WO2021193602A1 - Crosslinked polymer, shiga toxin inhibitor, and pharmaceutical composition - Google Patents

Crosslinked polymer, shiga toxin inhibitor, and pharmaceutical composition Download PDF

Info

Publication number
WO2021193602A1
WO2021193602A1 PCT/JP2021/011916 JP2021011916W WO2021193602A1 WO 2021193602 A1 WO2021193602 A1 WO 2021193602A1 JP 2021011916 W JP2021011916 W JP 2021011916W WO 2021193602 A1 WO2021193602 A1 WO 2021193602A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
crosslinked polymer
shiga toxin
carbon atoms
Prior art date
Application number
PCT/JP2021/011916
Other languages
French (fr)
Japanese (ja)
Inventor
義俊 小椋
佳子 三浦
友 星野
紗織 瀧本
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2022510525A priority Critical patent/JPWO2021193602A1/ja
Publication of WO2021193602A1 publication Critical patent/WO2021193602A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen

Definitions

  • the present invention relates to crosslinked polymers, Shiga toxin inhibitors, and pharmaceutical compositions.
  • the present application claims priority based on Japanese Patent Application No. 2020-051743 filed in Japan on March 23, 2020, the contents of which are incorporated herein by reference.
  • EHEC enterohemorrhagic Escherichia coli
  • HUS hemolytic-uremic syndrome
  • Stx1 and Stx2 are composed of one molecule of A subunit and five molecules of B subunit.
  • the A subunit is a catalytic subunit having RNA-N-glucosidase activity.
  • the A subunit inactivates the 60S ribosome by the above activity, resulting in inhibition of cellular protein synthesis.
  • the B subunit has a binding activity to Gb3 (globotriaosylceramide), which is a glycolipid on the cell surface, and is involved in the invasion into the target cell.
  • Gb3 globotriaosylceramide
  • the homology of the amino acid sequences of Stx1 and Stx2 is about 50%. It is known that the amino acid sequence of Stx1 is almost the same as the amino acid sequence of Stx produced by Shigella dysentis.
  • Patent Document 1 reports that a polymer containing a globe trisaccharide is used as a therapeutic agent for EHEC infection.
  • an object of the present invention is to provide a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer.
  • the present invention includes the following aspects.
  • the at least one other structural unit contains a hydrophobic group having 4 to 20 carbon atoms (a2), a cationic group (a3), and an anionic group.
  • a pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection which comprises the crosslinked polymer according to any one of [1] to [6] and a pharmaceutically acceptable carrier. thing.
  • a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer are provided.
  • the NMR chart of the monomer (M1-1) synthesized in the Example is shown.
  • the results of evaluating the inhibitory effect of the crosslinked polymer of Example 1 on the cytotoxicity of Stx1 are shown.
  • the results of evaluating the inhibitory effect of the crosslinked polymer of Example 1 on the cytotoxicity of Stx2 are shown.
  • the results of evaluating the IC50 of the crosslinked polymers of Examples 2 to 10 for the cytotoxicity of Stx1 are shown.
  • the results of evaluating the IC50 of the crosslinked polymers of Examples 2 to 10 for the cytotoxicity of Stx2 are shown.
  • the results of evaluating the IC50 of the crosslinked polymers of Examples 7 to 18 for the cytotoxicity of Stx1 are shown.
  • the results of evaluating the IC50 of the crosslinked polymers of Examples 7 to 18 for the cytotoxicity of Stx2 are shown.
  • the test schedule of the crosslinked polymer administration test of Example 7 using O157-infected mice is shown.
  • the survival curve of the O157-infected mouse to which the crosslinked polymer of Example 7 was administered is shown.
  • the results of stool culture of stool collected from O157-infected mice to which the crosslinked polymer of Example 7 was administered are shown.
  • Constant unit means a monomer unit (monomer unit) constituting a polymer.
  • hydrogen atom (-H) is replaced with a monovalent group
  • methylene group (-CH 2- ) is replaced with a divalent group.
  • Aromatic hydrocarbon group means a hydrocarbon group having at least one aromatic ring. The aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the aromatic ring is an aromatic hydrocarbon ring such as benzene, naphthalene, anthracene, phenanthrene; and a part of carbon atoms constituting the aromatic hydrocarbon ring is replaced with a hetero atom (oxygen atom, sulfur atom, nitrogen atom, etc.).
  • a hetero atom oxygen atom, sulfur atom, nitrogen atom, etc.
  • the aromatic heterocycles that have been used.
  • “Alphatic” is a concept relative to aromatics and means groups, compounds, etc. that do not have aromaticity.
  • the "alkyl group” includes linear, branched and cyclic monovalent saturated hydrocarbon groups unless otherwise specified. The same applies to the alkyl group in the alkoxy group.
  • the "alkylene group” includes linear, branched and cyclic divalent saturated hydrocarbon groups unless otherwise specified.
  • the “constituent unit derived from an acrylamide derivative” means a structural unit formed by cleavage of an ethylenic double bond of an acrylamide derivative.
  • the hydrogen atom bonded to the carbon atom at the ⁇ -position may be substituted with a substituent.
  • the carbon atom at the ⁇ -position of acrylamide is the carbon atom to which the carbonyl group of acrylamide is bonded.
  • Examples of the substituent that replaces the hydrogen atom bonded to the ⁇ -position carbon atom of acrylamide include an alkyl group having 1 to 5 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group). , Tart-butyl group, pentyl group, isopentyl group, neopentyl group) and the like.
  • the “constituent unit derived from the acrylic acid ester” means a structural unit formed by cleaving the ethylenic double bond of the acrylic acid ester.
  • the hydrogen atom bonded to the carbon atom at the ⁇ -position may be substituted with a substituent.
  • the carbon atom at the ⁇ -position of the acrylic acid ester is the carbon atom to which the carbonyl group of acrylic acid is bonded.
  • Examples of the substituent that replaces the hydrogen atom bonded to the carbon atom at the ⁇ -position of the acrylic acid ester include those similar to those mentioned in the above-mentioned structural unit derived from acrylamide.
  • “Shiga toxin” means toxin produced by enterohemorrhagic Escherichia coli (EHCE) and Shigella dysentis, and is a concept including Stx1 family, Stx2 family, and Stx.
  • the "polymerizable monomer mixture” means a mixture of polymerizable monomers to be subjected to a polymerization reaction for obtaining a crosslinked polymer.
  • the "polymerizable monomer” means a monomer containing at least one polymerizable group.
  • the "polymerizable group” means a functional group subjected to a polymerization reaction.
  • asymmetric carbon may be present, and an enantiomer or a diastereomer may be present. In that case, one chemical formula is used to represent those isomers. These isomers may be used alone or as a mixture.
  • the present invention provides a crosslinked polymer in which a random copolymer is crosslinked.
  • the random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit.
  • the crosslinked polymer of this embodiment is a polymer crosslinked by a random copolymer.
  • the random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit.
  • a copolymer having a structural unit (a1) and another structural unit it is possible to combine Shiga toxin with a functional group capable of interacting with various modes.
  • a random copolymer it is possible to form a diverse structure. Therefore, there is a high probability that a binding site having high binding to Shiga toxin will be formed.
  • the random copolymer does not need to carry out the polymerization reaction for each block, so that the production time and the production cost can be suppressed.
  • the random copolymer contained in the crosslinked polymer may be one kind or two or more kinds.
  • Cross-linking of the random copolymer can be carried out by using a polymerizable monomer mixture to which a cross-linking agent containing two or more polymerizable groups is added in the copolymerization reaction for obtaining the random copolymer.
  • the cross-linking reaction of the random copolymer may be carried out using a cross-linking agent having two or more groups that react with the functional groups in the random copolymer. Since the synthesis and cross-linking of the random copolymer can be performed in one step, a method of copolymerizing using a polymerizable monomer mixture containing a cross-linking agent is preferable.
  • the random copolymer contained in the crosslinked polymer of the present embodiment has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide.
  • the crosslinked polymer of the present embodiment has a high binding property to Shiga toxin by having the structural unit (a1).
  • the Shiga toxin-binding oligosaccharide contained in the structural unit (a1) is not particularly limited as long as it has Shiga toxin-binding property.
  • the Shiga toxin-binding oligosaccharide is preferably a Globotrisaccharide or a derivative thereof.
  • Globotrisaccharide is a trisaccharide having a structure of Gal ⁇ (1-4) -Gal ⁇ (1-4) -Glc-. In the following formula, * is a bond.
  • Examples of the structural unit (a1) include a structural unit represented by the following general formula (a1-1).
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 1 represents a divalent linking group.
  • Gb represents a Shiga toxin-binding oligosaccharide.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group preferably has 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • R is particularly preferably a hydrogen atom.
  • Y 1 represents a divalent linking group.
  • the divalent linking group include a divalent hydrocarbon group which may have a substituent.
  • the divalent hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group for Y 1 may be a saturated, or unsaturated.
  • Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group and an aliphatic hydrocarbon group having a ring in the structure.
  • the linear aliphatic hydrocarbon group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • a linear alkylene group is preferable.
  • the branched aliphatic hydrocarbon group preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 3 to 6 carbon atoms.
  • a branched-chain alkylene group is preferable.
  • a cyclic aliphatic hydrocarbon group which may contain a substituent containing a hetero atom in the ring structure (a group obtained by removing two hydrogen atoms from the aliphatic hydrocarbon ring).
  • the cyclic aliphatic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms.
  • the cyclic aliphatic hydrocarbon group may be a polycyclic group or a monocyclic group.
  • the cyclic aliphatic hydrocarbon group may be substituted with a substituent containing a hetero atom (oxygen atom, nitrogen atom, sulfur atom, etc.) as a part of the carbon atom constituting the ring structure.
  • the aromatic ring contained in the aromatic hydrocarbon group is more preferably 6 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene and phenanthrene; and aromatic heterocycles such as triazole ring, pyridine ring and thiophene ring.
  • the aromatic hydrocarbon group is a group obtained by removing two hydrogen atoms from the aromatic hydrocarbon ring or aromatic heterocycle (arylene group or heteroarylene group); an aromatic compound containing two or more aromatic rings.
  • a group obtained by removing two hydrogen atoms from for example, biphenyl, fluorene, etc.
  • one of the hydrogen atoms of the group (aryl group or heteroaryl group) obtained by removing one hydrogen atom from the aromatic hydrocarbon ring or aromatic heterocyclic ring examples thereof include a group in which one is substituted with an alkylene group (a group obtained by removing one hydrogen atom from an aryl group or a heteroaryl group) and the like.
  • the alkylene group that replaces the hydrogen atom preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
  • Hydrocarbon group which may have a substituent in Y 1 are methylene groups constituting the carbon chain - be those part of has been replaced with a divalent linking group containing a hetero atom (-CH 2) You may.
  • H alkyl group may be substituted with a substituent such as an acyl group), -.
  • the structural unit (a1) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester.
  • Examples of the divalent hydrocarbon group that may have a substituent in Y 11 include those similar to those mentioned in Y 1. Among them, Y 11 is preferably an alkylene group which may have a substituent, or a group in which one of the hydrogen atoms of an aryl group or a heteroaryl group is substituted with an alkylene group.
  • the alkylene group which may have the substituent may be linear or branched, but is preferably linear.
  • the linear alkylene group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the branched alkylene group preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • Y 11 is an alkylene group which may have a substituent, a part of the methylene group constituting the carbon chain of the alkylene group may be substituted with a divalent linking group containing a heteroatom. Examples of the divalent linking group containing the hetero atom include the same ones as mentioned in Y 1.
  • the alkylene group substituting the hydrogen atom may be linear or branched. Although it may be used, it is preferably linear.
  • the linear alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • the branched alkylene group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • Examples of the aromatic ring contained in the aryl group include a benzene ring.
  • heterocyclic ring contained in the heteroaryl group examples include a triazole ring, an imidazole ring, a pyridine ring, and a thiophene ring.
  • Y 11 is preferably a group in which one of the hydrogen atoms of the triazole group is substituted with an alkylene group.
  • Gb represents a Shiga toxin-binding oligosaccharide.
  • Gb is preferably Globotrisaccharide.
  • a preferable example of the structural unit (a1) is a structural unit represented by the following general formula (a1-1-1).
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • L 1 represents -CO-O- or -CO-NH-.
  • R 1 represents a linear or branched alkylene group having 1 to 10 carbon atoms.
  • Gb represents a Shiga toxin-binding oligosaccharide.
  • R and Gb are the same as R and Gb in the general formula (a1-1), respectively.
  • L 1 represents -CO-O- or -CO-NH-.
  • L 1 is preferably -CO-NH-.
  • R 1 represents a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, further preferably 1 to 3 carbon atoms, and particularly preferably a methylene group or an ethylene group.
  • R ⁇ represents a hydrogen atom or a methyl group.
  • the structural unit (a1) may be one type or two or more types.
  • the ratio of the structural unit (a1) in the total random copolymer contained in the crosslinked polymer of the present embodiment is preferably 3 mol% or more with respect to the total (100 mol%) of all the structural units constituting the total random copolymer. It is preferably mol% or more, more preferably 8 mol% or more, and particularly preferably 10 mol% or more.
  • the upper limit of the ratio of the constituent unit (a1) in the all random copolymer is not particularly limited.
  • the proportion of the constituent unit (a1) is preferably, for example, 40 mol% or less, more preferably 30 mol% or less, from the viewpoint of production cost.
  • 20 mol% or less is more preferable, and 15 mol% or less is particularly preferable.
  • the ratio of the structural unit (a1) is preferably 3 to 40 mol%, more preferably 5 to 30 mol%, further preferably 8 to 20 mol%, and particularly preferably 10 to 15 mol%.
  • the random copolymer has at least one other structural unit in addition to the above structural unit (a1).
  • the other structural units include a structural unit containing a hydrophobic group having 4 to 20 carbon atoms (a2), a structural unit containing a cationic group (a3), a structural unit containing an anionic group (a4), and 1-. (3-sulfopropyl) -2-vinylpyridinium hydroxide
  • the structural unit (a5) derived from the intramolecular salt (hereinafter, also referred to as “PPS”), the structural unit (a6) derived from the cross-linking agent, and the like can be mentioned. Be done.
  • the structural unit (a2) is a structural unit containing a hydrophobic group having 4 to 20 carbon atoms.
  • the random copolymer preferably has a structural unit (a2). When the random copolymer has the constituent unit (a2), the Shiga toxin inhibitory effect is further improved.
  • Examples of the hydrophobic group having 4 to 20 carbon atoms contained in the structural unit (a2) include a hydrocarbon group having 4 to 20 carbon atoms.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon group containing a ring in the structure, and the like.
  • the aliphatic hydrocarbon group preferably has 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and even more preferably 4 to 6 carbon atoms.
  • the aliphatic hydrocarbon group may be saturated or unsaturated, but is preferably saturated.
  • Examples of the linear aliphatic hydrocarbon group include linear alkyl groups such as n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the branched aliphatic hydrocarbon group include an isobutyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a 1,1-dimethylpropyl group, a 1,1-diethylpropyl group and a 2,2-dimethylbutyl group.
  • Branched chain alkyl groups can be mentioned.
  • the aliphatic hydrocarbon group containing a ring in the structure may be a monocyclic group or a polycyclic group.
  • Examples of the monocyclic group include cycloalkyl groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group, dimethylcyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group and cyclodecyl group.
  • Examples of the polycyclic group include a decahydronaphthyl group, an adamantyl group, a 2-alkyladamantan-2-yl group, a 1- (adamantan-1-yl) alkane-1-yl group, a norbornyl group, and a methylnorbornyl group. Examples thereof include an isobornyl group.
  • the aromatic hydrocarbon group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the aromatic hydrocarbon group may be a monocyclic group or a polycyclic group.
  • Examples of the monocyclic aromatic hydrocarbon group include a phenyl group; and a p-methylphenyl group, a p-tert-butylphenyl group, a tolyl group, a xsilyl group, a cumenyl group, a mesityl group, a 2,6-diethylphenyl group, and 2 Examples thereof include a group in which a part of hydrogen atoms of a phenyl group such as a -methyl-6-ethylphenyl group and a p-adamantylphenyl group is substituted with an alkyl group or a cycloalkyl group.
  • Examples of the polycyclic aromatic hydrocarbon group include a bipheny
  • hydrophobic group a branched chain alkyl group or a monocyclic aromatic hydrocarbon group is preferable, and a tert-butyl group or a phenyl group is more preferable.
  • Examples of the structural unit (a2) include those represented by the following general formula (a2-1).
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 2 represents a single bond or a divalent linking group.
  • R 2 represents a hydrophobic group having 4 to 20 carbon atoms.
  • R is the same as R in the above formula (a1-1).
  • Y 2 represents a single bond or a divalent linking group.
  • Examples of the divalent linking group in Y 2 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1).
  • the structural unit (a2) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 2 are, -CO-NH-Y 21 - , or -CO-O-Y 21 - ( Y 21 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) the group represented by may be mentioned, -CO-NH-Y 21 - group represented by are preferred.
  • Y 21 is a divalent hydrocarbon group which may have a substituent
  • the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1).
  • Y 21 is preferably a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the linear or branched alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 or 2 carbon atoms.
  • R 2 represents a hydrophobic group having 4 to 20 carbon atoms. Hydrophobic groups include those similar to those listed above.
  • a structural unit represented by the following general formula (a2-1-1) is preferable.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • L 2 represents a single bond, -CO-O- or -CO-NH-.
  • Y 22 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 2 represents a hydrophobic group having 4 to 20 carbon atoms.
  • R is the same as R in the general formula (a2-1).
  • L 2 represents a single bond, -CO-O-, or -CO-NH-.
  • L 2 is preferably -CO-NH-.
  • Y 22 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, further preferably 1 to 3 carbon atoms, and particularly preferably a methylene group or an ethylene group.
  • Y 22 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond.
  • R 2 represents a hydrophobic group having 4 to 20 carbon atoms.
  • R 2 is the same as R 2 in the general formula (a2-1).
  • R ⁇ represents a hydrogen atom or a methyl group.
  • the structural unit (a2) may be one type or two or more types.
  • the proportion of the structural unit (a2) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 10 to 80 mol% is preferable, 20 to 80 mol% is preferable, 30 to 75 mol% is more preferable, and 40 to 70 mol% is particularly preferable.
  • the structural unit (a3) is a structural unit containing a cationic group.
  • the random copolymer preferably has a structural unit (a3). When the random copolymer has the constituent unit (a3), the Shiga toxin inhibitory effect is further improved.
  • a cationic group means a positively charged atomic group.
  • the cationic group is in the form of a salt formed by forming a salt with fluoride ion, chloride ion, bromide ion, iodide ion, hydrochloric acid ion, acetate ion, sulfate ion, hydrofluoride ion, carbonate ion and the like. There may be.
  • Cationic group structural unit (a3) contains is not particularly limited, primary amino group (-NH 2), 2 amino groups (-NHR 3), 3 amino groups (-NR 3 2), 4 grade Examples thereof include, but are not limited to, an amino group (-NR 3 3 + ) and a heterocyclic group containing a cationic nitrogen atom.
  • R 3 in the secondary amino group, tertiary amino group, and quaternary amino group represents an organic group.
  • Tertiary amino group, or quaternary amino group, two or more of R 3 may be each the same or different.
  • the organic group include a hydrocarbon group which may have a substituent.
  • Examples of the hydrocarbon group which may have a substituent include those similar to those mentioned in R 1 in the general formula (a1-1-1).
  • the R 3, an alkyl group, an aryl group, or an aralkyl group is preferable.
  • the alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 or 2 carbon atoms.
  • the aryl group or aralkyl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • R 3 include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group and the like.
  • the heterocyclic group containing a cationic nitrogen atom may be an aliphatic heterocyclic group or an aromatic heterocyclic group.
  • the aliphatic heterocyclic group preferably has 3 to 15 carbon atoms, and more preferably 5 to 10 carbon atoms.
  • Examples of the aliphatic heterocyclic group include, but are not limited to, a piperidinium group, a 1-pyrrolidinium group, a 1-methylpyrrolidinium group and the like.
  • aromatic heterocyclic group examples include an imidazolium group, a 1-methylimidazolium group, a 1-ethylimidazolium group, a benzimidazolium group, a pyrollium group, a 1-methylpyrrolium group, an oxazolium group and a benzoxazolium group.
  • a tertiary amino group, a quaternary amino group, or a heterocyclic group containing a nitrogen atom is preferable, and a dimethylamino group, a trimethylamino group, or an imidazolium group is more preferable.
  • Examples of the structural unit (a3) include those represented by the following general formula (a3-1).
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 3 represents a single bond or a divalent linking group.
  • Rc 3 represents a cationic group.
  • R is the same as R in the above formula (a1-1).
  • Y 3 represents a single bond or a divalent linking group.
  • Examples of the divalent linking group in Y 3 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1).
  • the structural unit (a3) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 3 is, -CO-NH-Y 31 - , or -CO-O-Y 31 - ( Y 31 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) the group represented by may be mentioned, -CO-NH-Y 31 - more preferably a group represented by.
  • Y 31 is a divalent hydrocarbon group which may have a substituent
  • the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1).
  • Y 31 is preferably an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the linear or branched alkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • Rc 3 represents a cationic group. Examples of the cationic group include those similar to those listed above.
  • a3 a structural unit represented by the following general formula (a3-1-1) is preferable.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • L 3 represents a single bond, -CO-O-, or -CO-NH-.
  • Y 32 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms.
  • Rc 3 represents a cationic group.
  • R is the same as R in the general formula (a3-1).
  • L 3 represents a single bond, -CO-O-, or -CO-NH-.
  • L 3 is preferably single bond or -CO-NH-.
  • Y 32 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • Y 32 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond.
  • Specific examples of Y 32 include a single bond, an n-propylene group, an ethylene group, a methylene group and the like.
  • Rc 3 represents a cationic group.
  • Rc 3 is the same as Rc 3 in the general formula (a3-1).
  • R ⁇ represents a hydrogen atom or a methyl group.
  • the structural unit (a3) may be one type or two or more types.
  • the proportion of the structural unit (a3) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, and 1 to 10 mol% is more preferable.
  • the structural unit (a4) is a structural unit containing an anionic group.
  • the random copolymer may have a structural unit (a4).
  • Anionic group means a negatively charged atomic group.
  • the anionic group may be in the form of a salt formed by forming a salt with an alkali metal ion such as sodium ion or potassium ion; and an alkaline earth metal ion such as calcium ion.
  • the anionic group contained in the structural unit (a4) is not particularly limited, but includes a hydroxy group, a carboxy group, a sulfo group, a sulfonyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a thiol group, a boronic acid group and the like. These include, but are not limited to.
  • the anionic group is preferably a hydroxy group, a carboxy group, a sulfo group, or a sulfonyl group, and more preferably a carboxy group.
  • Examples of the structural unit (a4) include those represented by the following general formula (a4-1).
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Y 4 represents a single bond or a divalent linking group.
  • Ra 4 represents an anionic group.
  • R is the same as R in the formula (a1-1).
  • Y 4 represents a single bond or a divalent linking group.
  • Examples of the divalent linking group in Y 4 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1).
  • the structural unit (a4) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 4 is, -CO-NH-Y 41 - , or -CO-O-Y 41 - ( Y 41 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) is a group represented by the mentioned, -CO-NH-Y 41 - group is more preferably represented by.
  • Y 41 is a divalent hydrocarbon group which may have a substituent
  • the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1).
  • Y 41 is preferably an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a linear or branched alkylene group having 1 to 10 carbon atoms.
  • the linear or branched alkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • Ra 4 represents an anionic group. Examples of the anionic group include those similar to those listed above.
  • a structural unit represented by the following general formula (a4-1-1) is preferable.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • L 4 represents a single bond, -CO-O-, or -CO-NH-.
  • Y 42 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms.
  • Ra 4 represents an anionic group.
  • R is the same as R in the general formula (a4-1).
  • L 4 represents a single bond, -CO-O-, or -CO-NH-.
  • L 4 is preferably single bond or -CO-NH-.
  • Y 42 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • Y 42 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond.
  • Ra 4 represents an anionic group. Ra 4 is the same as Ra 4 in the general formula (a4-1).
  • R ⁇ represents a hydrogen atom or a methyl group.
  • the structural unit (a4) may be one type or two or more types.
  • the proportion of the structural unit (a4) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, and 1 to 10 mol% is more preferable.
  • the structural unit (a5) is a structural unit derived from the 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide intramolecular salt.
  • the random copolymer preferably has a structural unit (a5). When the random copolymer has the constituent unit (a5), the binding property to Shiga toxin is improved, and the Shiga toxin inhibitory effect is further improved.
  • the structural unit (a5) is a structural unit represented by the following formula (a5-1).
  • the proportion of the structural unit (a5) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, 1 to 10 mol% is more preferable, and 2 to 8 mol% is particularly preferable.
  • the structural unit (a6) is a structural unit derived from the cross-linking agent.
  • the random copolymer preferably has a structural unit (a6). Since the random copolymer having the structural unit (a6) can carry out the copolymerization reaction and the cross-linking reaction in one step, the production cost can be reduced.
  • the cross-linking agent examples include compounds containing two or more polymerizable groups.
  • a group containing an ethylenic double bond is preferable.
  • the group containing an ethylenic double bond include a vinyl group and a (meth) acryloyl group.
  • the (meth) acryloyl group means either a methacryloyl group or an acryloyl group.
  • the structural unit (a6) is a structural unit formed by cleaving the polymerizable group of the cross-linking agent.
  • the cross-linking agent examples include a bifunctional or higher functional (meth) acrylamide compound or a bifunctional or higher functional (meth) acrylate compound.
  • the (meth) acrylamide compound means either a methacrylamide compound or an acrylamide compound.
  • the (meth) acrylate compound means either a methacrylate compound or an acrylate compound.
  • Examples of the bifunctional or higher functional (meth) acrylamide compound include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-ethylenebisacrylamide, ethylenediaminedimethylacrylamide, ethylenediaminediacrylamide and the like. However, it is not limited to these.
  • bifunctional or higher functional (meth) acrylate compound examples include tetraethylene glycol diacrylate, triethylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and ethylene glycol dimethacrylate.
  • examples thereof include, but are not limited to, diethylene glycol dimethacrylate, trimethylopropane trimethacrylate, pentaerythritol tetramethacrylate, bisphenol A dimethacrylate, and glycerol dimethacrylate.
  • R ⁇ independently represents a hydrogen atom or a methyl group.
  • n represents an integer of 0 to 2, and 1 is preferable.
  • the structural unit (a6) may be one type or two or more types.
  • the proportion of the structural unit (a6) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 5 to 20 mol% is preferable, 5 to 15 mol% is preferable, and 8 to 12 mol% is more preferable.
  • the ratio of the structural unit (a6) within the above preferable range, the particle size of the crosslinked polymer can be controlled within an appropriate range.
  • the random copolymer may have a structural unit other than the above (a1) to (a6) (hereinafter, also referred to as “constituent unit (a7)”) as long as the effect of the present invention is not impaired.
  • the structural unit (a7) is not particularly limited. Examples of the structural unit (a7) include a structural unit derived from an acrylamide derivative such as N-isopropylacrylamide, N-ethylacrylamide, and N-methylacrylamide.
  • the structural unit (a7) may be one type or two or more types.
  • the proportion of the structural unit (a7) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. It is preferably 10 to 80 mol%, preferably 10 to 60 mol%, and even more preferably 10 to 50 mol%.
  • the random copolymer contained in the crosslinked polymer may be one kind or two or more kinds.
  • the combination of structural units contained in the random copolymer includes a combination of structural units (a1), structural units (a2), and structural units (6); structural units (a1), structural units (a2), structural units (a3), and Combination of constituent units (6); Combination of constituent units (a1), constituent units (a2), constituent units (a3), constituent units (6), and constituent units (a7); constituent units (a1), constituent units ( Combination of a2), constituent unit (a3), constituent unit (a5), constituent unit (6), and constituent unit (a7); constituent unit (a1), constituent unit (a3), constituent unit (a6), and configuration Combination of units (a7); Combination of constituent units (a1), constituent units (a6), and constituent units (a7); constituent units (a1), constituent units (a4), constituent units (a6), and constituent units (a6) The combination of a7); and the like can be mentioned.
  • Preferred combinations include a configuration unit (a1), a configuration unit (a2), a configuration unit (a3), and a configuration unit (a6); a configuration unit (a1), a configuration unit (a2), a configuration unit (a3), Combination of constituent unit (a5) and constituent unit (a6); constituent unit (a1), constituent unit (a2), constituent unit (a3), constituent unit (a5), constituent unit (a6), and constituent unit (a7) ); Combinations of the constituent unit (a1), the constituent unit (a2), the constituent unit (a3), the constituent unit (a6), and the constituent unit (a7); and the like.
  • the combination of the structural unit (a1), the structural unit (a2), the structural unit (a3), the structural unit (a5), the structural unit (a6), and the structural unit (a7) is particularly preferable.
  • the crosslinkable polymer preferably has a theoretical molecular weight of 100 to 500, more preferably 120 to 300, and even more preferably 150 to 200.
  • the "theoretical molecular weight" of the crosslinkable polymer is a theoretical value calculated from the charged molar ratio of each polymerizable monomer at the time of synthesizing the crosslinkable polymer and the molecular weight of each polymerizable monomer.
  • the "theoretical molecular weight” is a value calculated as follows. The molar ratio of each polymerizable monomer when the total amount of all the polymerizable monomers in the polymerizable monomer mixture is 1 ( RA : the value in [] in Table 1 divided by 100) is calculated.
  • the molar ratio R A calculates the molecular weight obtained by multiplying the value of the polymerizable monomer (M A). Value which is the sum of M A calculated for each monomer of the polymerizable monomer mixture is a molecular weight of theory.
  • the crosslinked polymer of the present embodiment preferably has a molecular weight of 1000 to 5000, more preferably 1200 to 3000, and even more preferably 1500 to 2000.
  • the "molecular weight per sugar unit" of the crosslinkable polymer is a value obtained by dividing the theoretical molecular weight of the crosslinkable polymer by the molar ratio ( RA) of the polymerizable monomer that induces the structural unit (a1).
  • the crosslinked polymer of the present embodiment preferably has a Z average particle size of about 30 to 2000 at 35 ° C. measured by a dynamic scattering method. Further, the crosslinked polymer of the present embodiment preferably has a Z average particle size of about 30 to 2000 at 40 ° C. measured by a dynamic scattering method.
  • the crosslinked polymer of the present embodiment is produced by radically polymerizing a polymerizable monomer mixture containing a polymerizable monomer for inducing each structural unit of a random copolymer and a crosslinking agent in the presence of a polymerization initiator. Can be done. Alternatively, after radical polymerization of the polymerizable monomer that induces each structural unit to obtain a random copolymer, a cross-linking reaction of the random copolymer is carried out using a cross-linking agent having two or more groups that react with functional groups in the random copolymer. You may go.
  • a method of copolymerizing using a polymerizable monomer mixture containing a cross-linking agent is preferable.
  • the cross-linking agent include those listed in the above-mentioned structural unit (a6).
  • the polymerization initiator one generally used for radical polymerization may be used, for example, V-501 (4,4'-Azobis (4-cyanovalic acid)) or AAPD (2,2'-Azobis (2-2'-Azobis)). (Methlypolymeridine) Dihydrochloride) and the like can be mentioned.
  • an aqueous medium containing a surfactant can be used as the reaction solvent for radical polymerization.
  • the surfactant for example, sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (CTAB), or the like can be used.
  • the crosslinked polymer of the present embodiment exhibits high inhibitory activity against Shiga toxin by having a structure in which a random copolymer having a structural unit (a1) and at least one other structural unit is crosslinked. be able to. It is considered that this is because the cross-linking of the random copolymer forms various structures and can bind to Shiga toxin at multiple sites. Since the crosslinked polymer of the present embodiment has high inhibitory activity against Shiga toxin, it can be used as a Shiga toxin inhibitor described later and a pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection.
  • the present invention provides a Shiga toxin inhibitor containing the crosslinked polymer of the embodiment.
  • the crosslinked polymer of the above embodiment Since the crosslinked polymer of the above embodiment has high Shiga toxin inhibitory activity, it can be used as a Shiga toxin inhibitor.
  • the crosslinked polymer of the above embodiment contained in the Shiga toxin inhibitor may be one kind or two or more kinds. Further, the crosslinked polymer may be a pharmaceutically acceptable salt of the crosslinked polymer), a pharmaceutically acceptable solvate of the crosslinked polymer, or a solvate of a pharmaceutically acceptable salt of the crosslinked polymer. good.
  • the Shiga toxin inhibitor may contain other components in addition to the crosslinked polymer of the above embodiment.
  • the other ingredients are not particularly limited, and those commonly used in the pharmaceutical field can be used without particular limitation. Examples of other components include pharmaceutically acceptable carriers described later.
  • the Shiga toxin inhibitor can be formulated by a known method by mixing the crosslinked polymer of the above embodiment with other components as appropriate.
  • the route of administration of the Shiga toxin inhibitor is not particularly limited as long as it can reach the intestinal tract, but oral administration is preferable.
  • the Shiga toxin inhibitor can be an orally administered preparation.
  • Targets for administration of the Shiga toxin inhibitor include humans and mammals other than humans. Mammals other than humans are not particularly limited, but are primates (monkeys, chimpanzees, gorillas, etc.), rodents (mouses, hamsters, rats, etc.), rabbits, dogs, cats, cows, pigs, goats, sheep, horses, etc. Can be mentioned.
  • the Shiga toxin inhibitor of this embodiment can be used in vitro or in vivo to neutralize the toxicity of Shiga toxin. Alternatively, it can be administered to animals such as humans as a pharmaceutical composition described later.
  • the present invention provides a pharmaceutical composition comprising the crosslinked polymer of the embodiment and a pharmaceutically acceptable carrier for treating or preventing a Shiga toxin-producing bacterial infection.
  • Shiga toxin-producing bacterial infection means a disease caused by the production of Shiga toxin in the intestinal tract by bacteria that produce Shiga toxin.
  • Shiga toxin-producing bacteria include EHEC.
  • EHEC include Escherichia coli in which the O antigen is O157, O111, O26, O103, O104, O118, O121, O145, O165 and the like.
  • Examples of the application target of the pharmaceutical composition of the present embodiment include the same targets as the above-mentioned Shiga toxin inhibitor.
  • the crosslinked polymer of the above embodiment contained in the pharmaceutical composition of the present embodiment may be one kind or two or more kinds.
  • the pharmaceutical composition of the present embodiment may contain at least one pharmaceutically acceptable carrier in addition to the crosslinked polymer.
  • the "pharmaceutically acceptable carrier” means a carrier that does not inhibit the physiological activity of the active ingredient and does not exhibit substantial toxicity to the administration subject. By “not showing substantial toxicity” is meant that the ingredient is not toxic to the subject at commonly used doses.
  • the pharmaceutically acceptable carrier is a carrier that does not inhibit the Shiga toxin inhibitory activity of the crosslinked polymer and does not exhibit substantial toxicity to the administration subject thereof.
  • the pharmaceutically acceptable carrier includes any known pharmaceutically acceptable ingredient, which is typically considered an inactive ingredient.
  • Pharmaceutically acceptable carriers are not particularly limited, but include, for example, solvents, diluents, vehicles, excipients, flow promoters, binders, granulators, dispersants, suspending agents, wetting agents, etc.
  • preservatives eg antioxidants
  • chelating agents eg antioxidants
  • flavoring agents sweeteners, thickeners, buffers, colorants, etc.
  • the pharmaceutical composition of the present embodiment may contain other components other than the crosslinked polymer and the pharmaceutically acceptable carrier.
  • the other ingredients are not particularly limited, and those commonly used in the pharmaceutical field can be used without particular limitation.
  • the pharmaceutical composition of the present embodiment may contain an active ingredient other than the crosslinked polymer.
  • the active ingredient include, but are not limited to, antibiotics, antidiarrheal agents, antidiarrheal agents, antipyretics, analgesics and the like.
  • one type may be used alone, or two or more types may be used in combination.
  • the dosage form of the pharmaceutical composition of the present embodiment is not particularly limited, and can be a dosage form generally used as a pharmaceutical preparation.
  • the pharmaceutical composition of the present embodiment may be an oral preparation or a parenteral preparation.
  • the oral preparation include tablets, coated tablets, pills, powders, granules, capsules, syrups, fine granules, liquids, drop loves, emulsions and the like.
  • parenteral preparations include suppositories, nasal drops, enteral preparations, inhalants and the like.
  • the pharmaceutical compositions of these dosage forms can be formulated according to a conventional method (for example, the method described in the Japanese Pharmacopoeia).
  • the pharmaceutical composition of the present embodiment is preferably an oral preparation.
  • the administration route of the pharmaceutical composition of the present embodiment is not particularly limited and can be administered by an oral or parenteral route, but oral administration is preferable.
  • the pharmaceutical composition of the present embodiment can administer a therapeutically effective amount of the crosslinked polymer.
  • “Therapeutically effective amount” means the amount of a drug effective for the treatment or prevention of a target disease.
  • the therapeutically effective amount of the crosslinked polymer may be an amount capable of alleviating, suppressing, or inhibiting symptoms such as diarrhea, bloody stool, abdominal pain, fever, lytic anemia, thrombocytopenia, acute renal failure, and encephalopathy caused by Shiga toxin. ..
  • the therapeutically effective amount may be appropriately determined depending on the patient's symptoms, body weight, age, gender, etc., the dosage form of the pharmaceutical composition, the administration method, and the like.
  • the pharmaceutical composition of the present embodiment can have a single dose of the crosslinked polymer of 0.01 to 1000 mg per 1 kg of body weight of the subject to be administered.
  • the dose may be 0.05 to 500 mg / kg, 0.1 to 300 mg / kg, 0.2 to 200 mg / kg, or 0.3 to 100 mg / kg. It may be kg.
  • the pharmaceutical composition of this embodiment may contain a therapeutically effective amount of the crosslinked polymer per unit dosage form.
  • the content of the crosslinked polymer in the pharmaceutical composition of the present embodiment may be 0.01 to 90% by mass, 0.05 to 80% by mass, or 0.1 to 60% by mass. May be%.
  • the administration interval of the pharmaceutical composition of the present embodiment may be appropriately determined depending on the patient's symptoms, body weight, age, gender, etc., the dosage form of the pharmaceutical composition, the administration method, and the like.
  • the administration interval can be, for example, every few hours, 2 to 3 times a day, once a day, once every 2 to 3 days, once a week, or the like.
  • the pharmaceutical composition of the present embodiment contains the crosslinked polymer of the above-described embodiment having high inhibitory activity against Shiga toxin, it is possible to effectively treat or prevent Shiga toxin-producing bacterial infection. Further, in the pharmaceutical composition of the present embodiment, the content of Shiga toxin-binding oligosaccharide such as Globotrisaccharide can be reduced by using the crosslinkable polymer, so that the production cost can be suppressed. ..
  • the present invention provides a method for treating or preventing a Shiga toxin-producing bacterial infection, which comprises administering the crosslinked polymer of the embodiment to a subject.
  • the present invention provides the use of the crosslinked polymer of the embodiment in the production of a Shiga toxin inhibitor.
  • the present invention provides the use of the crosslinked polymer of the embodiment in the manufacture of a pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection.
  • the present invention provides the crosslinked polymer of said embodiment for inhibiting Shiga toxin.
  • the present invention provides the crosslinked polymer of the embodiment for treating or preventing a Shiga toxin-producing bacterial infection.
  • FIG. 1 shows an NMR chart of the monomer (M1-1).
  • Examples 1 to 16 The polymerizable monomer mixture of each example was prepared at the molar ratio shown in Table 1 and subjected to a radical polymerization reaction at 70 ° C. for 3 hours in a nitrogen atmosphere to produce a crosslinked polymer of each example.
  • the monomer (M2-1) was dissolved in methanol and added.
  • water containing 6.21 mM sodium dodecyl sulfate (SDS) was used as the reaction solvent.
  • the polymerizable monomer mixture contained a cationic monomer
  • water containing 2.07 mM hexadecyltrimethylammonium bromide (CTAB) was used as a reaction solvent.
  • CTAB hexadecyltrimethylammonium bromide
  • the polymerization initiator 0.69 mM V-501 (4,4'-Azobis (4-cyanovalic acid)) or AAPD (2,2'-Azobis (2-methylpropionamide) Dihydrochloride
  • V-501 was dissolved in dimethyl sulfoxide (DMSO) and added to the radical polymerization reaction solution.
  • AAPD was dissolved in water and added to the radical polymerization reaction solution. After the radical polymerization reaction, the reaction solution was dialyzed against a dialysis membrane (Fisherland) of MWCO 12,000-14,000, and the crosslinked polymer was recovered by freeze-drying.
  • each abbreviation indicates the polymerizable monomer shown in Table 2 and Table 3, respectively.
  • the value in [] is the molar ratio in the polysynthetic monomer mixture.
  • Vero cells (RCB0001, RIKEN BRC) were used to evaluate the inhibitory activity of the crosslinked polymer against Shiga toxin (Stx1, Stx2) prepared from the EHEC O157 Sakai strain.
  • Vero cells were cultured at 37 ° C. in DMEM high-glucose medium (Sigma) supplemented with 2 mM glutamine and 5% fetal bovine serum.
  • Stx1 final concentration 3.6 pg mL -1
  • Stx2 final concentration 13.3 pg mL -1
  • a PBS suspension of the crosslinked polymer was added to the culture solution so that the final concentration of the crosslinked polymer was 0 to 50 ⁇ g / mL.
  • PBS (without crosslinked polymer) was added to the culture. Then, it was cultured at 37 ° C. for 48 hours. After culturing, the cell viability of Vero cells was measured by CellTiter-Glo 2.0 Assay (Promega). Furthermore, the IC50 of the crosslinked polymer with respect to Stx1 and Stx2 was calculated from the cell viability.
  • FIG. 2A shows the results of evaluating the cell viability by adding the crosslinked polymer of Example 1 to the Vero cell culture medium to which Stx1 was added.
  • FIG. 2B shows the results of evaluating the cell viability by adding the crosslinked polymer of Example 1 to the Vero cell culture medium to which Stx2 was added. From this result, in the crosslinked polymer of Example 1, the IC50 for Stx1 was calculated to be 4.7E-04 ⁇ 9.9E-05 ⁇ g / mL, and the IC50 for Stx2 was calculated to be 31.0 ⁇ 11.0 ⁇ g / mL.
  • FIG. 3A shows IC50s of the crosslinked polymers of Examples 2-10 for Stx1.
  • FIG. 3B shows IC50s of the crosslinked polymers of Examples 2-10 for Stx2. All of the crosslinked polymers of Examples 2 to 10 showed high Shiga toxin inhibitory activity.
  • the crosslinked polymer of Example 7 has a low IC50 with respect to both Stx1 and Stx2, and the molar concentrations of the IC50 are Stx1 (1.52 nM) and Stx2 (181 nM). there were.
  • the molar concentration of IC50 was calculated by dividing the concentration of IC50 (w / v) by the above-mentioned "theoretical molecular weight".
  • FIG. 4A shows IC50s of the crosslinked polymers of Examples 7, 11-16 for Stx1.
  • FIG. 4B shows IC50s of the crosslinked polymers of Examples 7, 11-16 for Stx2.
  • the crosslinked polymers of Examples 11-16 had an even lower IC50 than the crosslinked polymers of Example 7 for both Stx1 and Stx2.
  • FIG. 5 shows the test schedule of animal tests.
  • 4-week-old BALB / c sterile mice (4 males and 1 female) were used.
  • mice were infected with Enterohemorrhagic Escherichia coli O157 strain producing Stx2 (Fig. 5, day (-1)).
  • Infection of the O157 strain was carried out by oral administration of 1E + 7 CFU / mL O157 strain bacterial solution by free water supply.
  • the survival curve of O157-infected mice is shown in FIG. 6A.
  • the result of stool culture is shown in FIG. 6B.
  • FIG. 6A all O157-infected mice to which water was administered died 5 days after the start of administration.
  • FIG. 6B all the mice to which the crosslinked polymer of Example 7 was administered were alive during the test period.
  • FIG. 6B no change was observed in the number of O157 strains in the mice to which the crosslinked polymer of Example 7 was administered during the test period. From these results, it was confirmed that the crosslinked polymer of Example 7 neutralized the toxicity of Shiga toxin without affecting the O157 strain.
  • the concentration of the crosslinked polymer of Example 7 to be administered was changed, and an animal test was conducted in the same manner as above.
  • the concentration of the crosslinked polymer of Example 7 in free water supply was adjusted to 0.05 mg / mL, 0.025 mg / mL, 0.01 mg / mL, or 0.005 mg / mL and administered to O157-infected mice.
  • the results are shown in Table 5.
  • Table 5 shows the survival rate 10 days after the start of administration.
  • the survival rate was 100% even when the concentration of the crosslinked polymer of Example 7 was 0.025 mg / mL.
  • the intake of the crosslinked polymer calculated from the amount of water supplied at this time was 0.275 mg / day per mouse.
  • the concentration of the crosslinked polymer was 0.005 mg / mL, the survival rate was 30%. From these results, it was confirmed that even a low-dose cross-linked polymer showed a Shiga toxin inhibitory effect.
  • a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer are provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A crosslinked polymer obtained by crosslinking a random copolymer having a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one different structural unit. A Shiga toxin inhibitor containing the crosslinked polymer and a pharmaceutical composition for treating or preventing infection with Shiga toxin-producing bacteria.

Description

架橋ポリマー、志賀毒素阻害剤、及び医薬組成物Crosslinked polymers, Shiga toxin inhibitors, and pharmaceutical compositions
 本発明は、架橋ポリマー、志賀毒素阻害剤、及び医薬組成物に関する。
 本願は、2020年3月23日に、日本に出願された特願2020-051743号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to crosslinked polymers, Shiga toxin inhibitors, and pharmaceutical compositions.
The present application claims priority based on Japanese Patent Application No. 2020-051743 filed in Japan on March 23, 2020, the contents of which are incorporated herein by reference.
 近年、食品等を介した腸管出血性大腸菌(Enterohemorragic Escherichia coli:EHEC)の集団感染が問題となっている。EHECは、ウシが主なキャリアであり、感染源となっている。EHECは、感染力が強く、比較的長い潜伏期間を有するため、ヒト-ヒトの二次感染も頻発している。 In recent years, outbreaks of enterohemorrhagic Escherichia coli (EHEC) via foods and the like have become a problem. Cattle are the main carrier and source of infection for EHEC. Since EHEC is highly infectious and has a relatively long incubation period, secondary human-to-human transmission is also frequent.
 EHECに感染すると、感染から3~4日で、感染者の20~50%が出血性大腸炎を発症する。出血性大腸炎では、下痢、鮮血便、強い腹痛、及び軽度発熱等の症状がみられる。感染から4~7日で、感染者の2~20%が溶結性尿毒症症候群(hemolytic-uremic syndrome:HUS)を発症する。HUSでは、主に溶血性貧血、血小板減少、急性腎不全の症状がみられ、急性脳症等の重篤な合併症を発症し、HUSが重症化すると、死に至る場合がある。 When infected with EHEC, 20 to 50% of infected people develop hemorrhagic colitis 3 to 4 days after infection. Hemorrhagic colitis has symptoms such as diarrhea, fresh blood stools, strong abdominal pain, and mild fever. Four to seven days after infection, 2 to 20% of infected individuals develop hemolytic-uremic syndrome (HUS). In HUS, symptoms of hemolytic anemia, thrombocytopenia, and acute renal failure are mainly observed, serious complications such as acute encephalopathy develop, and when HUS becomes severe, death may occur.
 EHEC感染症は、現在、有効な治療法が確立されていない。日本では、約3,000人/年の感染者が発生しており、重症者及び死亡者が毎年発生している。そのため、有効な治療法の確立が求められている。 Currently, no effective treatment method has been established for EHEC infection. In Japan, about 3,000 people are infected per year, and seriously ill and dead people occur every year. Therefore, the establishment of an effective treatment method is required.
 EHECが産生する志賀毒素には、Stx1及びStx2の2種類が存在する。Stx及びStx2のいずれも、1分子のAサブユニットと、5分子のBサブユニットとから構成される。Aサブユニットは、RNA-N-グルコシダーゼ活性を有する触媒サブユニットである。Aサブユニットは、前記活性により60Sリボソームを失活させ、細胞のタンパク質合成阻害をもたらす。Bサブユニットは、細胞表面の糖脂質であるGb3(globotriaosylceramide)への結合活性を有し、標的細胞内への侵入に関与する。
 Stx1及びStx2のアミノ酸配列の相同性は、約50%である。Stx1のアミノ酸配列は、志賀赤痢菌が産生するStxのアミノ酸配列とほぼ同一であることが知られている。
There are two types of Shiga toxins produced by EHEC, Stx1 and Stx2. Both Stx and Stx2 are composed of one molecule of A subunit and five molecules of B subunit. The A subunit is a catalytic subunit having RNA-N-glucosidase activity. The A subunit inactivates the 60S ribosome by the above activity, resulting in inhibition of cellular protein synthesis. The B subunit has a binding activity to Gb3 (globotriaosylceramide), which is a glycolipid on the cell surface, and is involved in the invasion into the target cell.
The homology of the amino acid sequences of Stx1 and Stx2 is about 50%. It is known that the amino acid sequence of Stx1 is almost the same as the amino acid sequence of Stx produced by Shigella dysentis.
 志賀毒素は、Gb3のグロボ3糖に結合性を有することから、グロボ3糖を用いて志賀毒素阻害剤を開発しようとする試みがある。例えば、特許文献1には、EHEC感染症の治療薬として、グロボ3糖を含むポリマーを用いることが報告されている。 Since Shiga toxin has a binding property to Gb3 globotrisaccharide, there is an attempt to develop a Shiga toxin inhibitor using globotrisaccharide. For example, Patent Document 1 reports that a polymer containing a globe trisaccharide is used as a therapeutic agent for EHEC infection.
特開2005-289907号公報Japanese Unexamined Patent Publication No. 2005-289907
 EHEC感染症は、有効な治療法が確立していないことから、有効な治療薬の開発が求められている。しかしながら、これまでに報告されてきたEHEC治療薬候補では、志賀毒素の阻害効果が十分に高いとはいえなかった。 Since no effective treatment method has been established for EHEC infection, the development of an effective therapeutic drug is required. However, it cannot be said that the inhibitory effect of Shiga toxin is sufficiently high among the EHEC therapeutic drug candidates reported so far.
 そこで、本発明は、志賀毒素に対する阻害活性が高い架橋ポリマー、並びに前記架橋ポリマーを含有する志賀毒素阻害剤及び医薬組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer.
 本発明は以下の態様を含む。
[1]ランダムコポリマーが架橋した架橋ポリマーであって、前記ランダムコポリマーは、志賀毒素結合性オリゴ糖を含む構成単位(a1)と、少なくとも1種の他の構成単位と、を有する、架橋ポリマー。
[2]前記少なくとも1種の他の構成単位が、炭素原子数4~20の疎水性基を含む構成単位(a2)、カチオン性基を含む構成単位(a3)、アニオン性基を含む構成単位(a4)、及び1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド分子内塩から誘導される構成単位(a5)、及び架橋剤から誘導される構成単位(a6)からなる群より選択される、[1]に記載の架橋ポリマー。
[3]前記ランダムコポリマーが、前記構成単位(a2)を有する、[2]に記載の架橋ポリマー。
[4]前記ランダムコポリマーが、前記構成単位(a3)又は前記構成単位(a4)を有する、[2]又は[3]に記載の架橋ポリマー。
[5]前記ランダムコポリマーが、前記構成単位(a5)を有する、[2]~[4]のいずれか一つに記載の架橋ポリマー。
[6]前記志賀毒素結合性オリゴ糖がグロボ3糖である、[1]~[5]のいずれか一つに記載の架橋ポリマー。
[7][1]~[6]のいずれか一つに記載の架橋ポリマーを含有する、志賀毒素阻害剤。
[8][1]~[6]のいずれか一つに記載の架橋ポリマーと、薬学的に許容される担体と、を含有する、志賀毒素産生菌感染症を治療又は予防するための医薬組成物。
The present invention includes the following aspects.
[1] A crosslinked polymer obtained by cross-linking a random copolymer, wherein the random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit.
[2] The at least one other structural unit contains a hydrophobic group having 4 to 20 carbon atoms (a2), a cationic group (a3), and an anionic group. (A4) and 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide Selected from the group consisting of the structural unit (a5) derived from the molecular salt and the structural unit (a6) derived from the cross-linking agent. The crosslinked polymer according to [1].
[3] The crosslinked polymer according to [2], wherein the random copolymer has the structural unit (a2).
[4] The crosslinked polymer according to [2] or [3], wherein the random copolymer has the structural unit (a3) or the structural unit (a4).
[5] The crosslinked polymer according to any one of [2] to [4], wherein the random copolymer has the structural unit (a5).
[6] The crosslinked polymer according to any one of [1] to [5], wherein the Shiga toxin-binding oligosaccharide is a Globotrisaccharide.
[7] A Shiga toxin inhibitor containing the crosslinked polymer according to any one of [1] to [6].
[8] A pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection, which comprises the crosslinked polymer according to any one of [1] to [6] and a pharmaceutically acceptable carrier. thing.
 本発明によれば、志賀毒素に対する阻害活性が高い架橋ポリマー、並びに前記架橋ポリマーを含有する志賀毒素阻害剤及び医薬組成物が提供される。 According to the present invention, a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer are provided.
実施例で合成したモノマー(M1-1)のNMRチャートを示す。The NMR chart of the monomer (M1-1) synthesized in the Example is shown. Stx1の細胞毒性に対する実施例1の架橋ポリマーの阻害効果を評価した結果を示す。The results of evaluating the inhibitory effect of the crosslinked polymer of Example 1 on the cytotoxicity of Stx1 are shown. Stx2の細胞毒性に対する実施例1の架橋ポリマーの阻害効果を評価した結果を示す。The results of evaluating the inhibitory effect of the crosslinked polymer of Example 1 on the cytotoxicity of Stx2 are shown. Stx1の細胞毒性に対する実施例2~10の架橋ポリマーのIC50を評価した結果示す。The results of evaluating the IC50 of the crosslinked polymers of Examples 2 to 10 for the cytotoxicity of Stx1 are shown. Stx2の細胞毒性に対する実施例2~10の架橋ポリマーのIC50を評価した結果を示す。The results of evaluating the IC50 of the crosslinked polymers of Examples 2 to 10 for the cytotoxicity of Stx2 are shown. Stx1の細胞毒性に対する実施例7~18の架橋ポリマーのIC50を評価した結果を示す。The results of evaluating the IC50 of the crosslinked polymers of Examples 7 to 18 for the cytotoxicity of Stx1 are shown. Stx2の細胞毒性に対する実施例7~18の架橋ポリマーのIC50を評価した結果を示す。The results of evaluating the IC50 of the crosslinked polymers of Examples 7 to 18 for the cytotoxicity of Stx2 are shown. O157感染マウスを用いた、実施例7の架橋ポリマー投与試験の試験スケジュールを示す。The test schedule of the crosslinked polymer administration test of Example 7 using O157-infected mice is shown. 実施例7の架橋ポリマーを投与したO157感染マウスの生存曲線を示す。The survival curve of the O157-infected mouse to which the crosslinked polymer of Example 7 was administered is shown. 実施例7の架橋ポリマーを投与したO157感染マウスから採取した糞便の糞便培養の結果を示す。The results of stool culture of stool collected from O157-infected mice to which the crosslinked polymer of Example 7 was administered are shown.
 「構成単位」とは、ポリマーを構成するモノマー単位(単量体単位)を意味する。
 「置換基を有してもよい」と記載する場合、水素原子(-H)を1価の基で置換する場合と、メチレン基(-CH-)を2価の基で置換する場合との両方を含む。
 「芳香族炭化水素基」は、芳香環を少なくとも1つ有する炭化水素基を意味する。芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でもよいし、多環式でもよい。芳香環は、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;及び前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子(酸素原子、硫黄原子、窒素原子等)で置換された芳香族複素環を包含する。
 「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味する。
 「アルキル基」は、特に断りがない限り、直鎖状、分岐鎖状及び環状の1価の飽和炭化水素基を包含する。アルコキシ基中のアルキル基も同様である。
 「アルキレン基」は、特に断りがない限り、直鎖状、分岐鎖状及び環状の2価の飽和炭化水素基を包含する。
"Constituent unit" means a monomer unit (monomer unit) constituting a polymer.
When it is described that "may have a substituent", the hydrogen atom (-H) is replaced with a monovalent group, and the methylene group (-CH 2- ) is replaced with a divalent group. Including both.
"Aromatic hydrocarbon group" means a hydrocarbon group having at least one aromatic ring. The aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 π electrons, and may be a monocyclic type or a polycyclic type. The aromatic ring is an aromatic hydrocarbon ring such as benzene, naphthalene, anthracene, phenanthrene; and a part of carbon atoms constituting the aromatic hydrocarbon ring is replaced with a hetero atom (oxygen atom, sulfur atom, nitrogen atom, etc.). Includes the aromatic heterocycles that have been used.
"Alphatic" is a concept relative to aromatics and means groups, compounds, etc. that do not have aromaticity.
The "alkyl group" includes linear, branched and cyclic monovalent saturated hydrocarbon groups unless otherwise specified. The same applies to the alkyl group in the alkoxy group.
The "alkylene group" includes linear, branched and cyclic divalent saturated hydrocarbon groups unless otherwise specified.
 「アクリルアミド誘導体から誘導される構成単位」とは、アクリルアミド誘導体のエチレン性二重結合が開裂して形成される構成単位を意味する。「アクリルアミド誘導体」は、アクリルアミド(CH=CH-CONH)のアミノ基の水素原子の一方又は両方が有機基で置換された化合物である。アクリルアミド誘導体は、α位の炭素原子に結合した水素原子が置換基で置換されていてもよい。アクリルアミドのα位の炭素原子とは、特に断りがない限り、アクリルアミドのカルボニル基が結合している炭素原子のことである。アクリルアミドのα位の炭素原子に結合した水素原子を置換する置換基としては、たとえば炭素原子数1~5のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基)等が挙げられる。 The “constituent unit derived from an acrylamide derivative” means a structural unit formed by cleavage of an ethylenic double bond of an acrylamide derivative. An "acrylamide derivative" is a compound in which one or both hydrogen atoms of the amino group of acrylamide (CH 2 = CH-CONH 2) are substituted with an organic group. In the acrylamide derivative, the hydrogen atom bonded to the carbon atom at the α-position may be substituted with a substituent. Unless otherwise specified, the carbon atom at the α-position of acrylamide is the carbon atom to which the carbonyl group of acrylamide is bonded. Examples of the substituent that replaces the hydrogen atom bonded to the α-position carbon atom of acrylamide include an alkyl group having 1 to 5 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group). , Tart-butyl group, pentyl group, isopentyl group, neopentyl group) and the like.
 「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して形成される構成単位を意味する。「アクリル酸エステル」は、アクリル酸(CH=CH-COOH)のカルボキシ基末端の水素原子が有機基で置換された化合物である。アクリル酸エステルは、α位の炭素原子に結合した水素原子が置換基で置換されていてもよい。アクリル酸エステルのα位の炭素原子とは、特に断りがない限り、アクリル酸のカルボニル基が結合している炭素原子のことである。アクリル酸エステルのα位の炭素原子に結合した水素原子を置換する置換基としては、上記アクリルアミドから誘導される構成単位で挙げたものと同様のものが挙げられる。 The “constituent unit derived from the acrylic acid ester” means a structural unit formed by cleaving the ethylenic double bond of the acrylic acid ester. The "acrylic acid ester" is a compound in which the hydrogen atom at the terminal of the carboxy group of acrylic acid (CH 2 = CH-COOH) is replaced with an organic group. In the acrylic acid ester, the hydrogen atom bonded to the carbon atom at the α-position may be substituted with a substituent. Unless otherwise specified, the carbon atom at the α-position of the acrylic acid ester is the carbon atom to which the carbonyl group of acrylic acid is bonded. Examples of the substituent that replaces the hydrogen atom bonded to the carbon atom at the α-position of the acrylic acid ester include those similar to those mentioned in the above-mentioned structural unit derived from acrylamide.
 「志賀毒素」とは、腸管出血性大腸菌(EHCE)及び志賀赤痢菌が産生する毒素を意味し、Stx1ファミリー、Stx2ファミリー、及びStxを包含する概念である。 "Shiga toxin" means toxin produced by enterohemorrhagic Escherichia coli (EHCE) and Shigella dysentis, and is a concept including Stx1 family, Stx2 family, and Stx.
 「重合性モノマー混合物」とは、架橋ポリマーを得るための重合反応に供する、重合性モノマーの混合物を意味する。「重合性モノマー」とは、少なくとも1個の重合性基を含むモノマーを意味する。「重合性基」とは、重合反応に供される官能基を意味する。 The "polymerizable monomer mixture" means a mixture of polymerizable monomers to be subjected to a polymerization reaction for obtaining a crosslinked polymer. The "polymerizable monomer" means a monomer containing at least one polymerizable group. The "polymerizable group" means a functional group subjected to a polymerization reaction.
 本明細書及び請求の範囲において、化学式で表される構造によっては、不斉炭素が存在し、エナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るものがある。その場合は一つの化学式でそれら異性体を代表して表す。それらの異性体は単独で用いてもよいし、混合物として用いてもよい。 In the present specification and claims, depending on the structure represented by the chemical formula, asymmetric carbon may be present, and an enantiomer or a diastereomer may be present. In that case, one chemical formula is used to represent those isomers. These isomers may be used alone or as a mixture.
[架橋ポリマー]
 1実施形態において、本発明は、ランダムコポリマーが架橋した架橋ポリマーを提供する。前記ランダムコポリマーは、志賀毒素結合性オリゴ糖を含む構成単位(a1)と、少なくとも1種の他の構成単位と、を有する。
[Crosslinked polymer]
In one embodiment, the present invention provides a crosslinked polymer in which a random copolymer is crosslinked. The random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit.
<ランダムコポリマー>
 本実施形態の架橋ポリマーは、ランダムコポリマーが架橋したポリマーである。ランダムコポリマーは、志賀毒素結合性オリゴ糖を含む構成単位(a1)と、少なくとも1種の他の構成単位と、を有する。構成単位(a1)と他の構成単位とを有するコポリマーを用いることにより、志賀毒素と様々なモードで相互作用可能な官能基を組み合わせることができる。また、ランダムコポリマーを用いることにより、多様性のある構造を形成することができる。そのため、志賀毒素と高い結合性を有する結合部位が形成される確率が高くなる。さらに、ランダムコポリマーは、ブロックコポリマーとは異なり、ブロック毎に重合反応を行う必要がないため、製造時間及び製造コストを抑制することができる。
<Random copolymer>
The crosslinked polymer of this embodiment is a polymer crosslinked by a random copolymer. The random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit. By using a copolymer having a structural unit (a1) and another structural unit, it is possible to combine Shiga toxin with a functional group capable of interacting with various modes. Moreover, by using a random copolymer, it is possible to form a diverse structure. Therefore, there is a high probability that a binding site having high binding to Shiga toxin will be formed. Further, unlike the block copolymer, the random copolymer does not need to carry out the polymerization reaction for each block, so that the production time and the production cost can be suppressed.
 架橋ポリマーが含むランダムコポリマーは、1種でもよく、2種以上でもよい。ランダムコポリマーの架橋は、ランダムコポリマーを得る共重合反応の際に、2個以上の重合性基を含む架橋剤を添加した重合性モノマー混合物を用いることにより、行うことができる。あるいは、ランダムコポリマーを得た後、ランダムコポリマー中の官能基と反応する基を2個以上有する架橋剤を用いて、ランダムコポリマーの架橋反応を行ってもよい。ランダムコポリマーの合成と架橋とを1工程で行えることから、架橋剤を含む重合性モノマー混合物を用いて、共重合する方法が好ましい。 The random copolymer contained in the crosslinked polymer may be one kind or two or more kinds. Cross-linking of the random copolymer can be carried out by using a polymerizable monomer mixture to which a cross-linking agent containing two or more polymerizable groups is added in the copolymerization reaction for obtaining the random copolymer. Alternatively, after obtaining the random copolymer, the cross-linking reaction of the random copolymer may be carried out using a cross-linking agent having two or more groups that react with the functional groups in the random copolymer. Since the synthesis and cross-linking of the random copolymer can be performed in one step, a method of copolymerizing using a polymerizable monomer mixture containing a cross-linking agent is preferable.
(構成単位(a1)
 本実施形態の架橋ポリマーが含むランダムコポリマーは、志賀毒素結合性オリゴ糖を含む構成単位(a1)を有する。本実施形態の架橋ポリマーは、構成単位(a1)を有することにより、志賀毒素に対する高い結合性を有する。
 構成単位(a1)が有する志賀毒素結合性オリゴ糖は、志賀毒素結合性を有する限り特に限定されない。志賀毒素結合性オリゴ糖は、好ましくは、グロボ3糖又はその誘導体である。グロボ3糖は、Galα(1-4)-Galβ(1-4)-Glc-の構造を有する3糖である。下記式中、*は結合手である。
(Constituent unit (a1)
The random copolymer contained in the crosslinked polymer of the present embodiment has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide. The crosslinked polymer of the present embodiment has a high binding property to Shiga toxin by having the structural unit (a1).
The Shiga toxin-binding oligosaccharide contained in the structural unit (a1) is not particularly limited as long as it has Shiga toxin-binding property. The Shiga toxin-binding oligosaccharide is preferably a Globotrisaccharide or a derivative thereof. Globotrisaccharide is a trisaccharide having a structure of Galα (1-4) -Galβ (1-4) -Glc-. In the following formula, * is a bond.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 構成単位(a1)としては、例えば、下記一般式(a1-1)で表される構成単位が挙げられる。 Examples of the structural unit (a1) include a structural unit represented by the following general formula (a1-1).
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Yは、2価の連結基を表す。Gbは、志賀毒素結合性オリゴ糖を表す。]
Figure JPOXMLDOC01-appb-C000002
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Y 1 represents a divalent linking group. Gb represents a Shiga toxin-binding oligosaccharide. ]
 一般式(a1-1)中、Rは、水素原子又は炭素原子数1~5のアルキル基を表す。前記アルキル基は、炭素原子数1~3が好ましく、メチル基又はエチル基がより好ましく、メチル基がさらに好ましい。Rは、水素原子が特に好ましい。 In the general formula (a1-1), R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. The alkyl group preferably has 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group. R is particularly preferably a hydrogen atom.
 一般式(a1-1)中、Yは、2価の連結基を表す。2価の連結基としては、置換基を有してもよい2価の炭化水素基が挙げられる。2価の炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。 In the general formula (a1-1), Y 1 represents a divalent linking group. Examples of the divalent linking group include a divalent hydrocarbon group which may have a substituent. The divalent hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
 Yにおける前記脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよい。前記脂肪族炭化水素基としては、直鎖状若しくは分岐鎖状の脂肪族炭化水素基、及び構造中に環を含む脂肪族炭化水素基等が挙げられる。 The aliphatic hydrocarbon group for Y 1 may be a saturated, or unsaturated. Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group and an aliphatic hydrocarbon group having a ring in the structure.
 直鎖状の脂肪族炭化水素基は、炭素原子数1~15が好ましく、炭素原子数1~10がより好ましく、炭素原子数1~6がさらに好ましい。直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましい。
 分岐鎖状の脂肪族炭化水素基は、炭素原子数2~15が好ましく、炭素原子数2~10がより好ましく、炭素原子数3~6がさらに好ましい。分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましい。
The linear aliphatic hydrocarbon group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms. As the linear aliphatic hydrocarbon group, a linear alkylene group is preferable.
The branched aliphatic hydrocarbon group preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 3 to 6 carbon atoms. As the branched-chain aliphatic hydrocarbon group, a branched-chain alkylene group is preferable.
 構造中に環を含む脂肪族炭化水素基としては、環構造中にヘテロ原子を含む置換基を含んでもよい環状の脂肪族炭化水素基(脂肪族炭化水素環から水素原子を2個除いた基)、前記環状の脂肪族炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の末端に結合した基、前記環状の脂肪族炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。前記直鎖状または分岐鎖状の脂肪族炭化水素基としては前記と同様のものが挙げられる。環状の脂肪族炭化水素基は、炭素原子数3~20が好ましく、炭素原子数3~12がより好ましい。環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。環状の脂肪族炭化水素基は、その環構造を構成する炭素原子の一部がヘテロ原子(酸素原子、窒素原子、硫黄原子等)を含む置換基で置換されてもよい。 As the aliphatic hydrocarbon group containing a ring in the structure, a cyclic aliphatic hydrocarbon group which may contain a substituent containing a hetero atom in the ring structure (a group obtained by removing two hydrogen atoms from the aliphatic hydrocarbon ring). ), A group in which the cyclic aliphatic hydrocarbon group is bonded to the terminal of a linear or branched aliphatic hydrocarbon group, and the cyclic aliphatic hydrocarbon group is a linear or branched aliphatic. Examples thereof include a group intervening in the middle of the hydrocarbon group. Examples of the linear or branched aliphatic hydrocarbon group include the same groups as described above. The cyclic aliphatic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms. The cyclic aliphatic hydrocarbon group may be a polycyclic group or a monocyclic group. The cyclic aliphatic hydrocarbon group may be substituted with a substituent containing a hetero atom (oxygen atom, nitrogen atom, sulfur atom, etc.) as a part of the carbon atom constituting the ring structure.
 Yが芳香族炭化水素基である場合、芳香族炭化水素基が含む芳香環は、炭素原子数6~15がさらに好ましく、炭素原子数6~12が特に好ましい。芳香環として、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;及び、トリアゾール環、ピリジン環、チオフェン環等の芳香族複素環が挙げられる。
 芳香族炭化水素基として具体的には、前記芳香族炭化水素環または芳香族複素環から水素原子を2つ除いた基(アリーレン基またはヘテロアリーレン基);2以上の芳香環を含む芳香族化合物(例えばビフェニル、フルオレン等)から水素原子を2つ除いた基;前記芳香族炭化水素環または芳香族複素環から水素原子を1つ除いた基(アリール基またはヘテロアリール基)の水素原子の1つがアルキレン基で置換された基(アリール基又はヘテロアリール基から水素原子をさらに1つ除いた基)等が挙げられる。前記水素原子を置換するアルキレン基としては、炭素原子数1~10が好ましく、炭素原子数1~6がより好ましく、炭素原子数1~4がさらに好ましい。
When Y 1 is an aromatic hydrocarbon group, the aromatic ring contained in the aromatic hydrocarbon group is more preferably 6 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene and phenanthrene; and aromatic heterocycles such as triazole ring, pyridine ring and thiophene ring.
Specifically, the aromatic hydrocarbon group is a group obtained by removing two hydrogen atoms from the aromatic hydrocarbon ring or aromatic heterocycle (arylene group or heteroarylene group); an aromatic compound containing two or more aromatic rings. A group obtained by removing two hydrogen atoms from (for example, biphenyl, fluorene, etc.); one of the hydrogen atoms of the group (aryl group or heteroaryl group) obtained by removing one hydrogen atom from the aromatic hydrocarbon ring or aromatic heterocyclic ring. Examples thereof include a group in which one is substituted with an alkylene group (a group obtained by removing one hydrogen atom from an aryl group or a heteroaryl group) and the like. The alkylene group that replaces the hydrogen atom preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
 Yにおける置換基を有してもよい炭化水素基は、炭素鎖を構成するメチレン基(-CH-)の一部が、ヘテロ原子を含む2価の連結基で置換されたものであってもよい。前記メチレン基を置換するヘテロ原子を含む2価の連結基としては、例えば、-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-、-NH-C(=NH)-、-C(=O)-NH-C(=O)-(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、-S-、-S(=O)-、及び-S(=O)-O-等が挙げられる。 Hydrocarbon group which may have a substituent in Y 1 are methylene groups constituting the carbon chain - be those part of has been replaced with a divalent linking group containing a hetero atom (-CH 2) You may. Examples of the divalent linking group containing a heteroatom substituting the methylene group include —O—, —C (= O) —O—, —OC (= O) −, —C (= O). -, -OC (= O) -O-, -C (= O) -NH-, -NH-, -NH-C (= NH)-, -C (= O) -NH-C (= O) - (H alkyl group may be substituted with a substituent such as an acyl group), -. S -, - S (= O) 2 -, and -S (= O) 2 -O-, etc. Can be mentioned.
 構成単位(a1)は、アクリルアミド誘導体から誘導される構成単位、又はアクリル酸エステルから誘導される構成単位が好ましい。そのため、Yの好ましい例としては、-CO-NH-Y11-、又は-CO-O-Y11-(Y11は、置換基を有してもよい2価の炭化水素基)で表される基が挙げられ、-CO-NH-Y11-で表される基がより好ましい。 The structural unit (a1) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Table (Y 11 can also be divalent substituted hydrocarbon group) at - Therefore, preferable examples of Y 1 are, -CO-NH-Y 11 - , or -CO-O-Y 11 include groups, -CO-NH-Y 11 - is a group represented by the more preferable.
 Y11における置換基を有してもよい2価の炭化水素基としては、前記Yにおいて挙げたものと同様のものが挙げられる。中でも、Y11は、置換基を有してもよいアルキレン基、又はアリール基若しくはヘテロアリール基の水素原子の1つがアルキレン基で置換された基が好ましい。 Examples of the divalent hydrocarbon group that may have a substituent in Y 11 include those similar to those mentioned in Y 1. Among them, Y 11 is preferably an alkylene group which may have a substituent, or a group in which one of the hydrogen atoms of an aryl group or a heteroaryl group is substituted with an alkylene group.
 前記置換基を有してもよいアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよいが、直鎖状であることが好ましい。前記直鎖状のアルキレン基は、炭素原子数1~15が好ましく、炭素原子数1~10がより好ましく、炭素原子数1~6がさらに好ましい。前記分岐鎖状のアルキレン基は、炭素原子数2~15が好ましく、炭素原子数2~10がより好ましく、炭素原子数2~6がさらに好ましい。
 Y11が置換基を有してもよいアルキレン基である場合、前記アルキレン基の炭素鎖を構成するメチレン基の一部がヘテロ原子を含む2価の連結基で置換されていてもよい。前記ヘテロ原子を含む2価の連結基としては、Yで挙げたものと同様のものが挙げられる。
The alkylene group which may have the substituent may be linear or branched, but is preferably linear. The linear alkylene group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms. The branched alkylene group preferably has 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 2 to 6 carbon atoms.
When Y 11 is an alkylene group which may have a substituent, a part of the methylene group constituting the carbon chain of the alkylene group may be substituted with a divalent linking group containing a heteroatom. Examples of the divalent linking group containing the hetero atom include the same ones as mentioned in Y 1.
 Y11がアリール基若しくはヘテロアリール基の水素原子の1つがアルキレン基で置換された基である場合、水素原子を置換するアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよいが、直鎖状であることが好ましい。前記直鎖状のアルキレン基は、炭素原子数1~10が好ましく、炭素原子数1~6がより好ましく、炭素原子数1~3がさらに好ましい。前記分岐鎖状のアルキレン基は、炭素原子数2~10が好ましく、炭素原子数2~6がより好ましく、炭素原子数2~4がさらに好ましい。前記アリール基が有する芳香環としては、ベンゼン環が挙げられる。前記ヘテロアリール基が有する複素環としては、トリアゾール環、イミダゾール環、ピリジン環、及びチオフェン環等が挙げられる。
 中でも、Y11は、トリアゾール基の水素原子の1つがアルキレン基で置換された基が好ましい。
When Y 11 is a group in which one of the hydrogen atoms of the aryl group or the heteroaryl group is substituted with an alkylene group, the alkylene group substituting the hydrogen atom may be linear or branched. Although it may be used, it is preferably linear. The linear alkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms. The branched alkylene group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms. Examples of the aromatic ring contained in the aryl group include a benzene ring. Examples of the heterocyclic ring contained in the heteroaryl group include a triazole ring, an imidazole ring, a pyridine ring, and a thiophene ring.
Of these, Y 11 is preferably a group in which one of the hydrogen atoms of the triazole group is substituted with an alkylene group.
 一般式(a1-1)中、Gbは、志賀毒素結合性オリゴ糖を表す。Gbは、グロボ3糖が好ましい。 In the general formula (a1-1), Gb represents a Shiga toxin-binding oligosaccharide. Gb is preferably Globotrisaccharide.
 構成単位(a1)の好ましい例としては、下記一般式(a1-1-1)で表される構成単位が挙げられる。 A preferable example of the structural unit (a1) is a structural unit represented by the following general formula (a1-1-1).
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Lは、-CO-O-又は-CO-NH-を表す。Rは、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。Gbは、志賀毒素結合性オリゴ糖を表す。]
Figure JPOXMLDOC01-appb-C000003
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. L 1 represents -CO-O- or -CO-NH-. R 1 represents a linear or branched alkylene group having 1 to 10 carbon atoms. Gb represents a Shiga toxin-binding oligosaccharide. ]
 一般式(a1-1-1)中、R及びGbは、それぞれ、前記一般式(a1-1)中のR及びGbと同様である。
 一般式(a1-1-1)中、Lは、-CO-O-又は-CO-NH-を表す。Lは、-CO-NH-が好ましい。
 一般式(a1-1-1)中、Rは、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。前記アルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~4がより好ましく、炭素原子数1~3がさらに好ましく、メチレン基又はエチレン基が特に好ましい。
In the general formula (a1-1-1), R and Gb are the same as R and Gb in the general formula (a1-1), respectively.
In the general formula (a1-1-1), L 1 represents -CO-O- or -CO-NH-. L 1 is preferably -CO-NH-.
In the general formula (a1-1-1), R 1 represents a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, further preferably 1 to 3 carbon atoms, and particularly preferably a methylene group or an ethylene group.
 構成単位(a1)の具体例を以下に挙げるが、これに限定されない。式中、Rαは、水素原子又はメチル基を表す。 Specific examples of the structural unit (a1) are given below, but the present invention is not limited to this. In the formula, R α represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 構成単位(a1)は、1種でもよく、2種以上でもよい。
 本実施形態の架橋ポリマーが含む全ランダムコポリマー中の構成単位(a1)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、3モル%以上が好ましく、5モル%以上が好ましく、8モル%以上がさらに好ましく、10モル%以上が特に好ましい。構成単位(a1)の割合が前記好ましい下限値以上であると、志賀毒素阻害効果がより向上する。全ランダムコポリマー中の構成単位(a1)の割合の上限値は特に限定されない。構成単位(a1)が志賀毒素結合性オリゴ糖としてグロボ3糖を含む場合、製造コストの観点から、構成単位(a1)の割合は、例えば、40モル%以下が好ましく、30モル%以下がより好ましく、20モル%以下がさらに好ましく、15モル%以下が特に好ましい。構成単位(a1)の割合は、3~40モル%が好ましく、5~30モル%がより好ましく、8~20モル%がさらに好ましく、10~15モル%が特に好ましい。
The structural unit (a1) may be one type or two or more types.
The ratio of the structural unit (a1) in the total random copolymer contained in the crosslinked polymer of the present embodiment is preferably 3 mol% or more with respect to the total (100 mol%) of all the structural units constituting the total random copolymer. It is preferably mol% or more, more preferably 8 mol% or more, and particularly preferably 10 mol% or more. When the ratio of the constituent unit (a1) is equal to or higher than the preferable lower limit value, the Shiga toxin inhibitory effect is further improved. The upper limit of the ratio of the constituent unit (a1) in the all random copolymer is not particularly limited. When the constituent unit (a1) contains a Globotrisaccharide as a Shiga toxin-binding oligosaccharide, the proportion of the constituent unit (a1) is preferably, for example, 40 mol% or less, more preferably 30 mol% or less, from the viewpoint of production cost. Preferably, 20 mol% or less is more preferable, and 15 mol% or less is particularly preferable. The ratio of the structural unit (a1) is preferably 3 to 40 mol%, more preferably 5 to 30 mol%, further preferably 8 to 20 mol%, and particularly preferably 10 to 15 mol%.
(他の構成単位)
 ランダムコポリマーは、上記構成単位(a1)に加えて、少なくとも1種の他の構成単位を有する。前記他の構成単位としては、炭素原子数4~20の疎水性基を含む構成単位(a2)、カチオン性基を含む構成単位(a3)、アニオン性基を含む構成単位(a4)、1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド分子内塩(以下、「PPS」ともいう)から誘導される構成単位(a5)、及び架橋剤から誘導される構成単位(a6)等が挙げられる。
(Other building blocks)
The random copolymer has at least one other structural unit in addition to the above structural unit (a1). Examples of the other structural units include a structural unit containing a hydrophobic group having 4 to 20 carbon atoms (a2), a structural unit containing a cationic group (a3), a structural unit containing an anionic group (a4), and 1-. (3-sulfopropyl) -2-vinylpyridinium hydroxide The structural unit (a5) derived from the intramolecular salt (hereinafter, also referred to as “PPS”), the structural unit (a6) derived from the cross-linking agent, and the like can be mentioned. Be done.
≪構成単位(a2)≫
 構成単位(a2)は、炭素原子数4~20の疎水性基を含む構成単位である。ランダムコポリマーは、構成単位(a2)を有することが好ましい。ランダムコポリマーが構成単位(a2)を有することにより、志賀毒素阻害効果がより向上する。
≪Constructive unit (a2) ≫
The structural unit (a2) is a structural unit containing a hydrophobic group having 4 to 20 carbon atoms. The random copolymer preferably has a structural unit (a2). When the random copolymer has the constituent unit (a2), the Shiga toxin inhibitory effect is further improved.
 構成単位(a2)が含む炭素原子数4~20の疎水性基としては、炭素原子数4~20の炭化水素基が挙げられる。前記炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。 Examples of the hydrophobic group having 4 to 20 carbon atoms contained in the structural unit (a2) include a hydrocarbon group having 4 to 20 carbon atoms. The hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
 脂肪族炭化水素基としては、直鎖状若しくは分岐鎖状の脂肪族炭化水素基、及び構造中に環を含む脂肪族炭化水素基等が挙げられる。脂肪族炭化水素基は、炭素原子数4~15が好ましく、炭素原子数4~10がより好ましく、炭素原子数4~6がさらに好ましい。脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよいが、飽和であることが好ましい。
 直鎖状脂肪族炭化水素基としては、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の直鎖状アルキル基が挙げられる。分岐鎖状脂肪族炭化水素基としては、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等の分岐鎖状アルキル基が挙げられる。
 構造中に環を含む脂肪族炭化水素基は、単環式基であってもよく、多環式基であってもよい。単環式基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式基としては、デカヒドロナフチル基、アダマンチル基、2-アルキルアダマンタン-2-イル基、1-(アダマンタン-1-イル)アルカン-1-イル基、ノルボルニル基、メチルノルボルニル基、イソボルニル基等が挙げられる。
Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon group containing a ring in the structure, and the like. The aliphatic hydrocarbon group preferably has 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and even more preferably 4 to 6 carbon atoms. The aliphatic hydrocarbon group may be saturated or unsaturated, but is preferably saturated.
Examples of the linear aliphatic hydrocarbon group include linear alkyl groups such as n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and n-octyl group. Examples of the branched aliphatic hydrocarbon group include an isobutyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a 1,1-dimethylpropyl group, a 1,1-diethylpropyl group and a 2,2-dimethylbutyl group. Branched chain alkyl groups can be mentioned.
The aliphatic hydrocarbon group containing a ring in the structure may be a monocyclic group or a polycyclic group. Examples of the monocyclic group include cycloalkyl groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, methylcyclohexyl group, dimethylcyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group and cyclodecyl group. Examples of the polycyclic group include a decahydronaphthyl group, an adamantyl group, a 2-alkyladamantan-2-yl group, a 1- (adamantan-1-yl) alkane-1-yl group, a norbornyl group, and a methylnorbornyl group. Examples thereof include an isobornyl group.
 芳香族炭化水素基は、炭素原子数6~20が好ましく、炭素原子数6~15がより好ましく、炭素原子数6~10がさらに好ましい。芳香族炭化水素基は、単環式基であってもよく、多環式基であってもよい。単環式芳香族炭化水素基としては、フェニル基;及びp-メチルフェニル基、p-tert-ブチルフェニル基、トリル基、キシリル基、クメニル基、メシチル基、2,6-ジエチルフェニル基、2-メチル-6-エチルフェニル基、p-アダマンチルフェニル基等のフェニル基の水素原子の一部がアルキル基若しくはシクロアルキル基で置換された基等が挙げられる。多環式芳香族炭化水素基としては、ビフェニル基、フェナントリル基、ナフチル基、アントリル基等が挙げられる。 The aromatic hydrocarbon group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, and even more preferably 6 to 10 carbon atoms. The aromatic hydrocarbon group may be a monocyclic group or a polycyclic group. Examples of the monocyclic aromatic hydrocarbon group include a phenyl group; and a p-methylphenyl group, a p-tert-butylphenyl group, a tolyl group, a xsilyl group, a cumenyl group, a mesityl group, a 2,6-diethylphenyl group, and 2 Examples thereof include a group in which a part of hydrogen atoms of a phenyl group such as a -methyl-6-ethylphenyl group and a p-adamantylphenyl group is substituted with an alkyl group or a cycloalkyl group. Examples of the polycyclic aromatic hydrocarbon group include a biphenyl group, a phenanthryl group, a naphthyl group, an anthryl group and the like.
 疎水性基としては、分岐鎖状アルキル基、又は単環式芳香族炭化水素基が好ましく、tert-ブチル基又はフェニル基がより好ましい。 As the hydrophobic group, a branched chain alkyl group or a monocyclic aromatic hydrocarbon group is preferable, and a tert-butyl group or a phenyl group is more preferable.
 構成単位(a2)としては、下記一般式(a2-1)で表されるものが挙げられる。 Examples of the structural unit (a2) include those represented by the following general formula (a2-1).
Figure JPOXMLDOC01-appb-C000005
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Yは、単結合又は2価の連結基を表す。Rは、炭素原子数4~20の疎水性基を表す。]
Figure JPOXMLDOC01-appb-C000005
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Y 2 represents a single bond or a divalent linking group. R 2 represents a hydrophobic group having 4 to 20 carbon atoms. ]
 一般式(a2-1)式中、Rは、前記式(a1-1)中のRと同様である。 In the general formula (a2-1), R is the same as R in the above formula (a1-1).
 一般式(a2-1)式中、Yは、単結合又は2価の連結基を表す。Yにおける2価の連結基としては、前記一般式(a1-1)中のYにおける2価の連結基として挙げたものと同様のものが挙げられる。構成単位(a2)は、アクリルアミド誘導体から誘導される構成単位、又はアクリル酸エステルから誘導される構成単位が好ましい。そのため、Yの好ましい例としては、-CO-NH-Y21-、又は-CO-O-Y21-(Y21は、単結合又は置換基を有してもよい2価の炭化水素基)で表される基が挙げられ、-CO-NH-Y21-で表される基が好ましい。Y21が置換基を有してもよい2価の炭化水素基である場合、前記置換基を有してもよい2価の炭化水素基としては、前記一般式(a1-1)中のYで挙げたものと同様のものが挙げられる。Y21は、単結合又は炭素原子数1~10の脂肪族炭化水素基が好ましく、単結合又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基がより好ましい。前記直鎖状若しくは分岐鎖状のアルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~3がより好ましく、炭素原子数1又は2がさらに好ましい。
 一般式(a2-1)式中、Rは、炭素原子数4~20の疎水性基を表す。疎水性基は、上記で挙げたものと同様のものが挙げられる。
In the general formula (a2-1), Y 2 represents a single bond or a divalent linking group. Examples of the divalent linking group in Y 2 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1). The structural unit (a2) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 2 are, -CO-NH-Y 21 - , or -CO-O-Y 21 - ( Y 21 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) the group represented by may be mentioned, -CO-NH-Y 21 - group represented by are preferred. When Y 21 is a divalent hydrocarbon group which may have a substituent, the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1). The same as those mentioned in 1 can be mentioned. Y 21 is preferably a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The linear or branched alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 or 2 carbon atoms.
In the general formula (a2-1), R 2 represents a hydrophobic group having 4 to 20 carbon atoms. Hydrophobic groups include those similar to those listed above.
 構成単位(a2)としては、下記一般式(a2-1-1)で表される構成単位が好ましい。 As the structural unit (a2), a structural unit represented by the following general formula (a2-1-1) is preferable.
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Lは、単結合、-CO-O-又は-CO-NH-を表す。Y22は、単結合又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。Rは、炭素原子数4~20の疎水性基を表す。]
Figure JPOXMLDOC01-appb-C000006
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. L 2 represents a single bond, -CO-O- or -CO-NH-. Y 22 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. R 2 represents a hydrophobic group having 4 to 20 carbon atoms. ]
 一般式(a2-1-1)中、Rは、前記一般式(a2-1)中のRと同様である。
 一般式(a2-1-1)中、Lは、単結合、-CO-O-、又は-CO-NH-を表す。Lは、-CO-NH-が好ましい。
 一般式(a2-1-1)中、Y22は、単結合、又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。前記アルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~4がより好ましく、炭素原子数1~3がさらに好ましく、メチレン基又はエチレン基が特に好ましい。Y22は、単結合又は炭素原子数1~3のアルキレン基が好ましく、単結合又は炭素原子数1~2のアルキレン基がより好ましく、単結合又はメチレン基がさらに好ましく、単結合が特に好ましい。
 一般式(a2-1-1)中、Rは、炭素原子数4~20の疎水性基を表す。Rは、一般式(a2-1)中のRと同様である。
In the general formula (a2-1-1), R is the same as R in the general formula (a2-1).
In the general formula (a2-1-1), L 2 represents a single bond, -CO-O-, or -CO-NH-. L 2 is preferably -CO-NH-.
In the general formula (a2-1-1), Y 22 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, further preferably 1 to 3 carbon atoms, and particularly preferably a methylene group or an ethylene group. Y 22 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond.
In the general formula (a2-1-1), R 2 represents a hydrophobic group having 4 to 20 carbon atoms. R 2 is the same as R 2 in the general formula (a2-1).
 構成単位(a2)の具体例を以下に挙げるが、これらに限定されない。式中、Rαは、水素原子又はメチル基を表す。 Specific examples of the structural unit (a2) are given below, but the present invention is not limited thereto. In the formula, R α represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 構成単位(a2)は、1種でもよく、2種以上でもよい。
 ランダムコポリマーが構成単位(a2)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a2)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、10~80モル%が好ましく、20~80モル%が好ましく、30~75モル%がさらに好ましく、40~70モル%が特に好ましい。構成単位(a2)の割合を前記好ましい範囲内とすることにより、志賀毒素阻害効果がより向上する。
The structural unit (a2) may be one type or two or more types.
When the random copolymer has a structural unit (a2), the proportion of the structural unit (a2) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 10 to 80 mol% is preferable, 20 to 80 mol% is preferable, 30 to 75 mol% is more preferable, and 40 to 70 mol% is particularly preferable. By setting the ratio of the constituent unit (a2) within the above preferable range, the Shiga toxin inhibitory effect is further improved.
≪構成単位(a3)≫
 構成単位(a3)は、カチオン性基を含む構成単位である。ランダムコポリマーは、構成単位(a3)を有することが好ましい。ランダムコポリマーが構成単位(a3)を有することにより、志賀毒素阻害効果がより向上する。
≪Constructive unit (a3) ≫
The structural unit (a3) is a structural unit containing a cationic group. The random copolymer preferably has a structural unit (a3). When the random copolymer has the constituent unit (a3), the Shiga toxin inhibitory effect is further improved.
 カチオン性基は、正電荷を帯びた原子団を意味する。カチオン性基は、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、塩酸イオン、酢酸イオン、硫酸イオン、フッ化水素酸イオン、及び、炭酸イオン等と塩を形成した塩形態のものであってもよい。構成単位(a3)が含むカチオン性基は、特に限定されないが、1級アミノ基(-NH)、2級アミノ基(-NHR)、3級アミノ基(-NR )、4級アミノ基(-NR )、及びカチオン性の窒素原子を含む複素環式基等が挙げられるが、これらに限定されない。 A cationic group means a positively charged atomic group. The cationic group is in the form of a salt formed by forming a salt with fluoride ion, chloride ion, bromide ion, iodide ion, hydrochloric acid ion, acetate ion, sulfate ion, hydrofluoride ion, carbonate ion and the like. There may be. Cationic group structural unit (a3) contains is not particularly limited, primary amino group (-NH 2), 2 amino groups (-NHR 3), 3 amino groups (-NR 3 2), 4 grade Examples thereof include, but are not limited to, an amino group (-NR 3 3 + ) and a heterocyclic group containing a cationic nitrogen atom.
 前記2級アミノ基、3級アミノ基、4級アミノ基におけるRは、有機基を表す。3級アミノ基、又は4級アミノ基の場合、2以上のRは、それぞれ同じであってもよく、異なっていてもよい。前記有機基としては、置換基を有してもよい炭化水素基が挙げられる。置換基を有してもよい炭化水素基としては、前記一般式(a1-1-1)中のRで挙げたものと同様のものが挙げられる。Rとしては、アルキル基、アリール基、又はアラルキル基が好ましい。前記アルキル基としては、炭素原子数1~6が好ましく、炭素原子数1~3がより好ましく、炭素原子数1又は2がさらに好ましい。前記アリール基又はアラルキル基としては、炭素原子数6~12が好ましく、炭素原子数6~10がより好ましい。Rの具体例としては、メチル基、エチル基、n-プロピル基、シクロペンチル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられるが、これらに限定されない。 R 3 in the secondary amino group, tertiary amino group, and quaternary amino group represents an organic group. Tertiary amino group, or quaternary amino group, two or more of R 3 may be each the same or different. Examples of the organic group include a hydrocarbon group which may have a substituent. Examples of the hydrocarbon group which may have a substituent include those similar to those mentioned in R 1 in the general formula (a1-1-1). The R 3, an alkyl group, an aryl group, or an aralkyl group is preferable. The alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 or 2 carbon atoms. The aryl group or aralkyl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms. Specific examples of R 3 include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, a benzyl group and the like.
 カチオン性の窒素原子を含む複素環式基は、脂肪族複素環式基であってもよく、芳香族複素環式基であってもよい。脂肪族複素環式基は、炭素原子数3~15が好ましく、炭素原子数5~10がより好ましい。脂肪族複素環式基としては、例えば、ピペリジニウム基、1-ピロリジニウム基、1-メチルピロリジニウム基等が挙げられるが、これらに限定されない。芳香族複素環式基としては、イミダゾリウム基、1-メチルイミダゾリウム基、1-エチルイミダゾリウム基、ベンズイミダゾリウム基、ピロリウム基、1-メチルピロリウム基、オキサゾリウム基、ベンズオキサゾリウム基、ベンズイソオキサゾリウム基、ピラゾリウム基、イソオキサゾリウム基、ピリジニウム基、2,6-ジメチルピリジニウム基、ピラジニウム基、ピリミジニウム基、ピリダジニウム基、トリアジニウム基が挙げられるが、これらに限定されない。 The heterocyclic group containing a cationic nitrogen atom may be an aliphatic heterocyclic group or an aromatic heterocyclic group. The aliphatic heterocyclic group preferably has 3 to 15 carbon atoms, and more preferably 5 to 10 carbon atoms. Examples of the aliphatic heterocyclic group include, but are not limited to, a piperidinium group, a 1-pyrrolidinium group, a 1-methylpyrrolidinium group and the like. Examples of the aromatic heterocyclic group include an imidazolium group, a 1-methylimidazolium group, a 1-ethylimidazolium group, a benzimidazolium group, a pyrollium group, a 1-methylpyrrolium group, an oxazolium group and a benzoxazolium group. , Benzisooxazolium group, pyrazolium group, isooxazolium group, pyridinium group, 2,6-dimethylpyridinium group, pyrazinium group, pyrimidinium group, pyridadinium group, triazinium group, but are not limited thereto.
 カチオン性基としては、3級アミノ基、4級アミノ基、又は窒素原子を含む複素環式基が好ましく、ジメチルアミノ基、トリメチルアミノ基、又はイミダゾリウム基がより好ましい。 As the cationic group, a tertiary amino group, a quaternary amino group, or a heterocyclic group containing a nitrogen atom is preferable, and a dimethylamino group, a trimethylamino group, or an imidazolium group is more preferable.
 構成単位(a3)としては、下記一般式(a3-1)で表されるものが挙げられる。 Examples of the structural unit (a3) include those represented by the following general formula (a3-1).
Figure JPOXMLDOC01-appb-C000008
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Yは、単結合又は2価の連結基を表す。Rcは、カチオン性基を表す。]
Figure JPOXMLDOC01-appb-C000008
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Y 3 represents a single bond or a divalent linking group. Rc 3 represents a cationic group. ]
 一般式(a3-1)中、Rは、前記式(a1-1)中のRと同様である。 In the general formula (a3-1), R is the same as R in the above formula (a1-1).
 一般式(a3-1)中、Yは、単結合又は2価の連結基を表す。Yにおける2価の連結基としては、前記一般式(a1-1)中のYにおける2価の連結基として挙げたものと同様のものが挙げられる。構成単位(a3)は、アクリルアミド誘導体から誘導される構成単位、又はアクリル酸エステルから誘導される構成単位が好ましい。そのため、Yの好ましい例としては、-CO-NH-Y31-、又は-CO-O-Y31-(Y31は、単結合又は置換基を有してもよい2価の炭化水素基)で表される基が挙げられ、-CO-NH-Y31-で表される基がより好ましい。Y31が置換基を有してもよい2価の炭化水素基である場合、前記置換基を有してもよい2価の炭化水素基としては、前記一般式(a1-1)中のYで挙げたものと同様のものが挙げられる。Y31は、炭素原子数1~10の脂肪族炭化水素基が好ましく、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基がより好ましい。前記直鎖状若しくは分岐鎖状のアルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~3がより好ましい。
 一般式(a3-1)中、Rcは、カチオン性基を表す。カチオン性基は、上記で挙げたものと同様のものが挙げられる。
In the general formula (a3-1), Y 3 represents a single bond or a divalent linking group. Examples of the divalent linking group in Y 3 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1). The structural unit (a3) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 3 is, -CO-NH-Y 31 - , or -CO-O-Y 31 - ( Y 31 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) the group represented by may be mentioned, -CO-NH-Y 31 - more preferably a group represented by. When Y 31 is a divalent hydrocarbon group which may have a substituent, the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1). The same as those mentioned in 1 can be mentioned. Y 31 is preferably an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a linear or branched alkylene group having 1 to 10 carbon atoms. The linear or branched alkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
In the general formula (a3-1), Rc 3 represents a cationic group. Examples of the cationic group include those similar to those listed above.
 構成単位(a3)としては、下記一般式(a3-1-1)で表される構成単位が好ましい。 As the structural unit (a3), a structural unit represented by the following general formula (a3-1-1) is preferable.
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Lは、単結合、-CO-O-、又は-CO-NH-を表す。Y32は、単結合又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。Rcは、カチオン性基を表す。]
Figure JPOXMLDOC01-appb-C000009
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. L 3 represents a single bond, -CO-O-, or -CO-NH-. Y 32 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. Rc 3 represents a cationic group. ]
 一般式(a3-1-1)中、Rは、前記一般式(a3-1)中のRと同様である。
 一般式(a3-1-1)中、Lは、単結合、-CO-O-、又は-CO-NH-を表す。Lは、単結合又は-CO-NH-が好ましい。
 一般式(a3-1-1)中、Y32は、単結合、又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。前記アルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~4がより好ましく、炭素原子数1~3がさらに好ましい。Y32は、単結合又は炭素原子数1~3のアルキレン基が好ましく、単結合又は炭素原子数1~2のアルキレン基がより好ましく、単結合又はメチレン基がさらに好ましく、単結合が特に好ましい。Y32の具体例としては、単結合、n-プロピレン基、エチレン基、及びメチレン基等が挙げられる。
 一般式(a3-1-1)中、Rcは、カチオン性基を表す。Rcは、一般式(a3-1)中のRcと同様である。
In the general formula (a3-1-1), R is the same as R in the general formula (a3-1).
In the general formula (a3-1-1), L 3 represents a single bond, -CO-O-, or -CO-NH-. L 3 is preferably single bond or -CO-NH-.
In the general formula (a3-1-1), Y 32 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms. Y 32 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond. Specific examples of Y 32 include a single bond, an n-propylene group, an ethylene group, a methylene group and the like.
In the general formula (a3-1-1), Rc 3 represents a cationic group. Rc 3 is the same as Rc 3 in the general formula (a3-1).
 構成単位(a3)の具体例を以下に挙げるが、これらに限定されない。式中、Rαは、水素原子又はメチル基を表す。 Specific examples of the structural unit (a3) are given below, but the present invention is not limited thereto. In the formula, R α represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 構成単位(a3)は、1種でもよく、2種以上でもよい。
 ランダムコポリマーが構成単位(a3)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a3)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、1~20モル%が好ましく、1~15モル%が好ましく、1~10モル%がさらに好ましい。構成単位(a3)の割合を前記好ましい範囲内とすることにより、志賀毒素阻害効果がより向上する。
The structural unit (a3) may be one type or two or more types.
When the random copolymer has a structural unit (a3), the proportion of the structural unit (a3) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, and 1 to 10 mol% is more preferable. By setting the ratio of the constituent unit (a3) within the above preferable range, the Shiga toxin inhibitory effect is further improved.
≪構成単位(a4)≫
 構成単位(a4)は、アニオン性基を含む構成単位である。ランダムコポリマーは、構成単位(a4)を有していてもよい。
≪Constructive unit (a4) ≫
The structural unit (a4) is a structural unit containing an anionic group. The random copolymer may have a structural unit (a4).
 アニオン性基は、負電荷を帯びた原子団を意味する。アニオン性基は、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン;及びカルシウムイオン等のアルカリ土類金属イオン等と塩を形成した塩形態のものであってもよい。構成単位(a4)が含むアニオン性基は、特に限定されないが、ヒドロキシ基、カルボキシ基、スルホ基、スルホニル基、リン酸基、ホスホン酸基、ホスフィン酸基、チオール基、及びボロン酸基等が挙げられるが、これらに限定されない。アニオン性基は、ヒドロキシ基、カルボキシ基、スルホ基、又はスルホニル基が好ましく、カルボキシ基がより好ましい。 Anionic group means a negatively charged atomic group. The anionic group may be in the form of a salt formed by forming a salt with an alkali metal ion such as sodium ion or potassium ion; and an alkaline earth metal ion such as calcium ion. The anionic group contained in the structural unit (a4) is not particularly limited, but includes a hydroxy group, a carboxy group, a sulfo group, a sulfonyl group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a thiol group, a boronic acid group and the like. These include, but are not limited to. The anionic group is preferably a hydroxy group, a carboxy group, a sulfo group, or a sulfonyl group, and more preferably a carboxy group.
 構成単位(a4)としては、下記一般式(a4-1)で表されるものが挙げられる。 Examples of the structural unit (a4) include those represented by the following general formula (a4-1).
Figure JPOXMLDOC01-appb-C000011
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Yは、単結合又は2価の連結基を表す。Raは、アニオン性基を表す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Y 4 represents a single bond or a divalent linking group. Ra 4 represents an anionic group. ]
 一般式(a4-1)式中、Rは、前記式(a1-1)中のRと同様である。 In the general formula (a4-1), R is the same as R in the formula (a1-1).
 一般式(a4-1)式中、Yは、単結合又は2価の連結基を表す。Yにおける2価の連結基としては、前記一般式(a1-1)中のYにおける2価の連結基として挙げたものと同様のものが挙げられる。構成単位(a4)は、アクリルアミド誘導体から誘導される構成単位、又はアクリル酸エステルから誘導される構成単位が好ましい。そのため、Yの好ましい例としては、-CO-NH-Y41-、又は-CO-O-Y41-(Y41は、単結合又は置換基を有してもよい2価の炭化水素基)で表される基が挙げられ、-CO-NH-Y41-で表される基がより好ましい。Y41が置換基を有してもよい2価の炭化水素基である場合、前記置換基を有してもよい2価の炭化水素基としては、前記一般式(a1-1)中のYで挙げたものと同様のものが挙げられる。Y41は、炭素原子数1~10の脂肪族炭化水素基が好ましく、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基がより好ましい。前記直鎖状若しくは分岐鎖状のアルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~3がより好ましい。
 一般式(a4-1)式中、Raは、アニオン性基を表す。アニオン性基は、上記で挙げたものと同様のものが挙げられる。
In the general formula (a4-1), Y 4 represents a single bond or a divalent linking group. Examples of the divalent linking group in Y 4 include those similar to those listed as the divalent linking group in Y 1 in the general formula (a1-1). The structural unit (a4) is preferably a structural unit derived from an acrylamide derivative or a structural unit derived from an acrylic acid ester. Therefore, preferred examples of Y 4 is, -CO-NH-Y 41 - , or -CO-O-Y 41 - ( Y 41 is 2 may have a single bond or a substituent monovalent hydrocarbon group ) is a group represented by the mentioned, -CO-NH-Y 41 - group is more preferably represented by. When Y 41 is a divalent hydrocarbon group which may have a substituent, the divalent hydrocarbon group which may have the substituent is Y in the general formula (a1-1). The same as those mentioned in 1 can be mentioned. Y 41 is preferably an aliphatic hydrocarbon group having 1 to 10 carbon atoms, and more preferably a linear or branched alkylene group having 1 to 10 carbon atoms. The linear or branched alkylene group preferably has 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms.
In the general formula (a4-1), Ra 4 represents an anionic group. Examples of the anionic group include those similar to those listed above.
 構成単位(a4)としては、下記一般式(a4-1-1)で表される構成単位が好ましい。 As the structural unit (a4), a structural unit represented by the following general formula (a4-1-1) is preferable.
Figure JPOXMLDOC01-appb-C000012
[式中、Rは、水素原子、又は炭素原子数1~5のアルキル基を表す。Lは、単結合、-CO-O-、又は-CO-NH-を表す。Y42は、単結合又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。Raは、アニオン性基を表す。]
Figure JPOXMLDOC01-appb-C000012
[In the formula, R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. L 4 represents a single bond, -CO-O-, or -CO-NH-. Y 42 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. Ra 4 represents an anionic group. ]
 一般式(a4-1-1)中、Rは、前記一般式(a4-1)中のRと同様である。
 一般式(a4-1-1)中、Lは、単結合、-CO-O-、又は-CO-NH-を表す。Lは、単結合又は-CO-NH-が好ましい。
 一般式(a4-1-1)中、Y42は、単結合、又は炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキレン基を表す。前記アルキレン基は、炭素原子数1~6が好ましく、炭素原子数1~4がより好ましく、炭素原子数1~3がさらに好ましい。Y42は、単結合又は炭素原子数1~3のアルキレン基が好ましく、単結合又は炭素原子数1~2のアルキレン基がより好ましく、単結合又はメチレン基がさらに好ましく、単結合が特に好ましい。
 一般式(a4-1-1)中、Raは、アニオン性基を表す。Raは、一般式(a4-1)中のRaと同様である。
In the general formula (a4-1-1), R is the same as R in the general formula (a4-1).
In the general formula (a4-1-1), L 4 represents a single bond, -CO-O-, or -CO-NH-. L 4 is preferably single bond or -CO-NH-.
In the general formula (a4-1-1), Y 42 represents a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms. The alkylene group preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 to 3 carbon atoms. Y 42 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond or an alkylene group having 1 to 2 carbon atoms, further preferably a single bond or a methylene group, and particularly preferably a single bond.
In the general formula (a4-1-1), Ra 4 represents an anionic group. Ra 4 is the same as Ra 4 in the general formula (a4-1).
 構成単位(a4)の具体例を以下に挙げるが、これに限定されない。式中、Rαは、水素原子又はメチル基を表す。 Specific examples of the structural unit (a4) are given below, but the present invention is not limited to this. In the formula, R α represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 構成単位(a4)は、1種でもよく、2種以上でもよい。
 ランダムコポリマーが構成単位(a4)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a4)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、1~20モル%が好ましく、1~15モル%が好ましく、1~10モル%がさらに好ましい。構成単位(a4)の割合を前記好ましい範囲内とすることにより、志賀毒素阻害効果がより向上する。
The structural unit (a4) may be one type or two or more types.
When the random copolymer has a structural unit (a4), the proportion of the structural unit (a4) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, and 1 to 10 mol% is more preferable. By setting the ratio of the constituent unit (a4) within the above preferable range, the Shiga toxin inhibitory effect is further improved.
≪構成単位(a5)≫
 構成単位(a5)は、1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド分子内塩から誘導される構成単位である。ランダムコポリマーは、構成単位(a5)を有することが好ましい。ランダムコポリマーが構成単位(a5)を有することにより、志賀毒素に対する結合性が向上し、志賀毒素阻害効果がより向上する。
≪Constructive unit (a5) ≫
The structural unit (a5) is a structural unit derived from the 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide intramolecular salt. The random copolymer preferably has a structural unit (a5). When the random copolymer has the constituent unit (a5), the binding property to Shiga toxin is improved, and the Shiga toxin inhibitory effect is further improved.
 構成単位(a5)は、下記式(a5-1)で表される構成単位である。 The structural unit (a5) is a structural unit represented by the following formula (a5-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ランダムコポリマーが構成単位(a5)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a5)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、1~20モル%が好ましく、1~15モル%が好ましく、1~10モル%がさらに好ましく、2~8モル%が特に好ましい。構成単位(a5)の割合を前記好ましい範囲内とすることにより、志賀毒素阻害効果がより向上する。 When the random copolymer has a structural unit (a5), the proportion of the structural unit (a5) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 1 to 20 mol% is preferable, 1 to 15 mol% is preferable, 1 to 10 mol% is more preferable, and 2 to 8 mol% is particularly preferable. By setting the ratio of the constituent unit (a5) within the above preferable range, the Shiga toxin inhibitory effect is further improved.
≪構成単位(a6)≫
 構成単位(a6)は、架橋剤から誘導される構成単位である。ランダムコポリマーは、構成単位(a6)を有することが好ましい。構成単位(a6)を有するランダムコポリマーは、共重合反応と架橋反応とを1工程で行うことができるため、製造コストを低減することができる。
≪Constructive unit (a6) ≫
The structural unit (a6) is a structural unit derived from the cross-linking agent. The random copolymer preferably has a structural unit (a6). Since the random copolymer having the structural unit (a6) can carry out the copolymerization reaction and the cross-linking reaction in one step, the production cost can be reduced.
 架橋剤としては、2個以上の重合性基を含む化合物が挙げられる。重合性基としては、エチレン性二重結合を含む基が好ましい。エチレン性二重結合を含む基としては、例えば、ビニル基、及び(メタ)アクリロイル基が挙げられる。(メタ)アクリロイル基は、メタクリロイル基及びアクリロイル基のいずれかを意味する。構成単位(a6)は、架橋剤の重合性基が開裂して構成される構成単位である。 Examples of the cross-linking agent include compounds containing two or more polymerizable groups. As the polymerizable group, a group containing an ethylenic double bond is preferable. Examples of the group containing an ethylenic double bond include a vinyl group and a (meth) acryloyl group. The (meth) acryloyl group means either a methacryloyl group or an acryloyl group. The structural unit (a6) is a structural unit formed by cleaving the polymerizable group of the cross-linking agent.
 架橋剤としては、2官能以上の(メタ)アクリルアミド化合物、又は2官能以上の(メタ)アクリレート化合物が挙げられる。(メタ)アクリルアミド化合物は、メタクリルアミド化合物及びアクリルアミド化合物のいずれかを意味する。(メタ)アクリレート化合物は、メタクリレート化合物及びアクリレート化合物のいずれかを意味する。
 2官能以上の(メタ)アクリルアミド化合物としては、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N,N’-エチレンビスアクリルアミド、エチレンジアミンジメチルアクリルアミド、エチレンジアミンジアクリルアミド等が挙げられるが、これらに限定されない。
 2官能以上の(メタ)アクリレート化合物としては、テトラエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ビスフェノールAジメタクリレート、グリセロールジメタクリレート等が挙げられるが、これらに限定されない。
Examples of the cross-linking agent include a bifunctional or higher functional (meth) acrylamide compound or a bifunctional or higher functional (meth) acrylate compound. The (meth) acrylamide compound means either a methacrylamide compound or an acrylamide compound. The (meth) acrylate compound means either a methacrylate compound or an acrylate compound.
Examples of the bifunctional or higher functional (meth) acrylamide compound include N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, N, N'-ethylenebisacrylamide, ethylenediaminedimethylacrylamide, ethylenediaminediacrylamide and the like. However, it is not limited to these.
Examples of the bifunctional or higher functional (meth) acrylate compound include tetraethylene glycol diacrylate, triethylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and ethylene glycol dimethacrylate. Examples thereof include, but are not limited to, diethylene glycol dimethacrylate, trimethylopropane trimethacrylate, pentaerythritol tetramethacrylate, bisphenol A dimethacrylate, and glycerol dimethacrylate.
 構成単位(a6)の具体例を以下に挙げるが、これらに限定されない。式中、Rαは、それぞれ独立に水素原子又はメチル基を表す。nは、0~2の整数を表し、1が好ましい。 Specific examples of the structural unit (a6) are given below, but the present invention is not limited thereto. In the formula, R α independently represents a hydrogen atom or a methyl group. n represents an integer of 0 to 2, and 1 is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 構成単位(a6)は、1種でもよく、2種以上でもよい。
 ランダムコポリマーが構成単位(a6)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a6)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、5~20モル%が好ましく、5~15モル%が好ましく、8~12モル%がさらに好ましい。構成単位(a6)の割合を前記好ましい範囲内とすることにより、架橋ポリマーの粒子径を適度な範囲に制御することができる。
The structural unit (a6) may be one type or two or more types.
When the random copolymer has a structural unit (a6), the proportion of the structural unit (a6) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. 5 to 20 mol% is preferable, 5 to 15 mol% is preferable, and 8 to 12 mol% is more preferable. By setting the ratio of the structural unit (a6) within the above preferable range, the particle size of the crosslinked polymer can be controlled within an appropriate range.
≪その他:構成単位(a7)≫
 ランダムコポリマーは、本発明の効果を損なわない範囲で、上記(a1)~(a6)以外の他の構成単位(以下、「構成単位(a7)」ともいう)を有していてもよい。構成単位(a7)は、特に限定されない。構成単位(a7)としては、例えば、N-イソプロピルアクリルアミド、N-エチルアクリルアミド、N-メチルアクリルアミド等のアクリルアミド誘導体から誘導される構成単位が挙げられる。
≪Other: Structural unit (a7) ≫
The random copolymer may have a structural unit other than the above (a1) to (a6) (hereinafter, also referred to as “constituent unit (a7)”) as long as the effect of the present invention is not impaired. The structural unit (a7) is not particularly limited. Examples of the structural unit (a7) include a structural unit derived from an acrylamide derivative such as N-isopropylacrylamide, N-ethylacrylamide, and N-methylacrylamide.
 構成単位(a7)は、1種でもよく、2種以上でもよい。
 ランダムコポリマーが構成単位(a7)を有する場合、架橋ポリマーが含む全ランダムコポリマー中の構成単位(a7)の割合は、全ランダムコポリマーを構成する全構成単位の合計(100モル%)に対して、10~80モル%が好ましく、10~60モル%が好ましく、10~50モル%がさらに好ましい。
The structural unit (a7) may be one type or two or more types.
When the random copolymer has a structural unit (a7), the proportion of the structural unit (a7) in the total random copolymer contained in the crosslinked polymer is relative to the total (100 mol%) of all the structural units constituting the total random copolymer. It is preferably 10 to 80 mol%, preferably 10 to 60 mol%, and even more preferably 10 to 50 mol%.
 架橋ポリマーが含むランダムコポリマーは、1種でもよく、2種以上でもよい。ランダムコポリマーが有する構成単位の組合せとしては、構成単位(a1)、構成単位(a2)、及び構成単位(6)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)及び構成単位(6)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(6)、及び構成単位(a7)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a5)、構成単位(6)、及び構成単位(a7)の組合せ;構成単位(a1)、構成単位(a3)、構成単位(a6)、及び構成単位(a7)の組合せ;構成単位(a1)、構成単位(a6)、及び構成単位(a7)の組合せ;構成単位(a1)、構成単位(a4)、構成単位(a6)、及び構成単位(a7)の組合せ;等が挙げられる。
 好ましい組み合わせとしては、構成単位(a1)、構成単位(a2)、構成単位(a3)、及び構成単位(a6)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a5)、及び構成単位(a6)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a5)、構成単位(a6)、及び構成単位(a7)の組合せ;構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a6)、及び構成単位(a7)の組合せ;等が挙げられる。
 中でも、構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a5)、構成単位(a6)、及び構成単位(a7)の組合せが特に好ましい。
The random copolymer contained in the crosslinked polymer may be one kind or two or more kinds. The combination of structural units contained in the random copolymer includes a combination of structural units (a1), structural units (a2), and structural units (6); structural units (a1), structural units (a2), structural units (a3), and Combination of constituent units (6); Combination of constituent units (a1), constituent units (a2), constituent units (a3), constituent units (6), and constituent units (a7); constituent units (a1), constituent units ( Combination of a2), constituent unit (a3), constituent unit (a5), constituent unit (6), and constituent unit (a7); constituent unit (a1), constituent unit (a3), constituent unit (a6), and configuration Combination of units (a7); Combination of constituent units (a1), constituent units (a6), and constituent units (a7); constituent units (a1), constituent units (a4), constituent units (a6), and constituent units (a6) The combination of a7); and the like can be mentioned.
Preferred combinations include a configuration unit (a1), a configuration unit (a2), a configuration unit (a3), and a configuration unit (a6); a configuration unit (a1), a configuration unit (a2), a configuration unit (a3), Combination of constituent unit (a5) and constituent unit (a6); constituent unit (a1), constituent unit (a2), constituent unit (a3), constituent unit (a5), constituent unit (a6), and constituent unit (a7) ); Combinations of the constituent unit (a1), the constituent unit (a2), the constituent unit (a3), the constituent unit (a6), and the constituent unit (a7); and the like.
Among them, the combination of the structural unit (a1), the structural unit (a2), the structural unit (a3), the structural unit (a5), the structural unit (a6), and the structural unit (a7) is particularly preferable.
 架橋性ポリマーは、理論値の分子量が、100~500であることが好ましく、120~300であることがより好ましく、150~200であることがさらに好ましい。架橋性ポリマーの「理論値の分子量」とは、架橋性ポリマーの合成時の各重合性モノマーの仕込みモル比と各重合性モノマーの分子量から算出される理論値である。本明細書において、「理論値の分子量」は、以下のように算出される値である。
 重合性モノマー混合物中の全重合性モノマーの合計量を1としたときの各重合性モノマーのモル比(R:表1の[]内の数値を100で割った数値)を算出する。前記モル比Rに、当該重合性モノマーの分子量を乗じた値(M)を算出する。重合性モノマー混合物中の各モノマーについて算出されたMを合計した値が、理論値の分子量となる。
The crosslinkable polymer preferably has a theoretical molecular weight of 100 to 500, more preferably 120 to 300, and even more preferably 150 to 200. The "theoretical molecular weight" of the crosslinkable polymer is a theoretical value calculated from the charged molar ratio of each polymerizable monomer at the time of synthesizing the crosslinkable polymer and the molecular weight of each polymerizable monomer. In the present specification, the "theoretical molecular weight" is a value calculated as follows.
The molar ratio of each polymerizable monomer when the total amount of all the polymerizable monomers in the polymerizable monomer mixture is 1 ( RA : the value in [] in Table 1 divided by 100) is calculated. The molar ratio R A, calculates the molecular weight obtained by multiplying the value of the polymerizable monomer (M A). Value which is the sum of M A calculated for each monomer of the polymerizable monomer mixture is a molecular weight of theory.
 本実施形態の架橋ポリマーは、糖ユニット当たりの分子量が1000~5000であることが好ましく、1200~3000であることがより好ましく、1500~2000であることがさらに好ましい。架橋性ポリマーの「糖ユニット当たりの分子量」は、架橋性ポリマーの理論値の分子量を、構成単位(a1)を誘導する重合性モノマーのモル比(R)で割った値である。 The crosslinked polymer of the present embodiment preferably has a molecular weight of 1000 to 5000, more preferably 1200 to 3000, and even more preferably 1500 to 2000. The "molecular weight per sugar unit" of the crosslinkable polymer is a value obtained by dividing the theoretical molecular weight of the crosslinkable polymer by the molar ratio ( RA) of the polymerizable monomer that induces the structural unit (a1).
 本実施形態の架橋ポリマーは、動的散乱法により測定される35℃のZ平均粒子径が、30~2000程度であることが好ましい。また、本実施形態の架橋ポリマーは、動的散乱法により測定される40℃のZ平均粒子径が、30~2000程度であることが好ましい。 The crosslinked polymer of the present embodiment preferably has a Z average particle size of about 30 to 2000 at 35 ° C. measured by a dynamic scattering method. Further, the crosslinked polymer of the present embodiment preferably has a Z average particle size of about 30 to 2000 at 40 ° C. measured by a dynamic scattering method.
<架橋ポリマーの製造方法>
 本実施形態の架橋ポリマーは、ランダムコポリマーの各構成単位を誘導する重合性モノマーと、架橋剤と、を含む重合性モノマー混合物を、重合開始剤の存在下で、ラジカル重合することにより製造することができる。あるいは、各構成単位を誘導する重合性モノマーをラジカル重合してランダムコポリマーを得た後、ランダムコポリマー中の官能基と反応する基を2個以上有する架橋剤を用いて、ランダムコポリマーの架橋反応を行ってもよい。ランダムコポリマーの合成と架橋を1工程で行えることから、架橋剤を含む重合性モノマー混合物を用いて、共重合する方法が好ましい。架橋剤としては、上記構成単位(a6)で挙げたものが挙げられる。
<Manufacturing method of crosslinked polymer>
The crosslinked polymer of the present embodiment is produced by radically polymerizing a polymerizable monomer mixture containing a polymerizable monomer for inducing each structural unit of a random copolymer and a crosslinking agent in the presence of a polymerization initiator. Can be done. Alternatively, after radical polymerization of the polymerizable monomer that induces each structural unit to obtain a random copolymer, a cross-linking reaction of the random copolymer is carried out using a cross-linking agent having two or more groups that react with functional groups in the random copolymer. You may go. Since the synthesis and cross-linking of the random copolymer can be performed in one step, a method of copolymerizing using a polymerizable monomer mixture containing a cross-linking agent is preferable. Examples of the cross-linking agent include those listed in the above-mentioned structural unit (a6).
 重合開始剤は、ラジカル重合に一般的に用いられるものを用いればよく、例えば、V-501(4,4’-Azobis(4-cyanovaleric acid))又はAAPD(2,2’-Azobis(2-methylpropionamidine)Dihydrochloride)等が挙げられる。また、ラジカル重合の反応溶媒としては、界面活性剤を含有する水性媒体を用いることができる。前記界面活性剤としては、例えば、ドデシル硫酸ナトリウム(SDS)、又はヘキサデシルトリメチルアンモニウムブロミド(CTAB)等が利用可能である。 As the polymerization initiator, one generally used for radical polymerization may be used, for example, V-501 (4,4'-Azobis (4-cyanovalic acid)) or AAPD (2,2'-Azobis (2-2'-Azobis)). (Methlypolymeridine) Dihydrochloride) and the like can be mentioned. Further, as the reaction solvent for radical polymerization, an aqueous medium containing a surfactant can be used. As the surfactant, for example, sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide (CTAB), or the like can be used.
 本実施形態の架橋ポリマーは、構成単位(a1)と、少なくとも1種の他の構成単位と、を有するランダムコポリマーが架橋された構造を有することにより、志賀毒素に対して高い阻害活性を発揮することができる。これは、ランダムコポリマーの架橋により、多様な構造が形成され、複数部位で志賀毒素に結合できるため、と考えられる。
 本実施形態の架橋ポリマーは、志賀毒素に対して高い阻害活性を有するため、後述の志賀毒素阻害剤、及び志賀毒素産生菌感染症を治療又は予防するための医薬組成物として利用可能である。
The crosslinked polymer of the present embodiment exhibits high inhibitory activity against Shiga toxin by having a structure in which a random copolymer having a structural unit (a1) and at least one other structural unit is crosslinked. be able to. It is considered that this is because the cross-linking of the random copolymer forms various structures and can bind to Shiga toxin at multiple sites.
Since the crosslinked polymer of the present embodiment has high inhibitory activity against Shiga toxin, it can be used as a Shiga toxin inhibitor described later and a pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection.
[志賀毒素阻害剤]
 1実施形態において、本発明は、前記実施形態の架橋ポリマーを含有する志賀毒素阻害剤を提供する。
[Shiga toxin inhibitor]
In one embodiment, the present invention provides a Shiga toxin inhibitor containing the crosslinked polymer of the embodiment.
 前記実施形態の架橋ポリマーは、高い志賀毒素阻害活性を有するため、志賀毒素阻害剤として使用することができる。志賀毒素阻害剤が含有する前記実施形態の架橋ポリマーは、1種でもよく、2種以上でもよい。
 また、架橋ポリマーは、架橋ポリマー)の薬学的に許容される塩、架橋ポリマーの薬学的に許容される溶媒和物、及び架橋ポリマーの薬学的に許容される塩の溶媒和物であってもよい。
Since the crosslinked polymer of the above embodiment has high Shiga toxin inhibitory activity, it can be used as a Shiga toxin inhibitor. The crosslinked polymer of the above embodiment contained in the Shiga toxin inhibitor may be one kind or two or more kinds.
Further, the crosslinked polymer may be a pharmaceutically acceptable salt of the crosslinked polymer), a pharmaceutically acceptable solvate of the crosslinked polymer, or a solvate of a pharmaceutically acceptable salt of the crosslinked polymer. good.
 志賀毒素阻害剤は、前記実施形態の架橋ポリマーに加えて、他の成分を含んでいてもよい。前記他の成分は、特に限定されず、医薬品分野において常用されるものを特に制限なく使用することができる。他の成分としては、例えば、後述する薬学的に許容される担体等が挙げられる。志賀毒素阻害剤は、前記実施形態の架橋ポリマーと、適宜他の成分とを混合し、公知の方法で製剤化することができる。 The Shiga toxin inhibitor may contain other components in addition to the crosslinked polymer of the above embodiment. The other ingredients are not particularly limited, and those commonly used in the pharmaceutical field can be used without particular limitation. Examples of other components include pharmaceutically acceptable carriers described later. The Shiga toxin inhibitor can be formulated by a known method by mixing the crosslinked polymer of the above embodiment with other components as appropriate.
 志賀毒素阻害剤の投与経路は、腸管内に到達できれば特に限定されないが、経口投与が好ましい。志賀毒素阻害剤は、経口投与製剤とすることができる。 The route of administration of the Shiga toxin inhibitor is not particularly limited as long as it can reach the intestinal tract, but oral administration is preferable. The Shiga toxin inhibitor can be an orally administered preparation.
 志賀毒素阻害剤の投与対象としては、ヒト、又はヒト以外の哺乳類が挙げられる。ヒト以外の哺乳類は、特に限定されないが、霊長類(サル、チンパンジー、ゴリラなど)、げっ歯類(マウス、ハムスター、ラットなど)、ウサギ、イヌ、ネコ、ウシ、ブタ、ヤギ、ヒツジ、ウマ等が挙げられる。 Targets for administration of the Shiga toxin inhibitor include humans and mammals other than humans. Mammals other than humans are not particularly limited, but are primates (monkeys, chimpanzees, gorillas, etc.), rodents (mouses, hamsters, rats, etc.), rabbits, dogs, cats, cows, pigs, goats, sheep, horses, etc. Can be mentioned.
 本実施形態の志賀毒素阻害剤は、志賀毒素の毒性を中和するために、in vitro又はin vivoで使用することができる。あるいは、後述する医薬組成物として、ヒト等の動物に投与することができる。 The Shiga toxin inhibitor of this embodiment can be used in vitro or in vivo to neutralize the toxicity of Shiga toxin. Alternatively, it can be administered to animals such as humans as a pharmaceutical composition described later.
[医薬組成物]
 1実施形態において、本発明は、前記実施形態の架橋ポリマーと、薬学的に許容される担体と、を含有する、志賀毒素産生菌感染症を治療又は予防するための医薬組成物を提供する。
[Pharmaceutical composition]
In one embodiment, the present invention provides a pharmaceutical composition comprising the crosslinked polymer of the embodiment and a pharmaceutically acceptable carrier for treating or preventing a Shiga toxin-producing bacterial infection.
 志賀毒素産生菌感染症は、志賀毒素を産生する細菌が腸管内で志賀毒素を産生することにより発症する疾患を意味する。志賀毒素産生菌としては、EHECが挙げられる。EHECとしては、例えば、O抗原が、O157、O111、O26、O103、O104、O118、O121、O145、O165等である大腸菌が挙げられる。
 本実施形態の医薬組成物の適用対象としては、上記志賀毒素阻害剤と同様の対象が挙げられる。
Shiga toxin-producing bacterial infection means a disease caused by the production of Shiga toxin in the intestinal tract by bacteria that produce Shiga toxin. Examples of Shiga toxin-producing bacteria include EHEC. Examples of EHEC include Escherichia coli in which the O antigen is O157, O111, O26, O103, O104, O118, O121, O145, O165 and the like.
Examples of the application target of the pharmaceutical composition of the present embodiment include the same targets as the above-mentioned Shiga toxin inhibitor.
 本実施形態の医薬組成物が含有する前記実施形態の架橋ポリマーは、1種でもよく、2種以上でもよい。本実施形態の医薬組成物は、前記架橋ポリマーに加えて、少なくとも1種の薬学的に許容される担体を含み得る。「薬学的に許容される担体」とは、有効成分の生理活性を阻害せず、且つ、その投与対象に対して実質的な毒性を示さない担体を意味する。「実質的な毒性を示さない」とは、その成分が通常使用される投与量において、投与対象に対して毒性を示さないことを意味する。本実施形態の医薬組成物においては、薬学的に許容される担体は、架橋ポリマーの志賀毒素阻害活性を阻害せず、且つその投与対象に対して実質的な毒性を示さない担体である。薬学的に許容される担体は、典型的には非活性成分とみなされる、公知のあらゆる薬学的に許容され得る成分を包含する。薬学的に許容される担体は、特に限定されないが、例えば、溶媒、希釈剤、ビヒクル、賦形剤、流動促進剤、結合剤、造粒剤、分散化剤、懸濁化剤、湿潤剤、滑沢剤、崩壊剤、可溶化剤、安定剤、乳化剤、充填剤、保存剤(例えば、酸化防止剤)、キレート剤、矯味矯臭剤、甘味剤、増粘剤、緩衝剤、着色剤等が挙げられる。薬学的に許容される担体は、1種を単独で用いてもよく、2種以上を併用してもよい。 The crosslinked polymer of the above embodiment contained in the pharmaceutical composition of the present embodiment may be one kind or two or more kinds. The pharmaceutical composition of the present embodiment may contain at least one pharmaceutically acceptable carrier in addition to the crosslinked polymer. The "pharmaceutically acceptable carrier" means a carrier that does not inhibit the physiological activity of the active ingredient and does not exhibit substantial toxicity to the administration subject. By "not showing substantial toxicity" is meant that the ingredient is not toxic to the subject at commonly used doses. In the pharmaceutical composition of the present embodiment, the pharmaceutically acceptable carrier is a carrier that does not inhibit the Shiga toxin inhibitory activity of the crosslinked polymer and does not exhibit substantial toxicity to the administration subject thereof. The pharmaceutically acceptable carrier includes any known pharmaceutically acceptable ingredient, which is typically considered an inactive ingredient. Pharmaceutically acceptable carriers are not particularly limited, but include, for example, solvents, diluents, vehicles, excipients, flow promoters, binders, granulators, dispersants, suspending agents, wetting agents, etc. Lubricants, disintegrants, solubilizers, stabilizers, emulsifiers, fillers, preservatives (eg antioxidants), chelating agents, flavoring agents, sweeteners, thickeners, buffers, colorants, etc. Can be mentioned. As the pharmaceutically acceptable carrier, one type may be used alone, or two or more types may be used in combination.
 本実施形態の医薬組成物は、前記架橋ポリマー及び薬学的に許容される担体以外の、他の成分を含んでいてもよい。他の成分は、特に限定されず、医薬分野において常用されるものを特に制限なく使用することができる。また、本実施形態の医薬組成物は、前記架橋ポリマー以外の活性成分を含んでいてもよい。活性成分としては、例えば、抗生物質、整腸剤、下痢止め剤、解熱剤、鎮痛剤等が挙げられるが、これらに限定されない。他の成分は、1種を単独で用いてもよく、2種以上を併用してもよい。 The pharmaceutical composition of the present embodiment may contain other components other than the crosslinked polymer and the pharmaceutically acceptable carrier. The other ingredients are not particularly limited, and those commonly used in the pharmaceutical field can be used without particular limitation. In addition, the pharmaceutical composition of the present embodiment may contain an active ingredient other than the crosslinked polymer. Examples of the active ingredient include, but are not limited to, antibiotics, antidiarrheal agents, antidiarrheal agents, antipyretics, analgesics and the like. As for the other components, one type may be used alone, or two or more types may be used in combination.
 本実施形態の医薬組成物の剤型は、特に制限されず、医薬品製剤として一般的に用いられる剤型とすることができる。本実施形態の医薬組成物は、経口製剤であってもよく、非経口製剤であってもよい。経口製剤としては、例えば、錠剤、被覆錠剤、丸剤、散剤、顆粒剤、カプセル剤、シロップ剤、細粒剤、液剤、ドロップ愛、乳剤等が挙げられる。非経口製剤としては、例えば、坐剤、点鼻剤、経腸剤、吸入剤等が挙げられる。これらの剤型の医薬組成物は、定法(例えば、日本薬局方記載の方法)に従って、製剤化することができる。本実施形態の医薬組成物は、経口製剤であることが好ましい。 The dosage form of the pharmaceutical composition of the present embodiment is not particularly limited, and can be a dosage form generally used as a pharmaceutical preparation. The pharmaceutical composition of the present embodiment may be an oral preparation or a parenteral preparation. Examples of the oral preparation include tablets, coated tablets, pills, powders, granules, capsules, syrups, fine granules, liquids, drop loves, emulsions and the like. Examples of parenteral preparations include suppositories, nasal drops, enteral preparations, inhalants and the like. The pharmaceutical compositions of these dosage forms can be formulated according to a conventional method (for example, the method described in the Japanese Pharmacopoeia). The pharmaceutical composition of the present embodiment is preferably an oral preparation.
 本実施形態の医薬組成物の投与経路は、特に限定されず、経口又は非経口経路で投与することができるが、経口投与が好ましい。 The administration route of the pharmaceutical composition of the present embodiment is not particularly limited and can be administered by an oral or parenteral route, but oral administration is preferable.
 本実施形態の医薬組成物は、前記架橋ポリマーの治療的有効量を投与することができる。「治療的有効量」とは、対象疾患の治療又は予防のために有効な薬剤の量を意味する。例えば、前記架橋ポリマーの治療的有効量は、志賀毒素による下痢、血便、腹痛、発熱、溶結性貧血、血小板減少、急性腎不全、脳症等の症状を緩和、抑制、又は阻害できる量であり得る。治療的有効量は、患者の症状、体重、年齢、及び性別等、並びに医薬組成物の剤型、及び投与方法等によって適宜決定すればよい。例えば、本実施形態の医薬組成物は、前記架橋ポリマーの1回の投与量として、投与対象の体重1kgあたり、0.01~1000mgとすることができる。前記投与量は、0.05~500mg/kgであってもよく、0.1~300mg/kgであってもよく、0.2~200mg/kgであってもよく、0.3~100mg/kgであってもよい。 The pharmaceutical composition of the present embodiment can administer a therapeutically effective amount of the crosslinked polymer. "Therapeutically effective amount" means the amount of a drug effective for the treatment or prevention of a target disease. For example, the therapeutically effective amount of the crosslinked polymer may be an amount capable of alleviating, suppressing, or inhibiting symptoms such as diarrhea, bloody stool, abdominal pain, fever, lytic anemia, thrombocytopenia, acute renal failure, and encephalopathy caused by Shiga toxin. .. The therapeutically effective amount may be appropriately determined depending on the patient's symptoms, body weight, age, gender, etc., the dosage form of the pharmaceutical composition, the administration method, and the like. For example, the pharmaceutical composition of the present embodiment can have a single dose of the crosslinked polymer of 0.01 to 1000 mg per 1 kg of body weight of the subject to be administered. The dose may be 0.05 to 500 mg / kg, 0.1 to 300 mg / kg, 0.2 to 200 mg / kg, or 0.3 to 100 mg / kg. It may be kg.
 本実施形態の医薬組成物は、単位投与形態あたり、治療的有効量の前記架橋ポリマーを含んでいてもよい。例えば、本実施形態の医薬組成物における前記架橋ポリマーの含有量は、0.01~90質量%であってもよく、0.05~80質量%であってもよく、0.1~60質量%であってもよい。 The pharmaceutical composition of this embodiment may contain a therapeutically effective amount of the crosslinked polymer per unit dosage form. For example, the content of the crosslinked polymer in the pharmaceutical composition of the present embodiment may be 0.01 to 90% by mass, 0.05 to 80% by mass, or 0.1 to 60% by mass. May be%.
 本実施形態の医薬組成物の投与間隔は、患者の症状、体重、年齢、及び性別等、並びに医薬組成物の剤型、及び投与方法等によって適宜決定すればよい。投与間隔は、例えば、数時間毎、1日2~3回、1日1回、2~3日に1回、1週間に1回等とすることができる。 The administration interval of the pharmaceutical composition of the present embodiment may be appropriately determined depending on the patient's symptoms, body weight, age, gender, etc., the dosage form of the pharmaceutical composition, the administration method, and the like. The administration interval can be, for example, every few hours, 2 to 3 times a day, once a day, once every 2 to 3 days, once a week, or the like.
 本実施形態の医薬組成物は、志賀毒素に対して高い阻害活性を有する前記実施形態の架橋ポリマーを含有するため、効果的に志賀毒素産生細菌感染症を治療又は予防することができる。また、本実施形態の医薬組成物は、前記架橋性ポリマーを用いることにより、グロボ3糖等の志賀毒素結合性オリゴ糖の含有量を低減することができるため、製造コストを抑制することができる。 Since the pharmaceutical composition of the present embodiment contains the crosslinked polymer of the above-described embodiment having high inhibitory activity against Shiga toxin, it is possible to effectively treat or prevent Shiga toxin-producing bacterial infection. Further, in the pharmaceutical composition of the present embodiment, the content of Shiga toxin-binding oligosaccharide such as Globotrisaccharide can be reduced by using the crosslinkable polymer, so that the production cost can be suppressed. ..
[他の態様]
 一実施形態において、本発明は、前記実施形態の架橋ポリマーを対象に投与することを含む、志賀毒素産生菌感染症を治療又は予防する方法を提供する。
 一実施形態において、本発明は、志賀毒素阻害剤の製造における前記実施形態の架橋ポリマーの使用を提供する。
 一実施形態において、本発明は、志賀毒素産生菌感染症を治療又は予防するための医薬組成物の製造における前記実施形態の架橋ポリマーの使用を提供する。
 一実施形態において、本発明は、志賀毒素を阻害するための前記実施形態の架橋ポリマーを提供する。
 一実施形態において、本発明は、志賀毒素産生菌感染症を治療又は予防するための前記実施形態の架橋ポリマーを提供する。
[Other aspects]
In one embodiment, the present invention provides a method for treating or preventing a Shiga toxin-producing bacterial infection, which comprises administering the crosslinked polymer of the embodiment to a subject.
In one embodiment, the present invention provides the use of the crosslinked polymer of the embodiment in the production of a Shiga toxin inhibitor.
In one embodiment, the present invention provides the use of the crosslinked polymer of the embodiment in the manufacture of a pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection.
In one embodiment, the present invention provides the crosslinked polymer of said embodiment for inhibiting Shiga toxin.
In one embodiment, the present invention provides the crosslinked polymer of the embodiment for treating or preventing a Shiga toxin-producing bacterial infection.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
<グロボ3糖を含むモノマー(M1-1)の合成>
 グロボ3糖を含むモノマー(M1-1)の合成は、下記に示す反応式のとおりに行った。
 Gb-β-MP(製品コード:M1767、東京化成工業株式会社)617.9mg、無水酢酸(AcO)16mL及びピリジン32mLを混合し、室温で一晩反応させた。反応液を減圧濃縮した後、酢酸エチルで抽出した。1規定塩酸、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥した。ろ液を減圧濃縮後、真空乾燥し、化合物(I)を得た。
 次いで、ヘキサニトラトセリウム(IV)酸アンモニウム(CAN)1664.4mg及びアセトニトリル(MeCN)/水の混合溶媒(MeCN:HO=4:1(容量比))20mLを添加し、0℃で3時間反応させた。反応液を酢酸エチルで抽出し、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。有機層を硫酸マグネシウムで乾燥した。ろ液を減圧濃縮後、残渣をフラッシュクロマトグラフィー(SiO,トルエン/アセトン,9/1から7/3(容量比)のグラジエント;フラッシュ自動精製装置:Isolera One,カラム:SNAP Ultra 25gの2連結;Biotage社製)により精製した。減圧濃縮後、真空乾燥により反応生成物を回収し、846.8mgの化合物(II)を得た(収率90.5%)。
 次に、808.7mgの化合物(II)に、ナトリウムメトキシド(NaOMe)15mg及びメタノール(超脱水)10mLを添加し、室温で、2時間反応させた。アンバーリストで中和し、ろ液を減圧濃縮後、凍結乾燥により反応生成物を回収し、406.9mgの化合物(III)を得た(収率92.3%)。
 次に、389.3mgの化合物(III)に、アジ化ナトリウム(NaN)503.8mg、N,N-ジイソプロピルエチルアミン(DIPEA)1.21mL、及び重水(DO)3.1mLを添加し、0℃に冷やした。この溶液を2-クロロ-1,3-ジメチルイミダゾリニウムクロリド(DMC)391.5mgに添加し、0℃で、4時間反応させた。反応液を減圧濃縮後、N,N-ジメチルホルムアミド(DMF)を加え、固体をろ過により取り除いた。ろ液を減圧濃縮後、水で抽出し、ジクロロメタンで洗浄した。1規定水酸化ナトリウム水溶液で活性化した陽イオン交換樹脂カラムに通したのち、フラッシュクロマトグラフィー(逆相(C18),水/メタノール,10/0から0/10(容量比)のグラジエント;フラッシュ自動精製装置:Isolera One,カラム:SNAP Ultra C18 30g;Biotage社製)にて精製した。減圧濃縮後、凍結乾燥により反応生成物を回収し、331.5mgの化合物(IV)を得た(収率81.1%)。
 次に、293.9mgの化合物(IV)に、3-ブチニルアクリルアミド75.2mg、硫化銅(II)(CuSO)8.9mg、トリス[(1-ベンジル-1H-1,2,3-トリアゾール-4-イル)メチル]アミン(TBTA)29.5mg、L-アスコルビン酸ナトリウム(L-Asc-Na)22.0mg、及び水/メタノールの混合溶媒(HO:MeOH=1:1(容量比))6mLを添加し、窒素雰囲気下、30℃で、一晩反応させた。反応液を減圧濃縮後、残渣をフラッシュクロマトグラフィー(逆相(C18),水/メタノール,10/0から0/10(容量比)のグラジエント;フラッシュ自動精製装置:Isolera One,カラム:SNAP Ultra C18 30g;Biotage社製)にて精製した。続いて金属スカベンジャー(SiliaMetSTM Imidazole,300mg)を加え室温で一晩攪拌した。金属スカベンジャーをろ過により取り除き、減圧濃縮後、凍結乾燥により反応生成物を回収し、315.7mgのモノマー(M1-1)を得た(収率87.2%)。
 得られたモノマー(M1-1)についてNMR測定(JNM-ECZ400;日本電子株式会社製)を行い、以下の分析結果からその構造を確認した。図1に、モノマー(M1-1)のNMRチャートを示す。
1H-NMR (400 MHz, D2O) δ 8.09 (s, 1H, triazole), 6.14-6.28 (m, 2H, vinyl), 5.75-5.79 (m, 2H, vinyl and H-1), 5.00 (d, J = 3.7 Hz, 1H, H-1’), 4.60 (d, J = 7.8 Hz, 1H, H-1”), 4.40 (t, J = 6.4 Hz, 1H, sugar-H), 3.60-4.10 (m, 19H, sugar-H and -CH2-NH-), 3.03 (t, J = 6.6 Hz, 2H, -CH2-CH2-NH-)
<Synthesis of Monomer (M1-1) Containing Globotrisaccharide>
The synthesis of the monomer (M1-1) containing the globotrisaccharide was carried out according to the reaction formula shown below.
Gb 3- β-MP (product code: M1767, Tokyo Chemical Industry Co., Ltd.) 617.9 mg, 16 mL of acetic anhydride (Ac 2 O) and 32 mL of pyridine were mixed and reacted overnight at room temperature. The reaction mixture was concentrated under reduced pressure and then extracted with ethyl acetate. The cells were washed successively with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, water and saturated brine. The organic layer was dried over magnesium sulfate. The filtrate was concentrated under reduced pressure and then vacuum dried to give compound (I).
Then, 1664.4 mg of ammonium hexanitratocerium (IV) and 20 mL of a mixed solvent of acetonitrile (MeCN) / water (MeCN: H 2 O = 4: 1 (volume ratio)) were added, and the mixture was added at 0 ° C. It was allowed to react for 3 hours. The reaction mixture was extracted with ethyl acetate and washed successively with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine. The organic layer was dried over magnesium sulfate. After concentrating the filtrate under reduced pressure, the residue is subjected to flash chromatography (SiO 2 , toluene / acetone, gradient of 9/1 to 7/3 (volume ratio); flash automatic purification device: Isolera One, column: SNAP Ultra 25 g. Purified by Biotage). After concentration under reduced pressure, the reaction product was recovered by vacuum drying to obtain 846.8 mg of compound (II) (yield 90.5%).
Next, 15 mg of sodium methoxide (NaOMe) and 10 mL of methanol (super-dehydrated) were added to 808.7 mg of compound (II), and the mixture was reacted at room temperature for 2 hours. After neutralization with Amberlist, the filtrate was concentrated under reduced pressure, and the reaction product was recovered by lyophilization to obtain 406.9 mg of compound (III) (yield 92.3%).
Next, the compound of 389.3mg (III), sodium azide (NaN 3) 503.8mg, N, N- diisopropylethylamine (DIPEA) 1.21 mL, and it was added deuterated water (D 2 O) 3.1mL , Cooled to 0 ° C. This solution was added to 391.5 mg of 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and reacted at 0 ° C. for 4 hours. The reaction mixture was concentrated under reduced pressure, N, N-dimethylformamide (DMF) was added, and the solid was removed by filtration. The filtrate was concentrated under reduced pressure, extracted with water, and washed with dichloromethane. After passing through a cation exchange resin column activated with 1N aqueous sodium hydroxide solution, flash chromatography (reverse phase (C18), water / methanol, 10/0 to 0/10 (volume ratio) gradient; flash automatic Purification apparatus: Isolera One, column: SNAP Ultra C18 30 g; manufactured by Biotage). After concentration under reduced pressure, the reaction product was recovered by freeze-drying to obtain 331.5 mg of compound (IV) (yield 81.1%).
Next, in 293.9 mg of compound (IV), 75.2 mg of 3-butynylacrylamide, 8.9 mg of copper (II) sulfate (CuSO 4 ), and tris [(1-benzyl-1H-1,2,3-) triazol-4-yl) methyl] amine (TBTA) 29.5 mg, L-ascorbic sodium acid (L-Asc-Na) 22.0mg and water / methanol mixed solvent, (H 2 O: MeOH = 1: 1 ( Volume ratio)) 6 mL was added, and the mixture was reacted overnight at 30 ° C. under a nitrogen atmosphere. After concentrating the reaction solution under reduced pressure, the residue was subjected to flash chromatography (reverse phase (C18), water / methanol, gradient from 10/0 to 0/10 (volume ratio); flash automatic purification device: Isolera One, column: SNAP Ultra C18. Purified with 30 g; manufactured by Biotage). Then the metal scavenger (SiliaMetS TM Imidazole, 300mg) was stirred at room temperature overnight. The metal scavenger was removed by filtration, concentrated under reduced pressure, and then the reaction product was recovered by freeze-drying to obtain 315.7 mg of monomer (M1-1) (yield 87.2%).
The obtained monomer (M1-1) was subjected to NMR measurement (JNM-ECZ400; manufactured by JEOL Ltd.), and its structure was confirmed from the following analysis results. FIG. 1 shows an NMR chart of the monomer (M1-1).
1H-NMR (400 MHz, D 2 O) δ 8.09 (s, 1H, triazole), 6.14-6.28 (m, 2H, vinyl), 5.75-5.79 (m, 2H, vinyl and H-1), 5.00 (d , J = 3.7 Hz, 1H, H-1'), 4.60 (d, J = 7.8 Hz, 1H, H-1 ”), 4.40 (t, J = 6.4 Hz, 1H, sugar-H), 3.60-4.10 (m, 19H, sugar-H and -CH 2 -NH-), 3.03 (t, J = 6.6 Hz, 2H, -CH 2 -CH 2 -NH-)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<架橋ポリマーの合成>
(実施例1~16)
 表1に記載のモル比で、各例の重合性モノマー混合物を調製し、窒素雰囲気下、70℃で、3時間、ラジカル重合反応を行うことにより、各例の架橋ポリマーを製造した。重合性モノマー混合物の調製の際、モノマー(M2-1)はメタノールに溶解して添加した。重合性モノマー混合物がアニオン性モノマーを含む場合、6.21mMのドデシル硫酸ナトリウム(SDS)を含有する水を反応溶媒として用いた。重合性モノマー混合物がカチオン性モノマーを含む場合、2.07mMのヘキサデシルトリメチルアンモニウムブロミド(CTAB)を含有する水を反応溶媒として用いた。重合開始剤として、0.69mMのV-501(4,4’-Azobis(4-cyanovaleric acid))又はAAPD(2,2’-Azobis(2-methylpropionamidine)Dihydrochloride)を用いた。V-501はジメチルスルホキシド(DMSO)に溶解してラジカル重合反応液に添加した。AAPDは水に溶解してラジカル重合反応液に添加した。ラジカル重合反応後、反応液をMWCO12,000-14,000の透析膜(Fisher bland)で透析し、凍結乾燥により、架橋ポリマーを回収した。
<Synthesis of crosslinked polymer>
(Examples 1 to 16)
The polymerizable monomer mixture of each example was prepared at the molar ratio shown in Table 1 and subjected to a radical polymerization reaction at 70 ° C. for 3 hours in a nitrogen atmosphere to produce a crosslinked polymer of each example. In the preparation of the polymerizable monomer mixture, the monomer (M2-1) was dissolved in methanol and added. When the polymerizable monomer mixture contained an anionic monomer, water containing 6.21 mM sodium dodecyl sulfate (SDS) was used as the reaction solvent. When the polymerizable monomer mixture contained a cationic monomer, water containing 2.07 mM hexadecyltrimethylammonium bromide (CTAB) was used as a reaction solvent. As the polymerization initiator, 0.69 mM V-501 (4,4'-Azobis (4-cyanovalic acid)) or AAPD (2,2'-Azobis (2-methylpropionamide) Dihydrochloride) was used. V-501 was dissolved in dimethyl sulfoxide (DMSO) and added to the radical polymerization reaction solution. AAPD was dissolved in water and added to the radical polymerization reaction solution. After the radical polymerization reaction, the reaction solution was dialyzed against a dialysis membrane (Fisherland) of MWCO 12,000-14,000, and the crosslinked polymer was recovered by freeze-drying.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1中、各略号はそれぞれ表2及び表3に記載の重合性モノマーを示す。[ ]内の数値は重合成モノマー混合物中のモル比である。 In Table 1, each abbreviation indicates the polymerizable monomer shown in Table 2 and Table 3, respectively. The value in [] is the molar ratio in the polysynthetic monomer mixture.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<架橋ポリマーの分子量の計算>
(理論値の分子量)
 重合性モノマー混合物中の全重合性モノマーの合計量を1としたときの各重合性モノマーのモル比(R:表1の[]内の数値を100で割った数値)を算出した。前記モル比Rに、当該重合性モノマーの分子量を乗じた値(M)を算出した。重合性モノマー混合物中の各モノマーについて算出されたMを合計し、その合計値を「理論値の分子量」として、表4に示した。
<Calculation of molecular weight of crosslinked polymer>
(Theoretical molecular weight)
The molar ratio of each polymerizable monomer (RA : the value in [] in Table 1 divided by 100) was calculated when the total amount of all the polymerizable monomers in the polymerizable monomer mixture was 1. The molar ratio R A, was calculated molecular weight multiplied by the value of the polymerizable monomer (M A). Summing the M A calculated for each monomer of the polymerizable monomer mixture, the total value "molecular weight of theory", shown in Table 4.
(糖ユニット当たりの分子量)
 上記で算出した「理論値の分子量」を、グロボ3糖モノマー(M1-1)のモル比(R)で割った値を算出した。これを「糖ユニット当たりの分子量」として、表4に示した。
(Molecular weight per sugar unit)
The value calculated by dividing the "theoretical molecular weight" calculated above by the molar ratio ( RA) of the globotrisaccharide monomer (M1-1) was calculated. This is shown in Table 4 as "molecular weight per sugar unit".
<架橋ポリマーの動的散乱法(DLS)による分析>
 架橋ポリマーを0.1mg/mLの濃度となるようにPBSに溶解し、DLS装置(ゼータサイザーナノ ZS、Malvern)を用いて、架橋ポリマーのZ平均及びPDIを測定した。Z平均及びPDIの測定は、35℃及び40℃で行った。結果を表4に示す。
<Analysis of crosslinked polymers by dynamic light scattering (DLS)>
The crosslinked polymer was dissolved in PBS to a concentration of 0.1 mg / mL, and the Z average and PDI of the crosslinked polymer were measured using a DLS device (Zetasizer Nano ZS, Malvern). The Z mean and PDI measurements were taken at 35 ° C and 40 ° C. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<架橋ポリマーの志賀毒素阻害活性の評価>
 ベロ細胞(RCB0001、RIKEN BRC)を用いて、EHEC O157堺株から調製した志賀毒素(Stx1、Stx2)に対する架橋ポリマーの阻害活性を評価した。ベロ細胞は、2mMのglutamine及び5%のfetal bovine serumを加えたDMEM high-glucose培地(Sigma)を用いて、37℃で培養した。1×10cells/mLのベロ細胞の培養液100μLに、Stx1(最終濃度3.6pg・mL-1)若しくはStx2(最終濃度13.3pg・mL-1)を添加した。次いで、架橋ポリマーのPBS懸濁液を、架橋ポリマーの最終濃度が0~50μg/mLとなるように、前記培養液に添加した。陰性対照では、PBS(架橋ポリマー非含有)を、前記培養液に添加した。その後、37℃で、48時間培養した。培養後、CellTiter-Glo 2.0 Assay(Promega)により、ベロ細胞の細胞生存率を測定した。さらに、前記細胞生存率から、Stx1及びStx2に対する架橋ポリマーのIC50を算出した。
<Evaluation of Shiga toxin inhibitory activity of crosslinked polymer>
Vero cells (RCB0001, RIKEN BRC) were used to evaluate the inhibitory activity of the crosslinked polymer against Shiga toxin (Stx1, Stx2) prepared from the EHEC O157 Sakai strain. Vero cells were cultured at 37 ° C. in DMEM high-glucose medium (Sigma) supplemented with 2 mM glutamine and 5% fetal bovine serum. Stx1 (final concentration 3.6 pg mL -1 ) or Stx2 (final concentration 13.3 pg mL -1 ) was added to 100 μL of 1 × 10 5 cells / mL Vero cell culture medium. Then, a PBS suspension of the crosslinked polymer was added to the culture solution so that the final concentration of the crosslinked polymer was 0 to 50 μg / mL. For negative controls, PBS (without crosslinked polymer) was added to the culture. Then, it was cultured at 37 ° C. for 48 hours. After culturing, the cell viability of Vero cells was measured by CellTiter-Glo 2.0 Assay (Promega). Furthermore, the IC50 of the crosslinked polymer with respect to Stx1 and Stx2 was calculated from the cell viability.
 図2Aは、Stx1を添加したベロ細胞培養液に、実施例1の架橋ポリマーを添加して、細胞生存率を評価した結果を示す。図2Bは、Stx2を添加したベロ細胞培養液に、実施例1の架橋ポリマーを添加して、細胞生存率を評価した結果を示す。この結果より、実施例1の架橋ポリマーでは、Stx1に対するIC50が4.7E-04±9.9E-05μg/mL、Stx2に対するIC50が31.0±11.0μg/mLと算出された。 FIG. 2A shows the results of evaluating the cell viability by adding the crosslinked polymer of Example 1 to the Vero cell culture medium to which Stx1 was added. FIG. 2B shows the results of evaluating the cell viability by adding the crosslinked polymer of Example 1 to the Vero cell culture medium to which Stx2 was added. From this result, in the crosslinked polymer of Example 1, the IC50 for Stx1 was calculated to be 4.7E-04 ± 9.9E-05 μg / mL, and the IC50 for Stx2 was calculated to be 31.0 ± 11.0 μg / mL.
 図3Aは、Stx1に対する実施例2~10の架橋ポリマーのIC50を示す。図3Bは、Stx2に対する実施例2~10の架橋ポリマーのIC50を示す。実施例2~10のいずれの架橋ポリマーも高い志賀毒素阻害活性を示した。これらの架橋ポリマーの中でも、実施例7の架橋ポリマーは、Stx1及びStx2のいずれに対しても、低いIC50を有しており、IC50のモル濃度はStx1(1.52nM)、Stx2(181nM)であった。IC50のモル濃度は、IC50の濃度(w/v)を上記「理論値の分子量」で割ることにより算出した。 FIG. 3A shows IC50s of the crosslinked polymers of Examples 2-10 for Stx1. FIG. 3B shows IC50s of the crosslinked polymers of Examples 2-10 for Stx2. All of the crosslinked polymers of Examples 2 to 10 showed high Shiga toxin inhibitory activity. Among these crosslinked polymers, the crosslinked polymer of Example 7 has a low IC50 with respect to both Stx1 and Stx2, and the molar concentrations of the IC50 are Stx1 (1.52 nM) and Stx2 (181 nM). there were. The molar concentration of IC50 was calculated by dividing the concentration of IC50 (w / v) by the above-mentioned "theoretical molecular weight".
 図4Aは、Stx1に対する実施例7、11~16の架橋ポリマーのIC50を示す。図4Bは、Stx2に対する実施例7、11~16の架橋ポリマーのIC50を示す。実施例11~16の架橋ポリマーは、Stx1及びStx2のいずれに対しても、実施例7の架橋ポリマーよりもさらに低いIC50を有していた。 FIG. 4A shows IC50s of the crosslinked polymers of Examples 7, 11-16 for Stx1. FIG. 4B shows IC50s of the crosslinked polymers of Examples 7, 11-16 for Stx2. The crosslinked polymers of Examples 11-16 had an even lower IC50 than the crosslinked polymers of Example 7 for both Stx1 and Stx2.
<動物試験>
 実施例7の架橋ポリマーを用いて動物試験を行った。図5は、動物試験の試験スケジュールを示す。実験動物として、4週齢のBALB/c無菌マウス(雄4匹、雌1匹)を用いた。
 架橋ポリマーの投与開始1日前に、Stx2を産生する腸管出血性大腸菌O157株をマウスに感染させた(図5、day(-1))。O157株の感染は、1E+7 CFU/mLのO157株菌液を自由給水により経口投与することにより行った。実施例7の架橋ポリマーを0.05mg/mLとなるように水に溶解し、自由給水によりO157感染マウス(n=3)に投与した。陰性対照として、自由給水により水(架橋ポリマー非含有)をO157感染マウス(n=2)に投与した。図5中の白矢印のタイミングで糞便を採取し、糞便培養により、糞便中のO157株の数を調べた。
<Animal test>
Animal tests were performed using the crosslinked polymer of Example 7. FIG. 5 shows the test schedule of animal tests. As experimental animals, 4-week-old BALB / c sterile mice (4 males and 1 female) were used.
One day before the start of administration of the crosslinked polymer, mice were infected with Enterohemorrhagic Escherichia coli O157 strain producing Stx2 (Fig. 5, day (-1)). Infection of the O157 strain was carried out by oral administration of 1E + 7 CFU / mL O157 strain bacterial solution by free water supply. The crosslinked polymer of Example 7 was dissolved in water so as to be 0.05 mg / mL, and administered to O157-infected mice (n = 3) by free water supply. As a negative control, water (without crosslinked polymer) was administered to O157-infected mice (n = 2) by free water supply. Feces were collected at the timing of the white arrow in FIG. 5, and the number of O157 strains in the feces was examined by stool culture.
 O157感染マウスの生存曲線を図6Aに示す。糞便培養の結果を図6Bに示す。図6Aに示すように、水を投与したO157感染マウスは、投与開始後5日目に全て死亡した。一方、実施例7の架橋ポリマーを投与したマウスでは、試験期間中、全て生存していた。図6Bに示すように、試験期間中、実施例7の架橋ポリマーを投与したマウスにおいて、O157株の数に変化は見られなかった。これらの結果から、実施例7の架橋ポリマーは、O157株に影響を与えることなく、志賀毒素の毒性を中和することが確認された。 The survival curve of O157-infected mice is shown in FIG. 6A. The result of stool culture is shown in FIG. 6B. As shown in FIG. 6A, all O157-infected mice to which water was administered died 5 days after the start of administration. On the other hand, all the mice to which the crosslinked polymer of Example 7 was administered were alive during the test period. As shown in FIG. 6B, no change was observed in the number of O157 strains in the mice to which the crosslinked polymer of Example 7 was administered during the test period. From these results, it was confirmed that the crosslinked polymer of Example 7 neutralized the toxicity of Shiga toxin without affecting the O157 strain.
 さらに、投与する実施例7の架橋ポリマーの濃度を変更し、上記と同様に動物試験を行った。自由給水中の実施例7の架橋ポリマーの濃度を、0.05mg/mL、0.025mg/mL、0.01mg/mL、又は0.005mg/mLとし、O157感染マウスに投与した。結果を表5に示す。表5には、投与開始後10日目の生存率を示した。 Furthermore, the concentration of the crosslinked polymer of Example 7 to be administered was changed, and an animal test was conducted in the same manner as above. The concentration of the crosslinked polymer of Example 7 in free water supply was adjusted to 0.05 mg / mL, 0.025 mg / mL, 0.01 mg / mL, or 0.005 mg / mL and administered to O157-infected mice. The results are shown in Table 5. Table 5 shows the survival rate 10 days after the start of administration.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表5に示すように、実施例7の架橋ポリマーの濃度が0.025mg/mLの場合でも、生存率は100%であった。このときの給水量から計算した架橋ポリマーの摂取量はマウス1匹あたり0.275mg/日であった。また、架橋ポリマーの濃度が0.005mg/mLの場合でも、生存率が30%であった。これらの結果から、低用量の架橋ポリマーでも、志賀毒素阻害効果を示すことが確認された。 As shown in Table 5, the survival rate was 100% even when the concentration of the crosslinked polymer of Example 7 was 0.025 mg / mL. The intake of the crosslinked polymer calculated from the amount of water supplied at this time was 0.275 mg / day per mouse. Moreover, even when the concentration of the crosslinked polymer was 0.005 mg / mL, the survival rate was 30%. From these results, it was confirmed that even a low-dose cross-linked polymer showed a Shiga toxin inhibitory effect.
 本発明によれば、志賀毒素に対する阻害活性が高い架橋ポリマー、並びに前記架橋ポリマーを含有する志賀毒素阻害剤及び医薬組成物が提供される。 According to the present invention, a crosslinked polymer having high inhibitory activity against Shiga toxin, and a Shiga toxin inhibitor and a pharmaceutical composition containing the crosslinked polymer are provided.

Claims (8)

  1.  ランダムコポリマーが架橋した架橋ポリマーであって、
     前記ランダムコポリマーは、志賀毒素結合性オリゴ糖を含む構成単位(a1)と、少なくとも1種の他の構成単位と、を有する、
     架橋ポリマー。
    A crosslinked polymer in which a random copolymer is crosslinked,
    The random copolymer has a structural unit (a1) containing a Shiga toxin-binding oligosaccharide and at least one other structural unit.
    Crosslinked polymer.
  2.  前記少なくとも1種の他の構成単位が、炭素原子数4~20の疎水性基を含む構成単位(a2)、カチオン性基を含む構成単位(a3)、アニオン性基を含む構成単位(a4)、1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド分子内塩から誘導される構成単位(a5)、及び架橋剤から誘導される構成単位(a6)からなる群より選択される、
     請求項1に記載の架橋ポリマー。
    The at least one other structural unit includes a hydrophobic group having 4 to 20 carbon atoms (a2), a cationic group (a3), and an anionic group (a4). , 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide, selected from the group consisting of a structural unit (a5) derived from an intramolecular salt and a structural unit (a6) derived from a cross-linking agent.
    The crosslinked polymer according to claim 1.
  3.  前記ランダムコポリマーが、前記構成単位(a2)を有する、請求項2に記載の架橋ポリマー。 The crosslinked polymer according to claim 2, wherein the random copolymer has the structural unit (a2).
  4.  前記ランダムコポリマーが、前記構成単位(a3)又は前記構成単位(a4)を有する、請求項2又は3に記載の架橋ポリマー。 The crosslinked polymer according to claim 2 or 3, wherein the random copolymer has the structural unit (a3) or the structural unit (a4).
  5.  前記ランダムコポリマーが、前記構成単位(a5)を有する、請求項2~4のいずれか一項に記載の架橋ポリマー。 The crosslinked polymer according to any one of claims 2 to 4, wherein the random copolymer has the structural unit (a5).
  6.  前記志賀毒素結合性オリゴ糖がグロボ3糖である、請求項1~5のいずれか一項に記載の架橋ポリマー。 The crosslinked polymer according to any one of claims 1 to 5, wherein the Shiga toxin-binding oligosaccharide is a Globotrisaccharide.
  7.  請求項1~6のいずれか一項に記載の架橋ポリマーを含有する、志賀毒素阻害剤。 A Shiga toxin inhibitor containing the crosslinked polymer according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の架橋ポリマーと、薬学的に許容される担体と、を含有する、志賀毒素産生菌感染症を治療又は予防するための医薬組成物。 A pharmaceutical composition for treating or preventing a Shiga toxin-producing bacterial infection, which comprises the crosslinked polymer according to any one of claims 1 to 6 and a pharmaceutically acceptable carrier.
PCT/JP2021/011916 2020-03-23 2021-03-23 Crosslinked polymer, shiga toxin inhibitor, and pharmaceutical composition WO2021193602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510525A JPWO2021193602A1 (en) 2020-03-23 2021-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-051743 2020-03-23
JP2020051743 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193602A1 true WO2021193602A1 (en) 2021-09-30

Family

ID=77890657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011916 WO2021193602A1 (en) 2020-03-23 2021-03-23 Crosslinked polymer, shiga toxin inhibitor, and pharmaceutical composition

Country Status (2)

Country Link
JP (1) JPWO2021193602A1 (en)
WO (1) WO2021193602A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226290A (en) * 1987-03-17 1988-09-20 Nitto Electric Ind Co Ltd Method for recovery and purification of useful substance and apparatus therefor
JP2002145896A (en) * 2000-11-08 2002-05-22 Japan Science & Technology Corp Sugar chain-fixed polymer fine particle and method for scavenging protein using the same
JP2003073391A (en) * 2001-09-03 2003-03-12 Nagoya Industrial Science Research Inst Method of producing galacto type trehalose or derivative thereof and ligand for vero toxin originating from trehalose obtained using the same
JP2004346209A (en) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology Ionic polymer and the polymer-containing substrate
JP2005289907A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Verotoxin neutralizer
WO2019163975A1 (en) * 2018-02-26 2019-08-29 王子ホールディングス株式会社 Lower layer film-forming composition, pattern forming method, copolymer, and monomer for lower layer film-forming composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226290A (en) * 1987-03-17 1988-09-20 Nitto Electric Ind Co Ltd Method for recovery and purification of useful substance and apparatus therefor
JP2002145896A (en) * 2000-11-08 2002-05-22 Japan Science & Technology Corp Sugar chain-fixed polymer fine particle and method for scavenging protein using the same
JP2003073391A (en) * 2001-09-03 2003-03-12 Nagoya Industrial Science Research Inst Method of producing galacto type trehalose or derivative thereof and ligand for vero toxin originating from trehalose obtained using the same
JP2004346209A (en) * 2003-05-23 2004-12-09 National Institute Of Advanced Industrial & Technology Ionic polymer and the polymer-containing substrate
JP2005289907A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Verotoxin neutralizer
WO2019163975A1 (en) * 2018-02-26 2019-08-29 王子ホールディングス株式会社 Lower layer film-forming composition, pattern forming method, copolymer, and monomer for lower layer film-forming composition

Also Published As

Publication number Publication date
JPWO2021193602A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
EP1687349B1 (en) Polyamine polymers
US7342083B2 (en) Polyamine polymers
EP1265942B1 (en) Use of poly(diallylamine) polymers
JP4772264B2 (en) New uses for lipase inhibitors
KR20100051616A (en) Novel one step process for preparing cross-linked poly(allylamine) polymers
NZ747501A (en) Amino acid derivatives functionalized on the n-terminal capable of forming drug encapsulating microspheres
US11925689B2 (en) Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same
JPH07501539A (en) Organic salt of N,N&#39;-diacetylcystine
JP2001517632A (en) Cationic polymers as toxin binders
EP0459632A1 (en) Composition and method for controlling cholesterol
CA2816997A1 (en) Novel polymer derivative of cytidine metabolic antagonist
WO2008042222A2 (en) Amide dendrimer compositions
KR20080071182A (en) Salts of 9-oxoacridine-10-acetic acid with 1-alkylamino-1-desoxy-polyols
US5300288A (en) Composition and method for controlling cholesterol
WO2021193602A1 (en) Crosslinked polymer, shiga toxin inhibitor, and pharmaceutical composition
GB2036048A (en) Polymer compounds, process for their preparation and arteriosclerosis treating agents containing them
CZ293299A3 (en) Crosslinked vinyl polymers exhibiting adsorption activity on bile acids, their monomers, process of their preparation, medicaments in which said substances are comprised as well as their use
US5378456A (en) Antitumor mitoxantrone polymeric compositions
JPH04502311A (en) Organometallic compounds, their preparation methods and pharmaceutical compounds containing them
RU2676680C2 (en) Novel polymer-based hydrotropes for hydrophobic drug delivery
WO2024080364A1 (en) Antifibrotic agent, pharmaceutical composition for treating fibrosis, and method for inactivating myofibroblast
CN111388453B (en) Preparation method of sunitinib nano-drug capsule with pH and reduction cascade dual responses
RU2805370C1 (en) Medicine, representing a conjugate with polyethylene glycol, method for its preparation and its application
JP2004107230A (en) Galabiose-bonded carbosilane dendrimer compound
JP2863821B2 (en) Antiprotozoal agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776445

Country of ref document: EP

Kind code of ref document: A1