3kg/hに設定し、シリンダー温度210℃、スクリュー回転数100rpmの条件下で溶融混練した。
 押出機により押出し、得られた溶融混練物をペレタイザー等でカットしてペレット化した。
 得られたストランドを20wt%となるよう水(または50℃の温水)に投入し、200rpm/30minの条件で攪拌させながらBVOHを溶かした。
The mixed resin was melt-kneaded under the conditions of a discharge rate of 3 kg / h, a cylinder temperature of 210 ° C., and a screw rotation speed of 100 rpm.
It was extruded by an extruder, and the obtained melt-kneaded product was cut with a pelletizer or the like and pelletized.
The obtained strand was put into water (or hot water at 50 ° C.) so as to have a concentration of 20 wt%, and BVOH was dissolved while stirring under the condition of 200 rpm / 30 min.
 得られた溶液を吸引ろ過によりろ過し、固形分(PP)を採取した。採取した固形分を再度水(または温水)に投入し、固形分に付着しているBVOHを洗浄するよう攪拌した。この時、分散剤(ナノシリカ)を固形分の0.5%となるように混合させた。この溶液を再度吸引ろ過によりろ過し固形分を得た。この工程を数回繰り返し、できた固形分を80℃/ovn.で乾燥させ、ナノシリカが付着したPP粉末を得た。このようにして粉末積層造形法用粉末を得た。
 得られた粉末について上記方法に従い測定し、結果を表2に示した。
The obtained solution was filtered by suction filtration, and the solid content (PP) was collected. The collected solid content was put into water (or warm water) again, and the mixture was stirred to wash the BVOH adhering to the solid content. At this time, the dispersant (nanosilica) was mixed so as to have a solid content of 0.5%. This solution was filtered again by suction filtration to obtain a solid content. This step was repeated several times, and the resulting solid content was dried at 80 ° C./ovn. To obtain a PP powder to which nanosilica was attached. In this way, a powder for additive manufacturing was obtained.
The obtained powder was measured according to the above method, and the results are shown in Table 2.
 [実施例2-2]
 実施例2-1において、分散剤(ナノシリカ)を固形分の2%となるように混合させた以外は実施例2-1と同様の手法で粉末積層造形法用粉末を得た。
[Example 2-2]
In Example 2-1 a powder for additive manufacturing was obtained by the same method as in Example 2-1 except that the dispersant (nanosilica) was mixed so as to have a solid content of 2%.
 [実施例2-3]
 実施例2-1において、分散剤(ナノシリカ)を固形分の5%となるように混合させた以外は実施例2-1と同様の手法で粉末積層造形法用粉末を得た。
[Example 2-3]
In Example 2-1 a powder for additive manufacturing was obtained by the same method as in Example 2-1 except that the dispersant (nanosilica) was mixed so as to have a solid content of 5%.
 [比較例2-1]
 実施例2-1において、固形分に付着しているBVOHの洗浄の際に、分散剤を混合せずに、固形分を80℃/ovn.で乾燥させ、PP粉末を得た後に分散剤(ナノシリカ)を添加させた以外は実施例2-1と同様の手法で粉末積層造形法用粉末を得た。
 この粉末について、実施例2-1と同様の測定、評価を行い、結果を表2に示した。
[Comparative Example 2-1]
In Example 2-1 when cleaning the BVOH adhering to the solid content, the solid content was dried at 80 ° C./oven. Without mixing the dispersant, and after obtaining the PP powder, the dispersant ( A powder for additive manufacturing was obtained in the same manner as in Example 2-1 except that nanosilica) was added.
This powder was measured and evaluated in the same manner as in Example 2-1 and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、本発明の粉末積層造形法用粉末は、粉末表面が特定の割合で助剤成分に覆われていることにより、造形エリア内での粉末塗布時における粉末層の厚みの精度、および造形テーブルの凹部への粉末の散布率が向上する。このため、粉末積層造形法において、レーザあるいは赤外線ランプ、キセノンランプ、ハロゲンランプなどで溶融する際の造形品の造形均一性が向上する。この結果、目的の3次元造形品を、良好な造形性(外観、高度差、粗さ)かつ機械特性(引張強度、破断強度)で精度よく製造することができる。 As is clear from the results in Table 2, the powder for the powder laminated molding method of the present invention has a powder layer at the time of powder application in the molding area because the powder surface is covered with an auxiliary agent component in a specific ratio. The accuracy of the thickness of the powder and the rate of powder spraying into the recesses of the modeling table are improved. Therefore, in the powder laminated molding method, the molding uniformity of the modeled product when it is melted by a laser, an infrared lamp, a xenon lamp, a halogen lamp, or the like is improved. As a result, the target three-dimensional model can be accurately manufactured with good formability (appearance, altitude difference, roughness) and mechanical properties (tensile strength, breaking strength).

Claims (12)

  1.  熱可塑性樹脂及び水溶性樹脂を含み、
     前記水溶性樹脂中の水酸基量が30wt%以上であり、
     下記の測定条件[1]で測定されるX線光電子分光分析で測定した粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01atm%~15atm%である粉末積層造形法用粉末。
    測定条件[1]:
    測定機器:X線光電子分光分析K-Alpha(サーモフィッシャーサイエンティフィック社)
    測定モード:ナロウモード
    励起X線:monochromatic Al Kα(50μm)
    X線照射エリアサイズ:400×200μm
    Contains thermoplastic and water-soluble resins
    The amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and the amount of hydroxyl groups is 30 wt% or more.
    Powder for powder lamination molding method in which the amount of oxygen atoms in the water-soluble resin contained in the particle surface measured by X-ray photoelectron spectroscopy measured under the following measurement condition [1] is 0.01 atm% to 15 atm%. ..
    Measurement condition [1]:
    Measuring equipment: X-ray photoelectron spectroscopy K-Alpha (Thermo Fisher Scientific)
    Measurement mode: Narrow mode Excited X-ray: Monochrome Al Kα (50 μm)
    X-ray irradiation area size: 400 x 200 μm
  2.  熱可塑性樹脂及び水溶性樹脂を含み、
     前記水溶性樹脂中の水酸基量が30wt%以上であり、
     有機元素分析で測定した、粒子表面に含まれる前記水溶性樹脂中の酸素原子の量が0.01wt%~10wt%である粉末積層造形法用粉末。
    Contains thermoplastic and water-soluble resins
    The amount of hydroxyl groups in the water-soluble resin is 30 wt% or more, and the amount of hydroxyl groups is 30 wt% or more.
    A powder for a powder laminated molding method in which the amount of oxygen atoms contained in the water-soluble resin contained in the particle surface is 0.01 wt% to 10 wt% as measured by organic elemental analysis.
  3.  熱可塑性樹脂を含み、下記の測定条件[1]で測定されるX線光電子分光分析法により同定される、粉末表面に含まれる下記元素成分Xの含有率が7atm%以上35atm%以下である粉末積層造形法用粉末。
    測定条件[1]:
    測定機器:X線光電子分光分析K-Alpha(サーモフィッシャーサイエンティフィック社)
    測定モード:ナロウモード
    励起X線:monochromatic Al Kα(50μm)
    X線照射エリアサイズ:400×200μm
    元素成分X:Si、Al、Fe、Ca、Mgからなる群から選ばれる1つ以上
    A powder containing a thermoplastic resin and having a content of the following elemental component X contained in the powder surface of 7 atm% or more and 35 atm% or less, which is identified by the X-ray photoelectron spectroscopy measured under the following measurement condition [1]. Powder for laminated molding method.
    Measurement condition [1]:
    Measuring equipment: X-ray photoelectron spectroscopy K-Alpha (Thermo Fisher Scientific)
    Measurement mode: Narrow mode Excited X-ray: Monochrome Al Kα (50 μm)
    X-ray irradiation area size: 400 x 200 μm
    Element component X: One or more selected from the group consisting of Si, Al, Fe, Ca, Mg
  4.  CWるつぼに入れ、小型ボックス炉(光洋サーモシステム社、KBF894N1)を用いて空気雰囲気下、650℃で2時間加温し、残渣を計量することによって測定される粉末中の灰分が0.01%以上7%以下である、請求項3に記載の粉末積層造形法用粉末。 Put it in a CW crucible, heat it in an air atmosphere using a small box furnace (Koyo Thermo Systems Co., Ltd., KBF894N1) at 650 ° C for 2 hours, and weigh the residue to measure 0.01% ash content in the powder. The powder for the powder laminated molding method according to claim 3, which is 7% or more and is 7% or less.
  5.  粒度分布としてD50が5μm以上120μm以下である請求項1~4のいずか1項に記載の粉末積層造形法用粉末。 The powder for additive manufacturing method according to any one of claims 1 to 4, wherein D50 is 5 μm or more and 120 μm or less as a particle size distribution.
  6.  円形度の最頻値が0.6以上である請求項1~5のいずれか1項に記載の粉末積層造形法用粉末。 The powder for additive manufacturing method according to any one of claims 1 to 5, wherein the mode of circularity is 0.6 or more.
  7.  前記粉末積層造形法用粉末中の熱可塑性樹脂のDSCチャートにおける融解熱量が20J/g以上140J/g以下である請求項1~6のいずれか1項に記載の粉末積層造形法用粉末。 The powder for the powder laminated molding method according to any one of claims 1 to 6, wherein the heat of fusion of the thermoplastic resin in the powder for the powder laminated molding method in the DSC chart is 20 J / g or more and 140 J / g or less.
  8.  前記粉末積層造形法用粉末中の熱可塑性樹脂の融点が90℃以上230℃以下である請求項1~7のいずれか1項に記載の粉末積層造形法用粉末。 The powder for additive manufacturing method according to any one of claims 1 to 7, wherein the melting point of the thermoplastic resin in the powder for additive manufacturing method is 90 ° C. or higher and 230 ° C. or lower.
  9.  前記粉末積層造形法用粉末中の熱可塑性樹脂の重量平均分子量が30,000以上である請求項1~8のいずれか1項に記載の粉末積層造形法用粉末。 The powder for additive manufacturing method according to any one of claims 1 to 8, wherein the weight average molecular weight of the thermoplastic resin in the powder for additive manufacturing method is 30,000 or more.
  10.  請求項1~9のいずれか1項に記載の粉末積層造形法用粉末を用いる粉末積層造形法。 A powder additive manufacturing method using the powder for the powder additive manufacturing method according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の粉末積層造形法用粉末を用いた造形品。 A modeled product using the powder for the powder additive manufacturing method according to any one of claims 1 to 9.
  12.  溶融可能なマトリックス成分に、該マトリックス成分とは相溶しない樹脂を分散させた後に、マトリックス成分を除去して樹脂粒子を製造する方法であって、
    前記マトリックス成分を除去する際に助剤を添加する、粉末積層造形法用粉末の製造方法。
    A method of producing resin particles by dispersing a resin incompatible with the matrix component in a meltable matrix component and then removing the matrix component.
    A method for producing a powder for additive manufacturing, in which an auxiliary agent is added when the matrix component is removed.
PCT/JP2021/013150 2020-03-26 2021-03-26 Powder for powder additive manufacturing method, powder additive manufacturing method, manufactured product, and production method for powder for powder additive manufacturing method WO2021193976A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-055494 2020-03-26
JP2020055494 2020-03-26
JP2021-052243 2021-03-25
JP2021052243A JP2022149900A (en) 2021-03-25 2021-03-25 Powder for powder laminate molding method, powder laminate molding, molded product, and method of producing powder for laminate molding method
JP2021-054020 2021-03-26
JP2021054020A JP2021154737A (en) 2020-03-26 2021-03-26 Powder for powder lamination molding method, powder lamination molding method and molded article

Publications (1)

Publication Number Publication Date
WO2021193976A1 true WO2021193976A1 (en) 2021-09-30

Family

ID=77892030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013150 WO2021193976A1 (en) 2020-03-26 2021-03-26 Powder for powder additive manufacturing method, powder additive manufacturing method, manufactured product, and production method for powder for powder additive manufacturing method

Country Status (1)

Country Link
WO (1) WO2021193976A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321711A (en) * 2005-04-20 2006-11-30 Trial Corp Microsphere used for selective laser sintering, method for producing the same, molding by selective laser sintering, and method for producing the same
JP2007502713A (en) * 2003-05-21 2007-02-15 ズィー コーポレイション Thermoplastic powder material system for forming appearance models from 3D printing systems
JP2007277546A (en) * 2006-04-01 2007-10-25 Degussa Gmbh Polymer powder, method for producing polymer powder, use of powder and formed article made of the powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502713A (en) * 2003-05-21 2007-02-15 ズィー コーポレイション Thermoplastic powder material system for forming appearance models from 3D printing systems
JP2006321711A (en) * 2005-04-20 2006-11-30 Trial Corp Microsphere used for selective laser sintering, method for producing the same, molding by selective laser sintering, and method for producing the same
JP2007277546A (en) * 2006-04-01 2007-10-25 Degussa Gmbh Polymer powder, method for producing polymer powder, use of powder and formed article made of the powder

Similar Documents

Publication Publication Date Title
TWI389942B (en) Moulding material and moulding comprising a thermo-plastic containing nanoscale, inorganic particles, process for the preparation of the moulding material and moulding and uses thereof
JP5156189B2 (en) Use of polyarylene ether ketone powder in a manufacturing method without using a mold based on a three-dimensional powder and a molded body produced therefrom
JP6906526B2 (en) Method for producing polymer powder
JP2006528717A (en) Powdered composition of polymer and ammonium polyphosphate-containing flameproofing agent, method for producing the same, and molded product produced from this powder
WO2002042382A1 (en) Granular inorganic filler, process for producing the filler and resin compositions containing the same
JP2021507077A (en) A method for producing a shaped article, which comprises printing a layer of a polymer composition containing at least one PEEK-PEmEK copolymer.
JP5104304B2 (en) Composition containing carbon black, composition for coloring, and conductive composition
ES2585386T3 (en) Use of mixtures for the preparation of impact-modified thermoplastic compositions
US20220281163A1 (en) Selective sintering of polymer-based composite materials
CN109863195B (en) Improved expandable vinyl aromatic polymers
WO2021193976A1 (en) Powder for powder additive manufacturing method, powder additive manufacturing method, manufactured product, and production method for powder for powder additive manufacturing method
JP2023501423A (en) Improved powders for additive manufacturing
JP2021154737A (en) Powder for powder lamination molding method, powder lamination molding method and molded article
EP4219607A1 (en) Foam sheet
KR102419948B1 (en) Improved Expandable Vinyl Aromatic Polymers
JP4165680B2 (en) Resin composition for powder molding
US20200291227A1 (en) Material for Processing in Selective Laser Sintering Method
JP2020193277A (en) Polyacetal powder and method of using the same, and additive manufacturing method
JP2010084070A (en) Hollow particle-containing master batch
EP2417187B1 (en) Flame retardant masterbatch for thermoplastic polymers and process for its production
JP2022149900A (en) Powder for powder laminate molding method, powder laminate molding, molded product, and method of producing powder for laminate molding method
JPWO2020138188A1 (en) Powder for additive manufacturing method and its manufacturing method
JP5371253B2 (en) Method for producing thermoplastic resin composition containing liquid additive
WO2023153352A1 (en) Inorganic powder
JP2018145342A (en) Foamable thermoplastic resin particle, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775686

Country of ref document: EP

Kind code of ref document: A1