WO2021193861A1 - Heat-sensitive label and method for producing heat-sensitive label - Google Patents

Heat-sensitive label and method for producing heat-sensitive label Download PDF

Info

Publication number
WO2021193861A1
WO2021193861A1 PCT/JP2021/012690 JP2021012690W WO2021193861A1 WO 2021193861 A1 WO2021193861 A1 WO 2021193861A1 JP 2021012690 W JP2021012690 W JP 2021012690W WO 2021193861 A1 WO2021193861 A1 WO 2021193861A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
heat seal
seal layer
base material
Prior art date
Application number
PCT/JP2021/012690
Other languages
French (fr)
Japanese (ja)
Inventor
岩瀬 祐一
高広 座間
卓哉 五十嵐
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2022510689A priority Critical patent/JP7289011B2/en
Publication of WO2021193861A1 publication Critical patent/WO2021193861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/04Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/08Fastening or securing by means not forming part of the material of the label itself
    • G09F3/10Fastening or securing by means not forming part of the material of the label itself by an adhesive layer

Definitions

  • the present invention relates to a heat-sensitive label and a method for manufacturing a heat-sensitive label.
  • a heat-sensitive label may be inserted inside the mold and heat-sealed to the molded body by the heat of molding.
  • in-mold molding if the air between the resin before molding and the label is difficult to escape, air remains between the molded body after molding and the label, and not only the adhesive strength of the label is lowered, but also the blister Appearance defects called can occur.
  • the label is usually printed on the surface opposite to the surface that adheres to the molded product. If embossing is provided on the surface of the molded product as described above, the uneven shape of the embossing may be transferred to the printed surface when the labels are stacked. Therefore, a heat-sensitive label that can reduce blisters regardless of embossing has been developed.
  • An object of the present invention is to provide a thermal label having few blisters and a method for producing the same.
  • the present inventors have found that the above problems can be solved if the heat-sealing layer on the molded body side contains filler particles and the heat-sealing layer has multiple layers.
  • the invention was completed. That is, the present invention is as follows.
  • Base material layer and It has a heat-sealing layer containing filler particles on the base material layer, and has The heat seal layer has a first heat seal layer on the base material layer and a second heat seal layer on the first heat seal layer.
  • the filler particles are covered with the second heat seal layer,
  • a heat-sensitive label having a ten-point surface roughness Rz JIS of the second heat-sealing layer of 5 to 15 ⁇ m.
  • the second heat-sealing layer contains a heat-sealing resin, and the second heat-sealing layer contains a heat-sealing resin.
  • a support layer is provided between the first heat seal layer and the base material layer.
  • the first heat seal layer contains an ethylene resin and contains The heat-sensitive label according to any one of (1) to (3) above, wherein the support layer contains a propylene resin.
  • Steps to obtain a laminated body A step of stretching the laminate to obtain a heat-sensitive label containing the base material layer, the first heat-sealing layer and the second heat-sealing layer, and the like.
  • the resin composition of the first heat seal layer contains filler particles, and the resin composition of the second heat seal layer does not contain filler particles or contains 5% by mass or less of filler particles.
  • a method for producing a heat-sensitive label, wherein the ten-point surface roughness Rz JIS of the second heat seal layer is 5 to 15 ⁇ m.
  • the resin composition of the support layer is coextruded together with the resin compositions of the first heat seal layer and the second heat seal layer, and the base material layer, the support layer, and the support layer are described.
  • the heat-sensitive label of the present invention has a base material layer and a heat seal layer containing filler particles on the base material layer.
  • the heat seal layer has a first heat seal layer and a second heat seal layer on the base material layer in this order.
  • the filler particles are covered with a second heat-sealing layer, and the ten-point surface roughness Rz JIS of the second heat-sealing layer is 5 to 15 ⁇ m.
  • a printing layer is provided on the surface of the base material layer opposite to the heat-sealing layer.
  • the filler particles in the heat seal layer in this way, it is possible to provide fine irregularities with a ten-point surface roughness Rz JIS within a specific range on the surface of the heat-sensitive label. Since the air flow path is formed even when the heat-sensitive label comes into contact with the molded body due to the unevenness, the air between the heat-sensitive label and the molded body can be discharged during in-mold molding to reduce the generation of blisters. Since the unevenness is finer and more irregular than when the unevenness is provided by embossing, even when the heat-sensitive labels are stacked, the uneven shape is not transferred to the printing layer on the opposite side of the heat seal layer, and the heat-sensitive shape is not transferred. The excellent appearance of the label is maintained.
  • Mayani refers to agglomerates of particles that adhere to the lip of a molding machine over time when a heat seal layer is formed by extrusion molding.
  • eyelids due to agglutination of particles are likely to occur when forming a layer containing a large amount of filler particles.
  • the resin used for the heat seal layer has a lower melt viscosity than the base material layer, and when it is melted by heating in the process of manufacturing the heat-sensitive label, the filler particles in the heat seal layer tend to move easily.
  • the heat-sensitive label heat-sealing layer of the present invention has a first heat-sealing layer and a second heat-sealing layer, and is multi-layered. If the filler particles are mixed in the first heat-sealing layer, even if the filler particles move to the surface of the first heat-sealing layer, they are covered by the second heat-sealing layer. It is possible to prevent the dropout. Therefore, it is possible to continuously produce heat-sensitive labels with few blisters while suppressing the generation of eyebrows.
  • the heat-sensitive label of the present invention preferably has a support layer between the first heat seal layer and the base material layer.
  • FIG. 1 shows the configuration of the thermal label 10 as an embodiment of the present invention.
  • the heat-sensitive label 10 illustrated in FIG. 1 has a base material layer 1, a heat seal layer 2, and a support layer 3.
  • the support layer 3 is arranged between the base material layer 1 and the heat seal layer 2.
  • the heat seal layer 2 has a first heat seal layer 21 and a second heat seal layer 22 on the support layer 3 in this order. Further, the heat seal layer 2 contains the filler particles 4 covered with the second heat seal layer 22.
  • a print layer 5 may be formed by printing on the surface of the base material layer 1 opposite to the heat seal layer 2.
  • the substrate layer can impart mechanical strength to the thermal label. As a result, sufficient elasticity can be obtained when printing on the heat-sensitive label or when inserting the label into the mold, and excellent handleability can be obtained.
  • the base material layer contains a thermoplastic resin.
  • the thermoplastic resin include olefin resins, ester resins, amide resins, polyvinyl chloride resins, polystyrene resins, polycarbonate resins and the like.
  • the base material layer preferably contains an olefin resin or an ester resin as the thermoplastic resin, and more preferably contains an olefin resin. Of these, one type or a combination of two or more types can be used.
  • olefin resin examples include propylene resin and ethylene resin. From the viewpoint of moldability and mechanical strength, a propylene resin is preferable.
  • the propylene-based resin is not particularly limited as long as propylene is used as the main monomer.
  • an isotactic polymer obtained by homopolymerizing propylene, a syndiotactic polymer, and the like can be mentioned.
  • it is a copolymer of propylene as a main component and an ⁇ -olefin such as ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-hexene, or 1-octene.
  • Some propylene- ⁇ -olefin copolymers and the like can also be used.
  • the copolymer may be a binary system in which the monomer component is a binary system or a plural system in which the monomer component is a ternary system or more, and may be a random copolymer or a block copolymer. Further, the propylene homopolymer and the propylene copolymer may be used in combination. Among these, the propylene homopolymer is preferable because it is easy to handle as the main raw material of the base material layer.
  • ethylene-based resin for example high density polyethylene having a density of 0.940 ⁇ 0.965g / cm 3, medium density polyethylene having a density of 0.920 ⁇ 0.935g / cm 3, density of 0.900 ⁇ 0.920 g / to cm 3 straight chain linear low density polyethylene, ethylene or the like as a main component, propylene, butene, hexene, heptene, octene, 4-methylpentene copolymers ⁇ - olefin is copolymerized, such as -1, maleated Ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid alkyl ester copolymer, ethylene-methacrylic acid alkyl ester copolymer, ethylene-methacrylic acid copolymer Examples thereof include coalesced metal salts (metals are zinc, aluminum, lithium, sodium, potassium,
  • ester-based resin examples include polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate.
  • amide resin examples include nylon-6, nylon-6,6, nylon-6,10, nylon-6,12 and the like.
  • the content of the thermoplastic resin in the base material layer is preferably 50% by mass or more, more preferably 70% by mass or more. When the content is 50% by mass or more, the mechanical strength of the base material layer is likely to be improved. On the other hand, there is no particular upper limit on the content of the thermoplastic resin, which may be 100% by mass, or less than 100% by mass with the addition of fillers and additives described below within a range that does not affect the strength or moldability. May be.
  • the base material layer can contain a filler. Due to the inclusion of the filler, pores are likely to be formed inside the base material layer during stretching, and the whiteness or opacity can be enhanced. In this case, the base material layer is a porous stretched layer.
  • the filler that can be used for the base material layer include an inorganic filler and an organic filler.
  • the inorganic filler examples include heavy calcium carbonate, light calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide such as rutile type titanium dioxide, barium sulfate, aluminum sulfate, zinc oxide, magnesium oxide, mica, and seri.
  • Inorganic particles such as sight, bentonite, sepiolite, vermiculite, dolomite, wallastonite, and glass fiber can be mentioned.
  • heavy calcium carbonate, clay or diatomaceous earth is preferable because the pores have good moldability and are inexpensive.
  • the surface of the inorganic filler may be surface-treated with a surface treatment agent such as fatty acid for the purpose of improving dispersibility.
  • Organic fillers include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, polycarbonate, polystyrene, cyclic olefin homopolymer, ethylene-cyclic olefin copolymer, polyethylene sulfide, polyimide, and poly, which are incompatible with olefin resins. Examples thereof include organic particles such as methacrylate, polyetheretherketone, polyphenylene sulfide, and melamine resin.
  • One of the above-mentioned inorganic fillers or organic fillers can be used alone or in combination of two or more.
  • the content of the filler in the base material layer is preferably 10% by mass or more, more preferably 15% by mass or more. Further, from the viewpoint of enhancing the uniformity of molding of the base material layer, the content of the filler in the base material layer is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. More preferred.
  • the average particle size of the inorganic filler or the organic filler is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more, from the viewpoint of easiness of forming pores. From the viewpoint of imparting mechanical strength such as tear resistance, the average particle size of the inorganic filler or the organic filler is preferably 15 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 2 ⁇ m or less.
  • the average particle size of the inorganic filler is 50% of the cumulative volume measured by a particle measuring device, for example, a laser diffraction type particle size distribution measuring device (Microtrac, manufactured by Nikkiso Co., Ltd.) (cumulative 50% particle size). It is D50.
  • the average particle size of the organic filler is the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion.
  • the average dispersed particle size can be determined as an average value by observing the cut surface of the thermoplastic resin film containing the organic filler with an electron microscope and measuring the maximum size of at least 10 particles.
  • a known additive can be arbitrarily added to the base material layer, if necessary.
  • the additive include antioxidants, light stabilizers, ultraviolet absorbers, dispersants of inorganic fine powders, lubricants such as higher fatty acid metal salts, anti-blocking agents such as higher fatty acid amides, dyes, pigments, plasticizers, and crystals.
  • examples include nuclear agents, mold release agents, and flame retardant agents.
  • a steric hindrance phenolic antioxidant, a phosphorus-based antioxidant, an amine-based antioxidant, or the like can usually be used within the range of 0.001 to 1% by mass.
  • a light stabilizer a steric hindrance amine-based light stabilizer, a benzotriazole-based light stabilizer, or a benzophenone-based light stabilizer can be usually used in the range of 0.001 to 1% by mass.
  • Dispersants or lubricants are used, for example, for the purpose of dispersing fillers.
  • a silane coupling agent a higher fatty acid such as oleic acid or stearic acid, a metal soap, poly (meth) acrylic acid or a salt thereof, etc. are usually used within the range of 0.01 to 4% by mass. Can be done. These are preferably added within a range that does not impair the printability and heat sealability of the in-mold molding label made of a thermoplastic resin film.
  • the porosity representing the ratio of pores in the layer is preferably 10% or more, more preferably 12% or more, from the viewpoint of obtaining opacity. It is preferably 15% or more, and more preferably 15% or more. From the viewpoint of maintaining the mechanical strength, the porosity is preferably 45% or less, more preferably 44% or less, and further preferably 42% or less. From the viewpoint of obtaining transparency, the porosity in the base material layer is preferably less than 10%, more preferably 5% or less, and further preferably 3% or less. The porosity may be 0%. The porosity can be obtained from the ratio of the area occupied by the pores in a certain region of the cross section of the sample observed with an electron microscope.
  • the thickness of the base material layer is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of layer strength. From the viewpoint of weight reduction of the thermal label, the thickness of the base material layer is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the surface of the base material layer opposite to the heat seal layer may be surface-treated from the viewpoint of improving the adhesion to the printing layer. Further, a print receiving layer or the like having high adhesion to the printing layer may be provided on the surface of the base material layer opposite to the heat sealing layer.
  • the heat seal layer can enhance the adhesiveness with a molded body (adhesive body) such as a resin container.
  • the heat seal layer is melted by heating, and the heat-sensitive label is heat-sealed on the surface of the molded product.
  • a heat-sensitive label is provided inside the mold so that the molded product (container) and the heat seal layer face each other, and the heat of the parison or preform during in-mold molding is used.
  • the heat seal layer is heat fused.
  • the heat seal layer has a multilayer structure, and has a first heat seal layer on the base material layer and a second heat seal layer on the first heat seal layer as described above.
  • the heat seal layer contains filler particles, and the filler particles are covered with a second heat seal layer.
  • the heat-sealing layer having such a multilayer structure is obtained, for example, after the resin composition for the first heat-sealing layer containing the filler particles and the resin composition for the second heat-sealing not containing the filler particles are co-extruded. Obtained by stretching.
  • the content of the filler particles in the heat seal layer is preferably 2.5% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more. , 25% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less.
  • the content is equal to or higher than the above lower limit value, blister is easily suppressed.
  • the content is not more than the above upper limit value, it is easy to reduce the shavings at the time of molding.
  • the first heat seal layer is formed by using a resin composition containing the first heat seal resin and filler particles. A part of the filler particles contained in the resin composition for the first heat seal layer protrudes from the first heat seal layer in the thickness direction by stretching, and contributes to the formation of the roughness of the surface of the heat seal layer.
  • the first heat-sealing resin preferably has a lower melting point than the thermoplastic resin used for the base material layer.
  • the melting point of the first heat-sealing resin is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and 30 ° C. or higher lower than the melting point of the thermoplastic resin used for the base material layer. Is even more preferable.
  • the first heat-sealing resin since the first heat-sealing resin has a low melting point, even if the resin composition for the first heat-sealing layer contains filler particles, it does not become a porous layer by stretching like the base material layer.
  • the melting point can be measured by a differential scanning calorimetry (DSC).
  • the melting point of the first heat-sealing resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher.
  • the temperature is preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the first heat-sealing resin examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid copolymer, and ethylene / (.
  • the first heat-sealing resin is a random copolymer or block of ⁇ -olefin obtained by copolymerizing at least two or more comonomer selected from ⁇ -olefin having 2 to 20 carbon atoms in the molecule.
  • ⁇ -olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, and the like.
  • the first heat-sealing resin preferably contains polyethylene and an ethylene- ⁇ -olefin copolymer from the viewpoint of obtaining excellent adhesive strength even when the adherend is polypropylene, and is a polyethylene and ethylene-propylene copolymer. It is more preferable to include.
  • the mass ratio of the ethylene- ⁇ -olefin copolymer to polyethylene is preferably 10/90 to 50/50, more preferably 20/80 to 40/60.
  • filler particles to be blended in the resin composition of the first heat seal layer the same material as the filler described in the base material layer can be used, and the preferred material is also the same.
  • One of the above-mentioned inorganic filler and organic filler can be used alone or in combination of two or more.
  • the average particle size of the filler particles is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more, and even more preferably 6 ⁇ m or more.
  • the average particle size is preferably 16 ⁇ m or less, more preferably 14 ⁇ m or less, and even more preferably 12 ⁇ m or less.
  • the content of the filler particles in the resin composition of the first heat seal layer is preferably 5% by mass or more, more preferably 6% by mass or more, and further preferably 7% by mass or more.
  • the content is preferably 50% by mass or less, more preferably 35% by mass or less, and further preferably 20% by mass or less.
  • the average particle size of the filler particles can be selected according to the thickness of the first heat seal layer and the second heat seal layer. Specifically, the difference (D50- (T1 + T2)) obtained by subtracting the sum of the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer from the average particle size D50 of the filler particles is 0.5 ⁇ m. The above is preferable, 1.0 ⁇ m or more is more preferable, and 3.0 ⁇ m or more is further preferable.
  • the difference (D50- (T1 + T2)) is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 6 ⁇ m or less.
  • the difference (D50- (T1 + T2)) is equal to or greater than the above lower limit value, the ten-point average roughness Rz JIS can be easily adjusted to the above range, and blister can be easily suppressed. Further, when the difference (D50- (T1 + T2)) is equal to or less than the above upper limit value, the filler particles are likely to be suppressed from falling off, and the occurrence of eyebrows is likely to be reduced.
  • the difference (D80- (T1 + T2)) obtained by subtracting the total of the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer from the average particle size D80 of the filler particles is 2.5 ⁇ m or more. It is preferable, 4.0 ⁇ m or more is more preferable, and 5.0 ⁇ m or more is further preferable.
  • the difference (D80- (T1 + T2)) is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the difference (D80- (T1 + T2)) is equal to or greater than the above lower limit value, the ten-point average roughness Rz JIS can be easily adjusted to the above range, and blister can be easily suppressed. Further, when the difference (D80- (T1 + T2)) is equal to or less than the above upper limit value, the filler particles are likely to be suppressed from falling off, and the occurrence of eyebrows is likely to be reduced.
  • the average particle size D80 is a volume average particle size (cumulative 80% particle size) that corresponds to 80% of the cumulative volume measured by a laser diffraction type particle size distribution measuring device (Microtrac, manufactured by Nikkiso Co., Ltd.). Further, in the present specification, the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer refer to the thickness of the portion where the filler particles do not exist.
  • the first heat-sealing layer can optionally contain the known additives listed in the above-mentioned base material layer section, if necessary.
  • the blending ratio of these additives is preferably 0.05% by mass or more, preferably 0.5% by mass or more, based on the total solid content of the first heat seal layer, from the viewpoint of exhibiting the predetermined performance of the additives. The above is more preferable.
  • the blending ratio of the additive is preferably 7.5% by mass or less, and more preferably 5% by mass or less, based on the total amount of solids in the heat seal layer. It is more preferably 3% by mass or less.
  • Second heat seal layer is formed of a resin composition containing the second heat seal resin.
  • the second heat seal layer covers the filler particles in the heat seal layer.
  • Second heat seal resin the same thermoplastic resin as the first heat-sealing resin can be used.
  • the second heat-sealing resin may be the same as or different from the first heat-sealing resin.
  • the second heat-sealing resin uses low-density polyethylene, linear low-density polyethylene, ethylene / vinyl acetate copolymer, or metallocene catalyst because it is easy to obtain a certain adhesive strength for various adherends.
  • Polyethylene polymerized (metallocene-based polyethylene) is preferable, and low-density polyethylene or metallocene-based polyethylene is more preferable.
  • the first heat-sealing resin preferably contains a polyethylene and an ethylene- ⁇ -olefin copolymer from the viewpoint of obtaining excellent adhesive strength even when the adherend is polypropylene, and is a polyethylene and ethylene-propylene copolymer. It is more preferable to include.
  • the mass ratio of the ethylene- ⁇ -olefin copolymer to polyethylene is preferably 10/90 to 50/50, more preferably 20/80 to 40/60.
  • the swell value of the second heat-sealing resin is preferably 1.6 or less, more preferably 1.4 or less, and even more preferably 1.2 or less. When the swell value is 1.6 or less, the generation of shavings is likely to be suppressed during molding.
  • the swell value is usually 0.5 or more, more preferably 0.7 or more, and even more preferably 0.9 or more.
  • the swell value is the ratio of the diameter of the melt of the resin extruded from the capillary to the diameter of the pores of the capillary, and can be measured by a capillary graph (1D, manufactured by Toyo Seiki Co., Ltd.). In the capillary graph, the hole diameter D of the capillary die is 1 mm, and the hole length L is 10 mm.
  • the melting point of the second heat-sealing resin is preferably lower than that of the thermoplastic resin of the base material layer, like the first heat-sealing resin.
  • the melting point of the second heat-sealing resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, while it is preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the second heat seal layer may contain the same filler particles as the first heat seal layer as long as the effects of the present invention are not impaired. From the viewpoint of suppressing the falling off of the filler particles and reducing the shavings, it is preferable that the resin composition of the second heat seal layer does not contain the filler particles. Specifically, the content of the filler particles in the resin composition of the second heat seal layer is 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and 0% by mass. Especially preferable.
  • the second heat seal layer can contain an antistatic agent within a range that does not affect the heat seal performance from the viewpoint of handling such as transportability during printing.
  • Suitable antistatic agents to be blended in the second heat seal layer include compounds having a primary to tertiary amine or quaternary ammonium salt structure, and complete fatty acids such as ethylene glycol, propylene glycol, glycerin, polyethylene glycol, and polyethylene oxide. Esters or partial fatty acid esters can be mentioned.
  • the content of the antistatic agent is preferably 0.01% by mass or more, preferably 0.05% by mass, with respect to the total solid content of the second heat seal layer, from the viewpoint of exhibiting the predetermined performance of the antistatic agent. % Or more is more preferable.
  • the content of the antistatic agent is preferably 3% by mass or less with respect to the total solid content of the heat seal layer. It is more preferably 2% by mass or less, and further preferably 1% by mass or less.
  • the second heat-sealing layer can optionally contain the known additives listed in the above-mentioned base material layer section, if necessary.
  • the content of these additives is preferably 0.05% by mass or more, preferably 0.5% by mass or more, based on the total solid content of the second heat seal layer from the viewpoint of exhibiting the predetermined performance of the additives. The above is more preferable.
  • the content of the additive is preferably 7.5% by mass or less, more preferably 5% by mass or less, based on the total amount of solids in the heat seal layer. It is more preferably 3% by mass or less.
  • the content of the second heat-sealing resin in the second heat-sealing layer is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 99% by mass or more. ..
  • the thickness (T1 + T2) of the heat seal layer including the first heat seal layer and the second heat seal layer is preferably 2 ⁇ m or more, more preferably 2.5 ⁇ m or more, still more preferably 3 ⁇ m or more.
  • the same thickness (T1 + T2) is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 7.5 ⁇ m or less.
  • the thickness (T1) of the first heat seal layer is preferably smaller than the average particle size of the filler particles.
  • the thickness (T1) of the first heat seal layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 1.5 ⁇ m or more.
  • the same thickness (T1) is preferably 10 ⁇ m or less, more preferably 7.5 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
  • the thickness (T1) is at least the above lower limit value, the thickness in the width direction (TD) is stable, and the smoothness and roughness of the surface of the heat seal layer, the adhesive strength, and the like are easily stabilized.
  • unevenness is likely to be formed, and blister and blocking are likely to be suppressed.
  • the thickness (T2) of the second heat seal layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 1.5 ⁇ m or more.
  • the same thickness (T2) is preferably 10 ⁇ m or less, more preferably 7.5 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
  • the thickness (T2) is at least the above lower limit value, the filler particles are suppressed from falling off and the generation of shavings is likely to be suppressed.
  • the thickness (T2) is not more than the above upper limit value, unevenness is likely to be formed, and blister and blocking are likely to be suppressed.
  • the support layer is coextruded onto the substrate layer together with the heat seal layer.
  • a heat-sealing resin having a relatively low melting point is used for the heat-sealing layer, and extrusion molding may become unstable depending on the molding temperature, but stable molding is possible by co-extruding together with the support layer. .. Further, the support layer can suppress the migration of the filler particles in the resin composition of the first heat seal layer to the base material layer side, and the surface of the target ten-point surface roughness Rz JIS is likely to be formed.
  • the support layer can be configured in the same manner as the base material layer.
  • the thermoplastic resin used for the support layer is preferably an olefin resin, and among the olefin resins, a propylene resin is preferable.
  • the melting point of the thermoplastic resin is preferably higher than that of the first heat-sealing resin used for the first heat-sealing layer.
  • the thickness of the support layer is preferably 2 ⁇ m or more, more preferably 2.5 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the thickness is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 7.5 ⁇ m or less. When the thickness is at least the above lower limit value, the molding stability of the heat seal layer can be easily obtained.
  • the heat-sensitive label of the present invention is produced by laminating a first heat-sealing layer and a second heat-sealing layer on a base material layer as follows, and stretching the obtained laminate.
  • a base material layer is formed using the resin composition of the base material layer described above.
  • the method for forming the base material layer include extrusion molding (cast molding) with a T die, inflation molding with an O die, and calendar molding with a rolling roll.
  • the surface of the base material layer opposite to the heat-sealing layer may be surface-treated.
  • the surface treatment include corona discharge treatment, frame treatment, plasma treatment, glow discharge treatment, ozone treatment, and the like, and these treatments can be combined. Of these, corona discharge treatment or frame treatment is preferable, and corona treatment is more preferable.
  • the amount of discharge when the corona discharge treatment is carried out is preferably 600 J / m 2 (10 W / min / m 2 ) or more, and more preferably 1,200 J / m 2 (20 W / min / m 2 ) or more. On the other hand, it is preferably 12,000 J / m 2 (200 W / min / m 2 ) or less, and more preferably 10,800 J / m 2 (180 W / min / m 2 ) or less.
  • the discharge amount is preferably 8,000 J / m 2 or more, more preferably 20,000 J / m 2 or more, and preferably 200,000 J / m 2 or less, more preferably. It is preferably 100,000 J / m 2 or less.
  • the content of the filler particles in the resin composition of the first heat seal layer is preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 7% by mass or more.
  • the content is preferably 50% by mass or less, more preferably 35% by mass or less, and further preferably 20% by mass or less.
  • the content is equal to or higher than the above lower limit value, blister is easily suppressed.
  • the content is not more than the above upper limit value, it is easy to reduce the shavings at the time of molding.
  • the resin composition of the second heat seal layer does not contain filler particles, but when it is contained, the content of the filler particles in the resin composition of the second heat seal layer is 5% by mass. % Or less, and particularly preferably 0% by mass.
  • the resin composition of the support layer can also be coextruded to obtain a laminate in which the base material layer, the support layer, the first heat seal layer and the second heat seal layer are laminated in this order. preferable.
  • Examples of the method for laminating the heat seal layer on the base material layer include an extrusion laminating method and a film bonding method.
  • the extrusion laminating method the base material layer is molded first, and the melted thermoplastic composition for the heat seal layer is coextruded and laminated, and niped with a roll while cooling. Therefore, the molding and laminating processes are separate steps. It is done in.
  • the film bonding method the base material layer and the heat seal layer are each film-molded, and the two are bonded together via a pressure-sensitive adhesive. Therefore, molding and laminating are performed in separate steps.
  • a longitudinal stretching method using the peripheral speed difference of the roll group for example, a longitudinal stretching method using the peripheral speed difference of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these, a rolling method, and a simultaneous two stretching method using a combination of a tenter oven and a pantograph.
  • Examples include a shaft stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor.
  • a simultaneous biaxial stretching (inflation molding) method in which the molten resin is extruded into a tube shape using a circular die connected to a screw type extruder and then air is blown into the molten resin can also be used.
  • the base material layer, the first heat seal layer, and the second heat seal layer are stretched in at least one direction. From the viewpoint of improving the strength, the base material layer is more preferably stretched in two directions.
  • the stretching temperature at the time of performing stretching is preferably in the range of the glass transition temperature or higher of the thermoplastic resin.
  • the stretching temperature is at least the glass transition point of the non-crystalline portion of the thermoplastic resin and within the range of the melting point of the crystalline portion of the thermoplastic resin. Specifically, a temperature 2 to 60 ° C. lower than the melting point of the thermoplastic resin is preferable.
  • the stretching speed is not particularly limited, but is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
  • the draw ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when a thermoplastic resin film containing a homopolymer of propylene or a copolymer thereof is stretched in one direction, the draw ratio is usually 1.2 times or more, preferably 2 times or more at the lower limit.
  • the upper limit is usually 12 times or less, preferably 10 times or less.
  • the lower limit is usually 1.5 times or more, preferably 10 times or more
  • the upper limit is usually 60 times or less, preferably 50 times or less. be.
  • the upper limit of the draw ratio is usually 1.2 times or more, preferably 2 times or more, and the lower limit is usually 10 times or less. It is preferably 5 times or less.
  • the lower limit of the area stretching ratio is usually 1.5 times or more, preferably 4 times or more, and the upper limit is usually 20 times or less, preferably 12 times or less.
  • the desired porosity can be obtained and the opacity can be easily improved.
  • the thermoplastic resin film is less likely to break, and stable stretch molding tends to be possible.
  • the ten-point average roughness Rz JIS of the second heat seal layer of the heat-sensitive label of the present invention is 5 ⁇ m or more as described above, but is preferably 5.5 ⁇ m or more, and more preferably 6 ⁇ m or more.
  • the 10-point average roughness is 15 ⁇ m or less, preferably 12 ⁇ m or less, and more preferably 10 ⁇ m or less. If the ten-point average roughness Rz JIS is equal to or higher than the above lower limit, air between the molding resin and the heat-sensitive label is easily discharged when used as an in-mold label, and blister is easily suppressed and discharged. It is easy to suppress the decrease in adhesive strength due to the remaining air. When the ten-point average roughness Rz JIS is not more than the above upper limit value, the adhesive strength with the container can be easily obtained.
  • the ten-point average roughness Rz JIS is measured in accordance with JIS B0601: 2013 Annex 1.
  • the smoothness of the surface of the heat-sensitive label of the present invention on the second heat seal layer side is preferably 100 seconds or more, more preferably 200 seconds or more, preferably 1000 seconds or less, and more preferably 500 seconds or less.
  • air between the molding resin and the heat-sensitive label is easily discharged when used as an in-mold label, and blisters are easily suppressed.
  • the smoothness is equal to or higher than the above lower limit value, the adhesive strength with the container can be easily obtained.
  • the printing layer is formed by printing with ink on the surface of the heat-sensitive label opposite to the heat-sealing layer.
  • Examples of the print information include photographic images, patterns, barcodes, manufacturers, sales company names, characters, product names, usage methods, and the like.
  • the printing method that can be used is not particularly limited, and examples thereof include gravure printing, offset printing, flexographic printing, letterpress printing, sticker printing, screen printing, and inkjet printing.
  • inks such as oil-based ink, oxidative polymerization curable ink, ultraviolet curable ink, water-based ink, and liquid toner ink can be used.
  • the heat-sensitive label and the printed label according to the present invention can be used as a label for in-mold molding (in-mold label).
  • the labeled container has a heat-sensitive label or a printed label of the present invention and a plastic container body.
  • the heat-sensitive label or the printed label is attached to the plastic container body via the heat seal layer.
  • plastic container examples include polyester resins such as polyethylene terephthalate (PET) and its copolymers; polyolefin resins such as polypropylene (PP) and polyethylene (PE); and polycarbonate resins.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PE polyethylene
  • polycarbonate resins since it is a resin that is easily blow-molded, it is preferable to use a polyester-based resin or a polyolefin-based resin, and it is more preferable to use a polyolefin-based resin. Further, it is preferable to use a thermoplastic resin composition containing these thermoplastic resins as a main component.
  • ⁇ Manufacturing method of labeled plastic container As for the labeled plastic container, a method of adhering the in-mold label to the container at the time of molding the plastic container can be mentioned in processes such as hollow molding, injection molding and differential pressure molding.
  • the in-mold label is arranged in the cavity of the molding die so that the surface of the label on the heat seal layer side faces the cavity side of the mold (the surface on the printing layer side is in contact with the mold). After that, it is fixed to the inner wall of the mold by suction or static electricity. Next, a resin parison or melt of preform, which is a container molding material, is guided between the molds. After molding, hollow molding is performed by a conventional method, and a labeled plastic container in which the label is integrally fused to the outer wall of the plastic container is molded.
  • Table 1 shows a list of materials used in Examples and Comparative Examples.
  • Example 1 The propylene homopolymer (PP1) shown in Table 1 (trade name: Novatec PP MA4, manufactured by Japan Polypropylene Corporation, melting point (JIS K7121): 167 ° C.) 99% by mass, inorganic filler (CA1) (heavy calcium carbonate, product). Name: Softon # 1800, manufactured by Bikita Powder Industry Co., Ltd., average particle size D50: 2.0 ⁇ m, average particle size D80: 4.4 ⁇ m) 1% by mass was mixed to prepare a resin composition (A) for the base material layer. bottom. A resin composition (B) for the support layer was prepared in the same manner as the resin composition (A). That is, the resin composition (B) of the support layer has the same material and content as the base material layer.
  • PP1 propylene homopolymer shown in Table 1 (trade name: Novatec PP MA4, manufactured by Japan Polypropylene Corporation, melting point (JIS K7121): 167 ° C.) 99% by mass, inorganic filler (CA
  • Metallocene polyethylene (PE1) shown in Table 1 (trade name: Engage 8411, manufactured by The Dow Company, swell value: 0.96, melting point (JIS K7121): 76 ° C.) 92% by mass, inorganic filler (CA2) ( Light calcium carbonate, trade name: CUBE-80KAS, manufactured by Maruo Calcium Co., Ltd., average particle size D50: 8.8 ⁇ m, average particle size D80: 11.0 ⁇ m) 8% by mass was mixed, and the resin composition of the first heat seal layer was mixed. (C) was prepared. Further, 100% by mass of metallocene-based polyethylene (PE1) was used as the resin composition (D) of the second heat-sealing layer.
  • Table 1 trade name: Engage 8411, manufactured by The Dow Company, swell value: 0.96, melting point (JIS K7121): 76 ° C.
  • CA2 Light calcium carbonate, trade name: CUBE-80KAS, manufactured by Maruo Calcium Co.
  • the resin composition (A) of the base material layer was melt-kneaded by an extruder set at 250 ° C., then supplied to a T-die set at 250 ° C. and extruded into a sheet. This was cooled to about 60 ° C. with a cooling roll to obtain an unstretched sheet. The obtained unstretched sheet was reheated with a heat roll so that the temperature of the sheet surface became 140 ° C., and then stretched four times in the vertical direction by utilizing the difference in peripheral speed of the roll group. The sheet was cooled by a cooling roll until the temperature of the sheet surface reached about 60 ° C. to obtain a 4-fold stretched sheet.
  • the resin compositions (B) to (D) were melt-kneaded by three other extruders set at 230 ° C., and then extruded into a sheet from a T-die set at 230 ° C., which was quadrupled. It was laminated on a stretched sheet. As a result, a laminated sheet having a four-layer structure in which the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D) was laminated in this order was obtained. ..
  • the sheet of this laminated body was reheated using a tenter oven so that the temperature of the sheet surface became 160 ° C., then stretched 9 times in the lateral direction using a tenter, and further adjusted to 170 ° C. by a heat set zone. Annealing processing was performed.
  • the film was cooled to about 60 ° C. with a cooling roll, and the ears were slit to obtain a biaxially stretched resin film having a four-layer structure. This was guided to a corona discharge processor with a guide roll, and the surface on the substrate layer side was subjected to a corona discharge treatment at a processing amount of 50 W / min / m 2.
  • the heat-sensitive label of Example 1 was obtained by winding with a winder.
  • the obtained heat-sensitive label has a total thickness of 100 ⁇ m, and has the number of stretched axes of each of the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D).
  • the obtained heat-sensitive label has a total thickness of 100 ⁇ m, and has the number of stretched axes of each of the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D).
  • the obtained heat-sensitive label has a total thickness of 100 ⁇ m, and has the number of stretched axes of each of the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D).
  • the thickness of each layer was 91 ⁇ m / 5 ⁇ m / 2 ⁇ m / 2 ⁇ m.
  • Example 2 In Example 1, the ethylene / propylene copolymer (PP2) shown in Table 1 in the resin composition (D) of the second heat-sealing layer (trade name: VISTAMAXX 3588FL, manufactured by ExxonMobil, swell value: 1.02). , Melting point (JIS K7121): 103 ° C.) was further added to obtain a heat-sensitive label of Example 2 in the same manner as in Example 1 except that the composition of the second heat seal layer was adjusted as shown in Table 2. ..
  • Example 3 In Example 2, except that the ethylene / propylene copolymer (PP2) was further added to the resin composition (C) of the first heat seal layer to adjust the composition of the resin composition (C) as shown in Table 2. Obtained the heat-sensitive label of Example 3 in the same manner as in Example 2.
  • PP2 ethylene / propylene copolymer
  • Example 4 the inorganic filler of the resin composition (C) of the first heat seal layer was used as an organic filler (F1) (crosslinked polystyrene, trade name SSX-108, manufactured by Sekisui Plastics Co., Ltd., average particle size D50: 8.
  • the heat-sensitive label of Example 4 was obtained in the same manner as in Example 2 except that the particle size was 8 ⁇ m and the average particle size was D80: 11.0 ⁇ m) 8% by mass.
  • Comparative Example 1 A heat-sensitive label of Comparative Example 1 was obtained in the same manner as in Example 1 except that the first heat-sealing layer having a thickness of 4 ⁇ m was formed without forming the second heat-sealing layer.
  • Comparative Example 2 In Example 2, the heat sensitivity of Comparative Example 2 was the same as in Example 2 except that the inorganic filler of the resin composition (C) of the first heat seal layer was replaced with 8% by mass of heavy calcium carbonate (CA1). Got a label.
  • Comparative Example 3 A heat-sensitive label of Comparative Example 3 was obtained in the same manner as in Example 2 except that the thicknesses of the first heat-sealing layer and the second heat-sealing layer were changed to 5 ⁇ m, respectively.
  • Comparative Example 4 the heat-sensitive label of Comparative Example 4 was obtained in the same manner as in Comparative Example 2 except that the thickness of the first heat-sealing layer was changed to 4 ⁇ m without forming the second heat-sealing layer.
  • Comparative Example 5 Comparative Example 5
  • an inorganic filler (CA1) was added to the resin composition (D) of the second heat seal layer, and the composition of the resin composition (D) was adjusted as shown in Table 2.
  • the heat-sensitive label of Comparative Example 5 was obtained in the same manner as in 2.
  • Comparative Example 6 (Comparative Example 6) In Comparative Example 1, a filler was not blended in the resin composition (C) of the first heat seal layer, and 100% by mass of metallocene-based polyethylene (PE) was used. 6 thermal labels were obtained.
  • the thickness (total thickness) of the heat-sensitive label was measured using a constant pressure thickness measuring device (product name: PG-01J, manufactured by Teclock Co., Ltd.) in accordance with JIS K7130: 1999.
  • the thickness of each layer in the thermal label was determined as follows. The sample to be measured is cooled to a temperature of -60 ° C or less with liquid nitrogen, and a razor blade (product name: Proline Blade, manufactured by Schick Japan K.K.) is applied at a right angle to the sample placed on the glass plate to cut it. , A sample for cross-sectional observation was prepared.
  • the cross section of the obtained sample was observed using a scanning electron microscope (product name: JSM-6490, manufactured by JEOL Ltd.), and the boundary line of each layer of the thermoplastic resin composition was discriminated from the appearance.
  • the thickness ratio of each layer observed in the total thickness of the mold label was determined. This thickness ratio was multiplied by the measured total thickness to obtain the thickness of each layer.
  • the surface roughness Rz JIS of the surface of the heat seal layer of the heat-sensitive label was measured according to JIS B0601: 2013 Annex 1. Using a surface roughness measuring machine (product name: SURFCOM 1500DX, manufactured by Tokyo Seimitsu Co., Ltd.), the heat-sealed surface of the label cut into (50 mm ⁇ 50 mm) was measured with a measurement length of 30 mm.
  • the heat-sensitive label was punched into a rectangle having a width of 60 mm and a length of 120 mm.
  • the heat-sensitive label after processing was placed on one of the blow molding dies capable of molding a bottle having a capacity of 0.4 L so that the heat seal layer faced the cavity side, and fixed on the dies using suction. ..
  • Propropylene homopolymer between molds (trade name: Novatec HD EG8B, manufactured by Japan Polypropylene Corporation, MFR (JIS K7210: 1999): 0.8 g / 10 minutes, density (JIS K7112: 1999): 0.90 g / cm 3 ) was melted at 180 ° C. and extruded into a parison shape.
  • the parison of the part to which the label is attached was set to 180 ° C.
  • 4.2 kg / cm 2 of compressed air was supplied into the parison, and the parison was expanded for 20 seconds to be brought into close contact with the mold to form a container and fused with the label.
  • the molded product was then cooled in the mold and opened to obtain a labeled container. At this time, the mold cooling temperature was set to 20 ° C., and the shot cycle time was set to 31 seconds / time.
  • the heat-sensitive label was punched into a rectangle having a width of 60 mm and a length of 120 mm.
  • the heat-sensitive label after processing was placed on one of the blow molding dies capable of molding a bottle having a capacity of 0.4 L so that the heat seal layer faced the cavity side, and fixed on the dies using suction. ..
  • High-density polyethylene between molds (trade name: Novatec HD HB420R, manufactured by Japan Polyethylene Corporation, MFR (JIS K7210: 1999): 0.2 g / 10 minutes, density (JIS K7112: 1999): 0.956 g / cm 3 ) was melted at 180 ° C. and extruded into a parison shape.
  • the parison of the part to which the label is attached was set to 180 ° C.
  • 4.2 kg / cm 2 of compressed air was supplied into the parison, and the parison was expanded for 20 seconds to be brought into close contact with the mold to form a container and fused with the label.
  • the molded product was then cooled in the mold and opened to obtain a labeled container. At this time, the mold cooling temperature was set to 20 ° C., and the shot cycle time was set to 31 seconds / time.
  • Blister due to insufficient adhesion >> ⁇ : Blister due to insufficient adhesion is not recognized ⁇ : Blister due to insufficient adhesion is recognized ⁇ Blister due to insufficient air release >> ⁇ : Blister due to insufficient air bleeding is not recognized ⁇ : Blister due to insufficient air bleeding is recognized
  • the labeled container was stored for 1 week in an environment of 23 ° C. and 50% relative humidity. Then, according to JIS K 6854-3: 1999, the labeled portion of the labeled container was cut into strips having a width of 15 mm to prepare a sample. The sample is set in a tensile tester (Autograph AGS-D type, manufactured by Shimadzu Corporation), and the label is peeled off by pulling the label in a T shape at a tensile speed of 300 mm / min with the tensile tester to separate the label from the container. The adhesive strength between them was determined.
  • a tensile tester Autograph AGS-D type, manufactured by Shimadzu Corporation
  • Table 2 shows the composition of each Example and Comparative Example.
  • Table 3 shows the evaluation results.
  • Comparative Example 1 in which the ten-point average roughness Rz JIS is in a specific range, blister is not generated, but in Comparative Examples 2 to 4 outside the specific range, blister is generated and air is not sufficiently released. It turns out that there is. Further, in Comparative Examples 1, 4 and 5, eyebrows are generated. It is presumed that this is because there is no second heat seal layer covering the filler particles in the first heat seal layer, or the filler particles blended in the second heat seal layer have fallen off. In Comparative Example 6 in which the filler is not contained in the heat seal layer, no mayani is generated, but blister is also generated and air is not sufficiently released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a heat-sensitive label which has few blisters; and a method for producing this heat-sensitive label. A heat-sensitive label which comprises: a base material layer; and a heat seal layer that is arranged on the base material layer, while containing filler particles. The heat seal layer comprises: a first heat seal layer arranged on the base material layer; and a second heat seal layer arranged on the first heat seal layer. The filler particles are covered by the second heat seal layer; and the ten-point surface roughness RzJIS of the second heat seal layer is from 5 to 15 μm.

Description

感熱ラベル及び感熱ラベルの製造方法Manufacturing method of thermal label and thermal label
 本発明は、感熱ラベル及び感熱ラベルの製造方法に関する。 The present invention relates to a heat-sensitive label and a method for manufacturing a heat-sensitive label.
 金型内に樹脂を注入して成形するインモールド成形では、金型内部に感熱ラベルを挿入し、成形時の熱によって成形体に熱融着させることがある。インモールド成形において、成形前の樹脂とラベルとの間の空気が逃げにくいと、成形後の成形体とラベルとの間に空気が残留して、ラベルの接着強度が低下するだけでなく、ブリスターと呼ばれる外観不良が生じ得る。 In in-mold molding, in which resin is injected into the mold and molded, a heat-sensitive label may be inserted inside the mold and heat-sealed to the molded body by the heat of molding. In in-mold molding, if the air between the resin before molding and the label is difficult to escape, air remains between the molded body after molding and the label, and not only the adhesive strength of the label is lowered, but also the blister Appearance defects called can occur.
 これに対し、成形体に接着する接着層にエンボス加工によって特定の凹凸形状が設けられたインモールドラベルが提案されている(例えば、特許文献1参照)。凹凸により空気の流路が形成され、ラベルと成形体との間の空気を排出することができる。 On the other hand, an in-mold label in which a specific uneven shape is provided by embossing on an adhesive layer to be adhered to a molded body has been proposed (see, for example, Patent Document 1). An air flow path is formed by the unevenness, and air can be discharged between the label and the molded product.
特開平3-260689号公報Japanese Unexamined Patent Publication No. 3-260689
 ラベルは、通常は成形体との接着面と反対側の表面に印刷が施される。上述のように成形体側の表面にエンボスが設けられると、ラベルのスタック時に印刷面にエンボスの凹凸形状が転写されることがある。そのため、エンボス加工によらずブリスターを減らせる感熱ラベルの開発が行われていた。 The label is usually printed on the surface opposite to the surface that adheres to the molded product. If embossing is provided on the surface of the molded product as described above, the uneven shape of the embossing may be transferred to the printed surface when the labels are stacked. Therefore, a heat-sensitive label that can reduce blisters regardless of embossing has been developed.
 本発明は、ブリスターが少ない感熱ラベル及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a thermal label having few blisters and a method for producing the same.
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、成形体側のヒートシール層にフィラー粒子を配合し、かつヒートシール層が多層であれば、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は以下のとおりである。
As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved if the heat-sealing layer on the molded body side contains filler particles and the heat-sealing layer has multiple layers. The invention was completed.
That is, the present invention is as follows.
(1)基材層と、
 前記基材層上にフィラー粒子を含有するヒートシール層と、を有し、
 前記ヒートシール層が、前記基材層上に第1ヒートシール層と、前記第1ヒートシール層上に第2ヒートシール層とを有し、
 前記フィラー粒子が、前記第2ヒートシール層により覆われ、
 前記第2ヒートシール層の十点表面粗さRzJISが、5~15μmである
 感熱ラベル。
(1) Base material layer and
It has a heat-sealing layer containing filler particles on the base material layer, and has
The heat seal layer has a first heat seal layer on the base material layer and a second heat seal layer on the first heat seal layer.
The filler particles are covered with the second heat seal layer,
A heat-sensitive label having a ten-point surface roughness Rz JIS of the second heat-sealing layer of 5 to 15 μm.
(2)前記第2ヒートシール層が、ヒートシール樹脂を含有し、
 前記ヒートシール樹脂のスウェル値が、0.5~1.6である
 前記(1)に記載の感熱ラベル。
(2) The second heat-sealing layer contains a heat-sealing resin, and the second heat-sealing layer contains a heat-sealing resin.
The heat-sensitive label according to (1) above, wherein the heat-sealed resin has a swell value of 0.5 to 1.6.
(3)前記ヒートシール層中の前記フィラー粒子の含有量が、2.5~25質量%である
 前記(1)又は(2)に記載の感熱ラベル。
(3) The heat-sensitive label according to (1) or (2), wherein the content of the filler particles in the heat seal layer is 2.5 to 25% by mass.
(4)前記第1ヒートシール層と前記基材層との間にサポート層を有し、
 前記第1ヒートシール層は、エチレン系樹脂を含有し、
 前記サポート層は、プロピレン系樹脂を含有する
 前記(1)~(3)のいずれかに記載の感熱ラベル。
(4) A support layer is provided between the first heat seal layer and the base material layer.
The first heat seal layer contains an ethylene resin and contains
The heat-sensitive label according to any one of (1) to (3) above, wherein the support layer contains a propylene resin.
(5)基材層の樹脂組成物を用いて基材層を形成するステップと、
 前記基材層上に第1ヒートシール層及び第2ヒートシール層の各樹脂組成物を共押出ししし、前記基材層、前記第1ヒートシール層及び前記第2ヒートシール層の順に積層された積層体を得るステップと、
 前記積層体を延伸して、前記基材層、前記第1ヒートシール層及び前記第2ヒートシール層を含む感熱ラベルを得るステップと、を含み、
 前記第1ヒートシール層の樹脂組成物がフィラー粒子を含有し、前記第2ヒートシール層の樹脂組成物がフィラー粒子を含有しないか、又は5質量%以下のフィラー粒子を含有し、
 前記第2ヒートシール層の十点表面粗さRzJISが、5~15μmである
 感熱ラベルの製造方法。
(5) A step of forming a base material layer using the resin composition of the base material layer,
The resin compositions of the first heat seal layer and the second heat seal layer are co-extruded onto the base material layer, and the base material layer, the first heat seal layer, and the second heat seal layer are laminated in this order. Steps to obtain a laminated body
A step of stretching the laminate to obtain a heat-sensitive label containing the base material layer, the first heat-sealing layer and the second heat-sealing layer, and the like.
The resin composition of the first heat seal layer contains filler particles, and the resin composition of the second heat seal layer does not contain filler particles or contains 5% by mass or less of filler particles.
A method for producing a heat-sensitive label, wherein the ten-point surface roughness Rz JIS of the second heat seal layer is 5 to 15 μm.
(6)前記積層体を得るステップは、前記第1ヒートシール層及び前記第2ヒートシール層の樹脂組成物とともにサポート層の樹脂組成物を共押出しし、前記基材層、前記サポート層、前記第1ヒートシール層及び前記第2ヒートシール層の順に積層された積層体を得る
 前記(5)に記載の感熱ラベルの製造方法。
(6) In the step of obtaining the laminate, the resin composition of the support layer is coextruded together with the resin compositions of the first heat seal layer and the second heat seal layer, and the base material layer, the support layer, and the support layer are described. The method for producing a heat-sensitive label according to (5) above, wherein a laminate obtained by laminating the first heat-sealing layer and the second heat-sealing layer in this order is obtained.
(7)前記第1ヒートシール層の樹脂組成物中の前記フィラー粒子の含有量が、5~50質量%である
 前記(5)又は(6)に記載の感熱ラベルの製造方法。
(7) The method for producing a heat-sensitive label according to (5) or (6) above, wherein the content of the filler particles in the resin composition of the first heat seal layer is 5 to 50% by mass.
 本発明によれば、ブリスターが少ない感熱ラベル及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a thermal label having few blisters and a method for producing the same.
本発明の一実施形態の感熱ラベルの構造を示す断面図である。It is sectional drawing which shows the structure of the thermal label of one Embodiment of this invention.
 以下、本発明の感熱ラベル及びその製造方法について詳細に説明する。以下の説明は本発明の一例(代表例)であり、本発明はこれに限定されない。 Hereinafter, the thermal label of the present invention and the manufacturing method thereof will be described in detail. The following description is an example (representative example) of the present invention, and the present invention is not limited thereto.
 以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。 In the following description, the description of "(meth) acrylic" indicates both acrylic and methacryl.
(感熱ラベル)
 本発明の感熱ラベルは、基材層と、当該基材層上にフィラー粒子を含有するヒートシール層とを有する。ヒートシール層は、基材層上に第1ヒートシール層及び第2ヒートシール層をこの順に有する。フィラー粒子は、第2ヒートシール層により覆われ、この第2ヒートシール層の十点表面粗さRzJISが5~15μmである。通常は、基材層のヒートシール層と反対側の面に印刷層が設けられる。
(Thermal label)
The heat-sensitive label of the present invention has a base material layer and a heat seal layer containing filler particles on the base material layer. The heat seal layer has a first heat seal layer and a second heat seal layer on the base material layer in this order. The filler particles are covered with a second heat-sealing layer, and the ten-point surface roughness Rz JIS of the second heat-sealing layer is 5 to 15 μm. Usually, a printing layer is provided on the surface of the base material layer opposite to the heat-sealing layer.
 このように、ヒートシール層中にフィラー粒子を含有させることによって、感熱ラベルの表面に十点表面粗さRzJISが特定範囲内にある微細な凹凸を設けることができる。凹凸によって感熱ラベルが成形体と接したときも空気の流路が形成されるため、インモールド成形時に成形体との間の空気を排出してブリスターの発生を減らすことができる。エンボス加工により凹凸を設ける場合に比べて凹凸が微細且つ不規則であるため、感熱ラベルがスタックされた場合でも、ヒートシール層と反対側の印刷層に凹凸形状が転写されることがなく、感熱ラベルの優れた外観が維持される。 By including the filler particles in the heat seal layer in this way, it is possible to provide fine irregularities with a ten-point surface roughness Rz JIS within a specific range on the surface of the heat-sensitive label. Since the air flow path is formed even when the heat-sensitive label comes into contact with the molded body due to the unevenness, the air between the heat-sensitive label and the molded body can be discharged during in-mold molding to reduce the generation of blisters. Since the unevenness is finer and more irregular than when the unevenness is provided by embossing, even when the heat-sensitive labels are stacked, the uneven shape is not transferred to the printing layer on the opposite side of the heat seal layer, and the heat-sensitive shape is not transferred. The excellent appearance of the label is maintained.
 一方、フィラー粒子によって微細な凹凸を設ける場合、メヤニが生じやすくなる。メヤニとは、押出成形を利用してヒートシール層を形成する際に、時間の経過とともに成形機のリップに付着する粒子の凝集物等をいう。一般に、粒子の凝集によるメヤニはフィラー粒子を多量に含む層を形成する際に生じやすい。しかし、ヒートシール層に用いられる樹脂は基材層と比べて溶融粘度が低く、感熱ラベルの製造過程における加熱によって溶融すると、ヒートシール層中のフィラー粒子が容易に移動する傾向がある。このため、フィラー粒子の含有量が少なくてもその一部が凝集してダイのリップに溜まり、メヤニとなり得る。メヤニが脱落して感熱ラベル中に異物として残存すると、感熱ラベルの品質を低下させる要因となり得る。 On the other hand, when fine irregularities are provided by the filler particles, shavings are likely to occur. Mayani refers to agglomerates of particles that adhere to the lip of a molding machine over time when a heat seal layer is formed by extrusion molding. In general, eyelids due to agglutination of particles are likely to occur when forming a layer containing a large amount of filler particles. However, the resin used for the heat seal layer has a lower melt viscosity than the base material layer, and when it is melted by heating in the process of manufacturing the heat-sensitive label, the filler particles in the heat seal layer tend to move easily. Therefore, even if the content of the filler particles is small, a part of the filler particles can be aggregated and accumulated on the lip of the die, resulting in a shaving. If the Mayani falls off and remains as a foreign substance in the heat-sensitive label, it can be a factor that deteriorates the quality of the heat-sensitive label.
 よって、ヒートシール層がフィラー粒子を含有する場合は定期的にメヤニを除去する等の製造上の管理が必要になる。しかし、本発明の感熱ラベルのヒートシール層は、第1ヒートシール層と第2ヒートシール層とを有し、多層化されている。第1ヒートシール層中にフィラー粒子を配合すれば、フィラー粒子が第1ヒートシール層の表面に移行しても、第2ヒートシール層によって覆われるため、表面におけるフィラー粒子の凝集及び凝集物の脱落を抑えることができる。したがって、メヤニの発生を抑えながら、ブリスターが少ない感熱ラベルを連続生産することが可能である。 Therefore, if the heat seal layer contains filler particles, it is necessary to control the manufacturing process such as removing the meshi on a regular basis. However, the heat-sensitive label heat-sealing layer of the present invention has a first heat-sealing layer and a second heat-sealing layer, and is multi-layered. If the filler particles are mixed in the first heat-sealing layer, even if the filler particles move to the surface of the first heat-sealing layer, they are covered by the second heat-sealing layer. It is possible to prevent the dropout. Therefore, it is possible to continuously produce heat-sensitive labels with few blisters while suppressing the generation of eyebrows.
 本発明の感熱ラベルは、第1ヒートシール層と基材層との間にサポート層を有することが好ましい。 The heat-sensitive label of the present invention preferably has a support layer between the first heat seal layer and the base material layer.
 図1は、本発明の一実施形態としての感熱ラベル10の構成を示す。
 図1に例示する感熱ラベル10は、基材層1、ヒートシール層2及びサポート層3を有する。サポート層3は、基材層1とヒートシール層2の間に配置される。ヒートシール層2は、サポート層3上に第1ヒートシール層21及び第2ヒートシール層22をこの順に有する。また、ヒートシール層2は、第2ヒートシール層22により覆われたフィラー粒子4を含有する。基材層1のヒートシール層2と反対側の面上には印刷によって印刷層5が形成され得る。
FIG. 1 shows the configuration of the thermal label 10 as an embodiment of the present invention.
The heat-sensitive label 10 illustrated in FIG. 1 has a base material layer 1, a heat seal layer 2, and a support layer 3. The support layer 3 is arranged between the base material layer 1 and the heat seal layer 2. The heat seal layer 2 has a first heat seal layer 21 and a second heat seal layer 22 on the support layer 3 in this order. Further, the heat seal layer 2 contains the filler particles 4 covered with the second heat seal layer 22. A print layer 5 may be formed by printing on the surface of the base material layer 1 opposite to the heat seal layer 2.
 以下、感熱ラベルの構成について説明する。
<基材層>
 基材層は、感熱ラベルに機械的強度を付与することができる。これにより、感熱ラベルへの印刷時又は金型へのラベル挿入時に十分なコシが得られ、優れた取り扱い性が得られる。
Hereinafter, the configuration of the thermal label will be described.
<Base layer>
The substrate layer can impart mechanical strength to the thermal label. As a result, sufficient elasticity can be obtained when printing on the heat-sensitive label or when inserting the label into the mold, and excellent handleability can be obtained.
<<熱可塑性樹脂>>
 基材層は、熱可塑性樹脂を含有する。
 熱可塑性樹脂としては、例えばオレフィン系樹脂、エステル系樹脂、アミド系樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、及びポリカーボネート樹脂等が挙げられる。基材層は、機械的強度の観点から、熱可塑性樹脂として、オレフィン系樹脂又はエステル系樹脂を含むことが好ましく、オレフィン系樹脂を含むことがより好ましい。これらのうち、1種又は2種以上を組み合わせて使用することができる。
<< Thermoplastic resin >>
The base material layer contains a thermoplastic resin.
Examples of the thermoplastic resin include olefin resins, ester resins, amide resins, polyvinyl chloride resins, polystyrene resins, polycarbonate resins and the like. From the viewpoint of mechanical strength, the base material layer preferably contains an olefin resin or an ester resin as the thermoplastic resin, and more preferably contains an olefin resin. Of these, one type or a combination of two or more types can be used.
 オレフィン系樹脂としては、例えばプロピレン系樹脂及びエチレン系樹脂等が挙げられる。成形性及び機械的強度の観点からは、プロピレン系樹脂が好ましい。 Examples of the olefin resin include propylene resin and ethylene resin. From the viewpoint of moldability and mechanical strength, a propylene resin is preferable.
 プロピレン系樹脂としては、主なモノマーにプロピレンが用いられるのであれば特に限定されない。例えば、プロピレンを単独重合させたアイソタクティック重合体又はシンジオタクティック重合体等が挙げられる。また、主成分となるプロピレンと、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、又は1-オクテン等のα-オレフィンとの共重合体である、プロピレン-α-オレフィン共重合体等を使用することもできる。共重合体は、モノマー成分が2元系でも3元系以上の多元系でもよく、ランダム共重合体でもブロック共重合体でもよい。また、プロピレン単独重合体とプロピレン共重合体とを併用してもよい。これらのなかでも、プロピレン単独重合体が基材層の主原料として取扱いやすく、好ましい。 The propylene-based resin is not particularly limited as long as propylene is used as the main monomer. For example, an isotactic polymer obtained by homopolymerizing propylene, a syndiotactic polymer, and the like can be mentioned. Further, it is a copolymer of propylene as a main component and an α-olefin such as ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-hexene, or 1-octene. Some propylene-α-olefin copolymers and the like can also be used. The copolymer may be a binary system in which the monomer component is a binary system or a plural system in which the monomer component is a ternary system or more, and may be a random copolymer or a block copolymer. Further, the propylene homopolymer and the propylene copolymer may be used in combination. Among these, the propylene homopolymer is preferable because it is easy to handle as the main raw material of the base material layer.
 エチレン系樹脂としては、例えば密度が0.940~0.965g/cmの高密度ポリエチレン、密度が0.920~0.935g/cmの中密度ポリエチレン、密度が0.900~0.920g/cmの直鎖線状低密度ポリエチレン、エチレン等を主体とし、プロピレン、ブテン、ヘキセン、ヘプテン、オクテン、4-メチルペンテン-1等のα-オレフィンを共重合させた共重合体、マレイン酸変性エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸アルキルエステル共重合体、エチレン-メタクリル酸アルキルエステル共重合体、エチレン-メタクリル酸共重合体の金属塩(金属は亜鉛、アルミニウム、リチウム、ナトリウム、カリウム等)、エチレン-環状オレフィン共重合体、及びマレイン酸変性ポリエチレン等が挙げられる。 As the ethylene-based resin, for example high density polyethylene having a density of 0.940 ~ 0.965g / cm 3, medium density polyethylene having a density of 0.920 ~ 0.935g / cm 3, density of 0.900 ~ 0.920 g / to cm 3 straight chain linear low density polyethylene, ethylene or the like as a main component, propylene, butene, hexene, heptene, octene, 4-methylpentene copolymers α- olefin is copolymerized, such as -1, maleated Ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid alkyl ester copolymer, ethylene-methacrylic acid alkyl ester copolymer, ethylene-methacrylic acid copolymer Examples thereof include coalesced metal salts (metals are zinc, aluminum, lithium, sodium, potassium, etc.), ethylene-cyclic olefin copolymers, maleic acid-modified polyethylene, and the like.
 エステル系樹脂としては、例えばポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、及びポリエチレンナフタレート等が挙げられる。
 また、アミド系樹脂としては、例えばナイロン-6、ナイロン-6,6、ナイロン-6,10、及びナイロン-6,12等が挙げられる。
Examples of the ester-based resin include polyethylene terephthalate resin, polybutylene terephthalate resin, and polyethylene naphthalate.
Examples of the amide resin include nylon-6, nylon-6,6, nylon-6,10, nylon-6,12 and the like.
 基材層中の熱可塑性樹脂の含有量は、50質量%以上が好ましく、70質量%以上がより好ましい。含有量が50質量%以上であれば、基材層の機械的強度が向上しやすい。一方、熱可塑性樹脂の含有量の上限は特になく、100質量%であってもよいし、強度又は成形性に影響を与えない範囲で後述するフィラー及び添加剤等が添加されて100質量%未満となってもよい。 The content of the thermoplastic resin in the base material layer is preferably 50% by mass or more, more preferably 70% by mass or more. When the content is 50% by mass or more, the mechanical strength of the base material layer is likely to be improved. On the other hand, there is no particular upper limit on the content of the thermoplastic resin, which may be 100% by mass, or less than 100% by mass with the addition of fillers and additives described below within a range that does not affect the strength or moldability. May be.
<<フィラー>>
 基材層は、フィラーを含有することができる。フィラーの含有により、延伸の際に基材層内部に空孔が形成されやすく、白色度又は不透明度を高めることができる。この場合、基材層は多孔質延伸層である。
 基材層に使用できるフィラーとしては、無機フィラー、有機フィラー等が挙げられる。
<< Filler >>
The base material layer can contain a filler. Due to the inclusion of the filler, pores are likely to be formed inside the base material layer during stretching, and the whiteness or opacity can be enhanced. In this case, the base material layer is a porous stretched layer.
Examples of the filler that can be used for the base material layer include an inorganic filler and an organic filler.
 無機フィラーとしては、例えば重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、シリカ、珪藻土、白土、タルク、ルチル型二酸化チタン等の酸化チタン、硫酸バリウム、硫酸アルミニウム、酸化亜鉛、酸化マグネシウム、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、及びガラスファイバー等の無機粒子が挙げられる。なかでも、重質炭酸カルシウム、クレイ又は珪藻土は、空孔の成形性が良好で、安価なために好ましい。なお、分散性改善等の目的から、無機フィラーの表面は脂肪酸等の表面処理剤で表面処理されていてもよい。 Examples of the inorganic filler include heavy calcium carbonate, light calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide such as rutile type titanium dioxide, barium sulfate, aluminum sulfate, zinc oxide, magnesium oxide, mica, and seri. Inorganic particles such as sight, bentonite, sepiolite, vermiculite, dolomite, wallastonite, and glass fiber can be mentioned. Among them, heavy calcium carbonate, clay or diatomaceous earth is preferable because the pores have good moldability and are inexpensive. The surface of the inorganic filler may be surface-treated with a surface treatment agent such as fatty acid for the purpose of improving dispersibility.
 有機フィラーとしては、オレフィン系樹脂と非相溶のポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネート、ポリスチレン、環状オレフィン単独重合体、エチレン-環状オレフィン共重合体、ポリエチレンサルファイド、ポリイミド、ポリメタクリレート、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、及びメラミン樹脂等の有機粒子が挙げられる。
 上記無機フィラー又は有機フィラーの1種を単独で、又は2種以上を組み合わせて使用できる。
Organic fillers include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, polycarbonate, polystyrene, cyclic olefin homopolymer, ethylene-cyclic olefin copolymer, polyethylene sulfide, polyimide, and poly, which are incompatible with olefin resins. Examples thereof include organic particles such as methacrylate, polyetheretherketone, polyphenylene sulfide, and melamine resin.
One of the above-mentioned inorganic fillers or organic fillers can be used alone or in combination of two or more.
 基材層の白色度又は不透明度を高くする観点からは、基材層中のフィラーの含有量は、10質量%以上であることが好ましく、15質量%以上がより好ましい。また、基材層の成形の均一性を高める観点からは、基材層中のフィラーの含有量は、70質量%以下であることが好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。 From the viewpoint of increasing the whiteness or opacity of the base material layer, the content of the filler in the base material layer is preferably 10% by mass or more, more preferably 15% by mass or more. Further, from the viewpoint of enhancing the uniformity of molding of the base material layer, the content of the filler in the base material layer is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. More preferred.
 無機フィラー又は有機フィラーの平均粒子径は、空孔形成の容易性の観点から、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。引裂き耐性等の機械的強度を付与する観点からは、無機フィラー又は有機フィラーの平均粒子径は、15μm以下が好ましく、5μm以下がより好ましく、2μm以下がさらに好ましい。 The average particle size of the inorganic filler or the organic filler is preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.1 μm or more, from the viewpoint of easiness of forming pores. From the viewpoint of imparting mechanical strength such as tear resistance, the average particle size of the inorganic filler or the organic filler is preferably 15 μm or less, more preferably 5 μm or less, still more preferably 2 μm or less.
  無機フィラーの平均粒子径は、粒子計測装置、例えばレーザー回折式粒子径分布測定装置(マイクロトラック、株式会社日機装製)により測定した体積累積で50%にあたる体積平均粒子径(累積50%粒径)D50である。また、有機フィラーの平均粒子径は、溶融混練と分散により熱可塑性樹脂中に分散したときの平均分散粒子径である。平均分散粒子径は、有機フィラーを含有する熱可塑性樹脂フィルムの切断面を電子顕微鏡で観察し、少なくとも10個の粒子の最大径を測定し、その平均値として求めることができる。 The average particle size of the inorganic filler is 50% of the cumulative volume measured by a particle measuring device, for example, a laser diffraction type particle size distribution measuring device (Microtrac, manufactured by Nikkiso Co., Ltd.) (cumulative 50% particle size). It is D50. The average particle size of the organic filler is the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion. The average dispersed particle size can be determined as an average value by observing the cut surface of the thermoplastic resin film containing the organic filler with an electron microscope and measuring the maximum size of at least 10 particles.
 基材層には、必要に応じて公知の添加剤を任意に添加することができる。該添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、無機微細粉末の分散剤、高級脂肪酸金属塩などの滑剤、高級脂肪酸アミドなどのアンチブロッキング剤、染料、顔料、可塑剤、結晶核剤、離型剤、又は難燃剤などが挙げられる。 A known additive can be arbitrarily added to the base material layer, if necessary. Examples of the additive include antioxidants, light stabilizers, ultraviolet absorbers, dispersants of inorganic fine powders, lubricants such as higher fatty acid metal salts, anti-blocking agents such as higher fatty acid amides, dyes, pigments, plasticizers, and crystals. Examples include nuclear agents, mold release agents, and flame retardant agents.
 酸化防止剤を添加する場合は、立体障害フェノール系酸化防止剤、リン系酸化防止剤、またはアミン系酸化防止剤等を通常0.001~1質量%の範囲内で使用することができる。光安定剤を使用する場合は、立体障害アミン系光安定剤、ベンゾトリアゾール系光安定剤、またはベンゾフェノン系光安定剤を通常0.001~1質量%の範囲内で使用することができる。分散剤又は滑剤は、例えばフィラーを分散させる目的で使用する。具体的には、シランカップリング剤、オレイン酸あるいはステアリン酸等の高級脂肪酸、金属石鹸、ポリ(メタ)アクリル酸又はそれらの塩等を通常0.01~4質量%の範囲内で使用することができる。これらは、熱可塑性樹脂フィルムからなるインモールド成形用ラベルの印刷性及びヒートシール性を阻害しない範囲で添加することが好ましい。 When an antioxidant is added, a steric hindrance phenolic antioxidant, a phosphorus-based antioxidant, an amine-based antioxidant, or the like can usually be used within the range of 0.001 to 1% by mass. When a light stabilizer is used, a steric hindrance amine-based light stabilizer, a benzotriazole-based light stabilizer, or a benzophenone-based light stabilizer can be usually used in the range of 0.001 to 1% by mass. Dispersants or lubricants are used, for example, for the purpose of dispersing fillers. Specifically, a silane coupling agent, a higher fatty acid such as oleic acid or stearic acid, a metal soap, poly (meth) acrylic acid or a salt thereof, etc. are usually used within the range of 0.01 to 4% by mass. Can be done. These are preferably added within a range that does not impair the printability and heat sealability of the in-mold molding label made of a thermoplastic resin film.
<<空孔率>>
 基材層が内部に空孔を有する場合、層中の空孔の割合を表す空孔率は、不透明性を得る観点から、10%以上であることが好ましく、12%以上であることがより好ましく、15%以上であることがさらに好ましい。機械的強度を維持する観点からは、同空孔率は、45%以下であることが好ましく、44%以下であることがより好ましく、42%以下であることがさらに好ましい。また、透明性を得る観点からは、基材層中の空孔率は10%未満であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましい。同空孔率は0%であってもよい。
 上記空孔率は、電子顕微鏡で観察したサンプルの断面の一定領域において、空孔が占める面積の比率より求めることができる。
<< Porosity >>
When the base material layer has pores inside, the porosity representing the ratio of pores in the layer is preferably 10% or more, more preferably 12% or more, from the viewpoint of obtaining opacity. It is preferably 15% or more, and more preferably 15% or more. From the viewpoint of maintaining the mechanical strength, the porosity is preferably 45% or less, more preferably 44% or less, and further preferably 42% or less. From the viewpoint of obtaining transparency, the porosity in the base material layer is preferably less than 10%, more preferably 5% or less, and further preferably 3% or less. The porosity may be 0%.
The porosity can be obtained from the ratio of the area occupied by the pores in a certain region of the cross section of the sample observed with an electron microscope.
 基材層の厚さは、層強度の観点から、20μm以上が好ましく、40μm以上がより好ましい。感熱ラベルの軽量化の観点から、基材層の厚さは、200μm以下が好ましく、150μm以下がより好ましい。 The thickness of the base material layer is preferably 20 μm or more, more preferably 40 μm or more, from the viewpoint of layer strength. From the viewpoint of weight reduction of the thermal label, the thickness of the base material layer is preferably 200 μm or less, more preferably 150 μm or less.
 基材層のヒートシール層と反対側の面は、印刷層との密着性を高める観点から、表面処理が施されてもよい。また、基材層のヒートシール層と反対側の面上に印刷層との密着性が高い印刷受容層等が設けられてもよい。 The surface of the base material layer opposite to the heat seal layer may be surface-treated from the viewpoint of improving the adhesion to the printing layer. Further, a print receiving layer or the like having high adhesion to the printing layer may be provided on the surface of the base material layer opposite to the heat sealing layer.
<ヒートシール層>
 ヒートシール層は、樹脂容器等の成形体(被着体)との接着性を高めることができる。加熱によってヒートシール層が溶融し、成形体の表面に感熱ラベルが熱融着する。成形体をインモールド成形する場合には、成形体(容器)とヒートシール層とが対面するように感熱ラベルが金型の内側に設けられ、インモールド成形時のパリソン又はプリフォームが有する熱によってヒートシール層が熱融着する。
<Heat seal layer>
The heat seal layer can enhance the adhesiveness with a molded body (adhesive body) such as a resin container. The heat seal layer is melted by heating, and the heat-sensitive label is heat-sealed on the surface of the molded product. When in-molding a molded product, a heat-sensitive label is provided inside the mold so that the molded product (container) and the heat seal layer face each other, and the heat of the parison or preform during in-mold molding is used. The heat seal layer is heat fused.
 ヒートシール層は多層構造を有し、上述のように基材層上に第1ヒートシール層と、第1ヒートシール層上に第2ヒートシール層と、を有する。ヒートシール層はフィラー粒子を含有し、フィラー粒子は第2ヒートシール層により覆われている。このような多層構造のヒートシール層は、例えば、フィラー粒子を含む第1ヒートシール層用樹脂組成物と、フィラー粒子を含まない第2ヒートシール用樹脂組成物とが共押出成形された後、延伸されることによって得られる。 The heat seal layer has a multilayer structure, and has a first heat seal layer on the base material layer and a second heat seal layer on the first heat seal layer as described above. The heat seal layer contains filler particles, and the filler particles are covered with a second heat seal layer. The heat-sealing layer having such a multilayer structure is obtained, for example, after the resin composition for the first heat-sealing layer containing the filler particles and the resin composition for the second heat-sealing not containing the filler particles are co-extruded. Obtained by stretching.
 ヒートシール層中のフィラー粒子の含有量は、2.5質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい、同含有量は、25質量%以下であることが好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。含有量が上記下限値以上であれば、ブリスターを抑制しやすい。含有量が上記上限値以下であれば、成形時のメヤニを減らしやすい。 The content of the filler particles in the heat seal layer is preferably 2.5% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more. , 25% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less. When the content is equal to or higher than the above lower limit value, blister is easily suppressed. When the content is not more than the above upper limit value, it is easy to reduce the shavings at the time of molding.
<<第1ヒートシール層>>
 第1ヒートシール層は、第1ヒートシール樹脂とフィラー粒子とを含む樹脂組成物を用いて形成される。第1ヒートシール層用樹脂組成物に含まれるフィラー粒子の一部は、延伸によって第1ヒートシール層からその厚さ方向にはみ出て、ヒートシール層表面の粗さの形成に寄与する。
<< 1st heat seal layer >>
The first heat seal layer is formed by using a resin composition containing the first heat seal resin and filler particles. A part of the filler particles contained in the resin composition for the first heat seal layer protrudes from the first heat seal layer in the thickness direction by stretching, and contributes to the formation of the roughness of the surface of the heat seal layer.
<<<第1ヒートシール樹脂>>>
 低温でも十分な接着性を得る観点から、第1ヒートシール樹脂は、基材層に使用する熱可塑性樹脂よりも融点が低いことが好ましい。具体的には、第1ヒートシール樹脂の融点は、基材層に使用される熱可塑性樹脂の融点よりも10℃以上低いことが好ましく、20℃以上低いことがより好ましく、30℃以上低いことがさらに好ましい。このように、第1ヒートシール樹脂は低い融点を有することから、第1ヒートシール層用樹脂組成物がフィラー粒子を含んでいても、基材層のように延伸により多孔質層とはならない。
 上記融点は、示差走査熱量計(DSC:Differential Scanning Calorimetry)により測定することができる。
<<< 1st heat seal resin >>>
From the viewpoint of obtaining sufficient adhesiveness even at low temperatures, the first heat-sealing resin preferably has a lower melting point than the thermoplastic resin used for the base material layer. Specifically, the melting point of the first heat-sealing resin is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, and 30 ° C. or higher lower than the melting point of the thermoplastic resin used for the base material layer. Is even more preferable. As described above, since the first heat-sealing resin has a low melting point, even if the resin composition for the first heat-sealing layer contains filler particles, it does not become a porous layer by stretching like the base material layer.
The melting point can be measured by a differential scanning calorimetry (DSC).
 成形性の観点から、第1ヒートシール樹脂の融点は、60℃以上であることが好ましく、70℃以上がより好ましい。接着性の観点からは、140℃以下であることが好ましく、120℃以下がより好ましい。2種以上の第1ヒートシール樹脂を併用する場合は、少なくとも1種が上記範囲の融点を有することが好ましく、すべてが上記範囲の融点を有することがより好ましい。 From the viewpoint of moldability, the melting point of the first heat-sealing resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher. From the viewpoint of adhesiveness, the temperature is preferably 140 ° C. or lower, more preferably 120 ° C. or lower. When two or more kinds of first heat seal resins are used in combination, it is preferable that at least one kind has a melting point in the above range, and it is more preferable that all of them have a melting point in the above range.
 第1ヒートシール樹脂としては、例えば高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸アルキルエステル共重合体(アルキル基の炭素数は1~8)、エチレン・(メタ)アクリル酸共重合体の金属塩(例えばZn、Al、Li、K、Naから選択される金属との塩)等の樹脂が挙げられる。 Examples of the first heat-sealing resin include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid copolymer, and ethylene / (. Metal selected from metal salts of polyethylene (meth) acrylic acid copolymer (alkyl group having 1 to 8 carbon atoms) and ethylene / (meth) acrylic acid copolymer (for example, Zn, Al, Li, K, Na). Resins such as (salt) and the like can be mentioned.
 また第1ヒートシール樹脂としては、分子内に炭素2~20個を有するα-オレフィンから選択された少なくとも2種以上のコモノマーを共重合して得られるα-オレフィンのランダム共重合体またはブロック共重合体が挙げられる。
 炭素2~20個のα-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、2-メチル-1-プロペン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、1-ヘプテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、オクタデセン等が挙げられる。これらの中でも共重合のしやすさ、経済性などの観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが好ましい。
The first heat-sealing resin is a random copolymer or block of α-olefin obtained by copolymerizing at least two or more comonomer selected from α-olefin having 2 to 20 carbon atoms in the molecule. Examples include polymers.
Examples of α-olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, and the like. 1-hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 4-methyl- 1-hexene, 4,4-dimethyl-1-pentene, 3,3-dimethyl-1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1- Butene, methylethyl-1-butene, 1-octene, 1-heptene, methyl-1-pentene, ethyl-1-hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl- Examples thereof include 1-pentene, propyl-1-pentene, diethyl-1-butene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, octadecene and the like. Among these, ethylene, propylene, 1-butene, 1-pentene, 1-hexene and 1-octene are preferable from the viewpoint of ease of copolymerization and economy.
 これらの中でも、種々の被着体に対して一定の接着強度が得られやすい点で、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・酢酸ビニル共重合体、又はメタロセン触媒を用いて重合したポリエチレン(メタロセン系ポリエチレン)が好ましく、低密度ポリエチレン又はメタロセン系ポリエチレンがより好ましい。一方、被着体がポリプロピレンである場合にも優れた接着強度を得る点から、第1ヒートシール樹脂はポリエチレン及びエチレン-αオレフィン共重合体を含むことが好ましく、ポリエチレン及びエチレン-プロピレン共重合体を含むことがより好ましい。この場合、ポリエチレンに対するエチレン-αオレフィン共重合体の質量比は、10/90~50/50であることが好ましく、20/80~40/60であることがより好ましい。 Among these, low-density polyethylene, linear low-density polyethylene, ethylene / vinyl acetate copolymer, or metallocene catalyst was used for polymerization because it is easy to obtain a certain adhesive strength for various adherends. Polyethylene (metallocene-based polyethylene) is preferable, and low-density polyethylene or metallocene-based polyethylene is more preferable. On the other hand, the first heat-sealing resin preferably contains polyethylene and an ethylene-α-olefin copolymer from the viewpoint of obtaining excellent adhesive strength even when the adherend is polypropylene, and is a polyethylene and ethylene-propylene copolymer. It is more preferable to include. In this case, the mass ratio of the ethylene-α-olefin copolymer to polyethylene is preferably 10/90 to 50/50, more preferably 20/80 to 40/60.
<<<フィラー粒子>>>
 第1ヒートシール層の樹脂組成物中に配合されるフィラー粒子としては、基材層で説明したフィラーと同様の材料を用いることができ、好ましい材料も同じである。上述した無機フィラー及び有機フィラーの1種を単独で、又は2種以上を組み合わせて使用できる。
<<< Filler particles >>>
As the filler particles to be blended in the resin composition of the first heat seal layer, the same material as the filler described in the base material layer can be used, and the preferred material is also the same. One of the above-mentioned inorganic filler and organic filler can be used alone or in combination of two or more.
 フィラー粒子の平均粒子径は、2μm以上が好ましく、4μm以上がより好ましく、6μm以上がさらに好ましい。また、同平均粒子径は、16μm以下が好ましく、14μm以下がより好ましく、12μm以下がさらに好ましい。平均粒子径が、上記下限値以上であればブリスターを抑制しやすく、上記上限値以下であればフィラー粒子の脱落を抑えてメヤニを抑制しやすい。 The average particle size of the filler particles is preferably 2 μm or more, more preferably 4 μm or more, and even more preferably 6 μm or more. The average particle size is preferably 16 μm or less, more preferably 14 μm or less, and even more preferably 12 μm or less. When the average particle size is at least the above lower limit value, blister is easily suppressed, and when it is at least the above upper limit value, it is easy to suppress the dropout of filler particles and suppress the shavings.
 第1ヒートシール層の樹脂組成物中のフィラー粒子の含有量は、5質量%以上であることが好ましく、6質量%以上であることがより好ましく、7質量%以上であることがさらに好ましい、同含有量は、50質量%以下であることが好ましく、35質量%以下がより好ましく、20質量%以下がさらに好ましい。含有量が上記下限値以上であれば、ブリスターを抑制しやすい。含有量が上記上限値以下であれば、成形時のメヤニを減らしやすい。 The content of the filler particles in the resin composition of the first heat seal layer is preferably 5% by mass or more, more preferably 6% by mass or more, and further preferably 7% by mass or more. The content is preferably 50% by mass or less, more preferably 35% by mass or less, and further preferably 20% by mass or less. When the content is equal to or higher than the above lower limit value, blister is easily suppressed. When the content is not more than the above upper limit value, it is easy to reduce the shavings at the time of molding.
 フィラー粒子の平均粒子径は、第1ヒートシール層と第2ヒートシール層の厚さに応じて選択できる。
 具体的には、フィラー粒子の平均粒子径D50から第1ヒートシール層の厚さT1と第2ヒートシール層の厚さT2の合計を引いた差(D50-(T1+T2))が、0.5μm以上であることが好ましく、1.0μm以上がより好ましく、3.0μm以上がさらに好ましい。また、差(D50-(T1+T2))は、10μm以下が好ましく、8μm以下がより好ましく、6μm以下がさらに好ましい。差(D50-(T1+T2))が上記下限値以上であれば、十点平均粗さRzJISを上述した範囲に調整しやすく、ブリスターを抑制しやすい。また、差(D50-(T1+T2))が上記上限値以下であれば、フィラー粒子の脱落が抑えられやすく、メヤニの発生を減らしやすい。
The average particle size of the filler particles can be selected according to the thickness of the first heat seal layer and the second heat seal layer.
Specifically, the difference (D50- (T1 + T2)) obtained by subtracting the sum of the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer from the average particle size D50 of the filler particles is 0.5 μm. The above is preferable, 1.0 μm or more is more preferable, and 3.0 μm or more is further preferable. The difference (D50- (T1 + T2)) is preferably 10 μm or less, more preferably 8 μm or less, and even more preferably 6 μm or less. When the difference (D50- (T1 + T2)) is equal to or greater than the above lower limit value, the ten-point average roughness Rz JIS can be easily adjusted to the above range, and blister can be easily suppressed. Further, when the difference (D50- (T1 + T2)) is equal to or less than the above upper limit value, the filler particles are likely to be suppressed from falling off, and the occurrence of eyebrows is likely to be reduced.
 また、フィラー粒子の平均粒子径D80から第1ヒートシール層の厚さT1と第2ヒートシール層の厚さT2の合計を引いた差(D80-(T1+T2))が、2.5μm以上であることが好ましく、4.0μm以上がより好ましく、5.0μm以上がさらに好ましい。また、差(D80-(T1+T2))は、15μm以下が好ましく、12μm以下がより好ましく、10μm以下がさらに好ましい。差(D80-(T1+T2))が上記下限値以上であれば、十点平均粗さRzJISを上述した範囲に調整しやすく、ブリスターを抑制しやすい。また、差(D80-(T1+T2))が上記上限値以下であれば、フィラー粒子の脱落が抑えられやすく、メヤニの発生を減らしやすい。 Further, the difference (D80- (T1 + T2)) obtained by subtracting the total of the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer from the average particle size D80 of the filler particles is 2.5 μm or more. It is preferable, 4.0 μm or more is more preferable, and 5.0 μm or more is further preferable. The difference (D80- (T1 + T2)) is preferably 15 μm or less, more preferably 12 μm or less, and even more preferably 10 μm or less. When the difference (D80- (T1 + T2)) is equal to or greater than the above lower limit value, the ten-point average roughness Rz JIS can be easily adjusted to the above range, and blister can be easily suppressed. Further, when the difference (D80- (T1 + T2)) is equal to or less than the above upper limit value, the filler particles are likely to be suppressed from falling off, and the occurrence of eyebrows is likely to be reduced.
 なお、平均粒子径D80は、レーザー回折式粒子径分布測定装置(マイクロトラック、株式会社日機装製)により測定した体積累積で80%にあたる体積平均粒子径(累積80%粒径)である。
 また、本明細書において、第1ヒートシール層の厚さT1と第2ヒートシール層の厚さT2は、フィラー粒子が存在しない部分の厚さを指すものとする。
The average particle size D80 is a volume average particle size (cumulative 80% particle size) that corresponds to 80% of the cumulative volume measured by a laser diffraction type particle size distribution measuring device (Microtrac, manufactured by Nikkiso Co., Ltd.).
Further, in the present specification, the thickness T1 of the first heat seal layer and the thickness T2 of the second heat seal layer refer to the thickness of the portion where the filler particles do not exist.
 第1ヒートシール層は、必要に応じて上記基材層の項で列挙した公知の添加剤を任意に含むことができる。
 これらの添加剤の配合率は、添加剤の所定の性能を発揮する観点から、第1ヒートシール層の固形分全量に対して0.05質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方、接着強度を確保する観点から、添加剤の配合率は、ヒートシール層中の固形分全量に対して7.5質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。
The first heat-sealing layer can optionally contain the known additives listed in the above-mentioned base material layer section, if necessary.
The blending ratio of these additives is preferably 0.05% by mass or more, preferably 0.5% by mass or more, based on the total solid content of the first heat seal layer, from the viewpoint of exhibiting the predetermined performance of the additives. The above is more preferable. On the other hand, from the viewpoint of ensuring the adhesive strength, the blending ratio of the additive is preferably 7.5% by mass or less, and more preferably 5% by mass or less, based on the total amount of solids in the heat seal layer. It is more preferably 3% by mass or less.
<<第2ヒートシール層>>
 第2ヒートシール層は、第2ヒートシール樹脂を含む樹脂組成物により形成される。第2ヒートシール層は、ヒートシール層中のフィラー粒子を覆う。
<< Second heat seal layer >>
The second heat seal layer is formed of a resin composition containing the second heat seal resin. The second heat seal layer covers the filler particles in the heat seal layer.
<<<第2ヒートシール樹脂>>>
 第2ヒートシール樹脂としては、第1ヒートシール樹脂と同様の熱可塑性樹脂を使用することができる。第2ヒートシール樹脂は、第1ヒートシール樹脂と同じであっても異なっていてもよい。
<<< Second heat seal resin >>>
As the second heat-sealing resin, the same thermoplastic resin as the first heat-sealing resin can be used. The second heat-sealing resin may be the same as or different from the first heat-sealing resin.
 第2ヒートシール樹脂は、種々の被着体に対して一定の接着強度が得られやすい点で、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・酢酸ビニル共重合体、又はメタロセン触媒を用いて重合したポリエチレン(メタロセン系ポリエチレン)が好ましく、低密度ポリエチレン又はメタロセン系ポリエチレンがより好ましい。一方、被着体がポリプロピレンである場合にも優れた接着強度を得る点から、第1ヒートシール樹脂はポリエチレン及びエチレン-αオレフィン共重合体を含むことが好ましく、ポリエチレン及びエチレン-プロピレン共重合体を含むことがより好ましい。この場合、ポリエチレンに対するエチレン-αオレフィン共重合体の質量比は、10/90~50/50であることが好ましく、20/80~40/60であることがより好ましい。 The second heat-sealing resin uses low-density polyethylene, linear low-density polyethylene, ethylene / vinyl acetate copolymer, or metallocene catalyst because it is easy to obtain a certain adhesive strength for various adherends. Polyethylene polymerized (metallocene-based polyethylene) is preferable, and low-density polyethylene or metallocene-based polyethylene is more preferable. On the other hand, the first heat-sealing resin preferably contains a polyethylene and an ethylene-α-olefin copolymer from the viewpoint of obtaining excellent adhesive strength even when the adherend is polypropylene, and is a polyethylene and ethylene-propylene copolymer. It is more preferable to include. In this case, the mass ratio of the ethylene-α-olefin copolymer to polyethylene is preferably 10/90 to 50/50, more preferably 20/80 to 40/60.
 第2ヒートシール樹脂のスウェル値は、1.6以下が好ましく、1.4以下がより好ましく、1.2以下がさらに好ましい。スウェル値が1.6以下であれば、成形時にメヤニの発生が抑制されやすい。同スウェル値は、通常0.5以上であり、0.7以上がより好ましく、0.9以上がさらに好ましい。
 上記スウェル値は、キャピラリーの孔の径に対してキャピラリーから押出された樹脂の溶融体の径の比であり、キャピログラフ(1D、東洋精機社製)により測定できる。キャピログラフにおいて、キャピラリーダイの孔直径Dは1mmであり、孔長さLは10mmである。
The swell value of the second heat-sealing resin is preferably 1.6 or less, more preferably 1.4 or less, and even more preferably 1.2 or less. When the swell value is 1.6 or less, the generation of shavings is likely to be suppressed during molding. The swell value is usually 0.5 or more, more preferably 0.7 or more, and even more preferably 0.9 or more.
The swell value is the ratio of the diameter of the melt of the resin extruded from the capillary to the diameter of the pores of the capillary, and can be measured by a capillary graph (1D, manufactured by Toyo Seiki Co., Ltd.). In the capillary graph, the hole diameter D of the capillary die is 1 mm, and the hole length L is 10 mm.
 第2ヒートシール樹脂の融点は、第1ヒートシール樹脂と同様に基材層の熱可塑性樹脂よりも低いことが好ましい。具体的には、第2ヒートシール樹脂の融点は、60℃以上であることが好ましく、70℃以上がより好ましい一方、140℃以下であることが好ましく、120℃以下がより好ましい。2種以上の第2ヒートシール樹脂を併用する場合は、少なくとも1種が上記範囲の融点を有することが好ましく、すべてが上記範囲の融点を有することがより好ましい。 The melting point of the second heat-sealing resin is preferably lower than that of the thermoplastic resin of the base material layer, like the first heat-sealing resin. Specifically, the melting point of the second heat-sealing resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, while it is preferably 140 ° C. or lower, more preferably 120 ° C. or lower. When two or more kinds of second heat-sealing resins are used in combination, it is preferable that at least one kind has a melting point in the above range, and it is more preferable that all of them have a melting point in the above range.
 第2ヒートシール層は、本発明の効果を阻害しない範囲で第1ヒートシール層と同様のフィラー粒子を含有してもよい。フィラー粒子の脱落を抑え、メヤニを減らす観点からは、第2ヒートシール層の樹脂組成物にはフィラー粒子が含まれないことが好ましい。具体的には、第2ヒートシール層の樹脂組成物中のフィラー粒子の含有量は、5質量%以下であり、3質量%以下がより好ましく、1質量%以下がさらに好ましく、0質量%が特に好ましい。 The second heat seal layer may contain the same filler particles as the first heat seal layer as long as the effects of the present invention are not impaired. From the viewpoint of suppressing the falling off of the filler particles and reducing the shavings, it is preferable that the resin composition of the second heat seal layer does not contain the filler particles. Specifically, the content of the filler particles in the resin composition of the second heat seal layer is 5% by mass or less, more preferably 3% by mass or less, further preferably 1% by mass or less, and 0% by mass. Especially preferable.
 第2ヒートシール層は、印刷時の搬送性などハンドリングの観点から、ヒートシール性能に影響を及ぼさない範囲で帯電防止剤を含むことができる。第2ヒートシール層に配合するのに好適な帯電防止剤としては、1~3級アミンまたは4級アンモニウム塩構造を有する化合物、エチレングリコール、プロピレングリコール、グリセリン、ポリエチレングリコール、ポリエチレンオキシド等の完全脂肪酸エステル又は部分脂肪酸エステルが挙げられる。 The second heat seal layer can contain an antistatic agent within a range that does not affect the heat seal performance from the viewpoint of handling such as transportability during printing. Suitable antistatic agents to be blended in the second heat seal layer include compounds having a primary to tertiary amine or quaternary ammonium salt structure, and complete fatty acids such as ethylene glycol, propylene glycol, glycerin, polyethylene glycol, and polyethylene oxide. Esters or partial fatty acid esters can be mentioned.
 帯電防止剤の含有量は、第2ヒートシール層の固形分全量に対して、帯電防止剤の所定の性能を発揮する観点から、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。一方、感熱ラベルをプラスチック容器に貼着した場合の接着強度を確保する観点から、帯電防止剤の含有量は、ヒートシール層の固形分全量に対して、3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 The content of the antistatic agent is preferably 0.01% by mass or more, preferably 0.05% by mass, with respect to the total solid content of the second heat seal layer, from the viewpoint of exhibiting the predetermined performance of the antistatic agent. % Or more is more preferable. On the other hand, from the viewpoint of ensuring the adhesive strength when the heat-sensitive label is attached to the plastic container, the content of the antistatic agent is preferably 3% by mass or less with respect to the total solid content of the heat seal layer. It is more preferably 2% by mass or less, and further preferably 1% by mass or less.
 第2ヒートシール層は、必要に応じて上記基材層の項で列挙した公知の添加剤を任意に含むことができる。
 これらの添加剤の含有量は、添加剤の所定の性能を発揮する観点から、第2ヒートシール層の固形分全量に対して0.05質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方、接着強度を確保する観点から、添加剤の含有量は、ヒートシール層中の固形分全量に対して7.5質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。
The second heat-sealing layer can optionally contain the known additives listed in the above-mentioned base material layer section, if necessary.
The content of these additives is preferably 0.05% by mass or more, preferably 0.5% by mass or more, based on the total solid content of the second heat seal layer from the viewpoint of exhibiting the predetermined performance of the additives. The above is more preferable. On the other hand, from the viewpoint of ensuring the adhesive strength, the content of the additive is preferably 7.5% by mass or less, more preferably 5% by mass or less, based on the total amount of solids in the heat seal layer. It is more preferably 3% by mass or less.
 接着強度向上及びメヤニ抑制の観点からは、第2ヒートシール層中の第2ヒートシール樹脂の含有量は、95質量%以上が好ましく、97質量%以上がより好ましく、99質量%以上がさらに好ましい。 From the viewpoint of improving the adhesive strength and suppressing the peeling, the content of the second heat-sealing resin in the second heat-sealing layer is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 99% by mass or more. ..
<<厚さ>>
 第1ヒートシール層と第2ヒートシール層を含むヒートシール層の厚さ(T1+T2)は、2μm以上が好ましく、2.5μm以上がより好ましく、3μm以上がさらに好ましい。同厚さ(T1+T2)は、15μm以下が好ましく、10μm以下がより好ましく、7.5μm以下がさらに好ましい。厚さが上記下限値以上であれば、フィラー粒子の脱落が抑えられメヤニの発生が抑制されやすい。厚さが上記上限値以下であれば、ブリスターが抑制されやすい。
<< Thickness >>
The thickness (T1 + T2) of the heat seal layer including the first heat seal layer and the second heat seal layer is preferably 2 μm or more, more preferably 2.5 μm or more, still more preferably 3 μm or more. The same thickness (T1 + T2) is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 7.5 μm or less. When the thickness is at least the above lower limit value, the filler particles are suppressed from falling off and the generation of shavings is likely to be suppressed. If the thickness is equal to or less than the above upper limit, blister is likely to be suppressed.
 ブリスター抑制の観点から、第1ヒートシール層の厚さ(T1)は、フィラー粒子の平均粒子径よりも小さいことが好ましい。具体的には、第1ヒートシール層の厚さ(T1)は、0.5μm以上が好ましく、1.0μm以上がより好ましく、1.5μm以上がさらに好ましい。同厚さ(T1)は、10μm以下が好ましく、7.5μm以下がより好ましく、5.0μm以下がさらに好ましい。厚さ(T1)が上記下限値以上であれば、幅方向(TD)の厚さが安定し、ヒートシール層表面の平滑度及び粗さ、並びに接着強度等が安定しやすくなる。厚さが上記上限値以下であれば、凹凸が形成されやすく、ブリスター及びブロッキングが抑制されやすい。 From the viewpoint of suppressing blister, the thickness (T1) of the first heat seal layer is preferably smaller than the average particle size of the filler particles. Specifically, the thickness (T1) of the first heat seal layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more. The same thickness (T1) is preferably 10 μm or less, more preferably 7.5 μm or less, and even more preferably 5.0 μm or less. When the thickness (T1) is at least the above lower limit value, the thickness in the width direction (TD) is stable, and the smoothness and roughness of the surface of the heat seal layer, the adhesive strength, and the like are easily stabilized. When the thickness is not more than the above upper limit value, unevenness is likely to be formed, and blister and blocking are likely to be suppressed.
 第2ヒートシール層の厚さ(T2)は、0.5μm以上が好ましく、1.0μm以上がより好ましく、1.5μm以上がさらに好ましい。同厚さ(T2)は、10μm以下が好ましく、7.5μm以下がより好ましく、5.0μm以下がさらに好ましい。厚さ(T2)が上記下限値以上であれば、フィラー粒子の脱落が抑えられメヤニの発生が抑制されやすい。厚さ(T2)が上記上限値以下であれば、凹凸が形成されやすく、ブリスター及びブロッキングが抑制されやすい。 The thickness (T2) of the second heat seal layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more. The same thickness (T2) is preferably 10 μm or less, more preferably 7.5 μm or less, and even more preferably 5.0 μm or less. When the thickness (T2) is at least the above lower limit value, the filler particles are suppressed from falling off and the generation of shavings is likely to be suppressed. When the thickness (T2) is not more than the above upper limit value, unevenness is likely to be formed, and blister and blocking are likely to be suppressed.
<サポート層>
 サポート層は、基材層上にヒートシール層とともに共押出成形される。ヒートシール層には比較的融点が低いヒートシール樹脂が使用され、成形温度によっては押出成形が不安定になることがあるが、サポート層とともに共押出されることにより、安定した成形が可能である。また、サポート層によって、第1ヒートシール層の樹脂組成物中のフィラー粒子が基材層側に移行することを抑制でき、目的の十点表面粗さRzJISの表面が形成されやすい。
<Support layer>
The support layer is coextruded onto the substrate layer together with the heat seal layer. A heat-sealing resin having a relatively low melting point is used for the heat-sealing layer, and extrusion molding may become unstable depending on the molding temperature, but stable molding is possible by co-extruding together with the support layer. .. Further, the support layer can suppress the migration of the filler particles in the resin composition of the first heat seal layer to the base material layer side, and the surface of the target ten-point surface roughness Rz JIS is likely to be formed.
 サポート層は、基材層と同様に構成することができる。フィラー粒子の基材層側への移行を抑制する観点からは、サポート層に使用する熱可塑性樹脂としては、オレフィン系樹脂が好ましく、オレフィン系樹脂のなかでもプロピレン系樹脂が好ましい。熱可塑性樹脂の融点は、第1ヒートシール層に用いられる第1ヒートシール樹脂よりも高いことが好ましい。 The support layer can be configured in the same manner as the base material layer. From the viewpoint of suppressing the migration of the filler particles to the base material layer side, the thermoplastic resin used for the support layer is preferably an olefin resin, and among the olefin resins, a propylene resin is preferable. The melting point of the thermoplastic resin is preferably higher than that of the first heat-sealing resin used for the first heat-sealing layer.
 サポート層の厚さは、2μm以上が好ましく、2.5μm以上がより好ましく、3μm以上がさらに好ましい。同厚さは、15μm以下が好ましく、10μm以下がより好ましく、7.5μm以下がさらに好ましい。厚さが上記下限値以上であれば、ヒートシール層の成形の安定性が得られやすい。 The thickness of the support layer is preferably 2 μm or more, more preferably 2.5 μm or more, and even more preferably 3 μm or more. The thickness is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 7.5 μm or less. When the thickness is at least the above lower limit value, the molding stability of the heat seal layer can be easily obtained.
(感熱ラベルの製造方法)
 本発明の感熱ラベルは、次のようにして基材層上に第1ヒートシール層と第2ヒートシール層を積層し、得られた積層体を延伸することにより製造される。
(Manufacturing method of thermal label)
The heat-sensitive label of the present invention is produced by laminating a first heat-sealing layer and a second heat-sealing layer on a base material layer as follows, and stretching the obtained laminate.
<基材層の形成ステップ>
 まず、上述した基材層の樹脂組成物を用いて基材層を形成する。
 基材層の成形方法としては、Tダイによる押出し成形(キャスト成形)、Oダイによるインフレーション成形、又は圧延ロールによるカレンダー成形等が挙げられる。
<Step of forming the base material layer>
First, a base material layer is formed using the resin composition of the base material layer described above.
Examples of the method for forming the base material layer include extrusion molding (cast molding) with a T die, inflation molding with an O die, and calendar molding with a rolling roll.
 印刷層との密着性を高める観点から、基材層のヒートシール層と反対側の面は、表面処理が施されていてもよい。
 表面処理としては、コロナ放電処理、フレーム処理、プラズマ処理、グロー放電処理、及びオゾン処理等が挙げられ、これら処理は組み合わせることができる。なかでも、コロナ放電処理又はフレーム処理が好ましく、コロナ処理がより好ましい。
From the viewpoint of improving the adhesion to the printing layer, the surface of the base material layer opposite to the heat-sealing layer may be surface-treated.
Examples of the surface treatment include corona discharge treatment, frame treatment, plasma treatment, glow discharge treatment, ozone treatment, and the like, and these treatments can be combined. Of these, corona discharge treatment or frame treatment is preferable, and corona treatment is more preferable.
 コロナ放電処理を実施する場合の放電量は、好ましくは600J/m(10W・分/m)以上であり、より好ましくは1,200J/m(20W・分/m)以上である一方、好ましくは12,000J/m(200W・分/m)以下であり、より好ましくは10,800J/m(180W・分/m)以下である。フレーム処理を実施する場合の放電量は、好ましくは8,000J/m以上であり、より好ましくは20,000J/m以上である一方、好ましくは200,000J/m以下であり、より好ましくは100,000J/m以下である。 The amount of discharge when the corona discharge treatment is carried out is preferably 600 J / m 2 (10 W / min / m 2 ) or more, and more preferably 1,200 J / m 2 (20 W / min / m 2 ) or more. On the other hand, it is preferably 12,000 J / m 2 (200 W / min / m 2 ) or less, and more preferably 10,800 J / m 2 (180 W / min / m 2 ) or less. When the frame processing is performed, the discharge amount is preferably 8,000 J / m 2 or more, more preferably 20,000 J / m 2 or more, and preferably 200,000 J / m 2 or less, more preferably. It is preferably 100,000 J / m 2 or less.
<ヒートシール層の形成>
 次いで、基材層上に第1ヒートシール層及び第2ヒートシール層の各樹脂組成物を共押出しし、基材層、第1ヒートシール層及び第2ヒートシール層の順に積層された積層体を得る。
<Formation of heat seal layer>
Next, the resin compositions of the first heat seal layer and the second heat seal layer were co-extruded onto the base material layer, and the base material layer, the first heat seal layer, and the second heat seal layer were laminated in this order. To get.
 第1ヒートシール層の樹脂組成物中のフィラー粒子の含有量は、上述のように5質量%以上が好ましく、6質量%以上がより好ましく、7質量%以上がさらに好ましい。同含有量は、50質量%以下が好ましく、35質量%以下がより好ましく、20質量%以下がさらに好ましい。含有量が上記下限値以上であれば、ブリスターを抑制しやすい。含有量が上記上限値以下であれば、成形時のメヤニを減らしやすい。
 また、上述のように、第2ヒートシール層の樹脂組成物はフィラー粒子を含有しないことが好ましいが、含有する場合の第2ヒートシール層の樹脂組成物中のフィラー粒子の含有量は5質量%以下であることが好ましく、0質量%であることが特に好ましい。
As described above, the content of the filler particles in the resin composition of the first heat seal layer is preferably 5% by mass or more, more preferably 6% by mass or more, still more preferably 7% by mass or more. The content is preferably 50% by mass or less, more preferably 35% by mass or less, and further preferably 20% by mass or less. When the content is equal to or higher than the above lower limit value, blister is easily suppressed. When the content is not more than the above upper limit value, it is easy to reduce the shavings at the time of molding.
Further, as described above, it is preferable that the resin composition of the second heat seal layer does not contain filler particles, but when it is contained, the content of the filler particles in the resin composition of the second heat seal layer is 5% by mass. % Or less, and particularly preferably 0% by mass.
 成形の安定性向上の観点から、さらにサポート層の樹脂組成物も共押出しし、基材層、サポート層、第1ヒートシール層及び第2ヒートシール層の順に積層された積層体を得ることが好ましい。 From the viewpoint of improving molding stability, the resin composition of the support layer can also be coextruded to obtain a laminate in which the base material layer, the support layer, the first heat seal layer and the second heat seal layer are laminated in this order. preferable.
 共押出成形では、各層の樹脂組成物をフィルム状に積層して押出し成形できるのであれば、多層のTダイ、Iダイ等により溶融樹脂をシート状に押し出すキャスト成形、カレンダー成形、圧延成形、又はインフレーション成形等を用いることができる。 In coextrusion molding, if the resin composition of each layer can be laminated in a film shape and extruded, cast molding, calendar molding, rolling molding, or Inflation molding or the like can be used.
 基材層へのヒートシール層の積層方法としては、押出ラミネート法又はフィルム貼合法等が挙げられる。
 押出ラミネート法は、基材層を先に成形し、これに溶融したヒートシール層用の熱可塑性組成物を共押出して積層し、冷却しながらロールでニップするため、成形と積層とは別工程で行われる。
 フィルム貼合法は、基材層とヒートシール層とをそれぞれフィルム成形し、感圧接着剤を介して両者を貼り合わせるため、成形と積層とは別工程で行われる。
Examples of the method for laminating the heat seal layer on the base material layer include an extrusion laminating method and a film bonding method.
In the extrusion laminating method, the base material layer is molded first, and the melted thermoplastic composition for the heat seal layer is coextruded and laminated, and niped with a roll while cooling. Therefore, the molding and laminating processes are separate steps. It is done in.
In the film bonding method, the base material layer and the heat seal layer are each film-molded, and the two are bonded together via a pressure-sensitive adhesive. Therefore, molding and laminating are performed in separate steps.
<積層体の延伸ステップ>
 次いで、積層体を延伸して、基材層、第1ヒートシール層及び第2ヒートシール層を含む感熱ラベルを得る。
 延伸により各層の厚さが小さくなる結果、第1ヒートシール層中のフィラー粒子が第1ヒートシール層から突出し、第2ヒートシール層をも押しのけて表面に不規則且つ微細な凹凸形状が形成される。また、基材層がフィラーを含む場合には、延伸によって基材層中に空孔が形成されやすくなる。
<Stretching step of laminated body>
The laminate is then stretched to obtain a heat sensitive label containing a substrate layer, a first heat seal layer and a second heat seal layer.
As a result of the thickness of each layer being reduced by stretching, the filler particles in the first heat seal layer protrude from the first heat seal layer, and the second heat seal layer is also pushed away to form an irregular and fine uneven shape on the surface. NS. Further, when the base material layer contains a filler, pores are likely to be formed in the base material layer by stretching.
 延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。 As the stretching method, for example, a longitudinal stretching method using the peripheral speed difference of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these, a rolling method, and a simultaneous two stretching method using a combination of a tenter oven and a pantograph. Examples include a shaft stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor. Further, a simultaneous biaxial stretching (inflation molding) method in which the molten resin is extruded into a tube shape using a circular die connected to a screw type extruder and then air is blown into the molten resin can also be used.
 基材層、第1ヒートシール層及び第2ヒートシール層の積層体は、少なくとも一方向に延伸されていることが好ましい。基材層は、強度向上の観点から、二方向に延伸されていることがより好ましい。 It is preferable that the base material layer, the first heat seal layer, and the second heat seal layer are stretched in at least one direction. From the viewpoint of improving the strength, the base material layer is more preferably stretched in two directions.
 延伸を実施するときの延伸温度は、使用する熱可塑性樹脂が、非結晶性樹脂の場合は当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、具体的には熱可塑性樹脂の融点よりも2~60℃低い温度が好ましい。 When the thermoplastic resin used is a non-crystalline resin, the stretching temperature at the time of performing stretching is preferably in the range of the glass transition temperature or higher of the thermoplastic resin. When the thermoplastic resin is a crystalline resin, the stretching temperature is at least the glass transition point of the non-crystalline portion of the thermoplastic resin and within the range of the melting point of the crystalline portion of the thermoplastic resin. Specifically, a temperature 2 to 60 ° C. lower than the melting point of the thermoplastic resin is preferable.
 延伸速度は、特に限定されるものではないが、安定した延伸成形の観点から、20~350m/分の範囲内であることが好ましい。
 また、延伸倍率についても、使用する熱可塑性樹脂の特性等を考慮して適宜決定することができる。 例えば、プロピレンの単独重合体又はその共重合体を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、通常、下限が通常は1.2倍以上、好ましくは2倍以上であり、上限が通常は12倍以下、好ましくは10倍以下である。一方、二軸延伸する場合の延伸倍率は、面積延伸倍率で通常、下限が通常は1.5倍以上、好ましくは10倍以上であり、上限が通常は60倍以下、好ましくは50倍以下である。
The stretching speed is not particularly limited, but is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
Further, the draw ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when a thermoplastic resin film containing a homopolymer of propylene or a copolymer thereof is stretched in one direction, the draw ratio is usually 1.2 times or more, preferably 2 times or more at the lower limit. The upper limit is usually 12 times or less, preferably 10 times or less. On the other hand, in the case of biaxial stretching, the lower limit is usually 1.5 times or more, preferably 10 times or more, and the upper limit is usually 60 times or less, preferably 50 times or less. be.
 また、エステル系樹脂を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、上限が通常は1.2倍以上、好ましくは2倍以上であり、下限が通常は10倍以下、好ましくは5倍以下である。二軸延伸する場合の延伸倍率は、面積延伸倍率で下限が通常は1.5倍以上、好ましくは4倍以上であり、上限が通常は20倍以下、好ましくは12倍以下である。
 上記延伸倍率の範囲内であれば、目的の空孔率が得られて不透明性が向上しやすい。また、熱可塑性樹脂フィルムの破断が起きにくく、安定した延伸成形ができる傾向がある。
When a thermoplastic resin film containing an ester resin is stretched in one direction, the upper limit of the draw ratio is usually 1.2 times or more, preferably 2 times or more, and the lower limit is usually 10 times or less. It is preferably 5 times or less. In the case of biaxial stretching, the lower limit of the area stretching ratio is usually 1.5 times or more, preferably 4 times or more, and the upper limit is usually 20 times or less, preferably 12 times or less.
Within the range of the draw ratio, the desired porosity can be obtained and the opacity can be easily improved. In addition, the thermoplastic resin film is less likely to break, and stable stretch molding tends to be possible.
(感熱ラベルの物性)
<<十点平均粗さ>>
 本発明の感熱ラベルの第2ヒートシール層の十点平均粗さRzJISは、上述のように5μm以上であるが、5.5μm以上であることが好ましく、6μm以上がより好ましい。また、同十点平均粗さは、15μm以下であるが、12μm以下が好ましく、10μm以下がより好ましい。十点平均粗さRzJISが上記下限値以上にあれば、インモールドラベルとして使用する場合に、成形用樹脂と感熱ラベルとの間の空気が排出されやすく、ブリスターを抑制しやくなるとともに、排出されず残った空気による接着強度の低下を抑制しやすい。十点平均粗さRzJISが上記上限値以下にあれば、容器との接着強度が得られやすい。
 なお、十点平均粗さRzJISは、JIS B0601:2013附属書1に準拠して測定される。
(Physical characteristics of thermal label)
<< Ten-point average roughness >>
The ten-point average roughness Rz JIS of the second heat seal layer of the heat-sensitive label of the present invention is 5 μm or more as described above, but is preferably 5.5 μm or more, and more preferably 6 μm or more. The 10-point average roughness is 15 μm or less, preferably 12 μm or less, and more preferably 10 μm or less. If the ten-point average roughness Rz JIS is equal to or higher than the above lower limit, air between the molding resin and the heat-sensitive label is easily discharged when used as an in-mold label, and blister is easily suppressed and discharged. It is easy to suppress the decrease in adhesive strength due to the remaining air. When the ten-point average roughness Rz JIS is not more than the above upper limit value, the adhesive strength with the container can be easily obtained.
The ten-point average roughness Rz JIS is measured in accordance with JIS B0601: 2013 Annex 1.
<<平滑度>>
 本発明の感熱ラベルの第2ヒートシール層側の表面の平滑度は、100秒以上が好ましく、200秒以上がより好ましく、1000秒以下が好ましく、500秒以下がより好ましい。平滑度が上記上限値以下にあれば、インモールドラベルとして使用する場合に、成形用樹脂と感熱ラベルとの間の空気が排出されやすく、ブリスターを抑制しやくなる。また、排出されず残った空気による接着強度の低下を抑制しやすい。平滑度が上記下限値以上にあれば、容器との接着強度が得られやすい。
<< Smoothness >>
The smoothness of the surface of the heat-sensitive label of the present invention on the second heat seal layer side is preferably 100 seconds or more, more preferably 200 seconds or more, preferably 1000 seconds or less, and more preferably 500 seconds or less. When the smoothness is equal to or less than the above upper limit value, air between the molding resin and the heat-sensitive label is easily discharged when used as an in-mold label, and blisters are easily suppressed. In addition, it is easy to suppress a decrease in adhesive strength due to the air remaining without being discharged. When the smoothness is equal to or higher than the above lower limit value, the adhesive strength with the container can be easily obtained.
(印刷ラベル)
<印刷層>
 印刷層は、感熱ラベルのヒートシール層と反対側の面上に、インクを用いて印刷を施すことにより形成される。
 印刷情報としては、例えば写真画像、絵柄、バーコード、製造元、販売会社名、キャラクター、商品名、又は使用方法等が挙げられる。
(Print label)
<Print layer>
The printing layer is formed by printing with ink on the surface of the heat-sensitive label opposite to the heat-sealing layer.
Examples of the print information include photographic images, patterns, barcodes, manufacturers, sales company names, characters, product names, usage methods, and the like.
 使用できる印刷方法としては特に限定されず、グラビア印刷、オフセット印刷、フレキソ印刷、凸版印刷、シール印刷、スクリーン印刷、及びインクジェット印刷等が挙げられる。印刷方法に合わせて、油性インク、酸化重合硬化型インク、紫外線硬化型インク、水性インク、及び液体トナーインク等のインクを使用できる。 The printing method that can be used is not particularly limited, and examples thereof include gravure printing, offset printing, flexographic printing, letterpress printing, sticker printing, screen printing, and inkjet printing. Depending on the printing method, inks such as oil-based ink, oxidative polymerization curable ink, ultraviolet curable ink, water-based ink, and liquid toner ink can be used.
 本発明に係る感熱ラベル及び印刷ラベルはインモールド成形用のラベル(インモールドラベル)として利用することができる。 The heat-sensitive label and the printed label according to the present invention can be used as a label for in-mold molding (in-mold label).
(ラベル付き容器)
 ラベル付き容器は、本発明の感熱ラベル又は印刷ラベルと、プラスチック容器本体とを有する。感熱ラベル又は印刷ラベルは、ヒートシール層を介して、プラスチック容器本体に貼着されている。
(Labeled container)
The labeled container has a heat-sensitive label or a printed label of the present invention and a plastic container body. The heat-sensitive label or the printed label is attached to the plastic container body via the heat seal layer.
<プラスチック容器>
 プラスチック容器の材料としては、例えば、ポリエチレンテレフタレート(PET)及びその共重合体などのポリエステル系樹脂;ポリプロピレン(PP)及びポリエチレン(PE)などのポリオレフィン系樹脂;並びにポリカーボネート樹脂等を挙げることができる。なかでも、ブロー成形し易い樹脂であることから、ポリエステル系樹脂またはポリオレフィン系樹脂を用いることが好ましく、ポリオレフィン系樹脂を用いることがより好ましい。また、これらの熱可塑性樹脂を主成分とする熱可塑性樹脂組成物を使用することが好ましい。
<Plastic container>
Examples of the material of the plastic container include polyester resins such as polyethylene terephthalate (PET) and its copolymers; polyolefin resins such as polypropylene (PP) and polyethylene (PE); and polycarbonate resins. Among them, since it is a resin that is easily blow-molded, it is preferable to use a polyester-based resin or a polyolefin-based resin, and it is more preferable to use a polyolefin-based resin. Further, it is preferable to use a thermoplastic resin composition containing these thermoplastic resins as a main component.
<ラベル付きプラスチック容器の製造方法>
 ラベル付きプラスチック容器は、中空成形、インジェクション成形及び差圧成形等のプロセスにおいて、プラスチック容器の成形時にインモールドラベルを当該容器に接着する方法が挙げられる。
<Manufacturing method of labeled plastic container>
As for the labeled plastic container, a method of adhering the in-mold label to the container at the time of molding the plastic container can be mentioned in processes such as hollow molding, injection molding and differential pressure molding.
 例えば中空成形では、インモールドラベルを、成形金型のキャビティ内にラベルのヒートシール層側の面が金型のキャビティ側(印刷層側の面が金型に接するよう)に向くように配置された後、吸引又は静電気により金型内壁に固定される。次いで容器成形材料となる樹脂のパリソン又はプリフォームの溶融物が金型間に導かれる。型締めした後に常法により中空成形され、該ラベルがプラスチック容器の外壁に一体に融着されたラベル付きプラスチック容器が成形される。 For example, in hollow molding, the in-mold label is arranged in the cavity of the molding die so that the surface of the label on the heat seal layer side faces the cavity side of the mold (the surface on the printing layer side is in contact with the mold). After that, it is fixed to the inner wall of the mold by suction or static electricity. Next, a resin parison or melt of preform, which is a container molding material, is guided between the molds. After molding, hollow molding is performed by a conventional method, and a labeled plastic container in which the label is integrally fused to the outer wall of the plastic container is molded.
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. In addition, the description of "part", "%", etc. in the Examples means the description of the mass standard unless otherwise specified.
 表1は、実施例及び比較例に使用された材料の一覧を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows a list of materials used in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 表1に記載のプロピレン単独重合体(PP1)(商品名:ノバテックPP MA4、日本ポリプロ社製、融点(JIS K7121):167℃)99質量%、無機フィラー(CA1)(重質炭酸カルシウム、商品名:ソフトン#1800、備北粉化工業社製、平均粒子径D50:2.0μm、平均粒子径D80:4.4μm)1質量%を混合し、基材層の樹脂組成物(A)を調製した。樹脂組成物(A)と同様にして、サポート層の樹脂組成物(B)を調製した。つまり、サポート層の樹脂組成物(B)は、基材層と材料及びその含有量が同じである。
(Example 1)
The propylene homopolymer (PP1) shown in Table 1 (trade name: Novatec PP MA4, manufactured by Japan Polypropylene Corporation, melting point (JIS K7121): 167 ° C.) 99% by mass, inorganic filler (CA1) (heavy calcium carbonate, product). Name: Softon # 1800, manufactured by Bikita Powder Industry Co., Ltd., average particle size D50: 2.0 μm, average particle size D80: 4.4 μm) 1% by mass was mixed to prepare a resin composition (A) for the base material layer. bottom. A resin composition (B) for the support layer was prepared in the same manner as the resin composition (A). That is, the resin composition (B) of the support layer has the same material and content as the base material layer.
 表1に記載のメタロセン系ポリエチレン(PE1)(商品名:エンゲージ8411、The Dow Company社製、スウェル値:0.96、融点(JIS K7121):76℃)92質量%、無機フィラー(CA2)(軽質炭酸カルシウム、商品名:CUBE-80KAS、丸尾カルシウム社製、平均粒子径D50:8.8μm、平均粒子径D80:11.0μm)8質量%を混合し、第1ヒートシール層の樹脂組成物(C)を調製した。また、メタロセン系ポリエチレン(PE1)100質量%を、第2ヒートシール層の樹脂組成物(D)とした。 Metallocene polyethylene (PE1) shown in Table 1 (trade name: Engage 8411, manufactured by The Dow Company, swell value: 0.96, melting point (JIS K7121): 76 ° C.) 92% by mass, inorganic filler (CA2) ( Light calcium carbonate, trade name: CUBE-80KAS, manufactured by Maruo Calcium Co., Ltd., average particle size D50: 8.8 μm, average particle size D80: 11.0 μm) 8% by mass was mixed, and the resin composition of the first heat seal layer was mixed. (C) was prepared. Further, 100% by mass of metallocene-based polyethylene (PE1) was used as the resin composition (D) of the second heat-sealing layer.
 上記基材層の樹脂組成物(A)を250℃に設定した押出機にて溶融混練した後、250℃に設定したTダイに供給し、シート状に押し出した。これを冷却ロールにより約60℃まで冷却して無延伸シートを得た。得られた無延伸シートを、シート表面の温度が140℃になるように熱ロールで再加熱した後、ロール群の周速差を利用して縦方向に4倍延伸した。冷却ロールによりシート表面の温度が約60℃になるまで冷却して、4倍延伸シートを得た。 The resin composition (A) of the base material layer was melt-kneaded by an extruder set at 250 ° C., then supplied to a T-die set at 250 ° C. and extruded into a sheet. This was cooled to about 60 ° C. with a cooling roll to obtain an unstretched sheet. The obtained unstretched sheet was reheated with a heat roll so that the temperature of the sheet surface became 140 ° C., and then stretched four times in the vertical direction by utilizing the difference in peripheral speed of the roll group. The sheet was cooled by a cooling roll until the temperature of the sheet surface reached about 60 ° C. to obtain a 4-fold stretched sheet.
 次いで、上記樹脂組成物(B)~(D)を、230℃に設定した別の3台の押出機にて溶融混練した後、230℃に設定したTダイよりシート状に押し出し、上記4倍延伸シート上に積層した。これにより、基材層(A)/サポート層(B)/第1ヒートシール層(C)/第2ヒートシール層(D)の順に積層された4層構造を有する積層体のシートを得た。 Next, the resin compositions (B) to (D) were melt-kneaded by three other extruders set at 230 ° C., and then extruded into a sheet from a T-die set at 230 ° C., which was quadrupled. It was laminated on a stretched sheet. As a result, a laminated sheet having a four-layer structure in which the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D) was laminated in this order was obtained. ..
 この積層体のシートを、テンターオーブンを用いてシート表面の温度が160℃になるように再加熱した後、テンターを用いて横方向に9倍延伸し、更に170℃に調整した熱セットゾーンによりアニーリング処理を行った。冷却ロールにて約60℃まで冷却し、耳部をスリットして4層構造の2軸延伸樹脂フィルムを得た。これをガイドロールでコロナ放電処理器に導き、基材層側の表面に50W・分/mの処理量でコロナ放電処理を施した。巻き取り機で巻き取って、実施例1の感熱ラベルを得た。 The sheet of this laminated body was reheated using a tenter oven so that the temperature of the sheet surface became 160 ° C., then stretched 9 times in the lateral direction using a tenter, and further adjusted to 170 ° C. by a heat set zone. Annealing processing was performed. The film was cooled to about 60 ° C. with a cooling roll, and the ears were slit to obtain a biaxially stretched resin film having a four-layer structure. This was guided to a corona discharge processor with a guide roll, and the surface on the substrate layer side was subjected to a corona discharge treatment at a processing amount of 50 W / min / m 2. The heat-sensitive label of Example 1 was obtained by winding with a winder.
 得られた感熱ラベルは、全厚が100μmであり、基材層(A)/サポート層(B)/第1ヒートシール層(C)/第2ヒートシール層(D)の各層の延伸軸数が二軸/一軸/一軸/一軸であり、各層厚が91μm/5μm/2μm/2μmであった。 The obtained heat-sensitive label has a total thickness of 100 μm, and has the number of stretched axes of each of the base material layer (A) / support layer (B) / first heat seal layer (C) / second heat seal layer (D). Was biaxial / uniaxial / uniaxial / uniaxial, and the thickness of each layer was 91 μm / 5 μm / 2 μm / 2 μm.
(実施例2)
 実施例1において、第2ヒートシール層の樹脂組成物(D)に表1に記載のエチレン・プロピレン共重合体(PP2)(商品名:VISTAMAXX 3588FL、エクソンモービル社製、スウェル値:1.02、融点(JIS K7121):103℃)をさらに加え、第2ヒートシール層の組成を表2に示すように調整したこと以外は、実施例1と同様にして実施例2の感熱ラベルを得た。
(Example 2)
In Example 1, the ethylene / propylene copolymer (PP2) shown in Table 1 in the resin composition (D) of the second heat-sealing layer (trade name: VISTAMAXX 3588FL, manufactured by ExxonMobil, swell value: 1.02). , Melting point (JIS K7121): 103 ° C.) was further added to obtain a heat-sensitive label of Example 2 in the same manner as in Example 1 except that the composition of the second heat seal layer was adjusted as shown in Table 2. ..
(実施例3)
 実施例2において、第1ヒートシール層の樹脂組成物(C)にさらにエチレン・プロピレン共重合体(PP2)を加え、樹脂組成物(C)の組成を表2に示すように調整したこと以外は、実施例2と同様にして実施例3の感熱ラベルを得た。
(Example 3)
In Example 2, except that the ethylene / propylene copolymer (PP2) was further added to the resin composition (C) of the first heat seal layer to adjust the composition of the resin composition (C) as shown in Table 2. Obtained the heat-sensitive label of Example 3 in the same manner as in Example 2.
(実施例4)
 実施例2において、第1ヒートシール層の樹脂組成物(C)の無機フィラーを有機フィラー(F1)(架橋ポリスチレン、商品名SSX-108、積水化成品工業社製、平均粒子径D50:8.8μm、平均粒子径D80:11.0μm)8質量%に代えたこと以外は、実施例2と同様にして実施例4の感熱ラベルを得た。
(Example 4)
In Example 2, the inorganic filler of the resin composition (C) of the first heat seal layer was used as an organic filler (F1) (crosslinked polystyrene, trade name SSX-108, manufactured by Sekisui Plastics Co., Ltd., average particle size D50: 8. The heat-sensitive label of Example 4 was obtained in the same manner as in Example 2 except that the particle size was 8 μm and the average particle size was D80: 11.0 μm) 8% by mass.
(比較例1)
 実施例1において、第2ヒートシール層を形成せずに厚さ4μmの第1ヒートシール層を形成したこと以外は、実施例1と同様にして比較例1の感熱ラベルを得た。
(Comparative Example 1)
A heat-sensitive label of Comparative Example 1 was obtained in the same manner as in Example 1 except that the first heat-sealing layer having a thickness of 4 μm was formed without forming the second heat-sealing layer.
(比較例2)
 実施例2において、第1ヒートシール層の樹脂組成物(C)の無機フィラーを重質炭酸カルシウム(CA1)8質量%に代えたこと以外は、実施例2と同様にして比較例2の感熱ラベルを得た。
(Comparative Example 2)
In Example 2, the heat sensitivity of Comparative Example 2 was the same as in Example 2 except that the inorganic filler of the resin composition (C) of the first heat seal layer was replaced with 8% by mass of heavy calcium carbonate (CA1). Got a label.
(比較例3)
 実施例2において、第1ヒートシール層及び第2ヒートシール層の厚さをそれぞれ5μmに変更したこと以外は、実施例2と同様にして比較例3の感熱ラベルを得た。
(Comparative Example 3)
A heat-sensitive label of Comparative Example 3 was obtained in the same manner as in Example 2 except that the thicknesses of the first heat-sealing layer and the second heat-sealing layer were changed to 5 μm, respectively.
(比較例4)
 比較例2において、第2ヒートシール層を形成せずに第1ヒートシール層の厚さを4μmに変更したこと以外は、比較例2と同様にして比較例4の感熱ラベルを得た。
(Comparative Example 4)
In Comparative Example 2, the heat-sensitive label of Comparative Example 4 was obtained in the same manner as in Comparative Example 2 except that the thickness of the first heat-sealing layer was changed to 4 μm without forming the second heat-sealing layer.
(比較例5)
 比較例2において、第2ヒートシール層の樹脂組成物(D)に無機フィラー(CA1)を追加し、樹脂組成物(D)の組成を表2に示すように調整したこと以外は、比較例2と同様にして比較例5の感熱ラベルを得た。
(Comparative Example 5)
In Comparative Example 2, an inorganic filler (CA1) was added to the resin composition (D) of the second heat seal layer, and the composition of the resin composition (D) was adjusted as shown in Table 2. The heat-sensitive label of Comparative Example 5 was obtained in the same manner as in 2.
(比較例6)
 比較例1において、第1ヒートシール層の樹脂組成物(C)にフィラーを配合せず、100質量%のメタロセン系ポリエチレン(PE)を用いたこと以外は、比較例1と同様にして比較例6の感熱ラベルを得た。
(Comparative Example 6)
In Comparative Example 1, a filler was not blended in the resin composition (C) of the first heat seal layer, and 100% by mass of metallocene-based polyethylene (PE) was used. 6 thermal labels were obtained.
(感熱ラベルの物性)
 各実施例及び比較例の感熱ラベルの厚さ、ヒートシール層表面の平滑度及び十点平均粗さを、次のようにして測定した。
(Physical characteristics of thermal label)
The thickness of the heat-sensitive label, the smoothness of the surface of the heat seal layer, and the ten-point average roughness of each Example and Comparative Example were measured as follows.
<厚さ>
 感熱ラベルの厚さ(全厚)は、JIS K7130:1999に準拠し、定圧厚さ測定器(製品名:PG-01J、テクロック社製)を用いて測定した。また、感熱ラベルにおける各層の厚さは、次のようにして求めた。測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(製品名:プロラインブレード、シック・ジャパン社製)を直角に当て切断し、断面観察用の試料を作製した。得られた試料の断面を走査型電子顕微鏡(製品名:JSM-6490、日本電子社製)を使用して観察し、外観から各層の熱可塑性樹脂組成物ごとの境界線を判別して、インモールドラベルの全厚に観察される各層の厚さ比率を求めた。この厚さ比率を上記測定された全厚に乗算して各層の厚さを求めた。
<Thickness>
The thickness (total thickness) of the heat-sensitive label was measured using a constant pressure thickness measuring device (product name: PG-01J, manufactured by Teclock Co., Ltd.) in accordance with JIS K7130: 1999. The thickness of each layer in the thermal label was determined as follows. The sample to be measured is cooled to a temperature of -60 ° C or less with liquid nitrogen, and a razor blade (product name: Proline Blade, manufactured by Schick Japan K.K.) is applied at a right angle to the sample placed on the glass plate to cut it. , A sample for cross-sectional observation was prepared. The cross section of the obtained sample was observed using a scanning electron microscope (product name: JSM-6490, manufactured by JEOL Ltd.), and the boundary line of each layer of the thermoplastic resin composition was discriminated from the appearance. The thickness ratio of each layer observed in the total thickness of the mold label was determined. This thickness ratio was multiplied by the measured total thickness to obtain the thickness of each layer.
<平滑度>
 感熱ラベルのヒートシール層表面の王研式平滑度をJIS P 8155:2010「紙及び板紙-平滑度試験方法-王研法」に従って、デジタル王研式透気度、平滑度試験機(製品名:EYO-55-1M、旭精工株式会社製)で測定した。
<Smoothness>
According to JIS P 8155: 2010 "Paper and Paperboard-Smoothness Test Method-Oken Method", the surface of the heat seal layer of the heat-sensitive label is digitally Oken-type air permeability and smoothness tester (product name: EYO). -55-1M, manufactured by Asahi Seiko Co., Ltd.).
<十点平均粗さ>
 感熱ラベルのヒートシール層表面の表面粗さRzJISを、JIS B0601:2013附属書1に従って測定した。表面粗さ測定機(製品名:SURFCOM 1500DX、東京精密社製)を用いて、(50mm×50mm)に断裁したラベルのヒートシール面を測定長さ30mmで測定した。
<10-point average roughness>
The surface roughness Rz JIS of the surface of the heat seal layer of the heat-sensitive label was measured according to JIS B0601: 2013 Annex 1. Using a surface roughness measuring machine (product name: SURFCOM 1500DX, manufactured by Tokyo Seimitsu Co., Ltd.), the heat-sealed surface of the label cut into (50 mm × 50 mm) was measured with a measurement length of 30 mm.
(評価)
 各実施例及び比較例の感熱ラベルをインモールドラベルとして用いて、ポリプロピレン樹脂の容器と、ポリエチレン樹脂の容器とをそれぞれインモールド成形し、ラベル付き容器を製造した。これらラベル付き容器を用いて、感熱ラベルのブリスター、成形体との接着強度及びメヤニを下記のように評価した。
(evaluation)
Using the heat-sensitive labels of each Example and Comparative Example as in-mold labels, a polypropylene resin container and a polyethylene resin container were each in-mold molded to produce a labeled container. Using these labeled containers, the heat-sensitive label blister, the adhesive strength to the molded product, and the meshi were evaluated as follows.
<ラベル付き成形体(PP容器)の製造>
 感熱ラベルを横60mm、縦120mmの矩形に打抜加工した。加工後の感熱ラベルを、0.4Lの内容量のボトルを成型できるブロー成形用金型の一方にヒートシール層がキャビティ側を向くように配置し、吸引を利用して金型上に固定した。
<Manufacturing of labeled molded parts (PP containers)>
The heat-sensitive label was punched into a rectangle having a width of 60 mm and a length of 120 mm. The heat-sensitive label after processing was placed on one of the blow molding dies capable of molding a bottle having a capacity of 0.4 L so that the heat seal layer faced the cavity side, and fixed on the dies using suction. ..
金型間にプロピレン単独重合体(商品名:ノバテックHD EG8B、日本ポリプロ社製、MFR(JIS K7210:1999):0.8g/10分、密度(JIS K7112:1999):0.90g/cm)を180℃で溶融してパリソン状に押出した。ラベルが貼着する部分のパリソンを180℃に設定した。金型を型締めした後、4.2kg/cmの圧縮空気をパリソン内に供給し、20秒間パリソンを膨張させて金型に密着させて容器状とするとともにラベルと融着させた。次いで、金型内で成型物を冷却し、型開きをしてラベル付き容器を得た。この際、金型冷却温度は20℃、ショットサイクル時間は31秒/回とした。 Propropylene homopolymer between molds (trade name: Novatec HD EG8B, manufactured by Japan Polypropylene Corporation, MFR (JIS K7210: 1999): 0.8 g / 10 minutes, density (JIS K7112: 1999): 0.90 g / cm 3 ) Was melted at 180 ° C. and extruded into a parison shape. The parison of the part to which the label is attached was set to 180 ° C. After the mold was molded, 4.2 kg / cm 2 of compressed air was supplied into the parison, and the parison was expanded for 20 seconds to be brought into close contact with the mold to form a container and fused with the label. The molded product was then cooled in the mold and opened to obtain a labeled container. At this time, the mold cooling temperature was set to 20 ° C., and the shot cycle time was set to 31 seconds / time.
<ラベル付き成形体(PE容器)の製造>
 感熱ラベルを横60mm、縦120mmの矩形に打抜加工した。加工後の感熱ラベルを、0.4Lの内容量のボトルを成型できるブロー成形用金型の一方にヒートシール層がキャビティ側を向くように配置し、吸引を利用して金型上に固定した。
<Manufacturing of labeled molded parts (PE containers)>
The heat-sensitive label was punched into a rectangle having a width of 60 mm and a length of 120 mm. The heat-sensitive label after processing was placed on one of the blow molding dies capable of molding a bottle having a capacity of 0.4 L so that the heat seal layer faced the cavity side, and fixed on the dies using suction. ..
金型間に高密度ポリエチレン(商品名:ノバテックHD HB420R、日本ポリエチレン株式会社製、MFR(JIS K7210:1999):0.2g/10分、密度(JIS K7112:1999):0.956g/cm)を180℃で溶融してパリソン状に押出した。ラベルが貼着する部分のパリソンを180℃に設定した。金型を型締めした後、4.2kg/cmの圧縮空気をパリソン内に供給し、20秒間パリソンを膨張させて金型に密着させて容器状とするとともにラベルと融着させた。次いで、金型内で成型物を冷却し、型開きをしてラベル付き容器を得た。この際、金型冷却温度は20℃、ショットサイクル時間は31秒/回とした。 High-density polyethylene between molds (trade name: Novatec HD HB420R, manufactured by Japan Polyethylene Corporation, MFR (JIS K7210: 1999): 0.2 g / 10 minutes, density (JIS K7112: 1999): 0.956 g / cm 3 ) Was melted at 180 ° C. and extruded into a parison shape. The parison of the part to which the label is attached was set to 180 ° C. After the mold was molded, 4.2 kg / cm 2 of compressed air was supplied into the parison, and the parison was expanded for 20 seconds to be brought into close contact with the mold to form a container and fused with the label. The molded product was then cooled in the mold and opened to obtain a labeled container. At this time, the mold cooling temperature was set to 20 ° C., and the shot cycle time was set to 31 seconds / time.
<ブリスター>
 ラベル付きPE容器の外観を目視で観察し、接着不足によるブリスターと、空気抜け不足によるブリスターと、を下記のように評価した。
<Blister>
The appearance of the labeled PE container was visually observed, and the blisters due to insufficient adhesion and the blisters due to insufficient air bleeding were evaluated as follows.
<<接着不足によるブリスター>>
 〇:接着不足によるブリスターが認められない
 ×:接着不足によるブリスターが認められる
<<空気抜け不足によるブリスター>>
 〇:空気抜け不足によるブリスターが認められない
 ×:空気抜け不足によるブリスターが認められる
<< Blister due to insufficient adhesion >>
〇: Blister due to insufficient adhesion is not recognized ×: Blister due to insufficient adhesion is recognized << Blister due to insufficient air release >>
〇: Blister due to insufficient air bleeding is not recognized ×: Blister due to insufficient air bleeding is recognized
<接着強度>
 ラベル付き容器を23℃、相対湿度50%の環境下に1週間保管した。その後、JIS K 6854-3:1999に従い、ラベル付き容器のラベル貼着部分を15mm幅の短冊状に切り取ってサンプルを作製した。サンプルを引張試験機(オートグラフAGS-D型、島津製作所製)にセットし、引張試験機により300mm/minの引張速度でT字状にラベルを引っ張って剥離することにより、ラベルと容器との間の接着強度を求めた。
<Adhesive strength>
The labeled container was stored for 1 week in an environment of 23 ° C. and 50% relative humidity. Then, according to JIS K 6854-3: 1999, the labeled portion of the labeled container was cut into strips having a width of 15 mm to prepare a sample. The sample is set in a tensile tester (Autograph AGS-D type, manufactured by Shimadzu Corporation), and the label is peeled off by pulling the label in a T shape at a tensile speed of 300 mm / min with the tensile tester to separate the label from the container. The adhesive strength between them was determined.
<メヤニ>
 感熱ラベルを12時間連続生産し、得られた感熱ラベルのヒートシール層側の表面を目視で観察した。メヤニが押出成形機のダイのリップに発生すると、感熱ラベルの表面にメヤニに伴うスジが生じることから、感熱ラベルにおけるスジの有無を観察して次のようにしてメヤニの発生を評価した。
 〇:12時間後の感熱ラベルにスジが認められず、メヤニが発生していないか、又はメヤニが発生していても実用できるレベル
 ×:12時間後の感熱ラベルにスジが認められ、実用できないレベル
<Meyani>
The heat-sensitive label was continuously produced for 12 hours, and the surface of the obtained heat-sensitive label on the heat seal layer side was visually observed. When the shavings are generated on the lip of the die of the extrusion molding machine, the streaks associated with the shavings are generated on the surface of the heat-sensitive label. Therefore, the presence or absence of the shavings on the heat-sensitive label was observed and the occurrence of the shavings was evaluated as follows.
〇: No streaks are found on the heat-sensitive label after 12 hours, and there is no shavings, or even if shavings are occurring, it is a practical level. level
 表2は、各実施例及び比較例の組成を示す。表3は、評価結果を示す。 Table 2 shows the composition of each Example and Comparative Example. Table 3 shows the evaluation results.

 
Figure JPOXMLDOC01-appb-T000002
 
 

 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 
 実施例1~4によれば、いずれもブリスターが認められず、PE容器及びPP容器のいずれとも十分な接着強度が得られている。また、12時間連続生産してもメヤニの発生がなかった。 According to Examples 1 to 4, no blisters were observed in any of the containers, and sufficient adhesive strength was obtained for both the PE container and the PP container. In addition, no shavings were generated even after continuous production for 12 hours.
 一方、十点平均粗さRzJISが特定範囲にある比較例1はブリスターが発生していないが、特定範囲外の比較例2~4はブリスターが発生しており、空気の抜けが不十分であることが分かる。また、比較例1、4及び5はメヤニが発生している。これは、第1ヒートシール層中のフィラー粒子を覆う第2ヒートシール層がないか、第2ヒートシール層中に配合されたフィラー粒子が脱落したためと推察される。ヒートシール層中にフィラーを含有しない比較例6においては、メヤニの発生はないが、やはりブリスターが発生し、空気が十分に抜けていない。 On the other hand, in Comparative Example 1 in which the ten-point average roughness Rz JIS is in a specific range, blister is not generated, but in Comparative Examples 2 to 4 outside the specific range, blister is generated and air is not sufficiently released. It turns out that there is. Further, in Comparative Examples 1, 4 and 5, eyebrows are generated. It is presumed that this is because there is no second heat seal layer covering the filler particles in the first heat seal layer, or the filler particles blended in the second heat seal layer have fallen off. In Comparative Example 6 in which the filler is not contained in the heat seal layer, no mayani is generated, but blister is also generated and air is not sufficiently released.
 本出願は、2020年3月27日に出願された日本特許出願である特願2020-058967号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2020-058967, which is a Japanese patent application filed on March 27, 2020, and incorporates all the contents of the Japanese patent application.
10・・・感熱ラベル、1・・・基材層、2・・・ヒートシール層、21・・・第1ヒートシール層、22・・・第2ヒートシール層、3・・・サポート層、4・・・フィラー粒子、5・・・印刷層

 
10 ... Thermal label, 1 ... Base material layer, 2 ... Heat seal layer, 21 ... 1st heat seal layer, 22 ... 2nd heat seal layer, 3 ... Support layer, 4 ... Filler particles, 5 ... Printing layer

Claims (7)

  1.  基材層と、
     前記基材層上にフィラー粒子を含有するヒートシール層と、を有し、
     前記ヒートシール層が、前記基材層上に第1ヒートシール層と、前記第1ヒートシール層上に第2ヒートシール層とを有し、
     前記フィラー粒子が、前記第2ヒートシール層により覆われ、
     前記第2ヒートシール層の十点表面粗さRzJISが、5~15μmである
     感熱ラベル。
    Base layer and
    It has a heat-sealing layer containing filler particles on the base material layer, and has
    The heat seal layer has a first heat seal layer on the base material layer and a second heat seal layer on the first heat seal layer.
    The filler particles are covered with the second heat seal layer,
    A heat-sensitive label having a ten-point surface roughness Rz JIS of the second heat-sealing layer of 5 to 15 μm.
  2.  前記第2ヒートシール層が、ヒートシール樹脂を含有し、
     前記ヒートシール樹脂のスウェル値が、0.5~1.6である
     請求項1に記載の感熱ラベル。
    The second heat-sealing layer contains a heat-sealing resin and contains
    The heat-sensitive label according to claim 1, wherein the heat-sealed resin has a swell value of 0.5 to 1.6.
  3.  前記ヒートシール層中の前記フィラー粒子の含有量が、2.5~25質量%である
     請求項1又は2に記載の感熱ラベル。
    The heat-sensitive label according to claim 1 or 2, wherein the content of the filler particles in the heat seal layer is 2.5 to 25% by mass.
  4.  前記第1ヒートシール層と前記基材層との間にサポート層を有し、
     前記第1ヒートシール層は、エチレン系樹脂を含有し、
     前記サポート層は、プロピレン系樹脂を含有する
     請求項1~3のいずれか一項に記載の感熱ラベル。
    A support layer is provided between the first heat seal layer and the base material layer.
    The first heat seal layer contains an ethylene resin and contains
    The heat-sensitive label according to any one of claims 1 to 3, wherein the support layer contains a propylene-based resin.
  5.  基材層の樹脂組成物を用いて基材層を形成するステップと、
     前記基材層上に第1ヒートシール層及び第2ヒートシール層の各樹脂組成物を共押出しし、前記基材層、前記第1ヒートシール層及び前記第2ヒートシール層の順に積層された積層体を得るステップと、
     前記積層体を延伸して、前記基材層、前記第1ヒートシール層及び前記第2ヒートシール層を含む感熱ラベルを得るステップと、を含み、
     前記第1ヒートシール層の樹脂組成物がフィラー粒子を含有し、前記第2ヒートシール層の樹脂組成物がフィラー粒子を含有しないか、又は5質量%以下のフィラー粒子を含有し、
     前記第2ヒートシール層の十点表面粗さRzJISが、5~15μmである
     感熱ラベルの製造方法。
    The step of forming the base material layer using the resin composition of the base material layer,
    The resin compositions of the first heat seal layer and the second heat seal layer were co-extruded onto the base material layer, and the base material layer, the first heat seal layer, and the second heat seal layer were laminated in this order. Steps to obtain a laminate and
    A step of stretching the laminate to obtain a heat-sensitive label containing the base material layer, the first heat-sealing layer and the second heat-sealing layer, and the like.
    The resin composition of the first heat seal layer contains filler particles, and the resin composition of the second heat seal layer does not contain filler particles or contains 5% by mass or less of filler particles.
    A method for producing a heat-sensitive label, wherein the ten-point surface roughness Rz JIS of the second heat seal layer is 5 to 15 μm.
  6.  前記積層体を得るステップは、前記第1ヒートシール層及び前記第2ヒートシール層の樹脂組成物とともにサポート層の樹脂組成物を共押出し、前記基材層、前記サポート層、前記第1ヒートシール層及び前記第2ヒートシール層の順に積層された積層体を得る
     請求項5に記載の感熱ラベルの製造方法。
    In the step of obtaining the laminate, the resin composition of the support layer is coextruded together with the resin composition of the first heat seal layer and the second heat seal layer, and the base material layer, the support layer, and the first heat seal are obtained. The method for manufacturing a heat-sensitive label according to claim 5, wherein a laminate obtained by laminating the layers and the second heat-sealing layer in this order is obtained.
  7.  前記第1ヒートシール層の樹脂組成物中の前記フィラー粒子の含有量が、5~50質量%である
     請求項5又は6に記載の感熱ラベルの製造方法。

     
    The method for producing a heat-sensitive label according to claim 5 or 6, wherein the content of the filler particles in the resin composition of the first heat seal layer is 5 to 50% by mass.

PCT/JP2021/012690 2020-03-27 2021-03-25 Heat-sensitive label and method for producing heat-sensitive label WO2021193861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510689A JP7289011B2 (en) 2020-03-27 2021-03-25 Thermal label and method for producing thermal label

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058967 2020-03-27
JP2020-058967 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193861A1 true WO2021193861A1 (en) 2021-09-30

Family

ID=77892749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012690 WO2021193861A1 (en) 2020-03-27 2021-03-25 Heat-sensitive label and method for producing heat-sensitive label

Country Status (2)

Country Link
JP (1) JP7289011B2 (en)
WO (1) WO2021193861A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132487A (en) * 1988-11-14 1990-05-21 Oji Yuka Synthetic Paper Co Ltd Label
JPH03262628A (en) * 1990-03-13 1991-11-22 Toppan Printing Co Ltd Labeled vessel
WO2000022601A1 (en) * 1998-10-15 2000-04-20 Yupo Corporation Label for in-mold molding
EP2181843A1 (en) * 2008-10-30 2010-05-05 Taghleef Industries SPA Multilayered film and in-mold label obtained from said film
WO2016133012A1 (en) * 2015-02-16 2016-08-25 株式会社ユポ・コーポレーション Thermoplastic resin film, method for manufacturing same, label for in-mold molding, plastic container with label, and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213173C2 (en) 1992-04-22 2002-10-10 Bosch Gmbh Robert Method and device for checking the functionality of a line system carrying a fluid flow on an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132487A (en) * 1988-11-14 1990-05-21 Oji Yuka Synthetic Paper Co Ltd Label
JPH03262628A (en) * 1990-03-13 1991-11-22 Toppan Printing Co Ltd Labeled vessel
WO2000022601A1 (en) * 1998-10-15 2000-04-20 Yupo Corporation Label for in-mold molding
EP2181843A1 (en) * 2008-10-30 2010-05-05 Taghleef Industries SPA Multilayered film and in-mold label obtained from said film
WO2016133012A1 (en) * 2015-02-16 2016-08-25 株式会社ユポ・コーポレーション Thermoplastic resin film, method for manufacturing same, label for in-mold molding, plastic container with label, and method for manufacturing same

Also Published As

Publication number Publication date
JP7289011B2 (en) 2023-06-08
JPWO2021193861A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6685993B2 (en) Thermoplastic resin film and method for producing the same, label for in-mold molding, labeled plastic container and method for producing the same
JP5043177B2 (en) In-mold label
JP5579394B2 (en) In-mold label
TWI651200B (en) Film and labelled plastic container
US11975511B2 (en) In-mold label, and container with in-mold label
WO2006106775A1 (en) In-mold molding label and molded product using the same
JP2016521372A (en) Label for in-mold molding and plastic container with label using the same
WO2014112389A1 (en) In-mold label, resin molded article and method for producing same
JP4799231B2 (en) In-mold label and molded product using the same
JP4817886B2 (en) In-mold label and molded product using the same
WO2021193861A1 (en) Heat-sensitive label and method for producing heat-sensitive label
WO2021193852A1 (en) Thermal label
WO2022191248A1 (en) Container with label
WO2022210896A1 (en) Laminate and method for manufacturing laminate
WO2023027067A1 (en) Laminated body, heat-sensitive label, in-mold label and labeled container
WO2024111346A1 (en) Laminate film and container
JP2023150257A (en) Thermoplastic resin film, label, and in-mold label
WO2023027180A1 (en) In-mold label and labeled container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775037

Country of ref document: EP

Kind code of ref document: A1