WO2021193696A1 - Electroplating solution and electroplating method - Google Patents

Electroplating solution and electroplating method Download PDF

Info

Publication number
WO2021193696A1
WO2021193696A1 PCT/JP2021/012153 JP2021012153W WO2021193696A1 WO 2021193696 A1 WO2021193696 A1 WO 2021193696A1 JP 2021012153 W JP2021012153 W JP 2021012153W WO 2021193696 A1 WO2021193696 A1 WO 2021193696A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
surfactant
plating
plating solution
less
Prior art date
Application number
PCT/JP2021/012153
Other languages
French (fr)
Japanese (ja)
Inventor
康司 巽
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021046364A external-priority patent/JP2021155850A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021193696A1 publication Critical patent/WO2021193696A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors

Definitions

  • the present invention relates to an electrolytic plating solution and an electrolytic plating method for forming a tin or tin alloy plating film. More specifically, the present invention relates to an electrolytic plating solution and an electrolytic plating method used for tin or tin alloy plating suitable for forming solder bumps for semiconductor wafers and printed circuit boards.
  • This application claims priority based on Japanese Patent Application No. 2020-058073 filed in Japan on March 27, 2020 and Japanese Patent Application No. 2021-46364 filed in Japan on March 19, 2021. Is used here.
  • a device that performs electrolytic plating is generally an anode (hereinafter, may be simply referred to as plating solution) arranged to face each other in a plating tank containing an electrolytic plating solution (hereinafter, may be simply referred to as plating solution).
  • An anode) and a semiconductor wafer or substrate which is a member to be plated connected to the cathode (cathode) are provided, and a voltage is applied to the anode and the member to be plated.
  • a plating film is formed on the surface of the member to be plated.
  • the anode used in this electroplating apparatus can be roughly divided into a soluble anode and an insoluble anode.
  • platinum (Pt) and platinum-coated titanium (Pt) are used as anodes in order to suppress the reaction of the plating solution components (metal components noble than additives and tin) on the anode surface.
  • An insoluble anode made of / Ti) or iridium oxide (IrO 2 ) or the like is generally used.
  • the electrolysis reaction of water which is represented by the following reaction formula, occurs on the surface of the anode during electrolysis.
  • the oxygen gas (air bubbles) generated on the surface of the anode is desorbed from the surface of the anode and released into the plating solution.
  • Oxygen bubbles released into the plating solution disappear by floating in the plating solution and then reaching the liquid surface to defoam or dissolving in the plating solution as a dissolved gas.
  • the bubbles adhere to the member to be plated connected to the cathode (cathode) before the bubbles disappear they are likely to prevent the precipitation of plating and cause pit defects, and are incorporated into the plating film. There was a problem that it was easy to cause voids.
  • the solder bump is formed on the semiconductor wafer in the horizontal plating tank 1, it faces the insoluble anode 3 arranged horizontally in the plating solution 2. Then, the semiconductor wafer (member to be plated) 4 horizontally connected to the cathode is arranged above the anode. During the plating, the semiconductor wafer 4 rotates in a horizontal state. Further, the plating solution 2 is circulated by the suction port 1a, the return port 1b, and the circulation pump 1c provided at the bottom of the plating tank 1, respectively. The bubbles 8 desorbed from the surface of the anode 3 float and adhere to the surface of the semiconductor wafer 4. Therefore, as shown in the enlarged view of FIG.
  • Patent Document 1 (Claim 1, paragraphs [0001] to []. 0003]).
  • the bump electrode has become finer to a diameter of 100 ⁇ m or less, and the depth (depth / diameter) of the via to the diameter of the via in the resist layer has become higher in aspect ratio. ) Has become difficult to desorb depending on the device conditions. Therefore, it is necessary to reduce the occurrence rate of pit defects due to the growth of the plating deposit layer due to the generated bubbles and the voids in the bump after the plating deposit layer has grown.
  • the method of plating in a decompressed plating tank is one method of reducing the occurrence rate of pit defects and voids, but the above problem is still unsolved by this plating method. ..
  • An object of the present invention is an electrolytic plating solution and an electrolytic plating method for reducing the occurrence rate of pit defects in bumps and voids in bumps, which are caused by the fact that plating does not precipitate due to bubbles generated in the plating solution. Is to provide.
  • the present inventor has made oxygen bubbles generated on the surface of the anode (anode) by containing a surfactant having a specific structure in the plating bath. Before being released into the plating solution, it is aggregated on the surface of the anode and enlarged, and the enlarged oxygen bubbles are quickly carried to the liquid surface by buoyancy, so that the oxygen bubbles do not disperse in the plating solution. As a result, it has been found that the adhesion of bubbles having a diameter smaller than the via diameter to the surface of the member to be plated connected to the cathode is reduced, and the occurrence of pit defects and voids is dramatically reduced. Reached.
  • a first aspect of the present invention is an electrolytic plating solution containing a soluble salt (A) containing at least a stannous salt, an acid or a salt thereof (B), and a surfactant (C), wherein the anode current is present.
  • This electroplating solution is characterized in that the maximum value of the particle size distribution of bubbles released from the insoluble anode when electrolyzed at a density of 0.7 A / dm 2 is 150 ⁇ m or more.
  • the maximum value of the particle size distribution may be 200 ⁇ m or more.
  • the upper limit is not particularly limited, but may be, for example, 1000 ⁇ m or less.
  • a second aspect of the present invention is the invention according to the first aspect, wherein the surfactant (C) is a polyoxyethylene polyoxypropylene block polymer (PO-) having a polyoxypropylene (PO) terminal.
  • EO-PO) nonionic surfactant the EO ratio in the block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the nonionic surfactant.
  • An electrolytic plating solution having a mass average molecular weight in the range of 3000 or more and 5000 or less.
  • the EO ratio may be in the range of 35% or more and 45% or less in terms of molar ratio, or may be in the range of 40% or more and 45% or less.
  • the mass average molecular weight may be in the range of 3000 or more and 4500 or less, or may be in the range of 3500 or more and 4500 or less.
  • a third aspect of the present invention is the invention according to the first aspect, wherein the surfactant (C) is an electrolytic plating solution which is an amphoteric surfactant of alkylsulfobetaine or alkylhydroxysulfobetaine. ..
  • a fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the content of the surfactant (C) is 0.5 g / L or more and 10 g / L. It is an electrolytic plating solution in the range of L or less. The content may be in the range of 1 g / L or more and 5 g / L or less.
  • a fifth aspect of the present invention is to supply the electroplating solution according to any one of the first to fourth aspects to a plating tank in which an insoluble anode is arranged so as to face a member to be plated connected to a cathode.
  • This is a method of electrolytically plating the member to be plated. It is preferable that the facing surfaces are substantially parallel to each other.
  • a sixth aspect of the present invention is the invention according to the fifth aspect, which is an electrolytic plating method in which electrolytic plating is performed using a plating tank in which the member to be plated and the insoluble anode are horizontally arranged.
  • the vertical relationship between the member to be plated and the insoluble anode is not limited, but it is preferable that the insoluble anode is located on the lower side and the member to be plated is located on the upper side.
  • the particle size distribution of the bubbles 8 released from the insoluble anode 3 is maximized. Since the value is 150 ⁇ m or more, it is difficult for bubbles 8 to enter the via 6 of the resist layer 5 formed by the resist pattern. Since the plating deposit layer grows to become bumps 7 in a state where the bubbles 8 do not adhere to the plating deposit layer in the via 6, the occurrence rate of pit defects and voids in the bumps caused by the non-precipitation of plating can be determined. Can be reduced.
  • the same elements as those shown in FIG. 2 are designated by the same reference numerals.
  • the surfactant (C) is a nonionic interface of a polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) having a polyoxypropylene (PO) terminal. It is an activator, and the EO ratio in the block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of the nonionic surfactant is 3000 or more and 5000 or less. Is the range of. Since such a surfactant has a property intermediate between hydrophilicity and hydrophobicity, it has a strong adsorptive power to the surface of an insoluble anode and the surface of oxygen bubbles.
  • the surfactant (C) is an amphoteric surfactant of alkylsulfobetaine or alkylhydroxysulfobetaine, the adsorption force on the surface of the insoluble anode and the surface of oxygen bubbles. Has the effect of being strong.
  • the surfactant (C) is insoluble because the content of the surfactant (C) is in the range of 0.5 g / L or more and 10 g / L or less. A sufficient amount can be adsorbed on the surface of the anode and the surface of oxygen bubbles. As a result, the occurrence rate of pit defects and voids can be further reduced.
  • the object to be plated is arranged to face the insoluble anode 3.
  • electrolytic plating is performed without the bubbles 8 being taken into the via. As a result, this plating method can reduce the occurrence rate of pit defects and voids.
  • the electroplating method of the sixth aspect of the present invention since the member 4 to be plated and the insoluble anode 3 are arranged horizontally, the bubbles 8 discharged from the insoluble anode 3 reach the upper member 4 to be plated. However, since the bubbles 8 are enormous, electrolytic plating is performed without the bubbles 8 being taken into the vias 6 of the resist layer 5 formed on the member 4 to be plated. As a result, this plating method can reduce the occurrence rate of pit defects and voids.
  • FIG. 5 (a) is a cross-sectional view of the member to be plated before plating
  • FIG. 2 (b) is a cross-sectional view of the member to be plated in which normal mushroom-shaped bumps are formed.
  • FIG. 2 (e) is a cross-sectional view of the member to be plated in which voids are formed.
  • This plating solution is used as a material for forming a plating film of tin or a tin alloy used as a solder bump for a semiconductor wafer or a printed circuit board.
  • the tin or tin alloy plating solution of the present embodiment is an electrolytic plating solution containing a soluble salt (A) containing at least a first tin salt, an acid or a salt thereof (B), and a surfactant (C).
  • A soluble salt
  • B acid or a salt thereof
  • C surfactant
  • the feature is that when the anode current density is electrolyzed at 0.7 A / dm 2 , the maximum particle size distribution of bubbles released from the insoluble anode is 150 ⁇ m or more, and may be 200 ⁇ m or more.
  • the upper limit is not particularly limited, but may be, for example, 1000 ⁇ m or less.
  • the reason why the anode current density is limited to 0.7 ASD (A / dm 2 ) is that pit defects and voids tend to become apparent at 0.7 ASD or more.
  • the maximum particle size distribution of bubbles discharged from the insoluble anode is set to 150 ⁇ m or more because the via diameter of the resist layer formed by the resist pattern of the member to be plated is generally in the range of 10 ⁇ m or more and less than 100 ⁇ m.
  • the tin alloy of the present embodiment is an alloy of tin and one or more predetermined metals selected from silver, copper, bismuth, nickel, antimony, indium, and zinc.
  • binary alloys such as tin-silver alloys, tin-copper alloys, tin-bismas alloys, tin-nickel alloys, tin-antimon alloys, tin-indium alloys, and tin-zinc alloys, tin-copper-bismus, etc.
  • ternary alloys such as tin-copper-silver alloys.
  • the soluble salt (A) of the present embodiment is the stannous salt alone, or one selected from the group consisting of the stannous salt and silver, copper, bismuth, nickel, antimony, indium, and zinc. It consists of a mixture of two or more metal salts.
  • the soluble salt (A) of the present embodiment contains Sn 2+ alone in the plating solution, or together with Sn 2+ , Ag + , Cu + , Cu 2+ , Bi 3+ , Ni 2+ , It contains one or more arbitrary soluble salts that generate various metal ions such as Sb 3+ , In 3+ , and Zn 2+.
  • the soluble salt include oxides of these metals, halides, the metal salt of an inorganic acid or an organic acid, and the like.
  • metal oxides include stannous oxide, silver oxide, copper oxide, nickel oxide, bismuth oxide, antimony oxide, indium oxide, and zinc oxide.
  • metal halides include stannous chloride, bismuth chloride, bismuth bromide, cuprous chloride, cupric chloride, nickel chloride, antimony chloride, indium chloride, and zinc chloride.
  • Metal salts of inorganic or organic acids include copper sulfate, stannous sulfate, bismuth sulfate, nickel sulfate, antimony sulfate, bismuth nitrate, silver nitrate, copper nitrate, antimonyate nitrate, indium nitrate, nickel nitrate, zinc nitrate, and copper acetate.
  • the content of the first tin salt in the plating solution of the present embodiment is preferably in the range of 5 g / L or more and 200 g / L or less, more preferably 20 g / L or more and 100 g / L or less in terms of the amount of tin. Is the range of.
  • the acid or salt (B) thereof of the present embodiment is one or more acids selected from organic acids, inorganic acids, and salts thereof, or salts thereof.
  • organic acid include organic sulfonic acids such as alkane sulfonic acid, alkanol sulfonic acid and aromatic sulfonic acid, and aliphatic carboxylic acids.
  • inorganic acid include borofluoric acid, silicate hydrofluoric acid, sulfamic acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like.
  • These salts are alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, sulfonates and the like.
  • Organic sulfonic acids are more preferable from the viewpoint of solubility of metal salts and ease of wastewater treatment.
  • 2-hydroxyethane-1-sulfonic acid 2-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 2-hydroxypentane-1-sulfonic acid, etc.
  • 1- Hydroxypropane-2-sulfonic acid 3-hydroxypropane-1-sulfonic acid
  • 4-hydroxybutane-1-sulfonic acid 2-hydroxyhexane-1-sulfonic acid
  • 2-hydroxydecane-1-sulfonic acid 2- Hydroxidodecane-1-sulfonic acid and the like
  • the aromatic sulfonic acid is basically benzenesulfonic acid, alkylbenzenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid and the like. Specifically, 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, toluene sulfonic acid, xylene sulfonic acid, p-phenol sulfonic acid, cresol sulfonic acid, sulfosalicylic acid, nitrobenzene sulfonic acid, sulfobenzoic acid, diphenylamine-4- Examples include sulfonic acid.
  • aliphatic carboxylic acid examples include acetic acid, propionic acid, butyric acid, citric acid, tartaric acid, gluconic acid, sulfosuccinic acid, and trifluoroacetic acid.
  • the content of the acid selected from the organic acid and the inorganic acid or the salt (B) thereof in the plating solution of the present embodiment is not particularly limited, but is, for example, in the range of 10 g / L or more and 500 g / L or less, preferably 50 g. It is preferably in the range of / L or more and 300 g / L or less.
  • surfactant (C) examples of the surfactant (C) used in the plating solution of the present embodiment include a nonionic surfactant and an amphoteric surfactant. These two types of surfactants may be used alone or in combination.
  • the nonionic surfactant contains polyoxyethylene (EO) and polyoxypropylene (PO), and the terminal is polyoxypropylene (PO).
  • Polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) Can be used.
  • the EO ratio in this block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of this nonionic surfactant is in the range of 3000 or more and 5000 or less. ..
  • the hydrophobic tendency of the surfactant becomes strong, and when it exceeds 50%, the hydrophilic tendency of the surfactant becomes strong, and in any case, it is released from the insoluble anode. It becomes difficult to make the maximum value of the particle size distribution of bubbles 150 ⁇ m or more.
  • the mass average molecular weight of the surfactant is less than 3000, the effect of suppressing the precipitation of tin or a tin alloy may not be sufficient, and if it exceeds 5000, the effect of suppressing the precipitation of tin or a tin alloy becomes too strong, and uniform plating is performed. The film may not be formed.
  • the EO ratio is preferably in the range of 35% or more and 45% or less in terms of molar ratio, and more preferably in the range of 40% or more and 45% or less.
  • the mass average molecular weight is preferably in the range of 3000 or more and 4500 or less, and more preferably in the range of 3500 or more and 4500 or less.
  • the nonionic surfactant of this embodiment is represented by the following formula (1).
  • a, b, and c are the number of repeating units of (PO), (EO), and (PO) in the block polymer, respectively.
  • ethylenediamine polyoxyethylene obtained by addition polymerization of polyoxyethylene (EO) and polyoxypropylene (PO) to ethylenediamine and having polyoxypropylene (PO) at the end.
  • Polyoxypropylene block polymer can also be used.
  • the EO ratio in this block polymer is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of this surfactant is in the range of 3000 or more and 5000 or less.
  • the hydrophobic tendency of the surfactant becomes strong, and when it exceeds 50%, the hydrophilic tendency of the surfactant becomes strong, and in any case, the particles of bubbles released from the insoluble anode. It becomes difficult to set the maximum diameter distribution value to 150 ⁇ m or more.
  • the mass average molecular weight of the surfactant is less than 3000, the effect of suppressing the precipitation of tin or a tin alloy may not be sufficient, and if it exceeds 5000, the effect of suppressing the precipitation of tin or a tin alloy becomes too strong, and uniform plating is performed. The film may not be formed.
  • the nonionic surfactant of the present embodiment is also represented by the following formula (2).
  • m and n are the number of repeating units of (PO), (EO) and (PO) in the block polymer, respectively.
  • the nonionic surfactant represented by the above structure is a block polymer containing polyoxyethylene (EO) and polyoxypropylene (PO), and when polyoxypropylene (PO) is present at the terminal, the surfactant is hydrophobic. It has the effect of strengthening the adsorption force to the insoluble anode and the surface of oxygen bubbles.
  • this block polymer when polyoxyethylene (EO) is present at the terminal, there causes a problem that the adsorption force to the insoluble anode and the surface of oxygen bubbles is weakened because the hydrophilicity of the surfactant is strengthened.
  • the maximum value of the particle size distribution of the bubbles released from the insoluble anode is set to 150 ⁇ m or more.
  • the EO ratio can be measured by comparing the intensity ratios of polyoxyethylene (EO) and polyoxypropylene (PO) using NMR (Nuclear Magnetic Resonance). This measuring method is described in detail in "Surfactant Analysis Method” edited by Surfactant Analysis Study Group, Koshobo (published in 1975), and the like.
  • the mass average molecular weight can be measured by comparing with a commercially available standard substance using Size Exclusion Chromatography (SEC).
  • the content of the nonionic surfactant in the plating solution should be in the range of 0.5 g / L or more and 10 g / L or less, and the EO ratio should be in the range of 35% or more and 50% or less in terms of molar ratio.
  • the mass average molecular weight of the surfactant is in the range of 3000 or more and 5000 or less in order to more accurately set the maximum value of the particle size distribution of bubbles released from the insoluble anode to 150 ⁇ m or more. preferable. It is more preferable that the content of the nonionic surfactant in the plating solution is in the range of 1 g / L or more and 5 g / L or less.
  • the maximum value of the particle size distribution of bubbles discharged from the insoluble anode may not be 150 ⁇ m or more, and if it exceeds 10 g / L, a uniform plating film is formed. It may not be formed.
  • the nonionic surfactant of the present embodiment can be used by purifying a commercially available product as EP-461 manufactured by Aoki Oil & Fat Industry Co., Ltd. Further, the surfactant of the present embodiment can be produced by a known technique. For example, it can be synthesized by adjusting the molecular weight of the raw material polyoxyethylene in US Pat. No. 4,726,909 and the reaction amount of the polyoxypropylene to be added.
  • An amphoteric surfactant can be used as the surfactant (C) of the present embodiment.
  • alkyl sulfobetaine or alkyl hydroxysulfobetaine can be used.
  • the alkylsulfobetaine is represented by the following formula (3).
  • lauryl sulfobetaine, stearyl sulfobetaine and the like can be mentioned.
  • the alkylhydroxysulfobetaine is represented by the following formula (4).
  • R represents an alkyl group, respectively.
  • the carbon number of R of alkylsulfobetaine or alkylhydroxysulfobetaine is preferably in the range of 10 or more and 22 or less, respectively.
  • the content of these amphoteric surfactants in the electrolytic plating solution is in the range of 0.5 g / L or more and 10 g / L or less, the maximum value of the particle size distribution of bubbles released from the insoluble anode is determined. It is preferable to make it more accurately 150 ⁇ m or more. It is more preferable that the content of the amphoteric surfactant in the electrolytic plating solution is in the range of 1 g / L or more and 5 g / L or less.
  • the surfactant (C) of the present embodiment has the above-mentioned characteristics, when the anode current density is electrolyzed with, for example, 0.7 ASD, the maximum particle size distribution of bubbles released from the insoluble anode is 150 ⁇ m or more. To. As a result, even in the via where the bump electrode is miniaturized to a diameter of 100 ⁇ m or less, it is difficult for air bubbles to enter the via of the resist layer, and the growth of the plating deposition layer in the via is smoothly performed without being disturbed by the air bubbles. Less likely to cause defects. In addition, it is difficult to generate voids in the plating deposit layer in the via. As a result, the height of the bumps formed when the plating deposit layer is reflowed becomes uniform, and the voids in the bumps are reduced.
  • the maximum particle size distribution of bubbles released from the insoluble anode can be set to 150 ⁇ m or more when the anode current density is electrolyzed at 0.7 A / dm 2. ..
  • the plating solution of the present embodiment may further contain an antioxidant, a complexing agent, a pH adjusting agent, and a brightening agent, if necessary.
  • antioxidant is intended to prevent the oxidation of Sn 2+ in the plating solution.
  • antioxidants include ascorbic acid or a salt thereof, pyrogallol, hydroquinone, fluoroglusinol, trihydroxybenzene, catechol, cresol sulfonic acid or a salt thereof, catechol sulfonic acid or a salt thereof, hydroquinone sulfonic acid or a salt thereof, and the like.
  • hydroquinone sulfonic acid or a salt thereof is preferable in an acidic bath
  • ascorbic acid or a salt thereof is preferable in a neutral bath.
  • the amount of the antioxidant added to the plating solution of the present embodiment is generally in the range of 0.01 g / L or more and 20 g / L or less, preferably in the range of 0.1 g / L or more and 10 g / L or less, more preferably 0. It is in the range of 1 g / L or more and 5 g / L or less.
  • the plating solution of the present embodiment can be applied to a tin or tin alloy plating bath in any pH range such as acidic, weakly acidic, and neutral.
  • Sn 2+ ions are stable in strong acidity (pH: ⁇ 1), but tend to cause white precipitation in the vicinity of acidic to neutral (pH: 1 to 7). Therefore, when the tin or tin alloy plating solution of the present embodiment is applied to a tin plating bath near neutrality, it is necessary to add a complexing agent for tin for the purpose of stabilizing Sn 2+ ions. preferable.
  • oxycarboxylic acid As the complexing agent for tin, oxycarboxylic acid, polycarboxylic acid, and monocarboxylic acid can be used. Specific examples include gluconic acid, citric acid, glucoheptonic acid, gluconolactone, acetic acid, propionic acid, butyric acid, ascorbic acid, oxalic acid, malonic acid, succinic acid, glycolic acid, malic acid, tartrate acid, or salts thereof. And so on. Preferred are gluconic acid, citric acid, glucoheptonic acid, gluconolactone, glucoheptlactone, or salts thereof.
  • the complexing agent for tin one type may be used alone, or two or more types may be used in combination.
  • the amount of the complexing agent for tin added to the plating solution of the present embodiment is generally 0.001 mol or more and 10 mol or less with respect to 1 mol of tin in the soluble tin salt compound contained in the tin or tin alloy plating solution. It is preferably in the range of. It is more preferably 0.01 mol or more and 5 mol or less, and even more preferably 0.5 mol or more and 2 mol or less.
  • tin alloy plating solution is a SnAg plating solution
  • a water-soluble sulfide compound or a water-soluble thiol compound can be used as the complexing agent for silver.
  • the plating solution of the present embodiment may contain a pH adjuster, if necessary.
  • the pH adjuster include various acids such as hydrochloric acid and sulfuric acid, various bases such as aqueous ammonia, potassium hydroxide, sodium hydroxide and sodium hydrogen carbonate.
  • monocarboxylic acids such as acetic acid and propionic acid
  • dicarboxylic acids such as boric acid, phosphoric acid, oxalic acid and succinic acid
  • oxycarboxylic acids such as lactic acid and tartaric acid are also effective.
  • the plating solution of the present embodiment may contain a brightener, if necessary.
  • a brightener an aromatic carbonyl compound is effective.
  • the aromatic carbonyl compound has an action of refining the crystal particles of the tin alloy in the tin alloy plating film.
  • Aromatic carbonyl compounds are carbon atoms of aromatic hydrocarbons with a carbonyl group (-CO-X: where X is a hydrogen atom, a hydroxy group, an alkyl group or a carbon atom having a carbon atom number in the range of 1 to 6). It is a compound to which (meaning an alkoxy group having a number in the range of 1 to 6) is bonded.
  • Aromatic hydrocarbons include a benzene ring, a naphthalene ring and an anthracene ring.
  • Aromatic hydrocarbons may have substituents. Examples of the substituent include a halogen atom, a hydroxy group, an alkyl group having a carbon atom number in the range of 1 to 6, and an alkoxy group having a carbon atom number in the range of 1 to 6.
  • the carbonyl group may be directly linked to an aromatic hydrocarbon, or may be bonded via an alkylene group having 1 or more carbon atoms and 6 or less carbon atoms.
  • Specific examples of the aromatic carbonyl compound include benzalacetone, cinnamic acid, cinnamaldehyde, and benzaldehyde.
  • the aromatic carbonyl compound may be used alone or in combination of two or more.
  • the amount of the aromatic carbonyl compound added to the tin alloy plating solution of the present embodiment is generally preferably in the range of 0.01 mg / L or more and 500 mg / L or less. It is more preferably 0.1 mg / L or more and 100 mg / L or less, and even more preferably 1 mg / L or more and 50 mg / L or less.
  • the electroplating method of the present embodiment is performed using the electroplating apparatus shown in FIG.
  • an insoluble anode 3 is arranged to face a member to be plated connected to a cathode, for example, a semiconductor wafer 4.
  • the above-mentioned electrolytic plating solution 2 is supplied to the plating tank 1 to perform electrolytic plating.
  • the effect of the present invention is further exhibited in a horizontal plating apparatus in which the insoluble anode 3 is horizontally arranged on the semiconductor wafer 4.
  • it is preferable that the facing surfaces of the member 4 to be plated and the insoluble anode 3 are substantially parallel to each other.
  • the vertical relationship between the member to be plated and the insoluble anode is not limited, but as shown in FIG. 1, arranging the insoluble anode on the lower side and the member to be plated on the upper side facilitates replacement of the member to be plated. , Preferable from the viewpoint of mass productivity.
  • Anode current density at the time of forming the plating film of this embodiment or equal to 0.1 A / dm 2 or more and 5A / dm 2 or less.
  • the liquid temperature is preferably in the range of 10 ° C. or higher and 50 ° C. or lower, and more preferably in the range of 20 ° C. or higher and 40 ° C. or lower.
  • Nonion-based surfactant used in Examples and Comparative Examples Polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) or (EO-) containing polyoxyethylene (EO) and polyoxypropylene (PO) used in Examples 1 to 5 and Comparative Examples 1 to 5.
  • Table 1 shows the structural formula of PO-EO), the EO ratio, and the mass average molecular weight of the surfactant.
  • the methanesulfonic acid Sn aqueous solution has methanesulfonic acid as a free acid and the structural formula (PO-EO-PO) shown in Table 1 above as a surfactant, and the EO ratio is 35% in terms of molar ratio, and the mass average.
  • a nonionic surfactant having a molecular weight of 4000 and benzalacetone as a brightener were added.
  • ion-exchanged water was added to bathe the Sn plating solution having the following composition.
  • the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in the methanesulfonic acid aqueous solution.
  • Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L Methanesulfonic acid (as free acid): 100 g / L Surfactant: 5g / L Benzalacetone (as a brightener): 10 mg / L Ion-exchanged water: balance
  • Examples 2 to 4 Comparative Examples 1 to 5>
  • the structural formula (PO-EO-PO) or (EO-PO-EO), the EO ratio, and the mass average molecular weight are the properties shown in Table 1 above as the surfactant.
  • a nonionic surfactant was used.
  • the Sn plating solutions of Examples 2 to 4 and Comparative Examples 1 to 5 were bathed in the same manner as in Example 1.
  • the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was prepared by electrolyzing a metal Ag plate in the methanesulfonic acid aqueous solution.
  • Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L Methanesulfonic acid Ag (as Ag + ): 0.2 g / L Methanesulfonic acid (as free acid): 100 g / L Thiodiethanol (as a complexing agent): 5 g / L Surfactant: 5g / L Benzalacetone (as a brightener): 10 mg / L Ion-exchanged water: balance
  • Example 6 As the surfactant, the nonionic surfactant 1 shown in Comparative Example 4 of Table 1 above and the amphoteric surfactant 2 of lauryl hydroxysulfobetaine (12 carbon chains) shown in Table 2 above were used. Methanesulfonic acid as a free acid and thiodiethanol as a compositing agent were mixed and dissolved in an aqueous solution of methanesulfonic acid Sn, and then a methanesulfonic acid Ag solution was further added and mixed. After mixing to obtain a uniform solution, the above-mentioned surfactant 1, the above-mentioned surfactant 2, and benzalacetone as a brightening agent were further added.
  • the methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was prepared by electrolyzing a metal Ag plate in the methanesulfonic acid aqueous solution.
  • Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L Methanesulfonic acid Ag (as Ag + ): 0.2 g / L Methanesulfonic acid (as free acid): 100 g / L Thiodiethanol (as a complexing agent): 5 g / L Nonionic surfactant 1: 5g / L Amphoteric surfactant 2: 2 g / L Benzalacetone (as a brightener): 10 mg / L Ion-exchanged water: balance
  • Example 7 A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the amphoteric surfactant 2 of Example 6 was replaced with lauryl sulfobetaine.
  • Example 8> A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the amphoteric tenside agent 2 of Example 6 was replaced with stearyl sulfobetaine.
  • Example 9 A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the methanesulfonic acid Ag and the nonionic surfactant were removed from Example 6.
  • the plating tank 11 is a tank for performing face-down type (Fountain type) plating, and has a cylindrical shape with an inner diameter of 35 cm and a depth of 50 cm. The height from the bottom surface to the liquid surface was 35 cm.
  • a Pt / Ti disk having a diameter of 300 mm in which a Pt layer having a thickness of 3 ⁇ m was formed on a Ti plate having a thickness of 1.5 mm was used and installed so as to be in contact with the bottom surface in the plating tank 11.
  • a pipe 11a serving as a suction port for the circulation pump 11c was installed at a height of 5 cm from the bottom surface of the plating tank 11.
  • a pipe 11b serving as a return port was installed at a position 5 cm in height from the bottom surface.
  • the circulation pump 11c and the pipe 11b serving as the return port were connected by the pipe 11d.
  • a sampling pipe 11e was branched from the pipe 11d, and a transparent measurement cell 11f was installed in the middle of the sampling pipe 11e.
  • 11 g of a VisiSize particle size distribution measuring device manufactured by Oxford Lasers, device model number: SF, analysis software: SOLO
  • the inner diameters of the pipes 11a, 11b and 11d were 60 mm, and the inner diameter of the sampling pipe 11e was 40 mm.
  • a silicon wafer 14 having a diameter of 300 mm was fixed in the plating tank 11 as shown in FIG. 3 using a cylindrical jig having an outer diameter of 33 cm (not shown). .. Specifically, the wafer 14 was fixed by immersing the wafer 14 so that the lower surface of the wafer 14 was immersed at a depth of 2 cm from the liquid surface of the plating solution 12. The wafer 14 was connected to the cathode, and the plating solution 12 was stirred by horizontally rotating at a rotation speed of 50 rpm in order to suppress the generation of bubbles due to stirring.
  • the circulation pump 11c was first operated for 10 minutes without electroplating, and the pipes 11d and 11e After filling the inside with the plating solution 12, the circulation pump 11c was stopped and allowed to stand for 1 hour for degassing. Next, the plating solution was circulated by the circulation pump 11c for 1 hour, and it was confirmed that the number of bubbles having a diameter of 10 ⁇ m or less passing through the measurement cell was 100 cells / mL or less.
  • the flow rate in the pipe 11d was set to 5 L / min, and the flow rate in the sampling pipe 11e was controlled to 0.5 L / min to circulate the plating solution 12. Then, the liquid temperature of the plating solution 12 was set to 25 ° C. and the anode current density was set to 0.7 ASD, respectively, and electrolytic plating was performed for 30 minutes.
  • oxygen bubbles 18 were generated from the insoluble anode 13.
  • the air bubbles 18 were sucked into the suction port pipe 11a, passed through the pipes 11d and 11e, and floated in the plating solution from the return port pipe 11b toward the wafer 14.
  • the size (particle size) of the bubbles 18 passing through the measurement cell 11f was measured by the particle size distribution measuring device 11g described above.
  • the maximum value of the particle size distribution of the measured bubbles is shown in Tables 1 and 3 above. When the particle size distribution has two or more maximum values (so-called two or more peaks), the largest peak is set as the maximum value.
  • Titanium 0.1 ⁇ m and copper 0.3 ⁇ m are laminated in this order on the surface of a silicon wafer with a diameter of 300 mm by a sputtering method to form a seed layer for electrical conduction, and the seed layer is formed.
  • a dry film resist (thickness 50 ⁇ m) was laminated on top of it. The dry film resist was then partially exposed via an exposure mask and then developed. In this way, as shown in FIG. 4, a resist layer 5 having a pattern in which 1.6 million vias 6 having openings having a diameter of 75 ⁇ m are formed at a pitch of 150 ⁇ m is formed on the surface of the wafer 4.
  • the temperature of the plating solution was set to 25 ° C. and the anode current density was set to 0.7 ASD, and the via 6 of the resist layer 5 was electrolytically plated with a target plating film thickness of 75 ⁇ m.
  • the wafer 4 was taken out from the plating tank 1, washed and dried, and then the resist layer 5 was peeled off using an organic solvent. In this way, a bumped wafer having a pattern in which bumps having a diameter of 75 ⁇ m are arranged at a pitch of 150 ⁇ m and 1.6 million at equal pitch intervals was produced on one die.
  • FIG. 5 (a) shows the wafer 4 before plating
  • FIGS. 5 (b) to 5 (e) show the wafer 4 after plating.
  • the same elements as those in FIGS. 1, 2 and 4 are designated by the same reference numerals.
  • reference numeral 7 is a bump which is a plating deposit layer. The heights of 1.6 million bumps on this wafer were measured using an automatic visual inspection device (Camtek, model number Falcon). From the measured bump height, the pit defect occurrence rate in the bump was calculated by the following formula. As shown in FIGS.
  • FIG. 5 (e) shows the void 9b in the bump 7 formed before the reflow.
  • a transmission X-ray apparatus manufactured by Dage
  • 5000 bumps on the reflowed wafer were observed from above and inspected for the presence of voids.
  • the case where the void area with respect to the bump area (maximum horizontal cross-sectional area of the bump) is 1% or more is counted as a "bump with a void”
  • the void generation rate is calculated based on the following equation.
  • Void generation rate (%) (number of bumps with voids / number of total bumps) x 10 2
  • Tables 1 and 3 The results are shown in Tables 1 and 3 above.
  • the maximum value of the particle size distribution of bubbles was as small as 40 ⁇ m. Therefore, the number of bumps having pit defects was 857, and the pit defect occurrence rate was as high as 536 ppm.
  • the number of bumps with voids having a void area of 1% or more was 53, and the void occurrence rate was 1.1%.
  • the maximum value of the particle size distribution of bubbles was as small as 25 ⁇ m. Therefore, the number of bumps having pit defects was 1073, and the pit defect occurrence rate was as high as 671 ppm.
  • the number of bumps with voids having a void area of 1% or more was 126, and the void occurrence rate was 2.5%.
  • the maximum value of the particle size distribution of bubbles was as small as 83 ⁇ m. Therefore, the number of bumps having pit defects was 135, and the pit defect occurrence rate was as high as 84 ppm.
  • the number of bumps with voids having a void area of 1% or more was 6, and the void occurrence rate was 0.1%.
  • the plating solutions of Examples 1 to 9 had a large maximum value of the particle size distribution of bubbles of 150 ⁇ m or more, and therefore, in the bumps formed from these plating solutions.
  • the pit defect occurrence rate was extremely low at 0 ppm to 15 ppm.
  • the void occurrence rate was 0%.
  • the bump electrode is made finer to a diameter of 100 ⁇ m or less and the depth of the resist pattern with respect to the diameter of the via is increased, the plating is deposited due to air bubbles generated in the plating solution. It was confirmed that the occurrence rate of pit defects and voids in the tin-containing bumps was reduced without being hindered.
  • the plating solution of the present invention can be used to form a part of an electronic component such as a semiconductor wafer or a bump electrode of a printed circuit board. Therefore, it can be used industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

An electroplating solution comprising (A) a soluble salt containing at least a first tin salt, (B) an acid or a salt thereof, and (C) a surfactant. When electrolysis is carried out at an anodic current density of 0.7 A/dm2, the maximum value of the particle size distribution of air bubbles released from an insoluble anode is 150 μm or more. It is preferred that the surfactant (C) is a nonionic surfactant comprising a polyoxyethylene-polyoxypropylene block polymer (PO-EO-PO) of which the terminal is polyoxypropylene (PO), the proportion of EO in the block polymer (PO-EO-PO) is 35 to 50% by mol, inclusive, and the mass average molecular weight of the nonionic surfactant is 3000 to 5000, inclusive.

Description

電解めっき液及び電解めっき方法Electroplating solution and electroplating method
 本発明は、錫又は錫合金のめっき膜を形成するための電解めっき液及び電解めっき方法に関する。更に詳しくは、半導体ウエハやプリント基板用のはんだバンプ形成に適する錫又は錫合金めっきに用いられる電解めっき液及び電解めっき方法に関する。
 本願は、2020年3月27日に日本に出願された特願2020-058073号、及び2021年3月19日に日本に出願された特願2021-46364に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electrolytic plating solution and an electrolytic plating method for forming a tin or tin alloy plating film. More specifically, the present invention relates to an electrolytic plating solution and an electrolytic plating method used for tin or tin alloy plating suitable for forming solder bumps for semiconductor wafers and printed circuit boards.
This application claims priority based on Japanese Patent Application No. 2020-058073 filed in Japan on March 27, 2020 and Japanese Patent Application No. 2021-46364 filed in Japan on March 19, 2021. Is used here.
 電解めっき(以下、単にめっきということもある。)を行う装置は、一般的に、電解めっき液(以下、単にめっき液ということもある。)を収容するめっき槽内に対向配置されたアノード(陽極)と、カソード(陰極)に接続される被めっき部材である半導体ウエハや基板とを備え、アノードと被めっき部材とに電圧が印加される。この通電により、被めっき部材表面にめっき膜が形成される。 A device that performs electrolytic plating (hereinafter, may be simply referred to as plating) is generally an anode (hereinafter, may be simply referred to as plating solution) arranged to face each other in a plating tank containing an electrolytic plating solution (hereinafter, may be simply referred to as plating solution). An anode) and a semiconductor wafer or substrate which is a member to be plated connected to the cathode (cathode) are provided, and a voltage is applied to the anode and the member to be plated. By this energization, a plating film is formed on the surface of the member to be plated.
 この電解めっき装置に用いられるアノードは、可溶性アノードと不溶性アノードに大きく分けられる。錫及び錫合金めっき液においては、めっき液成分(添加剤や錫より貴な金属成分)のアノード(陽極)表面での反応を抑制するため、アノードとして、白金(Pt)、白金コートチタン(Pt/Ti)又は酸化イリジウム(IrO2)等からなる不溶性アノードが一般的に用いられる。不溶性アノードを用いた場合、電解時にアノード表面では以下の反応式で示される、水の電気分解反応が起こる。
        2H2O → 4H+ + O2↑ + 4e-
 この際、アノード表面で発生した酸素ガス(気泡)は、アノード表面から脱離し、めっき液中に放出される。めっき液中に放出された酸素気泡は、めっき液中を浮遊した後、液面に到達して消泡するか、溶存ガスとしてめっき液中に溶解することで消滅する。しかし、気泡が消滅するまでの間に、気泡がカソード(陰極)に接続される被めっき部材に付着した場合、めっきの析出を妨げてピット欠陥を引き起こし易く、また、めっき膜中に取り込まれてボイドを引き起こし易いという問題があった。この問題は、水平式(CUP式、Face down式、噴水(Fountain type)式とも呼ばれる方式)のめっき装置を用いた場合に、顕在化する傾向にあり、特にアノード電流密度が0.5A/dm2(以下、ASD(Ampere per Square Decimeter)ということもある。)以上でめっきした際に顕著であった。
The anode used in this electroplating apparatus can be roughly divided into a soluble anode and an insoluble anode. In tin and tin alloy plating solutions, platinum (Pt) and platinum-coated titanium (Pt) are used as anodes in order to suppress the reaction of the plating solution components (metal components noble than additives and tin) on the anode surface. An insoluble anode made of / Ti) or iridium oxide (IrO 2 ) or the like is generally used. When an insoluble anode is used, the electrolysis reaction of water, which is represented by the following reaction formula, occurs on the surface of the anode during electrolysis.
2H 2 O → 4H + + O 2 ↑ + 4e-
At this time, the oxygen gas (air bubbles) generated on the surface of the anode is desorbed from the surface of the anode and released into the plating solution. Oxygen bubbles released into the plating solution disappear by floating in the plating solution and then reaching the liquid surface to defoam or dissolving in the plating solution as a dissolved gas. However, if the bubbles adhere to the member to be plated connected to the cathode (cathode) before the bubbles disappear, they are likely to prevent the precipitation of plating and cause pit defects, and are incorporated into the plating film. There was a problem that it was easy to cause voids. This problem tends to become apparent when a horizontal type (CUP type, Face down type, or Fountain type) plating device is used, and the anode current density is 0.5 A / dm in particular. It was remarkable when plating was performed with 2 (hereinafter, also referred to as ASD (Ampere per Square Decimeter)) or higher.
 具体的に、図2を用いて説明すると、水平式のめっき槽1で半導体ウエハ上にはんだバンプを形成する場合にあっては、めっき液2内に、水平に配置された不溶性アノード3に対向して、アノードの上方に水平にカソードに接続される半導体ウエハ(被めっき部材)4が配置される。めっきを行っている間、半導体ウエハ4は水平状態で回転する。また、めっき液2は、めっき槽1底部にそれぞれ設けられた吸引口1aと戻り口1bと循環ポンプ1cとにより、循環する。アノード3表面から脱離した気泡8は浮上して半導体ウエハ4表面に付着する。このため、図2の拡大図に示すように、気泡8が、レジストパターンにより形成されたレジスト層5のビア6の径以下であると、ビア内のめっき堆積層であるバンプ7に付着した気泡8が脱離せず、気泡付着部にめっきが析出しないことにより、ピット欠陥9aが発生し、また気泡8がめっき堆積層であるバンプ7内に残存して、リフロー後にバンプ内部にボイド9bを発生し易いという課題があった。 Specifically, when the solder bump is formed on the semiconductor wafer in the horizontal plating tank 1, it faces the insoluble anode 3 arranged horizontally in the plating solution 2. Then, the semiconductor wafer (member to be plated) 4 horizontally connected to the cathode is arranged above the anode. During the plating, the semiconductor wafer 4 rotates in a horizontal state. Further, the plating solution 2 is circulated by the suction port 1a, the return port 1b, and the circulation pump 1c provided at the bottom of the plating tank 1, respectively. The bubbles 8 desorbed from the surface of the anode 3 float and adhere to the surface of the semiconductor wafer 4. Therefore, as shown in the enlarged view of FIG. 2, when the bubbles 8 are smaller than the diameter of the via 6 of the resist layer 5 formed by the resist pattern, the bubbles adhering to the bump 7 which is the plating deposit layer in the via. Since the 8 is not detached and the plating is not deposited on the bubble adhesion portion, a pit defect 9a is generated, and the bubble 8 remains in the bump 7 which is a plating deposit layer, and a void 9b is generated inside the bump after reflow. There was a problem that it was easy to do.
 従来、この問題を解決するために、減圧しためっき槽内でめっきすることにより、ピット欠陥を少なくするめっき方法が開示されている(例えば、特許文献1(請求項1、段落[0001]~[0003])参照。)。 Conventionally, in order to solve this problem, a plating method for reducing pit defects by plating in a depressurized plating tank has been disclosed (for example, Patent Document 1 (Claim 1, paragraphs [0001] to []. 0003]).).
特開2004-43916号公報Japanese Unexamined Patent Publication No. 2004-43916
 従来までのバンプ電極は直径100μmを超えるものが多く、ビア内のバンプに付着した気泡は、撹拌等の装置条件により脱離を促進することができた。このため、気泡によってピット欠陥が生じるという問題はめっき装置の構造や撹拌強度の変更により、解決できる問題とされてきた。 Many of the conventional bump electrodes have a diameter of more than 100 μm, and air bubbles adhering to the bumps in the via can be desorbed by device conditions such as stirring. Therefore, the problem that pit defects are generated by air bubbles has been regarded as a problem that can be solved by changing the structure of the plating apparatus and the stirring strength.
 しかし、近年、バンプ電極が直径100μm以下に微細化し、レジスト層のビアの直径に対するビアの深さ(深さ/直径)が高アスペクト化になる結果、微細なビア内の奥深いめっき堆積層(バンプ)に付着した気泡を、装置条件により脱離させることは困難となってきた。このため、発生した気泡に起因してめっき堆積層が成長しないことによるピット欠陥及びめっき堆積層が成長した後のバンプ内のボイドの発生率を低減させる必要があった。特許文献1に示されるように、減圧しためっき槽内でめっきする方法はピット欠陥やボイドの発生率を低減させる一つの方法であるけれども、このめっき方法によっても上記課題は依然として未解決であった。 However, in recent years, the bump electrode has become finer to a diameter of 100 μm or less, and the depth (depth / diameter) of the via to the diameter of the via in the resist layer has become higher in aspect ratio. ) Has become difficult to desorb depending on the device conditions. Therefore, it is necessary to reduce the occurrence rate of pit defects due to the growth of the plating deposit layer due to the generated bubbles and the voids in the bump after the plating deposit layer has grown. As shown in Patent Document 1, the method of plating in a decompressed plating tank is one method of reducing the occurrence rate of pit defects and voids, but the above problem is still unsolved by this plating method. ..
 本発明の目的は、めっき液中に発生する気泡のためにめっきが析出しないことに起因して発生する、バンプにおけるピット欠陥及びバンプ内におけるボイドの発生率を少なくする電解めっき液及び電解めっき方法を提供することにある。 An object of the present invention is an electrolytic plating solution and an electrolytic plating method for reducing the occurrence rate of pit defects in bumps and voids in bumps, which are caused by the fact that plating does not precipitate due to bubbles generated in the plating solution. Is to provide.
 本発明者は、上記の課題を解決するために、鋭意研究を行った結果、特定構造を持つ界面活性剤をめっき浴中に含有させることで、アノード(陽極)表面で発生した酸素気泡を、めっき液中に放出される前に、アノード表面上で集合体にして巨大化させ、巨大化した酸素気泡が浮力によって液面に迅速に運ばれることで、酸素気泡がめっき液中に分散せず、結果として、カソード(陰極)に接続された被めっき部材表面への、ビア径より小さい径の気泡の付着を減少させ、ピット欠陥やボイドの発生を劇的に減少させることを見出し、本発明に到達した。 As a result of diligent research to solve the above problems, the present inventor has made oxygen bubbles generated on the surface of the anode (anode) by containing a surfactant having a specific structure in the plating bath. Before being released into the plating solution, it is aggregated on the surface of the anode and enlarged, and the enlarged oxygen bubbles are quickly carried to the liquid surface by buoyancy, so that the oxygen bubbles do not disperse in the plating solution. As a result, it has been found that the adhesion of bubbles having a diameter smaller than the via diameter to the surface of the member to be plated connected to the cathode is reduced, and the occurrence of pit defects and voids is dramatically reduced. Reached.
 本発明の第1の態様は、少なくとも第一錫塩を含む可溶性塩(A)と、酸又はその塩(B)と、界面活性剤(C)とを含む電解めっき液であって、アノード電流密度を0.7A/dm2で電解した際に、不溶性アノードから放出される気泡の粒径分布極大値が150μm以上であることを特徴とする電解めっき液である。前記粒径分布極大値は200μm以上であってもよい。上限は特に限定されないが、例えば1000μm以下であってもよい。 A first aspect of the present invention is an electrolytic plating solution containing a soluble salt (A) containing at least a stannous salt, an acid or a salt thereof (B), and a surfactant (C), wherein the anode current is present. This electroplating solution is characterized in that the maximum value of the particle size distribution of bubbles released from the insoluble anode when electrolyzed at a density of 0.7 A / dm 2 is 150 μm or more. The maximum value of the particle size distribution may be 200 μm or more. The upper limit is not particularly limited, but may be, for example, 1000 μm or less.
 本発明の第2の態様は、第1の態様に係る発明であって、前記界面活性剤(C)が、末端がポリオキシプロピレン(PO)であるポリオキシエチレンポリオキシプロピレンブロックポリマー(PO-EO-PO)のノニオン系界面活性剤であり、前記ブロックポリマー(PO-EO-PO)中のEO比率がモル比率で35%以上かつ50%以下の範囲であり、前記ノニオン系界面活性剤の質量平均分子量が3000以上かつ5000以下の範囲である電解めっき液である。前記EO比率は、モル比率で35%以上かつ45%以下の範囲であってもよく、40%以上かつ45%以下の範囲であってもよい。前記質量平均分子量は3000以上かつ4500以下の範囲であってもよく、3500以上かつ4500以下の範囲であってもよい。 A second aspect of the present invention is the invention according to the first aspect, wherein the surfactant (C) is a polyoxyethylene polyoxypropylene block polymer (PO-) having a polyoxypropylene (PO) terminal. EO-PO) nonionic surfactant, the EO ratio in the block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the nonionic surfactant. An electrolytic plating solution having a mass average molecular weight in the range of 3000 or more and 5000 or less. The EO ratio may be in the range of 35% or more and 45% or less in terms of molar ratio, or may be in the range of 40% or more and 45% or less. The mass average molecular weight may be in the range of 3000 or more and 4500 or less, or may be in the range of 3500 or more and 4500 or less.
 本発明の第3の態様は、第1の態様に係る発明であって、前記界面活性剤(C)が、アルキルスルホベタイン、又はアルキルヒドロキシスルホベタインの両性界面活性剤である電解めっき液である。 A third aspect of the present invention is the invention according to the first aspect, wherein the surfactant (C) is an electrolytic plating solution which is an amphoteric surfactant of alkylsulfobetaine or alkylhydroxysulfobetaine. ..
 本発明の第4の態様は、第1の態様から第3の態様のいずれかの態様に係る発明であって、前記界面活性剤(C)の含有量が0.5g/L以上かつ10g/L以下の範囲である電解めっき液である。前記含有量は1g/L以上かつ5g/L以下の範囲であってもよい。 A fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the content of the surfactant (C) is 0.5 g / L or more and 10 g / L. It is an electrolytic plating solution in the range of L or less. The content may be in the range of 1 g / L or more and 5 g / L or less.
 本発明の第5の態様は、カソードに接続される被めっき部材に不溶性アノードが対向配置されためっき槽に、第1の態様から第4の態様のいずれかの態様の電解めっき液を供給して前記被めっき部材を電解めっきする方法である。それぞれの対向面が互いにほぼ平行となる配置が好ましい。 A fifth aspect of the present invention is to supply the electroplating solution according to any one of the first to fourth aspects to a plating tank in which an insoluble anode is arranged so as to face a member to be plated connected to a cathode. This is a method of electrolytically plating the member to be plated. It is preferable that the facing surfaces are substantially parallel to each other.
 本発明の第6の態様は、第5の態様に係る発明であって、前記被めっき部材及び前記不溶性アノードが水平に配置されためっき槽を用いて電解めっきをする電解めっき方法である。前記被めっき部材及び前記不溶性アノードの上下関係は限定されないが、前記不溶性アノードが下側、前記被めっき部材が上側に位置することが好ましい。 A sixth aspect of the present invention is the invention according to the fifth aspect, which is an electrolytic plating method in which electrolytic plating is performed using a plating tank in which the member to be plated and the insoluble anode are horizontally arranged. The vertical relationship between the member to be plated and the insoluble anode is not limited, but it is preferable that the insoluble anode is located on the lower side and the member to be plated is located on the upper side.
 本発明の第1の態様の電解めっき液では、図1に示すように、アノード電流密度を0.7A/dm2で電解した際に、不溶性アノード3から放出される気泡8の粒径分布極大値が150μm以上であるため、レジストパターンにより形成されたレジスト層5のビア6内に気泡8が入りにくい。気泡8がビア6内のめっき堆積層に付着しない状態でめっき堆積層が成長してバンプ7になるため、めっきが析出しないことに起因して発生するピット欠陥及びバンプ内におけるボイドの発生率を少なくすることができる。図1において、図2に示した要素と同じ要素には同じ符号を付している。 In the electrolytic plating solution of the first aspect of the present invention, as shown in FIG. 1, when the anode current density is electrolyzed at 0.7 A / dm 2 , the particle size distribution of the bubbles 8 released from the insoluble anode 3 is maximized. Since the value is 150 μm or more, it is difficult for bubbles 8 to enter the via 6 of the resist layer 5 formed by the resist pattern. Since the plating deposit layer grows to become bumps 7 in a state where the bubbles 8 do not adhere to the plating deposit layer in the via 6, the occurrence rate of pit defects and voids in the bumps caused by the non-precipitation of plating can be determined. Can be reduced. In FIG. 1, the same elements as those shown in FIG. 2 are designated by the same reference numerals.
 本発明の第2の態様の電解めっき液では、界面活性剤(C)が、末端がポリオキシプロピレン(PO)であるポリオキシエチレンポリオキシプロピレンブロックポリマー(PO-EO-PO)のノニオン系界面活性剤であり、ブロックポリマー(PO-EO-PO)中のEO比率がモル比率で35%以上かつ50%以下の範囲であり、前記ノニオン系界面活性剤の質量平均分子量が3000以上かつ5000以下の範囲である。こうした界面活性剤は、親水性と疎水性の中間の性質を有するため、不溶性アノード表面および酸素気泡表面への吸着力が強い。これにより、図1に示すように、アノード(陽極)3表面で発生した酸素気泡8がめっき液2中に放出される前に、アノード3表面上で集合体となって巨大化し、アノード3から放出された気泡がレジスト層5のビア6内に入りにくい。この結果、ピット欠陥やボイドの発生率を少なくすることができる。 In the electrolytic plating solution of the second aspect of the present invention, the surfactant (C) is a nonionic interface of a polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) having a polyoxypropylene (PO) terminal. It is an activator, and the EO ratio in the block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of the nonionic surfactant is 3000 or more and 5000 or less. Is the range of. Since such a surfactant has a property intermediate between hydrophilicity and hydrophobicity, it has a strong adsorptive power to the surface of an insoluble anode and the surface of oxygen bubbles. As a result, as shown in FIG. 1, before the oxygen bubbles 8 generated on the surface of the anode (anode) 3 are released into the plating solution 2, they aggregate on the surface of the anode 3 and become huge, and from the anode 3. It is difficult for the released bubbles to enter the via 6 of the resist layer 5. As a result, the occurrence rate of pit defects and voids can be reduced.
 本発明の第3の態様の電解めっき液では、界面活性剤(C)が、アルキルスルホベタイン、又はアルキルヒドロキシスルホベタインの両性界面活性剤であるため、不溶性アノード表面および酸素気泡表面への吸着力が強いという効果を奏する。 In the electrolytic plating solution of the third aspect of the present invention, since the surfactant (C) is an amphoteric surfactant of alkylsulfobetaine or alkylhydroxysulfobetaine, the adsorption force on the surface of the insoluble anode and the surface of oxygen bubbles. Has the effect of being strong.
 本発明の第4の態様の電解めっき液では、界面活性剤(C)の含有量が0.5g/L以上かつ10g/L以下の範囲であることにより、界面活性剤(C)は、不溶性アノード表面および酸素気泡表面に十分量吸着することができる。この結果、ピット欠陥やボイドの発生率をより少なくすることができる。 In the electrolytic plating solution of the fourth aspect of the present invention, the surfactant (C) is insoluble because the content of the surfactant (C) is in the range of 0.5 g / L or more and 10 g / L or less. A sufficient amount can be adsorbed on the surface of the anode and the surface of oxygen bubbles. As a result, the occurrence rate of pit defects and voids can be further reduced.
 本発明の第5の態様の電解めっき方法では、電解めっき液2により不溶性アノード3から放出される気泡8の粒径分布極大値が150μm以上になるため、不溶性アノード3に対向配置される被めっき部材4にレジスト層5のビア6が形成される際に、ビア内に気泡8が取り込まれることなく、電解めっきが行われる。この結果、このめっき方法により、ピット欠陥やボイドの発生率を少なくすることができる。 In the electroplating method of the fifth aspect of the present invention, since the maximum particle size distribution of the bubbles 8 released from the insoluble anode 3 by the electrolytic plating solution 2 is 150 μm or more, the object to be plated is arranged to face the insoluble anode 3. When the via 6 of the resist layer 5 is formed on the member 4, electrolytic plating is performed without the bubbles 8 being taken into the via. As a result, this plating method can reduce the occurrence rate of pit defects and voids.
 本発明の第6の態様の電解めっき方法では、被めっき部材4及び不溶性アノード3が水平に配置されため、不溶性アノード3から放出される気泡8が上方の被めっき部材4に到達する場合であっても、気泡8が巨大化しているため、被めっき部材4に形成されるレジスト層5のビア6内に気泡8が取り込まれることなく、電解めっきが行われる。この結果、このめっき方法により、ピット欠陥やボイドの発生率を少なくすることができる。 In the electroplating method of the sixth aspect of the present invention, since the member 4 to be plated and the insoluble anode 3 are arranged horizontally, the bubbles 8 discharged from the insoluble anode 3 reach the upper member 4 to be plated. However, since the bubbles 8 are enormous, electrolytic plating is performed without the bubbles 8 being taken into the vias 6 of the resist layer 5 formed on the member 4 to be plated. As a result, this plating method can reduce the occurrence rate of pit defects and voids.
本発明に係る電解めっき液を用いて、電解めっきを行っている状況を示す電解めっき装置の模式図、及び被めっき部材の部分を拡大した断面図である。It is a schematic view of the electroplating apparatus which shows the situation which electroplating is performed using the electroplating liquid which concerns on this invention, and is the enlarged sectional view of the part of the member to be plated. 従来の電解めっき液を用いて、電解めっきを行っている状況を示す電解めっき装置の模式図、及び被めっき部材の部分を拡大した断面図である。It is a schematic view of the electrolytic plating apparatus which shows the situation which electroplating is performed using the conventional electroplating liquid, and is the enlarged cross-sectional view of the part of the member to be plated. 実施例における不溶性アノードから放出される気泡の粒径分布の極大値を測定する装置の構成図である。It is a block diagram of the apparatus which measures the maximum value of the particle size distribution of the bubble emitted from an insoluble anode in an Example. 実施例で作製したレジスト層を有する半導体ウエハの平面図である。It is a top view of the semiconductor wafer which has the resist layer produced in Example. めっき前後のビア(開口部)内のバンプ(めっき堆積層)の成長状況を示す断面図である。図5(a)はめっき前の被めっき部材の断面図であり、図2(b)はマッシュルーム形状の正常バンプが形成された被めっき部材の断面図であり、図2(c)及び(d)はピット欠陥が形成された被めっき部材の断面図である。また図2(e)はボイドが形成された被めっき部材の断面図である。It is sectional drawing which shows the growth state of the bump (plating deposit layer) in the via (opening) before and after plating. 5 (a) is a cross-sectional view of the member to be plated before plating, and FIG. 2 (b) is a cross-sectional view of the member to be plated in which normal mushroom-shaped bumps are formed. ) Is a cross-sectional view of the member to be plated in which the pit defect is formed. Further, FIG. 2 (e) is a cross-sectional view of the member to be plated in which voids are formed.
 以下に、本発明の一実施形態の電解めっき液について説明する。このめっき液は、半導体ウエハやプリント基板用のはんだバンプなどとして使用される錫又は錫合金のめっき膜の形成用材料として利用される。 The electrolytic plating solution according to the embodiment of the present invention will be described below. This plating solution is used as a material for forming a plating film of tin or a tin alloy used as a solder bump for a semiconductor wafer or a printed circuit board.
 本実施形態の錫又は錫合金めっき液は、少なくとも第一錫塩を含む可溶性塩(A)と、酸又はその塩(B)と、界面活性剤(C)とを含む電解めっき液である。その特徴は、アノード電流密度を0.7A/dm2で電解した際に、不溶性アノードから放出される気泡の粒径分布極大値が150μm以上であり、200μm以上であってもよいことにある。上限は特に限定されないが、例えば1000μm以下であってもよい。ここで、アノード電流密度を0.7ASD(A/dm2)に限定するのは、0.7ASD以上でピット欠陥およびボイドが顕在化し易い傾向があるためである。また不溶性アノードから放出される気泡の粒径分布極大値を150μm以上とするのは、被めっき部材のレジストパターンにより形成されるレジスト層のビア径は、一般的に10μm以上かつ100μm未満の範囲であり、気泡の粒径分布極大値を150μm以上とすることにより、ビア内のめっき堆積層に気泡が取り込まれる確率が低くなり、その結果、ピット欠陥やボイドの発生率を少なくすることができるからである。 The tin or tin alloy plating solution of the present embodiment is an electrolytic plating solution containing a soluble salt (A) containing at least a first tin salt, an acid or a salt thereof (B), and a surfactant (C). The feature is that when the anode current density is electrolyzed at 0.7 A / dm 2 , the maximum particle size distribution of bubbles released from the insoluble anode is 150 μm or more, and may be 200 μm or more. The upper limit is not particularly limited, but may be, for example, 1000 μm or less. Here, the reason why the anode current density is limited to 0.7 ASD (A / dm 2 ) is that pit defects and voids tend to become apparent at 0.7 ASD or more. Further, the maximum particle size distribution of bubbles discharged from the insoluble anode is set to 150 μm or more because the via diameter of the resist layer formed by the resist pattern of the member to be plated is generally in the range of 10 μm or more and less than 100 μm. By setting the maximum particle size distribution of bubbles to 150 μm or more, the probability that bubbles are taken into the plating deposit layer in the via is reduced, and as a result, the occurrence rate of pit defects and voids can be reduced. Is.
 本実施形態の錫合金は、錫と、銀、銅、ビスマス、ニッケル、アンチモン、インジウム、及び亜鉛より選ばれた1種又は2種以上の所定金属との合金である。例えば、錫-銀合金、錫-銅合金、錫-ビスマス合金、錫-ニッケル合金、錫-アンチモン合金、錫-インジウム合金、及び錫-亜鉛合金などの2元合金や、錫-銅-ビスマス、及び錫-銅-銀合金などの3元合金が挙げられる。 The tin alloy of the present embodiment is an alloy of tin and one or more predetermined metals selected from silver, copper, bismuth, nickel, antimony, indium, and zinc. For example, binary alloys such as tin-silver alloys, tin-copper alloys, tin-bismas alloys, tin-nickel alloys, tin-antimon alloys, tin-indium alloys, and tin-zinc alloys, tin-copper-bismus, etc. And ternary alloys such as tin-copper-silver alloys.
〔少なくとも第一錫塩を含む可溶性塩(A)〕
 本実施形態の可溶性塩(A)は、第一錫塩単独であるか、又はこの第一錫塩及び銀、銅、ビスマス、ニッケル、アンチモン、インジウム、亜鉛からなる群から選ばれた1種又は2種以上の金属の塩の混合物よりなる。
[Soluble salt containing at least first tin salt (A)]
The soluble salt (A) of the present embodiment is the stannous salt alone, or one selected from the group consisting of the stannous salt and silver, copper, bismuth, nickel, antimony, indium, and zinc. It consists of a mixture of two or more metal salts.
 従って、本実施形態の可溶性塩(A)はめっき液中でSn2+を単独で含むか、或いは、Sn2+とともに、Ag+、Cu+、Cu2+、Bi3+、Ni2+、Sb3+、In3+、Zn2+などの各種金属イオンを生成する任意の可溶性塩を1種又は2種以上含む。可溶性塩としては、例えば、これらの金属の酸化物、ハロゲン化物、無機酸又は有機酸の当該金属塩などが挙げられる。 Therefore, the soluble salt (A) of the present embodiment contains Sn 2+ alone in the plating solution, or together with Sn 2+ , Ag + , Cu + , Cu 2+ , Bi 3+ , Ni 2+ , It contains one or more arbitrary soluble salts that generate various metal ions such as Sb 3+ , In 3+ , and Zn 2+. Examples of the soluble salt include oxides of these metals, halides, the metal salt of an inorganic acid or an organic acid, and the like.
 金属酸化物としては、酸化第一錫、酸化銀、酸化銅、酸化ニッケル、酸化ビスマス、酸化アンチモン、酸化インジウム、酸化亜鉛などが挙げられる。金属のハロゲン化物としては、塩化第一錫、塩化ビスマス、臭化ビスマス、塩化第一銅、塩化第二銅、塩化ニッケル、塩化アンチモン、塩化インジウム、塩化亜鉛などが挙げられる。 Examples of metal oxides include stannous oxide, silver oxide, copper oxide, nickel oxide, bismuth oxide, antimony oxide, indium oxide, and zinc oxide. Examples of metal halides include stannous chloride, bismuth chloride, bismuth bromide, cuprous chloride, cupric chloride, nickel chloride, antimony chloride, indium chloride, and zinc chloride.
 無機酸又は有機酸の金属塩としては、硫酸銅、硫酸第一錫、硫酸ビスマス、硫酸ニッケル、硫酸アンチモン、硝酸ビスマス、硝酸銀、硝酸銅、硝酸アンチモン、硝酸インジウム、硝酸ニッケル、硝酸亜鉛、酢酸銅、酢酸ニッケル、炭酸ニッケル、錫酸ナトリウム、ホウフッ化第一錫、メタンスルホン酸第一錫、メタンスルホン酸銀、メタンスルホン酸銅、メタンスルホン酸ビスマス、メタンスルホン酸ニッケル、メタスルホン酸インジウム、ビスメタンスルホン酸亜鉛、エタンスルホン酸第一錫、2-ヒドロキシプロパンスルホン酸ビスマスなどが挙げられる。 Metal salts of inorganic or organic acids include copper sulfate, stannous sulfate, bismuth sulfate, nickel sulfate, antimony sulfate, bismuth nitrate, silver nitrate, copper nitrate, antimonyate nitrate, indium nitrate, nickel nitrate, zinc nitrate, and copper acetate. , Nickel acetate, nickel carbonate, sodium tinate, stannous borofluoride, stannous methanesulfonate, silver methanesulfonate, copper methanesulfonate, bismuth methanesulfonate, nickel methanesulfonate, indium metasulfonate, bismethane Examples thereof include zinc sulfonate, stannous ethanesulfonic acid, and bismuth 2-hydroxypropanesulfonic acid.
 本実施形態のめっき液における第一錫塩の含有量は、錫の量に換算して、好ましくは5g/L以上かつ200g/L以下の範囲、更に好ましくは20g/L以上かつ100g/L以下の範囲である。 The content of the first tin salt in the plating solution of the present embodiment is preferably in the range of 5 g / L or more and 200 g / L or less, more preferably 20 g / L or more and 100 g / L or less in terms of the amount of tin. Is the range of.
〔酸又はその塩(B)〕
 本実施形態の酸又はその塩(B)は、有機酸、無機酸、及びそれらの塩から選択される1種以上の酸又はその塩である。上記有機酸には、アルカンスルホン酸、アルカノールスルホン酸、芳香族スルホン酸等の有機スルホン酸、或いは脂肪族カルボン酸などが挙げられる。無機酸には、ホウフッ化水素酸、ケイフッ化水素酸、スルファミン酸、塩酸、硫酸、硝酸、過塩素酸などが挙げられる。それらの塩は、アルカリ金属の塩、アルカリ土類金属の塩、アンモニウム塩、アミン塩、スルホン酸塩などである。金属塩の溶解性や排水処理の容易性の観点から有機スルホン酸がより好ましい。
[Acid or salt thereof (B)]
The acid or salt (B) thereof of the present embodiment is one or more acids selected from organic acids, inorganic acids, and salts thereof, or salts thereof. Examples of the organic acid include organic sulfonic acids such as alkane sulfonic acid, alkanol sulfonic acid and aromatic sulfonic acid, and aliphatic carboxylic acids. Examples of the inorganic acid include borofluoric acid, silicate hydrofluoric acid, sulfamic acid, hydrochloric acid, sulfuric acid, nitric acid, perchloric acid and the like. These salts are alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts, sulfonates and the like. Organic sulfonic acids are more preferable from the viewpoint of solubility of metal salts and ease of wastewater treatment.
 上記アルカンスルホン酸としては、化学式Cn2n+1SO3H(例えば、n=1~5、好ましくは1~3)で示されるものが使用できる。具体的には、メタンスルホン酸、エタンスルホン酸、1―プロパンスルホン酸、2―プロパンスルホン酸、1―ブタンスルホン酸、2―ブタンスルホン酸、ペンタンスルホン酸などの他、ヘキサンスルホン酸、デカンスルホン酸、ドデカンスルホン酸などが挙げられる。 As the alkane sulfonic acid, those represented by the chemical formula C n H 2n + 1 SO 3 H (for example, n = 1 to 5, preferably 1 to 3) can be used. Specifically, methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 2-propanesulfonic acid, 1-butanesulfonic acid, 2-butanesulfonic acid, pentansulfonic acid, etc., as well as hexanesulfonic acid and decanesulfon. Acids, dodecane sulfonic acids and the like can be mentioned.
 上記アルカノールスルホン酸としては、化学式Cp2p+1-CH(OH)-Cq2q-SO3H(例えば、p=0~6、q=1~5、好ましくはp=0~2、q=1~2)で示されるものが使用できる。具体的には、2―ヒドロキシエタン―1―スルホン酸、2―ヒドロキシプロパン―1―スルホン酸、2―ヒドロキシブタン―1―スルホン酸、2―ヒドロキシペンタン―1―スルホン酸などの他、1―ヒドロキシプロパン―2―スルホン酸、3―ヒドロキシプロパン―1―スルホン酸、4―ヒドロキシブタン―1―スルホン酸、2―ヒドロキシヘキサン―1―スルホン酸、2―ヒドロキシデカン―1―スルホン酸、2―ヒドロキシドデカン―1―スルホン酸などが挙げられる。 The alkanolsulfonic acid has a chemical formula of C p H 2p + 1 -CH (OH) -C q H 2q -SO 3 H (for example, p = 0 to 6, q = 1 to 5, preferably p = 0 to 2). , Q = 1 to 2) can be used. Specifically, 2-hydroxyethane-1-sulfonic acid, 2-hydroxypropane-1-sulfonic acid, 2-hydroxybutane-1-sulfonic acid, 2-hydroxypentane-1-sulfonic acid, etc., as well as 1- Hydroxypropane-2-sulfonic acid, 3-hydroxypropane-1-sulfonic acid, 4-hydroxybutane-1-sulfonic acid, 2-hydroxyhexane-1-sulfonic acid, 2-hydroxydecane-1-sulfonic acid, 2- Hydroxidodecane-1-sulfonic acid and the like can be mentioned.
 上記芳香族スルホン酸は、基本的にはベンゼンスルホン酸、アルキルベンゼンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、アルキルナフタレンスルホン酸などである。具体的には、1-ナフタレンスルホン酸、2―ナフタレンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、p―フェノールスルホン酸、クレゾールスルホン酸、スルホサリチル酸、ニトロベンゼンスルホン酸、スルホ安息香酸、ジフェニルアミン―4―スルホン酸などが挙げられる。 The aromatic sulfonic acid is basically benzenesulfonic acid, alkylbenzenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid and the like. Specifically, 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, toluene sulfonic acid, xylene sulfonic acid, p-phenol sulfonic acid, cresol sulfonic acid, sulfosalicylic acid, nitrobenzene sulfonic acid, sulfobenzoic acid, diphenylamine-4- Examples include sulfonic acid.
 上記脂肪族カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、クエン酸、酒石酸、グルコン酸、スルホコハク酸、トリフルオロ酢酸などが挙げられる。 Examples of the aliphatic carboxylic acid include acetic acid, propionic acid, butyric acid, citric acid, tartaric acid, gluconic acid, sulfosuccinic acid, and trifluoroacetic acid.
 本実施形態のめっき液における有機酸及び無機酸から選ばれた酸又はその塩(B)の含有量は、特に限定はされないが、例えば10g/L以上かつ500g/L以下の範囲、好ましくは50g/L以上かつ300g/L以下の範囲であるとよい。 The content of the acid selected from the organic acid and the inorganic acid or the salt (B) thereof in the plating solution of the present embodiment is not particularly limited, but is, for example, in the range of 10 g / L or more and 500 g / L or less, preferably 50 g. It is preferably in the range of / L or more and 300 g / L or less.
〔界面活性剤(C)〕
 本実施形態のめっき液において用いる界面活性剤(C)としては、ノニオン系界面活性剤と両性界面活性剤が挙げられる。これら2種の界面活性剤を単独で用いても、併用してもよい。
 ノニオン系界面活性剤としては、ポリオキシエチレン(EO)とポリオキシプロピレン(PO)とを含み、末端がポリオキシプロピレン(PO)であるポリオキシエチレンポリオキシプロピレンブロックポリマー(PO-EO-PO)を用いることができる。このブロックポリマー(PO-EO-PO)中のEO比率はモル比率で35%以上かつ50%以下の範囲であり、このノニオン系界面活性剤の質量平均分子量は3000以上かつ5000以下の範囲である。上記EO比率がモル比率で35%未満では界面活性剤の疎水性の傾向が強くなり、50%を超えると界面活性剤の親水性の傾向が強くなり、いずれの場合も不溶性アノードから放出される気泡の粒径分布極大値を150μm以上にすることが困難になる。また界面活性剤の質量平均分子量が3000未満では錫又は錫合金の析出を抑制する効果が十分でないおそれがあり、5000を超えると錫又は錫合金の析出抑制力が強くなり過ぎて、均一なめっき膜が形成されないおそれがある。上記EO比率はモル比率で35%以上かつ45%以下の範囲であることが好ましく、40%以上かつ45%以下の範囲であることがより好ましい。上記質量平均分子量は3000以上かつ4500以下の範囲であることが好ましく、3500以上かつ4500以下の範囲であることがより好ましい。
[Surfactant (C)]
Examples of the surfactant (C) used in the plating solution of the present embodiment include a nonionic surfactant and an amphoteric surfactant. These two types of surfactants may be used alone or in combination.
The nonionic surfactant contains polyoxyethylene (EO) and polyoxypropylene (PO), and the terminal is polyoxypropylene (PO). Polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) Can be used. The EO ratio in this block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of this nonionic surfactant is in the range of 3000 or more and 5000 or less. .. When the EO ratio is less than 35% in terms of molar ratio, the hydrophobic tendency of the surfactant becomes strong, and when it exceeds 50%, the hydrophilic tendency of the surfactant becomes strong, and in any case, it is released from the insoluble anode. It becomes difficult to make the maximum value of the particle size distribution of bubbles 150 μm or more. Further, if the mass average molecular weight of the surfactant is less than 3000, the effect of suppressing the precipitation of tin or a tin alloy may not be sufficient, and if it exceeds 5000, the effect of suppressing the precipitation of tin or a tin alloy becomes too strong, and uniform plating is performed. The film may not be formed. The EO ratio is preferably in the range of 35% or more and 45% or less in terms of molar ratio, and more preferably in the range of 40% or more and 45% or less. The mass average molecular weight is preferably in the range of 3000 or more and 4500 or less, and more preferably in the range of 3500 or more and 4500 or less.
 本実施形態のノニオン系界面活性剤は、下記の式(1)で表される。式(1)中、a、b、cはブロックポリマー中の(PO)、(EO)及び(PO)のそれぞれ反復単位の数である。 The nonionic surfactant of this embodiment is represented by the following formula (1). In formula (1), a, b, and c are the number of repeating units of (PO), (EO), and (PO) in the block polymer, respectively.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、本実施形態におけるノニオン系界面活性剤として、エチレンジアミンにポリオキシエチレン(EO)とポリオキシプロピレン(PO)が付加重合されたもので、末端がポリオキシプロピレン(PO)であるエチレンジアミンポリオキシエチレンポリオキシプロピレンブロックポリマーを用いることもできる。このブロックポリマー中のEO比率はモル比率で35%以上かつ50%以下の範囲であり、この界面活性剤の質量平均分子量が3000以上かつ5000以下の範囲である。上記EO比率が35%未満では界面活性剤の疎水性の傾向が強くなり、50%を超えると界面活性剤の親水性の傾向が強くなり、いずれの場合も不溶性アノードから放出される気泡の粒径分布極大値を150μm以上にすることが困難になる。また界面活性剤の質量平均分子量が3000未満では錫又は錫合金の析出を抑制する効果が十分でないおそれがあり、5000を超えると錫又は錫合金の析出抑制力が強くなり過ぎて、均一なめっき膜が形成されないおそれがある。 Further, as the nonionic surfactant in the present embodiment, ethylenediamine polyoxyethylene obtained by addition polymerization of polyoxyethylene (EO) and polyoxypropylene (PO) to ethylenediamine and having polyoxypropylene (PO) at the end. Polyoxypropylene block polymer can also be used. The EO ratio in this block polymer is in the range of 35% or more and 50% or less in terms of molar ratio, and the mass average molecular weight of this surfactant is in the range of 3000 or more and 5000 or less. When the EO ratio is less than 35%, the hydrophobic tendency of the surfactant becomes strong, and when it exceeds 50%, the hydrophilic tendency of the surfactant becomes strong, and in any case, the particles of bubbles released from the insoluble anode. It becomes difficult to set the maximum diameter distribution value to 150 μm or more. Further, if the mass average molecular weight of the surfactant is less than 3000, the effect of suppressing the precipitation of tin or a tin alloy may not be sufficient, and if it exceeds 5000, the effect of suppressing the precipitation of tin or a tin alloy becomes too strong, and uniform plating is performed. The film may not be formed.
 本実施形態のノニオン系界面活性剤は、また下記の式(2)で表される。式(2)中、m、nはブロックポリマー中の(PO)、(EO)及び(PO)のそれぞれ反復単位の数である。 The nonionic surfactant of the present embodiment is also represented by the following formula (2). In formula (2), m and n are the number of repeating units of (PO), (EO) and (PO) in the block polymer, respectively.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造で示されるノニオン系界面活性剤は、ポリオキシエチレン(EO)とポリオキシプロピレン(PO)とを含むブロックポリマーにおいて、ポリオキシプロピレン(PO)が末端に存在すると、界面活性剤の疎水性が強まる理由で不溶性アノード及び酸素気泡表面への吸着力が強まる効果を有する。逆にこのブロックポリマーにおいて、ポリオキシエチレン(EO)が末端に存在すると、界面活性剤の親水性が強まる理由で不溶性アノード及び酸素気泡表面への吸着力が弱まる不具合を生じる。界面活性剤がこれらの特性を備えることにより、アノード電流密度を0.7ASDで電解した際に、不溶性アノードから放出される気泡の粒径分布極大値を150μm以上にする。
 なお、EO比率はNMR(Nuclear Magnetic Resonance)を用いてポリオキシエチレン(EO)とポリオキシプロピレン(PO)の強度比を比較することによって測定することができる。この測定方法については、「界面活性剤分析法」界面活性剤分析研究会編、幸書房(1975年発行)などに詳細に記載されている。
 また、質量平均分子量はサイズ排除クロマトグラフィー(SEC;Size Exclusion Chromatography)を用いて市販の標準物質と比較することによって測定することができる。
The nonionic surfactant represented by the above structure is a block polymer containing polyoxyethylene (EO) and polyoxypropylene (PO), and when polyoxypropylene (PO) is present at the terminal, the surfactant is hydrophobic. It has the effect of strengthening the adsorption force to the insoluble anode and the surface of oxygen bubbles. On the contrary, in this block polymer, when polyoxyethylene (EO) is present at the terminal, there causes a problem that the adsorption force to the insoluble anode and the surface of oxygen bubbles is weakened because the hydrophilicity of the surfactant is strengthened. When the surfactant has these characteristics, when the anode current density is electrolyzed at 0.7 ASD, the maximum value of the particle size distribution of the bubbles released from the insoluble anode is set to 150 μm or more.
The EO ratio can be measured by comparing the intensity ratios of polyoxyethylene (EO) and polyoxypropylene (PO) using NMR (Nuclear Magnetic Resonance). This measuring method is described in detail in "Surfactant Analysis Method" edited by Surfactant Analysis Study Group, Koshobo (published in 1975), and the like.
In addition, the mass average molecular weight can be measured by comparing with a commercially available standard substance using Size Exclusion Chromatography (SEC).
 めっき液中のノニオン系界面活性剤の含有量が、0.5g/L以上かつ10g/L以下の範囲であることが、また上記EO比率はモル比率で35%以上かつ50%以下の範囲であることが、更に界面活性剤の質量平均分子量が3000以上かつ5000以下の範囲であることが、不溶性アノードから放出される気泡の粒径分布極大値をより的確に150μm以上にするために、それぞれ好ましい。めっき液中のノニオン系界面活性剤の含有量が、1g/L以上かつ5g/L以下の範囲であることが更に好ましい。この界面活性剤の含有量が0.5g/L未満では、不溶性アノードから放出される気泡の粒径分布極大値が150μm以上にならないおそれがあり、10g/Lを超えると、均一なめっき膜が形成されないおそれがある。 The content of the nonionic surfactant in the plating solution should be in the range of 0.5 g / L or more and 10 g / L or less, and the EO ratio should be in the range of 35% or more and 50% or less in terms of molar ratio. In addition, the mass average molecular weight of the surfactant is in the range of 3000 or more and 5000 or less in order to more accurately set the maximum value of the particle size distribution of bubbles released from the insoluble anode to 150 μm or more. preferable. It is more preferable that the content of the nonionic surfactant in the plating solution is in the range of 1 g / L or more and 5 g / L or less. If the content of this surfactant is less than 0.5 g / L, the maximum value of the particle size distribution of bubbles discharged from the insoluble anode may not be 150 μm or more, and if it exceeds 10 g / L, a uniform plating film is formed. It may not be formed.
 本実施形態のノニオン系界面活性剤は、青木油脂工業株式会社製のEP-1461として市販されているものを精製することにより使用することができる。また本実施形態の界面活性剤は、公知の技術によって製造することができる。例えば、米国特許4726909号明細書における原料のポリオキシエチレンの分子量と、付加させるポリオキシプロピレンの反応量を調整することによって合成することができる。 The nonionic surfactant of the present embodiment can be used by purifying a commercially available product as EP-461 manufactured by Aoki Oil & Fat Industry Co., Ltd. Further, the surfactant of the present embodiment can be produced by a known technique. For example, it can be synthesized by adjusting the molecular weight of the raw material polyoxyethylene in US Pat. No. 4,726,909 and the reaction amount of the polyoxypropylene to be added.
 本実施形態の界面活性剤(C)として、両性界面活性剤を用いることができる。具体的には、例えば、アルキルスルホベタイン、又は、アルキルヒドロキシスルホベタインを用いることができる。アルキルスルホベタインは、下記の式(3)で表される。例えば、ラウリルスルホベタイン、ステアリルスルホベタイン等が挙げられる。アルキルヒドロキシスルホベタインは、下記の式(4)で表される。例えば、ラウリルヒドロキシスルホベタイン等が挙げられる。式(3)及び式(4)において、Rはアルキル基をそれぞれ示す。またアルキルスルホベタイン、又は、アルキルヒドロキシスルホベタインのRの炭素数は、それぞれ10以上かつ22以下の範囲であることが好ましい。また、電解めっき液中におけるこれらの両性界面活性剤の含有量が、0.5g/L以上かつ10g/L以下の範囲であることが、不溶性アノードから放出される気泡の粒径分布極大値をより的確に150μm以上にするために好ましい。電解めっき液中の両性界面活性剤の含有量が、1g/L以上かつ5g/L以下の範囲であることが更に好ましい。電解めっき液中の両性界面活性剤の含有量の好ましい範囲を0.5g/L以上かつ10g/Lの範囲以下にする理由は、ノニオン系界面活性剤の含有量の好ましい範囲にする理由と同じである。 An amphoteric surfactant can be used as the surfactant (C) of the present embodiment. Specifically, for example, alkyl sulfobetaine or alkyl hydroxysulfobetaine can be used. The alkylsulfobetaine is represented by the following formula (3). For example, lauryl sulfobetaine, stearyl sulfobetaine and the like can be mentioned. The alkylhydroxysulfobetaine is represented by the following formula (4). For example, lauryl hydroxysulfobetaine and the like can be mentioned. In formulas (3) and (4), R represents an alkyl group, respectively. Further, the carbon number of R of alkylsulfobetaine or alkylhydroxysulfobetaine is preferably in the range of 10 or more and 22 or less, respectively. Further, when the content of these amphoteric surfactants in the electrolytic plating solution is in the range of 0.5 g / L or more and 10 g / L or less, the maximum value of the particle size distribution of bubbles released from the insoluble anode is determined. It is preferable to make it more accurately 150 μm or more. It is more preferable that the content of the amphoteric surfactant in the electrolytic plating solution is in the range of 1 g / L or more and 5 g / L or less. The reason why the preferable range of the amphoteric tenside content in the electrolytic plating solution is 0.5 g / L or more and 10 g / L or less is the same as the reason why the content of the nonionic surfactant is set to the preferable range. Is.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本実施形態の界面活性剤(C)は、上記特徴を有するため、アノード電流密度を、例えば、0.7ASDで電解した際に、不溶性アノードから放出される気泡の粒径分布極大値を150μm以上にする。これにより、バンプ電極が直径100μm以下に微細化したビア内においても、レジスト層のビア内に気泡が入り込みにくく、ビア内におけるめっき堆積層の成長が気泡によって邪魔されずに円滑に行われてピット欠陥を生じにくい。またビア内のめっき堆積層中にボイドを生成しにくい。これによりめっき堆積層をリフローしたときに形成されるバンプの高さが均一になり、バンプ内のボイドが少なくなる。 Since the surfactant (C) of the present embodiment has the above-mentioned characteristics, when the anode current density is electrolyzed with, for example, 0.7 ASD, the maximum particle size distribution of bubbles released from the insoluble anode is 150 μm or more. To. As a result, even in the via where the bump electrode is miniaturized to a diameter of 100 μm or less, it is difficult for air bubbles to enter the via of the resist layer, and the growth of the plating deposition layer in the via is smoothly performed without being disturbed by the air bubbles. Less likely to cause defects. In addition, it is difficult to generate voids in the plating deposit layer in the via. As a result, the height of the bumps formed when the plating deposit layer is reflowed becomes uniform, and the voids in the bumps are reduced.
 上述した界面活性剤(C)を用いることによって、アノード電流密度を0.7A/dmで電解した際に、不溶性アノードから放出される気泡の粒径分布極大値を150μm以上とすることができる。 By using the above-mentioned surfactant (C), the maximum particle size distribution of bubbles released from the insoluble anode can be set to 150 μm or more when the anode current density is electrolyzed at 0.7 A / dm 2. ..
 本実施形態のめっき液は、必要に応じて更に酸化防止剤、錯体化剤、pH調整剤、光沢剤を含んでもよい。 The plating solution of the present embodiment may further contain an antioxidant, a complexing agent, a pH adjusting agent, and a brightening agent, if necessary.
〔酸化防止剤〕
 酸化防止剤はめっき液中のSn2+の酸化防止を目的としたものである。酸化防止剤の例としては、アスコルビン酸又はその塩、ピロガロール、ヒドロキノン、フロログルシノール、トリヒドロキシベンゼン、カテコール、クレゾールスルホン酸又はその塩、カテコールスルホン酸又はその塩、ヒドロキノンスルホン酸又はその塩などが挙げられる。例えば、酸性浴では、ヒドロキノンスルホン酸又はその塩、中性浴ではアスコルビン酸又はその塩などが好ましい。
〔Antioxidant〕
The antioxidant is intended to prevent the oxidation of Sn 2+ in the plating solution. Examples of antioxidants include ascorbic acid or a salt thereof, pyrogallol, hydroquinone, fluoroglusinol, trihydroxybenzene, catechol, cresol sulfonic acid or a salt thereof, catechol sulfonic acid or a salt thereof, hydroquinone sulfonic acid or a salt thereof, and the like. Can be mentioned. For example, hydroquinone sulfonic acid or a salt thereof is preferable in an acidic bath, and ascorbic acid or a salt thereof is preferable in a neutral bath.
 酸化防止剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。本実施形態のめっき液における酸化防止剤の添加量は、一般に0.01g/L以上かつ20g/L以下の範囲、好ましくは0.1g/L以上かつ10g/L以下の範囲、より好ましくは0.1g/L以上かつ5g/L以下の範囲である。 One type of antioxidant may be used alone, or two or more types may be used in combination. The amount of the antioxidant added to the plating solution of the present embodiment is generally in the range of 0.01 g / L or more and 20 g / L or less, preferably in the range of 0.1 g / L or more and 10 g / L or less, more preferably 0. It is in the range of 1 g / L or more and 5 g / L or less.
〔錯体化剤〕
 本実施形態のめっき液は、酸性、弱酸性、中性などの任意のpH領域の錫又は錫合金めっき浴に適用できる。Sn2+イオンは強酸性(pH:<1)では安定であるが、酸性から中性付近(pH:1~7)では白色沈澱を生じ易い。このため、本実施形態の錫又は錫合金めっき液を中性付近の錫めっき浴に適用する場合には、Sn2+イオンを安定化させる目的で、錫用の錯体化剤を添加するのが好ましい。
[Complexing agent]
The plating solution of the present embodiment can be applied to a tin or tin alloy plating bath in any pH range such as acidic, weakly acidic, and neutral. Sn 2+ ions are stable in strong acidity (pH: <1), but tend to cause white precipitation in the vicinity of acidic to neutral (pH: 1 to 7). Therefore, when the tin or tin alloy plating solution of the present embodiment is applied to a tin plating bath near neutrality, it is necessary to add a complexing agent for tin for the purpose of stabilizing Sn 2+ ions. preferable.
 錫用の錯体化剤としては、オキシカルボン酸、ポリカルボン酸、モノカルボン酸を使用できる。具体例としては、グルコン酸、クエン酸、グルコヘプトン酸、グルコノラクトン、酢酸、プロピオン酸、酪酸、アスコルビン酸、シュウ酸、マロン酸、コハク酸、グリコール酸、リンゴ酸、酒石酸、或はこれらの塩などが挙げられる。好ましくは、グルコン酸、クエン酸、グルコヘプトン酸、グルコノラクトン、グルコヘプトラクトン、或はこれらの塩などである。また、エチレンジアミン、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、イミノジプロピオン酸(IDP)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジオキシビス(エチルアミン)-N,N,N′,N′-テトラ酢酸、メルカプトトリアゾール類、メルカプトテトラゾール類、グリシン類、ニトリロトリメチルホスホン酸、1-ヒドロキシエタン-1,1-ジホスホン酸、或はこれらの塩などのポリアミンやアミノカルボン酸類も錯体化剤として有効である。 As the complexing agent for tin, oxycarboxylic acid, polycarboxylic acid, and monocarboxylic acid can be used. Specific examples include gluconic acid, citric acid, glucoheptonic acid, gluconolactone, acetic acid, propionic acid, butyric acid, ascorbic acid, oxalic acid, malonic acid, succinic acid, glycolic acid, malic acid, tartrate acid, or salts thereof. And so on. Preferred are gluconic acid, citric acid, glucoheptonic acid, gluconolactone, glucoheptlactone, or salts thereof. In addition, ethylenediamine, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentacetic acid (DTPA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), iminodipropionic acid (IDP), hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylene Tetramine hexaacetic acid (TTHA), ethylenedioxybis (ethylamine) -N, N, N', N'-tetraacetic acid, mercaptotriazoles, mercaptotetrazole, glycines, nitrilotrimethylphosphonic acid, 1-hydroxyethane-1, Polyamines and aminocarboxylic acids such as 1-diphosphonic acid or salts thereof are also effective as compositing agents.
 錫用の錯体化剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。本実施形態のめっき液における錫用の錯体化剤の添加量は、錫又は錫合金めっき液に含まれる可溶性錫塩化合物中の錫1モルに対して、一般に0.001モル以上かつ10モル以下の範囲であることが好ましい。より好ましくは0.01モル以上かつ5モル以下の範囲であり、更により好ましくは0.5モル以上かつ2モル以下の範囲である。 As the complexing agent for tin, one type may be used alone, or two or more types may be used in combination. The amount of the complexing agent for tin added to the plating solution of the present embodiment is generally 0.001 mol or more and 10 mol or less with respect to 1 mol of tin in the soluble tin salt compound contained in the tin or tin alloy plating solution. It is preferably in the range of. It is more preferably 0.01 mol or more and 5 mol or less, and even more preferably 0.5 mol or more and 2 mol or less.
 また、錫合金めっき液がSnAgめっき液である場合、銀用の錯体化剤として、水溶性スルフィド化合物又は水溶性チオール化合物を用いることができる。 When the tin alloy plating solution is a SnAg plating solution, a water-soluble sulfide compound or a water-soluble thiol compound can be used as the complexing agent for silver.
〔pH調整剤〕
 本実施形態のめっき液は、必要に応じてpH調整剤を含有することができる。pH調整剤の例としては、塩酸、硫酸等の各種の酸、アンモニア水、水酸化カリウム、水酸化ナトリウム、炭酸水素ナトリウム等の各種の塩基などが挙げられる。また、pH調整剤としては、酢酸、プロピオン酸などのモノカルボン酸類、ホウ酸類、リン酸類、シュウ酸、コハク酸などのジカルボン酸類、乳酸、酒石酸などのオキシカルボン酸類なども有効である。
[PH regulator]
The plating solution of the present embodiment may contain a pH adjuster, if necessary. Examples of the pH adjuster include various acids such as hydrochloric acid and sulfuric acid, various bases such as aqueous ammonia, potassium hydroxide, sodium hydroxide and sodium hydrogen carbonate. Further, as the pH adjusting agent, monocarboxylic acids such as acetic acid and propionic acid, dicarboxylic acids such as boric acid, phosphoric acid, oxalic acid and succinic acid, and oxycarboxylic acids such as lactic acid and tartaric acid are also effective.
〔光沢化剤〕
 本実施形態のめっき液は、必要に応じて光沢化剤を含有することができる。光沢化剤としては、芳香族カルボニル化合物が有効である。芳香族カルボニル化合物は、錫合金めっき膜中の錫合金の結晶粒子を微細化する作用がある。芳香族カルボニル化合物は、芳香族炭化水素の炭素原子にカルボニル基(-CO-X:但し、Xは、水素原子、ヒドロキシ基、炭素原子数が1~6個の範囲にあるアルキル基または炭素原子数が1~6個の範囲にあるアルコキシ基を意味する)が結合した化合物である。芳香族炭化水素は、ベンゼン環、ナフタレン環およびアントラセン環を含む。芳香族炭化水素は、置換基を有してもよい。置換基の例としては、ハロゲン原子、ヒドロキシ基、炭素原子数が1~6個の範囲にあるアルキル基および炭素原子数が1~6個の範囲にあるアルコキシ基を挙げることができる。カルボニル基は、芳香族炭化水素に直結していてもよいし、炭素原子数が1個以上かつ6個以下の範囲にあるアルキレン基を介して結合してもよい。芳香族カルボニル化合物の具体例としては、ベンザルアセトン、桂皮酸、シンナムアルデヒド、ベンズアルデヒドを挙げることができる。
[Glossing agent]
The plating solution of the present embodiment may contain a brightener, if necessary. As the brightener, an aromatic carbonyl compound is effective. The aromatic carbonyl compound has an action of refining the crystal particles of the tin alloy in the tin alloy plating film. Aromatic carbonyl compounds are carbon atoms of aromatic hydrocarbons with a carbonyl group (-CO-X: where X is a hydrogen atom, a hydroxy group, an alkyl group or a carbon atom having a carbon atom number in the range of 1 to 6). It is a compound to which (meaning an alkoxy group having a number in the range of 1 to 6) is bonded. Aromatic hydrocarbons include a benzene ring, a naphthalene ring and an anthracene ring. Aromatic hydrocarbons may have substituents. Examples of the substituent include a halogen atom, a hydroxy group, an alkyl group having a carbon atom number in the range of 1 to 6, and an alkoxy group having a carbon atom number in the range of 1 to 6. The carbonyl group may be directly linked to an aromatic hydrocarbon, or may be bonded via an alkylene group having 1 or more carbon atoms and 6 or less carbon atoms. Specific examples of the aromatic carbonyl compound include benzalacetone, cinnamic acid, cinnamaldehyde, and benzaldehyde.
 芳香族カルボニル化合物は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。本実施形態の錫合金めっき液における芳香族カルボニル化合物の添加量は、一般に0.01mg/L以上かつ500mg/L以下の範囲であることが好ましい。より好ましくは0.1mg/L以上かつ100mg/L以下の範囲であり、更により好ましくは1mg/L以上かつ50mg/L以下の範囲である。 The aromatic carbonyl compound may be used alone or in combination of two or more. The amount of the aromatic carbonyl compound added to the tin alloy plating solution of the present embodiment is generally preferably in the range of 0.01 mg / L or more and 500 mg / L or less. It is more preferably 0.1 mg / L or more and 100 mg / L or less, and even more preferably 1 mg / L or more and 50 mg / L or less.
〔電解めっき方法〕
 本実施形態の電解めっき方法は、図1に示される電解めっき装置を用いて行われる。この装置のめっき槽1には、カソードに接続される被めっき部材、例えば半導体ウエハ4に不溶性アノード3が対向配置される。このめっき槽1に上述した電解めっき液2を供給して電解めっきが行われる。半導体ウエハ4に不溶性アノード3が水平に配置される水平式のめっき装置において、本発明の効果がより一層発揮される。この電解めっき装置では、被めっき部材4と不溶性アノード3のそれぞれの対向面が互いにほぼ平行となる配置が好ましい。また被めっき部材及び不溶性アノードの上下関係は限定されないが、図1に示すように、不溶性アノードを下側に、被めっき部材を上側に配置することが、被めっき部材の入れ替えが容易となるため、量産性の観点から好ましい。
 本実施形態のめっき膜の形成時のアノード電流密度は、0.1A/dm2以上かつ5A/dm2以下の範囲とするとよい。液温は、10℃以上かつ50℃以下の範囲であることが好ましく、20℃以上かつ40℃以下の範囲であることが更に好ましい。
[Electroplating method]
The electroplating method of the present embodiment is performed using the electroplating apparatus shown in FIG. In the plating tank 1 of this apparatus, an insoluble anode 3 is arranged to face a member to be plated connected to a cathode, for example, a semiconductor wafer 4. The above-mentioned electrolytic plating solution 2 is supplied to the plating tank 1 to perform electrolytic plating. The effect of the present invention is further exhibited in a horizontal plating apparatus in which the insoluble anode 3 is horizontally arranged on the semiconductor wafer 4. In this electrolytic plating apparatus, it is preferable that the facing surfaces of the member 4 to be plated and the insoluble anode 3 are substantially parallel to each other. Further, the vertical relationship between the member to be plated and the insoluble anode is not limited, but as shown in FIG. 1, arranging the insoluble anode on the lower side and the member to be plated on the upper side facilitates replacement of the member to be plated. , Preferable from the viewpoint of mass productivity.
Anode current density at the time of forming the plating film of this embodiment, or equal to 0.1 A / dm 2 or more and 5A / dm 2 or less. The liquid temperature is preferably in the range of 10 ° C. or higher and 50 ° C. or lower, and more preferably in the range of 20 ° C. or higher and 40 ° C. or lower.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
(実施例及び比較例で用いるノニオン系界面活性剤)
 実施例1~5及び比較例1~5において使用されるポリオキシエチレン(EO)とポリオキシプロピレン(PO)とを含むポリオキシエチレンポリオキシプロピレンブロックポリマー(PO-EO-PO)又は(EO-PO-EO)の構造式、EO比率、界面活性剤の質量平均分子量を表1に示す。
(Nonion-based surfactant used in Examples and Comparative Examples)
Polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) or (EO-) containing polyoxyethylene (EO) and polyoxypropylene (PO) used in Examples 1 to 5 and Comparative Examples 1 to 5. Table 1 shows the structural formula of PO-EO), the EO ratio, and the mass average molecular weight of the surfactant.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例で用いるノニオン系界面活性剤と両性界面活性剤)
  また、実施例6~9において使用される界面活性剤を表2に示す。
(Nonion-based surfactant and amphoteric surfactant used in Examples)
Table 2 shows the surfactants used in Examples 6 to 9.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(Snめっき液の建浴)
 <実施例1>
 メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、界面活性剤として上記表1に示す構造式(PO-EO-PO)を有し、EO比率がモル比率で35%で、質量平均分子量が4000であるノニオン系界面活性剤と、光沢剤としてベンザルアセトンを加えた。そして最後にイオン交換水を加えて、下記組成のSnめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板をメタンスルホン酸水溶液中で電解させることにより調製した。
(Sn plating solution construction bath)
<Example 1>
The methanesulfonic acid Sn aqueous solution has methanesulfonic acid as a free acid and the structural formula (PO-EO-PO) shown in Table 1 above as a surfactant, and the EO ratio is 35% in terms of molar ratio, and the mass average. A nonionic surfactant having a molecular weight of 4000 and benzalacetone as a brightener were added. Finally, ion-exchanged water was added to bathe the Sn plating solution having the following composition. The methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate in the methanesulfonic acid aqueous solution.
(Snめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):50g/L
 メタンスルホン酸(遊離酸として):100g/L
 界面活性剤:5g/L
 ベンザルアセトン(光沢剤として):10mg/L
 イオン交換水:残部
(Composition of Sn plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L
Methanesulfonic acid (as free acid): 100 g / L
Surfactant: 5g / L
Benzalacetone (as a brightener): 10 mg / L
Ion-exchanged water: balance
 <実施例2~4、比較例1~5>
 実施例2~4及び比較例1~5では、界面活性剤として、構造式(PO-EO-PO)又は(EO-PO-EO)とEO比率と質量平均分子量が上記表1に示す性状のノニオン系界面活性剤を用いた。それ以外は、実施例1と同様にして、実施例2~4及び比較例1~5のSnめっき液を建浴した。
<Examples 2 to 4, Comparative Examples 1 to 5>
In Examples 2 to 4 and Comparative Examples 1 to 5, the structural formula (PO-EO-PO) or (EO-PO-EO), the EO ratio, and the mass average molecular weight are the properties shown in Table 1 above as the surfactant. A nonionic surfactant was used. Other than that, the Sn plating solutions of Examples 2 to 4 and Comparative Examples 1 to 5 were bathed in the same manner as in Example 1.
(SnAgめっき液の建浴)
 <実施例5>
 メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、錯体化剤としてチオジエタノールとを混合して溶解させた後、更にメタンスルホン酸Ag液を加えて混合した。混合によって均一な溶液となった後、更に界面活性剤として上記表1に示す構造式(PO-EO-PO)を有し、EO比率がモル比率で50%で、質量平均分子量が5000であるノニオン系界面活性剤と、光沢剤としてベンザルアセトンを加えた。そして最後にイオン交換水を加えて、下記組成のSnAgめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板を、メタンスルホン酸Ag水溶液は、金属Ag板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
(SnAg plating solution construction bath)
<Example 5>
Methanesulfonic acid as a free acid and thiodiethanol as a compositing agent were mixed and dissolved in an aqueous solution of methanesulfonic acid Sn, and then a methanesulfonic acid Ag solution was further added and mixed. After becoming a uniform solution by mixing, it further has the structural formula (PO-EO-PO) shown in Table 1 above as a surfactant, the EO ratio is 50% in molar ratio, and the mass average molecular weight is 5000. A nonionic surfactant and benzalacetone as a brightener were added. Finally, ion-exchanged water was added to bathe the SnAg plating solution having the following composition. The methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was prepared by electrolyzing a metal Ag plate in the methanesulfonic acid aqueous solution.
(SnAgめっき液の組成)
 メタンスルホン酸Sn(Sn2+として):50g/L
 メタンスルホン酸Ag(Ag+として):0.2g/L
 メタンスルホン酸(遊離酸として):100g/L
 チオジエタノール(錯体化剤として):5g/L
 界面活性剤:5g/L
 ベンザルアセトン(光沢剤として):10mg/L
 イオン交換水:残部
(Composition of SnAg plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L
Methanesulfonic acid Ag (as Ag + ): 0.2 g / L
Methanesulfonic acid (as free acid): 100 g / L
Thiodiethanol (as a complexing agent): 5 g / L
Surfactant: 5g / L
Benzalacetone (as a brightener): 10 mg / L
Ion-exchanged water: balance
 <実施例6>
  界面活性剤として、上記表1の比較例4に示すノニオン系界面活性剤1と、上記表2に示すラウリルヒドロキシスルホベタイン(炭素鎖数12)の両性界面活性剤2を用いた。
 メタンスルホン酸Sn水溶液に、遊離酸としてのメタンスルホン酸と、錯体化剤としてチオジエタノールとを混合して溶解させた後、更にメタンスルホン酸Ag液を加えて混合した。混合によって均一な溶液となった後、更に上記界面活性剤1と、上記界面活性剤2と、光沢剤としてベンザルアセトンを加えた。そして最後にイオン交換水を加えて、下記組成のSnAgめっき液を建浴した。なお、メタンスルホン酸Sn水溶液は、金属Sn板を、メタンスルホン酸Ag水溶液は、金属Ag板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
<Example 6>
As the surfactant, the nonionic surfactant 1 shown in Comparative Example 4 of Table 1 above and the amphoteric surfactant 2 of lauryl hydroxysulfobetaine (12 carbon chains) shown in Table 2 above were used.
Methanesulfonic acid as a free acid and thiodiethanol as a compositing agent were mixed and dissolved in an aqueous solution of methanesulfonic acid Sn, and then a methanesulfonic acid Ag solution was further added and mixed. After mixing to obtain a uniform solution, the above-mentioned surfactant 1, the above-mentioned surfactant 2, and benzalacetone as a brightening agent were further added. Finally, ion-exchanged water was added to bathe the SnAg plating solution having the following composition. The methanesulfonic acid Sn aqueous solution was prepared by electrolyzing a metal Sn plate, and the methanesulfonic acid Ag aqueous solution was prepared by electrolyzing a metal Ag plate in the methanesulfonic acid aqueous solution.
(SnAgめっき液の組成) 
 メタンスルホン酸Sn(Sn2+として):50g/L
 メタンスルホン酸Ag(Agとして):0.2g/L
 メタンスルホン酸(遊離酸として):100g/L 
 チオジエタノール(錯体化剤として):5g/L 
 ノニオン系界面活性剤1:5g/L 
 両性界面活性剤2:2g/L 
 ベンザルアセトン(光沢剤として):10mg/L 
 イオン交換水:残部
(Composition of SnAg plating solution)
Methanesulfonic acid Sn (as Sn 2+ ): 50 g / L
Methanesulfonic acid Ag (as Ag + ): 0.2 g / L
Methanesulfonic acid (as free acid): 100 g / L
Thiodiethanol (as a complexing agent): 5 g / L
Nonionic surfactant 1: 5g / L
Amphoteric surfactant 2: 2 g / L
Benzalacetone (as a brightener): 10 mg / L
Ion-exchanged water: balance
<実施例7>
 実施例6の両性界面活性剤2をラウリルスルホベタインに代えた以外、実施例6と同様の組成のSnAgめっき液を建浴した。
<Example 7>
A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the amphoteric surfactant 2 of Example 6 was replaced with lauryl sulfobetaine.
<実施例8>
 実施例6の両性界面活性剤2をステアリルスルホベタインに代えた以外、実施例6と同様の組成のSnAgめっき液を建浴した。
<Example 8>
A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the amphoteric tenside agent 2 of Example 6 was replaced with stearyl sulfobetaine.
<実施例9>
 実施例6からメタンスルホン酸Agとノニオン系界面活性剤を除いた以外、実施例6と同様の組成のSnAgめっき液を建浴した。
<Example 9>
A SnAg plating solution having the same composition as that of Example 6 was used in the bath, except that the methanesulfonic acid Ag and the nonionic surfactant were removed from Example 6.
 <比較試験及び評価>
 実施例1~9及び比較例1~5の14種類の建浴したそれぞれのめっき液を用いて、(1)不溶性アノードから放出される気泡の粒径分布極大値、(2)めっき後のピット欠陥発生率、及び(3)バンプ内のボイド発生率を次の方法により測定した。
 これらの結果を上記表1及び下記の表3に示す。
<Comparative tests and evaluations>
Using each of the 14 types of plating solutions in Examples 1 to 9 and Comparative Examples 1 to 5, (1) the maximum particle size distribution of bubbles released from the insoluble anode, and (2) the pit after plating. The defect generation rate and (3) void generation rate in the bumps were measured by the following methods.
These results are shown in Table 1 above and Table 3 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(1)不溶性アノードから放出される気泡の粒径分布極大値の測定
 初めに、気泡の粒径分布極大値を測定する装置について、図3を参照して説明する。このめっき槽11はフェイスダウン方式(Cup type、Fountain type)のめっきを行うための槽であって、その内寸の直径が35cm、深さが50cmの円筒形であり、建浴しためっき液12を入れたときの底面から液面までの高さが35cmであった。不溶性アノード(陽極)13として、厚み1.5mmのTi板上に3μm厚でPt層をクラッド形成した直径300mmのPt/Ti円盤を用い、めっき槽11内の底面に接する形で設置した。めっき槽11の底面から高さ5cmの位置に、循環ポンプ11cの吸引口となる配管11aを設置した。配管11aと対向する側壁に、底面から高さ5cmの位置に戻り口となる配管11bを設置した。循環ポンプ11cと戻り口となる配管11bとは配管11dにより接続した。この配管11dからサンプリング用配管11eを分岐して設け、サンプリング用配管11eの途中に透明な測定セル11fを設置した。この測定セル11fには、測定セルを通過する気泡の大きさ(粒径)を測定するためのVisiSize粒度分布測定装置(Oxford Lasers 社製、装置型番:SF、解析ソフトウェア:SOLO)11gを設置した。配管11a、11b及び11dの内径は60mmとし、サンプリング用配管11eの内径は40mmとした。
(1) Measurement of Maximum Particle Size Distribution of Bubbles Released from Insoluble Anode First, an apparatus for measuring the maximum particle size distribution of bubbles will be described with reference to FIG. The plating tank 11 is a tank for performing face-down type (Fountain type) plating, and has a cylindrical shape with an inner diameter of 35 cm and a depth of 50 cm. The height from the bottom surface to the liquid surface was 35 cm. As the insoluble anode (anode) 13, a Pt / Ti disk having a diameter of 300 mm in which a Pt layer having a thickness of 3 μm was formed on a Ti plate having a thickness of 1.5 mm was used and installed so as to be in contact with the bottom surface in the plating tank 11. A pipe 11a serving as a suction port for the circulation pump 11c was installed at a height of 5 cm from the bottom surface of the plating tank 11. On the side wall facing the pipe 11a, a pipe 11b serving as a return port was installed at a position 5 cm in height from the bottom surface. The circulation pump 11c and the pipe 11b serving as the return port were connected by the pipe 11d. A sampling pipe 11e was branched from the pipe 11d, and a transparent measurement cell 11f was installed in the middle of the sampling pipe 11e. In this measuring cell 11f, 11 g of a VisiSize particle size distribution measuring device (manufactured by Oxford Lasers, device model number: SF, analysis software: SOLO) for measuring the size (particle size) of bubbles passing through the measuring cell was installed. .. The inner diameters of the pipes 11a, 11b and 11d were 60 mm, and the inner diameter of the sampling pipe 11e was 40 mm.
 めっき槽11にめっき液12を入れた後、図示しない外径が33cmの円筒形の治具を用いて、直径300mmのシリコンウエハ14を、図3に示すように、めっき槽11内に固定した。具体的には、ウエハ14の下面がめっき液12の液面から2cmの深さになるように、浸漬させて、ウエハ14を固定した。ウエハ14はカソードに接続され、撹拌に起因する気泡の発生を抑制するために、50rpmの回転速度で水平回転させることでめっき液12を撹拌した。 After the plating solution 12 was put into the plating tank 11, a silicon wafer 14 having a diameter of 300 mm was fixed in the plating tank 11 as shown in FIG. 3 using a cylindrical jig having an outer diameter of 33 cm (not shown). .. Specifically, the wafer 14 was fixed by immersing the wafer 14 so that the lower surface of the wafer 14 was immersed at a depth of 2 cm from the liquid surface of the plating solution 12. The wafer 14 was connected to the cathode, and the plating solution 12 was stirred by horizontally rotating at a rotation speed of 50 rpm in order to suppress the generation of bubbles due to stirring.
 めっき液の循環による気泡の発生と、電解により不溶性アノードから発生する酸素気泡とを切り分けるために、最初は、電解(めっき)をせずに、循環ポンプ11cを10分間動作させ、配管11d、11e内をめっき液12で満たした後、循環ポンプ11cを停止させ、1時間静置して脱気を行った。次に、循環ポンプ11cによるめっき液の循環を1時間行い、測定セル内を通過する直径10μm以下の気泡が100個/mL以下になったことを確認した。配管11d内の流量は5L/minとし、サンプリング用配管11e内の流量は0.5L/minに制御してめっき液12を循環させた。その後、めっき液12の液温を25℃に、アノード電流密度を0.7ASDにそれぞれ設定して電解めっきを30分間行った。 In order to separate the generation of bubbles due to the circulation of the plating solution and the oxygen bubbles generated from the insoluble anode by electroplating, the circulation pump 11c was first operated for 10 minutes without electroplating, and the pipes 11d and 11e After filling the inside with the plating solution 12, the circulation pump 11c was stopped and allowed to stand for 1 hour for degassing. Next, the plating solution was circulated by the circulation pump 11c for 1 hour, and it was confirmed that the number of bubbles having a diameter of 10 μm or less passing through the measurement cell was 100 cells / mL or less. The flow rate in the pipe 11d was set to 5 L / min, and the flow rate in the sampling pipe 11e was controlled to 0.5 L / min to circulate the plating solution 12. Then, the liquid temperature of the plating solution 12 was set to 25 ° C. and the anode current density was set to 0.7 ASD, respectively, and electrolytic plating was performed for 30 minutes.
 電解めっきを行っている間、図3に示すように、不溶性アノード13から酸素気泡18が発生した。気泡18は、吸引口の配管11aに吸引され、配管11d及び11eを通って戻り口の配管11bからウエハ14に向かってめっき液内を浮上した。測定セル11fを通過する気泡18の大きさ(粒径)を上述した粒度分布測定装置11gで測定した。この測定した気泡の粒径分布の極大値を上記表1及び表3に示す。粒度分布が2つ以上の極大値を有する(いわゆる山が2つ以上ある)場合には、最も大きい山を極大値とする。 During the electrolytic plating, as shown in FIG. 3, oxygen bubbles 18 were generated from the insoluble anode 13. The air bubbles 18 were sucked into the suction port pipe 11a, passed through the pipes 11d and 11e, and floated in the plating solution from the return port pipe 11b toward the wafer 14. The size (particle size) of the bubbles 18 passing through the measurement cell 11f was measured by the particle size distribution measuring device 11g described above. The maximum value of the particle size distribution of the measured bubbles is shown in Tables 1 and 3 above. When the particle size distribution has two or more maximum values (so-called two or more peaks), the largest peak is set as the maximum value.
(2)めっき後のピット欠陥発生率の測定
 直径300mmのシリコンウエハの表面に、スパッタリング法によりチタン0.1μm、銅0.3μmの順に積層し、電気導通用シード層を形成し、そのシード層の上にドライフィルムレジスト(膜厚50μm)を積層した。次いで、露光用マスクを介して、ドライフィルムレジストを部分的に露光し、その後、現像処理した。こうして、図4に示すように、ウエハ4の表面に、直径が75μmの開口部であるビア6が150μmピッチで160万個形成されているパターンを有するレジスト層5を形成した。
(2) Measurement of pit defect occurrence rate after plating Titanium 0.1 μm and copper 0.3 μm are laminated in this order on the surface of a silicon wafer with a diameter of 300 mm by a sputtering method to form a seed layer for electrical conduction, and the seed layer is formed. A dry film resist (thickness 50 μm) was laminated on top of it. The dry film resist was then partially exposed via an exposure mask and then developed. In this way, as shown in FIG. 4, a resist layer 5 having a pattern in which 1.6 million vias 6 having openings having a diameter of 75 μm are formed at a pitch of 150 μm is formed on the surface of the wafer 4.
 図1に示すめっき装置を用いて、めっき液の液温を25℃に、アノード電流密度を0.7ASDにそれぞれ設定して、目標めっき膜厚75μmでレジスト層5のビア6を電解めっきした。次いで、ウエハ4をめっき槽1から取出して、洗浄、乾燥した後、レジスト層5を有機溶媒を用いて剥離した。こうして、1つのダイ(die)上に、直径が75μmのバンプが150μmピッチで160万個の等しいピッチ間隔で配列されているパターンを有するバンプ付ウエハを作製した。 Using the plating apparatus shown in FIG. 1, the temperature of the plating solution was set to 25 ° C. and the anode current density was set to 0.7 ASD, and the via 6 of the resist layer 5 was electrolytically plated with a target plating film thickness of 75 μm. Next, the wafer 4 was taken out from the plating tank 1, washed and dried, and then the resist layer 5 was peeled off using an organic solvent. In this way, a bumped wafer having a pattern in which bumps having a diameter of 75 μm are arranged at a pitch of 150 μm and 1.6 million at equal pitch intervals was produced on one die.
 図5(a)にめっき前のウエハ4を、図5(b)~(e)にめっき後のウエハ4をそれぞれ示す。図5において、図1、図2及び図4と同じ要素には同一符号を付している。図5(b)~(e)において、符号7はめっき堆積層であるバンプである。このウエハの160万個のバンプ高さを、自動外観検査装置(Camtek社製、型番Falcon)を用いて、測定した。測定したバンプの高さから、以下の式により、バンプにおけるピット欠陥発生率を算出した。図5(b)に示すように、レジスト5の表面よりも厚くめっきされ、断面がマッシュルーム形状になっているバンプを「正常バンプ」とカウントし、図5(c)及び(d)に示すように、レジスト5の表面に達しない、断面がマッシュルーム形状になっていない未成長のバンプ(めっき膜の厚さが50μm未満、即ち目標めっき膜厚の約67%未満)を「ピット欠陥」を有する欠陥バンプとしてカウントした。そして以下の式によりピット欠陥発生率を算出した。その結果を上記表1及び表3に示す。
     ピット欠陥発生率(ppm)=(欠陥バンプ数/全バンプ数)×10
FIG. 5 (a) shows the wafer 4 before plating, and FIGS. 5 (b) to 5 (e) show the wafer 4 after plating. In FIG. 5, the same elements as those in FIGS. 1, 2 and 4 are designated by the same reference numerals. In FIGS. 5 (b) to 5 (e), reference numeral 7 is a bump which is a plating deposit layer. The heights of 1.6 million bumps on this wafer were measured using an automatic visual inspection device (Camtek, model number Falcon). From the measured bump height, the pit defect occurrence rate in the bump was calculated by the following formula. As shown in FIGS. 5 (b), bumps plated thicker than the surface of the resist 5 and having a mushroom-shaped cross section are counted as "normal bumps" and as shown in FIGS. 5 (c) and 5 (d). In addition, ungrown bumps (the thickness of the plating film is less than 50 μm, that is, less than about 67% of the target plating film thickness) that does not reach the surface of the resist 5 and whose cross section is not mushroom-shaped have “pit defects”. Counted as defective bumps. Then, the pit defect occurrence rate was calculated by the following formula. The results are shown in Tables 1 and 3 above.
Pit defect occurrence rate (ppm) = (number of defect bumps / total number of bumps) x 10 6
(3)バンプ内のボイド発生率の測定
 ピット欠陥発生率を算出した後、ボイド発生率を測定した。めっき後のウエハの電気導通用シード層をエッチングすることにより除去し、このウエハをリフローした。図5(e)にリフロー前に形成されたバンプ7内のボイド9bを示す。透過X線装置(Dage社製)を用いて、リフローしたウエハ上の5000個のバンプを上面から観察し、ボイドの有無を検査した。ここで、バンプ面積(バンプの最大水平断面積)に対するボイド面積が1%以上の場合を「ボイドがあるバンプ」としてカウントし、次式に基づいて、ボイド発生率を算出した。
   ボイド発生率(%)=(ボイドがあるバンプの数/全バンプの数)×10
 その結果を上記表1及び表3に示す。
(3) Measurement of void generation rate in bumps After calculating the pit defect generation rate, the void generation rate was measured. The seed layer for electrical conduction of the wafer after plating was removed by etching, and the wafer was reflowed. FIG. 5 (e) shows the void 9b in the bump 7 formed before the reflow. Using a transmission X-ray apparatus (manufactured by Dage), 5000 bumps on the reflowed wafer were observed from above and inspected for the presence of voids. Here, the case where the void area with respect to the bump area (maximum horizontal cross-sectional area of the bump) is 1% or more is counted as a "bump with a void", and the void generation rate is calculated based on the following equation.
Void generation rate (%) = (number of bumps with voids / number of total bumps) x 10 2
The results are shown in Tables 1 and 3 above.
 表1から明らかなように、比較例1のめっき液では、不溶性アノードから放出される気泡の粒径分布の極大値が51μmと小さかった。このため、バンプ総数160万個中、ピット欠陥を有するバンプ数は762個あり、ピット欠陥発生率は476ppmと高かった。またボイド面積が1%以上のボイドのあるバンプ数は4個であり、バンプ総数5000個に対してボイド発生率は0.1%であった。 As is clear from Table 1, in the plating solution of Comparative Example 1, the maximum value of the particle size distribution of bubbles released from the insoluble anode was as small as 51 μm. Therefore, out of the total number of bumps of 1.6 million, the number of bumps having pit defects was 762, and the pit defect occurrence rate was as high as 476 ppm. The number of bumps having voids having a void area of 1% or more was 4, and the void generation rate was 0.1% with respect to the total number of bumps of 5000.
 また比較例2のめっき液では、気泡の粒径分布の極大値が40μmと小さかった。このため、ピット欠陥を有するバンプ数は857個あり、ピット欠陥発生率は536ppmと高かった。またボイド面積が1%以上のボイドのあるバンプ数は53個であり、ボイド発生率は1.1%であった。 In the plating solution of Comparative Example 2, the maximum value of the particle size distribution of bubbles was as small as 40 μm. Therefore, the number of bumps having pit defects was 857, and the pit defect occurrence rate was as high as 536 ppm. The number of bumps with voids having a void area of 1% or more was 53, and the void occurrence rate was 1.1%.
 また比較例3のめっき液では、気泡の粒径分布の極大値が25μmと小さかった。このため、ピット欠陥を有するバンプ数は1073個あり、ピット欠陥発生率は671ppmと高かった。またボイド面積が1%以上のボイドのあるバンプ数は126個であり、ボイド発生率は2.5%であった。 In the plating solution of Comparative Example 3, the maximum value of the particle size distribution of bubbles was as small as 25 μm. Therefore, the number of bumps having pit defects was 1073, and the pit defect occurrence rate was as high as 671 ppm. The number of bumps with voids having a void area of 1% or more was 126, and the void occurrence rate was 2.5%.
 また比較例4のめっき液では、気泡の粒径分布の極大値が83μmと小さかった。このため、ピット欠陥を有するバンプ数は135個あり、ピット欠陥発生率は84ppmと高かった。またボイド面積が1%以上のボイドのあるバンプ数は6個であり、ボイド発生率は0.1%であった。 In the plating solution of Comparative Example 4, the maximum value of the particle size distribution of bubbles was as small as 83 μm. Therefore, the number of bumps having pit defects was 135, and the pit defect occurrence rate was as high as 84 ppm. The number of bumps with voids having a void area of 1% or more was 6, and the void occurrence rate was 0.1%.
 更に比較例5のめっき液では、PO-EO-POの構造式を有する界面活性剤であったが、気泡の粒径分布の極大値が62μmと小さかった。このため、ピット欠陥を有するバンプ数は387個あり、ピット欠陥発生率は242ppmと高かった。またボイド面積が1%以上のボイドのあるバンプ数は18個であり、ボイド発生率は0.4%であった。 Further, in the plating solution of Comparative Example 5, although it was a surfactant having a structural formula of PO-EO-PO, the maximum value of the particle size distribution of bubbles was as small as 62 μm. Therefore, the number of bumps having pit defects was 387, and the pit defect occurrence rate was as high as 242 ppm. The number of bumps with voids having a void area of 1% or more was 18, and the void occurrence rate was 0.4%.
 これに対して、表1及び表3に示すように、実施例1~9のめっき液は、気泡の粒径分布の極大値が150μm以上と大きかったので、これらのめっき液から形成したバンプにおけるピット欠陥発生率は、0ppm~15ppmと極めて低かった。またボイド発生率は、0%であった。 On the other hand, as shown in Tables 1 and 3, the plating solutions of Examples 1 to 9 had a large maximum value of the particle size distribution of bubbles of 150 μm or more, and therefore, in the bumps formed from these plating solutions. The pit defect occurrence rate was extremely low at 0 ppm to 15 ppm. The void occurrence rate was 0%.
 以上の結果から、本発明によれば、バンプ電極が直径100μm以下に微細化し、レジストパターンのビアの直径に対する深さが高アスペクト化しても、めっき液中に発生する気泡のためにめっきの析出が妨げられず、錫含有のバンプにおけるピット欠陥及びボイドの発生率を少なくすることが確認された。 From the above results, according to the present invention, even if the bump electrode is made finer to a diameter of 100 μm or less and the depth of the resist pattern with respect to the diameter of the via is increased, the plating is deposited due to air bubbles generated in the plating solution. It was confirmed that the occurrence rate of pit defects and voids in the tin-containing bumps was reduced without being hindered.
 本発明のめっき液は、半導体ウエハやプリント基板のバンプ電極などのような電子部品の一部を形成するために利用することができる。よって、産業上の利用が可能である。 The plating solution of the present invention can be used to form a part of an electronic component such as a semiconductor wafer or a bump electrode of a printed circuit board. Therefore, it can be used industrially.
 1、11 めっき槽
 1a 吸引口
 11a 配管
 1b 戻り口
 11b 配管
 1c、11c 循環ポンプ
 11d 配管
 11e サンプリング用配管
 11f 測定セル
 11g 粒度分布測定装置
 2、12 めっき液
 3、13 不溶性アノード
 4、14 ウエハ(被めっき部材)
 5 レジスト層
 6 ビア(開口部)
 7 バンプ(めっき堆積層)
 8、18 気泡
 9a ピット欠陥
 9b ボイド
1, 11 Plating tank 1a Suction port 11a Piping 1b Return port 11b Piping 1c, 11c Circulation pump 11d Piping 11e Sampling piping 11f Measuring cell 11g Grain size distribution measuring device 2, 12 Plating liquid 3, 13 Insoluble anode 4, 14 Wafer (subject) Plating member)
5 Resist layer 6 Via (opening)
7 bumps (plating deposit layer)
8, 18 Bubbles 9a Pit defect 9b Void

Claims (6)

  1.  少なくとも第一錫塩を含む可溶性塩(A)と、酸又はその塩(B)と、界面活性剤(C)とを含む電解めっき液であって、
     アノード電流密度を0.7A/dm2で電解した際に、不溶性アノードから放出される気泡の粒径分布極大値が150μm以上であることを特徴とする電解めっき液。
    An electrolytic plating solution containing a soluble salt (A) containing at least a stannous salt, an acid or a salt thereof (B), and a surfactant (C).
    An electroplating solution characterized in that the maximum particle size distribution of bubbles discharged from an insoluble anode when electrolyzed at an anode current density of 0.7 A / dm 2 is 150 μm or more.
  2.  前記界面活性剤(C)が、末端がポリオキシプロピレン(PO)であるポリオキシエチレンポリオキシプロピレンブロックポリマー(PO-EO-PO)のノニオン系界面活性剤であり、
     前記ブロックポリマー(PO-EO-PO)中のEO比率がモル比率で35%以上かつ50%以下の範囲であり、
     前記ノニオン系界面活性剤の質量平均分子量が3000以上かつ5000以下の範囲である請求項1に記載の電解めっき液。
    The surfactant (C) is a nonionic surfactant of a polyoxyethylene polyoxypropylene block polymer (PO-EO-PO) having a polyoxypropylene (PO) terminal at the end.
    The EO ratio in the block polymer (PO-EO-PO) is in the range of 35% or more and 50% or less in terms of molar ratio.
    The electrolytic plating solution according to claim 1, wherein the mass average molecular weight of the nonionic surfactant is in the range of 3000 or more and 5000 or less.
  3.  前記界面活性剤(C)が、アルキルスルホベタイン、又はアルキルヒドロキシスルホベタインの両性界面活性剤である請求項1に記載の電解めっき液。 The electrolytic plating solution according to claim 1, wherein the surfactant (C) is an alkylsulfobetaine or an amphoteric surfactant of alkylhydroxysulfobetaine.
  4.  前記界面活性剤(C)の含有量が0.5g/L以上かつ10g/L以下の範囲である請求項1から3のいずれか一項に記載のめっき液。 The plating solution according to any one of claims 1 to 3, wherein the content of the surfactant (C) is in the range of 0.5 g / L or more and 10 g / L or less.
  5.  カソードに接続される被めっき部材に不溶性アノードが対向配置されためっき槽に、請求項1から4のいずれか1項に記載の電解めっき液を供給して前記被めっき部材を電解めっきする方法。 A method of electrolytically plating the member to be plated by supplying the electrolytic plating solution according to any one of claims 1 to 4 to a plating tank in which an insoluble anode is arranged so as to face the member to be plated connected to the cathode.
  6.  前記被めっき部材及び前記不溶性アノードが水平に配置されためっき槽を用いて電解めっきをする請求項5に記載の電解めっき方法。 The electrolytic plating method according to claim 5, wherein electroplating is performed using a plating tank in which the member to be plated and the insoluble anode are horizontally arranged.
PCT/JP2021/012153 2020-03-27 2021-03-24 Electroplating solution and electroplating method WO2021193696A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020058073 2020-03-27
JP2020-058073 2020-03-27
JP2021-046364 2021-03-19
JP2021046364A JP2021155850A (en) 2020-03-27 2021-03-19 Electrolytic plating solution and electrolytic plating method

Publications (1)

Publication Number Publication Date
WO2021193696A1 true WO2021193696A1 (en) 2021-09-30

Family

ID=77890436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012153 WO2021193696A1 (en) 2020-03-27 2021-03-24 Electroplating solution and electroplating method

Country Status (2)

Country Link
TW (1) TW202202661A (en)
WO (1) WO2021193696A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240489A (en) * 1993-02-19 1994-08-30 Motorola Inc Method and solution for electrodeposition of dense and lustrous tin or tin-lead alloy
JP2015092021A (en) * 2013-11-05 2015-05-14 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Plating bath and method
JP2018162512A (en) * 2017-03-27 2018-10-18 三菱マテリアル株式会社 Plating solution
JP2019163507A (en) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 Tin or tin-alloy plating solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240489A (en) * 1993-02-19 1994-08-30 Motorola Inc Method and solution for electrodeposition of dense and lustrous tin or tin-lead alloy
JP2015092021A (en) * 2013-11-05 2015-05-14 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Plating bath and method
JP2018162512A (en) * 2017-03-27 2018-10-18 三菱マテリアル株式会社 Plating solution
JP2019163507A (en) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 Tin or tin-alloy plating solution

Also Published As

Publication number Publication date
TW202202661A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
JP4267285B2 (en) Plating bath and method for depositing a metal layer on a substrate
EP1300488B1 (en) Plating path and method for depositing a metal layer on a substrate
TWI404834B (en) Electroplating bronze
US8920623B2 (en) Method for replenishing tin and its alloying metals in electrolyte solutions
JP2014037634A (en) Plating bath and method for depositing metal layer on substrate
JP6432667B2 (en) Tin alloy plating solution
JP6759736B2 (en) Plating liquid
TWI400366B (en) Electrolytic tin plating solution and electrolytic tin plating method
WO2006057873A1 (en) Near neutral ph tin electroplating solution
TWI703239B (en) Plating solution of tin or tin alloy and method for forming bumps
KR101004681B1 (en) Jumper for surface mount device
JP7015975B2 (en) Tin or tin alloy plating solution
WO2021193696A1 (en) Electroplating solution and electroplating method
JP2021155850A (en) Electrolytic plating solution and electrolytic plating method
WO2018142776A1 (en) Tin alloy plating solution
EP4230775A1 (en) Tin alloy plating solution
JP3903120B2 (en) Copper sulfate plating method
JP7064178B2 (en) Tin or tin alloy plating solution and method for forming bumps using the solution
US11643742B2 (en) Silver/tin electroplating bath and method of using the same
TW202233897A (en) Tin alloy plating solution
CN112236548A (en) Tin alloy plating solution
JP2006124794A (en) Tin or tin alloy plating bath, and plating method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774940

Country of ref document: EP

Kind code of ref document: A1