WO2021193738A1 - Cutting blade, cutting device, manufacturing method for ceramic green sheet and ceramic sintered body, and cutting method - Google Patents

Cutting blade, cutting device, manufacturing method for ceramic green sheet and ceramic sintered body, and cutting method Download PDF

Info

Publication number
WO2021193738A1
WO2021193738A1 PCT/JP2021/012297 JP2021012297W WO2021193738A1 WO 2021193738 A1 WO2021193738 A1 WO 2021193738A1 JP 2021012297 W JP2021012297 W JP 2021012297W WO 2021193738 A1 WO2021193738 A1 WO 2021193738A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cutting blade
cutting blades
blades
work
Prior art date
Application number
PCT/JP2021/012297
Other languages
French (fr)
Japanese (ja)
Inventor
山縣 利貴
森 和久
勝博 小宮
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022510608A priority Critical patent/JPWO2021193738A1/ja
Publication of WO2021193738A1 publication Critical patent/WO2021193738A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/12Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
    • B26D1/14Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter
    • B26D1/24Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a circular cutting member, e.g. disc cutter coacting with another disc cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/18Means for removing cut-out material or waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/14Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting

Definitions

  • the present disclosure relates to a cutting blade, a cutting device, a method for manufacturing a ceramic green sheet and a ceramic sintered body, and a cutting method.
  • Goebel blades, gang blades, and the like are known as cutting blades used in cutting devices for cutting sheet materials such as resin films, magnetic tapes, paper, metal foils, and thin plates.
  • the sheet material is cut by the upper blade arranged on the upper side and the lower blade arranged on the lower side with reference to the sheet material to be cut.
  • Patent Document 1 in the cross section passing through the rotation axis of the lower blade, the angle ( ⁇ 1) formed by the inclined surface of the lower blade and the line parallel to the rotation axis of the lower blade is set within a predetermined range and is generated on the cut surface. It has been proposed to suppress deformation.
  • Patent Document 2 proposes a technique for suppressing swelling of the end face of a cut film within a predetermined range of the cutting edge angle of the upper blade.
  • the present disclosure provides a cutting blade capable of suppressing the generation of chips, and a cutting device including the cutting blade.
  • the present disclosure also provides a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body.
  • the present disclosure also provides a cutting method capable of improving the quality and yield of the workpiece to be cut.
  • the cutting blade according to one aspect of the present disclosure is a disk-shaped cutting blade having a cutting blade on the outer peripheral portion and cutting a work while rotating, and the cutting blade has an arithmetic average roughness Ra and a ten-point average roughness. It has surfaces with Rz of 0.25 mm or less and 1.5 mm or less, respectively.
  • the cutting edge of the cutting edge has a surface in which Ra and Rz are each set to a predetermined value or less. Since this surface is smoother than before, it is possible to prevent the work from entering the minute recesses on the surface of the cutting edge.
  • chips are scattered by the centrifugal force of rotation. With the cutting blade, the amount of chips entering the recess is reduced, so that the amount of chips scattered by centrifugal force can be reduced. Therefore, the generation of chips can be suppressed.
  • the work may have a ceramic green sheet. Since the ceramic green sheet is formed by molding a slurry containing ceramic powder and a binder, chips are likely to scatter during cutting. With the above-mentioned cutting blade, even if the work having the ceramic green sheet is cut, the generation of chips can be suppressed. As a result, the adhesion of chips to the ceramic green sheet is suppressed, and the quality and yield of the ceramic green sheet can be improved.
  • the surface of the cutting edge may be polished and smoothed.
  • the tips of the convex portions on the surface can be aligned to some extent.
  • the amount scraped by the convex portion when cutting the work is reduced, and the amount of chips generated can be reduced. Therefore, the generation of chips can be further suppressed.
  • the cutting device includes a pair of disk-shaped cutting blades having cutting blades on the outer peripheral portion, and the pair of cutting blades rotate in opposite directions while moving between the rotation axes of the pair of cutting blades.
  • the cutting device cuts a workpiece moving between the rotation axes of a pair of cutting blades along the moving direction.
  • the work is cut when the cutting blades overlap each other when viewed along the axial direction of the rotating shaft, so that the surface of the cutting blade comes into contact with the cut surface of the work during cutting.
  • at least one of the pair of cutting blades is any of the above-mentioned cutting blades, it is possible to prevent the work from entering the minute recesses on the surface of the cutting blades. Therefore, it is possible to suppress the generation of chips when cutting the work.
  • the method for manufacturing a ceramic green sheet according to one aspect of the present disclosure includes a step of cutting a work having a ceramic green sheet using a cutting device provided with any of the above-mentioned cutting blades. Since this manufacturing method uses a cutting device provided with any of the above-mentioned cutting blades, it is possible to suppress the generation of chips when cutting a work having a ceramic green sheet. As a result, the adhesion of chips to the ceramic green sheet is suppressed, and the quality and yield of the ceramic green sheet can be improved.
  • the method for producing a ceramic sintered body according to one aspect of the present disclosure includes a step of firing a ceramic green sheet produced by the above-mentioned manufacturing method to obtain a ceramic sintered body. According to this manufacturing method, since the adhesion of chips to the ceramic green sheet is suppressed, the quality and yield of the ceramic sintered body obtained by firing the ceramic green sheet can be improved.
  • the cutting method includes a step of cutting a work using any of the above-mentioned cutting blades, and suppresses the generation of chips. Thereby, the quality and yield of the work to be cut can be improved.
  • the present disclosure can provide a cutting blade capable of suppressing the generation of chips and a cutting device including the cutting blade. Further, the present disclosure can provide a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body. The present disclosure can also provide a cutting method capable of improving the quality and yield of the workpiece to be cut.
  • FIG. 1 is a side view of a cutting device including a cutting blade according to an embodiment.
  • FIG. 2 is a perspective view of the cutting device according to the embodiment.
  • FIG. 3 is a diagram for explaining smooth processing on the surface of the cutting edge.
  • FIG. 4 is a plan view of the cutting blade used in the embodiment.
  • FIG. 5 is a sectional view taken along line VV of the cutting blade of FIG.
  • FIG. 6 is a plan view showing the vicinity of the cut portion of the laminated sheet in the cutting device used in the evaluation 1 of the embodiment.
  • FIG. 7 is a plan view showing the vicinity of the cut portion of the laminated sheet in the cutting device used in the evaluation 2 of the embodiment.
  • FIG. 1 is a side view showing a cutting device including a cutting blade according to an embodiment.
  • the cutting device of FIG. 1 includes a pair of cutting blades 10 and 20.
  • the cutting blades 10 and 20 have a disk shape, and have cutting blades 12 and 22 on the outer peripheral portion.
  • the cutting blades 10 and 20 are provided in pairs as shown in FIG. 1, and the work W1 (object to be cut) is cut while rotating, respectively, to manufacture the work W2 (cut object).
  • the workpieces W1 and W2 include sheet-like ones such as a resin film, a magnetic tape, paper, a metal foil, a thin plate, and a ceramic green sheet.
  • the cutting blade 10 of FIG. 1 cuts the work W1 while rotating clockwise along the circumferential direction with the rotation axis 14 as the center of rotation.
  • the cutting blade 20 of FIG. 1 cuts the work W1 while rotating counterclockwise along the circumferential direction with the rotation axis 24 as the center of rotation. In this way, the cutting blade 10 and the cutting blade 20 cut the work W1 while rotating in opposite directions.
  • the cutting blade 10 and the cutting blade 20 may be referred to as an upper blade and a lower blade, respectively, because of their positional relationship with each other.
  • the cutting blade 10 and the cutting blade 20 may be Goebel blades.
  • the rotating shafts 14 and 24 are rotationally driven by a rotating machine such as a motor (not shown).
  • the work W1 moves (runs) from the right side of FIG. 1 toward the overlapping portion 15 of the cutting blades 12 and 22, and is cut at the overlapping portion 15 along the moving direction (running direction).
  • the cutting blades 12 and 22 may be in contact with each other at least in a part of the overlapping portion 15.
  • the cut work W2 moves from the overlapping portion 15 toward the left side of FIG. In this way, the work W1 is cut, and a work W2 shorter than the work W1 is obtained.
  • Ra and Rz on the surfaces of the cutting blades 12 and 22 are 0.25 mm or less and 1.5 mm or less, respectively. Since Ra and Rz are small in this way, the amount of the work W1 that enters the recesses on the surfaces of the cutting blades 12 and 22 can be reduced. Therefore, it is possible to suppress chips scattered by the centrifugal force due to the rotation of the cutting blades 10 and 20.
  • the surfaces in which Ra and Rz are in the above range may be included on the overlapping portion 15 side of the entire pair of surfaces of the cutting blades 12 and 22, respectively, and are included in the portion that becomes the overlapping portion 15. You may. On the side of the cutting blades 12 and 22 opposite to the overlapping portion 15 side, Ra and Rz may or may not have surfaces in the above range.
  • the area ratio of the surface where Ra and Rz are in the above range to the entire surface of the cutting blades 12 and 22 may be 50% or more, 70% or more, 90% or more, and 100%. May be.
  • the area ratio may be obtained by, for example, arbitrarily selecting 20 points from the entire surface of the cutting edges 12 and 22 and measuring Ra and Rz. At this time, the selection of 20 points may be performed at 10 points each on two straight lines extending in the radial direction of the cutting blades 10 and 20 and orthogonal to each other.
  • Ra on the surfaces of the cutting blades 12 and 22 may be 0.2 mm or less and 0.18 mm or less from the viewpoint of sufficiently suppressing chips. Ra may be 0.01 mm or more, or 0.02 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20.
  • the Rz on the surfaces of the cutting blades 12 and 22 may be 1.3 mm or less and 1.1 mm or less from the viewpoint of sufficiently suppressing chips. Rz may be 0.05 mm or more, or 0.1 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20.
  • the Ry on the surfaces of the cutting blades 12 and 22 may be 2 mm or less, or 1.8 mm or less, from the viewpoint of sufficiently suppressing chips and smoothing the cut surface of the work W2.
  • Ry may be 0.1 mm or more, or 0.2 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20.
  • Each surface roughness Ra, Rz, Ry of the present disclosure is the surface roughness defined by JIS B 0601 (1994).
  • Ra indicates the arithmetic mean roughness
  • Rz indicates the ten-point average roughness
  • Ry indicates the maximum height.
  • the reference length at the time of measurement is 3 mm. Further, the measurement is performed on both the front side and the back side of the cutting blade 12 (cutting blade 22), and both need to be in the above numerical range.
  • Each surface roughness can be measured using a contact type surface roughness meter (for example, a small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd.).
  • the width (length along the radial direction) of the cutting blades 12 and 22 of the cutting blades 10 and 20 may be, for example, 3 to 30 mm, or 10 to 20 mm. This width may be adjusted according to the thickness of the work W1.
  • the surface of the cutting edge 12 that comes into contact with the work W1 may have the above-mentioned surface roughness.
  • the peripheral edge of the cutting blade 12 of the cutting blade 10 may be warped toward the cutting blade 22 of the cutting blade 20. Further, the cutting edge of the cutting edge 12 may be tapered and sharpened. The peripheral edge of the cutting blade 22 of the cutting blade 20 may also be warped toward the cutting blade 12 of the cutting blade 10. Further, the cutting edge of the cutting edge 22 may be tapered and sharpened.
  • Both the cutting blades 12 and 22 of the cutting blades 10 and 20 of FIG. 1 may have surfaces having the above-mentioned surface roughness on both side surfaces.
  • the surface of the cutting blade of only one of the cutting blade 10 and the cutting blade 20 may have the surface roughness in the above range. Even in such a modified example, the amount of the work W1 that enters the recess on the surface of either one of the cutting blades 12 and 22 can be reduced. Therefore, it is possible to suppress chips scattered by the centrifugal force due to the rotation of the cutting blades 10 and 20.
  • FIG. 2 is a perspective view of the cutting device according to the embodiment.
  • the cutting device 100 cuts the work W1 along the moving direction (traveling direction) to manufacture a short roll 38 (roll body) around which the work W2 is wound.
  • the work W1 drawn out from the long roll is introduced between the rotating shaft 14 of the cutting blade 10 and the rotating shaft 24 of the cutting blade 20.
  • the tension at the time of cutting the work W1 is maintained by the tension roller 32.
  • the cutting device 100 includes three sets of a pair of cutting blades 10 and 20.
  • the three sets of cutting blades 10 and 20 are arranged at substantially equal intervals along a direction orthogonal to the moving direction of the work W1 (longitudinal direction of the rollers 34 and 36).
  • the three sets of cutting blades 10 and 20 are connected to common rotation shafts 14 and 24, respectively, and cut the work W1 into four along the moving direction while rotating by rotational driving by the rotation shafts 14 and 24.
  • the work W2 obtained by cutting the work W1 passes between the pressing rollers 34 and 36, then passes through the winding roller 37, and is wound in a roll shape.
  • the short roll 38 is obtained.
  • the short roll 38 may be, for example, one in which a resin release film and a laminated sheet of a ceramic green sheet are wound.
  • the ceramic green sheet may be a sheet formed by a mixture containing a ceramic powder, a sintering aid and a binder.
  • the binder may contain an organic component.
  • each of the cutting blades 10 and 20 of each set one ends of the cutting blades 12 and 22 formed on the outer peripheral portions of the cutting blades 10 and 20 overlap each other in the side view of the workpieces W1 and W2. At this overlapping portion, the work W1 is cut along the moving direction.
  • the cutting device 100 has a total of 6 cutting blades.
  • the surface roughness of the cutting blades formed on the outer peripheral portion of at least one of the six cutting blades may be within the above range. This prevents the work W1 from entering the recesses between the minute protrusions on the surface of the cutting edge. Therefore, it is possible to suppress the generation of chips when cutting the work W1.
  • the cutting blades formed on the outer peripheral portion may have a surface having a surface roughness in the above range. Thereby, the generation of chips can be sufficiently suppressed. Further, of the three sets of cutting blades 10 and 20, only the cutting blades of the three cutting blades 10 (upper blades) may have surfaces having the above-mentioned surface roughness on both side surfaces. Further, one side surface may have a surface having the above-mentioned surface roughness.
  • the cutting blades 10 and 20 may be made of a cemented carbide containing carbides (WC, etc.) and metals (Co, Ni, etc.).
  • the surface roughness of the cutting blade 12 (22) in the cutting blade 10 (20) can be adjusted by grinding such a cutting blade with a diamond grindstone or the like and then performing a smooth treatment using a polishing machine. can.
  • the conditions for smooth processing may be appropriately adjusted according to the permissible range of the amount of chips generated. For example, when it is desired to reduce the amount of chips generated, smooth processing may be performed under stronger polishing conditions (conditions in which unevenness is reduced).
  • FIG. 3 is a diagram for explaining the smooth processing of the cutting edge.
  • the left side of FIG. 3 shows the uneven structure 40 on the surface of the cutting edge.
  • the uneven structure 40 is obtained by grinding the surface of the cutting edge with a diamond grindstone or the like.
  • the tips of some of the convex portions in the concave-convex structure 40 that are largely protruding can be cut out.
  • the uneven structure 42 is obtained.
  • the concave-convex structure 42 shown in FIG. 3 has aligned tips, but the tips may not be completely aligned in this way.
  • the cutting blade has a cutting blade that has been subjected to a smooth treatment, it is possible to prevent the work W1 from being scraped and turned into chips at the tip of the convex portion that protrudes more than the other convex portions. Therefore, the generation of chips can be sufficiently suppressed. If the surface of at least one of the cutting blades 10 and 20 is smoothed, the amount of chips generated can be reduced as compared with the case where the smoothing is not performed at all.
  • the method for manufacturing the ceramic green sheet according to the embodiment may be performed using the cutting device 100.
  • a raw material slurry containing a ceramic powder, a sintering aid, and a binder is applied to a mold release film to a predetermined thickness by a doctor blade method, a calendar method, an extrusion method, or the like, dried, and then dried to obtain a ceramic green sheet.
  • the release film may be a polyester film such as PET.
  • a laminated sheet of a ceramic green sheet and a release film may be wound in a roll shape and used as the work W1.
  • a cutting step of cutting the laminated sheet along the moving direction of the laminated sheet is performed using the cutting device 100 based on the above description.
  • the cut laminated sheet may be rolled again as the work W2 to form a short roll 38.
  • this manufacturing method uses the cutting device 100 provided with the cutting blades 10 and 20, it is possible to suppress the generation of chips when cutting the work W1 having the ceramic green sheet. Therefore, it is possible to prevent chips from adhering to the ceramic green sheet (work W2) after cutting. As a result, the quality and yield of the ceramic green sheet can be improved.
  • the method for producing a ceramic sintered body is a firing step in which a laminated sheet is pulled out from a short roll, cut to a predetermined length, a release film is removed from the laminated sheet, and then the ceramic green sheet is fired. You may go to obtain a ceramic sintered body. According to this manufacturing method, since the adhesion of chips to the ceramic green sheet after cutting is suppressed, the quality and yield of the ceramic sintered body obtained by firing the ceramic green sheet can be improved.
  • Ceramics include carbides, oxides and nitrides. Specific examples thereof include silicon nitride, silicon carbide, alumina, aluminum nitride and boron nitride.
  • the ceramic sintered body may be, for example, a ceramic substrate.
  • the cutting method includes a step of cutting the work W1 using the cutting blades 10 and 20. By having such a step, it is possible to suppress the generation of chips when cutting the work W1. As a result, it is possible to prevent chips from adhering to the work W2 after cutting, resulting in deterioration of the quality of the work W2 and a decrease in yield.
  • the cutting blades 10 and 20 shown in FIG. 1 may be attached to a cutting device different from the cutting device 100.
  • the method for cutting the ceramic green sheet, the method for producing the ceramic sintered body, and the cutting method may be performed using the cutting device 100, or another cutting method including at least one of the cutting blade 10 and the cutting blade 20. It may be done using a device.
  • the following cutting blades 60A, 60B, 10A, and 10B were prepared as cutting blades to be attached to the cutting device.
  • the cutting blades 60A, 60B, 10A, and 10B are cutting blades made of a cemented carbide containing WC and Co. These cutting blades were produced by polishing the entire surface of a commercially available cutting blade with a diamond grindstone. Of these, the cutting blades 10A and 10B were polished with the diamond grindstone and then smoothly processed using a polishing machine.
  • the cutting blades 60A, 60B, 10A, and 10B had the same configuration (shape, size, and material) except for the surface roughness of the entire surface of the cutting blade.
  • FIG. 4 is a plan view of the cutting blades 60A (60B, 10A, 10B).
  • FIG. 5 is a sectional view taken along line VV of FIG. As shown in FIG. 5, the cutting blades 60A, 60B, 10A, and 10B were warped upward on the outer peripheral portion than on the inner peripheral portion.
  • the surface roughness (Ra, Rz, Ry) of each cutting blade was measured using a small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd. The measurement was performed at two measurement sites 52 and 54 on the side surfaces 12a and 12b of each cutting blade. At the measurement site 54, the surface roughness was measured along the radial direction of each cutting blade, and at the measurement site 52, the surface roughness was measured along the direction orthogonal to the radial direction of each cutting blade. The measurement results are as shown in Table 1.
  • the Ra and Rz of the side surfaces 12a and 12b of the cutting blades 10A and 10B were 0.25 mm or less and 1.5 mm or less, respectively.
  • the Ry of the side surfaces 12a and 12b of the cutting blades 10A and 10B was 2 mm or less.
  • Ra and Rz of the side surface 12a of the cutting blade 60A were 0.25 mm or less and 1.5 mm or less, respectively, but Ra of the side surface 12b exceeded 0.25 mm.
  • the Ra and Rz of the side surface 12a of the cutting blade 60B were 0.25 mm or less and 1.5 mm or less, respectively, but the Ra of a part of the side surface 12b exceeded 0.25 mm.
  • the upper blades of the fourth, fifth, sixth, seventh and eighth sets from the left include the above-mentioned cutting blade 60A, cutting blade 60A and cutting blade.
  • 60B, cutting blade 10A and cutting blade 10B were attached respectively.
  • the side surface orientation of each cutting blade is such that the right side is the side surface 12a and the left side is the side surface 12b.
  • the lower blade used was the same for each group.
  • the number of chips generated was counted while cutting the laminated sheet using such a cutting device. Specifically, as shown in FIG. 6, the number of chips adhering to the surfaces of the cut laminated sheets C, D, E, and F was visually counted. The number of chips was counted on each of the ceramic green sheet side (front side) and the PET film side (back side) of the laminated sheets C, D, E, and F. The number of chips was counted at four locations on the front side and three locations on the back side from the time when the cutting blades were cut by the cutting blades 60A, 60B, 10A, and 10B until immediately before the cut laminated sheet was wound up. The number of chips generated on the front side and the back side and the total value thereof are as shown in Table 2.
  • the most chips were generated in the laminated sheet C in which both sides were cut by the pair of cutting blades 60A.
  • the laminated sheet F in which both sides were cut by the cutting blades 10A and 10B the number of chips generated was the smallest.
  • the laminated sheet D located between the side surface 12a of the cutting blade 60A and the side surface 12b of the cutting blade 60B and cut by the cutting blade 60A and the cutting blade 60B generated less chips than the laminated sheet C.
  • the laminated sheet E located between the side surface 12a of the cutting blade 60B and the side surface 12b of the cutting blade 10A and cut by the cutting blade 60B and the cutting blade 10A generated fewer chips than the laminated sheet D.
  • the Ra and Rz of the side surfaces 12a and 12b of the cutting blades 70A and 70B were 0.25 mm or less and 1.5 mm or less, respectively.
  • the Ra and Rz of the side surfaces 12a of the cutting blades 80A and 80B were 0.25 mm or less and 1.5 mm or less, respectively.
  • the Ra of the side surface 12b of the cutting blade 80A exceeded 0.25 mm.
  • Ra of a part of the side surface 12b of the cutting blade 80B exceeded 0.25 mm.
  • the upper blades of the fourth, fifth, sixth, seventh and eighth sets from the left have the above-mentioned cutting blade 80A. , Cutting blade 80A, cutting blade 80B, cutting blade 70A and cutting blade 70B, respectively.
  • the side surface orientation of each cutting blade is such that the right side is the side surface 12a and the left side is the side surface 12b.
  • the lower blade used was the same for each group.
  • the number of chips was counted in the same manner as in evaluation 1.
  • the number of chips generated on the front side and the back side and the total value thereof are as shown in Table 4.
  • the most chips were generated in the laminated sheet G in which both sides were cut by the pair of cutting blades 80A.
  • the number of chips generated was the smallest.
  • the laminated sheet H located between the side surface 12a of the cutting blade 80A and the side surface 12b of the cutting blade 80B and cut by the cutting blade 80A and the cutting blade 80B generated less chips than the laminated sheet G.
  • a cutting blade capable of suppressing the generation of chips and a cutting device provided with the cutting blade are provided. Further, a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body is provided. Further, a cutting method capable of improving the quality and yield of the workpiece to be cut is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

This cutting device has a pair of cutting blades, each having a circular disk shape with a cutting edge on an outer peripheral section thereof, and cuts a workpiece along a moving direction as the workpiece moves between rotational shafts of the pair of cutting blades while the pair of cutting blades rotate in mutually opposite directions. A workpiece W1 is cut when the cutting edges formed on the outer peripheral sections of the pair of cutting blades overlap each other as viewed along the axial direction of the rotational shafts. The cutting edge of one or both of the pair of cutting blades has a surface with an arithmetic average roughness Ra of 0.25 mm or smaller and a ten-point average roughness Rz of 1.5 mm or smaller.

Description

切断刃、切断装置、セラミックグリーンシート及びセラミック焼結体の製造方法、並びに切断方法Cutting blades, cutting equipment, ceramic green sheet and ceramic sintered body manufacturing methods, and cutting methods
 本開示は、切断刃、切断装置、セラミックグリーンシート及びセラミック焼結体の製造方法、並びに切断方法に関する。 The present disclosure relates to a cutting blade, a cutting device, a method for manufacturing a ceramic green sheet and a ceramic sintered body, and a cutting method.
 樹脂フィルム、磁気テープ、紙、金属箔、薄板等のシート材を切断する切断装置に用いられる切断刃として、ゲーベル刃及びギャング刃等が知られている。このような切断装置では、切断されるシート材を基準として上側に配置される上刃と下側に配置される下刃とでシート材を切断する。特許文献1では、下刃の回転軸を通る断面において、下刃の傾斜面と、下刃の回転軸と平行な線とのなす角度(θ1)を所定の範囲にして、切断面に発生する変形を抑制することが提案されている。特許文献2では、上刃の刃先角を所定の範囲として、切断されたフィルムの端面の膨れを抑制する技術が提案されている。 Goebel blades, gang blades, and the like are known as cutting blades used in cutting devices for cutting sheet materials such as resin films, magnetic tapes, paper, metal foils, and thin plates. In such a cutting device, the sheet material is cut by the upper blade arranged on the upper side and the lower blade arranged on the lower side with reference to the sheet material to be cut. In Patent Document 1, in the cross section passing through the rotation axis of the lower blade, the angle (θ1) formed by the inclined surface of the lower blade and the line parallel to the rotation axis of the lower blade is set within a predetermined range and is generated on the cut surface. It has been proposed to suppress deformation. Patent Document 2 proposes a technique for suppressing swelling of the end face of a cut film within a predetermined range of the cutting edge angle of the upper blade.
特開2009-72900号公報JP-A-2009-72900 特開2010-228023号公報Japanese Unexamined Patent Publication No. 2010-228023
 切断装置では種々のシートが切断される。回転する切断刃でシートを切断する場合、切断の際に発生する切屑が飛散する場合がある。このような切屑は、切断後のシートに付着すると、製品の品質に影響を及ぼしたり、下流の装置の運転に影響を及ぼしたりすることが懸念される。そこで、本開示は、切屑の発生を抑制することが可能な切断刃、及び当該切断刃を備える切断装置を提供する。また、本開示は、セラミックグリーンシート及びセラミック焼結体の品質及び歩留まりを向上することが可能な製造方法を提供する。また、本開示は、切断されるワークの品質及び歩留まりを向上することが可能な切断方法を提供する。 Various sheets are cut by the cutting device. When cutting a sheet with a rotating cutting blade, chips generated during cutting may scatter. When such chips adhere to the sheet after cutting, there is a concern that it may affect the quality of the product or the operation of the downstream equipment. Therefore, the present disclosure provides a cutting blade capable of suppressing the generation of chips, and a cutting device including the cutting blade. The present disclosure also provides a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body. The present disclosure also provides a cutting method capable of improving the quality and yield of the workpiece to be cut.
 本開示の一側面に係る切断刃は、外周部に切刃を有し、回転しながらワークを切断する円盤形状の切断刃であって、切刃は、算術平均粗さRa及び十点平均粗さRzがそれぞれ0.25mm以下及び1.5mm以下である表面を有する。上記切断刃における切刃は、Ra及びRzがそれぞれ所定値以下である表面を有する。この表面は、従来よりも平滑であることから、ワークが切刃の表面における微小な凹部に入り込むことが抑制される。回転する切断刃の場合、回転の遠心力で切屑が飛散する。上記切断刃では、凹部に入り込む切屑の量が低減されるため、遠心力で飛散する切屑の量を低減することができる。したがって、切屑の発生を抑制することができる。 The cutting blade according to one aspect of the present disclosure is a disk-shaped cutting blade having a cutting blade on the outer peripheral portion and cutting a work while rotating, and the cutting blade has an arithmetic average roughness Ra and a ten-point average roughness. It has surfaces with Rz of 0.25 mm or less and 1.5 mm or less, respectively. The cutting edge of the cutting edge has a surface in which Ra and Rz are each set to a predetermined value or less. Since this surface is smoother than before, it is possible to prevent the work from entering the minute recesses on the surface of the cutting edge. In the case of a rotating cutting blade, chips are scattered by the centrifugal force of rotation. With the cutting blade, the amount of chips entering the recess is reduced, so that the amount of chips scattered by centrifugal force can be reduced. Therefore, the generation of chips can be suppressed.
 上記ワークは、セラミックグリーンシートを有していてよい。セラミックグリーンシートは、セラミック粉末とバインダとを含むスラリーを成形したものであることから、切断時に切屑が飛び散りやすい。上記切断刃であれば、セラミックグリーンシートを有するワークを切断しても、切屑の発生を抑制することができる。これによって、セラミックグリーンシートに切屑が付着することが抑制され、セラミックグリーンシートの品質及び歩留まりを向上することができる。 The work may have a ceramic green sheet. Since the ceramic green sheet is formed by molding a slurry containing ceramic powder and a binder, chips are likely to scatter during cutting. With the above-mentioned cutting blade, even if the work having the ceramic green sheet is cut, the generation of chips can be suppressed. As a result, the adhesion of chips to the ceramic green sheet is suppressed, and the quality and yield of the ceramic green sheet can be improved.
 切刃の表面は、研磨処理及びスムース処理が施されていてよい。スムース処理を行うことによって、表面の凸部の先端をある程度揃えることができる。これによって、ワークを切断する際に凸部で削られる量が減少し、切屑の発生量を低減できる。したがって、切屑の発生を一層抑制することができる。 The surface of the cutting edge may be polished and smoothed. By performing the smooth treatment, the tips of the convex portions on the surface can be aligned to some extent. As a result, the amount scraped by the convex portion when cutting the work is reduced, and the amount of chips generated can be reduced. Therefore, the generation of chips can be further suppressed.
 本開示の一側面に係る切断装置は、外周部に切刃を有する円盤形状の一対の切断刃を備え、一対の切断刃が互いに逆方向に回転しながら一対の切断刃の回転軸の間を移動するワークを移動方向に沿って切断する切断装置であって、側面視において、一対の切断刃の外周部に形成された切刃同士が互いに重なる際にワークが切断され、一対の切断刃の少なくとも一つが上述のいずれかの切断刃である。 The cutting device according to one aspect of the present disclosure includes a pair of disk-shaped cutting blades having cutting blades on the outer peripheral portion, and the pair of cutting blades rotate in opposite directions while moving between the rotation axes of the pair of cutting blades. A cutting device that cuts a moving work along the moving direction. In a side view, the work is cut when the cutting blades formed on the outer peripheral portions of the pair of cutting blades overlap each other, and the pair of cutting blades are cut. At least one is any of the cutting blades described above.
 上記切断装置は、一対の切断刃の回転軸の間を移動するワークを移動方向に沿って切断する。この切断装置は、回転軸の軸方向に沿ってみたときに、切刃同士が互いに重なる際にワークが切断されることから、切断時に切刃の表面がワークの切断面に当接する。ここで、一対の切断刃の少なくとも一つが上述のいずれかの切断刃であるため、ワークが切刃の表面における微小な凹部に入り込むことが抑制される。したがって、ワークを切断する際に切屑の発生を抑制することができる。 The cutting device cuts a workpiece moving between the rotation axes of a pair of cutting blades along the moving direction. In this cutting device, the work is cut when the cutting blades overlap each other when viewed along the axial direction of the rotating shaft, so that the surface of the cutting blade comes into contact with the cut surface of the work during cutting. Here, since at least one of the pair of cutting blades is any of the above-mentioned cutting blades, it is possible to prevent the work from entering the minute recesses on the surface of the cutting blades. Therefore, it is possible to suppress the generation of chips when cutting the work.
 本開示の一側面に係るセラミックグリーンシートの製造方法は、上述のいずれかの切断刃を備える切断装置を用いてセラミックグリーンシートを有するワークを切断する工程を有する。この製造方法では、上述のいずれかの切断刃を備える切断装置を用いていることから、セラミックグリーンシートを有するワークを切断する際の切屑の発生を抑制することができる。これによって、セラミックグリーンシートに切屑が付着することが抑制され、セラミックグリーンシートの品質及び歩留まりを向上することができる。 The method for manufacturing a ceramic green sheet according to one aspect of the present disclosure includes a step of cutting a work having a ceramic green sheet using a cutting device provided with any of the above-mentioned cutting blades. Since this manufacturing method uses a cutting device provided with any of the above-mentioned cutting blades, it is possible to suppress the generation of chips when cutting a work having a ceramic green sheet. As a result, the adhesion of chips to the ceramic green sheet is suppressed, and the quality and yield of the ceramic green sheet can be improved.
 本開示の一側面に係るセラミック焼結体の製造方法は、上述の製造方法で製造されたセラミックグリーンシートを焼成して、セラミック焼結体を得る工程を有する。この製造方法によれば、セラミックグリーンシートへの切屑の付着が抑制されるため、セラミックグリーンシートを焼成して得られるセラミック焼結体の品質及び歩留まりを向上することができる。 The method for producing a ceramic sintered body according to one aspect of the present disclosure includes a step of firing a ceramic green sheet produced by the above-mentioned manufacturing method to obtain a ceramic sintered body. According to this manufacturing method, since the adhesion of chips to the ceramic green sheet is suppressed, the quality and yield of the ceramic sintered body obtained by firing the ceramic green sheet can be improved.
 本開示の一側面に係る切断方法は、上述のいずれかの切断刃を用いてワークを切断する工程を有し、切屑の発生を抑制する。これによって、切断されるワークの品質及び歩留まりを向上することができる。 The cutting method according to one aspect of the present disclosure includes a step of cutting a work using any of the above-mentioned cutting blades, and suppresses the generation of chips. Thereby, the quality and yield of the work to be cut can be improved.
 本開示は、切屑の発生を抑制することが可能な切断刃、及び当該切断刃を備える切断装置を提供することができる。また、本開示は、セラミックグリーンシート及びセラミック焼結体の品質及び歩留まりを向上することが可能な製造方法を提供することができる。また、本開示は、切断されるワークの品質及び歩留まりを向上することが可能な切断方法を提供することができる。 The present disclosure can provide a cutting blade capable of suppressing the generation of chips and a cutting device including the cutting blade. Further, the present disclosure can provide a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body. The present disclosure can also provide a cutting method capable of improving the quality and yield of the workpiece to be cut.
図1は、一実施形態に係る切断刃を備える切断装置の側面図である。FIG. 1 is a side view of a cutting device including a cutting blade according to an embodiment. 図2は、一実施形態に係る切断装置の斜視図である。FIG. 2 is a perspective view of the cutting device according to the embodiment. 図3は、切刃の表面のスムース処理を説明するための図である。FIG. 3 is a diagram for explaining smooth processing on the surface of the cutting edge. 図4は、実施例で用いた切断刃の平面図である。FIG. 4 is a plan view of the cutting blade used in the embodiment. 図5は、図4の切断刃のV-V線断面図である。FIG. 5 is a sectional view taken along line VV of the cutting blade of FIG. 図6は、実施例の評価1で用いた切断装置における積層シートの切断部分付近を示す平面図である。FIG. 6 is a plan view showing the vicinity of the cut portion of the laminated sheet in the cutting device used in the evaluation 1 of the embodiment. 図7は、実施例の評価2で用いた切断装置における積層シートの切断部分付近を示す平面図である。FIG. 7 is a plan view showing the vicinity of the cut portion of the laminated sheet in the cutting device used in the evaluation 2 of the embodiment.
 以下、場合により図面を参照して、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。また、説明に使用される上下左右等の位置関係は、特に断らない限り、図面に示す符号の向きを基準とする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings in some cases. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same elements or elements having the same function are designated by the same reference numerals, and duplicate description will be omitted. Further, unless otherwise specified, the positional relationship such as up, down, left, and right used in the description is based on the orientation of the reference numerals shown in the drawings.
 図1は、一実施形態に係る切断刃を備える切断装置を示す側面図である。図1の切断装置は、一対の切断刃10,20を備える。切断刃10,20は、円盤形状を有しており、外周部に切刃12,22を有する。切断刃10,20は、図1に示すように対をなして設けられ、それぞれ回転しながらワークW1(切断対象物)を切断してワークW2(切断物)を製造する。ワークW1,W2としては、樹脂フィルム、磁気テープ、紙、金属箔、薄板、及びセラミックグリーンシート等、シート状のものが挙げられる。 FIG. 1 is a side view showing a cutting device including a cutting blade according to an embodiment. The cutting device of FIG. 1 includes a pair of cutting blades 10 and 20. The cutting blades 10 and 20 have a disk shape, and have cutting blades 12 and 22 on the outer peripheral portion. The cutting blades 10 and 20 are provided in pairs as shown in FIG. 1, and the work W1 (object to be cut) is cut while rotating, respectively, to manufacture the work W2 (cut object). Examples of the workpieces W1 and W2 include sheet-like ones such as a resin film, a magnetic tape, paper, a metal foil, a thin plate, and a ceramic green sheet.
 図1の切断刃10は、回転軸14を回転中心として、円周方向に沿って時計回りに回転しながらワークW1を切断する。図1の切断刃20は、回転軸24を回転中心として、円周方向に沿って反時計回りに回転しながらワークW1を切断する。このように、切断刃10と切断刃20は互いに逆方向に回転しながらワークW1を切断する。切断刃10及び切断刃20は、互いの位置関係から、それぞれ上刃及び下刃と称される場合もある。切断刃10及び切断刃20は、ゲーベル刃であってもよい。回転軸14,24は、図示しないモータ等の回転機によって回転駆動する。 The cutting blade 10 of FIG. 1 cuts the work W1 while rotating clockwise along the circumferential direction with the rotation axis 14 as the center of rotation. The cutting blade 20 of FIG. 1 cuts the work W1 while rotating counterclockwise along the circumferential direction with the rotation axis 24 as the center of rotation. In this way, the cutting blade 10 and the cutting blade 20 cut the work W1 while rotating in opposite directions. The cutting blade 10 and the cutting blade 20 may be referred to as an upper blade and a lower blade, respectively, because of their positional relationship with each other. The cutting blade 10 and the cutting blade 20 may be Goebel blades. The rotating shafts 14 and 24 are rotationally driven by a rotating machine such as a motor (not shown).
 図1のように、切断装置の側面視において、切断刃10,20の外周部に形成された切刃12,22の周縁の一部同士は、重なり部15において互いに重なっている。ワークW1は、図1の右側から切刃12,22同士の重なり部15に向かって移動(走行)し、重なり部15において移動方向(走行方向)に沿って切断される。重なり部15の少なくとも一部において、切刃12,22同士は互いに接してよい。切断されたワークW2は、重なり部15から図1の左側に向かって移動する。このようにして、ワークW1は切断され、ワークW1よりも短尺化されたワークW2が得られる。 As shown in FIG. 1, in the side view of the cutting device, a part of the peripheral edges of the cutting blades 12 and 22 formed on the outer peripheral portions of the cutting blades 10 and 20 overlap each other in the overlapping portion 15. The work W1 moves (runs) from the right side of FIG. 1 toward the overlapping portion 15 of the cutting blades 12 and 22, and is cut at the overlapping portion 15 along the moving direction (running direction). The cutting blades 12 and 22 may be in contact with each other at least in a part of the overlapping portion 15. The cut work W2 moves from the overlapping portion 15 toward the left side of FIG. In this way, the work W1 is cut, and a work W2 shorter than the work W1 is obtained.
 切刃12,22の表面には微細な凹凸が存在する。ワークW1は、重なり部15において切断される際に、切刃12,22の表面に当接する。切刃12,22の表面におけるRa及びRzは、それぞれ0.25mm以下及び1.5mm以下である。このようにRa及びRzが小さいため、切刃12,22の表面の凹部に入り込むワークW1の量を低減できる。したがって、切断刃10,20の回転による遠心力によって飛散する切屑を抑制することができる。 There are fine irregularities on the surfaces of the cutting blades 12 and 22. When the work W1 is cut at the overlapping portion 15, the work W1 comes into contact with the surfaces of the cutting blades 12 and 22. Ra and Rz on the surfaces of the cutting blades 12 and 22 are 0.25 mm or less and 1.5 mm or less, respectively. Since Ra and Rz are small in this way, the amount of the work W1 that enters the recesses on the surfaces of the cutting blades 12 and 22 can be reduced. Therefore, it is possible to suppress chips scattered by the centrifugal force due to the rotation of the cutting blades 10 and 20.
 ここで、Ra及びRzが上記範囲にある表面は、切刃12,22がそれぞれ有する一対の表面全体のうち、重なり部15側に含まれていてよく、重なり部15となる部分に含まれていてもよい。切刃12,22の重なり部15側とは反対側には、Ra及びRzが上記範囲にある表面を有していてもよく、有していなくてもよい。 Here, the surfaces in which Ra and Rz are in the above range may be included on the overlapping portion 15 side of the entire pair of surfaces of the cutting blades 12 and 22, respectively, and are included in the portion that becomes the overlapping portion 15. You may. On the side of the cutting blades 12 and 22 opposite to the overlapping portion 15 side, Ra and Rz may or may not have surfaces in the above range.
 切刃12,22は、重なり部15で対向する表面の全体が、上述のRa及びRzであれば、切屑の発生を十分に抑制することができる。切刃12,22の表面全体に対する、Ra及びRzが上記範囲にある表面の面積割合は、50%以上であってよく、70%以上であってよく、90%以上であってよく、100%であってよい。ここで、上記面積割合は、例えば、切刃12,22の表面全体から任意に20箇所を選択し、Ra及びRzを測定して求めてもよい。このとき、20箇所の選択は、切断刃10,20の径方向に伸び、互いに直交する2つの直線上において、それぞれ10箇所ずつ選択してもよい。 If the entire surfaces of the cutting blades 12 and 22 facing each other at the overlapping portion 15 are Ra and Rz described above, the generation of chips can be sufficiently suppressed. The area ratio of the surface where Ra and Rz are in the above range to the entire surface of the cutting blades 12 and 22 may be 50% or more, 70% or more, 90% or more, and 100%. May be. Here, the area ratio may be obtained by, for example, arbitrarily selecting 20 points from the entire surface of the cutting edges 12 and 22 and measuring Ra and Rz. At this time, the selection of 20 points may be performed at 10 points each on two straight lines extending in the radial direction of the cutting blades 10 and 20 and orthogonal to each other.
 切刃12,22の上記表面におけるRaは、切屑を十分に抑制する観点から、0.2mm以下であってよく、0.18mm以下であってよい。Raは、切断刃10,20の製造の容易性の観点から、0.01mm以上であってよく、0.02mm以上であってもよい。切刃12,22の表面におけるRzは、切屑を十分に抑制する観点から、1.3mm以下であってよく、1.1mm以下であってよい。Rzは、切断刃10,20の製造の容易性の観点から、0.05mm以上であってよく、0.1mm以上であってもよい。 Ra on the surfaces of the cutting blades 12 and 22 may be 0.2 mm or less and 0.18 mm or less from the viewpoint of sufficiently suppressing chips. Ra may be 0.01 mm or more, or 0.02 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20. The Rz on the surfaces of the cutting blades 12 and 22 may be 1.3 mm or less and 1.1 mm or less from the viewpoint of sufficiently suppressing chips. Rz may be 0.05 mm or more, or 0.1 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20.
 切刃12,22の上記表面におけるRyは、切屑を十分に抑制するとともに、ワークW2の切断面を平滑にする観点から、2mm以下であってよく、1.8mm以下であってもよい。Ryは、切断刃10,20の製造の容易性の観点から、0.1mm以上であってよく、0.2mm以上であってもよい。 The Ry on the surfaces of the cutting blades 12 and 22 may be 2 mm or less, or 1.8 mm or less, from the viewpoint of sufficiently suppressing chips and smoothing the cut surface of the work W2. Ry may be 0.1 mm or more, or 0.2 mm or more, from the viewpoint of ease of manufacturing the cutting blades 10 and 20.
 本開示の各表面粗さRa,Rz,Ryは、JIS B 0601(1994)で規定される表面粗さである。Raは算術平均粗さを、Rzは十点平均粗さを、Ryは最大高さをそれぞれ示す。測定の際の基準長さは、3mmである。また、測定は、切刃12(切刃22)の表側と裏側の両方の表面で行い、どちらも上述の数値範囲である必要がある。各表面粗さは、接触式の表面粗さ計(例えば、株式会社ミツトヨ製の小形表面粗さ測定機「SJ-210」(商品名))を用いて測定することができる。 Each surface roughness Ra, Rz, Ry of the present disclosure is the surface roughness defined by JIS B 0601 (1994). Ra indicates the arithmetic mean roughness, Rz indicates the ten-point average roughness, and Ry indicates the maximum height. The reference length at the time of measurement is 3 mm. Further, the measurement is performed on both the front side and the back side of the cutting blade 12 (cutting blade 22), and both need to be in the above numerical range. Each surface roughness can be measured using a contact type surface roughness meter (for example, a small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd.).
 切断刃10,20の切刃12,22の幅(径方向に沿う長さ)は、例えば、3~30mmであってよく、10~20mmであってもよい。この幅は、ワークW1の厚みに応じて調整してもよい。ワークW1の切断時に、ワークW1と接触する切刃12の表面が上述の表面粗さを有していればよい。 The width (length along the radial direction) of the cutting blades 12 and 22 of the cutting blades 10 and 20 may be, for example, 3 to 30 mm, or 10 to 20 mm. This width may be adjusted according to the thickness of the work W1. When cutting the work W1, the surface of the cutting edge 12 that comes into contact with the work W1 may have the above-mentioned surface roughness.
 切断刃10の切刃12の周縁は、切断刃20の切刃22に向かうように反っていてもよい。また、切刃12の刃先はテーパー加工されて尖っていてもよい。切断刃20の切刃22の周縁も、切断刃10の切刃12に向かうように反っていてもよい。また、切刃22の刃先はテーパー加工されて尖っていてもよい。 The peripheral edge of the cutting blade 12 of the cutting blade 10 may be warped toward the cutting blade 22 of the cutting blade 20. Further, the cutting edge of the cutting edge 12 may be tapered and sharpened. The peripheral edge of the cutting blade 22 of the cutting blade 20 may also be warped toward the cutting blade 12 of the cutting blade 10. Further, the cutting edge of the cutting edge 22 may be tapered and sharpened.
 図1の切断刃10,20の切刃12,22は、双方ともに両側面において上述の表面粗さを有する表面を有していてもよい。ただし、このような実施形態に限定されない。例えば、変形例では、切断刃10及び切断刃20のどちらか一方のみの切刃の表面が、上記範囲の表面粗さを有していてもよい。このような変形例であっても、切刃12,22のどちらか一方の表面の凹部に入り込むワークW1の量を低減できる。したがって、切断刃10,20の回転による遠心力によって飛散する切屑を抑制することができる。 Both the cutting blades 12 and 22 of the cutting blades 10 and 20 of FIG. 1 may have surfaces having the above-mentioned surface roughness on both side surfaces. However, it is not limited to such an embodiment. For example, in the modified example, the surface of the cutting blade of only one of the cutting blade 10 and the cutting blade 20 may have the surface roughness in the above range. Even in such a modified example, the amount of the work W1 that enters the recess on the surface of either one of the cutting blades 12 and 22 can be reduced. Therefore, it is possible to suppress chips scattered by the centrifugal force due to the rotation of the cutting blades 10 and 20.
 図2は、一実施形態に係る切断装置の斜視図である。切断装置100は、ワークW1を移動方向(走行方向)に沿って切断し、ワークW2が巻かれた短尺ロール38(ロール体)を製造する。切断装置100では、例えば、長尺ロールから引き出されたワークW1が、切断刃10の回転軸14と、切断刃20の回転軸24の間に導入される。ワークW1の切断時のテンションは、テンションローラ32で維持される。 FIG. 2 is a perspective view of the cutting device according to the embodiment. The cutting device 100 cuts the work W1 along the moving direction (traveling direction) to manufacture a short roll 38 (roll body) around which the work W2 is wound. In the cutting device 100, for example, the work W1 drawn out from the long roll is introduced between the rotating shaft 14 of the cutting blade 10 and the rotating shaft 24 of the cutting blade 20. The tension at the time of cutting the work W1 is maintained by the tension roller 32.
 切断装置100は、一対の切断刃10,20を3組備える。3組の切断刃10,20は、ワークW1の移動方向とは直交する方向(ローラ34,36の長手方向)に沿ってほぼ等間隔に並んでいる。3組の切断刃10,20は、それぞれ共通の回転軸14,24に連結されており、回転軸14,24による回転駆動によって回転しながらワークW1を移動方向に沿って4つに切断する。 The cutting device 100 includes three sets of a pair of cutting blades 10 and 20. The three sets of cutting blades 10 and 20 are arranged at substantially equal intervals along a direction orthogonal to the moving direction of the work W1 (longitudinal direction of the rollers 34 and 36). The three sets of cutting blades 10 and 20 are connected to common rotation shafts 14 and 24, respectively, and cut the work W1 into four along the moving direction while rotating by rotational driving by the rotation shafts 14 and 24.
 ワークW1を切断することによって得られたワークW2は、押さえローラ34,36の間を通過した後、巻き付けローラ37を通過して、ロール状に巻かれる。このようにして、短尺ロール38が得られる。短尺ロール38は、例えば、樹脂製の離型フィルムとセラミックグリーンシートの積層シートが巻かれたものであってよい。セラミックグリーンシートは、セラミック粉末、焼結助剤及びバインダを含む混合物がシート状に成形されたものであってよい。バインダは有機成分を含むものであってよい。 The work W2 obtained by cutting the work W1 passes between the pressing rollers 34 and 36, then passes through the winding roller 37, and is wound in a roll shape. In this way, the short roll 38 is obtained. The short roll 38 may be, for example, one in which a resin release film and a laminated sheet of a ceramic green sheet are wound. The ceramic green sheet may be a sheet formed by a mixture containing a ceramic powder, a sintering aid and a binder. The binder may contain an organic component.
 各組の切断刃10,20は、いずれも、ワークW1,W2の側面視において、切断刃10,20の外周部に形成された切刃12,22の一端同士が互いに重なっている。この重なり部において、ワークW1が移動方向に沿って切断される。切断装置100は、合計で6個の切断刃を有する。6個の切断刃のうち、少なくとも一つの切断刃の外周部に形成された切刃の表面粗さが、上述の範囲であればよい。これによって、ワークW1が切刃の表面における微小な凸部の間にある凹部に入り込むことが抑制される。したがって、ワークW1を切断する際に切屑の発生を抑制することができる。 In each of the cutting blades 10 and 20 of each set, one ends of the cutting blades 12 and 22 formed on the outer peripheral portions of the cutting blades 10 and 20 overlap each other in the side view of the workpieces W1 and W2. At this overlapping portion, the work W1 is cut along the moving direction. The cutting device 100 has a total of 6 cutting blades. The surface roughness of the cutting blades formed on the outer peripheral portion of at least one of the six cutting blades may be within the above range. This prevents the work W1 from entering the recesses between the minute protrusions on the surface of the cutting edge. Therefore, it is possible to suppress the generation of chips when cutting the work W1.
 6個の切断刃の全ての両側面において、外周部に形成された切刃が上述の範囲の表面粗さを有する表面を有していてもよい。これによって、切屑の発生を十分に抑制することができる。また、3組の切断刃10,20のうち、3つの切断刃10(上刃)の切刃のみが、両側面において上述の表面粗さを有する表面を有していてもよい。また、一方の側面において上述の表面粗さを有する表面を有していてもよい。 On all both side surfaces of the six cutting blades, the cutting blades formed on the outer peripheral portion may have a surface having a surface roughness in the above range. Thereby, the generation of chips can be sufficiently suppressed. Further, of the three sets of cutting blades 10 and 20, only the cutting blades of the three cutting blades 10 (upper blades) may have surfaces having the above-mentioned surface roughness on both side surfaces. Further, one side surface may have a surface having the above-mentioned surface roughness.
 切断刃10,20は、炭化物(WC等)と金属(Co,Ni等)を含む超硬合金で構成されてよい。このような切断刃を、ダイヤモンド砥石等を用いて研削した後、研磨機を用いるスムース処理を行うことによって、切断刃10(20)における切刃12(22)の表面粗さを調整することができる。なお、切屑の発生量の許容範囲に応じて、スムース処理の条件を適宜調整してよい。例えば、切屑の発生量を低減したい場合には、より強い研磨条件(凹凸が小さくなる条件)でスムース処理をすればよい。 The cutting blades 10 and 20 may be made of a cemented carbide containing carbides (WC, etc.) and metals (Co, Ni, etc.). The surface roughness of the cutting blade 12 (22) in the cutting blade 10 (20) can be adjusted by grinding such a cutting blade with a diamond grindstone or the like and then performing a smooth treatment using a polishing machine. can. The conditions for smooth processing may be appropriately adjusted according to the permissible range of the amount of chips generated. For example, when it is desired to reduce the amount of chips generated, smooth processing may be performed under stronger polishing conditions (conditions in which unevenness is reduced).
 図3は、切刃のスムース処理を説明するための図である。図3の左側は、切刃の表面の凹凸構造40を示している。凹凸構造40は、切刃の表面を、ダイヤモンド砥石等を用いて研削して得られる。スムース処理では、この凹凸構造40における凸部のうち、大きく突出している幾つかの凸部の先端を切り欠くことができる。これによって、凹凸構造42が得られる。図3に示す凹凸構造42は、先端が揃っているが、このように先端が完全に揃っていなくてもよい。スムース処理が施された切刃を有する切断刃であれば、他の凸部よりも突出している凸部の先端でワークW1が削られて切屑となることを抑制できる。したがって、切屑の発生を十分に抑制することができる。切断刃10,20の少なくとも一方の切刃の表面がスムース処理されていれば、スムース処理が全く施されていない場合に比べて切屑の発生量を低減することができる。 FIG. 3 is a diagram for explaining the smooth processing of the cutting edge. The left side of FIG. 3 shows the uneven structure 40 on the surface of the cutting edge. The uneven structure 40 is obtained by grinding the surface of the cutting edge with a diamond grindstone or the like. In the smooth treatment, the tips of some of the convex portions in the concave-convex structure 40 that are largely protruding can be cut out. As a result, the uneven structure 42 is obtained. The concave-convex structure 42 shown in FIG. 3 has aligned tips, but the tips may not be completely aligned in this way. If the cutting blade has a cutting blade that has been subjected to a smooth treatment, it is possible to prevent the work W1 from being scraped and turned into chips at the tip of the convex portion that protrudes more than the other convex portions. Therefore, the generation of chips can be sufficiently suppressed. If the surface of at least one of the cutting blades 10 and 20 is smoothed, the amount of chips generated can be reduced as compared with the case where the smoothing is not performed at all.
 一実施形態に係るセラミックグリーンシートの製造方法は、切断装置100を用いて行ってもよい。この製造方法では、セラミック粉末、焼結助剤及びバインダを含む原料スラリーを、ドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布し乾燥して、セラミックグリーンシートを成形する成形工程を行う。離型フィルムは、例えばPET等のポリエステルフィルムであってよい。セラミックグリーンシートと離型フィルムの積層シートをロール状に巻いてワークW1として用いてよい。この積層シートを、上述の説明内容に基づいて切断装置100を用いて積層シートの移動方向に沿って切断する切断工程を行う。切断した積層シートは、ワークW2として再びロール状に巻いて、短尺ロール38としてよい。 The method for manufacturing the ceramic green sheet according to the embodiment may be performed using the cutting device 100. In this manufacturing method, a raw material slurry containing a ceramic powder, a sintering aid, and a binder is applied to a mold release film to a predetermined thickness by a doctor blade method, a calendar method, an extrusion method, or the like, dried, and then dried to obtain a ceramic green sheet. Performs a molding process. The release film may be a polyester film such as PET. A laminated sheet of a ceramic green sheet and a release film may be wound in a roll shape and used as the work W1. A cutting step of cutting the laminated sheet along the moving direction of the laminated sheet is performed using the cutting device 100 based on the above description. The cut laminated sheet may be rolled again as the work W2 to form a short roll 38.
 この製造方法では、切断刃10,20を備える切断装置100を用いていることから、セラミックグリーンシートを有するワークW1を切断する際の切屑の発生を抑制することができる。したがって、切断後のセラミックグリーンシート(ワークW2)に切屑が付着することが抑制することができる。その結果、セラミックグリーンシートの品質及び歩留まりを向上することができる。 Since this manufacturing method uses the cutting device 100 provided with the cutting blades 10 and 20, it is possible to suppress the generation of chips when cutting the work W1 having the ceramic green sheet. Therefore, it is possible to prevent chips from adhering to the ceramic green sheet (work W2) after cutting. As a result, the quality and yield of the ceramic green sheet can be improved.
 一実施形態に係るセラミック焼結体の製造方法は、短尺ロールから積層シートを引き出して所定の長さに切断し、積層シートから離型フィルムを取り外した後に、セラミックグリーンシートを焼成する焼成工程を行ってセラミック焼結体を得てもよい。この製造方法によれば、切断後のセラミックグリーンシートへの切屑の付着が抑制されているため、セラミックグリーンシートを焼成して得られるセラミック焼結体の品質及び歩留まりを向上することができる。 The method for producing a ceramic sintered body according to one embodiment is a firing step in which a laminated sheet is pulled out from a short roll, cut to a predetermined length, a release film is removed from the laminated sheet, and then the ceramic green sheet is fired. You may go to obtain a ceramic sintered body. According to this manufacturing method, since the adhesion of chips to the ceramic green sheet after cutting is suppressed, the quality and yield of the ceramic sintered body obtained by firing the ceramic green sheet can be improved.
 セラミックとしては、炭化物、酸化物及び窒化物等が挙げられる。具体的には、窒化ケイ素、炭化ケイ素、アルミナ、窒化アルミニウム及び窒化ホウ素等が挙げられる。セラミック焼結体は例えばセラミック基板であってよい。 Examples of ceramics include carbides, oxides and nitrides. Specific examples thereof include silicon nitride, silicon carbide, alumina, aluminum nitride and boron nitride. The ceramic sintered body may be, for example, a ceramic substrate.
 一実施形態に係る切断方法は、切断刃10,20を用いてワークW1を切断する工程を有する。このような工程を有することによって、ワークW1を切断する際に切屑の発生を抑制することができる。これによって、切断後のワークW2に切屑が付着して、ワークW2の品質が劣化したり、歩留まりが低下したりすることを抑制できる。 The cutting method according to one embodiment includes a step of cutting the work W1 using the cutting blades 10 and 20. By having such a step, it is possible to suppress the generation of chips when cutting the work W1. As a result, it is possible to prevent chips from adhering to the work W2 after cutting, resulting in deterioration of the quality of the work W2 and a decrease in yield.
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、図1に示す切断刃10,20は、切断装置100とは異なる切断装置に取り付けられてもよい。また、セラミックグリーンシートの切断方法、セラミック焼結体の製造方法、及び、切断方法は、切断装置100を用いて行ってもよいし、切断刃10及び切断刃20の少なくとも一方を備える別の切断装置を用いて行ってもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. For example, the cutting blades 10 and 20 shown in FIG. 1 may be attached to a cutting device different from the cutting device 100. Further, the method for cutting the ceramic green sheet, the method for producing the ceramic sintered body, and the cutting method may be performed using the cutting device 100, or another cutting method including at least one of the cutting blade 10 and the cutting blade 20. It may be done using a device.
 以下に実施例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。 The contents of the present disclosure will be described in more detail with reference to the following examples, but the present disclosure is not limited to the following examples.
[評価1]
(実施例1~3、比較例1)
 窒化ケイ素粉末と焼結助剤(酸化マグネシウム粉末、酸化イットリウム粉末及び二酸化ケイ素粉末)を含む原料スラリーを、PETフィルム上に塗布して乾燥し、PETフィルム上にセラミックグリーンシートを形成して積層シートを得た。これをロール状に巻いて、長尺ロールを得た。長尺ロールから引き出される積層シートを、市販のスリッター(切断装置)を用いて以下の要領で切断した。
[Evaluation 1]
(Examples 1 to 3, Comparative Example 1)
A raw material slurry containing silicon nitride powder and a sintering aid (magnesium oxide powder, yttrium oxide powder and silicon dioxide powder) is applied onto a PET film and dried to form a ceramic green sheet on the PET film and laminated. Got This was rolled into a roll to obtain a long roll. The laminated sheet drawn from the long roll was cut using a commercially available slitter (cutting device) in the following manner.
 上記切断装置に取り付ける切断刃として、以下の切断刃60A,60B,10A,10Bを準備した。切断刃60A,60B,10A,10Bは、WCとCoを含む超硬合金で構成される切断刃である。これらの切断刃は、市販の切断刃の切刃の表面全体をダイヤモンド砥石で研磨して作製した。これらのうち、切断刃10A,10Bは、上記ダイヤモンド砥石で研磨した後、研磨機を用いてスムース処理を行った。切断刃60A,60B,10A,10Bは、切刃の表面全体の表面粗さを除いて、同一の構成(形状、大きさ及び材質)を有していた。 The following cutting blades 60A, 60B, 10A, and 10B were prepared as cutting blades to be attached to the cutting device. The cutting blades 60A, 60B, 10A, and 10B are cutting blades made of a cemented carbide containing WC and Co. These cutting blades were produced by polishing the entire surface of a commercially available cutting blade with a diamond grindstone. Of these, the cutting blades 10A and 10B were polished with the diamond grindstone and then smoothly processed using a polishing machine. The cutting blades 60A, 60B, 10A, and 10B had the same configuration (shape, size, and material) except for the surface roughness of the entire surface of the cutting blade.
 図4は、切断刃60A(60B,10A,10B)の平面図である。図5は、図4のV-V線断面図である。図5に示されるように、切断刃60A,60B,10A,10Bは、内周部よりも外周部の方が、上方向に向かって反っていた。各切断刃の表面粗さ(Ra,Rz,Ry)は、株式会社ミツトヨ製の小形表面粗さ測定機「SJ-210」(商品名)を用いて測定した。測定は、各切断刃の切刃の側面12a,12bにおける測定部位52,54の2箇所において行った。測定部位54では、各切断刃の径方向に沿って表面粗さを測定し、測定部位52では、各切断刃の径方向に直交する方向に沿って表面粗さを測定した。測定結果は、表1に示すとおりであった。 FIG. 4 is a plan view of the cutting blades 60A (60B, 10A, 10B). FIG. 5 is a sectional view taken along line VV of FIG. As shown in FIG. 5, the cutting blades 60A, 60B, 10A, and 10B were warped upward on the outer peripheral portion than on the inner peripheral portion. The surface roughness (Ra, Rz, Ry) of each cutting blade was measured using a small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd. The measurement was performed at two measurement sites 52 and 54 on the side surfaces 12a and 12b of each cutting blade. At the measurement site 54, the surface roughness was measured along the radial direction of each cutting blade, and at the measurement site 52, the surface roughness was measured along the direction orthogonal to the radial direction of each cutting blade. The measurement results are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、切断刃10A,10Bの側面12a,12bのRa及びRzは、それぞれ0.25mm以下及び1.5mm以下であった。また、切断刃10A,10Bの側面12a,12bのRyは2mm以下であった。一方、切断刃60Aの側面12aのRa及びRzは、それぞれ0.25mm以下及び1.5mm以下であったが、側面12bのRaは0.25mmを超えていた。切断刃60Bの側面12aのRa及びRzは、それぞれ0.25mm以下及び1.5mm以下であったが、側面12bの一部は、Raが0.25mmを超えていた。 As shown in Table 1, the Ra and Rz of the side surfaces 12a and 12b of the cutting blades 10A and 10B were 0.25 mm or less and 1.5 mm or less, respectively. The Ry of the side surfaces 12a and 12b of the cutting blades 10A and 10B was 2 mm or less. On the other hand, Ra and Rz of the side surface 12a of the cutting blade 60A were 0.25 mm or less and 1.5 mm or less, respectively, but Ra of the side surface 12b exceeded 0.25 mm. The Ra and Rz of the side surface 12a of the cutting blade 60B were 0.25 mm or less and 1.5 mm or less, respectively, but the Ra of a part of the side surface 12b exceeded 0.25 mm.
 図6は、切断装置における積層シート(ワークW1)の切断部分付近を示す平面図である。この切断装置では、図2の切断装置よりも多い8組の切断刃を備えていた。各組の切断刃は、図1に示されるようにワークW1を切断するために対をなして配置されていた。このように、合計で8組×2個=16個の切断刃を用い、積層シートを移動方向(図6中の符号の向きを基準として、上から下に向かう方向)に沿って9つに分割されるように切断した。図6に示すように8組の切断刃のうち、左から4番目、5番目、6番目、7番目及び8番目の組の上刃には、上述の切断刃60A、切断刃60A、切断刃60B、切断刃10A及び切断刃10Bをそれぞれ取り付けた。各切断刃の側面の向きは、図6の切断刃10Bに示すように、右側が側面12a,左側が側面12bとなるようにした。一方、下刃は、各組とも共通のものを用いた。 FIG. 6 is a plan view showing the vicinity of the cut portion of the laminated sheet (work W1) in the cutting device. This cutting device was equipped with eight sets of cutting blades, which was larger than that of the cutting device of FIG. The cutting blades of each set were arranged in pairs to cut the work W1 as shown in FIG. In this way, using a total of 8 sets x 2 = 16 cutting blades, the laminated sheet is divided into 9 along the moving direction (the direction from top to bottom based on the direction of the reference numerals in FIG. 6). It was cut so that it could be divided. As shown in FIG. 6, of the eight sets of cutting blades, the upper blades of the fourth, fifth, sixth, seventh and eighth sets from the left include the above-mentioned cutting blade 60A, cutting blade 60A and cutting blade. 60B, cutting blade 10A and cutting blade 10B were attached respectively. As shown in the cutting blade 10B of FIG. 6, the side surface orientation of each cutting blade is such that the right side is the side surface 12a and the left side is the side surface 12b. On the other hand, the lower blade used was the same for each group.
 このような切断装置を用いて積層シートの切断を行いながら、切屑の発生数をカウントした。具体的には、図6に示すように、切断された積層シートC,D,E,Fの表面に付着する切屑の数を目視でカウントした。切屑数のカウントは、積層シートC,D,E,Fのセラミックグリーンシート側(表側)とPETフィルム側(裏側)のそれぞれにおいて行った。また、切屑数のカウントは、切断刃60A,60B,10A,10Bで切断されてから、切断された積層シートを巻き取る直前まで、表側4箇所及び裏側3箇所において行った。表側と裏側で検出された切屑の発生数と、その合計値は表2に示すとおりであった。 The number of chips generated was counted while cutting the laminated sheet using such a cutting device. Specifically, as shown in FIG. 6, the number of chips adhering to the surfaces of the cut laminated sheets C, D, E, and F was visually counted. The number of chips was counted on each of the ceramic green sheet side (front side) and the PET film side (back side) of the laminated sheets C, D, E, and F. The number of chips was counted at four locations on the front side and three locations on the back side from the time when the cutting blades were cut by the cutting blades 60A, 60B, 10A, and 10B until immediately before the cut laminated sheet was wound up. The number of chips generated on the front side and the back side and the total value thereof are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、一対の切断刃60Aで両側が切断された積層シートCでは、最も多くの切屑が発生していた。一方、切断刃10A,10Bで両側が切断された積層シートFでは、切屑の発生数が最も小さかった。切断刃60Aの側面12aと切断刃60Bの側面12bと間に位置し、切断刃60Aと切断刃60Bで切断された積層シートDは、積層シートCよりも切屑の発生数が少なかった。切断刃60Bの側面12aと切断刃10Aの側面12bと間に位置し、切断刃60Bと切断刃10Aで切断された積層シートEは、積層シートDよりも切屑の発生数が少なかった。 As shown in Table 2, the most chips were generated in the laminated sheet C in which both sides were cut by the pair of cutting blades 60A. On the other hand, in the laminated sheet F in which both sides were cut by the cutting blades 10A and 10B, the number of chips generated was the smallest. The laminated sheet D located between the side surface 12a of the cutting blade 60A and the side surface 12b of the cutting blade 60B and cut by the cutting blade 60A and the cutting blade 60B generated less chips than the laminated sheet C. The laminated sheet E located between the side surface 12a of the cutting blade 60B and the side surface 12b of the cutting blade 10A and cut by the cutting blade 60B and the cutting blade 10A generated fewer chips than the laminated sheet D.
 これらの結果から、算術平均粗さ(Ra)及び十点平均粗さ(Rz)がそれぞれ0.25mm以下及び1.5mm以下である表面を有する切断刃で積層シートを切断することによって、切屑の発生が抑制できることが確認された。 From these results, by cutting the laminated sheet with a cutting blade having a surface having an arithmetic average roughness (Ra) and a ten-point average roughness (Rz) of 0.25 mm or less and 1.5 mm or less, respectively, the chips are separated from each other. It was confirmed that the occurrence could be suppressed.
[評価2]
(実施例4~6、比較例2)
 以下の切断刃80A,80B,70A,70Bを準備した。これらの切断刃は、WCとCoを含む超硬合金で構成される切断刃であり、切刃の表面全体をダイヤモンド砥石で研磨したものである。切断刃80A,80B,70A,70Bは、切刃の表面全体の表面粗さを除いて、同一の構成(形状、大きさ及び材質)を有していた。各切断刃の切刃の表面粗さを、切断刃60A,60B,10A,10Bと同様にして測定した。測定結果は、表3に示すとおりであった。
[Evaluation 2]
(Examples 4 to 6, Comparative Example 2)
The following cutting blades 80A, 80B, 70A, 70B were prepared. These cutting blades are cutting blades made of cemented carbide containing WC and Co, and the entire surface of the cutting blade is polished with a diamond grindstone. The cutting blades 80A, 80B, 70A, and 70B had the same configuration (shape, size, and material) except for the surface roughness of the entire surface of the cutting blade. The surface roughness of the cutting blades of each cutting blade was measured in the same manner as the cutting blades 60A, 60B, 10A, and 10B. The measurement results are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、切断刃70A,70Bの側面12a,12bのRa及びRzは、それぞれ0.25mm以下及び1.5mm以下であった。また、切断刃80A,80Bの側面12aのRa及びRzは、それぞれ0.25mm以下及び1.5mm以下であった。一方、切断刃80Aの側面12bのRaは、0.25mmを超えていた。切断刃80Bの側面12bの一部は、Raが0.25mmを超えていた。 As shown in Table 3, the Ra and Rz of the side surfaces 12a and 12b of the cutting blades 70A and 70B were 0.25 mm or less and 1.5 mm or less, respectively. The Ra and Rz of the side surfaces 12a of the cutting blades 80A and 80B were 0.25 mm or less and 1.5 mm or less, respectively. On the other hand, the Ra of the side surface 12b of the cutting blade 80A exceeded 0.25 mm. Ra of a part of the side surface 12b of the cutting blade 80B exceeded 0.25 mm.
 評価1と同様にして、図7に示すように8組の切断刃のうち、左から4番目、5番目、6番目、7番目及び8番目の組の上刃には、上述の切断刃80A、切断刃80A、切断刃80B、切断刃70A及び切断刃70Bをそれぞれ取り付けた。各切断刃の側面の向きは、図7の切断刃70Bに示すように、右側が側面12a,左側が側面12bとなるようにした。一方、下刃は、各組とも共通のものを用いた。評価1と同様にして切屑の数をカウントした。表側と裏側で検出された切屑の発生数と、その合計値は表4に示すとおりであった。 In the same manner as in Evaluation 1, as shown in FIG. 7, among the eight sets of cutting blades, the upper blades of the fourth, fifth, sixth, seventh and eighth sets from the left have the above-mentioned cutting blade 80A. , Cutting blade 80A, cutting blade 80B, cutting blade 70A and cutting blade 70B, respectively. As shown in the cutting blade 70B of FIG. 7, the side surface orientation of each cutting blade is such that the right side is the side surface 12a and the left side is the side surface 12b. On the other hand, the lower blade used was the same for each group. The number of chips was counted in the same manner as in evaluation 1. The number of chips generated on the front side and the back side and the total value thereof are as shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すとおり、一対の切断刃80Aで両側が切断された積層シートGでは、最も多くの切屑が発生していた。一方、切断刃70A,70Bで切断された積層シートJ、及び、切断刃80Bの側面12aと切断刃70Aの側面12bと間に位置し、切断刃80Bと切断刃70Aで切断された積層シートIは、切屑の発生数が最も小さかった。切断刃80Aの側面12aと切断刃80Bの側面12bと間に位置し、切断刃80Aと切断刃80Bで切断された積層シートHは、積層シートGよりも切屑の発生数が少なかった。 As shown in Table 4, the most chips were generated in the laminated sheet G in which both sides were cut by the pair of cutting blades 80A. On the other hand, the laminated sheet J cut by the cutting blades 70A and 70B, and the laminated sheet I located between the side surface 12a of the cutting blade 80B and the side surface 12b of the cutting blade 70A and cut by the cutting blade 80B and the cutting blade 70A. The number of chips generated was the smallest. The laminated sheet H located between the side surface 12a of the cutting blade 80A and the side surface 12b of the cutting blade 80B and cut by the cutting blade 80A and the cutting blade 80B generated less chips than the laminated sheet G.
 これらの結果から、算術平均粗さ(Ra)及び十点平均粗さ(Rz)がそれぞれ0.25mm以下及び1.5mm以下である表面を有する切断刃で積層シートを切断することによって、切屑の発生が抑制できることが確認された。 From these results, by cutting the laminated sheet with a cutting blade having a surface having an arithmetic average roughness (Ra) and a ten-point average roughness (Rz) of 0.25 mm or less and 1.5 mm or less, respectively, the chips are separated from each other. It was confirmed that the occurrence could be suppressed.
 本開示によれば、切屑の発生を抑制することが可能な切断刃、及び当該切断刃を備える切断装置が提供される。また、セラミックグリーンシート及びセラミック焼結体の品質及び歩留まりを向上することが可能な製造方法が提供される。また、切断されるワークの品質及び歩留まりを向上することが可能な切断方法が提供される。 According to the present disclosure, a cutting blade capable of suppressing the generation of chips and a cutting device provided with the cutting blade are provided. Further, a manufacturing method capable of improving the quality and yield of the ceramic green sheet and the ceramic sintered body is provided. Further, a cutting method capable of improving the quality and yield of the workpiece to be cut is provided.
 10,20,10A,10B,60A,60B…切断刃、12,22…切刃、12a,12b…側面、14,24…回転軸、15…重なり部、32…テンションローラ、34,36…押さえローラ、37…巻き付けローラ、38…短尺ロール、40,42…凹凸構造、52,54…測定部位、100…切断装置、C,D,E,F…積層シート、W1,W2…ワーク。 10, 20, 10A, 10B, 60A, 60B ... Cutting blade, 12, 22 ... Cutting blade, 12a, 12b ... Side surface, 14, 24 ... Rotating shaft, 15 ... Overlapping part, 32 ... Tension roller, 34, 36 ... Presser Roller, 37 ... Winding roller, 38 ... Short roll, 40, 42 ... Concavo-convex structure, 52, 54 ... Measurement site, 100 ... Cutting device, C, D, E, F ... Laminated sheet, W1, W2 ... Work.

Claims (7)

  1.  外周部に切刃を有し、回転しながらワークを切断する円盤形状の切断刃であって、
     前記切刃は、算術平均粗さRa及び十点平均粗さRzがそれぞれ0.25mm以下及び1.5mm以下である表面を有する、切断刃。
    A disk-shaped cutting blade that has a cutting blade on the outer circumference and cuts the workpiece while rotating.
    The cutting edge is a cutting edge having a surface having an arithmetic average roughness Ra and a ten-point average roughness Rz of 0.25 mm or less and 1.5 mm or less, respectively.
  2.  前記ワークがセラミックグリーンシートを有する、請求項1に記載の切断刃。 The cutting blade according to claim 1, wherein the work has a ceramic green sheet.
  3.  前記切刃の前記表面はスムース処理が施されている、請求項1又は2に記載の切断刃。 The cutting blade according to claim 1 or 2, wherein the surface of the cutting blade is smoothed.
  4.  外周部に切刃を有する円盤形状の一対の切断刃を備え、前記一対の切断刃が互いに逆方向に回転しながら前記一対の切断刃の回転軸の間を移動するワークを移動方向に沿って切断する切断装置であって、
     側面視において、前記一対の切断刃の外周部に形成された切刃同士が互いに重なる際に前記ワークが切断され、
     前記一対の切断刃の少なくとも一つが請求項1~3のいずれか一項に記載の切断刃である、切断装置。
    A disk-shaped pair of cutting blades having cutting blades on the outer periphery is provided, and a workpiece that moves between the rotation axes of the pair of cutting blades while the pair of cutting blades rotate in opposite directions is moved along the moving direction. It is a cutting device that cuts
    In the side view, the work is cut when the cutting blades formed on the outer peripheral portions of the pair of cutting blades overlap each other.
    A cutting device in which at least one of the pair of cutting blades is the cutting blade according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか一項に記載の切断刃を備える切断装置を用いてセラミックグリーンシートを有するワークを切断する工程を有する、セラミックグリーンシートの製造方法。 A method for manufacturing a ceramic green sheet, which comprises a step of cutting a work having a ceramic green sheet using a cutting device provided with the cutting blade according to any one of claims 1 to 3.
  6.  請求項5で製造されたセラミックグリーンシートを焼成して、セラミック焼結体を得る工程を有する、セラミック焼結体の製造方法。 A method for producing a ceramic sintered body, which comprises a step of firing the ceramic green sheet produced in claim 5 to obtain a ceramic sintered body.
  7.  請求項1~3のいずれか一項に記載の切断刃を用いて前記ワークを切断する工程を有する、切屑の発生を抑制する切断方法。 A cutting method for suppressing the generation of chips, which comprises a step of cutting the work using the cutting blade according to any one of claims 1 to 3.
PCT/JP2021/012297 2020-03-26 2021-03-24 Cutting blade, cutting device, manufacturing method for ceramic green sheet and ceramic sintered body, and cutting method WO2021193738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510608A JPWO2021193738A1 (en) 2020-03-26 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056228 2020-03-26
JP2020-056228 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193738A1 true WO2021193738A1 (en) 2021-09-30

Family

ID=77890458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012297 WO2021193738A1 (en) 2020-03-26 2021-03-24 Cutting blade, cutting device, manufacturing method for ceramic green sheet and ceramic sintered body, and cutting method

Country Status (2)

Country Link
JP (1) JPWO2021193738A1 (en)
WO (1) WO2021193738A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291137A (en) * 2003-03-26 2004-10-21 Kyocera Corp Cutting blade
JP2010182665A (en) * 2009-01-08 2010-08-19 Nippon Shokubai Co Ltd Manufacturing method of ceramic sheet for fuel cell
JP2013000826A (en) * 2011-06-15 2013-01-07 Murata Mfg Co Ltd Cutting blade, and method and device for manufacturing electronic component
WO2019065677A1 (en) * 2017-09-28 2019-04-04 日立金属株式会社 Cutting tool and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291137A (en) * 2003-03-26 2004-10-21 Kyocera Corp Cutting blade
JP2010182665A (en) * 2009-01-08 2010-08-19 Nippon Shokubai Co Ltd Manufacturing method of ceramic sheet for fuel cell
JP2013000826A (en) * 2011-06-15 2013-01-07 Murata Mfg Co Ltd Cutting blade, and method and device for manufacturing electronic component
WO2019065677A1 (en) * 2017-09-28 2019-04-04 日立金属株式会社 Cutting tool and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2021193738A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4132569B2 (en) Slitter blade
JP2006021319A5 (en)
WO2019161744A1 (en) Ultrasonic cutting method employing straight-blade sharp knife and application thereof
JPH08276311A (en) Spiral end mill and its manufacture
WO2021193738A1 (en) Cutting blade, cutting device, manufacturing method for ceramic green sheet and ceramic sintered body, and cutting method
JP2000141279A (en) Slitter blade
JP7180037B2 (en) Ceramic sintered body manufacturing method and cutting device
JP2005046935A (en) Cutting edge for slitter, and slitting tool
JP7366510B2 (en) Composite cutting tool and method for manufacturing resin sheet using the same
JP6420810B2 (en) Rotary cutting blade for plasterboard
TWI808260B (en) End mill and manufacturing method thereof
JPH03161280A (en) Tool for piercing hard brittle material
TW202335765A (en) Method for manufacturing resin sheet which makes it possible to easily and highly efficiently obtain a resin sheet while suppressing the occurrence of cutting marks even when a thick workpiece is used
WO2020084958A1 (en) End mill and manufacturing method thereof
TWI756724B (en) Radius end mill
CN113997020B (en) Machining method for reducing roughness of inner ring of rectifier
WO2021131120A1 (en) Endmill for cutting optical film and optical film manufacturing method using said end mill
JP5586401B2 (en) Cutting blade, manufacturing method thereof and slitting tool
JPH0437715Y2 (en)
US7959495B2 (en) Method and apparatus for finishing the surface of rubber covered rollers
JPH0742634Y2 (en) Slitter
JP2556694Y2 (en) Thin blade whetstone for magnetic head processing
JP2503927Y2 (en) Diamond cutting whetstone
JP2001062773A (en) Round blade cutting device and method for machining tip of round blade for the round blade cutting device
JPH04310310A (en) Ball end mill and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775908

Country of ref document: EP

Kind code of ref document: A1