WO2021193959A1 - Drug delivery device and method for producing same - Google Patents

Drug delivery device and method for producing same Download PDF

Info

Publication number
WO2021193959A1
WO2021193959A1 PCT/JP2021/013059 JP2021013059W WO2021193959A1 WO 2021193959 A1 WO2021193959 A1 WO 2021193959A1 JP 2021013059 W JP2021013059 W JP 2021013059W WO 2021193959 A1 WO2021193959 A1 WO 2021193959A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
delivery device
drug
drug delivery
soluble
Prior art date
Application number
PCT/JP2021/013059
Other languages
French (fr)
Japanese (ja)
Inventor
亮 松元
スーユアン チン
拓也 宮崎
美智子 伊藤
孝祥 菅波
Original Assignee
国立大学法人 東京医科歯科大学
地方独立行政法人神奈川県立産業技術総合研究所
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学, 地方独立行政法人神奈川県立産業技術総合研究所, 国立大学法人東海国立大学機構 filed Critical 国立大学法人 東京医科歯科大学
Publication of WO2021193959A1 publication Critical patent/WO2021193959A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin

Definitions

  • the present invention relates to a drug delivery device having a needle capable of carrying a drug and a method for producing the same.
  • Microneedle is known as a device for percutaneously administering a drug.
  • the microneedles are provided as a patch in which a plurality of needles having a length of 1 mm or less carrying a drug to be administered are arranged in an array, and the needles are attached to the skin surface to attach the needles.
  • the drug is configured to be delivered via. Therefore, the microneedle has a feature that the drug can be continuously administered in a minimally invasive manner for a long period of time.
  • Patent Document 1 International Publication No. 20/182099
  • the conventional microneedle has insufficient mechanical strength because the needle is very fine, and the needle may break or buckle when the needle is punctured into the skin.
  • the needle is made of a material having high mechanical strength, or the surface of the needle is coated with a material having high mechanical strength.
  • a material having high mechanical strength has a dense structure, there is a possibility that the delivery ability of the drug may decrease, such as a decrease in the amount of the drug released from the needle.
  • One of the objects of the present invention is to provide a drug delivery device having a needle having sufficient mechanical strength for puncturing while suppressing the influence on the delivery ability of the drug and a method for producing the same.
  • the drug delivery device of the present invention comprises a needle capable of carrying a drug and having the permeability of the drug.
  • a soluble / degradable material layer formed of at least a part of the surface of the needle and composed of a material that dissolves or decomposes under physiological conditions. Have.
  • the method for manufacturing a drug delivery device of the present invention A method of manufacturing a drug delivery device having a drug-permeable needle. Forming the needle and To form a soluble / degradable material layer of a material that dissolves or decomposes under physiological conditions, at least on a portion of the surface of the needle. including.
  • the "physiological condition” means an aqueous solution adjusted to have the same pH, temperature and ionic composition as in vivo.
  • the pH is preferably 1 to 9, more preferably 7 to 8
  • the temperature is preferably 30 to 40 ° C.
  • the ionic composition is preferably a sodium chloride concentration of 100 to 200 mM.
  • “materials that dissolve or decompose under physiological conditions” and “soluble / degradable materials” are defined as “materials that dissolve or decompose over time” under physiological conditions (for example, in a state of being punctured subcutaneously). It means a material that can be decomposed and disappear.
  • a drug delivery device having a needle having a needle having sufficient mechanical strength at the time of puncturing while suppressing the influence on the delivery ability of the drug and a method for producing the same.
  • FIG. 5 is a cross-sectional view of another form of microneedle having a reservoir.
  • FIG. 5 is a cross-sectional view of yet another form of a microneedle having a reservoir. It is sectional drawing of one form of the mold used for manufacturing the microneedle shown in FIG. It is a confocal microscope image which shows the typical result obtained by the evaluation 1. It is a confocal microscope image and a graph which shows the representative result obtained by the evaluation 2.
  • a microneedle 10 which has a base portion 100 and a plurality of needles 110 and is provided as a patch to be attached to the skin, is shown.
  • the base portion 100 is a sheet-like portion that supports a plurality of needles 110, has mechanical strength capable of supporting these needles 110, and has flexibility enough to be deformed along the surface of the skin. ing.
  • the plurality of needles 110 are configured as a needle array.
  • the base portion 100 and the needle 110 may be made of different materials or may be made of the same material. When the base portion 100 and the needle 110 are made of the same material, they can be made at the same time. At least the needle 110 is permeable to the drug. Further, as shown in FIG. 2, a soluble / degradable material layer 120 that can function as a reinforcing structure of the needle 110 is formed on the surface of the needle 110.
  • microneedle 100 will be described in more detail.
  • Drugs that can be delivered using the drug delivery device according to the invention include, but are not limited to, proteins, peptides, nucleic acids, other high molecular weight polymers, low molecular weight compounds and the like.
  • the drug may be a therapeutic agent for a disease, a prophylactic drug, a vaccine, a nutritional supplement, or the like.
  • a particularly preferred drug is insulin.
  • Various natural or modified insulins are available by purchase or synthesis of commercial products.
  • As insulin for example, Humarin (registered trademark) may be used.
  • Humarin® is a human (genetically modified) insulin marketed by Eli Lilly and Company.
  • insulin preparations various preparations including fast-acting type, intermediate type, and long-acting type have been developed, and they can be appropriately selected and used.
  • the base portion 100 is configured to have the mechanical strength necessary for the needle 110 to be punctured well into the skin against the elastic force of the skin when the plurality of needles 110 are punctured into the skin.
  • the base portion 100 is preferably made of a biocompatible material.
  • the base portion 100 can have a reservoir of the drug released from the needle 110. Having a reservoir allows the drug to be released over a long period of time (eg, 7 days).
  • a microneedle capable of releasing a drug over a long period of time can be suitably used as an insulin delivery microneedle that administers insulin as a drug according to a blood glucose concentration.
  • the reservoir can be configured, for example, by forming the base portion 100 in a concave shape (cup shape) with an open upper surface.
  • the base portion 100 may be formed of the same material as the needle 110, and the base portion 100 itself impregnated with the drug may be used as a reservoir.
  • the base portion 100 and the plurality of needles 110 can be formed at the same time by integral molding.
  • the base portion 100 is made of a material that does not impede the continuity of the flow of the drug from the needle 110 to the base portion 100.
  • the structure of the microneedle having a reservoir will be described in detail later.
  • the planar shape of the base portion 100 may be any shape such as a circular shape, an elliptical shape, and a polygonal shape, and may be, for example, a rectangular shape.
  • the length of the needle 110 may be long enough for the needle 110 to reach the stratum corneum when the needle 110 is punctured into the skin, and may be preferably 5 mm or less, more preferably 1 mm or less.
  • the number and arrangement of needles 110 may be arbitrary.
  • a plurality of needles 110 can be arranged in a matrix of M ⁇ N (M and N are integers of 1 to 30 respectively).
  • 10 ⁇ 12 needles 110 are arranged at a pitch of 500 ⁇ m in a rectangular region of 8 mm ⁇ 8 mm.
  • the shape of the needle 110 may be arbitrary as long as it has a tip that can puncture the skin, and may be preferably a pyramid shape.
  • the needle 110 can contain any component, depending on the drug to be delivered, as long as it is permeable to the drug.
  • the components of the needle 110 that are preferable when the microneedle 10 is used as a device for delivering insulin as a drug according to the blood glucose concentration will be described.
  • the needle 110 can include a gel composition containing a copolymer containing a phenylboronic acid-based monomer unit at least at the tip thereof.
  • the gel composition is specifically obtained by copolymerizing a monomer mixture containing a phenylboronic acid-based monomer as described later, and as a result, a gel having a crosslinked molecular structure of the copolymer is obtained. Be done.
  • “monomer unit” means a structural unit in a (co) polymer derived from a monomer, and in the following description, “monomer” means “monomer unit". Sometimes used.
  • the phenylboronic acid-based monomer has the following formula: (In the formula, X represents a substituent, preferably F, and n represents an integer of 1 to 4.) It means a monomer having a phenylboronic acid functional group represented by.
  • Insulin delivery microneedles utilize a mechanism by which the phenylboronic acid structure changes its structure depending on the glucose concentration, as described below.
  • Phenylboronic acid dissociated in water (hereinafter, may be referred to as "PBA" in the present specification) reversibly binds to a sugar molecule and maintains the above equilibrium state.
  • PBA Phenylboronic acid dissociated in water
  • a gel composition that can be preferably used is a gel composition containing a copolymer containing a phenylboronic acid-based monomer unit having the above-mentioned properties.
  • the gel composition is not particularly limited, and examples thereof include those described in Japanese Patent No. 5696961.
  • the phenylboronic acid-based monomer used for preparing the gel composition is not limited, but is represented by, for example, the following general formula.
  • R is H or CH 3 , F exists independently, n is either 1, 2, 3 or 4, and m is 0 or an integer greater than or equal to 1.
  • the above-mentioned phenylboronic acid-based monomer is a fluorinated phenylboronic acid in which hydrogen on the phenyl ring is replaced with 1 to 4 fluorines (hereinafter, may be referred to as "FPBA" in the present specification). It has a group and has a structure in which the carbon of the amide group is bonded to the phenyl ring.
  • the phenylboronic acid-based monomer having the above structure has high hydrophilicity, and the phenyl ring is fluorinated, so that pKa can be set to 7.4 or less at the biological level.
  • this phenylboronic acid-based monomer not only acquires sugar recognition ability in a biological environment, but also enables copolymerization with a gelling agent or a cross-linking agent described later due to an unsaturated bond, resulting in a glucose concentration. It can be a gel that depends on the phase change.
  • the introduction location of F and B (OH) 2 may be any of ortho, meta, and para. good.
  • a phenylboronic acid-based monomer when m is 1 or more can have a lower pKa than a phenylboronic acid-based monomer when m is 0.
  • m is, for example, 20 or less, preferably 10 or less, and more preferably 4 or less.
  • phenylboronic acid-based monomer there is a phenylboronic acid-based monomer in which n is 1 and m is 2, which is particularly preferable as a phenylboronic acid-based monomer 4- (2- (2-).
  • the gel composition can be prepared from a gelling agent having a property (biocompatibility) that does not cause toxic or adverse effects on biological functions in the living body, the above-mentioned phenylboronic acid-based monomer, and a cross-linking agent. ..
  • the preparation method is not particularly limited, but is a monomer containing a gelling agent, a phenylboronic acid-based monomer, and a cross-linking agent, which are the main chains of the gel (copolymer), in a predetermined molar ratio. It can be prepared by mixing with the components and polymerizing the monomers. A polymerization initiator is used as needed for the polymerization.
  • insulin is contained in the gel composition in advance.
  • insulin can be diffused into the gel by immersing the gel in an aqueous solution such as a phosphate buffered aqueous solution (PBS) containing insulin at a predetermined concentration.
  • PBS phosphate buffered aqueous solution
  • the gel taken out from the aqueous solution is immersed in hydrochloric acid, for example, for a predetermined time to form a thin dehydration-shrinkable layer (called a skin layer) on the surface of the gel body, whereby the drug is encapsulated (loaded) in the needle 110.
  • a skin layer thin dehydration-shrinkable layer
  • the suitable ratio of the gelling agent, the phenylboronic acid-based monomer, and the cross-linking agent may be a monomer having a composition that can control the release of insulin according to the glucose concentration under physiological conditions. It varies depending on such factors, and is not particularly limited.
  • the present inventors have already prepared gels by combining various phenylboronic acid-based monomers in various ratios with gelling agents and cross-linking agents, and have studied their behavior (for example, Japanese Patent No. 5622188). Please refer to).
  • a person skilled in the art can obtain a gel having a suitable composition based on the description in the present specification and the technical information reported in the art.
  • the gel body formed by the copolymer obtained from the gelling agent, the phenylboronic acid-based monomer, and the cross-linking agent can expand or contract in response to the glucose concentration, and maintains the properties of pKa 7.4 or less. If it can be formed into a gel, the gel can be prepared by setting the charged molar ratio of the gelling agent / phenylboronic acid-based monomer to an appropriate value.
  • the gelling agent may be any biocompatible material that is biocompatible and can be gelled, and examples thereof include biocompatible acrylamide-based monomers. Specific examples thereof include N-isopropylacrylamide (NIPAAm), N, N-dimethylacrylamide (DMAAm), N, N-diethylacrylamide (DEAAm) and the like.
  • NIPAAm N-isopropylacrylamide
  • DMAAm N-dimethylacrylamide
  • DEAAm N-diethylacrylamide
  • the cross-linking agent may be any substance that is also biocompatible and can cross-link the monomer.
  • MBAAm N, N'-methylenebisacrylamide
  • ELDMA ethylene glycol dimethacrylate
  • MBMAAm ethylene glycol dimethacrylate
  • various other cross-linking agents can be mentioned.
  • the gel composition comprises N-isopropylmethacrylamide (NIPAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), and N, as shown below. It is obtained by dissolving N'-methylenebisacrylamide (MBAAm) in a solvent at an appropriate blending ratio and polymerizing it. The polymerization can be carried out at room temperature and under aqueous conditions.
  • NIPAAm N-isopropylmethacrylamide
  • AmECFPBA 2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid
  • N as shown below. It is obtained by dissolving N'-methylenebisacrylamide (MBAAm) in a solvent at an appropriate blending ratio and polymerizing it. The polymerization can be carried out at room temperature and under aqueous conditions.
  • any solvent in which the monomer is soluble can be used.
  • solvents include, for example, water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), ionic liquids and combinations thereof.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • THF tetrahydrofuran
  • ionic liquids ionic liquids and combinations thereof.
  • an aqueous methanol solution can be preferably used as a solvent.
  • a pregel solution in which a gelling agent, PBA and a cross-linking agent are dissolved in such a solvent is prepared and polymerized.
  • the phenylboronic acid-based monomer is copolymerized with the gelling agent and the cross-linking agent to form the gel body. Insulin can be diffused into this gel, and the surface of the gel body can be surrounded by a dehydration shrinkage layer.
  • the pKa is 7.4 or less, and when the glucose concentration becomes high under physiological conditions of a temperature of 35 ° C. to 40 ° C., the gel constituting the needle 110 expands. Along with this, the dehydration contraction layer disappears, and insulin in the gel can be released to the outside.
  • such a gel composition can autonomously release insulin in response to glucose concentration.
  • a catalyst such as an initiator or an accelerator can be used for the polymerization.
  • the initiator for example, ammonium persulfate (APS) can be used.
  • the accelerator for example, tetramethylethylenediamine (TEMED) can be used.
  • TEMED tetramethylethylenediamine
  • the gel composition may be a composite gel composition containing silk fibroin (SF) in addition to a copolymer containing a phenylboronic acid-based monomer unit.
  • This composite gel composition is obtained by copolymerizing a monomer mixture containing a phenylboronic acid-based monomer in the presence of SF, and as a result, the molecules of SF are contained in the crosslinked molecular structure of the copolymer. Is distributed almost uniformly.
  • the SF contained in the compound gel composition can also be used for the base portion 100.
  • SF imparts mechanical strength to the needle 110.
  • the amount of SF (solid content weight) can be determined so that the mechanical strength of the microneedles is a suitable value, but of the monomer (phenylboronic acid-based monomer, gelling agent and cross-linking agent). It can be, for example, 10 to 90 parts by weight, preferably 24 to 60 parts by weight, and more preferably 40 to 60 parts by weight with respect to 100 parts by weight in total.
  • the higher the weight fraction of SF with respect to the total number of monomers the higher the mechanical strength of the composite gel composition.
  • the higher the weight fraction of SF the lower the monomer concentration. If the monomer concentration is too low, it becomes difficult to form a gel composition. Therefore, it is important to determine the weight fraction of SF with respect to the total amount of monomers within a range in which the formation of the gel composition is not inhibited.
  • the composite gel composition is N-isopropylmethacrylamide (NIPAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), N, N'-methylenebisacrylamide. It is obtained by dissolving (MBAAm) and SF in a solvent at an appropriate blending ratio to prepare a pregel solution, and polymerizing this solution.
  • the pregel solution may optionally contain a gelling agent, PBA and a cross-linking agent.
  • the polymerization is preferably carried out at room temperature and under aqueous conditions in order to avoid denaturation of SF.
  • SF has a property of easily gelling, when preparing a pregel solution, after dissolving a gelling agent, PBA, a cross-linking agent, etc. in a solvent, SF is added to the solution in the state of SF solution. Is preferable.
  • an alcohol aqueous solution such that the volume% of methanol in the pregel solution before the addition of SF is, for example, 40% by volume can be used.
  • the preferable volume% of methanol in the pregel solution after the addition of SF is 3% by volume to 30% by volume, more preferably 5% by volume to 20% by volume, and most preferably 8% by volume.
  • PBA has low solubility in ethanol. Therefore, it is preferable that the volume% is higher than that when the aqueous methanol solution is used, for example, the volume% of ethanol in the pregel solution before the addition of SF is 60% by volume.
  • the gel composition may contain a monomer having a hydroxyl group such as N-hydroxyethylacrylamide (NHEAAm). This gives a gel composition that is resistant to temperature changes.
  • NHEAAm N-hydroxyethylacrylamide
  • R is H or CH 3 , F exists independently, n is either 1, 2, 3 or 4, and m is 0 or an integer greater than or equal to 1.
  • R1 is H or CH 3 , m is 0 or an integer of 1 or more
  • R 2 is OH, a saturated or unsaturated C 1-6 alkyl group substituted with 1 or more hydroxyl groups, 1 Saturated or unsaturated C 3-10 cycloalkyl group substituted with the above hydroxyl groups, C 3-12 containing 1 to 4 heteroatoms selected from NH, O and S substituted with one or more hydroxyl groups It is a heterocyclic group, a C 6-12 aryl group substituted with one or more hydroxyl groups, a monosaccharide group, or a polysaccharide group. ], A gel composition containing a monomer (hereinafter, also referred to as a hydroxyl-based monomer).
  • the monomer of the general formula (2) has a hydroxyl group in the molecule. Without being bound by any particular theory, this hydroxyl group increases the hydrophilicity of the gel, offsets the hydrophobicity of the boronic acid, and acts on the boronic acid in the gel to prevent excessive swelling of the gel. It is considered to have an effect.
  • the upper limit of m is not particularly limited, but is, for example, 20 or less, preferably 10 or less, and more preferably 4 or less.
  • hydroxyl-based monomer examples include a monomer in which R 1 is hydrogen, m is 1, and R 2 is OH, which is particularly preferable as the hydroxyl-based monomer N-.
  • Hydroxyethyl acrylamide N- (Hydroxyethyl) acrylamide, NHEAAm).
  • NHEAAm Hydroxyethyl acrylamide
  • R 2 may be, for example, a sugar derivative such as a catechol group or a glycolyl group.
  • the monosaccharide can be, for example, glucose.
  • the hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, 1 mol or more, 5 mol% or more, 10 mol% or more, 15 mol% or more, 20 mol% or more, 25 mol% or more, 30 mol% or more. It can be contained in a proportion of 35 mol% or more, 40 mol% or more, 45 mol% or more, 50 mol% or more, or 60 mol% or more. Further, the hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, 90 mol% or less, 80 mol% or less, 70 mol% or less, 60 mol% or less, 50 mol% or less, 45 mol% or less, 40 mol.
  • the hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, from 10 mol% to 90 mol%, 15 mol% to 45 mol%, 20 mol% to 40 mol%, or 25 mol% to 25 mol%.
  • the ratio may be in the range of 35 mol%.
  • the concentration range can be specified by any combination of the above upper and lower limits.
  • the preferred proportion of hydroxyl-based monomers is about 10 mol%.
  • the term "about” is used to refer to the range of 10% before and after the numerical value following it. That is, about 30 mol% means a range of 27 mol% to 33 mol%.
  • the gel composition comprises a gelling agent having a property (biocompatibility) that does not cause toxic or adverse effects on biological functions in the living body, the above-mentioned phenylboronic acid-based monomer, and the above-mentioned hydroxyl-based monomer. And a cross-linking agent.
  • the method for preparing the gel is not particularly limited, but first, a gelling agent serving as the main chain of the gel, a phenylboronic acid-based monomer, a hydroxyl-based monomer, and a cross-linking agent are predetermined. It can be prepared by mixing at a charged molar ratio and allowing a polymerization reaction. A polymerization initiator is used as needed for the polymerization.
  • polymerization initiator for example, an initiator known to those skilled in the art such as 2,2'-azobisisobutyronitrile (AIBN) and 1,1'-azobis (cyclohexanecarbonitrile) (ABCN) should be used. Can be done.
  • the proportion of the polymerization initiator added to the gel composition can be, for example, about 0.1 mol%.
  • the polymerization reaction can be carried out, for example, using dimethyl sulfoxide (DMSO) as a reaction solvent, the reaction temperature can be, for example, 60 ° C., and the reaction time can be, for example, 24 hours.
  • DMSO dimethyl sulfoxide
  • the conditions of can be appropriately adjusted by those skilled in the art.
  • Suitable forms of the gel composition containing the monomer having a hydroxyl group include, for example, N-isopropylmethacrylamide (NIPMAAm) as the gelling agent (main chain) and 4- (2) as the phenylboronic acid-based monomer.
  • NIPMAAm N-isopropylmethacrylamide
  • 4- (2) as the phenylboronic acid-based monomer.
  • the gel body that can be formed by the gel composition containing the gelling agent, the phenylboronic acid-based monomer, the hydroxyl-based monomer and the cross-linking agent can expand or contract in response to the glucose concentration.
  • a gel is prepared by setting the charged molar ratio of the gelling agent / phenylboronic acid-based monomer / hydroxyl-based monomer / cross-linking agent to various other values. You may.
  • the gel composition is N-isopropylmethacrylamide (NIPMAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), N-hydroxyethylacrylamide (NHEAAm), N, N'-. It may be prepared by polymerizing methylenebisacrylamide (MBAAm) at a charged molar ratio of 62/27/11/5 (mol%).
  • the soluble / degradable material layer 120 is made of a material that dissolves or decomposes under physiological conditions (hereinafter, also referred to as a soluble / degradable material).
  • a soluble / degradable material By forming the soluble / degradable material layer 120 on the surface of the needle 110, the mechanical strength of the needle 110 can be reinforced. By reinforcing the mechanical strength of the needle 110, it is possible to prevent damage such as breakage or deformation of the needle 110 when the needle 110 is punctured into the skin.
  • the soluble / degradable material layer 120 is made of a material that dissolves or decomposes under physiological conditions, the soluble / degradable material layer 120 dissolves or decomposes over time when the needle 110 is punctured into the skin. It decomposes and disappears from the surface of the needle 110. Therefore, it can be said that the release characteristics of the drug from the needle 110 are hardly affected by the formation of the soluble / degradable material layer 120. After at least the soluble / degradable material layer 120 has disappeared from the surface of the needle 110, the drug is released as if the soluble / degradable material layer 120 had not been formed.
  • the soluble / degradable material constituting the soluble / degradable material layer 120 is not particularly limited as long as it is biocompatible and dissolves or decomposes under physiological conditions.
  • Such materials include, for example, polyvinyl alcohol (PVA), hyaluronic acid, polylactic acid, polyethylene glycol, cellulose, starch, alginic acid, chitosan, collagen, albumin, poly (3-hydroxyalkanoate), polyethylene succinate, poly.
  • Examples thereof include glycolic acid, poly ( ⁇ -caprolactone), polyethylene terephthalate, polyester carbonate, polyacid anhydride, polycyanoacrylate, polyorthoester, polyphosphazene and silk fibroin (SF).
  • PVA has high mechanical strength, and since it has high viscosity among polymers, it can be crystallized by heat treatment to further improve the mechanical strength. Therefore, the microneedle 10 as in this embodiment is used.
  • PVA is used as the soluble / degradable material, it is preferable to appropriately select the saponification degree and molecular weight of PVA.
  • the mechanical strength per needle 110 is preferably 0.6 N or more, more preferably 0.7 N or more, so that the needle 110 is not damaged when the needle 110 is punctured into the skin. However, it is not necessary to give the needle 110 an excessive mechanical strength, and the mechanical strength per needle 110 may be 0.8 N or less.
  • the thickness of the soluble / degradable material layer 120 is one of the parameters affecting the mechanical strength of the needle 110. There is an appropriate range for the thickness of the soluble / degradable material layer 120. If the soluble / degradable material layer 120 is too thin, the mechanical strength of the needle 110 may not be sufficient. Considering this, the thickness of the soluble / degradable material layer 120 is preferably 12 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the thickness of the soluble / degradable material layer 120 is preferably 24 ⁇ m or less, more preferably 21 ⁇ m or less.
  • the soluble / degradable material layer 120 is formed in all the regions on the surface of the needle 110. However, since it is the tip of the needle 110 that is most easily damaged when the needle 110 is punctured into the skin, the soluble / degradable material layer 120 may be formed only in the region on the tip side of the needle 110. .. Alternatively, when the needle 110 is punctured, stress tends to be concentrated at the root of the needle 110, so that the soluble / degradable material layer 120 may be formed only in the region on the root side of the needle 110.
  • region the soluble / degradable material layer 120 is formed can be determined according to the size and shape of the needle 110 and the like. Further, when the soluble / degradable material layer 120 is formed on the root side of the needle 110, the soluble / degradable material layer 120 expands to the region around the needle 110 on the surface of the base portion 100 on which the needle 110 protrudes. May be formed. By doing so, the effect of reinforcing the root of the needle 110 by the soluble / degradable material layer 120 is further improved.
  • the method for forming the soluble / degradable material layer 120 on the surface of the needle 110 is not particularly limited. For example, by applying a soluble / degradable material solution in which a soluble / degradable material is dissolved in a solvent to the desired area of the needle 110, and then drying the soluble / degradable solution (removing the solvent). , Soluble / degradable material layer 120 can be formed on the surface of the needle 110.
  • the method of applying the soluble / degradable material solution may be arbitrary, and for example, a dip coating method, a spray coating method, a spin coating method and the like can be used.
  • the dip coating method can easily form the soluble / degradable material layer 120 having a uniform thickness even in a relatively wide area, and therefore the soluble / degradable material layer 120 on the surface of the needle 110. It is one of the methods that can be preferably used for the formation of.
  • the release of the drug can be controlled by adjusting the thickness of the soluble / degradable material layer 120.
  • the soluble / degradable material layer 120 by forming the soluble / degradable material layer 120 with a thickness that inhibits the release of the drug, the drug can be released after a certain period of time has passed since the needle 1110 was punctured.
  • the time at which release of the drug begins can be controlled by the thickness and solubility / degradability of the soluble / degradable material layer 120.
  • the reservoir 101 is formed in a space formed by forming the base portion 100 in a concave shape (cup shape) and sealing the open upper surface of the base portion 100 with a sheet 102.
  • a water resistant adhesive 103 can be used for bonding the sheet 102.
  • the sheet 102 is not particularly limited, but from the viewpoint of water resistance and flexibility, for example, a silicone sheet having a thickness of 0.3 mm can be used.
  • the drug can be filled into the reservoir 101 via the sheet 102 by syringe injection.
  • the reservoir 101 is sealed with an adhesive 103, for example, with a sheet 102 made of silicone, as in the case shown in FIG. 3A.
  • the base portion 100 is formed in a stepped manner having a flange 100b on the open end side of the reservoir 101. Further, the sheet 102 hangs over the flange 100b toward the bottom surface 100a having the needle 110, and covers the base portion 100 also in the height direction of the base portion 100.
  • the adhesive 103 is applied between the base portion 100 and the sheet 102 at the hanging portion of the sheet 102 over the entire circumference of the base portion 100.
  • the sheet 102 can be adhered to the base portion 100 with a larger adhesive area as compared with the structure shown in FIG. 3A, and the reservoir 101 can be sealed more effectively.
  • the leakage of the drug from between the base portion 100 and the sheet 102 can be effectively prevented.
  • the expansion of the area of the microneedle can be minimized.
  • the overhang amount A of the flange 100b can be, for example, 0.2 mm.
  • the thickness B of the flange 100b can be, for example, 0.1 mm, and the height C from the flange 100b to the bottom surface of the base portion 100 can be, for example, 0.2 mm.
  • the planar shape of the microneedle may be any shape such as a quadrangle or a circle.
  • the outer shape of the flange 100b and the shape of the bottom surface 100a of the base portion 100 on which the needle 110 is arranged may be the same or different. From the viewpoint of suppressing deformation during manufacturing of the microneedles, it is preferable that the outer shape of the flange 100b and the shape of the bottom surface 100a are both circular.
  • the overhanging amount of the flange 100b is increased, and the sheet 102 is adhered on the upper surface of the flange 100b via the adhesive 103. It is also possible to increase the adhesive area.
  • the base portion 100 and the needle 110 can be formed using a mold-based micromolding technique. Since the needle 110 can be formed integrally with the base portion 100, it is preferable to use a mold 200 having a cavity 201 formed in a shape in which the needle and the base portion are combined as shown in FIG.
  • the base portion 100 and the needle 110 can be formed in one step.
  • a solution in which the material constituting the needle 110 is dissolved in a solvent is poured into a portion corresponding to the needle 110 of the mold 200. This is dried (removing the solvent) to form the needle 110.
  • the solution can be poured and dried in multiple steps.
  • a solution in which the material constituting the base portion 100 is dissolved in a solvent is poured into a mold 200, and this is dried.
  • the obtained molded body is taken out from the mold 200. Thereby, the base portion 100 and the needle 110 integrally formed can be obtained.
  • the needle 110 Since the needle 110 has a very fine structure, it is important to fill the tip of the needle 110 with the solution when forming the needle 110. Therefore, it is preferable to carry out centrifugation or vacuum treatment before drying the solution.
  • a centrifuge can be used for centrifugation. More specifically, the mold 200 into which the solution is poured is placed in a falcon tube and centrifuged using a centrifuge. As a result, the solution can be filled up to the tip of the mold 200. The needle 110 can then be formed by placing the mold 200 in a desiccator and drying the solution.
  • the vacuum treatment can be performed, for example, by forming the mold 200 with a porous material, placing the mold 200 under reduced pressure to remove air in the mold 200, and then pouring the solution into the mold 200. As a result, the solution can be filled up to the tip portion of the needle 110.
  • a porous material constituting the mold 200 for example, polydimethylsiloxane (PDMS) can be used.
  • the soluble / degradable material layer is formed of polyvinyl alcohol (PVA), and the soluble / degradable material layer is referred to as a PVA layer.
  • PVA polyvinyl alcohol
  • Ammonium peroxodisulfate (APS, concentration: 100 mg / mL, addition amount: 4 ⁇ L) and tetramethylethylenediamine (TEMED, addition amount: 4 ⁇ L) were added to the obtained mixed solution (100 ⁇ L) to obtain a reaction solution (pregel solution). rice field.
  • the obtained reaction solution (40 ⁇ L) was poured into a microneedle mold (number of needles: 10 ⁇ 10, needle arrangement area: 8 mm ⁇ 8 mm, needle length: 700 ⁇ m), and the mold into which the reaction solution was poured was centrifuged at 2200 g for 3 minutes. The treatment was then performed and the reaction solution was dried after the polymerization reaction. A series of processes from pouring the reaction solution into the mold to drying was repeated three times, and finally, the dried product was taken out from the mold to prepare a molded body in which the needle and the base portion made of the gel composition were integrated. ..
  • a PVA aqueous solution (PVA concentration: 100 mg / mL, PVA saponification degree: 99% or more, PVA molecular weight: 130 to 230 kDa, ultimate viscosity: 59 mL /
  • the PVA solution was applied to the surface of the needle by immersing it in g) and taking it out. After the applied PVA solution was dried, heat treatment was performed at 130 ° C. for 1 hour. This was washed with pure water and then dried at room temperature to prepare microneedles having a PVA layer formed on the surface of the needle (Sample 1-1).
  • sample 1-2 in which a series of steps starting from immersion for forming the PVA layer on the needle was repeated twice and a sample (Sample 1-3) in which the series process was repeated three times were prepared and subjected to immersion. The difference depending on the number of times the PVA solution was applied was confirmed.
  • FIG. 6 (a) to 6 (c) are confocal microscope images in the vicinity of the needles of Sample 2-1 and Sample 2-2 and Sample 2-3, respectively.
  • FIG. 6D is a graph of the thickness of the PVA layer of each sample estimated from the thickness of the Cy5 region observed by the microscope image. From the graph of FIG. 6D, the thickness of the PVA layer increased as the number of times the PVA solution was applied increased, suggesting that the thickness of the PVA layer also increased as the number of times the PVA solution was applied increased.
  • the mechanical strength of the needle of each sample was measured with a bond tester (universal bond tester manufactured by Daige Co., Ltd., model number: 5000). Specifically, the microneedle is fixed to a bond tester, the stainless probe is set at a position 200 ⁇ m from the root of the needle under vacuum, and then the yield stress of the needle is measured by moving the stainless probe horizontally, and the yield stress is measured. The value was used as an index of the mechanical strength of the needle.
  • FIG. 8A is a fluorescence microscope image immediately after immersion in PBS, 5 minutes and 30 minutes after immersion in PBS, in order from the left.
  • FIG. 8B is a graph showing the change in fluorescence intensity of free Cy5 in PBS with time. From (a) of FIG. 8, it can be seen that the fluorescence derived from Cy5 disappears from the needle surface 30 minutes after being immersed in PBS. From this, it can be seen that the rapid dissolution of the PVA layer under physiological conditions was suggested. In addition, the fluorescence intensity of free Cy5 in PBS increased with the passage of time, suggesting excellent solubility of the PVA layer under physiological conditions.
  • A is a graph showing a FITC-labeled insulin release pattern from a microneedle without a PVA layer
  • B is a graph showing a FITC-labeled insulin release pattern from a microneedle coated with a PVA layer.
  • FITC-labeled insulin was added to the microneedles, and the microneedles to which FITC-labeled insulin was added were attached to the surface of the agarose gel, and the fluorescence intensity derived from FITC in the PBS solution was measured.
  • a fluorometer manufactured by Thermo Fisher Scientific Co., Ltd., product name: NanoDrop 3300 was used for measuring the fluorescence intensity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

The present invention provides a drug delivery device having a needle that has less influence on the drug delivery ability and has sufficient mechanical strength for puncture. A microneedle 10 has: a needle 110 capable of holding a drug and having drug permeability; and a soluble/degradable material layer 120 formed on at least a portion of the surface of the needle 110 and made of a material that dissolves or decomposes under physiological conditions.

Description

薬剤送達デバイスおよびその製造方法Drug delivery device and its manufacturing method
 本発明は、薬剤を担持することのできるニードルを有する薬剤送達デバイスおよびその製造方法に関する。 The present invention relates to a drug delivery device having a needle capable of carrying a drug and a method for producing the same.
 薬剤を経皮的に投与するデバイスとしてマイクロニードルが知られている。マイクロニードルは、例えば特許文献1に開示されるように、投与する薬剤を担持した長さが1mm以下の複数のニードルをアレイ状に配列したパッチとして提供され、皮膚表面に貼付することでニードルを経由して薬剤が送達されるように構成される。そのため、マイクロニードルは、低侵襲的に、かつ長時間にわたって連続的に薬剤を投与できるという特徴を有している。 Microneedle is known as a device for percutaneously administering a drug. As disclosed in Patent Document 1, for example, the microneedles are provided as a patch in which a plurality of needles having a length of 1 mm or less carrying a drug to be administered are arranged in an array, and the needles are attached to the skin surface to attach the needles. The drug is configured to be delivered via. Therefore, the microneedle has a feature that the drug can be continuously administered in a minimally invasive manner for a long period of time.
特許文献1:国際公開第20/182099号 Patent Document 1: International Publication No. 20/182099
 しかしながら、従来のマイクロニードルは、ニードルが非常に微細であることから機械的強度が不足し、ニードルを皮膚に穿刺する際にニードルが折れたり座屈したりすることがあった。これを防止するため、ニードルを高い機械的強度を有する材料で構成したり、ニードルの表面を高い機械的強度を有する材料でコーティングしたりすることが考えられる。しかし一般に、機械的強度が高い材料は密な構造を有しているため、ニードルからの薬剤の放出量が減少するなど薬剤の送達能が低下する可能性があった。 However, the conventional microneedle has insufficient mechanical strength because the needle is very fine, and the needle may break or buckle when the needle is punctured into the skin. In order to prevent this, it is conceivable that the needle is made of a material having high mechanical strength, or the surface of the needle is coated with a material having high mechanical strength. However, in general, since a material having high mechanical strength has a dense structure, there is a possibility that the delivery ability of the drug may decrease, such as a decrease in the amount of the drug released from the needle.
 本発明は、薬剤の送達能への影響が抑制され、かつ、穿刺する際に十分な機械的強度を持ったニードルを有する薬剤送達デバイスおよびその製造方法を提供することを目的の一つとする。 One of the objects of the present invention is to provide a drug delivery device having a needle having sufficient mechanical strength for puncturing while suppressing the influence on the delivery ability of the drug and a method for producing the same.
 本発明の薬剤送達デバイスは、薬剤を担持することができ、かつ前記薬剤の透過性を有するニードルと、
 少なくとも前記ニードルの表面の一部に形成された、生理的条件下で溶解または分解する材料からなる溶解性/分解性材料層と、
 を有する。
The drug delivery device of the present invention comprises a needle capable of carrying a drug and having the permeability of the drug.
A soluble / degradable material layer formed of at least a part of the surface of the needle and composed of a material that dissolves or decomposes under physiological conditions.
Have.
 本発明の薬剤送達デバイスの製造方法は、
薬剤の浸透性を有するニードルを有する薬剤送達デバイスの製造方法であって、
 前記ニードルを形成することと、
 少なくとも前記ニードルの表面の一部に、生理的条件下で溶解または分解する材料からなる溶解性/分解性材料層を形成することと、
 を含む。
The method for manufacturing a drug delivery device of the present invention
A method of manufacturing a drug delivery device having a drug-permeable needle.
Forming the needle and
To form a soluble / degradable material layer of a material that dissolves or decomposes under physiological conditions, at least on a portion of the surface of the needle.
including.
 本発明において、「生理的条件」とは、生体内と同等のpH、温度およびイオン組成に調整された水溶液を意味する。例えば、pHは、好ましくは1~9、さらに好ましくは7~8、温度は、好ましくは30~40℃、イオン組成は、塩化ナトリウム濃度が好ましくは100~200mMである。また、「生理的条件下で溶解または分解する材料」および「溶解性/分解性材料」とは、(例えば皮下に穿刺された状態のような)生理的条件下において、時間の経過とともに溶解または分解して消失し得る材料を意味する。 In the present invention, the "physiological condition" means an aqueous solution adjusted to have the same pH, temperature and ionic composition as in vivo. For example, the pH is preferably 1 to 9, more preferably 7 to 8, the temperature is preferably 30 to 40 ° C., and the ionic composition is preferably a sodium chloride concentration of 100 to 200 mM. In addition, "materials that dissolve or decompose under physiological conditions" and "soluble / degradable materials" are defined as "materials that dissolve or decompose over time" under physiological conditions (for example, in a state of being punctured subcutaneously). It means a material that can be decomposed and disappear.
 本発明によれば、薬剤の送達能への影響が抑制され、かつ、穿刺する際に十分な機械的強度を持つニードルを有する薬剤送達デバイスおよびその製造方法が提供される。 According to the present invention, there is provided a drug delivery device having a needle having a needle having sufficient mechanical strength at the time of puncturing while suppressing the influence on the delivery ability of the drug and a method for producing the same.
本発明の一実施形態によるマイクロニードルの側面図である。It is a side view of the microneedle according to one Embodiment of this invention. 図1に示すマイクロニードルのニードルの拡大断面図である。It is an enlarged cross-sectional view of the needle of the microneedle shown in FIG. リザーバを有するマイクロニードルの一形態の断面図である。It is sectional drawing of one form of the microneedle which has a reservoir. リザーバを有するマイクロニードルの他の形態の断面図である。FIG. 5 is a cross-sectional view of another form of microneedle having a reservoir. リザーバを有するマイクロニードルのさらに他の形態の断面図である。FIG. 5 is a cross-sectional view of yet another form of a microneedle having a reservoir. 図1に示すマイクロニードルの製造に用いられる型の一形態の断面図である。It is sectional drawing of one form of the mold used for manufacturing the microneedle shown in FIG. 評価1により得られた代表的な結果を示す共焦点顕微鏡像である。It is a confocal microscope image which shows the typical result obtained by the evaluation 1. 評価2により得られた代表的な結果を示す共焦点顕微鏡像およびグラフである。It is a confocal microscope image and a graph which shows the representative result obtained by the evaluation 2. 評価3により得られた代表的な結果を示すグラフである。It is a graph which shows the typical result obtained by the evaluation 3. 評価4により得られた代表的な結果を示す蛍光顕微鏡像およびグラフである。3 is a fluorescence microscope image and a graph showing typical results obtained in Evaluation 4. 評価5により得られた代表的な結果を示すグラフである。It is a graph which shows the typical result obtained by the evaluation 5. 評価6により得られた代表的な結果を示すグラフである。It is a graph which shows the typical result obtained by the evaluation 6.
 図1を参照すると、ベース部100と、複数のニードル110とを有し、皮膚に貼付するパッチとして提供される、本発明の一実施形態によるマイクロニードル10が示されている。ベース部100は、複数のニードル110を支持するシート状の部分であり、これらニードル110を支持できる機械的強度を有し、かつ、皮膚の表面に沿って変形できる程度の可撓性を有している。複数のニードル110がベース部100に支持されることで、複数のニードル110は、ニードルアレイとして構成される。ベース部100とニードル110とは、別々の材料で作られていてもよいし、同じ材料で作られてもよい。ベース部100とニードル110とが同じ材料で作られている場合、これらは同時に作製することができる。少なくともニードル110は、薬剤の透過性を有している。また、図2に示すように、ニードル110の表面には、ニードル110の補強構造として機能することができる溶解性/分解性材料層120が形成されている。 Referring to FIG. 1, a microneedle 10 according to an embodiment of the present invention, which has a base portion 100 and a plurality of needles 110 and is provided as a patch to be attached to the skin, is shown. The base portion 100 is a sheet-like portion that supports a plurality of needles 110, has mechanical strength capable of supporting these needles 110, and has flexibility enough to be deformed along the surface of the skin. ing. By supporting the plurality of needles 110 by the base portion 100, the plurality of needles 110 are configured as a needle array. The base portion 100 and the needle 110 may be made of different materials or may be made of the same material. When the base portion 100 and the needle 110 are made of the same material, they can be made at the same time. At least the needle 110 is permeable to the drug. Further, as shown in FIG. 2, a soluble / degradable material layer 120 that can function as a reinforcing structure of the needle 110 is formed on the surface of the needle 110.
 以下、マイクロニードル100についてより詳しく説明する。 Hereinafter, the microneedle 100 will be described in more detail.
 [薬剤]
 本発明に係る薬剤送達デバイスを用いて送達され得る薬剤としては、タンパク質、ペプチド、核酸、他の高分子ポリマー、低分子化合物などが挙げられるが、これらに限定はされない。薬剤は、疾患の治療剤、予防薬、ワクチン、栄養サプリメントなどであってもよい。特に好ましい薬剤は、インスリンである。様々な天然型インスリンあるいは改変インスリンが市販品の購入あるいは合成により利用可能となっている。インスリンとしては、例えば、ヒューマリン(登録商標)を使用してもよい。ヒューマリン(登録商標)は、イーライリリー社が販売しているヒト(遺伝子組換え)インスリンである。インスリン製剤には、速効型、中間型、持効型を含む各種製剤が開発されており、適宜選択して使用することができる。
[Drug]
Drugs that can be delivered using the drug delivery device according to the invention include, but are not limited to, proteins, peptides, nucleic acids, other high molecular weight polymers, low molecular weight compounds and the like. The drug may be a therapeutic agent for a disease, a prophylactic drug, a vaccine, a nutritional supplement, or the like. A particularly preferred drug is insulin. Various natural or modified insulins are available by purchase or synthesis of commercial products. As insulin, for example, Humarin (registered trademark) may be used. Humarin® is a human (genetically modified) insulin marketed by Eli Lilly and Company. As insulin preparations, various preparations including fast-acting type, intermediate type, and long-acting type have been developed, and they can be appropriately selected and used.
 [ベース部]
 ベース部100は、複数のニードル110を皮膚に穿刺する際に皮膚の弾性力に抗してニードル110が良好に皮膚に穿刺されるように必要な機械的強度を有して構成されていれば、様々な材料で構成することができる。そのような材料としては、ポリマー材料、多孔質構造を有するセラミックス材料および金属材料などが挙げられる。また、ベース部100は、生体適合性を有する材料で構成されることが好ましい。
[Base part]
The base portion 100 is configured to have the mechanical strength necessary for the needle 110 to be punctured well into the skin against the elastic force of the skin when the plurality of needles 110 are punctured into the skin. , Can be composed of various materials. Examples of such materials include polymer materials, ceramic materials having a porous structure, and metal materials. Further, the base portion 100 is preferably made of a biocompatible material.
 ベース部100は、ニードル110から放出される薬剤のリザーバを有することができる。リザーバを有することにより、薬剤を長期間(例えば7日間)にわたって放出することができるようになる。長期間にわたる薬剤の放出が可能なマイクロニードルは、血中グルコース濃度に応じて薬剤としてインスリンを投与するインスリン送達マイクロニードルとして好適に用いることができる。 The base portion 100 can have a reservoir of the drug released from the needle 110. Having a reservoir allows the drug to be released over a long period of time (eg, 7 days). A microneedle capable of releasing a drug over a long period of time can be suitably used as an insulin delivery microneedle that administers insulin as a drug according to a blood glucose concentration.
 リザーバは、例えば、ベース部100を上面が開口した凹状(カップ状)に形成することによって構成することができる。あるいは、ニードル110と同じ材料でベース部100を形成し、薬剤を浸透させたベース部100そのものをリザーバとすることもできる。この場合、ベース部100および複数のニードル110を一体成形により同時に形成することができる。また、いずれの場合でも、ベース部100は、ニードル110からベース部100への薬剤の流通の連続性が阻害されない材料で構成されることが好ましい。リザーバを有するマイクロニードルの構造について詳しくは後述する。 The reservoir can be configured, for example, by forming the base portion 100 in a concave shape (cup shape) with an open upper surface. Alternatively, the base portion 100 may be formed of the same material as the needle 110, and the base portion 100 itself impregnated with the drug may be used as a reservoir. In this case, the base portion 100 and the plurality of needles 110 can be formed at the same time by integral molding. Further, in any case, it is preferable that the base portion 100 is made of a material that does not impede the continuity of the flow of the drug from the needle 110 to the base portion 100. The structure of the microneedle having a reservoir will be described in detail later.
 ベース部100の平面形状は、円形、楕円形および多角形など任意の形状であってよく、例えば矩形状とすることができる。 The planar shape of the base portion 100 may be any shape such as a circular shape, an elliptical shape, and a polygonal shape, and may be, for example, a rectangular shape.
 [ニードル]
 (寸法、配置および形状)
 ニードル110の長さは、ニードル110を皮膚に穿刺したときにニードル110が角質層に達する十分な長さを有していればよく、好ましくは5mm以下、より好ましくは1mm以下であってよい。ニードル110の数および配置は任意であってよい。例えば、複数のニードル110を、M×N(M、Nはそれぞれ1~30の整数)のマトリックス状に配列することができる。具体的な配置の一例としては、8mm×8mmの矩形領域中に、10×12本のニードル110が500μmピッチで配置される。ニードル110の形状は、皮膚に穿刺できる先端を有していれば任意であってよく、好ましくはピラミッド形状とすることができる。
[needle]
(Dimensions, placement and shape)
The length of the needle 110 may be long enough for the needle 110 to reach the stratum corneum when the needle 110 is punctured into the skin, and may be preferably 5 mm or less, more preferably 1 mm or less. The number and arrangement of needles 110 may be arbitrary. For example, a plurality of needles 110 can be arranged in a matrix of M × N (M and N are integers of 1 to 30 respectively). As an example of specific arrangement, 10 × 12 needles 110 are arranged at a pitch of 500 μm in a rectangular region of 8 mm × 8 mm. The shape of the needle 110 may be arbitrary as long as it has a tip that can puncture the skin, and may be preferably a pyramid shape.
 (成分)
 ニードル110は、送達する薬剤に応じて、薬剤の透過性を有している限り、任意の成分を含むことができる。以下、マイクロニードル10を、薬剤としてインスリンを血中グルコース濃度に応じて送達するデバイスとして用いる場合に好ましいニードル110の成分について説明する。
(component)
The needle 110 can contain any component, depending on the drug to be delivered, as long as it is permeable to the drug. Hereinafter, the components of the needle 110 that are preferable when the microneedle 10 is used as a device for delivering insulin as a drug according to the blood glucose concentration will be described.
 ニードル110は、少なくとも先端部が、フェニルボロン酸系単量体ユニットを含む共重合体を含むゲル組成物を含むことができる。ゲル組成物は、具体的には後述するようにフェニルボロン酸系単量体を含む単量体混合物を共重合することで得られ、その結果、共重合体の架橋分子構造を有するゲルが得られる。本出願において、「単量体ユニット」は、単量体に由来する(共)重合体中の構造単位を意味し、以下の説明において「単量体」を「単量体ユニット」の意味で使用することもある。フェニルボロン酸系単量体とは、下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、Xは置換基を示し、好ましくはFであり、nは1~4の整数を表す。)
で表されるフェニルボロン酸官能基を有する単量体を意味する。
The needle 110 can include a gel composition containing a copolymer containing a phenylboronic acid-based monomer unit at least at the tip thereof. The gel composition is specifically obtained by copolymerizing a monomer mixture containing a phenylboronic acid-based monomer as described later, and as a result, a gel having a crosslinked molecular structure of the copolymer is obtained. Be done. In the present application, "monomer unit" means a structural unit in a (co) polymer derived from a monomer, and in the following description, "monomer" means "monomer unit". Sometimes used. The phenylboronic acid-based monomer has the following formula:
Figure JPOXMLDOC01-appb-C000001
(In the formula, X represents a substituent, preferably F, and n represents an integer of 1 to 4.)
It means a monomer having a phenylboronic acid functional group represented by.
 <ゲル組成物>
 インスリン送達マイクロニードルでは、以下に記載するような、フェニルボロン酸構造がグルコース濃度に依存して構造を変化させるメカニズムを利用する。
<Gel composition>
Insulin delivery microneedles utilize a mechanism by which the phenylboronic acid structure changes its structure depending on the glucose concentration, as described below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 水中で解離したフェニルボロン酸(以下、本明細書において「PBA」と表記することもある)は糖分子と可逆的に結合し、上記の平衡状態を保っている。グルコース濃度が高くなると結合して体積も膨張するが、グルコース濃度が低い場合には収縮する。ニードル110が皮膚に穿刺された状態では、血液と接触したゲル界面でこの反応が生じ、界面でのみゲルが収縮して本発明者等が「スキン層」と呼ぶ脱水収縮層を生じる。この性質をインスリンの放出制御のために利用する。 Phenylboronic acid dissociated in water (hereinafter, may be referred to as "PBA" in the present specification) reversibly binds to a sugar molecule and maintains the above equilibrium state. When the glucose concentration is high, it binds and the volume expands, but when the glucose concentration is low, it contracts. When the needle 110 is punctured into the skin, this reaction occurs at the gel interface in contact with blood, and the gel contracts only at the interface to form a dehydration shrinkage layer, which the present inventors call a "skin layer". This property is used to control the release of insulin.
 好適に使用可能なゲル組成物は、上記の性質を有するフェニルボロン酸系単量体ユニットを含む共重合体を含むゲル組成物である。ゲル組成物は、特に限定するものではないが、例えば特許第5696961号公報に記載されたものが挙げられる。 A gel composition that can be preferably used is a gel composition containing a copolymer containing a phenylboronic acid-based monomer unit having the above-mentioned properties. The gel composition is not particularly limited, and examples thereof include those described in Japanese Patent No. 5696961.
 ゲル組成物の調製のために使用するフェニルボロン酸系単量体は、限定するものではないが、例えば下記の一般式で表される。 The phenylboronic acid-based monomer used for preparing the gel composition is not limited, but is represented by, for example, the following general formula.
Figure JPOXMLDOC01-appb-C000003
[式中、RはHまたはCHであり、Fは独立に存在し、nが1、2、3または4のいずれかであり、mは0または1以上の整数である。]
Figure JPOXMLDOC01-appb-C000003
[In the formula, R is H or CH 3 , F exists independently, n is either 1, 2, 3 or 4, and m is 0 or an integer greater than or equal to 1. ]
 上記のフェニルボロン酸系単量体は、フェニル環上の水素が、1~4個のフッ素で置換されたフッ素化フェニルボロン酸(以下、本明細書では「FPBA」と表記することもある)基を有し、当該フェニル環にアミド基の炭素が結合した構造を有する。上記構造を有するフェニルボロン酸系単量体は、高い親水性を有しており、またフェニル環がフッ素化されていることにより、pKaを生体レベルの7.4以下に設定し得る。さらに、このフェニルボロン酸系単量体は、生体環境下での糖認識能を獲得するのみならず、不飽和結合により後述するゲル化剤や架橋剤との共重合が可能となり、グルコース濃度に依存して相変化を生じるゲルとなり得る。 The above-mentioned phenylboronic acid-based monomer is a fluorinated phenylboronic acid in which hydrogen on the phenyl ring is replaced with 1 to 4 fluorines (hereinafter, may be referred to as "FPBA" in the present specification). It has a group and has a structure in which the carbon of the amide group is bonded to the phenyl ring. The phenylboronic acid-based monomer having the above structure has high hydrophilicity, and the phenyl ring is fluorinated, so that pKa can be set to 7.4 or less at the biological level. Furthermore, this phenylboronic acid-based monomer not only acquires sugar recognition ability in a biological environment, but also enables copolymerization with a gelling agent or a cross-linking agent described later due to an unsaturated bond, resulting in a glucose concentration. It can be a gel that depends on the phase change.
 上記のフェニルボロン酸系単量体において、フェニル環上の1つの水素がフッ素で置換されている場合、F及びB(OH)の導入箇所は、オルト、メタ、パラのいずれであってもよい。 In the above phenylboronic acid-based monomer, when one hydrogen on the phenyl ring is substituted with fluorine, the introduction location of F and B (OH) 2 may be any of ortho, meta, and para. good.
 一般に、mを1以上としたときのフェニルボロン酸系単量体は、mを0としたときのフェニルボロン酸系単量体に比べて、pKaを低くすることができる。mは例えば20以下、好ましくは10以下、さらに好ましくは4以下である。 In general, a phenylboronic acid-based monomer when m is 1 or more can have a lower pKa than a phenylboronic acid-based monomer when m is 0. m is, for example, 20 or less, preferably 10 or less, and more preferably 4 or less.
 上記のフェニルボロン酸系単量体の一例としては、nが1、mが2であるフェニルボロン酸系単量体があり、これはフェニルボロン酸系単量体として特に好ましい4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid、AmECFPBA)である。 As an example of the above-mentioned phenylboronic acid-based monomer, there is a phenylboronic acid-based monomer in which n is 1 and m is 2, which is particularly preferable as a phenylboronic acid-based monomer 4- (2- (2-). Acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (4- (2-acrylamidoethylcarbamoyl) -3-fluorophenylboronic acid, AmECFPBA).
 ゲル組成物は、生体内において生体機能に有毒作用や有害作用が生じない性質(生体適合性)を有するゲル化剤と、上記のフェニルボロン酸系単量体と、架橋剤とから調製され得る。調製方法は、特に限定するものではないが、ゲル(共重合体)の主鎖となるゲル化剤、フェニルボロン酸系単量体、および架橋剤を、所定の仕込みモル比で含む単量体成分と混合し、単量体を重合反応させることにより、調製することができる。重合のために、必要に応じて重合開始剤を使用する。 The gel composition can be prepared from a gelling agent having a property (biocompatibility) that does not cause toxic or adverse effects on biological functions in the living body, the above-mentioned phenylboronic acid-based monomer, and a cross-linking agent. .. The preparation method is not particularly limited, but is a monomer containing a gelling agent, a phenylboronic acid-based monomer, and a cross-linking agent, which are the main chains of the gel (copolymer), in a predetermined molar ratio. It can be prepared by mixing with the components and polymerizing the monomers. A polymerization initiator is used as needed for the polymerization.
 ゲル組成物中に予めインスリンが含まれていることが好ましい。そのためには、インスリンが所定濃度で含まれたリン酸緩衝水溶液(PBS)等の水溶液中にゲルを浸すことにより、ゲル内にインスリンを拡散させることができる。次いで、水溶液中から取り出したゲルを、例えば塩酸中に所定時間浸すことで、ゲル本体の表面に薄い脱水収縮層(スキン層と呼ぶ)を形成することにより、ニードル110に薬剤を内包(ローディング)させることができる。 It is preferable that insulin is contained in the gel composition in advance. For that purpose, insulin can be diffused into the gel by immersing the gel in an aqueous solution such as a phosphate buffered aqueous solution (PBS) containing insulin at a predetermined concentration. Next, the gel taken out from the aqueous solution is immersed in hydrochloric acid, for example, for a predetermined time to form a thin dehydration-shrinkable layer (called a skin layer) on the surface of the gel body, whereby the drug is encapsulated (loaded) in the needle 110. Can be made to.
 ゲル化剤と、フェニルボロン酸系単量体と、架橋剤との好適な比率は、生理的条件下でグルコース濃度に応じてインスリンの放出を制御可能な組成であれば良く、用いる単量体等によって変動するものであり、特に限定するものではない。本発明者等は既に、種々のフェニルボロン酸系単量体を種々の比率でゲル化剤および架橋剤と組み合わせてゲルを調製し、その挙動を検討している(例えば特許第5622188号公報を参照されたい)。当業者であれば、本明細書の記載および当分野で報告されている技術情報に基づいて、好適な組成のゲルを取得することが可能である。 The suitable ratio of the gelling agent, the phenylboronic acid-based monomer, and the cross-linking agent may be a monomer having a composition that can control the release of insulin according to the glucose concentration under physiological conditions. It varies depending on such factors, and is not particularly limited. The present inventors have already prepared gels by combining various phenylboronic acid-based monomers in various ratios with gelling agents and cross-linking agents, and have studied their behavior (for example, Japanese Patent No. 5622188). Please refer to). A person skilled in the art can obtain a gel having a suitable composition based on the description in the present specification and the technical information reported in the art.
 ゲル化剤、フェニルボロン酸系単量体、および架橋剤から得られる共重合体によって形成されるゲル本体が、グルコース濃度に応答して膨張又は収縮し得るとともに、pKa7.4以下の特性を維持でき、ゲル状に形成することができれば、ゲル化剤/フェニルボロン酸系単量体の仕込みモル比を、適宜の数値に設定してゲルを調製することができる。 The gel body formed by the copolymer obtained from the gelling agent, the phenylboronic acid-based monomer, and the cross-linking agent can expand or contract in response to the glucose concentration, and maintains the properties of pKa 7.4 or less. If it can be formed into a gel, the gel can be prepared by setting the charged molar ratio of the gelling agent / phenylboronic acid-based monomer to an appropriate value.
 ゲル化剤としては、生体適合性を有し、かつゲル化し得る生体適合性材料であればよく、例えば生体適合性のあるアクリルアミド系単量体が挙げられる。具体的には、N-イソプロピルアクリルアミド(NIPAAm)、N,N-ジメチルアクリルアミド(DMAAm)、N,N-ジエチルアクリルアミド(DEAAm)等が挙げられる。 The gelling agent may be any biocompatible material that is biocompatible and can be gelled, and examples thereof include biocompatible acrylamide-based monomers. Specific examples thereof include N-isopropylacrylamide (NIPAAm), N, N-dimethylacrylamide (DMAAm), N, N-diethylacrylamide (DEAAm) and the like.
 また、架橋剤としては、同じく生体適合性を有し、単量体を架橋できる物質であればよく、例えばN,N’-メチレンビスアクリルアミド(MBAAm)、エチレングリコールジメタクリレート(EGDMA)、N,N’-メチレンビスメタクリルアミド(MBMAAm)その他種々の架橋剤が挙げられる。  The cross-linking agent may be any substance that is also biocompatible and can cross-link the monomer. For example, N, N'-methylenebisacrylamide (MBAAm), ethylene glycol dimethacrylate (EGDMA), N, N'-methylenebismethacrylate (MBMAAm) and various other cross-linking agents can be mentioned.
 好適な一実施形態では、ゲル組成物は、以下に示すように、N-イソプロピルメタクリルアミド(NIPAAm)、4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(AmECFPBA)、およびN,N’-メチレンビスアクリルアミド(MBAAm)を、適宜配合比で溶媒に溶解し、重合することによって得られるものである。重合は、常温および水性条件下で行うことができる。 In a preferred embodiment, the gel composition comprises N-isopropylmethacrylamide (NIPAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), and N, as shown below. It is obtained by dissolving N'-methylenebisacrylamide (MBAAm) in a solvent at an appropriate blending ratio and polymerizing it. The polymerization can be carried out at room temperature and under aqueous conditions.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 溶媒としては、単量体を可溶な任意の溶媒を用いることができる。そのような溶媒として、例えば、水、アルコール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、イオン液体およびそれらの1種以上の組み合わせが挙げられる。これらの中でもメタノール水溶液を溶媒として好ましく用いることができる。 As the solvent, any solvent in which the monomer is soluble can be used. Such solvents include, for example, water, alcohol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), ionic liquids and combinations thereof. Among these, an aqueous methanol solution can be preferably used as a solvent.
 このような溶媒に、ゲル化剤、PBAおよび架橋剤を溶解したプレゲル溶液を作製し、重合を行う。 A pregel solution in which a gelling agent, PBA and a cross-linking agent are dissolved in such a solvent is prepared and polymerized.
 上記のゲル組成物では、フェニルボロン酸系単量体がゲル化剤および架橋剤と共重合してゲル本体を形成している。このゲルにインスリンを拡散させるとともに、ゲル本体の表面を脱水収縮層で取り囲む構成とすることができる。この構成をニードル110に適用することで、例えばpKa7.4以下であり、温度35℃~40℃の生理的条件下において、グルコース濃度が高くなると、ニードル110を構成するゲルが膨張する。これに伴って、脱水収縮層が消失し、ゲル内のインスリンを外部へ放出させることができる。 In the above gel composition, the phenylboronic acid-based monomer is copolymerized with the gelling agent and the cross-linking agent to form the gel body. Insulin can be diffused into this gel, and the surface of the gel body can be surrounded by a dehydration shrinkage layer. By applying this configuration to the needle 110, for example, the pKa is 7.4 or less, and when the glucose concentration becomes high under physiological conditions of a temperature of 35 ° C. to 40 ° C., the gel constituting the needle 110 expands. Along with this, the dehydration contraction layer disappears, and insulin in the gel can be released to the outside.
 一方、グルコース濃度が再び低くなると、膨張していたゲルが収縮して表面全体に再び脱水収縮層(スキン層)が形成され、ゲル内のインスリンが外部へ放出されることを抑制できる。 On the other hand, when the glucose concentration becomes low again, the expanded gel contracts and a dehydration contraction layer (skin layer) is formed again on the entire surface, and it is possible to suppress the release of insulin in the gel to the outside.
 従って、このようなゲル組成物は、グルコース濃度に応答してインスリンを自律的に放出させることができる。 Therefore, such a gel composition can autonomously release insulin in response to glucose concentration.
 重合には、開始剤、促進剤などの触媒を用いることができる。開始剤としては、例えば過硫酸アンモニウム(APS)を用いることができる。促進剤としては、例えばテトラメチルエチレンジアミン(TEMED)を用いることができる。この場合、プレゲル溶液1mlごとに、10重量%の過硫酸アンモニウム6.2μlおよびテトラメチルエチレンジアミン12μlを加え、室温にて重合を行ったところ、10分以内にゲル化が開始された。 A catalyst such as an initiator or an accelerator can be used for the polymerization. As the initiator, for example, ammonium persulfate (APS) can be used. As the accelerator, for example, tetramethylethylenediamine (TEMED) can be used. In this case, when 10 wt% ammonium persulfate 6.2 μl and tetramethylethylenediamine 12 μl were added to each 1 ml of the pregel solution and polymerized at room temperature, gelation was started within 10 minutes.
 ゲル組成物は、フェニルボロン酸系単量体ユニットを含む共重合体にさらにシルクフィブロイン(SF)を含む複合ゲル組成物であってもよい。この複合ゲル組成物は、フェニルボロン酸系単量体を含む単量体混合物を、SFの存在下で共重合することで得られ、その結果、共重合体の架橋分子構造中にSFの分子がほぼ均一に分散分布している。 The gel composition may be a composite gel composition containing silk fibroin (SF) in addition to a copolymer containing a phenylboronic acid-based monomer unit. This composite gel composition is obtained by copolymerizing a monomer mixture containing a phenylboronic acid-based monomer in the presence of SF, and as a result, the molecules of SF are contained in the crosslinked molecular structure of the copolymer. Is distributed almost uniformly.
 複号ゲル組成物に含まれるSFは、ベース部100にも使用できる。SFはニードル110に機械的強度を付与する。SFの量(固形分重量)は、マイクロニードルの機械的強度が好適な値となるように決めることができるが、単量体(フェニルボロン酸系単量体、ゲル化剤および架橋剤)の合計100重量部に対して、例えば10~90重量部とすることができ、好ましくは24~60重量部、より好ましくは40~60重量部である。単量体の合計に対するSFの重量分率を高くするほど複合ゲル組成物の機械的強度を高くすることができる。ただし、SFの重量分率を高くすると、それだけ単量体濃度が低くなる。単量体濃度が低すぎるとゲル組成物が形成されにくくなるので、ゲル組成物の形成が阻害されない範囲で単量体の合計に対するSFの重量分率を決定することが重要である。 The SF contained in the compound gel composition can also be used for the base portion 100. SF imparts mechanical strength to the needle 110. The amount of SF (solid content weight) can be determined so that the mechanical strength of the microneedles is a suitable value, but of the monomer (phenylboronic acid-based monomer, gelling agent and cross-linking agent). It can be, for example, 10 to 90 parts by weight, preferably 24 to 60 parts by weight, and more preferably 40 to 60 parts by weight with respect to 100 parts by weight in total. The higher the weight fraction of SF with respect to the total number of monomers, the higher the mechanical strength of the composite gel composition. However, the higher the weight fraction of SF, the lower the monomer concentration. If the monomer concentration is too low, it becomes difficult to form a gel composition. Therefore, it is important to determine the weight fraction of SF with respect to the total amount of monomers within a range in which the formation of the gel composition is not inhibited.
 好適な一実施形態では、複合ゲル組成物は、N-イソプロピルメタクリルアミド(NIPAAm)、4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(AmECFPBA)、N,N’-メチレンビスアクリルアミド(MBAAm)およびSFを、適宜配合比で溶媒に溶解してプレゲル溶液を調製し、これを重合することによって得られる。プレゲル溶液は、ゲル化剤、PBAおよび架橋剤を必要に応じて含んでいてもよい。重合は、SFの変性を避けるために、常温および水性条件下で行うことが好ましい。 In one preferred embodiment, the composite gel composition is N-isopropylmethacrylamide (NIPAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), N, N'-methylenebisacrylamide. It is obtained by dissolving (MBAAm) and SF in a solvent at an appropriate blending ratio to prepare a pregel solution, and polymerizing this solution. The pregel solution may optionally contain a gelling agent, PBA and a cross-linking agent. The polymerization is preferably carried out at room temperature and under aqueous conditions in order to avoid denaturation of SF.
 なお、SFはゲル化しやすい性質を有するため、プレゲル溶液の調製に際しては、溶媒中にゲル化剤、PBAおよび架橋剤等を溶解させた後に、その溶液にSFをSF溶液の状態で添加するようにすることが好ましい。 Since SF has a property of easily gelling, when preparing a pregel solution, after dissolving a gelling agent, PBA, a cross-linking agent, etc. in a solvent, SF is added to the solution in the state of SF solution. Is preferable.
 溶媒としてメタノール水溶液を用いる場合、SF添加前のプレゲル溶液中のメタノールの体積%は、例えば、40体積%となるようなアルコール水溶液を用いることができる。この場合、SF添加後のプレゲル溶液中のメタノールの好ましい体積%は、3体積%~30体積%、より好ましくは5体積%~20体積%、最も好ましいのは8体積%である。また、溶媒としてエタノール水溶液を用いる場合、PBAはエタノール中での溶解度が低い。そのため、メタノール水溶液を用いる場合と比べて高い体積%、例えばSF添加前のプレゲル溶液中のエタノールの体積%が60体積%となるようにすることが好ましい。 When an aqueous methanol solution is used as the solvent, an alcohol aqueous solution such that the volume% of methanol in the pregel solution before the addition of SF is, for example, 40% by volume can be used. In this case, the preferable volume% of methanol in the pregel solution after the addition of SF is 3% by volume to 30% by volume, more preferably 5% by volume to 20% by volume, and most preferably 8% by volume. Further, when an aqueous ethanol solution is used as the solvent, PBA has low solubility in ethanol. Therefore, it is preferable that the volume% is higher than that when the aqueous methanol solution is used, for example, the volume% of ethanol in the pregel solution before the addition of SF is 60% by volume.
 ゲル組成物は、N-ヒドロキシエチルアクリルアミド(NHEAAm)のような水酸基を有する単量体を含んでいてもよい。これにより、温度変化に対する耐性を備えたゲル組成物が得られる。このようなゲル組成物は、以下の態様を含む。 The gel composition may contain a monomer having a hydroxyl group such as N-hydroxyethylacrylamide (NHEAAm). This gives a gel composition that is resistant to temperature changes. Such gel compositions include the following aspects:
 下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、RはH又はCHであり、Fは独立に存在し、nが1、2、3又は4のいずれかであり、mは0又は1以上の整数である。]で表されるフェニルボロン酸系単量体、及び下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
[式中、R1はH又はCHであり、mは0又は1以上の整数であり、RはOH、1以上の水酸基で置換された飽和若しくは不飽和のC1-6アルキル基、1以上の水酸基で置換された飽和若しくは不飽和のC3-10シクロアルキル基、1以上の水酸基で置換されたNH、O及びSより選ばれる1~4個のヘテロ原子を含有するC3-12複素環式基、1以上の水酸基で置換されたC6-12アリール基、単糖基、又は多糖基である。]で表される単量体(以下、ヒドロキシル系単量体ともいう。)を含むゲル組成物。
The following general formula (1)
Figure JPOXMLDOC01-appb-C000005
[In the formula, R is H or CH 3 , F exists independently, n is either 1, 2, 3 or 4, and m is 0 or an integer greater than or equal to 1. ], And the following general formula (2)
Figure JPOXMLDOC01-appb-C000006
[In the formula, R1 is H or CH 3 , m is 0 or an integer of 1 or more, R 2 is OH, a saturated or unsaturated C 1-6 alkyl group substituted with 1 or more hydroxyl groups, 1 Saturated or unsaturated C 3-10 cycloalkyl group substituted with the above hydroxyl groups, C 3-12 containing 1 to 4 heteroatoms selected from NH, O and S substituted with one or more hydroxyl groups It is a heterocyclic group, a C 6-12 aryl group substituted with one or more hydroxyl groups, a monosaccharide group, or a polysaccharide group. ], A gel composition containing a monomer (hereinafter, also referred to as a hydroxyl-based monomer).
上記一般式(2)の単量体は、分子内に水酸基を有している。特定の理論に拘束するものではないが、この水酸基は、ゲルの親水性を高めて、ボロン酸による疎水性を相殺するとともに、ゲル中のボロン酸に作用して、ゲルの過度な膨潤を防ぐ効果を有すると考えられる。mの上限は特に限定されないが、例えば20以下、好ましくは10以下、さらに好ましくは4以下である。 The monomer of the general formula (2) has a hydroxyl group in the molecule. Without being bound by any particular theory, this hydroxyl group increases the hydrophilicity of the gel, offsets the hydrophobicity of the boronic acid, and acts on the boronic acid in the gel to prevent excessive swelling of the gel. It is considered to have an effect. The upper limit of m is not particularly limited, but is, for example, 20 or less, preferably 10 or less, and more preferably 4 or less.
 上記のヒドロキシル系単量体の一例としては、Rが水素であり、mが1であり、RがOHである単量体が挙げられ、これはヒドロキシル系単量体として特に好ましいN-ヒドロキシエチルアクリルアミド(N-(Hydroxyethyl)acrylamide、NHEAAm)である。特に、側鎖をメチルの代わりにエチルとすることで、側鎖の回転自由度を高め、分子間(ボロン酸側鎖との)架橋反応の効率を格段に向上させる効果がある。そのため、NHEAAmとすることにより、グルコース濃度に依存して相変化を生じる最適なゲルとなり得る。なお、他のヒドロキシル系単量体の例においては、Rは例えば、カテコール基あるいはグリコリル基等の糖誘導体であってもよい。単糖は例えばグルコースでありうる。 Examples of the above-mentioned hydroxyl-based monomer include a monomer in which R 1 is hydrogen, m is 1, and R 2 is OH, which is particularly preferable as the hydroxyl-based monomer N-. Hydroxyethyl acrylamide (N- (Hydroxyethyl) acrylamide, NHEAAm). In particular, by using ethyl instead of methyl for the side chain, there is an effect of increasing the degree of freedom of rotation of the side chain and significantly improving the efficiency of the cross-linking reaction between molecules (with the boronic acid side chain). Therefore, by using NHEAAm, it is possible to obtain an optimum gel that causes a phase change depending on the glucose concentration. In the example of other hydroxyl-based monomers, R 2 may be, for example, a sugar derivative such as a catechol group or a glycolyl group. The monosaccharide can be, for example, glucose.
 一般式(2)で表されるヒドロキシル系単量体は、ゲル組成物中に例えば、1mol以上、5mol%以上、10mol%以上、15mol%以上、20mol%以上、25mol%以上、30mol%以上、35mol%以上、40mol%以上、45mol%以上、50mol%以上、又は60mol%以上の割合で含まれることができる。また、一般式(2)で表されるヒドロキシル系単量体は、ゲル組成物中に例えば、90mol%以下、80mol%以下、70mol%以下、60mol%以下、50mol%以下、45mol%以下、40mol%以下、35mol%以下、30mol%以下、25mol%以下、又は20mol%以下の割合で含まれることができる。濃度範囲としては、一般式(2)で表されるヒドロキシル系単量体は、ゲル組成物中に例えば、10mol%~90mol%、15mol%~45mol%、20mol%~40mol%、又は25mol%~35mol%の範囲内の割合としてもよい。濃度範囲は、上記の上限と下限の任意の組み合わせにより特定されうる。好ましいヒドロキシル系単量体の割合は、約10mol%である。なお、本明細書において「約」という用語は、それに続く数値の前後10%の範囲を指すために使用される。すなわち、約30mol%は27mol%~33mol%の範囲を意味する。 The hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, 1 mol or more, 5 mol% or more, 10 mol% or more, 15 mol% or more, 20 mol% or more, 25 mol% or more, 30 mol% or more. It can be contained in a proportion of 35 mol% or more, 40 mol% or more, 45 mol% or more, 50 mol% or more, or 60 mol% or more. Further, the hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, 90 mol% or less, 80 mol% or less, 70 mol% or less, 60 mol% or less, 50 mol% or less, 45 mol% or less, 40 mol. % Or less, 35 mol% or less, 30 mol% or less, 25 mol% or less, or 20 mol% or less. As a concentration range, the hydroxyl group monomer represented by the general formula (2) is contained in the gel composition, for example, from 10 mol% to 90 mol%, 15 mol% to 45 mol%, 20 mol% to 40 mol%, or 25 mol% to 25 mol%. The ratio may be in the range of 35 mol%. The concentration range can be specified by any combination of the above upper and lower limits. The preferred proportion of hydroxyl-based monomers is about 10 mol%. In addition, in this specification, the term "about" is used to refer to the range of 10% before and after the numerical value following it. That is, about 30 mol% means a range of 27 mol% to 33 mol%.
 ゲル組成物は、生体内において生体機能に有毒作用や有害作用が生じない性質(生体適合性)を有するゲル化剤と、上記のフェニルボロン酸系単量体と、上記のヒドロキシル系単量体と、架橋剤とから調製され得る。ゲルの調製方法は、特に限定するものではないが、先ず、ゲルの主鎖となるゲル化剤と、フェニルボロン酸系単量体と、ヒドロキシル系単量体と、架橋剤とを、所定の仕込みモル比で混合し、重合反応をさせることにより、調製することができる。重合のために、必要に応じて重合開始剤を使用する。 The gel composition comprises a gelling agent having a property (biocompatibility) that does not cause toxic or adverse effects on biological functions in the living body, the above-mentioned phenylboronic acid-based monomer, and the above-mentioned hydroxyl-based monomer. And a cross-linking agent. The method for preparing the gel is not particularly limited, but first, a gelling agent serving as the main chain of the gel, a phenylboronic acid-based monomer, a hydroxyl-based monomer, and a cross-linking agent are predetermined. It can be prepared by mixing at a charged molar ratio and allowing a polymerization reaction. A polymerization initiator is used as needed for the polymerization.
 重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、1,1’-アゾビス(シクロヘキサンカルボニトリル)(ABCN)などの当業者に公知の開始剤を使用することができる。ゲル組成物に加える重合開始剤の割合は、例えば約0.1mol%とすることができる。 As the polymerization initiator, for example, an initiator known to those skilled in the art such as 2,2'-azobisisobutyronitrile (AIBN) and 1,1'-azobis (cyclohexanecarbonitrile) (ABCN) should be used. Can be done. The proportion of the polymerization initiator added to the gel composition can be, for example, about 0.1 mol%.
 重合反応は、例えば、反応溶媒にジメチルスルホキシド(DMSO)を用いて行うことができ、反応温度は、例えば60℃とすることができ、反応時間は、例えば24時間とすることができるが、これらの条件は、当業者であれば適宜調整することができる。 The polymerization reaction can be carried out, for example, using dimethyl sulfoxide (DMSO) as a reaction solvent, the reaction temperature can be, for example, 60 ° C., and the reaction time can be, for example, 24 hours. The conditions of can be appropriately adjusted by those skilled in the art.
 水酸基を有する単量体を含むゲル組成物の好適な一形態としては、例えば、ゲル化剤(主鎖)としてN-イソプロピルメタクリルアミド(NIPMAAm)、フェニルボロン酸系単量体として4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(AmECFPBA)、ヒドロキシル系単量体としてN-ヒドロキシエチルアクリルアミド(NHEAAm)、架橋剤としてN,N’-メチレンビスアクリルアミド(MBAAm)、重合開始剤として2,2’-アゾビスイソブチロニトリルを、例えば、仕込みモル比62/27/11/5/0.1に調整したものが挙げられる。このように調整することで、正常血糖値(1g/L)近傍での温度依存性を大幅に軽減できる。しかしながら、これに限らず、ゲル化剤、フェニルボロン酸系単量体、ヒドロキシル系単量体及び架橋剤を含むゲル組成物によって形成できるゲル本体が、グルコース濃度に応答して膨張又は収縮し得るとともに、所望の温度耐性を示すことができれば、ゲル化剤/フェニルボロン酸系単量体/ヒドロキシル系単量体/架橋剤の仕込みモル比を、その他種々の数値に設定してゲルを調製してもよい。例えば、ゲル組成物は、N-イソプロピルメタクリルアミド(NIPMAAm)、4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(AmECFPBA)、N-ヒドロキシエチルアクリルアミド(NHEAAm)、N,N’-メチレンビスアクリルアミド(MBAAm)を、62/27/11/5(mol%)の仕込みモル比で重合して調製したものであってもよい。 Suitable forms of the gel composition containing the monomer having a hydroxyl group include, for example, N-isopropylmethacrylamide (NIPMAAm) as the gelling agent (main chain) and 4- (2) as the phenylboronic acid-based monomer. -Acrylamide ethyl carbamoyl) -3-fluorophenylboronic acid (AmECFPBA), N-hydroxyethyl acrylamide (NHEAAm) as a hydroxyl-based monomer, N, N'-methylenebisacrylamide (MBAAm) as a cross-linking agent, as a polymerization initiator Examples thereof include those prepared by adjusting 2,2'-azobisisobutyronitrile to a charged molar ratio of 62/27/11/5 / 0.1. By adjusting in this way, the temperature dependence in the vicinity of the normal blood glucose level (1 g / L) can be significantly reduced. However, not limited to this, the gel body that can be formed by the gel composition containing the gelling agent, the phenylboronic acid-based monomer, the hydroxyl-based monomer and the cross-linking agent can expand or contract in response to the glucose concentration. At the same time, if the desired temperature tolerance can be exhibited, a gel is prepared by setting the charged molar ratio of the gelling agent / phenylboronic acid-based monomer / hydroxyl-based monomer / cross-linking agent to various other values. You may. For example, the gel composition is N-isopropylmethacrylamide (NIPMAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA), N-hydroxyethylacrylamide (NHEAAm), N, N'-. It may be prepared by polymerizing methylenebisacrylamide (MBAAm) at a charged molar ratio of 62/27/11/5 (mol%).
 [溶解性/分解性材料層]
 溶解性/分解性材料層120は、生理的条件下で溶解または分解する材料(以下、溶解性/分解性材料)ともいう)からなる。溶解性/分解性材料層120をニードル110の表面に形成することによって、ニードル110の機械的強度を補強することができる。ニードル110の機械的強度が補強されることによって、ニードル110を皮膚に穿刺する際のニードル110の折れや変形といった損傷を防止することができる。また、溶解性/分解性材料層120は、生理的条件下で溶解または分解する材料からなるので、ニードル110が皮膚に穿刺されると時間の経過によって溶解性/分解性材料層120が溶解または分解してニードル110の表面から消失する。そのため、ニードル110からの薬剤の放出特性について、溶解性/分解性材料層120を形成したことによる影響はほとんどないといってよい。少なくとも溶解性/分解性材料層120がニードル110の表面から消失した後、薬剤は溶解性/分解性材料層120を形成しなかった場合と同様に放出される。
[Soluble / Degradable Material Layer]
The soluble / degradable material layer 120 is made of a material that dissolves or decomposes under physiological conditions (hereinafter, also referred to as a soluble / degradable material). By forming the soluble / degradable material layer 120 on the surface of the needle 110, the mechanical strength of the needle 110 can be reinforced. By reinforcing the mechanical strength of the needle 110, it is possible to prevent damage such as breakage or deformation of the needle 110 when the needle 110 is punctured into the skin. Further, since the soluble / degradable material layer 120 is made of a material that dissolves or decomposes under physiological conditions, the soluble / degradable material layer 120 dissolves or decomposes over time when the needle 110 is punctured into the skin. It decomposes and disappears from the surface of the needle 110. Therefore, it can be said that the release characteristics of the drug from the needle 110 are hardly affected by the formation of the soluble / degradable material layer 120. After at least the soluble / degradable material layer 120 has disappeared from the surface of the needle 110, the drug is released as if the soluble / degradable material layer 120 had not been formed.
 (溶解性/分解性材料層の材料)
 溶解性/分解性材料層120を構成する溶解性/分解性材料は、生体適合性を有し、生理的条件下で溶解または分解する材料であれば特に限定されない。そのような材料としては、例えば、ポリビニルアルコール(PVA)、ヒアルロン酸、ポリ乳酸、ポリエチレングリコール、セルロース、デンプン、アルギン酸、キトサン、コラーゲン、アルブミン、ポリ(3-ヒドロキシアルカノエート)、ポリエチレンサクシネート、ポリグリコール酸、ポリ(ε-カプロラクトン)、ポリエチレンテレフタレート、ポリエステルカーボネート、ポリ酸無水物、ポリシアノアクリレート、ポリオルトエステル、ポリフォスファゼンおよびシルクフィブロイン(SF)などを挙げることができる。これらの中でもPVAは、機械的強度が高く、また、高分子の中でも粘度が高いため熱処理により結晶化してさらに機械的強度を向上させることができるなどの観点から、本形態のようなマイクロニードル10のニードル110のための溶解性/分解性材料層120として適している。溶解性/分解性材料としてPVAを用いる場合、PVAのケン化度および分子量を適切に選択することが好ましい。
(Material of soluble / degradable material layer)
The soluble / degradable material constituting the soluble / degradable material layer 120 is not particularly limited as long as it is biocompatible and dissolves or decomposes under physiological conditions. Such materials include, for example, polyvinyl alcohol (PVA), hyaluronic acid, polylactic acid, polyethylene glycol, cellulose, starch, alginic acid, chitosan, collagen, albumin, poly (3-hydroxyalkanoate), polyethylene succinate, poly. Examples thereof include glycolic acid, poly (ε-caprolactone), polyethylene terephthalate, polyester carbonate, polyacid anhydride, polycyanoacrylate, polyorthoester, polyphosphazene and silk fibroin (SF). Among these, PVA has high mechanical strength, and since it has high viscosity among polymers, it can be crystallized by heat treatment to further improve the mechanical strength. Therefore, the microneedle 10 as in this embodiment is used. Suitable as a soluble / degradable material layer 120 for the needle 110 of. When PVA is used as the soluble / degradable material, it is preferable to appropriately select the saponification degree and molecular weight of PVA.
 (溶解性/分解性材料層が形成されたニードルの強度)
 皮膚へのニードル110の穿刺の際にニードル110が損傷しないようにするため、1本のニードル110当たりの機械的強度は、好ましくは0.6N以上、より好ましくは0.7N以上である。ただし、過剰な機械的強度をニードル110に持たせる必要はなく、1本のニードル110当たりの機械的強度は0.8N以下であってよい。
(Strength of needle with soluble / degradable material layer formed)
The mechanical strength per needle 110 is preferably 0.6 N or more, more preferably 0.7 N or more, so that the needle 110 is not damaged when the needle 110 is punctured into the skin. However, it is not necessary to give the needle 110 an excessive mechanical strength, and the mechanical strength per needle 110 may be 0.8 N or less.
 (溶解性/分解性材料層の厚さ)
 溶解性/分解性材料層120の厚さは、ニードル110の機械的強度に影響を与えるパラメータの一つである。溶解性/分解性材料層120の厚さには適切な範囲が存在する。溶解性/分解性材料層120の厚さが薄すぎると、ニードル110の機械的強度が十分でない場合がある。このことを考慮すると、溶解性/分解性材料層120の厚さは、好ましくは12μm以上、より好ましくは15μm以上である。一方、溶解性/分解性材料層120の厚さが厚すぎると、溶解性/分解性材料層120の形成時に溶解性/分解性材料層120の張力によりニードル110が変形することがある。また、溶解性/分解性材料層120が厚すぎると、ニードル110を皮膚に穿刺した後、溶解性/分解性材料層120が消失するまでの時間が長くなる。これらことを考慮すると、溶解性/分解性材料層120の厚さは、好ましくは24μm以下、より好ましくは21μm以下である。
(Thickness of soluble / degradable material layer)
The thickness of the soluble / degradable material layer 120 is one of the parameters affecting the mechanical strength of the needle 110. There is an appropriate range for the thickness of the soluble / degradable material layer 120. If the soluble / degradable material layer 120 is too thin, the mechanical strength of the needle 110 may not be sufficient. Considering this, the thickness of the soluble / degradable material layer 120 is preferably 12 μm or more, more preferably 15 μm or more. On the other hand, if the thickness of the soluble / degradable material layer 120 is too thick, the needle 110 may be deformed due to the tension of the soluble / degradable material layer 120 when the soluble / degradable material layer 120 is formed. Further, if the soluble / degradable material layer 120 is too thick, it takes a long time for the soluble / degradable material layer 120 to disappear after the needle 110 is punctured into the skin. Considering these facts, the thickness of the soluble / degradable material layer 120 is preferably 24 μm or less, more preferably 21 μm or less.
 (溶解性/分解性材料層の形成領域)
 溶解性/分解性材料層120を形成する領域について、図2では、ニードル110の表面のすべての領域に溶解性/分解性材料層120が形成されている。ただし、ニードル110を皮膚に穿刺した際に最も損傷しやすいのはニードル110の先端部であることから、ニードル110の先端側の領域のみに溶解性/分解性材料層120が形成されてもよい。あるいは、ニードル110を穿刺する際、ニードル110の根元に応力が集中しやすいことから、ニードル110の根元側の領域のみに溶解性/分解性材料層120が形成されてもよい。どの領域に溶解性/分解性材料層120を形成するかは、ニードル110のサイズおよび形状などに応じて決定することができる。さらに、ニードル110の根元側に溶解性/分解性材料層120を形成する場合、ニードル110が突出するベース部100の面のニードル110の周囲の領域まで拡大して溶解性/分解性材料層120を形成してもよい。こうすることにより、溶解性/分解性材料層120によるニードル110の根元の補強効果がより向上する。
(Region of forming soluble / degradable material layer)
Regarding the region forming the soluble / degradable material layer 120, in FIG. 2, the soluble / degradable material layer 120 is formed in all the regions on the surface of the needle 110. However, since it is the tip of the needle 110 that is most easily damaged when the needle 110 is punctured into the skin, the soluble / degradable material layer 120 may be formed only in the region on the tip side of the needle 110. .. Alternatively, when the needle 110 is punctured, stress tends to be concentrated at the root of the needle 110, so that the soluble / degradable material layer 120 may be formed only in the region on the root side of the needle 110. In which region the soluble / degradable material layer 120 is formed can be determined according to the size and shape of the needle 110 and the like. Further, when the soluble / degradable material layer 120 is formed on the root side of the needle 110, the soluble / degradable material layer 120 expands to the region around the needle 110 on the surface of the base portion 100 on which the needle 110 protrudes. May be formed. By doing so, the effect of reinforcing the root of the needle 110 by the soluble / degradable material layer 120 is further improved.
 (溶解性/分解性材料層の形成方法)
 ニードル110の表面への溶解性/分解性材料層120の形成方法は特に限定されない。例えば、溶解性/分解性材料を溶媒に溶解した溶解性/分解性材料溶液をニードル110の所望の領域に塗布し、次いで、溶解性/分解性溶液を乾燥する(溶媒を除去する)ことで、ニードル110の表面に溶解性/分解性材料層120を形成することができる。溶解性/分解性材料溶液の塗布方法は任意であってよく、例えば、ディップコート法、スプレーコート法およびスピンコート法などを用いることができる。これらの中でもディップコート法は、比較的広い領域であっても均一な厚さの溶解性/分解性材料層120を簡便に形成できることから、ニードル110の表面への溶解性/分解性材料層120の形成に好ましく用いることができる方法の一つである。
(Method of forming soluble / degradable material layer)
The method for forming the soluble / degradable material layer 120 on the surface of the needle 110 is not particularly limited. For example, by applying a soluble / degradable material solution in which a soluble / degradable material is dissolved in a solvent to the desired area of the needle 110, and then drying the soluble / degradable solution (removing the solvent). , Soluble / degradable material layer 120 can be formed on the surface of the needle 110. The method of applying the soluble / degradable material solution may be arbitrary, and for example, a dip coating method, a spray coating method, a spin coating method and the like can be used. Among these, the dip coating method can easily form the soluble / degradable material layer 120 having a uniform thickness even in a relatively wide area, and therefore the soluble / degradable material layer 120 on the surface of the needle 110. It is one of the methods that can be preferably used for the formation of.
 (溶解性/分解性材料層による薬剤放出制御)
 溶解性/分解性材料層120の厚さを調整することによって、薬剤の放出を制御することができる。例えば、薬剤の放出を阻害する厚さで溶解性/分解性材料層120を形成すれば、ニードル1110を穿刺してある時間の経過後に薬剤が放出されるようにすることができる。薬剤の放出が始まる時間は、溶解性/分解性材料層120の厚さおよび溶解性/分解性によって制御することができる。
(Drug release control by soluble / degradable material layer)
The release of the drug can be controlled by adjusting the thickness of the soluble / degradable material layer 120. For example, by forming the soluble / degradable material layer 120 with a thickness that inhibits the release of the drug, the drug can be released after a certain period of time has passed since the needle 1110 was punctured. The time at which release of the drug begins can be controlled by the thickness and solubility / degradability of the soluble / degradable material layer 120.
 [リザーバを有するマイクロニードルの構造]
 リザーバを有するマイクロニードルの構造の幾つかの形態について、図3A~図3Cを参照して説明する。
[Structure of microneedle with reservoir]
Some forms of the structure of the microneedle having a reservoir will be described with reference to FIGS. 3A-3C.
 図3Aに示す形態では、ベース部100を凹状(カップ状)に形成し、ベース部100の開放した上面をシート102で密閉することによって形成された空間でリザーバ101が構成される。シート102の接着には、例えば耐水性の接着剤103を用いることができる。シート102としては特に制限されないが、耐水性および柔軟性の観点から、例えば厚さが0.3mmのシリコーンシートを用いることができる。薬剤は、シリンジ注射によってシート102を介してリザーバ101に充填することができる。 In the form shown in FIG. 3A, the reservoir 101 is formed in a space formed by forming the base portion 100 in a concave shape (cup shape) and sealing the open upper surface of the base portion 100 with a sheet 102. For bonding the sheet 102, for example, a water resistant adhesive 103 can be used. The sheet 102 is not particularly limited, but from the viewpoint of water resistance and flexibility, for example, a silicone sheet having a thickness of 0.3 mm can be used. The drug can be filled into the reservoir 101 via the sheet 102 by syringe injection.
 図3Bに示す形態では、図3Aに示したものと同様、リザーバ101が、接着剤103によって、例えばシリコーン製のシート102で密閉されている。ただし、ベース部100は、リザーバ101の開放端側にフランジ100bを有する段付きに形成されている。また、シート102は、フランジ100bを越えて、ニードル110を有する底面100aに向かって垂れ下がり、ベース部100の高さ方向でもベース部100を覆っている。接着剤103は、シート102の垂れ下がった部分において、ベース部100とシート102との間に、ベース部100の全周にわたって塗布される。 In the form shown in FIG. 3B, the reservoir 101 is sealed with an adhesive 103, for example, with a sheet 102 made of silicone, as in the case shown in FIG. 3A. However, the base portion 100 is formed in a stepped manner having a flange 100b on the open end side of the reservoir 101. Further, the sheet 102 hangs over the flange 100b toward the bottom surface 100a having the needle 110, and covers the base portion 100 also in the height direction of the base portion 100. The adhesive 103 is applied between the base portion 100 and the sheet 102 at the hanging portion of the sheet 102 over the entire circumference of the base portion 100.
 このような構造によれば、図3Aに示した構造と比較して、より大きな接着面積でシート102をベース部100に接着し、より効果的にリザーバ101を密閉することができる。結果的に、ベース部100とシート102との間からの薬剤の漏出を効果的に防止することができる。しかも、マイクロニードルの面積の拡大を最小限に抑えることができる。 According to such a structure, the sheet 102 can be adhered to the base portion 100 with a larger adhesive area as compared with the structure shown in FIG. 3A, and the reservoir 101 can be sealed more effectively. As a result, the leakage of the drug from between the base portion 100 and the sheet 102 can be effectively prevented. Moreover, the expansion of the area of the microneedle can be minimized.
 フランジ100bの張り出し量Aは、例えば、0.2mmとすることができる。また、フランジ100bの厚さBは、例えば0.1mmとすることができ、フランジ100bからベース部100の底面までの高さCは、例えば0.2mmとすることができる。 The overhang amount A of the flange 100b can be, for example, 0.2 mm. The thickness B of the flange 100b can be, for example, 0.1 mm, and the height C from the flange 100b to the bottom surface of the base portion 100 can be, for example, 0.2 mm.
 本形態においても、マイクロニードルの平面形状は、四角形や円形など任意の形状であってよい。また、フランジ100bの外形状と、ニードル110が配置されるベース部100の底面100aの形状とは、同じであってもよいし異なっていてもよい。マイクロニードルの製造時の変形を抑制する観点からは、フランジ100bの外形状および底面100aの形状は、ともに円形であることが好ましい。 Also in this embodiment, the planar shape of the microneedle may be any shape such as a quadrangle or a circle. Further, the outer shape of the flange 100b and the shape of the bottom surface 100a of the base portion 100 on which the needle 110 is arranged may be the same or different. From the viewpoint of suppressing deformation during manufacturing of the microneedles, it is preferable that the outer shape of the flange 100b and the shape of the bottom surface 100a are both circular.
 また、マイクロニードルの面積が拡大することが許容される場合は、図3Cに示すように、フランジ100bの張り出し量を大きくし、フランジ100bの上面において接着剤103を介してシート102を接着することによって接着面積を大きくすることもできる。 When it is permissible to increase the area of the microneedles, as shown in FIG. 3C, the overhanging amount of the flange 100b is increased, and the sheet 102 is adhered on the upper surface of the flange 100b via the adhesive 103. It is also possible to increase the adhesive area.
 [ベース部およびニードルの形成]
 ベース部100およびニードル110は、型を用いたマイクロモールディング技術を用いて形成することができる。ニードル110はベース部100と一体的に形成することができるので、図4に示すような、ニードルおよびベース部を合わせた形状で形成されたキャビティ201を有する型200とすることが好ましい。
[Formation of base and needle]
The base portion 100 and the needle 110 can be formed using a mold-based micromolding technique. Since the needle 110 can be formed integrally with the base portion 100, it is preferable to use a mold 200 having a cavity 201 formed in a shape in which the needle and the base portion are combined as shown in FIG.
 このような型200を用いることにより、ベース部100およびニードル110を1つの工程で形成することができる。ただし、ベース部100を構成する材料とニードル110を構成する材料が異なる場合は、まず、ニードル110を構成する材料を溶媒に溶解させた溶液を、型200のニードル110に相当する部分に流し込み、これを乾燥させて(溶媒を除去して)ニードル110を形成する。溶液の流し込みおよび乾燥は、複数回に分けて行うこともできる。次いで、ベース部100を構成する材料を溶媒に溶解させた溶液を型200に流し込み、これを乾燥させる。得られた成型体を型200から取り出す。これによって、一体に形成されたベース部100およびニードル110を得ることができる。 By using such a mold 200, the base portion 100 and the needle 110 can be formed in one step. However, when the material constituting the base portion 100 and the material constituting the needle 110 are different, first, a solution in which the material constituting the needle 110 is dissolved in a solvent is poured into a portion corresponding to the needle 110 of the mold 200. This is dried (removing the solvent) to form the needle 110. The solution can be poured and dried in multiple steps. Next, a solution in which the material constituting the base portion 100 is dissolved in a solvent is poured into a mold 200, and this is dried. The obtained molded body is taken out from the mold 200. Thereby, the base portion 100 and the needle 110 integrally formed can be obtained.
 ニードル110は非常に微細な構造を有するので、ニードル110の形成に際しては、ニードル110の先端部分まで溶液を充填することが重要である。そのため、溶液の乾燥前に、遠心処理または真空処理を行なうことが好ましい。 Since the needle 110 has a very fine structure, it is important to fill the tip of the needle 110 with the solution when forming the needle 110. Therefore, it is preferable to carry out centrifugation or vacuum treatment before drying the solution.
 遠心処理には、遠心分離機を利用することができる。より詳しくは、溶液を流し込んだ型200をファルコンチューブに入れ、遠心分離機を用いて遠心分離する。これにより溶液を型200の先端まで充填させることができる。その後、型200をデシケーターに入れて溶液を乾燥させることで、ニードル110を形成することができる。 A centrifuge can be used for centrifugation. More specifically, the mold 200 into which the solution is poured is placed in a falcon tube and centrifuged using a centrifuge. As a result, the solution can be filled up to the tip of the mold 200. The needle 110 can then be formed by placing the mold 200 in a desiccator and drying the solution.
 真空処理は、例えば、多孔質材料で型200を構成し、その型200を減圧下に置いて型200内の空気を除去した後、溶液を型200に流し込むことによって行なうことができる。これによって、ニードル110の先端部分まで溶液を充填させることができる。型200を構成する多孔質材料としては、例えばポリジメチルシロキサン(PDMS)を用いることができる。 The vacuum treatment can be performed, for example, by forming the mold 200 with a porous material, placing the mold 200 under reduced pressure to remove air in the mold 200, and then pouring the solution into the mold 200. As a result, the solution can be filled up to the tip portion of the needle 110. As the porous material constituting the mold 200, for example, polydimethylsiloxane (PDMS) can be used.
 遠心処理および真空処理のどちらの処理でも、得られるニードル110の形態に大きな差異は見られず、本発明においては遠心処理および真空処理のいずれも利用可能である。 There is no significant difference in the form of the needle 110 obtained by either the centrifugal treatment or the vacuum treatment, and both the centrifugal treatment and the vacuum treatment can be used in the present invention.
 [マイクロニードルの評価]
 次に、溶解性/分解性材料層をニードルの表面に形成したマイクロニードルの評価について説明する。なお、以下の評価では、溶解性/分解性材料層をポリビニルアルコール(PVA)で形成しており、また、溶解性/分解性材料層をPVA層と表記する。
[Evaluation of microneedles]
Next, the evaluation of the microneedle in which the soluble / degradable material layer is formed on the surface of the needle will be described. In the following evaluation, the soluble / degradable material layer is formed of polyvinyl alcohol (PVA), and the soluble / degradable material layer is referred to as a PVA layer.
 (評価1)溶解性/分解性材料層の形成
 <実験方法>
 N-イソプロピルアクリルアミド(NIPAAm)、4-(2-アクリルアミドエチルカルバモイル)-3-フルオロフェニルボロン酸(AmECFPBA)およびN-ヒドロキシエチルアクリルアミド(NHEAAm)、N,N’-メチレンビスアクリルアミド(MBAAm)をそれぞれメタノールと水の混合溶媒(メタノール/水=4/6、v/v)に溶解し、NIPAAm/AmECFPBA/NHEAAm/MBAAm=57.7/10.2/22.6/5.00の比で混合して混合溶液を得た。得られた混合溶液(100μL)にペルオキソ二硫酸アンモニウム(APS、濃度:100mg/mL、添加量:4μL)およびテトラメチルエチレンジアミン(TEMED、添加量:4μL)を添加し、反応溶液(プレゲル溶液)を得た。得られた反応溶液(40μL)をマイクロニードルの型(ニードル数:10×10、ニードル配列領域:8mm×8mm、ニードル長:700μm)に流し込み、反応溶液が流し込まれた型を2200gで3分間遠心処理し、その後、重合反応後に反応溶液を乾燥させた。型への反応溶液の流し込みから乾燥までの一連の処理を3回繰り返し、最後に、型から乾燥物を取り出すことによって、ゲル組成物からなるニードルおよびベース部が一体となった成型体を作製した。
(Evaluation 1) Formation of soluble / degradable material layer <Experimental method>
N-Isopropylacrylamide (NIPAAm), 4- (2-acrylamide ethylcarbamoyl) -3-fluorophenylboronic acid (AmECFPBA) and N-hydroxyethylacrylamide (NHEAAm), N, N'-methylenebisacrylamide (MBAAm), respectively. Dissolve in a mixed solvent of methanol and water (methanol / water = 4/6, v / v) and mix at a ratio of NIPAAm / AmECFPBA / NHEAAm / MBAAm = 57.7 / 10.2 / 22.6 / 5.00. To obtain a mixed solution. Ammonium peroxodisulfate (APS, concentration: 100 mg / mL, addition amount: 4 μL) and tetramethylethylenediamine (TEMED, addition amount: 4 μL) were added to the obtained mixed solution (100 μL) to obtain a reaction solution (pregel solution). rice field. The obtained reaction solution (40 μL) was poured into a microneedle mold (number of needles: 10 × 10, needle arrangement area: 8 mm × 8 mm, needle length: 700 μm), and the mold into which the reaction solution was poured was centrifuged at 2200 g for 3 minutes. The treatment was then performed and the reaction solution was dried after the polymerization reaction. A series of processes from pouring the reaction solution into the mold to drying was repeated three times, and finally, the dried product was taken out from the mold to prepare a molded body in which the needle and the base portion made of the gel composition were integrated. ..
 作製した成型体のニードルの部分を、蛍光(ローダミンB標識)を添加したPVA水溶液(PVA濃度:100mg/mL、PVAケン化度:99%以上、PVA分子量:130~230kDa、極限粘度:59mL/g)に浸漬し、取り出すことによって、ニードルの表面にPVA溶液を塗布した。塗布したPVA溶液の乾燥後、130℃で1時間、熱処理を行った。これを純水で洗浄した後、室温で乾燥させ、ニードルの表面にPVA層が形成されたマイクロニードルを作製した(サンプル1-1)。さらに、ニードルへのPVA層の形成のための、浸漬から始まる一連の工程を2回繰り返したサンプル(サンプル1-2)、および3回繰り返したサンプル(サンプル1-3)を作製し、浸漬によるPVA溶液の塗布回数による違いを確認した。 A PVA aqueous solution (PVA concentration: 100 mg / mL, PVA saponification degree: 99% or more, PVA molecular weight: 130 to 230 kDa, ultimate viscosity: 59 mL / The PVA solution was applied to the surface of the needle by immersing it in g) and taking it out. After the applied PVA solution was dried, heat treatment was performed at 130 ° C. for 1 hour. This was washed with pure water and then dried at room temperature to prepare microneedles having a PVA layer formed on the surface of the needle (Sample 1-1). Further, a sample (Sample 1-2) in which a series of steps starting from immersion for forming the PVA layer on the needle was repeated twice and a sample (Sample 1-3) in which the series process was repeated three times were prepared and subjected to immersion. The difference depending on the number of times the PVA solution was applied was confirmed.
 <結果>
 得られた各サンプルを、共焦点顕微鏡を用い、蛍光顕微鏡法により観察した。評価1により得られた代表的な結果を図5に示す。ニードルへのPVA溶液の塗布回数を増やすことにより蛍光強度が増大したことから、ニードルの表面にPVAが導入されたこと、および塗布回数を増やすことによりPVA量が増加することが示唆された。ただし、今回の実験ではPVA溶液の塗布回数が3回のときニードルの形状が変化したことから、最適なPVA量が存在することが示唆された。
<Result>
Each of the obtained samples was observed by fluorescence microscopy using a confocal microscope. Representative results obtained in Evaluation 1 are shown in FIG. The fluorescence intensity was increased by increasing the number of times the PVA solution was applied to the needle, suggesting that PVA was introduced on the surface of the needle and that the amount of PVA was increased by increasing the number of times of application. However, in this experiment, the shape of the needle changed when the number of times the PVA solution was applied was 3, suggesting that the optimum amount of PVA exists.
 (評価2)溶解性/分解性材料層の厚さ
<実験方法>
 評価1で用いたPVA溶液に蛍光標識としてCy5-NHSを添加(1当量、濃度:25mg/mL、溶媒:DMSO)し、35℃で1晩反応させることによりCy5標識PVAを合成したこと以外は評価1と同様にして、PVA層がニードルの表面に形成されたマイクロニードルを作製した。本評価においても、評価1と同様に、PVA溶液の塗布回数を1回から3回まで変更した3種類のマイクロニードル(サンプル2-1、サンプル2-2、サンプル2-3)を作製した。作製したマイクロニードルのそれぞれについて、ニードルの表面のCy5を蛍光顕微鏡法により観察し、PVA層の厚さの指標とした。
(Evaluation 2) Thickness of soluble / degradable material layer <Experimental method>
Cy5-NHS was added as a fluorescent label to the PVA solution used in Evaluation 1 (1 equivalent, concentration: 25 mg / mL, solvent: DMSO) and reacted at 35 ° C. overnight to synthesize Cy5-labeled PVA. In the same manner as in Evaluation 1, microneedles having a PVA layer formed on the surface of the needle were produced. In this evaluation as well, as in Evaluation 1, three types of microneedles (Sample 2-1 and Sample 2-2 and Sample 2-3) were prepared in which the number of times the PVA solution was applied was changed from 1 to 3 times. For each of the produced microneedles, Cy5 on the surface of the needle was observed by fluorescence microscopy and used as an index of the thickness of the PVA layer.
 <結果>
 評価2により得られた代表的な結果を図6に示す。図6の(a)~(c)は、それぞれサンプル2-1、サンプル2-2およびサンプル2-3のニードル近傍の共焦点顕微鏡像である。図6の(d)は、顕微鏡像によって観察されたCy5領域の厚さより推定した、各サンプルのPVA層の厚さのグラフである。図6の(d)のグラフより、PVA溶液の塗布回数を増やすとPVA層の厚さも増大したことから、PVA溶液の塗布回数の増大によりPVA層の厚さも増大することが示唆された。
<Result>
Representative results obtained in Evaluation 2 are shown in FIG. 6 (a) to 6 (c) are confocal microscope images in the vicinity of the needles of Sample 2-1 and Sample 2-2 and Sample 2-3, respectively. FIG. 6D is a graph of the thickness of the PVA layer of each sample estimated from the thickness of the Cy5 region observed by the microscope image. From the graph of FIG. 6D, the thickness of the PVA layer increased as the number of times the PVA solution was applied increased, suggesting that the thickness of the PVA layer also increased as the number of times the PVA solution was applied increased.
 (評価3)溶解性/分解性材料層が形成されたニードルの機械的強度
 <実験方法>
 評価1で用いたPVA溶液に蛍光標識を添加しなかったこと以外は評価1と同様にして、PVA層がニードルの表面に形成されたマイクロニードルを作製した。本評価では、評価1と同様にPVA溶液の塗布回数を1回から3回まで変更した3種類のマイクロニードル(サンプル3-1、サンプル3-2、サンプル3-3)の他に、PVA溶液を塗布しないマイクロニードル(サンプル3-0)も作製した。
(Evaluation 3) Mechanical strength of the needle on which the soluble / degradable material layer was formed <Experimental method>
A microneedle having a PVA layer formed on the surface of the needle was produced in the same manner as in Evaluation 1 except that no fluorescent label was added to the PVA solution used in Evaluation 1. In this evaluation, in addition to the three types of microneedles (Sample 3-1 and Sample 3-2, Sample 3-3) in which the number of times the PVA solution was applied was changed from 1 to 3 as in Evaluation 1, the PVA solution was used. A microneedle (sample 3-0) to which the above was not applied was also prepared.
 各サンプルのニードルの機械的強度を、ボンドテスター(デイジ社製万能型ボンドテスター、型番:5000)により測定した。具体的には、マイクロニードルをボンドテスターに固定し、真空下でステンレスプローブをニードルの根元から200μmの位置にセットし、その後、ステンレスプローブを水平に動かすことによりニードルの降伏応力を測定し、その値をニードルの機械的強度の指標とした。 The mechanical strength of the needle of each sample was measured with a bond tester (universal bond tester manufactured by Daige Co., Ltd., model number: 5000). Specifically, the microneedle is fixed to a bond tester, the stainless probe is set at a position 200 μm from the root of the needle under vacuum, and then the yield stress of the needle is measured by moving the stainless probe horizontally, and the yield stress is measured. The value was used as an index of the mechanical strength of the needle.
 <結果>
 評価3により得られた代表的な結果を図7に示す。図7より、PVA層を形成したニードルの降伏応力がPVA層無しのニードルよりも高いことから、PVA層の形成によるニードル機械的強度の向上が示唆された。また、PVA溶液を2回塗布したサンプル3-2と、3回塗布したサンプル3-3とでは大きな違いが見られなかった。評価2から得られた結果を考慮すると、機械的強度の観点からは、PVA層の厚さは15~21μmの範囲が好ましいことが示唆された。
<Result>
Representative results obtained in Evaluation 3 are shown in FIG. From FIG. 7, since the yield stress of the needle having the PVA layer formed was higher than that of the needle without the PVA layer, it was suggested that the mechanical strength of the needle was improved by forming the PVA layer. In addition, no significant difference was observed between the sample 3-2 to which the PVA solution was applied twice and the sample 3-3 to which the PVA solution was applied three times. Considering the results obtained from Evaluation 2, it was suggested that the thickness of the PVA layer is preferably in the range of 15 to 21 μm from the viewpoint of mechanical strength.
 (評価4)溶解性/分解性材料層の溶解性
 <実験方法>
 評価2と同様にしてCy5標識添加PVA溶液を2回塗布したマイクロニードルを作製した。作製したマイクロニードルのニードルの部分をリン酸緩衝生理食塩水(PBS)に浸漬し、蛍光顕微鏡法により観察した。また、PBS中の遊離Cy5の蛍光強度を、蛍光光度計(サーモフィッシャーサイエンティフィック社製、製品名:NanoDrop 3300)により測定することで、ニードル表面からのPVAの消失を定量した。
(Evaluation 4) Solubility / Degradability Solubility of material layer <Experimental method>
A microneedle was prepared by applying the Cy5-labeled PVA solution twice in the same manner as in Evaluation 2. The needle portion of the prepared microneedle was immersed in phosphate buffered saline (PBS) and observed by fluorescence microscopy. In addition, the fluorescence intensity of free Cy5 in PBS was measured with a fluorometer (manufactured by Thermo Fisher Scientific Co., Ltd., product name: NanoDrop 3300) to quantify the disappearance of PVA from the needle surface.
 <結果>
 評価4により得られた代表的な結果を示す。図8の(a)は、左から順に、PBSに浸漬した直後、5分後および30分後の、蛍光顕微鏡像である。図8の(b)は、PBS中の遊離Cy5の蛍光強度の時間による変化を示すグラフである。図8の(a)より、PBSに浸漬して30分後に、ニードル表面からCy5由来の蛍光が消失していることがわかる。このことから、生理的条件下でのPVA層の速やかな溶解が示唆されたことがわかる。また、PBS中の遊離Cy5の蛍光強度が時間の経過とともに増大していることから、生理的条件下でのPVA層の優れた溶解性が示唆された。
<Result>
The representative result obtained by the evaluation 4 is shown. FIG. 8A is a fluorescence microscope image immediately after immersion in PBS, 5 minutes and 30 minutes after immersion in PBS, in order from the left. FIG. 8B is a graph showing the change in fluorescence intensity of free Cy5 in PBS with time. From (a) of FIG. 8, it can be seen that the fluorescence derived from Cy5 disappears from the needle surface 30 minutes after being immersed in PBS. From this, it can be seen that the rapid dissolution of the PVA layer under physiological conditions was suggested. In addition, the fluorescence intensity of free Cy5 in PBS increased with the passage of time, suggesting excellent solubility of the PVA layer under physiological conditions.
 (評価5)グルコース応答能
 <実験方法>
 PVA層の有無によるグルコース応答能を評価するため、評価3のサンプル3-0(PVA溶液塗布回数:0回)およびサンプル3-2(PVA溶液塗布回数:2回)と同様にして作製した2種類のマイクロニードルにそれぞれインスリン格納容器を接合した。具体的には、撥水エポキシ樹脂を用いてマイクロニードルにシリコンシート(厚さ:0.3mm)を接合し、シリンジを用いてFITC標識インスリン(130mg/L)をマイクロニードル内に注入した。
(Evaluation 5) Glucose response ability <Experimental method>
In order to evaluate the glucose response ability with and without the PVA layer, 2 was prepared in the same manner as Sample 3-0 (number of PVA solution coatings: 0 times) and Sample 3-2 (number of PVA solution coatings: 2 times) in Evaluation 3. Insulin storage containers were attached to each type of microneedle. Specifically, a silicon sheet (thickness: 0.3 mm) was bonded to the microneedle using a water-repellent epoxy resin, and FITC-labeled insulin (130 mg / L) was injected into the microneedle using a syringe.
 得られたインスリン格納容器付きマイクロニードルのそれぞれについて、HPLC法(移動相:グルコース含有PBS(100、500mg/dL、pH7.4)、流速:1mL/min、Ex/Em=490/520nm)により、マイクロニードルから放出されたFITC標識インスリン由来の蛍光を測定した。 For each of the obtained microneedles with an insulin storage container, by HPLC method (mobile phase: glucose-containing PBS (100, 500 mg / dL, pH 7.4), flow rate: 1 mL / min, Ex / Em = 490/520 nm). Fluorescence from FITC-labeled insulin released from the microneedles was measured.
 <結果>
 評価5により得られた代表的な結果を図9に示す。図9において、Aは、PVA層の無いマイクロニードルからのFITC標識インスリン放出パターンを示すグラフであり、Bは、PVA層をコーティングしたマイクロニードルからのFITC標識インスリン放出パターンを示すグラフであり、Cは、グルコースの濃度パターンを示すグラフである。AとBを比較すると、PVA層の有無にかかわらずインスリン放出挙動にほとんど変化が無いことから、速やかなPVA層の消失およびグルコース濃度に応答したインスリンの放出が示唆された。
<Result>
The representative results obtained by the evaluation 5 are shown in FIG. In FIG. 9, A is a graph showing a FITC-labeled insulin release pattern from a microneedle without a PVA layer, and B is a graph showing a FITC-labeled insulin release pattern from a microneedle coated with a PVA layer. Is a graph showing a glucose concentration pattern. Comparing A and B, there was almost no change in insulin release behavior with or without the PVA layer, suggesting rapid disappearance of the PVA layer and insulin release in response to glucose concentration.
 (評価6)皮内環境を模倣したアガロースゲルにおけるグルコース応答能
 <実験方法>
 グルコース含有PBS(濃度:100mg/dL)にアガロースを1wt%で溶解し、電子レンジ(600W)で1分間加熱した。その後、溶液を3D培養観察用デバイス(キューブ型、寸法:10mm×10mm×10mm)に添加し、アガロースゲルを調製した。マイクロニードルとしては、評価3と同様に作製したPVA層コート付きマイクロニードルを用いた。このマイクロニードルにFITC標識インスリンを添加し、FITC標識インスリンを添加したマイクロニードルをアガロースゲルの表面に貼付し、PBS溶液中のFITC由来の蛍光強度を測定した。蛍光強度の測定には、蛍光光度計(サーモフィッシャーサイエンティフィック社製、製品名:NanoDrop 3300)を用いた。
(Evaluation 6) Glucose response ability in agarose gel that mimics the intradermal environment <Experimental method>
Agarose was dissolved in glucose-containing PBS (concentration: 100 mg / dL) at 1 wt% and heated in a microwave oven (600 W) for 1 minute. Then, the solution was added to a 3D culture observation device (cube type, dimensions: 10 mm × 10 mm × 10 mm) to prepare an agarose gel. As the microneedle, a PVA layer-coated microneedle prepared in the same manner as in Evaluation 3 was used. FITC-labeled insulin was added to the microneedles, and the microneedles to which FITC-labeled insulin was added were attached to the surface of the agarose gel, and the fluorescence intensity derived from FITC in the PBS solution was measured. A fluorometer (manufactured by Thermo Fisher Scientific Co., Ltd., product name: NanoDrop 3300) was used for measuring the fluorescence intensity.
 <結果>
 評価6により得られた代表的な結果を図10に示す。グルコースを含まないPBS(glucose(-))中ではFITC由来の蛍光強度の増大は見られなかった。一方、グルコース含有PBS(glucose(+))中ではFITC由来の蛍光強度が増大した。このことから、アガロースゲルのような網目構造においてもグルコース濃度を感知してインスリンを放出したことが示唆された。
<Result>
Representative results obtained by evaluation 6 are shown in FIG. No increase in fluorescence intensity derived from FITC was observed in PBS (glucose (−)) containing no glucose. On the other hand, in glucose-containing PBS (glucose (+)), the fluorescence intensity derived from FITC increased. This suggests that insulin was released by sensing the glucose concentration even in a network structure such as an agarose gel.
 10  マイクロニードル
 100 ベース部
 110 ニードル
 120 溶解性/分解性材料層
10 Microneedle 100 Base 110 Needle 120 Soluble / Degradable Material Layer

Claims (11)

  1.  薬剤を担持することができ、かつ前記薬剤の透過性を有するニードルと、
     少なくとも前記ニードルの表面の一部に形成された、生理的条件下で溶解または分解する材料からなる溶解性/分解性材料層と、
     を有する薬剤送達デバイス。
    A needle that can carry a drug and has the permeability of the drug,
    A soluble / degradable material layer formed of at least a part of the surface of the needle and composed of a material that dissolves or decomposes under physiological conditions.
    Drug delivery device with.
  2.  前記生理的条件下で溶解または分解する材料はポリビニルアルコールである請求項1に記載の薬剤送達デバイス。 The drug delivery device according to claim 1, wherein the material that dissolves or decomposes under the physiological conditions is polyvinyl alcohol.
  3.  前記溶解性/分解性材料層の厚さは15~21μmである請求項1または2に記載の薬剤送達デバイス。 The drug delivery device according to claim 1 or 2, wherein the soluble / degradable material layer has a thickness of 15 to 21 μm.
  4.  前記ニードルを支持するベース部をさらに有する請求項1から3のいずれか一項に記載の薬剤送達デバイス。 The drug delivery device according to any one of claims 1 to 3, further comprising a base portion that supports the needle.
  5.  前記ベース部は、前記ニードルが担持する薬剤のリザーバを有する請求項4に記載の薬剤送達デバイス。 The drug delivery device according to claim 4, wherein the base portion has a reservoir of the drug carried by the needle.
  6.  前記ニードルは、フェニルボロン酸系単量体ユニットを含む共重合体を含むゲル組成物からなる請求項1から5のいずれか一項に記載の薬剤送達デバイス。 The drug delivery device according to any one of claims 1 to 5, wherein the needle comprises a gel composition containing a copolymer containing a phenylboronic acid-based monomer unit.
  7.  前記薬剤送達デバイスはマイクロニードルである、請求項1から6のいずれか一項に記載の薬剤送達デバイス。 The drug delivery device according to any one of claims 1 to 6, wherein the drug delivery device is a microneedle.
  8.  薬剤の浸透性を有するニードルを有する薬剤送達デバイスの製造方法であって、
     前記ニードルを形成することと、
     少なくとも前記ニードルの表面の一部に、生理的条件下で溶解または分解する材料からなる溶解性/分解性材料層を形成することと、
     を含む、薬剤送達デバイスの製造方法。
    A method of manufacturing a drug delivery device having a drug-permeable needle.
    Forming the needle and
    To form a soluble / degradable material layer of a material that dissolves or decomposes under physiological conditions, at least on a portion of the surface of the needle.
    A method of manufacturing a drug delivery device, including.
  9.  前記生理的条件下で溶解または分解する材料はポリビニルアルコール(PVA)である請求項8に記載の薬剤送達デバイスの製造方法。 The method for producing a drug delivery device according to claim 8, wherein the material that dissolves or decomposes under the physiological conditions is polyvinyl alcohol (PVA).
  10.  前記ニードルを形成することは、
     前記フェニルボロン酸系単量体を含む単量体混合物を含むプレゲル溶液を型に流し込むことと、
     前記型内で、前記プレゲル溶液中の前記単量体混合物を重合することによってゲル組成物からなる成型体を得ることと、
     前記成型体を型から取り出すことと、
     を含む、請求項8または9に記載の薬剤送達デバイスの製造方法。
    Forming the needle
    Pour the pregel solution containing the monomer mixture containing the phenylboronic acid-based monomer into the mold, and
    By polymerizing the monomer mixture in the pregel solution in the mold, a molded product composed of a gel composition can be obtained.
    Taking out the molded body from the mold and
    The method for manufacturing a drug delivery device according to claim 8 or 9.
  11.  前記ニードルに前記薬剤を担持させることをさらに含む請求項8から10のいずれか一項に記載の薬剤送達デバイスの製造方法。 The method for manufacturing a drug delivery device according to any one of claims 8 to 10, further comprising carrying the drug on the needle.
PCT/JP2021/013059 2020-03-27 2021-03-26 Drug delivery device and method for producing same WO2021193959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057997 2020-03-27
JP2020057997A JP2021153914A (en) 2020-03-27 2020-03-27 Medication delivery device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2021193959A1 true WO2021193959A1 (en) 2021-09-30

Family

ID=77892305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013059 WO2021193959A1 (en) 2020-03-27 2021-03-26 Drug delivery device and method for producing same

Country Status (2)

Country Link
JP (1) JP2021153914A (en)
WO (1) WO2021193959A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931544A (en) * 2022-05-18 2022-08-23 浙江大学 Photocuring microneedle for transdermal drug delivery and preparation method thereof
CN115715756A (en) * 2022-10-11 2023-02-28 浙江大学 Acryloyl glycinamide-fluorine-containing phenylboronic acid group sugar-sensitive microneedle and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069282A1 (en) * 2015-10-23 2017-04-27 国立大学法人東京医科歯科大学 Drug delivery device
WO2017130793A1 (en) * 2016-01-28 2017-08-03 株式会社リコー Microneedle array, and microneedle sheet
WO2018106696A1 (en) * 2016-12-05 2018-06-14 North Carolina State University Core-shell microneedle devices and uses thereof
WO2019044993A1 (en) * 2017-08-30 2019-03-07 国立大学法人東北大学 Device for detecting, diagnosing, or treating disease in skin or state of skin
WO2019182099A1 (en) * 2018-03-22 2019-09-26 国立大学法人 東京医科歯科大学 Glucose reactive composite gel composition, method for producing same, insulin delivery microneedle including said glucose reactive composite gel composition, and producing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069282A1 (en) * 2015-10-23 2017-04-27 国立大学法人東京医科歯科大学 Drug delivery device
WO2017130793A1 (en) * 2016-01-28 2017-08-03 株式会社リコー Microneedle array, and microneedle sheet
WO2018106696A1 (en) * 2016-12-05 2018-06-14 North Carolina State University Core-shell microneedle devices and uses thereof
WO2019044993A1 (en) * 2017-08-30 2019-03-07 国立大学法人東北大学 Device for detecting, diagnosing, or treating disease in skin or state of skin
WO2019182099A1 (en) * 2018-03-22 2019-09-26 国立大学法人 東京医科歯科大学 Glucose reactive composite gel composition, method for producing same, insulin delivery microneedle including said glucose reactive composite gel composition, and producing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114931544A (en) * 2022-05-18 2022-08-23 浙江大学 Photocuring microneedle for transdermal drug delivery and preparation method thereof
CN115715756A (en) * 2022-10-11 2023-02-28 浙江大学 Acryloyl glycinamide-fluorine-containing phenylboronic acid group sugar-sensitive microneedle and preparation method thereof

Also Published As

Publication number Publication date
JP2021153914A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Zhang et al. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats
WO2021193959A1 (en) Drug delivery device and method for producing same
Kim et al. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin
Jagur‐Grodzinski Polymeric gels and hydrogels for biomedical and pharmaceutical applications
CA2904127C (en) Polymer based oxygen sensors
Huang et al. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy
Peters et al. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications
US20080095822A1 (en) Active Substance Delivery System Comprising A Hydrogel Atrix And Microcarriers
WO2013131215A1 (en) Polymer micro-needle array chip, preparation process and use thereof
Drapala et al. Role of thermo-responsiveness and poly (ethylene glycol) diacrylate cross-link density on protein release from poly (N-isopropylacrylamide) hydrogels
CN105744982A (en) Fabrication process of phase-transition microneedle patch
WO2022154055A1 (en) Polyglycerol, complex gel composition containing said polyglycerol, drug delivery micro-needle including said complex gel composition, and methods for producing same
Ninawe et al. Drug delivery using stimuli-responsive polymer gel spheres
CN111138687A (en) Injectable glucose response self-healing hydrogel and preparation method and application thereof
US20060229492A1 (en) Materials and methods for in situ formation of a heart constrainer
JP7281659B2 (en) Temperature-resistant sugar-responsive gel
KR20200020423A (en) dual-mode drug release hydrogel and method of fabricating the same
Yilmaz Multicomponent, semi-interpenetrating-polymer-network and interpenetrating-polymer-network hydrogels: smart materials for biomedical applications
WO2019182099A1 (en) Glucose reactive composite gel composition, method for producing same, insulin delivery microneedle including said glucose reactive composite gel composition, and producing method therefor
Saharan et al. Hydrogel-based Drug Delivery System in Diabetes Management
US20140348772A1 (en) Production of hydrogels by means of diels-alder reaction
JP2023528622A (en) Heat-resistant embedded polymer microneedle, its fabrication method and use
CN1212124C (en) Preparation for injecting temperature sensitive gelatin embolism material
Liu et al. Thermal-/light-tunable hydrogels showing reversible widening and closing actuations based on predesigned interpenetrated networks
WO2023033144A1 (en) Drug delivery device and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774556

Country of ref document: EP

Kind code of ref document: A1