WO2021193443A1 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
WO2021193443A1
WO2021193443A1 PCT/JP2021/011432 JP2021011432W WO2021193443A1 WO 2021193443 A1 WO2021193443 A1 WO 2021193443A1 JP 2021011432 W JP2021011432 W JP 2021011432W WO 2021193443 A1 WO2021193443 A1 WO 2021193443A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil
mass
oil composition
base oil
Prior art date
Application number
PCT/JP2021/011432
Other languages
French (fr)
Japanese (ja)
Inventor
翔 横山
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN202180023822.XA priority Critical patent/CN115279872A/en
Priority to US17/907,023 priority patent/US20230174887A1/en
Priority to JP2022510429A priority patent/JPWO2021193443A1/ja
Priority to EP21776337.4A priority patent/EP4130212A4/en
Publication of WO2021193443A1 publication Critical patent/WO2021193443A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • C10M2207/2895Partial esters containing free hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/18Anti-foaming property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/10Running-in-oil ; Grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a lubricating oil composition.
  • Lubricating oil compositions are widely used in various fields because they have anti-friction action, sealing action, rust-preventive / anti-corrosion action, cooling action, power transmission action and the like in various mechanical devices.
  • foaming may occur due to air entrainment or the like when the mechanical device is operated.
  • the bubbles generated in the lubricating oil composition lead to a decrease in lubrication performance, a decrease in sealing property, a promotion of oxidative deterioration, a decrease in cooling efficiency, a decrease in power transmission efficiency, and the like. Therefore, a defoaming agent is added to the lubricating oil composition as a countermeasure against foaming.
  • a silicone-based defoaming agent is known (see, for example, Patent Documents 1 and 2).
  • the silicone-based defoaming agent can impart defoaming performance to the lubricating oil composition for a long period of time, but is a factor that deteriorates the cleanliness of the lubricating oil composition. It came to be found that it has a problem of becoming.
  • the cleanliness of the lubricating oil composition means the cleanliness evaluated by the pollution degree code of ISO4406: 1999.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness while blending a silicone-based defoaming agent. ..
  • the present inventor has found that the above problems can be solved by adjusting the silicon atom content of the lubricating oil composition containing a silicone-based defoaming agent to a specific range.
  • the lower limit value and the upper limit value described stepwise for a preferable numerical range can be independently combined.
  • a preferable numerical range for example, a range such as content
  • the numerical values of Examples are numerical values that can be used as upper limit values or lower limit values.
  • the numerical range expressed as "AA to BB” means “AA or more and BB or less” unless otherwise specified.
  • the lubricating oil composition of the present invention is a lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B), and the silicon atom content is based on the total amount of the lubricating oil composition. , 50 mass ppb to 4,000 mass ppb.
  • the present inventor has made diligent studies in order to provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness while blending a silicone-based defoaming agent.
  • the present inventor has conducted various studies on factors that deteriorate the cleanliness of a lubricating oil composition containing a silicone-based defoaming agent.
  • the amount of silicone-based defoaming agent (about 1% by mass based on the total amount of the lubricating oil composition, about 10% by mass in terms of silicon atom), which was conventionally assumed to be necessary for maintaining the defoaming performance, was added.
  • the present inventor has found a range in which a lubricating oil composition excellent in both long-term defoaming performance and cleanliness can be obtained, and completed the present invention. I came to do it.
  • the "base oil (A)” and the “silicone antifoaming agent (B)” are also referred to as “component (A)” and “component (B)", respectively.
  • the lubricating oil composition of one aspect of the present invention may be composed of only the component (A) and the component (B), but the component (A) and the component (B) are used as long as the effects of the present invention are not impaired. It may contain other components other than.
  • the total content of the component (A) and the component (B) is preferably 75% by mass or more, more preferably 80% by mass or more, based on the total amount of the lubricating oil composition.
  • the upper limit of the total content of the component (A) and the component (B) may be adjusted in consideration of the balance with the components other than the component (A) and the component (B), and is based on the total amount of the lubricating oil composition. It is preferably 94.9% by mass or less, more preferably 94% by mass or less, still more preferably 92% by mass or less, still more preferably 90% by mass or less.
  • Base oil (A) a base oil conventionally used as a lubricating oil base oil can be used without particular limitation, and for example, one or more selected from the group consisting of mineral oils and synthetic oils may be used. Can be done.
  • mineral oil for example, atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffin crude oil, intermediate base crude oil, or naphthenic crude oil; and distillate obtained by vacuum distillation of these atmospheric residual oils.
  • Oil Mineral oil obtained by subjecting the distillate oil to one or more refining treatments such as solvent desorption, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining; and the like.
  • One type of mineral oil may be used alone, or two or more types may be used in combination.
  • Examples of synthetic oils include hydrocarbon oils, aromatic oils, ester oils, ether oils, and distillations between two points of distillation amounts of 2.0% by volume and 5.0% by volume on the distillation curve.
  • of 6.8 ° C./% by volume or less preferably, the saturation content by the Kregel method measured according to ASTM D-2007 is 90% by mass or more, and ASTM.
  • a base oil having a sulfur content of 0.03% by mass or less measured according to D1552 and a viscosity index of 120 or more obtained according to ASTM D2270) and the like can be mentioned.
  • of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume in the distillation curve means a value calculated from the following formula. do. -Temperature gradient ⁇
  • (° C./volume%)
  • the "distillation temperature at which the distillation amount of the base oil is 5.0% by volume and 2.0% by volume” in the above formula is a value measured by a method based on ASTM D6352, and specifically, in Examples.
  • is preferably 6.5 ° C./volume% or less, more preferably 6.3 ° C./volume% or less, still more preferably 6.0 ° C./volume% or less, still more preferably 5. It is 0 ° C./volume% or less. Further, the temperature gradient ⁇
  • the distillation temperature at a distillation amount of 2.0% by volume on the distillation curve is preferably 405 to 510 ° C., more preferably 410 to 500 ° C., still more preferably 415 to 490 ° C., still more preferably 430 to 480 ° C. be.
  • the distillation temperature at a distillation amount of 5.0% by volume on the distillation curve is preferably 425 to 550 ° C, more preferably 430 to 520 ° C, still more preferably 434 to 500 ° C, still more preferably 450 to 490 ° C. be.
  • of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./% by volume or less.
  • the (% CP ) is usually 50 or more, preferably 55 or more, more preferably 60 or more, still more preferably 65 or more, still more preferably 70 or more, still more preferably 80 or more, and usually 99 or less. be.
  • the paraffin component (% C P) means a value measured in conformity with ASTM D-3238 ring analysis (n-d-M method).
  • the temperature gradients specified in the above requirements are the state of the base oil, such as the light content and the structure of the wax, which cannot be removed even in the refining process performed by performing one or more of the above refining treatments, and the lubricating oil. It is a parameter that takes into account the relationship with the ignition point when made into a composition.
  • the distillate amount is 2.0 to 5.0% by volume, the fluctuation of the distillation curve is stable and even the light component remains. Since it is in the temperature range, it is possible to accurately evaluate the state of the light and wax components of the base oil.
  • the synthetic oil one type may be used alone, or two or more types may be used in combination.
  • the base oil (A) may be one selected from mineral oils or one selected from synthetic oils, and foaming is likely to occur among these. , May be one selected from mineral oil. Further, the base oil (A) may be a mixed base oil in which two or more kinds selected from the group consisting of mineral oil and synthetic oil are mixed.
  • the base oil used in the lubricating oil composition may be a mixed base oil in which two or more kinds of base oils are mixed from the viewpoint of improving various performances required for the lubricating oil composition. On the other hand, a mixed base oil in which two or more kinds of base oils are mixed is particularly prone to foaming.
  • the present invention can provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness even for a mixed base oil in which foaming is particularly likely to occur.
  • the two or more types of base oil may be a combination of two or more types of base oils having different oil types, and the two types have the same oil type but different physical property values (for example, kinematic viscosity at 40 ° C.). It may be a combination of the above base oils. Further, it is a combination of two or more kinds of base oils having the same oil type but different physical characteristics (for example, kinematic viscosity at 40 ° C.) and one or more kinds of base oils having different oil types from the base oil. You may.
  • the base oil (A) may be a mixed base oil in which a high-viscosity base oil (AH) and a low-viscosity base oil (AL) are combined. Further, it may be a mixed base oil in which another base oil (AZ) is further combined with the high-viscosity base oil (AH) and the low-viscosity base oil (AL).
  • AH high-viscosity base oil
  • AL low-viscosity base oil
  • AZ other base oils
  • the high-viscosity base oil (AH) contributes to the improvement of the wear resistance and the fatigue-resistant life of the lubricating oil composition by maintaining the kinematic viscosity of the base oil (A) at a high level.
  • the kinematic viscosity of the high-viscosity base oil (AH) at 40 ° C. hereinafter, also referred to as “40 ° C. kinematic viscosity”.
  • Is preferably 1,000 mm 2 / s or more, more preferably 1,100 mm 2 / s or more, and further preferably 1,200 mm 2 / s or more.
  • the upper limit of the high viscosity base oil (AH) is preferably 2,000 mm 2 / s.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 1,000mm 2 / s ⁇ 2,000mm 2 / s, more preferably 1,100mm 2 / s ⁇ 2,000mm 2 / s, more preferably 1,200mm 2 / s ⁇ 2, It is 000 mm 2 / s.
  • the high-viscosity base oil (AH) is preferably a poly ⁇ -olefin (hereinafter, also referred to as “PAO”) from the viewpoint of high viscosity indexing of the lubricating oil composition.
  • PAO poly ⁇ -olefin
  • examples of PAO include polybutene, polyisobutylene, 1-decene oligomer, ethylene-propylene copolymer and the like, and hydrides thereof.
  • One type of PAO may be used alone, or two or more types may be used in combination.
  • the high viscosity base oil (AH) is a poly ⁇ -olefin obtained by using a metallocene catalyst as PAO (hereinafter, also referred to as “mPAO”). Is more preferable.
  • the mPAO is a poly- ⁇ obtained by using one kind of ⁇ -olefin having 8 to 12 carbon atoms alone or in combination of two or more kinds as a raw material and producing (polymerizing) it in the presence of a metallocene catalyst. -An olefin or a hydride thereof.
  • the ⁇ -olefin having 8 to 12 carbon atoms as a raw material of mPAO may be linear or has a branched chain, but a linear ⁇ -olefin is preferably used, for example.
  • Examples thereof include 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene, and preferably decene oligomers obtained by polymerization using 1-decene as a raw material.
  • the metallocene catalyst which is a polymerization catalyst used in the production of mPAO
  • a complex having a conjugated carbon 5-membered ring containing a Group 4 element of the periodic table that is, a metallocene complex and an oxygen-containing organoaluminum compound can be used in combination. ..
  • the Group 4 element of the periodic table in the metallocene complex titanium, zirconium and hafnium are used, and zirconium is preferable.
  • the complex having a conjugated carbon 5-membered ring a complex having a substituted or unsubstituted cyclopentadienyl ligand is generally used.
  • suitable metallocene complexes include bis (n-octadecylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylcyclopentadienyl) zirconium dichloride, bis (tetrahydroindenyl) zirconium dichloride, bis [(t-butyldimethylsilyl).
  • Cyclopentadienyl] zirconium dichloride bis (di-t-butylcyclopentadienyl) zirconium dichloride, (ethylidene-bisindenyl) zirconium dichloride, biscyclopentadienyl zirconium dichloride, etilidenbis (tetrahydroindenyl) zirconium dichloride and Examples thereof include bis [3,3- (2-methyl-benzindenyl)] dimethylsilanediyl zirconium dichloride. One of these may be used alone, or two or more thereof may be used in combination.
  • examples of the oxygen-containing organoaluminum compound include methylaluminoxane, ethylaluminoxane, and isobutylaluminoxane. One or one of these may be used alone, or two or more thereof may be used in combination. Since mPAO has a higher viscosity index than PAO produced using a non-metallocene catalyst (Ziegler catalyst or the like), it has an effect of increasing the viscosity index of the lubricating oil composition. One type of mPAO may be used alone, or two or more types may be used in combination.
  • the viscosity index of the high-viscosity base oil (AH) is preferably 100 or more, more preferably 150 or more, still more preferably 170 or more. Further, the viscosity index may be 300 or less, or 250 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 100 to 300, more preferably 150 to 250, and even more preferably 170 to 250.
  • the high-viscosity base oil (AH) preferably has a pour point of ⁇ 20 ° C. or lower.
  • the pour point of the high-viscosity base oil (AH) is ⁇ 20 ° C. or lower
  • the lubricating oil composition containing the high-viscosity base oil (AH) is preferable because it has sufficient fluidity even in a low temperature environment. ..
  • the pour point of the high viscosity base oil (AH) is more preferably ⁇ 25 ° C. or lower, still more preferably ⁇ 30 ° C. or lower.
  • the kinematic viscosity and viscosity index are values measured and calculated in accordance with JIS K 2283: 2000, and the pour point is a value measured in accordance with JIS K 2269: 1987.
  • the content of the high-viscosity base oil (AH) is preferably 35% by mass or more, more preferably 38% by mass or more, still more preferably, based on the total amount of the lubricating oil composition. It is 40% by mass or more. Further, it is preferably 75% by mass or less, more preferably 72% by mass or less, and further preferably 70% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 35% by mass to 75% by mass, more preferably 38% by mass to 72% by mass, and further preferably 40% by mass to 70% by mass.
  • the kinematic viscosity of the lubricating oil composition can be maintained high, and a lubricating oil composition having excellent wear resistance and fatigue resistance life can be prepared. can.
  • AH high-viscosity base oil
  • one type may be used alone, or two or more types may be used in combination.
  • the low viscosity base oil (AL) contributes to ensuring the low temperature characteristics of the lubricating oil composition.
  • the kinematic viscosity of the low-viscosity base oil (AL) at 40 ° C. is preferably 5.0 mm 2 / s or more, more preferably 6.0 mm 2 / s or more. , More preferably 7.0 mm 2 / s or more, and even more preferably 8.0 mm 2 / s or more.
  • 110 mm 2 / s or less is preferably 110 mm 2 / s or less, more preferably 90.0 mm 2 / s or less, still more preferably 80.0 mm 2 / s or less, still more preferably 75 mm 2 / s or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 5.0mm 2 / s ⁇ 110mm 2 / s, more preferably 6.0mm 2 /s ⁇ 90.0mm 2 / s, more preferably 7.0mm 2 /s ⁇ 80.0mm 2 / s, even more preferably a 8.0mm 2 /s ⁇ 75.0mm 2 / s.
  • the low-viscosity base oil contributes to ensuring the low-temperature characteristics of the lubricating oil composition, but has a lower ignition point than the high-viscosity base oil, lowers the ignition point of the base oil as a whole, and has a lubricating oil composition. It becomes a factor that lowers the ignition point of an object. Therefore, as the low-viscosity base oil (AL), it is preferable to use one having a high flash point among the low-viscosity base oils.
  • low-viscosity base oil is a low-viscosity poly- ⁇ -olefin (hereinafter, also referred to as “PAO”), API (American Petroleum Association) base oil category, and is a group II or III mineral oil, distillation curve.
  • Base oil preferably ASTM D-
  • the saturation content by the Kleegel method measured in accordance with 2007 is 90% by mass or more, and the viscosity content measured in accordance with ASTM D1552 is 0.03% by mass or less, which is obtained in accordance with ASTM D2270.
  • the PAO among the above-mentioned ones, those having a low viscosity can be used.
  • of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./volume% or less.
  • is preferably 6.5 ° C./volume% or less, more preferably 6.3 ° C./volume% or less, still more preferably 6.0 ° C./volume% or less, still more preferably 5.0 ° C./% or less. It is less than or equal to the volume.
  • is usually 0.1 ° C./volume% or more.
  • the distillation temperature at a distillation amount of 2.0% by volume on the distillation curve is preferably 405 to 510 ° C., more preferably 410 to 500 ° C., still more preferably 415 to 490 ° C., still more preferably 430 to 480 ° C. be.
  • the distillation temperature at a distillation amount of 5.0% by volume on the distillation curve is preferably 425 to 550 ° C, more preferably 430 to 520 ° C, still more preferably 434 to 500 ° C, still more preferably 450 to 490 ° C. be.
  • of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./% by volume or less.
  • the CP ) is usually 50 or more, preferably 55 or more, more preferably 60 or more, still more preferably 65 or more, still more preferably 70 or more, still more preferably 80 or more, and usually 99 or less.
  • the paraffin component (% C P) means a value measured in conformity with ASTM D-3238 ring analysis (n-d-M method).
  • the viscosity index of the low-viscosity base oil is preferably 80 or more, more preferably 90 or more, further preferably 100 or more, still more preferably 110 or more, still more preferably 120 or more, and further.
  • the upper limit is not particularly limited, but is, for example, 200.
  • the content of the low-viscosity base oil (AL) is from the viewpoint of facilitating the securing of the low temperature characteristics of the lubricating oil composition and suppressing the decrease in the ignition point of the lubricating oil composition.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 10% by mass to 60% by mass, more preferably 15% by mass to 55% by mass, and further preferably 20% by mass to 50% by mass.
  • the other base oil (AZ) is not particularly limited, and examples thereof include various base oils that do not correspond to the high-viscosity base oil (AH) and the low-viscosity base oil (AL). From the viewpoint of improvement and the like, ester-based oil is preferable.
  • a polyol ester is preferably used as the ester-based oil.
  • the polyol ester may be a partial ester of a polyol or a complete ester, but it is preferable to use a partial ester of the polyol from the viewpoint of sludge solubility.
  • the polyol used as a raw material for the polyol ester is not particularly limited, but an aliphatic polyol is preferable, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol and the like.
  • an alkyl group or an alkenyl group having 6 to 30 carbon atoms is preferable, an alkyl group or an alkenyl group having 12 to 24 carbon atoms is more preferable, and for example, various hexyl groups and octyl groups.
  • Decyl group dodecyl group, tetradecyl group, hexadecyl group, heptadecyl group, octadecyl group, hexenyl group, octenyl group, decenyl group, dodecenyl group, tetradecenyl group, hexadecenyl group, octadecenyl group and the like.
  • the alkyl group and the alkenyl group may be linear or branched.
  • the complete ester of the polyol include neopentyl glycol dilaurate, neopentyl glycol dimilistate, neopentyl glycol dipalmitate, neopentyl glycol distearate, neopentyl glycol diisostearate, and trimethyl propantrilau. Rate, Trimethylol Propane Trimilistate, Trimethylol Propane Tripalmitate, Trimethylol Propane Tristearate, Trimethylol Propanetriisostearate, Glycerin Trilaurate, Glycerin Tristearate, Glycerin Triisostearate, etc. However, it is not limited to these.
  • the partial ester of the polyol is not particularly limited as long as at least one hydroxyl group remains.
  • Specific examples of the partial ester of the polyol include neopentyl glycol monolaurate, neopentyl glycol monomillistate, neopentyl glycol monopalmitate, neopentyl glycol monostearate, neopentyl glycol monoisostearate, and trimethylolpropane.
  • Glycerin mono (or di) laurate glycerin mono (or di) stearate, glycerin mono (or di) isostearate and the like, preferably trimethylolpropane mono (or di) isostearate.
  • the content of the other base oil (AZ) is preferably 6% by mass or more based on the total amount of the lubricating oil composition from the viewpoint of further improving sludge solubility. be. Further, it is preferably 15% by mass or less, more preferably 13% by mass or less, and further preferably 11% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 6% by mass to 15% by mass, more preferably 6% by mass to 13% by mass, and further preferably 6% by mass to 11% by mass.
  • the other base oil (AZ) one type may be used alone, or two or more types may be used in combination.
  • the content of the base oil (A) is preferably 75% by mass or more, more preferably 78% by mass or more, still more preferably, based on the total amount of the lubricating oil composition. Is 80% by mass or more. Further, it is preferably 99.9% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 75% by mass to 99.9% by mass, more preferably 78% by mass to 99.9% by mass, and further preferably 80% by mass to 99.9% by mass.
  • the base oil (A) contains a high-viscosity base oil (AH) and a low-viscosity base oil (AL)
  • the high-viscosity base oil (AH) and the low-viscosity group The total content of the oil (AL) is preferably 75% by mass to 100% by mass, more preferably 78% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass based on the total amount of the base oil (A). %.
  • the base oil (A) contains a high-viscosity base oil (AH) and a low-viscosity base oil (AL)
  • the high-viscosity base oil (AH) and the low-viscosity group The content ratio with oil (AL) [(AH) / (AL)] is preferably 50/50 or more in terms of mass ratio. Further, it is preferably 80/20 or less, more preferably 75/25 or less, and further preferably 60/30 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 80/20 to 50/50, more preferably 75/25 to 50/50, and even more preferably 60/30 to 50/50.
  • the base oil (A) contains another base oil (AZ)
  • the ratio [ ⁇ (AH) + (AL) ⁇ / (AZ)] to the content of the other base oil (AZ) is preferably 6/1 or more, more preferably 6.5 / 1 in terms of mass ratio. Above, more preferably 7/1 or more. Further, it is preferably 10/1 or less, more preferably 9.5 / 1 or less, and further preferably 9/1 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 6/1 to 10/1, more preferably 6.5 / 1 to 9.5 / 1, and even more preferably 7/1 to 9/1.
  • the lubricating oil composition of the present invention contains a silicone-based defoaming agent (B).
  • the content of the silicone-based defoaming agent (B) is significantly reduced from the content of the conventional lubricating oil composition to achieve both long-term defoaming performance and cleanliness. It is possible. That is, although the lubricating oil composition of the present invention contains the silicone-based defoaming agent (B), its content is overwhelmingly smaller than that of the conventional lubricating oil composition.
  • the lubricating oil composition of the present invention is adjusted so that the silicon atom content is 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition.
  • the silicone-based defoaming agent (B) is added so that the silicon atom content in the lubricating oil composition satisfies this numerical range.
  • the silicone-based defoaming agent (B) is added so as to have a silicon atom equivalent of 50 mass ppb to 4,000 mass ppb.
  • the content of the silicone-based defoaming agent (B) in terms of silicon atom is determined from the viewpoint of facilitating the effect of the present invention. Based on the total amount of, preferably 100 mass ppb or more, more preferably 200 mass ppb or more, still more preferably 250 mass ppb or more, still more preferably 300 mass ppb or more, still more preferably 350 mass ppb or more, still more preferably 400. It is added so as to have a mass of ppb or more, more preferably 450 mass ppb or more, and even more preferably 500 mass ppb or more.
  • preferably 3,500 mass ppb or less preferably 3,000 mass ppb or less, still more preferably 2,500 mass ppb or less, still more preferably 2,200 mass ppb or less, still more preferably 2,000 mass. It is added so as to be ppb or less, more preferably 1,800 mass ppb or less, even more preferably 1,600 mass ppb or less, and even more preferably 1,500 mass ppb or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 100 mass ppb to 3,500 mass ppb, more preferably 200 mass ppb to 3,000 mass ppb, still more preferably 250 mass ppb to 2,500 mass ppb, still more preferably 300 mass ppb.
  • the active ingredient contained in the silicone-based defoaming agent (B) is not particularly limited as long as it is a polymer containing a silicon atom and exhibiting defoaming performance.
  • examples of such polymers include polydimethylsiloxane, fluorinated polysiloxane, and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • the silicone-based defoaming agent (B) is prepared into a solution (dispersion) by adding a diluting oil or the like in consideration of handleability and solubility / dispersibility in the base oil (A), and then the base oil. It is preferable to mix it with (A) and stir to uniformly dissolve and disperse it.
  • the lubricating oil composition according to one aspect of the present invention contains additives other than the silicone-based defoaming agent (B) (hereinafter, also referred to as “lubricating oil additives”) as long as the effects of the present invention are not impaired. It may be contained.
  • additives for lubricating oil include antioxidants, extreme pressure agents, anti-embroidery agents, rust preventives, viscosity index improvers, pour point lowering agents, metal inactivating agents, ashless cleaning dispersants, and friction modifiers. And so on. These lubricant additives may be used alone or in combination of two or more.
  • an additive such as a viscosity index improver may be mixed with other components in the form of a solution dissolved in a diluted oil in consideration of handleability and solubility in a base oil. ..
  • the content of the additive such as the viscosity index improver is the content in terms of the active ingredient (converted to the resin content) excluding the diluted oil.
  • antioxidant As the antioxidant, amine-based antioxidants, phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, and molybdenum amine complex-based antioxidants used in conventional lubricating oil compositions are used. can do. These antioxidants may be used alone or in combination of two or more.
  • amine-based antioxidant examples include monoalkyldiphenylamine-based compounds such as monooctyldiphenylamine and monononyldiphenylamine; 4,4'-dibutyldiphenylamine, 4,4'-dipentyldiphenylamine, 4,4'-dihexyldiphenylamine, 4 , 4'-Diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, 4,4'-dinonyldiphenylamine, monobutylphenylmonooctylphenylamine and other dialkyldiphenylamine compounds; tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine , Polyalkyldiphenylamine compounds such as tetranonyldiphenylamine; ⁇ -naphthylamine, phenyl-
  • phenolic antioxidant examples include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl 3- (3,5-di-).
  • Monophenolic compounds such as tert-butyl-4-hydroxyphenyl) propionate; 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert- Examples thereof include diphenol compounds such as butylphenol).
  • Examples of the phosphorus-based antioxidant include triphenylphosphine and the like.
  • Examples of the sulfur-based antioxidant include 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2-ylamino) phenol and phosphorus pentasulfide. Examples thereof include thioterpene compounds such as a reaction product with pinene.
  • a hexavalent molybdenum compound specifically, a compound obtained by reacting molybdenum trioxide and / or molybdic acid with an amine compound can be used.
  • the content of the antioxidant may be the minimum amount necessary to maintain the oxidative stability, and is preferably 0.01% by mass to 1.5% by mass, more preferably 0.01% by mass, based on the total amount of the lubricating oil composition. It is 0.1% by mass to 1% by mass.
  • Extreme pressure agent an organic metal-based extreme pressure agent, a sulfur-based extreme pressure agent, a phosphorus-based extreme pressure agent, and a sulfur-phosphorus-based extreme pressure agent, which are used in conventional lubricating oil compositions, can be used. .. These extreme pressure agents may be used alone or in combination of two or more.
  • organic metal-based extreme pressure agent examples include organic molybdenum compounds such as molybdenum dialkyldithiocarbamate (MoDTC) and molybdenum dialkyldithiophosphate (MoDTP), zinc dialkyldithiophosphate (ZnDTC) and zinc dialkyldithiophosphate (ZnDTP), and the like.
  • organic molybdenum compounds such as molybdenum dialkyldithiocarbamate (MoDTC) and molybdenum dialkyldithiophosphate (MoDTP), zinc dialkyldithiophosphate (ZnDTC) and zinc dialkyldithiophosphate (ZnDTP), and the like.
  • Organic zinc-based compounds can be mentioned.
  • sulfur-based extreme pressure agents include sulfide fats and oils, sulfide fatty acids, sulfide esters, sulfide olefins, monosulfide, polysulfide, dihydrocarbyl sulfide, thiadiazol compounds, alkylthiocarbamoyl compounds, thiocarbamate compounds, thioterpene compounds, and dialkylthiodipropio. Nate compounds can be mentioned.
  • phosphorus-based extreme pressure agents include phosphoric acid esters such as aryl phosphate, alkyl phosphate, alkenyl phosphate, and alkyl aryl phosphate; monoaryl acid phosphate, diallyl acid phosphate, monoalkyl acid phosphate, dialkyl acid phosphate, and monoalkenyl acid phosphate.
  • phosphoric acid esters such as aryl phosphate, alkyl phosphate, alkenyl phosphate, and alkyl aryl phosphate
  • monoaryl acid phosphate diallyl acid phosphate, monoalkyl acid phosphate, dialkyl acid phosphate, and monoalkenyl acid phosphate.
  • Acidic phosphates such as dialkenyl acid phosphate; Hypophosphates such as arylhydrogen phosphite, alkylhydrogen phosphite, aryl phosphite, alkyl phosphite, alkenyl phosphite, arylalkyl phosphite; monoalkyl acid phosphite.
  • Acid subphosphates such as dialkyl acid phosphite, monoalkenyl acid phosphite, dialkenyl acid phosphite; and amine salts thereof.
  • sulfur-phosphorus extreme pressure agent examples include monoalkyl thiophosphate, dialkyl dithiophosphate, trialkyl trithiophosphate, amine salts thereof, and zinc dialkyl dithiophosphate (Zn-DTP).
  • the content of the extreme pressure agent is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 8.0% by mass, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. More preferably, it is 1.0% by mass to 6.0% by mass.
  • Anti-emulsifiers include, for example, quaternary ammonium salts, cationic surfactants such as imidazolines; polyoxyalkylene block polymers (ethylene oxide (EO) -propylene oxide (PO) block copolymers, etc.), polyoxyalkylene glycols, and Polyoxyalkylene polyglycol; alkylene oxide adduct of alkylphenol-formaldehyde polycondensate and the like can be mentioned.
  • the content of the anti-emulsifier is preferably 0.001% by mass to 0.5% by mass, more preferably 0.002% by mass to 0.2% by mass, based on the total amount of the lubricating oil composition.
  • rust preventive agent examples include metal sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, organic phosphite ester, organic phosphate ester, organic sulfonic acid metal salt, organic phosphate metal salt, alkenyl succinate, and polyhydric alcohol. Examples thereof include esters and benzotriazole-based compounds.
  • the content of the rust preventive is preferably 0.01% by mass to 10.0% by mass, more preferably 0.05% by mass to 5.0% by mass, based on the total amount of the lubricating oil composition.
  • Viscosity index improver examples include polymethacrylate (PMA), dispersed polymethacrylate, olefin-based copolymer (olefin copolymer (OCP); for example, ethylene-propylene copolymer, etc.), and dispersed olefin-based copolymer. , Styrene-based copolymer (for example, styrene-diene hydride copolymer, etc.) and the like.
  • PMA polymethacrylate
  • OCP olefin copolymer
  • OCP olefin copolymer
  • Styrene-based copolymer for example, styrene-diene hydride copolymer, etc.
  • the amount of these viscosity index improvers added is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of one aspect of the present invention preferably contains at least an olefin copolymer as these viscosity index improvers, and the content of the olefin copolymer is preferably based on the total amount of the lubricating oil composition. It is 1% by mass to 10% by mass, and more preferably 2% by mass to 8% by mass.
  • the pour point lowering agent examples include a polymer such as an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, polymethacrylate, and polyalkylstyrene. ..
  • the weight average molecular weight (Mw) of these polymers is preferably 50,000 to 150,000.
  • the content of the pour point lowering agent is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 2.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
  • Metal inactivating agent examples include benzotriazole-based compounds, tolyltriazole-based compounds, thiadiazole-based compounds, imidazole-based compounds, pyrimidine-based compounds and the like.
  • the content of the metal inactivating agent is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 3.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
  • ashless cleaning dispersant examples include monovalent or divalent succinic acid imides, boron-containing succinic acid imides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids or succinic acid. Examples thereof include carboxylic acid amides.
  • the content of the ashless cleaning dispersant is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 3.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
  • friction modifier examples include ashless friction modifiers such as aliphatic amines, aliphatic alcohols and aliphatic ethers having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms in the molecule. ..
  • the content of the friction modifier is preferably 0.01% by mass to 5.0% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition of the present invention is required to have a silicon atom content of 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition. If the silicon atom content is less than 50 mass ppb, long-term defoaming performance cannot be ensured. Further, if the silicon atom content exceeds 4,000 mass ppb, cleanliness cannot be ensured.
  • the content of silicon atoms is preferably 100 mass ppb or more based on the total amount of the lubricating oil composition from the viewpoint of facilitating the effect of the present invention.
  • the above is even more preferably 500 mass ppb or more.
  • ppb or less is ppb or less, more preferably 1,800 mass ppb or less, even more preferably 1,600 mass ppb or less, and even more preferably 1,500 mass ppb or less.
  • the upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 100 mass ppb to 3,500 mass ppb, more preferably 200 mass ppb to 3,000 mass ppb, still more preferably 250 mass ppb to 2,500 mass ppb, still more preferably 300 mass ppb. -2,200 mass ppb, even more preferably 350 mass ppb to 2,000 mass ppb, still more preferably 400 mass ppb to 1,800 mass ppb, even more preferably 450 mass ppb to 1,600 mass ppb, even more.
  • the silicon atom content in the lubricating oil composition can be measured by an inductively coupled plasma atomic emission spectrometer (ICP).
  • ICP inductively coupled plasma atomic emission spectrometer
  • the silicon atom content in the lubricating oil composition is determined by the silicone-based defoaming agent (B). It can also be theoretically calculated from the content (in terms of solid content) and the content of silicon atoms contained in the silicone-based defoaming agent (B).
  • the 40 ° C. kinematic viscosity of the lubricating oil composition of one aspect of the present invention is preferably 10 mm 2 / s to 500 mm 2 / s, more preferably 30 mm 2 / s to 450 mm 2 / s, still more preferably 50 mm 2 / s to. It is 400 mm 2 / s.
  • the viscosity index of the lubricating oil composition according to one aspect of the present invention is preferably 100 or more, more preferably 110 or more, still more preferably 120 or more.
  • the 40 ° C. kinematic viscosity and the viscosity index mean values measured and calculated in accordance with JIS K2283: 2000.
  • the method for producing the lubricating oil composition of the present invention is not particularly limited.
  • the method for producing a lubricating oil composition according to one aspect of the present invention includes a step of mixing the base oil (A) and the silicone-based defoaming agent (B), and the silicon atom content is the lubricating oil composition.
  • This is a method for producing a lubricating oil composition, which is adjusted so as to have a total amount of 50 mass ppb to 4,000 mass ppb.
  • the method for mixing each of the above components is not particularly limited, and examples thereof include a method having a step of blending the silicone-based defoaming agent (B) with the base oil (A).
  • Additives (additives for lubricating oil) other than the silicone-based defoaming agent (B) may be blended at the same time as the silicone-based defoaming agent (B), or may be blended separately.
  • the silicone-based defoaming agent (B) and other additives (additives for lubricating oil) may be blended after adding a diluting oil or the like to form a solution (dispersion). After blending each component, it is preferable to stir and uniformly disperse by a known method.
  • the lubricating oil composition of the present invention is a lubricating oil composition excellent in both long-term defoaming performance and cleanliness. Therefore, it can be widely used in lubrication applications that require long-term defoaming performance and cleanliness. For example, it can be suitably used as a speed increasing machine oil for a wind turbine, a hydraulic hydraulic oil, a compressor oil, a gear oil, a cutting oil, a machine tool oil, a refrigerating machine oil, a turbine oil, an internal combustion machine oil, a transmission oil, or an axle unit oil for an automobile. .. Therefore, in one aspect of the invention, the following methods are provided.
  • the lubricating oil composition of the present invention can be applied to a speed-up machine oil for a wind turbine, a hydraulic hydraulic oil, a compressor oil, a gear oil, a cutting oil, a machine tool oil, a refrigerating machine oil, a turbine oil, an internal combustion machine oil, a transmission oil, or an automobile axle unit. How to use as oil.
  • the base oil (A) is at least one selected from the group consisting of synthetic oils (A1) and mineral oils (A2).
  • the total content of the base oil (A) and the silicone-based defoaming agent (B) is 75% by mass or more and 94.9% by mass or less based on the total amount of the lubricating oil composition [1]. ] To [4].
  • the lubricating oil composition according to any one of [1] to [6] which comprises one or more selected additives for lubricating oil.
  • Examples 1 to 4, Comparative Examples 1 to 4 The base oil (A) and the silicone-based defoaming agent (B) shown below are sufficiently mixed in the blending amounts (mass%) shown in Table 1 to form the lubricating oil compositions of Examples 1 to 3 and Comparative Examples 1 and 2. The thing was prepared. Further, the base oil (A), the silicone-based defoaming agent (B), and the additive for lubricating oil shown below are sufficiently mixed in the blending amounts (mass%) shown in Table 2, and Examples 4 and Comparative Examples are used. 3-4 lubricating oil compositions were prepared.
  • PAO Low viscosity base oil
  • kinematic viscosity 28.8 mm 2 / s
  • viscosity index 136 -Low viscosity base oil
  • Low-viscosity base oil (AL) -3 The saturation content by the Kleegel method measured according to ASTM D-2007 is 90% by mass or more, and the sulfur content measured according to ASTM D1552 is 0.03. or less by mass%, base oil viscosity index obtained in conformity with ASTM D2270 of 120 or more, 40 ° C.
  • the low-viscosity base oil (AL) -3 is a base oil prepared by the following method. ⁇ Manufacturing method> The raw material oil, which is a distillate oil of 200 neutral or more, is subjected to a hydrogenation isomerization dewaxing treatment and then a hydrofinishing treatment, and then the 5% by volume fraction of the distillation curve is 460 ° C. or higher. Distillation was carried out at such a distillation temperature, and a fraction having a kinematic viscosity at 40 ° C.
  • a low-viscosity base oil (AL) -3 was recovered to prepare a low-viscosity base oil (AL) -3.
  • the conditions for the hydrogenation isomerization dewax treatment are as follows. -Hydrogen gas supply ratio: 300-400 Nm 3 for 1 kiloliter of raw material oil to be supplied ⁇ Hydrogen partial pressure: 10 to 15 MPa -Liquid spatiotemporal velocity (LHSV): 0.5 to 1.0 hr -1 -Reaction temperature: 300-350 ° C
  • LHSV Liquid spatiotemporal velocity
  • Reaction temperature 300-350 ° C
  • the various properties of the obtained low-viscosity base oil (AL) -3 were as follows. -Distillation temperature at a distillation amount of 2.0% by volume: 451.0 ° C.
  • ⁇ Silicone defoamer (B)> A silicone-based defoaming agent having an active ingredient concentration of 0.2% by mass was used.
  • the active ingredient is polydimethylsiloxane, and the silicon atom content of polydimethylsiloxane is 0.081% by mass based on the total amount of the silicone-based defoaming agent.
  • the silicone-based antifoaming agent (B) was diluted with light oil to obtain a diluted product, and then blended with the base oil (A).
  • Tables 1 and 2 show the content of the silicone-based defoamer (B) in the diluted product of the silicone-based defoamer (B) (based on the total amount of the lubricating oil composition) and the silicone-based defoamer (B). The content of the light oil used for dilution (based on the total amount of the lubricating oil composition) is shown.
  • -Phenolic antioxidant octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
  • -Amine-based antioxidant monobutylphenyl monooctylphenylamine.
  • -Alkylthiophosphate Tris [2,4-isoalkyl (C 9 , C 10 ) phenyl] thiophosphate.
  • -Acid phosphate Isodecyl acid phosphate.
  • -Alkylamine Trioctylamine.
  • EO-PO copolymer xylene solution of EO-PO block copolymer (10%)
  • -Iconide alkenyl succinimide A mixture of 50% imide polybutenyl succinimide, 20% polybutene and 30% mineral oil (base value; 37 mgKOH / g).
  • -OCP Ethylene propylene oligomer.
  • Air blowing was started at 60 ° C. by a method according to JIS K 2518: 2003, and the volume of bubbles was measured after 1 day (1440 minutes) and 2 days (2880 minutes), respectively.
  • the foaming test those having a foaming amount of 50 mL or less after 1440 minutes and 2880 minutes were accepted as (A), and those having at least one of the foaming amounts of more than 50 mL after 1440 minutes and 2880 minutes were rejected. It was designated as (F).
  • the cleanliness of the lubricating oil composition was evaluated using the pollution degree code according to ISO4406: 1999. Specifically, the sampled lubricating oil composition was measured with a particle counter to obtain a contamination degree code.
  • the pollution degree code divides the number of particles of the sampled lubricating oil composition into a particle size range of 4 ⁇ m or more, 6 ⁇ m or more, and 14 ⁇ m or more, and the scale number (0 to 28) assigned from the number of particles in 1 mL is shaded.
  • the lubricating oil composition having a value of 12 or less (number of particles: 40 counts / 1 mL or less) was regarded as acceptable (A).
  • the "scale number of the number of particles of 6 ⁇ m or more (in 1 mL)" is 16 or more (number of particles: 320 counts / more than 1 mL), or the "scale number of the number of particles of 14 ⁇ m or more (in 1 mL)" is , 13 or more (number of particles: 40 counts / more than 1 mL) was rejected (F).
  • the evaluation results are shown in Tables 1 and 2.
  • the "silicon atom content in the lubricating oil composition" in Tables 1 and 2 is a value obtained by calculation based on the silicon atom content in the silicone-based defoaming agent (B).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

The present invention addresses the problem of providing a lubricating oil composition having excellent long-term defoaming performance and cleanliness despite being compounded with a silicone-based defoaming agent. The problem was overcome by a lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B), wherein the lubricating oil composition has a silicon atom content of 50 to 4,000 mass ppb based on the total amount of lubricating oil composition.

Description

潤滑油組成物Lubricating oil composition
 本発明は、潤滑油組成物に関する。 The present invention relates to a lubricating oil composition.
 潤滑油組成物は、種々の機械装置において、減摩作用、密封作用、防錆・防食作用、冷却作用、及び動力伝達作用等を担い、各種分野において広く用いられている。
 ところで、潤滑油組成物は、機械装置の作動時において、空気の巻き込み等を要因とする泡立ちが発生することがある。潤滑油組成物に生じる泡は、潤滑性能の低下、密封性の低下、酸化劣化の促進、冷却効率の低下、及び動力伝達効率の低下等に繋がる。
 そこで、潤滑油組成物には、泡立ちの対策として、消泡剤が配合される。潤滑油組成物に配合される消泡剤の代表例としては、シリコーン系消泡剤が知られている(例えば、特許文献1及び2を参照)。
Lubricating oil compositions are widely used in various fields because they have anti-friction action, sealing action, rust-preventive / anti-corrosion action, cooling action, power transmission action and the like in various mechanical devices.
By the way, in the lubricating oil composition, foaming may occur due to air entrainment or the like when the mechanical device is operated. The bubbles generated in the lubricating oil composition lead to a decrease in lubrication performance, a decrease in sealing property, a promotion of oxidative deterioration, a decrease in cooling efficiency, a decrease in power transmission efficiency, and the like.
Therefore, a defoaming agent is added to the lubricating oil composition as a countermeasure against foaming. As a typical example of the defoaming agent blended in the lubricating oil composition, a silicone-based defoaming agent is known (see, for example, Patent Documents 1 and 2).
特開2020-026447号公報Japanese Unexamined Patent Publication No. 2020-026447 特開2017-066220号公報Japanese Unexamined Patent Publication No. 2017-066220
 しかしながら、本発明者が鋭意検討した結果、シリコーン系消泡剤は、潤滑油組成物に対して、消泡性能を長期に亘り付与できる一方で、潤滑油組成物の清浄度を悪化させる要因になるという問題を有していることを知見するに至った。
 なお、本発明において、潤滑油組成物の清浄度は、ISO4406:1999の汚染度コードにより評価される清浄度を意味する。
However, as a result of diligent studies by the present inventor, the silicone-based defoaming agent can impart defoaming performance to the lubricating oil composition for a long period of time, but is a factor that deteriorates the cleanliness of the lubricating oil composition. It came to be found that it has a problem of becoming.
In the present invention, the cleanliness of the lubricating oil composition means the cleanliness evaluated by the pollution degree code of ISO4406: 1999.
 本発明は、かかる問題に鑑みてなされたものであって、シリコーン系消泡剤を配合しながらも、長期消泡性能及び清浄度の双方に優れる潤滑油組成物を提供することを課題とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness while blending a silicone-based defoaming agent. ..
 本発明者は、鋭意検討を重ねた結果、シリコーン系消泡剤を配合した潤滑油組成物のケイ素原子含有量を特定の範囲に調整することで、上記課題を解決し得ることを見出した。 As a result of diligent studies, the present inventor has found that the above problems can be solved by adjusting the silicon atom content of the lubricating oil composition containing a silicone-based defoaming agent to a specific range.
 すなわち、本発明は、下記[1]に関する。
[1] 基油(A)と、シリコーン系消泡剤(B)とを含有する潤滑油組成物であって、
 ケイ素原子含有量が、前記潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbである、潤滑油組成物。
That is, the present invention relates to the following [1].
[1] A lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B).
A lubricating oil composition having a silicon atom content of 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition.
 本発明によれば、シリコーン系消泡剤を配合しながらも、長期消泡性能及び清浄度の双方に優れる潤滑油組成物を提供することが可能となる。 According to the present invention, it is possible to provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness while blending a silicone-based defoaming agent.
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることができる。
 本明細書において、実施例の数値は、上限値又は下限値として用いられ得る数値である。
 本明細書において、「AA~BB」と表現された数値範囲は、特に断りのない限り、「AA以上BB以下」を意味する。
In the present specification, the lower limit value and the upper limit value described stepwise for a preferable numerical range (for example, a range such as content) can be independently combined. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". be able to.
In the present specification, the numerical values of Examples are numerical values that can be used as upper limit values or lower limit values.
In the present specification, the numerical range expressed as "AA to BB" means "AA or more and BB or less" unless otherwise specified.
[本発明の潤滑油組成物の態様]
 本発明の潤滑油組成物は、基油(A)と、シリコーン系消泡剤(B)とを含有する潤滑油組成物であって、ケイ素原子含有量が、潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbである。
[Aspects of Lubricating Oil Composition of the Present Invention]
The lubricating oil composition of the present invention is a lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B), and the silicon atom content is based on the total amount of the lubricating oil composition. , 50 mass ppb to 4,000 mass ppb.
 本発明者は、シリコーン系消泡剤を配合しながらも、長期消泡性能及び清浄度の双方に優れる潤滑油組成物を提供すべく、鋭意検討を行った。
 まず、本発明者は、シリコーン系消泡剤を配合した潤滑油組成物の清浄度が悪化する要因について、各種検討を行った。その結果、従来、消泡性能を維持するために必要と想定されていた量のシリコーン系消泡剤(潤滑油組成物の全量基準で1質量%程度、ケイ素原子換算で10質量ppm程度)を潤滑油組成物に配合すると、ISO4406:1999により評価される清浄度が悪化してしまい、当該規格を満たさないことがわかった。その原因について詳細に検討した結果、ISO4406:1999では、試料中の微粒子をカウントすることによって試料中の汚染物質分布状況を把握するため、シリコーン系消泡剤の有効成分であるシリコーン粒子が微粒子として計測されてしまう結果、ISO4406:1999により評価される清浄度が悪化し、当該規格を満たさないことがわかった。
 かかる問題点を踏まえ、本発明者が更に検討を進めた結果、意外なことに、シリコーン系消泡剤の配合量を大幅に低減しても、長期消泡性能は確保されることが明らかとなった。しかも、シリコーン系消泡剤の配合量を大幅に低減することで、シリコーン粒子の数が減少し、清浄度も向上した。そこで、本発明者は、シリコーン系消泡剤の含有量について突き詰めた結果、長期消泡性能及び清浄度の双方に優れる潤滑油組成物とすることのできる範囲を見出すに至り、本発明を完成するに至った。
The present inventor has made diligent studies in order to provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness while blending a silicone-based defoaming agent.
First, the present inventor has conducted various studies on factors that deteriorate the cleanliness of a lubricating oil composition containing a silicone-based defoaming agent. As a result, the amount of silicone-based defoaming agent (about 1% by mass based on the total amount of the lubricating oil composition, about 10% by mass in terms of silicon atom), which was conventionally assumed to be necessary for maintaining the defoaming performance, was added. It was found that when blended in a lubricating oil composition, the cleanliness evaluated by ISO4406: 1999 deteriorated and did not meet the standard. As a result of examining the cause in detail, in ISO4406: 1999, in order to grasp the distribution of contaminants in the sample by counting the fine particles in the sample, the silicone particles, which are the active components of the silicone-based defoaming agent, are used as fine particles. As a result of the measurement, it was found that the cleanliness evaluated by ISO4406: 1999 deteriorated and did not meet the standard.
As a result of further studies by the present inventor based on such problems, it is surprisingly clear that long-term defoaming performance can be ensured even if the blending amount of the silicone-based defoaming agent is significantly reduced. became. Moreover, by significantly reducing the amount of the silicone-based defoaming agent, the number of silicone particles is reduced and the cleanliness is improved. Therefore, as a result of investigating the content of the silicone-based defoaming agent, the present inventor has found a range in which a lubricating oil composition excellent in both long-term defoaming performance and cleanliness can be obtained, and completed the present invention. I came to do it.
 なお、以降の説明では、「基油(A)」及び「シリコーン系消泡剤(B)」を、それぞれ「成分(A)」及び「成分(B)」ともいう。
 本発明の一態様の潤滑油組成物は、成分(A)及び成分(B)のみから構成されていてもよいが、本発明の効果を損なわない範囲で、成分(A)及び成分(B)以外の他の成分を含有していてもよい。
 本発明の一態様の潤滑油組成物において、成分(A)及び成分(B)の合計含有量は、潤滑油組成物の全量基準で、好ましくは75質量%以上、より好ましくは80質量%以上、更に好ましくは85質量%以上である。
 なお、成分(A)及び成分(B)の合計含有量の上限値は、成分(A)及び成分(B)以外の他の成分との兼ね合いで調整すればよく、潤滑油組成物の全量基準で、好ましくは94.9質量%以下、より好ましくは94質量%以下、更に好ましくは92質量%以下、より更に好ましくは90質量%以下である。
In the following description, the "base oil (A)" and the "silicone antifoaming agent (B)" are also referred to as "component (A)" and "component (B)", respectively.
The lubricating oil composition of one aspect of the present invention may be composed of only the component (A) and the component (B), but the component (A) and the component (B) are used as long as the effects of the present invention are not impaired. It may contain other components other than.
In the lubricating oil composition of one aspect of the present invention, the total content of the component (A) and the component (B) is preferably 75% by mass or more, more preferably 80% by mass or more, based on the total amount of the lubricating oil composition. , More preferably 85% by mass or more.
The upper limit of the total content of the component (A) and the component (B) may be adjusted in consideration of the balance with the components other than the component (A) and the component (B), and is based on the total amount of the lubricating oil composition. It is preferably 94.9% by mass or less, more preferably 94% by mass or less, still more preferably 92% by mass or less, still more preferably 90% by mass or less.
 以下、本発明の潤滑油組成物が含有する各成分について、詳細に説明する。 Hereinafter, each component contained in the lubricating oil composition of the present invention will be described in detail.
<基油(A)>
 基油(A)としては、従来、潤滑油基油として用いられている基油を特に制限なく使用することができ、例えば、鉱油及び合成油からなる群から選択される1種以上を用いることができる。
<Base oil (A)>
As the base oil (A), a base oil conventionally used as a lubricating oil base oil can be used without particular limitation, and for example, one or more selected from the group consisting of mineral oils and synthetic oils may be used. Can be done.
 鉱油としては、例えば、パラフィン系原油、中間基系原油、又はナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、及び水素化精製等の精製処理を1つ以上施して得られる鉱油;等が挙げられる。
 鉱油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the mineral oil, for example, atmospheric residual oil obtained by atmospheric distillation of crude oil such as paraffin crude oil, intermediate base crude oil, or naphthenic crude oil; and distillate obtained by vacuum distillation of these atmospheric residual oils. Oil; Mineral oil obtained by subjecting the distillate oil to one or more refining treatments such as solvent desorption, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining; and the like.
One type of mineral oil may be used alone, or two or more types may be used in combination.
 合成油としては、例えば、炭化水素系油、芳香族系油、エステル系油、エーテル系油、及び蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|が6.8℃/体積%以下である基油(好ましくは、ASTM D-2007に準拠して測定されるクレーゲル法による飽和分が90質量%以上であり、ASTM D1552に準拠して測定される硫黄分が0.03質量%以下であり、ASTM D2270に準拠して得られる粘度指数が120以上である基油)等が挙げられる。
 なお、本明細書において、蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|は、下記式から算出された値を意味する。
・温度勾配Δ|Dt|(℃/体積%)=|[基油の留出量5.0体積%となる蒸留温度(℃)]-[基油の留出量2.0体積%となる蒸留温度(℃)]|/3.0(体積%)
 上記式中の「基油の留出量5.0体積%及び2.0体積%となる蒸留温度」は、ASTM D6352に準拠した方法により測定された値であって、具体的には実施例に記載の方法により測定された値を意味する。
 上記温度勾配Δ|Dt|は、好ましくは6.5℃/体積%以下、より好ましくは6.3℃/体積%以下、更に好ましくは6.0℃/体積%以下、より更に好ましくは5.0℃/体積%以下である。
 また、上記温度勾配Δ|Dt|は、通常0.1℃/体積%以上である。
 蒸留曲線における留出量2.0体積%での蒸留温度としては、好ましくは405~510℃、より好ましくは410~500℃、更に好ましくは415~490℃、より更に好ましくは430~480℃である。
 蒸留曲線における留出量5.0体積%での蒸留温度としては、好ましくは425~550℃、より好ましくは430~520℃、更に好ましくは434~500℃、より更に好ましくは450~490℃である。
 なお、蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|が6.8℃/体積%以下である基油におけるパラフィン分(%C)としては、通常50以上、好ましくは55以上、より好ましくは60以上、更に好ましくは65以上、より更に好ましくは70以上更になお好ましくは80以上であり、また、通常99以下である。
 なお、本明細書において、パラフィン分(%C)は、ASTM D-3238環分析(n-d-M法)に準拠して測定された値を意味する。
 ここで、上記要件で規定する温度勾配は、上記精製処理の1つ以上を施すことで行われる精製工程でも除去できない軽質分の含有量やワックス分の構造等の基油の状態と、潤滑油組成物とした際の引火点との関係を考慮したパラメータであり、留出量が2.0~5.0体積%では、蒸留曲線の変動は安定化しており、軽質分も残存している温度領域であるため、基油の軽質分とワックス分の状態を、正確に評価することができる。
 合成油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of synthetic oils include hydrocarbon oils, aromatic oils, ester oils, ether oils, and distillations between two points of distillation amounts of 2.0% by volume and 5.0% by volume on the distillation curve. Base oil having a temperature gradient Δ | Dt | of 6.8 ° C./% by volume or less (preferably, the saturation content by the Kregel method measured according to ASTM D-2007 is 90% by mass or more, and ASTM. A base oil having a sulfur content of 0.03% by mass or less measured according to D1552 and a viscosity index of 120 or more obtained according to ASTM D2270) and the like can be mentioned.
In the present specification, the temperature gradient Δ | Dt | of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume in the distillation curve means a value calculated from the following formula. do.
-Temperature gradient Δ | Dt | (° C./volume%) = | [Distillation temperature (° C.) at which the distillate amount of base oil is 5.0% by volume]-[Distillation amount of base oil is 2.0% by volume. Distillation temperature (° C)] | /3.0 (volume%)
The "distillation temperature at which the distillation amount of the base oil is 5.0% by volume and 2.0% by volume" in the above formula is a value measured by a method based on ASTM D6352, and specifically, in Examples. Means the value measured by the method described in.
The temperature gradient Δ | Dt | is preferably 6.5 ° C./volume% or less, more preferably 6.3 ° C./volume% or less, still more preferably 6.0 ° C./volume% or less, still more preferably 5. It is 0 ° C./volume% or less.
Further, the temperature gradient Δ | Dt | is usually 0.1 ° C./volume% or more.
The distillation temperature at a distillation amount of 2.0% by volume on the distillation curve is preferably 405 to 510 ° C., more preferably 410 to 500 ° C., still more preferably 415 to 490 ° C., still more preferably 430 to 480 ° C. be.
The distillation temperature at a distillation amount of 5.0% by volume on the distillation curve is preferably 425 to 550 ° C, more preferably 430 to 520 ° C, still more preferably 434 to 500 ° C, still more preferably 450 to 490 ° C. be.
The paraffin content in the base oil in which the temperature gradient Δ | Dt | of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./% by volume or less. The (% CP ) is usually 50 or more, preferably 55 or more, more preferably 60 or more, still more preferably 65 or more, still more preferably 70 or more, still more preferably 80 or more, and usually 99 or less. be.
In this specification, the paraffin component (% C P) means a value measured in conformity with ASTM D-3238 ring analysis (n-d-M method).
Here, the temperature gradients specified in the above requirements are the state of the base oil, such as the light content and the structure of the wax, which cannot be removed even in the refining process performed by performing one or more of the above refining treatments, and the lubricating oil. It is a parameter that takes into account the relationship with the ignition point when made into a composition. When the distillate amount is 2.0 to 5.0% by volume, the fluctuation of the distillation curve is stable and even the light component remains. Since it is in the temperature range, it is possible to accurately evaluate the state of the light and wax components of the base oil.
As the synthetic oil, one type may be used alone, or two or more types may be used in combination.
 なお、本発明の一態様の潤滑油組成物では、基油(A)は、鉱油から選択される1種又は合成油から選択される1種であってもよく、これらの中でも泡立ちが起こりやすい、鉱油から選択される1種であってもよい。
 また、基油(A)は、鉱油及び合成油からなる群から選択される2種以上を混合した混合基油であってもよい。潤滑油組成物において用いられる基油は、潤滑油組成物に求められる各種性能の向上等の観点から、2種以上の基油を混合した混合基油とすることがある。一方で、2種以上の基油を混合した混合基油は、特に泡立ちが起こりやすい。本発明では、このように特に泡立ちが起こりやすい混合基油に対しても、長期消泡性能及び清浄度の双方に優れる潤滑油組成物を提供することができる。
 なお、2種以上の基油は、油種が異なる2種以上の基油の組み合わせであってもよく、油種は同一であるが物性値(例えば40℃における動粘度等)が異なる2種以上の基油の組み合わせであってもよい。また、油種は同一であるが物性値(例えば40℃における動粘度等)が異なる2種以上の基油と、当該基油とは油種が異なる1種以上の基油との組み合わせであってもよい。
In the lubricating oil composition of one aspect of the present invention, the base oil (A) may be one selected from mineral oils or one selected from synthetic oils, and foaming is likely to occur among these. , May be one selected from mineral oil.
Further, the base oil (A) may be a mixed base oil in which two or more kinds selected from the group consisting of mineral oil and synthetic oil are mixed. The base oil used in the lubricating oil composition may be a mixed base oil in which two or more kinds of base oils are mixed from the viewpoint of improving various performances required for the lubricating oil composition. On the other hand, a mixed base oil in which two or more kinds of base oils are mixed is particularly prone to foaming. INDUSTRIAL APPLICABILITY The present invention can provide a lubricating oil composition excellent in both long-term defoaming performance and cleanliness even for a mixed base oil in which foaming is particularly likely to occur.
The two or more types of base oil may be a combination of two or more types of base oils having different oil types, and the two types have the same oil type but different physical property values (for example, kinematic viscosity at 40 ° C.). It may be a combination of the above base oils. Further, it is a combination of two or more kinds of base oils having the same oil type but different physical characteristics (for example, kinematic viscosity at 40 ° C.) and one or more kinds of base oils having different oil types from the base oil. You may.
 ここで、基油(A)は、高粘度基油(AH)と低粘度基油(AL)とを組み合わせた混合基油であってもよい。また、高粘度基油(AH)と低粘度基油(AL)とに加えて、さらに他の基油(AZ)を組み合わせた混合基油であってもよい。
 以下、高粘度基油(AH)、低粘度基油(AL)、及び他の基油(AZ)について説明する。
Here, the base oil (A) may be a mixed base oil in which a high-viscosity base oil (AH) and a low-viscosity base oil (AL) are combined. Further, it may be a mixed base oil in which another base oil (AZ) is further combined with the high-viscosity base oil (AH) and the low-viscosity base oil (AL).
Hereinafter, the high-viscosity base oil (AH), the low-viscosity base oil (AL), and other base oils (AZ) will be described.
(高粘度基油(AH))
 高粘度基油(AH)は、基油(A)の動粘度を高く維持することで、潤滑油組成物の耐摩耗性及び耐疲労寿命等の向上に資する。
 ここで、潤滑油組成物の耐摩耗性及び耐疲労寿命等をより向上させやすくする観点から、高粘度基油(AH)の40℃における動粘度(以下、「40℃動粘度」ともいう)は、好ましくは1,000mm/s以上、より好ましくは1,100mm/s以上、更に好ましくは1,200mm/s以上である。また、高粘度基油(AH)の上限値は、好ましくは2,000mm/sである。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは1,000mm/s~2,000mm/s、より好ましくは1,100mm/s~2,000mm/s、更に好ましくは1,200mm/s~2,000mm/sである。
(High viscosity base oil (AH))
The high-viscosity base oil (AH) contributes to the improvement of the wear resistance and the fatigue-resistant life of the lubricating oil composition by maintaining the kinematic viscosity of the base oil (A) at a high level.
Here, from the viewpoint of making it easier to improve the wear resistance and fatigue resistance life of the lubricating oil composition, the kinematic viscosity of the high-viscosity base oil (AH) at 40 ° C. (hereinafter, also referred to as “40 ° C. kinematic viscosity”). Is preferably 1,000 mm 2 / s or more, more preferably 1,100 mm 2 / s or more, and further preferably 1,200 mm 2 / s or more. The upper limit of the high viscosity base oil (AH) is preferably 2,000 mm 2 / s. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 1,000mm 2 / s ~ 2,000mm 2 / s, more preferably 1,100mm 2 / s ~ 2,000mm 2 / s, more preferably 1,200mm 2 / s ~ 2, It is 000 mm 2 / s.
 高粘度基油(AH)は、潤滑油組成物の高粘度指数化の観点から、ポリα-オレフィン(以下、「PAO」ともいう)であることが好ましい。PAOとしては、例えば、ポリブテン、ポリイソブチレン、1-デセンオリゴマー、及びエチレン-プロピレン共重合体等、並びにこれらの水素化物が挙げられる。
 PAOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The high-viscosity base oil (AH) is preferably a poly α-olefin (hereinafter, also referred to as “PAO”) from the viewpoint of high viscosity indexing of the lubricating oil composition. Examples of PAO include polybutene, polyisobutylene, 1-decene oligomer, ethylene-propylene copolymer and the like, and hydrides thereof.
One type of PAO may be used alone, or two or more types may be used in combination.
 また、潤滑油組成物の更なる高粘度指数化の観点から、高粘度基油(AH)は、PAOとして、メタロセン触媒を用いて得られたポリα-オレフィン(以下、「mPAO」ともいう)であることがより好ましい。
 mPAOは、原料として、好ましくは炭素数8~12のα-オレフィンの一種を単独で又は2種以上を組合せて用い、それをメタロセン触媒の存在下で製造(重合)して得られるポリ-α-オレフィン若しくはその水素化物である。
 mPAOの原料としての炭素数8~12のα-オレフィンは、直鎖であっても、分岐鎖を有するものであってもよいが、好ましくは、直鎖のα-オレフィンが用いられ、例えば、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンが挙げられ、好ましくは原料として1-デセンを用いて重合して得られたデセンオリゴマーが挙げられる。
 mPAOの製造に用いる重合触媒であるメタロセン触媒としては、周期表第4族元素を含有した共役炭素5員環を有する錯体、すなわち、メタロセン錯体と酸素含有有機アルミニウム化合物とを組み合わせて用いることができる。
 前記メタロセン錯体における周期表第4族元素としては、チタン、ジルコニウム及びハフニウムが用いられ、ジルコニウムが好ましい。また、共役炭素5員環を有する錯体は、置換又は無置換のシクロペンタジエニル配位子を有する錯体が一般に用いられる。
 好適なメタロセン錯体の例としては、ビス(n-オクタデシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テトラヒドロインデニル)ジルコニウムジクロリド、ビス[(t-ブチルジメチルシリル)シクロペンタジエニル]ジルコニウムジクロリド、ビス(ジ-t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、(エチリデン-ビスインデニル)ジルコニウムジクロリド、ビスシクロペンタジエニルジルコニウムジクロリド、エチリデンビス(テトラヒドロインデニル)ジルコニウムジクロリド及びビス[3,3-(2-メチル-ベンズインデニル)]ジメチルシランジイルジルコニウムジクロリド等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 一方、前記酸素含有有機アルミニウム化合物としては、例えば、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサンなどが挙げられる。これらは一、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 mPAOは、非メタロセン触媒(チーグラー触媒等)を用いて製造したPAOより粘度指数が高いため、潤滑油組成物の粘度指数を高める効果がある。
 mPAOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Further, from the viewpoint of further increasing the viscosity index of the lubricating oil composition, the high viscosity base oil (AH) is a polyα-olefin obtained by using a metallocene catalyst as PAO (hereinafter, also referred to as “mPAO”). Is more preferable.
The mPAO is a poly-α obtained by using one kind of α-olefin having 8 to 12 carbon atoms alone or in combination of two or more kinds as a raw material and producing (polymerizing) it in the presence of a metallocene catalyst. -An olefin or a hydride thereof.
The α-olefin having 8 to 12 carbon atoms as a raw material of mPAO may be linear or has a branched chain, but a linear α-olefin is preferably used, for example. Examples thereof include 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene, and preferably decene oligomers obtained by polymerization using 1-decene as a raw material.
As the metallocene catalyst, which is a polymerization catalyst used in the production of mPAO, a complex having a conjugated carbon 5-membered ring containing a Group 4 element of the periodic table, that is, a metallocene complex and an oxygen-containing organoaluminum compound can be used in combination. ..
As the Group 4 element of the periodic table in the metallocene complex, titanium, zirconium and hafnium are used, and zirconium is preferable. Further, as the complex having a conjugated carbon 5-membered ring, a complex having a substituted or unsubstituted cyclopentadienyl ligand is generally used.
Examples of suitable metallocene complexes include bis (n-octadecylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylcyclopentadienyl) zirconium dichloride, bis (tetrahydroindenyl) zirconium dichloride, bis [(t-butyldimethylsilyl). ) Cyclopentadienyl] zirconium dichloride, bis (di-t-butylcyclopentadienyl) zirconium dichloride, (ethylidene-bisindenyl) zirconium dichloride, biscyclopentadienyl zirconium dichloride, etilidenbis (tetrahydroindenyl) zirconium dichloride and Examples thereof include bis [3,3- (2-methyl-benzindenyl)] dimethylsilanediyl zirconium dichloride.
One of these may be used alone, or two or more thereof may be used in combination.
On the other hand, examples of the oxygen-containing organoaluminum compound include methylaluminoxane, ethylaluminoxane, and isobutylaluminoxane. One or one of these may be used alone, or two or more thereof may be used in combination.
Since mPAO has a higher viscosity index than PAO produced using a non-metallocene catalyst (Ziegler catalyst or the like), it has an effect of increasing the viscosity index of the lubricating oil composition.
One type of mPAO may be used alone, or two or more types may be used in combination.
 高粘度基油(AH)の粘度指数は、好ましくは100以上、より好ましくは150以上、更に好ましくは170以上である。また、粘度指数は300以下であってもよく、250以下であってもよい。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは100~300、より好ましくは150~250、更に好ましくは170~250である。 The viscosity index of the high-viscosity base oil (AH) is preferably 100 or more, more preferably 150 or more, still more preferably 170 or more. Further, the viscosity index may be 300 or less, or 250 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 100 to 300, more preferably 150 to 250, and even more preferably 170 to 250.
 ここで、高粘度基油(AH)は、流動点が-20℃以下のものが好ましい。高粘度基油(AH)の流動点が-20℃以下であれば、高粘度基油(AH)を含有する潤滑油組成物は、低温環境においても十分な流動性を有するものとなるため好ましい。高粘度基油(AH)の流動点は、より好ましくは-25℃以下、更に好ましくは-30℃以下である。 Here, the high-viscosity base oil (AH) preferably has a pour point of −20 ° C. or lower. When the pour point of the high-viscosity base oil (AH) is −20 ° C. or lower, the lubricating oil composition containing the high-viscosity base oil (AH) is preferable because it has sufficient fluidity even in a low temperature environment. .. The pour point of the high viscosity base oil (AH) is more preferably −25 ° C. or lower, still more preferably −30 ° C. or lower.
 なお、前記動粘度及び粘度指数は、JIS K 2283:2000に準拠して測定及び算出した値であり、流動点は、JIS K 2269:1987に準拠して測定した値である。 The kinematic viscosity and viscosity index are values measured and calculated in accordance with JIS K 2283: 2000, and the pour point is a value measured in accordance with JIS K 2269: 1987.
 本発明の一態様の潤滑油組成物において、高粘度基油(AH)の含有量は、潤滑油組成物全量基準で、好ましくは35質量%以上、より好ましくは38質量%以上、更に好ましくは40質量%以上である。また、好ましくは75質量%以下、より好ましくは72質量%以下、更に好ましくは70質量%以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは35質量%~75質量%、より好ましくは38質量%~72質量%、更に好ましくは40質量%~70質量%である。高粘度基油(AH)の含有量が上記範囲であると、潤滑油組成物の動粘度を高く維持することができ、耐摩耗性及び耐疲労寿命に優れる潤滑油組成物を調製することができる。 In the lubricating oil composition of one aspect of the present invention, the content of the high-viscosity base oil (AH) is preferably 35% by mass or more, more preferably 38% by mass or more, still more preferably, based on the total amount of the lubricating oil composition. It is 40% by mass or more. Further, it is preferably 75% by mass or less, more preferably 72% by mass or less, and further preferably 70% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 35% by mass to 75% by mass, more preferably 38% by mass to 72% by mass, and further preferably 40% by mass to 70% by mass. When the content of the high-viscosity base oil (AH) is within the above range, the kinematic viscosity of the lubricating oil composition can be maintained high, and a lubricating oil composition having excellent wear resistance and fatigue resistance life can be prepared. can.
 高粘度基油(AH)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the high-viscosity base oil (AH), one type may be used alone, or two or more types may be used in combination.
(低粘度基油(AL))
 低粘度基油(AL)は、潤滑油組成物の低温特性の確保に資する。
 ここで、潤滑油組成物の低温特性の向上の観点から、低粘度基油(AL)の40℃動粘度は、好ましくは5.0mm/s以上、より好ましくは6.0mm/s以上、更に好ましくは7.0mm/s以上、より更に好ましくは8.0mm/s以上である。また、好ましくは110mm/s以下、より好ましくは90.0mm/s以下、更に好ましくは80.0mm/s以下、より更に好ましくは75mm/s以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは5.0mm/s~110mm/s、より好ましくは6.0mm/s~90.0mm/s、更に好ましくは7.0mm/s~80.0mm/s、より更に好ましくは8.0mm/s~75.0mm/sである。
(Low viscosity base oil (AL))
The low viscosity base oil (AL) contributes to ensuring the low temperature characteristics of the lubricating oil composition.
Here, from the viewpoint of improving the low temperature characteristics of the lubricating oil composition, the kinematic viscosity of the low-viscosity base oil (AL) at 40 ° C. is preferably 5.0 mm 2 / s or more, more preferably 6.0 mm 2 / s or more. , More preferably 7.0 mm 2 / s or more, and even more preferably 8.0 mm 2 / s or more. Further, it is preferably 110 mm 2 / s or less, more preferably 90.0 mm 2 / s or less, still more preferably 80.0 mm 2 / s or less, still more preferably 75 mm 2 / s or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 5.0mm 2 / s ~ 110mm 2 / s, more preferably 6.0mm 2 /s~90.0mm 2 / s, more preferably 7.0mm 2 /s~80.0mm 2 / s, even more preferably a 8.0mm 2 /s~75.0mm 2 / s.
 ここで、低粘度基油は、潤滑油組成物の低温特性の確保に資する一方で、高粘度基油と比較して引火点が低く、基油全体としての引火点を低下させ、潤滑油組成物の引火点を低下させる要因となる。そこで、低粘度基油(AL)としては、低粘度基油の中でも引火点の高いものを用いることが好ましい。かかる観点から、低粘度基油(AL)は、低粘度のポリα-オレフィン(以下、「PAO」ともいう)、API(米国石油協会)基油カテゴリーで、グループII又はIIIの鉱油、蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|が6.8℃/体積%以下である基油(好ましくは、ASTM D-2007に準拠して測定されるクレーゲル法による飽和分が90質量%以上であり、ASTM D1552に準拠して測定される硫黄分が0.03質量%以下であり、ASTM D2270に準拠して得られる粘度指数が120以上である基油)等を用いることが好ましい。なお、PAOは、上記したもののうち、低粘度のものを用いることができる。 Here, the low-viscosity base oil contributes to ensuring the low-temperature characteristics of the lubricating oil composition, but has a lower ignition point than the high-viscosity base oil, lowers the ignition point of the base oil as a whole, and has a lubricating oil composition. It becomes a factor that lowers the ignition point of an object. Therefore, as the low-viscosity base oil (AL), it is preferable to use one having a high flash point among the low-viscosity base oils. From this point of view, low-viscosity base oil (AL) is a low-viscosity poly-α-olefin (hereinafter, also referred to as “PAO”), API (American Petroleum Association) base oil category, and is a group II or III mineral oil, distillation curve. Base oil (preferably ASTM D-) in which the temperature gradient Δ | Dt | of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume is 6.8 ° C./volume% or less. The saturation content by the Kleegel method measured in accordance with 2007 is 90% by mass or more, and the viscosity content measured in accordance with ASTM D1552 is 0.03% by mass or less, which is obtained in accordance with ASTM D2270. It is preferable to use a base oil having a viscosity index of 120 or more). As the PAO, among the above-mentioned ones, those having a low viscosity can be used.
 蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|が6.8℃/体積%以下である基油において、当該温度勾配Δ|Dt|は、好ましくは6.5℃/体積%以下、より好ましくは6.3℃/体積%以下、更に好ましくは6.0℃/体積%以下、より更に好ましくは5.0℃/体積%以下である。
 また、上記温度勾配Δ|Dt|は、通常0.1℃/体積%以上である。
 蒸留曲線における留出量2.0体積%での蒸留温度としては、好ましくは405~510℃、より好ましくは410~500℃、更に好ましくは415~490℃、より更に好ましくは430~480℃である。
 蒸留曲線における留出量5.0体積%での蒸留温度としては、好ましくは425~550℃、より好ましくは430~520℃、更に好ましくは434~500℃、より更に好ましくは450~490℃である。
 蒸留曲線における留出量2.0体積%と5.0体積%の2点間での蒸留温度の温度勾配Δ|Dt|が6.8℃/体積%以下である基油のパラフィン分(%C)としては、通常50以上、好ましくは55以上、より好ましくは60以上、更に好ましくは65以上、より更に好ましくは70以上更になお好ましくは80以上であり、また、通常99以下である。
 なお、本明細書において、パラフィン分(%C)は、ASTM D-3238環分析(n-d-M法)に準拠して測定された値を意味する。 
The temperature gradient in the base oil in which the temperature gradient Δ | Dt | of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./volume% or less. Δ | Dt | is preferably 6.5 ° C./volume% or less, more preferably 6.3 ° C./volume% or less, still more preferably 6.0 ° C./volume% or less, still more preferably 5.0 ° C./% or less. It is less than or equal to the volume.
Further, the temperature gradient Δ | Dt | is usually 0.1 ° C./volume% or more.
The distillation temperature at a distillation amount of 2.0% by volume on the distillation curve is preferably 405 to 510 ° C., more preferably 410 to 500 ° C., still more preferably 415 to 490 ° C., still more preferably 430 to 480 ° C. be.
The distillation temperature at a distillation amount of 5.0% by volume on the distillation curve is preferably 425 to 550 ° C, more preferably 430 to 520 ° C, still more preferably 434 to 500 ° C, still more preferably 450 to 490 ° C. be.
The paraffin content (%) of the base oil in which the temperature gradient Δ | Dt | of the distillation temperature between the two points of the distillation amount of 2.0% by volume and 5.0% by volume on the distillation curve is 6.8 ° C./% by volume or less. The CP ) is usually 50 or more, preferably 55 or more, more preferably 60 or more, still more preferably 65 or more, still more preferably 70 or more, still more preferably 80 or more, and usually 99 or less.
In this specification, the paraffin component (% C P) means a value measured in conformity with ASTM D-3238 ring analysis (n-d-M method).
 なお、低粘度基油(AL)の粘度指数は、好ましくは80以上、より好ましくは90以上、更に好ましくは100以上、より更に好ましくは110以上、より更に好ましくは120以上であり、また、その上限値は特に制限はないが、例えば、200である。 The viscosity index of the low-viscosity base oil (AL) is preferably 80 or more, more preferably 90 or more, further preferably 100 or more, still more preferably 110 or more, still more preferably 120 or more, and further. The upper limit is not particularly limited, but is, for example, 200.
 本発明の一態様の潤滑油組成物において、潤滑油組成物の低温特性を確保しやすくすると共に、潤滑油組成物の引火点の低下を抑える観点から、低粘度基油(AL)の含有量は、潤滑油組成物全量基準で、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上である。また、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは10質量%~60質量%、より好ましくは15質量%~55質量%、更に好ましくは20質量%~50質量%である。 In the lubricating oil composition of one aspect of the present invention, the content of the low-viscosity base oil (AL) is from the viewpoint of facilitating the securing of the low temperature characteristics of the lubricating oil composition and suppressing the decrease in the ignition point of the lubricating oil composition. Is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, based on the total amount of the lubricating oil composition. Further, it is preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 10% by mass to 60% by mass, more preferably 15% by mass to 55% by mass, and further preferably 20% by mass to 50% by mass.
(他の基油(AZ))
 他の基油(AZ)は、特に限定されず、高粘度基油(AH)及び低粘度基油(AL)に該当しない各種基油が挙げられるが、清浄分散作用の向上及び熱安定性の向上等の観点から、エステル系油が好ましい。
 エステル系油としては、ポリオールエステルが好ましく用いられる。当該ポリオールエステルは、ポリオールの部分エステルであっても完全エステルであってもよいが、ポリオールの部分エステルを用いることが、スラッジ溶解性の観点から好ましい。
(Other base oil (AZ))
The other base oil (AZ) is not particularly limited, and examples thereof include various base oils that do not correspond to the high-viscosity base oil (AH) and the low-viscosity base oil (AL). From the viewpoint of improvement and the like, ester-based oil is preferable.
As the ester-based oil, a polyol ester is preferably used. The polyol ester may be a partial ester of a polyol or a complete ester, but it is preferable to use a partial ester of the polyol from the viewpoint of sludge solubility.
 前記ポリオールエステルの原料となるポリオールとしては、特に制限はないが、脂肪族ポリオールが好ましく、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール等の二価アルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン等の三価アルコール;ジグリセリン、トリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、マンニット、ソルビット等の四価以上の多価アルコールを挙げることができる。 The polyol used as a raw material for the polyol ester is not particularly limited, but an aliphatic polyol is preferable, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol and the like. Dihydric alcohols; trihydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, etc .; tetrahydric or higher polyhydric alcohols such as diglycerin, triglycerin, pentaerythritol, dipentaerythritol, mannit, sorbit, etc. can be mentioned. ..
 ポリオールエステルを構成するヒドロカルビル基としては、炭素数が6~30のアルキル基又はアルケニル基が好ましく、炭素数が12~24のアルキル基又はアルケニル基がより好ましく、例えば、各種のヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ヘキセニル基、オクテニル基、デセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基などを挙げることができる。
 上記アルキル基及びアルケニル基としては、直鎖状のものであっても分岐状のものであってもよい。
As the hydrocarbyl group constituting the polyol ester, an alkyl group or an alkenyl group having 6 to 30 carbon atoms is preferable, an alkyl group or an alkenyl group having 12 to 24 carbon atoms is more preferable, and for example, various hexyl groups and octyl groups. , Decyl group, dodecyl group, tetradecyl group, hexadecyl group, heptadecyl group, octadecyl group, hexenyl group, octenyl group, decenyl group, dodecenyl group, tetradecenyl group, hexadecenyl group, octadecenyl group and the like.
The alkyl group and the alkenyl group may be linear or branched.
 前記ポリオールの完全エステルの具体例としては、ネオペンチルグリコールジラウレート、ネオペンチルグリコールジミリステート、ネオペンチルグリコールジパルミテート、ネオペンチルグリコールジステアレート、ネオペンチルグリコールジイソステアレート、トリメチロールプロパントリラウレート、トリメチロールプロパントリミリステート、トリメチロールプロパントリパルミテート、トリメチロールプロパントリステアレート、トリメチロールプロパントリイソステアレート、グリセリントリラウレート、グリセリントリステアレート、グリセリントリイソステアレート等を挙げることができるが、これらに限定されるものではない。 Specific examples of the complete ester of the polyol include neopentyl glycol dilaurate, neopentyl glycol dimilistate, neopentyl glycol dipalmitate, neopentyl glycol distearate, neopentyl glycol diisostearate, and trimethyl propantrilau. Rate, Trimethylol Propane Trimilistate, Trimethylol Propane Tripalmitate, Trimethylol Propane Tristearate, Trimethylol Propanetriisostearate, Glycerin Trilaurate, Glycerin Tristearate, Glycerin Triisostearate, etc. However, it is not limited to these.
 前記ポリオールの部分エステルは、少なくとも一つの水酸基が残存していれば特に制限はない。
 当該ポリオールの部分エステルの具体例としては、ネオペンチルグリコールモノラウレート、ネオペンチルグリコールモノミリステート、ネオペンチルグリコールモノパルミテート、ネオペンチルグリコールモノステアレート、ネオペンチルグリコールモノイソステアレート、トリメチロールプロパンモノ(又はジ)ラウレート、トリメチロールプロパンモノ(又はジ)ミリステート、トリメチロールプロパンモノ(又はジ)パルミテート、トリメチロールプロパンモノ(又はジ)ステアレート、トリメチロールプロパンモノ(又はジ)イソステアレート、グリセリンモノ(又はジ)ラウレート、グリセリンモノ(又はジ)ステアレート、グリセリンモノ(又はジ)イソステアレート等を挙げることができ、好ましくはトリメチロールプロパンモノ(又はジ)イソステアレートが挙げられるが、これらに限定されるものではない。
The partial ester of the polyol is not particularly limited as long as at least one hydroxyl group remains.
Specific examples of the partial ester of the polyol include neopentyl glycol monolaurate, neopentyl glycol monomillistate, neopentyl glycol monopalmitate, neopentyl glycol monostearate, neopentyl glycol monoisostearate, and trimethylolpropane. Mono (or di) laurate, trimethylolpropane mono (or di) millistate, trimethylolpropane mono (or di) palmitate, trimethylolpropane mono (or di) stearate, trimethylolpropane mono (or di) isostearate , Glycerin mono (or di) laurate, glycerin mono (or di) stearate, glycerin mono (or di) isostearate and the like, preferably trimethylolpropane mono (or di) isostearate. However, it is not limited to these.
 本発明の一態様の潤滑油組成物において、他の基油(AZ)の含有量は、スラッジ溶解性をより向上させる観点から、潤滑油組成物の全量基準で、好ましくは6質量%以上である。また、好ましくは15質量%以下、より好ましくは13質量%以下、更に好ましくは11質量%以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは6質量%~15質量%、より好ましくは6質量%~13質量%、更に好ましくは6質量%~11質量%である。
 なお、他の基油(AZ)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the lubricating oil composition of one aspect of the present invention, the content of the other base oil (AZ) is preferably 6% by mass or more based on the total amount of the lubricating oil composition from the viewpoint of further improving sludge solubility. be. Further, it is preferably 15% by mass or less, more preferably 13% by mass or less, and further preferably 11% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 6% by mass to 15% by mass, more preferably 6% by mass to 13% by mass, and further preferably 6% by mass to 11% by mass.
As the other base oil (AZ), one type may be used alone, or two or more types may be used in combination.
 なお、本発明の一態様の潤滑油組成物において、基油(A)の含有量は、潤滑油組成物の全量基準で、好ましくは75質量%以上、より好ましくは78質量%以上、更に好ましくは80質量%以上である。また、好ましくは99.9質量%以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは75質量%~99.9質量%、より好ましくは78質量%~99.9質量%、更に好ましくは80質量%~99.9質量%である。 In the lubricating oil composition of one aspect of the present invention, the content of the base oil (A) is preferably 75% by mass or more, more preferably 78% by mass or more, still more preferably, based on the total amount of the lubricating oil composition. Is 80% by mass or more. Further, it is preferably 99.9% by mass or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 75% by mass to 99.9% by mass, more preferably 78% by mass to 99.9% by mass, and further preferably 80% by mass to 99.9% by mass.
 また、本発明の一態様の潤滑油組成物において、基油(A)が高粘度基油(AH)及び低粘度基油(AL)を含む場合、高粘度基油(AH)及び低粘度基油(AL)の合計含有量は、基油(A)の全量基準で、好ましくは75質量%~100質量%、より好ましくは78質量%~100質量%、更に好ましくは80質量%~100質量%である。 Further, in the lubricating oil composition of one aspect of the present invention, when the base oil (A) contains a high-viscosity base oil (AH) and a low-viscosity base oil (AL), the high-viscosity base oil (AH) and the low-viscosity group The total content of the oil (AL) is preferably 75% by mass to 100% by mass, more preferably 78% by mass to 100% by mass, and further preferably 80% by mass to 100% by mass based on the total amount of the base oil (A). %.
 また、本発明の一態様の潤滑油組成物において、基油(A)が高粘度基油(AH)及び低粘度基油(AL)を含む場合、高粘度基油(AH)と低粘度基油(AL)との含有比率[(AH)/(AL)]は、質量比で、好ましくは50/50以上である。また、好ましくは80/20以下、より好ましくは75/25以下、更に好ましくは60/30以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは80/20~50/50、より好ましくは75/25~50/50、更に好ましくは60/30~50/50である。 Further, in the lubricating oil composition of one aspect of the present invention, when the base oil (A) contains a high-viscosity base oil (AH) and a low-viscosity base oil (AL), the high-viscosity base oil (AH) and the low-viscosity group The content ratio with oil (AL) [(AH) / (AL)] is preferably 50/50 or more in terms of mass ratio. Further, it is preferably 80/20 or less, more preferably 75/25 or less, and further preferably 60/30 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 80/20 to 50/50, more preferably 75/25 to 50/50, and even more preferably 60/30 to 50/50.
 また、本発明の一態様の潤滑油組成物において、基油(A)が他の基油(AZ)を含む場合、高粘度基油(AH)及び低粘度基油(AL)の合計含有量と他の基油(AZ)の含有量との比率[{(AH)+(AL)}/(AZ)]は、質量比で、好ましくは6/1以上、より好ましくは6.5/1以上、更に好ましくは7/1以上である。また、好ましくは10/1以下、より好ましくは9.5/1以下、更に好ましくは9/1以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは6/1~10/1、より好ましくは6.5/1~9.5/1、更に好ましくは7/1~9/1である。 Further, in the lubricating oil composition of one aspect of the present invention, when the base oil (A) contains another base oil (AZ), the total content of the high-viscosity base oil (AH) and the low-viscosity base oil (AL). The ratio [{(AH) + (AL)} / (AZ)] to the content of the other base oil (AZ) is preferably 6/1 or more, more preferably 6.5 / 1 in terms of mass ratio. Above, more preferably 7/1 or more. Further, it is preferably 10/1 or less, more preferably 9.5 / 1 or less, and further preferably 9/1 or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, it is preferably 6/1 to 10/1, more preferably 6.5 / 1 to 9.5 / 1, and even more preferably 7/1 to 9/1.
<シリコーン系消泡剤(B)>
 本発明の潤滑油組成物は、シリコーン系消泡剤(B)を含有する。
 但し、本発明では、シリコーン系消泡剤(B)の含有量を、従来の潤滑油組成物の含有量よりも大幅に減らすことで、長期消泡性能と清浄度との両立を図ることを可能にしている。つまり、本発明の潤滑油組成物は、シリコーン系消泡剤(B)を含有しているとはいっても、その含有量は、従来の潤滑油組成物よりも圧倒的に少ない。
<Silicone defoamer (B)>
The lubricating oil composition of the present invention contains a silicone-based defoaming agent (B).
However, in the present invention, the content of the silicone-based defoaming agent (B) is significantly reduced from the content of the conventional lubricating oil composition to achieve both long-term defoaming performance and cleanliness. It is possible. That is, although the lubricating oil composition of the present invention contains the silicone-based defoaming agent (B), its content is overwhelmingly smaller than that of the conventional lubricating oil composition.
 具体的には、本発明の潤滑油組成物は、ケイ素原子含有量が、潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbになるように調整されている。シリコーン系消泡剤(B)は、潤滑油組成物中のケイ素原子含有量が、この数値範囲を満たすように添加される。
 換言すれば、本発明の潤滑油組成物は、シリコーン系消泡剤(B)が、ケイ素原子換算で、50質量ppb~4,000質量ppbになるように添加されている。
 そして、本発明の一態様の潤滑油組成物においては、本発明の効果をより発揮させやすくする観点から、ケイ素原子換算でのシリコーン系消泡剤(B)の含有量が、潤滑油組成物の全量基準で、好ましくは100質量ppb以上、より好ましくは200質量ppb以上、更に好ましくは250質量ppb以上、より更に好ましくは300質量ppb以上、更になお好ましくは350質量ppb以上、一層好ましくは400質量ppb以上、より一層好ましくは450質量ppb以上、更に一層好ましくは500質量ppb以上となるように添加される。また、好ましくは3,500質量ppb以下、より好ましくは3,000質量ppb以下、更に好ましくは2,500質量ppb以下、より更に好ましくは2,200質量ppb以下、更になお好ましくは2,000質量ppb以下、一層好ましくは1,800質量ppb以下、より一層好ましくは1,600質量ppb以下、更に一層好ましくは1,500質量ppb以下となるように添加される。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは100質量ppb~3,500質量ppb、より好ましくは200質量ppb~3,000質量ppb、更に好ましくは250質量ppb~2,500質量ppb、より更に好ましくは300質量ppb~2,200質量ppb、更になお好ましくは350質量ppb~2,000質量ppb、一層好ましくは400質量ppb~1,800質量ppb、より一層好ましくは450質量ppb~1,600質量ppb、更に一層好ましくは500質量ppb~1,500質量ppbである。
Specifically, the lubricating oil composition of the present invention is adjusted so that the silicon atom content is 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition. The silicone-based defoaming agent (B) is added so that the silicon atom content in the lubricating oil composition satisfies this numerical range.
In other words, in the lubricating oil composition of the present invention, the silicone-based defoaming agent (B) is added so as to have a silicon atom equivalent of 50 mass ppb to 4,000 mass ppb.
In the lubricating oil composition of one aspect of the present invention, the content of the silicone-based defoaming agent (B) in terms of silicon atom is determined from the viewpoint of facilitating the effect of the present invention. Based on the total amount of, preferably 100 mass ppb or more, more preferably 200 mass ppb or more, still more preferably 250 mass ppb or more, still more preferably 300 mass ppb or more, still more preferably 350 mass ppb or more, still more preferably 400. It is added so as to have a mass of ppb or more, more preferably 450 mass ppb or more, and even more preferably 500 mass ppb or more. Further, preferably 3,500 mass ppb or less, more preferably 3,000 mass ppb or less, still more preferably 2,500 mass ppb or less, still more preferably 2,200 mass ppb or less, still more preferably 2,000 mass. It is added so as to be ppb or less, more preferably 1,800 mass ppb or less, even more preferably 1,600 mass ppb or less, and even more preferably 1,500 mass ppb or less.
The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 100 mass ppb to 3,500 mass ppb, more preferably 200 mass ppb to 3,000 mass ppb, still more preferably 250 mass ppb to 2,500 mass ppb, still more preferably 300 mass ppb. -2,200 mass ppb, even more preferably 350 mass ppb to 2,000 mass ppb, more preferably 400 mass ppb to 1,800 mass ppb, even more preferably 450 mass ppb to 1,600 mass ppb, even more. It is preferably 500 mass ppb to 1,500 mass ppb.
 本発明の一態様の潤滑油組成物において、シリコーン系消泡剤(B)に含まれる有効成分は、ケイ素原子を含み、消泡性能を呈するポリマーであれば特に限定されない。このようなポリマーを例示すると、例えば、ポリジメチルシロキサン及びフッ素化ポリシロキサン等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the lubricating oil composition of one aspect of the present invention, the active ingredient contained in the silicone-based defoaming agent (B) is not particularly limited as long as it is a polymer containing a silicon atom and exhibiting defoaming performance. Examples of such polymers include polydimethylsiloxane, fluorinated polysiloxane, and the like.
One of these may be used alone, or two or more thereof may be used in combination.
 なお、シリコーン系消泡剤(B)は、ハンドリング性や基油(A)への溶解性・分散性を考慮し、希釈油等を加えて溶液(分散体)の形態とした上で基油(A)に配合し、撹拌して均一に溶解・分散させることが好ましい。 The silicone-based defoaming agent (B) is prepared into a solution (dispersion) by adding a diluting oil or the like in consideration of handleability and solubility / dispersibility in the base oil (A), and then the base oil. It is preferable to mix it with (A) and stir to uniformly dissolve and disperse it.
<潤滑油用添加剤>
 本発明の一態様の潤滑油組成物は、本発明の効果を損なわない範囲で、シリコーン系消泡剤(B)以外の他の添加剤(以下、「潤滑油用添加剤」ともいう)を含有してもよい。
 潤滑油用添加剤としては、例えば、酸化防止剤、極圧剤、抗乳化剤、防錆剤、粘度指数向上剤、流動点降下剤、金属不活性化剤、無灰清浄分散剤、摩擦調整剤等が挙げられる。
 これらの潤滑油用添加剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Additives for lubricating oil>
The lubricating oil composition according to one aspect of the present invention contains additives other than the silicone-based defoaming agent (B) (hereinafter, also referred to as “lubricating oil additives”) as long as the effects of the present invention are not impaired. It may be contained.
Examples of additives for lubricating oil include antioxidants, extreme pressure agents, anti-embroidery agents, rust preventives, viscosity index improvers, pour point lowering agents, metal inactivating agents, ashless cleaning dispersants, and friction modifiers. And so on.
These lubricant additives may be used alone or in combination of two or more.
 なお、本明細書において、粘度指数向上剤等の添加剤は、ハンドリング性や基油への溶解性を考慮し、希釈油に溶解した溶液の形態で、他の成分と配合される場合がある。このような場合、本明細書においては、粘度指数向上剤等の添加剤の含有量は、希釈油を除いた有効成分換算(樹脂分換算)での含有量である。
 以下、上記の各潤滑油用添加剤の詳細について説明する。
In addition, in this specification, an additive such as a viscosity index improver may be mixed with other components in the form of a solution dissolved in a diluted oil in consideration of handleability and solubility in a base oil. .. In such a case, in the present specification, the content of the additive such as the viscosity index improver is the content in terms of the active ingredient (converted to the resin content) excluding the diluted oil.
The details of each of the above-mentioned additives for lubricating oil will be described below.
(酸化防止剤)
 酸化防止剤としては、従来の潤滑油組成物に使用されるアミン系酸化防止剤、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、及びモリブデンアミン錯体系酸化防止剤を使用することができる。これらの酸化防止剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Antioxidant)
As the antioxidant, amine-based antioxidants, phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, and molybdenum amine complex-based antioxidants used in conventional lubricating oil compositions are used. can do. These antioxidants may be used alone or in combination of two or more.
 アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン、モノノニルジフェニルアミン等のモノアルキルジフェニルアミン系化合物;4,4’-ジブチルジフェニルアミン、4,4’-ジペンチルジフェニルアミン、4,4’-ジヘキシルジフェニルアミン、4,4’-ジヘプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミン、モノブチルフェニルモノオクチルフェニルアミン等のジアルキルジフェニルアミン系化合物;テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系化合物;α-ナフチルアミン、フェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ペンチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミンなどのナフチルアミン系化合物等が挙げられる。 Examples of the amine-based antioxidant include monoalkyldiphenylamine-based compounds such as monooctyldiphenylamine and monononyldiphenylamine; 4,4'-dibutyldiphenylamine, 4,4'-dipentyldiphenylamine, 4,4'-dihexyldiphenylamine, 4 , 4'-Diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, 4,4'-dinonyldiphenylamine, monobutylphenylmonooctylphenylamine and other dialkyldiphenylamine compounds; tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine , Polyalkyldiphenylamine compounds such as tetranonyldiphenylamine; α-naphthylamine, phenyl-α-naphthylamine, butylphenyl-α-naphthylamine, pentylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, heptylphenyl-α-naphthylamine, Examples thereof include naphthylamine-based compounds such as octylphenyl-α-naphthylamine and nonylphenyl-α-naphthylamine.
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、オクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール系化合物;4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)等のジフェノール系化合物が挙げられる。 Examples of the phenolic antioxidant include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl 3- (3,5-di-). Monophenolic compounds such as tert-butyl-4-hydroxyphenyl) propionate; 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert- Examples thereof include diphenol compounds such as butylphenol).
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト等が挙げられる。
 硫黄系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、五硫化リンとピネンとの反応物等のチオテルペン系化合物が挙げられる。
 モリブデンアミン錯体系酸化防止剤としては、6価のモリブデン化合物、具体的には三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなる化合物を用いることができる。
Examples of the phosphorus-based antioxidant include triphenylphosphine and the like.
Examples of the sulfur-based antioxidant include 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2-ylamino) phenol and phosphorus pentasulfide. Examples thereof include thioterpene compounds such as a reaction product with pinene.
As the molybdenum amine complex-based antioxidant, a hexavalent molybdenum compound, specifically, a compound obtained by reacting molybdenum trioxide and / or molybdic acid with an amine compound can be used.
 酸化防止剤の含有量は、酸化安定性を保つのに必要な最低量を加えれば良く、潤滑油組成物の全量基準で、好ましくは0.01質量%~1.5質量%、より好ましくは0.1質量%~1質量%である。 The content of the antioxidant may be the minimum amount necessary to maintain the oxidative stability, and is preferably 0.01% by mass to 1.5% by mass, more preferably 0.01% by mass, based on the total amount of the lubricating oil composition. It is 0.1% by mass to 1% by mass.
(極圧剤)
 極圧剤としては、従来の潤滑油組成物に使用される、有機金属系極圧剤、硫黄系極圧剤、リン系極圧剤、及び硫黄-リン系極圧剤を使用することができる。これらの極圧剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Extreme pressure agent)
As the extreme pressure agent, an organic metal-based extreme pressure agent, a sulfur-based extreme pressure agent, a phosphorus-based extreme pressure agent, and a sulfur-phosphorus-based extreme pressure agent, which are used in conventional lubricating oil compositions, can be used. .. These extreme pressure agents may be used alone or in combination of two or more.
 有機金属系極圧剤としては、例えば、ジアルキルジチオカルバミン酸モリブデン(MoDTC)及びジアルキルジチオリン酸モリブデン(MoDTP)等の有機モリブデン系化合物、並びにジアルキルジチオカルバミン酸亜鉛(ZnDTC)及びジアルキルジチオリン酸亜鉛(ZnDTP)等の有機亜鉛系化合物が挙げられる。 Examples of the organic metal-based extreme pressure agent include organic molybdenum compounds such as molybdenum dialkyldithiocarbamate (MoDTC) and molybdenum dialkyldithiophosphate (MoDTP), zinc dialkyldithiophosphate (ZnDTC) and zinc dialkyldithiophosphate (ZnDTP), and the like. Organic zinc-based compounds can be mentioned.
 硫黄系極圧剤としては、例えば、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、モノサルファイド、ポリサルファイド、ジヒドロカルビルサルファイド、チアジアゾール化合物、アルキルチオカルバモイル化合物、チオカーバメート化合物、チオテルペン化合物、及びジアルキルチオジプロピオネート化合物が挙げられる。 Examples of sulfur-based extreme pressure agents include sulfide fats and oils, sulfide fatty acids, sulfide esters, sulfide olefins, monosulfide, polysulfide, dihydrocarbyl sulfide, thiadiazol compounds, alkylthiocarbamoyl compounds, thiocarbamate compounds, thioterpene compounds, and dialkylthiodipropio. Nate compounds can be mentioned.
 リン系極圧剤としては、例えば、アリールホスフェート、アルキルホスフェート、アルケニルホスフェート、アルキルアリールホスフェート等のリン酸エステル;モノアリールアシッドホスフェート、ジアリールアシッドホスフェート、モノアルキルアシッドホスフェート、ジアルキルアシッドホスフェート、モノアルケニルアシッドホスフェート、ジアルケニルアシッドホスフェート等の酸性リン酸エステル;アリールハイドロゲンホスファイト、アルキルハイドロゲンホスファイト、アリールホスファイト、アルキルホスファイト、アルケニルホスファイト、アリールアルキルホスファイト等の亜リン酸エステル;モノアルキルアシッドホスファイト、ジアルキルアシッドホスファイト、モノアルケニルアシッドホスファイト、ジアルケニルアシッドホスファイト等の酸性亜リン酸エステル;及びこれらのアミン塩が挙げられる。 Examples of phosphorus-based extreme pressure agents include phosphoric acid esters such as aryl phosphate, alkyl phosphate, alkenyl phosphate, and alkyl aryl phosphate; monoaryl acid phosphate, diallyl acid phosphate, monoalkyl acid phosphate, dialkyl acid phosphate, and monoalkenyl acid phosphate. , Acidic phosphates such as dialkenyl acid phosphate; Hypophosphates such as arylhydrogen phosphite, alkylhydrogen phosphite, aryl phosphite, alkyl phosphite, alkenyl phosphite, arylalkyl phosphite; monoalkyl acid phosphite. , Acid subphosphates such as dialkyl acid phosphite, monoalkenyl acid phosphite, dialkenyl acid phosphite; and amine salts thereof.
 硫黄-リン系極圧剤としては、例えば、モノアルキルチオホスフェート、ジアルキルジチオホスフェート、トリアルキルトリチオホスフェート、及びこれらのアミン塩、並びにジアルキルジチオリン酸亜鉛(Zn-DTP)が挙げられる。 Examples of the sulfur-phosphorus extreme pressure agent include monoalkyl thiophosphate, dialkyl dithiophosphate, trialkyl trithiophosphate, amine salts thereof, and zinc dialkyl dithiophosphate (Zn-DTP).
 極圧剤の含有量は、添加効果の点から、潤滑油組成物の全量基準で、好ましくは0.1質量%~10質量%、より好ましくは0.5質量%~8.0質量%、更に好ましくは1.0質量%~6.0質量%である。 The content of the extreme pressure agent is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 8.0% by mass, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. More preferably, it is 1.0% by mass to 6.0% by mass.
(抗乳化剤)
 抗乳化剤としては、例えば、第四級アンモニウム塩、イミダゾリン類等のカチオン性界面活性剤;ポリオキシアルキレンブロックポリマー(エチレンオキシド(EO)-プロピレンオキシド(PO)ブロックコポリマー等)、ポリオキシアルキレングリコール、及びポリオキシアルキレンポリグリコール;アルキルフェノール-ホルムアルデヒド重縮合物のアルキレンオキシド付加物等が挙げられる。
 抗乳化剤の含有量は、潤滑油組成物の全量基準で、好ましくは0.001質量%~0.5質量%、より好ましくは0.002質量%~0.2質量%である。
(Anti-emulsifier)
Anti-emulsifiers include, for example, quaternary ammonium salts, cationic surfactants such as imidazolines; polyoxyalkylene block polymers (ethylene oxide (EO) -propylene oxide (PO) block copolymers, etc.), polyoxyalkylene glycols, and Polyoxyalkylene polyglycol; alkylene oxide adduct of alkylphenol-formaldehyde polycondensate and the like can be mentioned.
The content of the anti-emulsifier is preferably 0.001% by mass to 0.5% by mass, more preferably 0.002% by mass to 0.2% by mass, based on the total amount of the lubricating oil composition.
(防錆剤)
 防錆剤としては、例えば、金属スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、有機亜リン酸エステル、有機リン酸エステル、有機スルホン酸金属塩、有機リン酸金属塩、アルケニルコハク酸エステル、多価アルコールエステル、ベンゾトリアゾール系化合物等が挙げられる。
 防錆剤の含有量は、潤滑油組成物の全量基準で、好ましくは0.01質量%~10.0質量%、より好ましくは0.05質量%~5.0質量%である。
(anti-rust)
Examples of the rust preventive agent include metal sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, organic phosphite ester, organic phosphate ester, organic sulfonic acid metal salt, organic phosphate metal salt, alkenyl succinate, and polyhydric alcohol. Examples thereof include esters and benzotriazole-based compounds.
The content of the rust preventive is preferably 0.01% by mass to 10.0% by mass, more preferably 0.05% by mass to 5.0% by mass, based on the total amount of the lubricating oil composition.
(粘度指数向上剤)
 粘度指数向上剤としては、例えば、ポリメタクリレート(PMA)、分散型ポリメタクリレート、オレフィン系共重合体(オレフィンコポリマー(OCP);例えば、エチレン-プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン-ジエン水素化共重合体等)等が挙げられる。
 これら粘度指数向上剤の添加量は、添加効果の点から、潤滑油組成物の全量基準で、好ましくは1質量%~10質量%であり、より好ましくは2質量%~8質量%である。
 また、本発明の一態様の潤滑油組成物においては、これらの粘度指数向上剤として、少なくともオレフィンコポリマーを含むことが好ましく、当該オレフィンコポリマーの含有量は、潤滑油組成物全量基準で、好ましくは1質量%~10質量%であり、より好ましくは2質量%~8質量%である。
(Viscosity index improver)
Examples of the viscosity index improver include polymethacrylate (PMA), dispersed polymethacrylate, olefin-based copolymer (olefin copolymer (OCP); for example, ethylene-propylene copolymer, etc.), and dispersed olefin-based copolymer. , Styrene-based copolymer (for example, styrene-diene hydride copolymer, etc.) and the like.
From the viewpoint of the effect of addition, the amount of these viscosity index improvers added is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total amount of the lubricating oil composition.
Further, the lubricating oil composition of one aspect of the present invention preferably contains at least an olefin copolymer as these viscosity index improvers, and the content of the olefin copolymer is preferably based on the total amount of the lubricating oil composition. It is 1% by mass to 10% by mass, and more preferably 2% by mass to 8% by mass.
(流動点降下剤)
 流動点降下剤としては、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等の重合体が挙げられる。これらの重合体の重量平均分子量(Mw)としては、好ましくは5万~15万である。
 流動点降下剤の含有量は、添加効果の点から、潤滑油組成物の全量基準で、好ましくは0.01質量%~5.0質量%、より好ましくは0.02質量%~2.0質量%である。
(Pour point depressant)
Examples of the pour point lowering agent include a polymer such as an ethylene-vinyl acetate copolymer, a condensate of chlorinated paraffin and naphthalene, a condensate of chlorinated paraffin and phenol, polymethacrylate, and polyalkylstyrene. .. The weight average molecular weight (Mw) of these polymers is preferably 50,000 to 150,000.
The content of the pour point lowering agent is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 2.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
(金属不活性化剤)
 金属不活性化剤としては、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、イミダゾール系化合物、ピリミジン系化合物等が挙げられる。
 金属不活性化剤の含有量は、添加効果の点から、潤滑油組成物全量基準で、好ましくは0.01質量%~5.0質量%、より好ましくは0.02質量%~3.0質量%である。
(Metal inactivating agent)
Examples of the metal inactivating agent include benzotriazole-based compounds, tolyltriazole-based compounds, thiadiazole-based compounds, imidazole-based compounds, pyrimidine-based compounds and the like.
The content of the metal inactivating agent is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 3.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
(無灰清浄分散剤)
 無灰清浄分散剤としては、例えば、コハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類等が挙げられる。
 無灰清浄分散剤の含有量は、添加効果の点から、潤滑油組成物全量基準で、好ましくは0.01質量%~5.0質量%、より好ましくは0.02質量%~3.0質量%である。
(Ashless cleaning dispersant)
Examples of the ashless cleaning dispersant include monovalent or divalent succinic acid imides, boron-containing succinic acid imides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids or succinic acid. Examples thereof include carboxylic acid amides.
The content of the ashless cleaning dispersant is preferably 0.01% by mass to 5.0% by mass, more preferably 0.02% by mass to 3.0, based on the total amount of the lubricating oil composition from the viewpoint of the addition effect. It is mass%.
(摩擦調整剤)
 摩擦調整剤としては、例えば、炭素数6~30のアルキル基又はアルケニル基を分子中に少なくとも1個有する、脂肪族アミン、脂肪族アルコール、脂肪族エーテル等の無灰摩擦調整剤等が挙げられる。
 摩擦調整剤の含有量は、潤滑油組成物全量基準で、好ましくは0.01質量%~5.0質量%である。
(Friction modifier)
Examples of the friction modifier include ashless friction modifiers such as aliphatic amines, aliphatic alcohols and aliphatic ethers having at least one alkyl group or alkenyl group having 6 to 30 carbon atoms in the molecule. ..
The content of the friction modifier is preferably 0.01% by mass to 5.0% by mass based on the total amount of the lubricating oil composition.
[潤滑油組成物の物性]
<ケイ素原子含有量>
 本発明の潤滑油組成物は、ケイ素原子含有量が、潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbであることを要する。
 ケイ素原子含有量が、50質量ppb未満であると、長期消泡性能を確保することができない。また、ケイ素原子含有量が、4,000質量ppb超であると、清浄度を確保することができない。
 ここで、本発明の一態様の潤滑油組成物において、ケイ素原子の含有量は、本発明の効果をより発揮させやすくする観点から、潤滑油組成物の全量基準で、好ましくは100質量ppb以上、より好ましくは200質量ppb以上、更に好ましくは250質量ppb以上、より更に好ましくは300質量ppb以上、更になお好ましくは350質量ppb以上、一層好ましくは400質量ppb以上、より一層好ましくは450質量ppb以上、更に一層好ましくは500質量ppb以上である。また、好ましくは3,500質量ppb以下、より好ましくは3,000質量ppb以下、更に好ましくは2,500質量ppb以下、より更に好ましくは2,200質量ppb以下、更になお好ましくは2,000質量ppb以下、一層好ましくは1,800質量ppb以下、より一層好ましくは1,600質量ppb以下、更に一層好ましくは1,500質量ppb以下である。これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは100質量ppb~3,500質量ppb、より好ましくは200質量ppb~3,000質量ppb、更に好ましくは250質量ppb~2,500質量ppb、より更に好ましくは300質量ppb~2,200質量ppb、更になお好ましくは350質量ppb~2,000質量ppb、一層好ましくは400質量ppb~1,800質量ppb、より一層好ましくは450質量ppb~1,600質量ppb、更に一層好ましくは500質量ppb~1,500質量ppbである。
 なお、潤滑油組成物中のケイ素原子含有量は、誘導結合プラズマ発光分析装置(ICP)により測定することができる。また、潤滑油組成物中にシリコーン系消泡剤(B)に由来するシリコン原子以外のシリコン原子が存在しない場合、潤滑油組成物中のケイ素原子含有量は、シリコーン系消泡剤(B)の含有量(固形分換算)と、シリコーン系消泡剤(B)に含まれるシリコン原子の含有量から、理論的に算出することもできる。
[Physical characteristics of lubricating oil composition]
<Silicon atom content>
The lubricating oil composition of the present invention is required to have a silicon atom content of 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition.
If the silicon atom content is less than 50 mass ppb, long-term defoaming performance cannot be ensured. Further, if the silicon atom content exceeds 4,000 mass ppb, cleanliness cannot be ensured.
Here, in the lubricating oil composition of one aspect of the present invention, the content of silicon atoms is preferably 100 mass ppb or more based on the total amount of the lubricating oil composition from the viewpoint of facilitating the effect of the present invention. , More preferably 200 mass ppb or more, still more preferably 250 mass ppb or more, even more preferably 300 mass ppb or more, still more preferably 350 mass ppb or more, still more preferably 400 mass ppb or more, still more preferably 450 mass ppb or more. The above is even more preferably 500 mass ppb or more. Further, preferably 3,500 mass ppb or less, more preferably 3,000 mass ppb or less, still more preferably 2,500 mass ppb or less, still more preferably 2,200 mass ppb or less, still more preferably 2,000 mass. It is ppb or less, more preferably 1,800 mass ppb or less, even more preferably 1,600 mass ppb or less, and even more preferably 1,500 mass ppb or less. The upper and lower limits of these numerical ranges can be arbitrarily combined. Specifically, preferably 100 mass ppb to 3,500 mass ppb, more preferably 200 mass ppb to 3,000 mass ppb, still more preferably 250 mass ppb to 2,500 mass ppb, still more preferably 300 mass ppb. -2,200 mass ppb, even more preferably 350 mass ppb to 2,000 mass ppb, still more preferably 400 mass ppb to 1,800 mass ppb, even more preferably 450 mass ppb to 1,600 mass ppb, even more. It is preferably 500 mass ppb to 1,500 mass ppb.
The silicon atom content in the lubricating oil composition can be measured by an inductively coupled plasma atomic emission spectrometer (ICP). When no silicon atom other than the silicon atom derived from the silicone-based defoaming agent (B) is present in the lubricating oil composition, the silicon atom content in the lubricating oil composition is determined by the silicone-based defoaming agent (B). It can also be theoretically calculated from the content (in terms of solid content) and the content of silicon atoms contained in the silicone-based defoaming agent (B).
<動粘度、粘度指数>
 本発明の一態様の潤滑油組成物の40℃動粘度は、好ましくは10mm2/s~500mm2/s、より好ましくは30mm2/s~450mm2/s、更に好ましくは50mm2/s~400mm2/sである。
 本発明の一態様の潤滑油組成物の粘度指数は、好ましくは100以上、より好ましくは110以上、更に好ましくは120以上である。
 なお、本明細書において、40℃動粘度及び粘度指数は、JIS K2283:2000に準拠して測定及び算出される値を意味する。
<Kinematic viscosity, viscosity index>
The 40 ° C. kinematic viscosity of the lubricating oil composition of one aspect of the present invention is preferably 10 mm 2 / s to 500 mm 2 / s, more preferably 30 mm 2 / s to 450 mm 2 / s, still more preferably 50 mm 2 / s to. It is 400 mm 2 / s.
The viscosity index of the lubricating oil composition according to one aspect of the present invention is preferably 100 or more, more preferably 110 or more, still more preferably 120 or more.
In this specification, the 40 ° C. kinematic viscosity and the viscosity index mean values measured and calculated in accordance with JIS K2283: 2000.
[潤滑油組成物の製造方法]
 本発明の潤滑油組成物の製造方法は、特に制限されない。
 例えば、本発明の一態様の潤滑油組成物の製造方法は、基油(A)と、シリコーン系消泡剤(B)とを混合する工程を含み、ケイ素原子含有量が、潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbとなるように調整される、潤滑油組成物の製造方法である。
 上記各成分を混合する方法としては、特に制限はないが、例えば、基油(A)にシリコーン系消泡剤(B)を配合する工程を有する方法が挙げられる。シリコーン系消泡剤(B)以外の他の添加剤(潤滑油用添加剤)は、シリコーン系消泡剤(B)と同時に配合してもよいし、別々に配合してもよい。なお、シリコーン系消泡剤(B)及び他の添加剤(潤滑油用添加剤)は、希釈油等を加えて溶液(分散体)の形態とした上で配合してもよい。各成分を配合した後、公知の方法により、撹拌して均一に分散させることが好ましい。
[Manufacturing method of lubricating oil composition]
The method for producing the lubricating oil composition of the present invention is not particularly limited.
For example, the method for producing a lubricating oil composition according to one aspect of the present invention includes a step of mixing the base oil (A) and the silicone-based defoaming agent (B), and the silicon atom content is the lubricating oil composition. This is a method for producing a lubricating oil composition, which is adjusted so as to have a total amount of 50 mass ppb to 4,000 mass ppb.
The method for mixing each of the above components is not particularly limited, and examples thereof include a method having a step of blending the silicone-based defoaming agent (B) with the base oil (A). Additives (additives for lubricating oil) other than the silicone-based defoaming agent (B) may be blended at the same time as the silicone-based defoaming agent (B), or may be blended separately. The silicone-based defoaming agent (B) and other additives (additives for lubricating oil) may be blended after adding a diluting oil or the like to form a solution (dispersion). After blending each component, it is preferable to stir and uniformly disperse by a known method.
[潤滑油組成物の用途]
 本発明の潤滑油組成物は、長期消泡性能及び清浄度の双方に優れる潤滑油組成物である。したがって、長期消泡性能と清浄度とが要求される潤滑用途に広く用いることができる。
 例えば、風車用増速機油、油圧作動油、圧縮機油、ギヤ油、切削油、工作機械油、冷凍機油、タービン油、内燃機油、変速機油、又は自動車用アクスルユニット油として好適に用いることができる。
 したがって、本発明の一態様では、以下の方法が提供される。
・本発明の潤滑油組成物を、風車用増速機油、油圧作動油、圧縮機油、ギヤ油、切削油、工作機械油、冷凍機油、タービン油、内燃機油、変速機油、又は自動車用アクスルユニット油として使用する、使用方法。
[Use of lubricating oil composition]
The lubricating oil composition of the present invention is a lubricating oil composition excellent in both long-term defoaming performance and cleanliness. Therefore, it can be widely used in lubrication applications that require long-term defoaming performance and cleanliness.
For example, it can be suitably used as a speed increasing machine oil for a wind turbine, a hydraulic hydraulic oil, a compressor oil, a gear oil, a cutting oil, a machine tool oil, a refrigerating machine oil, a turbine oil, an internal combustion machine oil, a transmission oil, or an axle unit oil for an automobile. ..
Therefore, in one aspect of the invention, the following methods are provided.
-The lubricating oil composition of the present invention can be applied to a speed-up machine oil for a wind turbine, a hydraulic hydraulic oil, a compressor oil, a gear oil, a cutting oil, a machine tool oil, a refrigerating machine oil, a turbine oil, an internal combustion machine oil, a transmission oil, or an automobile axle unit. How to use as oil.
[提供される本発明の一態様]
 本発明の一態様では、下記[1]~[8]が提供される。
[1] 基油(A)と、シリコーン系消泡剤(B)とを含有する潤滑油組成物であって、
 ケイ素原子含有量が、前記潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbである、潤滑油組成物。
[2] 前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択される1種以上である、[1]に記載の潤滑油組成物。
[3] 前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択される2種以上である、[1]に記載の潤滑油組成物。
[4] 前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択され、且つ40℃における動粘度が互いに異なる2種以上である、[1]に記載の潤滑油組成物。
[5] 前記基油(A)及び前記シリコーン系消泡剤(B)の合計含有量は、前記潤滑油組成物の全量基準で、75質量%以上94.9質量%以下である、[1]~[4]のいずれかに記載の潤滑油組成物。
[6] 前記シリコーン系消泡剤(B)は、ポリジメチルシロキサン及びフッ素化ポリシロキサンからなる群から選択される1種以上を含む、[1]~[5]のいずれかに記載の潤滑油組成物。
[7] 更に、酸化防止剤、極圧剤、抗乳化剤、防錆剤、粘度指数向上剤、流動点降下剤、金属不活性化剤、無灰清浄分散剤、及び摩擦調整剤からなる群から選択される1種以上の潤滑油用添加剤を含む、[1]~[6]のいずれかに記載の潤滑油組成物。
[8] 風車用増速機油、油圧作動油、圧縮機油、ギヤ油、切削油、工作機械油、冷凍機油、タービン油、内燃機油、変速機油、又は自動車用アクスルユニット油として用いられる、[1]~[7]のいずれかに記載の潤滑油組成物。
[Aspect of the present invention provided]
In one aspect of the present invention, the following [1] to [8] are provided.
[1] A lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B).
A lubricating oil composition having a silicon atom content of 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition.
[2] The lubricating oil composition according to [1], wherein the base oil (A) is at least one selected from the group consisting of synthetic oils (A1) and mineral oils (A2).
[3] The lubricating oil composition according to [1], wherein the base oil (A) is two or more kinds selected from the group consisting of synthetic oils (A1) and mineral oils (A2).
[4] The lubrication according to [1], wherein the base oil (A) is selected from the group consisting of synthetic oil (A1) and mineral oil (A2), and has two or more kinds having different kinematic viscosities at 40 ° C. Oil composition.
[5] The total content of the base oil (A) and the silicone-based defoaming agent (B) is 75% by mass or more and 94.9% by mass or less based on the total amount of the lubricating oil composition [1]. ] To [4].
[6] The lubricating oil according to any one of [1] to [5], wherein the silicone-based defoaming agent (B) contains at least one selected from the group consisting of polydimethylsiloxane and fluorinated polysiloxane. Composition.
[7] Further, from the group consisting of antioxidants, extreme pressure agents, anti-emulsifiers, rust preventives, viscosity index improvers, flow point lowering agents, metal deactivators, ashless cleaning dispersants, and friction modifiers. The lubricating oil composition according to any one of [1] to [6], which comprises one or more selected additives for lubricating oil.
[8] Used as a speed-up machine oil for wind turbines, hydraulic hydraulic oil, compressor oil, gear oil, cutting oil, machine tool oil, refrigerating machine oil, turbine oil, internal combustion machine oil, transmission oil, or axle unit oil for automobiles [1] ] To [7].
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.
[各種物性値の測定方法]
(1)基油及び潤滑油組成物の動粘度及び粘度指数
 JIS K2283:2000に準拠し、測定及び算出した。
(2)パラフィン分(%C
 ASTM D-3238環分析(n-d-M法)に準拠して求めた。
[Measurement method of various physical property values]
(1) Dynamic viscosity and viscosity index of base oil and lubricating oil composition Measured and calculated in accordance with JIS K2283: 2000.
(2) Paraffin content (% C p )
It was determined according to ASTM D-3238 ring analysis (nd-M method).
[実施例1~4、比較例1~4]
 以下に示す基油(A)及びシリコーン系消泡剤(B)を、表1に示す配合量(質量%)で十分に混合し、実施例1~3及び比較例1~2の潤滑油組成物を調製した。
 また、以下に示す基油(A)、シリコーン系消泡剤(B)、及び潤滑油用添加剤を、表2に示す配合量(質量%)で十分に混合し、実施例4及び比較例3~4の潤滑油組成物を調製した。
[Examples 1 to 4, Comparative Examples 1 to 4]
The base oil (A) and the silicone-based defoaming agent (B) shown below are sufficiently mixed in the blending amounts (mass%) shown in Table 1 to form the lubricating oil compositions of Examples 1 to 3 and Comparative Examples 1 and 2. The thing was prepared.
Further, the base oil (A), the silicone-based defoaming agent (B), and the additive for lubricating oil shown below are sufficiently mixed in the blending amounts (mass%) shown in Table 2, and Examples 4 and Comparative Examples are used. 3-4 lubricating oil compositions were prepared.
<基油(A)>
(高粘度基油(AH))
・高粘度基油(AH)-1:ポリα-オレフィン(PAO)、40℃動粘度=1,240mm/s、粘度指数=170
・高粘度基油(AH)-2:メタロセン触媒を用いて1-デセンを重合したデセンオリゴマー(mPAO)、40℃動粘度=1,616mm/s、粘度指数=202
(低粘度基油(AL))
・低粘度基油(AL)-1:C40主体のポリα-オレフィン(PAO)、40℃動粘度=28.8mm/s、粘度指数=136
・低粘度基油(AL)-2:API分類でグループIIに分類される鉱油、40℃動粘度=30.6mm/s、粘度指数=104
・低粘度基油(AL)-3:ASTM D-2007に準拠して測定されるクレーゲル法による飽和分が90質量%以上であり、ASTM D1552に準拠して測定される硫黄分が0.03質量%以下であり、ASTM D2270に準拠して得られる粘度指数が120以上である基油、40℃動粘度=43.75mm/s、粘度指数=143、パラフィン分(%C)=94.1
 なお、低粘度基油(AL)-3は、下記方法にて調製した基油である。
<製造法>
 200ニュートラル以上の留分油である原料油に対し、水素化異性化脱ろう処理を施した後、さらに水素化仕上げ処理を施し、その後に、蒸留曲線の5体積%留分が460℃以上となるような蒸留温度で蒸留し、40℃における動粘度が19.8~50.6mm/sの範囲となる留分を回収して、低粘度基油(AL)-3を調製した。
 なお、水素化異性化脱ろう処理の条件は以下のとおりである。
 ・水素ガスの供給割合:供給する原料油1キロリットルに対して、300~400Nm
 ・水素分圧:10~15MPa
 ・液時空間速度(LHSV):0.5~1.0hr-1
 ・反応温度:300~350℃
 得られた低粘度基油(AL)-3の各種性状は、以下のとおりであった。
 ・留出量2.0体積%での蒸留温度:451.0℃
 ・留出量5.0体積%での蒸留温度:464.0℃
 ・温度勾配Δ|Dt|=4.3℃/体積%
 なお、留出量2.0体積%及び5.0体積%での蒸留温度は、ASTM D6352に準拠し、蒸留ガスクロマトグラフィーにて測定した。
(他の基油(AZ))
・エステル系油:トリメチロールプロパンとイソステアリン酸とのエステル(モル比1:2)、40℃動粘度=106.7mm/s、粘度指数=124
<Base oil (A)>
(High viscosity base oil (AH))
High-viscosity base oil (AH) -1: Poly-α-olefin (PAO), 40 ° C. kinematic viscosity = 1,240 mm 2 / s, viscosity index = 170
High-viscosity base oil (AH) -2: Decene oligomer (mPAO) obtained by polymerizing 1-decene using a metallocene catalyst, 40 ° C kinematic viscosity = 1,616 mm 2 / s, viscosity index = 202
(Low viscosity base oil (AL))
Low-viscosity base oil (AL) -1: C40-based poly-α-olefin (PAO), 40 ° C. kinematic viscosity = 28.8 mm 2 / s, viscosity index = 136
-Low viscosity base oil (AL) -2: Mineral oil classified into Group II by API classification, 40 ° C kinematic viscosity = 30.6 mm 2 / s, viscosity index = 104
Low-viscosity base oil (AL) -3: The saturation content by the Kleegel method measured according to ASTM D-2007 is 90% by mass or more, and the sulfur content measured according to ASTM D1552 is 0.03. or less by mass%, base oil viscosity index obtained in conformity with ASTM D2270 of 120 or more, 40 ° C. kinematic viscosity = 43.75mm 2 / s, viscosity index = 143, paraffins (% C P) = 94 .1
The low-viscosity base oil (AL) -3 is a base oil prepared by the following method.
<Manufacturing method>
The raw material oil, which is a distillate oil of 200 neutral or more, is subjected to a hydrogenation isomerization dewaxing treatment and then a hydrofinishing treatment, and then the 5% by volume fraction of the distillation curve is 460 ° C. or higher. Distillation was carried out at such a distillation temperature, and a fraction having a kinematic viscosity at 40 ° C. in the range of 19.8 to 50.6 mm 2 / s was recovered to prepare a low-viscosity base oil (AL) -3.
The conditions for the hydrogenation isomerization dewax treatment are as follows.
-Hydrogen gas supply ratio: 300-400 Nm 3 for 1 kiloliter of raw material oil to be supplied
・ Hydrogen partial pressure: 10 to 15 MPa
-Liquid spatiotemporal velocity (LHSV): 0.5 to 1.0 hr -1
-Reaction temperature: 300-350 ° C
The various properties of the obtained low-viscosity base oil (AL) -3 were as follows.
-Distillation temperature at a distillation amount of 2.0% by volume: 451.0 ° C.
-Distillation temperature with a distillation amount of 5.0% by volume: 464.0 ° C.
-Temperature gradient Δ | Dt | = 4.3 ° C / volume%
The distillation temperature at the distillation amounts of 2.0% by volume and 5.0% by volume was measured by distillation gas chromatography in accordance with ASTM D6352.
(Other base oil (AZ))
-Ester oil: Ester of trimethylolpropane and isostearic acid (molar ratio 1: 2), 40 ° C. kinematic viscosity = 106.7 mm 2 / s, viscosity index = 124
<シリコーン系消泡剤(B)>
 有効成分濃度0.2質量%のシリコーン系消泡剤を用いた。
 有効成分はポリジメチルシロキサンであり、ポリジメチルシロキサンのケイ素原子含有量は、シリコーン系消泡剤の全量基準で、0.081質量%である。
 なお、シリコーン系消泡剤(B)は、軽質油に希釈して希釈品とした後、基油(A)に配合した。表1及び表2に、シリコーン系消泡剤(B)の希釈品中におけるシリコーン系消泡剤(B)の含有量(潤滑油組成物全量基準)と、シリコーン系消泡剤(B)の希釈に用いた軽質油の含有量(潤滑油組成物全量基準)とを示す。
<Silicone defoamer (B)>
A silicone-based defoaming agent having an active ingredient concentration of 0.2% by mass was used.
The active ingredient is polydimethylsiloxane, and the silicon atom content of polydimethylsiloxane is 0.081% by mass based on the total amount of the silicone-based defoaming agent.
The silicone-based antifoaming agent (B) was diluted with light oil to obtain a diluted product, and then blended with the base oil (A). Tables 1 and 2 show the content of the silicone-based defoamer (B) in the diluted product of the silicone-based defoamer (B) (based on the total amount of the lubricating oil composition) and the silicone-based defoamer (B). The content of the light oil used for dilution (based on the total amount of the lubricating oil composition) is shown.
<潤滑油用添加剤>
・フェノール系酸化防止剤:オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート。
・アミン系酸化防止剤:モノブチルフェニルモノオクチルフェニルアミン。
・ジヒドロカルビルサルファイド:ジ-tert-ブチルジサルファイド及びジ-tert-ブチルトリサルファイド体の混合物、S分=38.5%。
・アルキルチオリン酸エステル:トリス[2,4-イソアルキル(C、C10)フェニル]チオホスフェート。
・アルキルチオカーバメート:メチレンビス(ジブチルジチオカーバメイト)、S分=30.3%。
・アルキルベンゾトリアゾール:N-ジアルキルアミノメチルベンゾトリアゾール(N=14.6%)。
・酸性リン酸エステル:イソデシルアシッドホスフェート。
・アルキルアミン:トリオクチルアミン。
・EO-POコポリマー:EO-POブロックコポリマーのキシレン溶液(10%)
・アルケニルコハク酸イミド:ポリブテニルコハク酸イミド50%とポリブテン20%と鉱油30%の混合物(塩基価;37mgKOH/g)。
・OCP:エチレンプロピレンオリゴマー。
<Additives for lubricating oil>
-Phenolic antioxidant: octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
-Amine-based antioxidant: monobutylphenyl monooctylphenylamine.
Dihydrocarbyl sulfide: a mixture of di-tert-butyl disulfide and di-tert-butyl trisulfide, S content = 38.5%.
-Alkylthiophosphate: Tris [2,4-isoalkyl (C 9 , C 10 ) phenyl] thiophosphate.
-Alkylthiocarbamate: Methylenebis (dibutyldithiocarbamate), S content = 30.3%.
-Alkylbenzotriazole: N-dialkylaminomethylbenzotriazole (N = 14.6%).
-Acid phosphate: Isodecyl acid phosphate.
-Alkylamine: Trioctylamine.
EO-PO copolymer: xylene solution of EO-PO block copolymer (10%)
-Iconide alkenyl succinimide: A mixture of 50% imide polybutenyl succinimide, 20% polybutene and 30% mineral oil (base value; 37 mgKOH / g).
-OCP: Ethylene propylene oligomer.
[評価]
 調製した潤滑油組成物について、以下の試験をそれぞれ行った。
[evaluation]
The following tests were performed on the prepared lubricating oil compositions.
<泡立ちの評価>
 JIS K 2518:2003に準拠した方法で、60℃にて空気吹込みを開始し、1日後(1440分後)及び2日後(2880分後)のそれぞれにおける泡の体積を測定した。
 泡立ち試験は、1440分後及び2880分後ともに泡立ち量が50mL以下であるものを合格(A)とし、1440分後及び2880分後の少なくともいずれかの泡立ち量が50mL超であるものを不合格(F)とした。
<Evaluation of foaming>
Air blowing was started at 60 ° C. by a method according to JIS K 2518: 2003, and the volume of bubbles was measured after 1 day (1440 minutes) and 2 days (2880 minutes), respectively.
In the foaming test, those having a foaming amount of 50 mL or less after 1440 minutes and 2880 minutes were accepted as (A), and those having at least one of the foaming amounts of more than 50 mL after 1440 minutes and 2880 minutes were rejected. It was designated as (F).
<清浄度評価>
 潤滑油組成物の清浄度は、ISO4406:1999による汚染度コードを用いて評価した。
 具体的には、サンプリングした潤滑油組成物をパーティクルカウンタで測定し、汚染度コードを求めた。汚染度コードは、サンプリングした潤滑油組成物の粒子数を、4μm以上、6μm以上、14μm以上の粒径範囲に区分し、1mL中の粒子数から割り当てられるスケール番号(0~28)を、斜線(/)によって区分し、「4μm以上の粒子数(1mL中)のスケール番号」/「6μm以上の粒子数(1mL中)のスケール番号」/「14μm以上の粒子数(1mL中)のスケール番号」を得た。汚染度コードが大きいほど、粒子数が多く、清浄度が低いことを示している。
 本実施例では、「6μm以上の粒子数(1mL中)のスケール番号」が、15以下(粒子数:320カウント/1mL以下)であり、且つ「14μm以上の粒子数(1mL中)のスケール番号」が、12以下(粒子数:40カウント/1mL以下)である潤滑油組成物を合格(A)とした。
 また、「6μm以上の粒子数(1mL中)のスケール番号」が、16以上(粒子数:320カウント/1mL超)であるか、又は「14μm以上の粒子数(1mL中)のスケール番号」が、13以上(粒子数:40カウント/1mL超)である潤滑油組成物は、不合格(F)とした。
<Cleanliness evaluation>
The cleanliness of the lubricating oil composition was evaluated using the pollution degree code according to ISO4406: 1999.
Specifically, the sampled lubricating oil composition was measured with a particle counter to obtain a contamination degree code. The pollution degree code divides the number of particles of the sampled lubricating oil composition into a particle size range of 4 μm or more, 6 μm or more, and 14 μm or more, and the scale number (0 to 28) assigned from the number of particles in 1 mL is shaded. Classified by (/), "scale number of 4 μm or more particles (in 1 mL)" / "scale number of 6 μm or more particles (in 1 mL)" / "scale number of 14 μm or more particles (in 1 mL)" I got. The larger the contamination code, the larger the number of particles and the lower the cleanliness.
In this embodiment, the "scale number of the number of particles of 6 μm or more (in 1 mL)" is 15 or less (the number of particles: 320 counts / 1 mL or less), and the "scale number of the number of particles of 14 μm or more (in 1 mL)". The lubricating oil composition having a value of 12 or less (number of particles: 40 counts / 1 mL or less) was regarded as acceptable (A).
In addition, the "scale number of the number of particles of 6 μm or more (in 1 mL)" is 16 or more (number of particles: 320 counts / more than 1 mL), or the "scale number of the number of particles of 14 μm or more (in 1 mL)" is , 13 or more (number of particles: 40 counts / more than 1 mL) was rejected (F).
 評価結果を表1及び表2に示す。
 なお、表1及び表2中の「潤滑油組成物中のケイ素原子の含有量」は、シリコーン系消泡剤(B)中のケイ素原子含有量に基づき、計算により求めた値である。
The evaluation results are shown in Tables 1 and 2.
The "silicon atom content in the lubricating oil composition" in Tables 1 and 2 is a value obtained by calculation based on the silicon atom content in the silicone-based defoaming agent (B).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、以下のことがわかる。
 潤滑油組成物中のケイ素原子含有量が50質量ppb~4,000質量ppbの範囲内である実施例1~3では、長期消泡性能と清浄度が両立していることがわかる。
 これに対し、潤滑油組成物中のケイ素原子含有量が50質量ppb未満である比較例1では、長期消泡性能が確保できないことがわかる。
 また、潤滑油組成物中のケイ素原子含有量が4,000質量ppb超である比較例2では、清浄度が確保できないことがわかる。
From Table 1, the following can be seen.
In Examples 1 to 3 in which the silicon atom content in the lubricating oil composition is in the range of 50 mass ppb to 4,000 mass ppb, it can be seen that both long-term defoaming performance and cleanliness are compatible.
On the other hand, in Comparative Example 1 in which the silicon atom content in the lubricating oil composition is less than 50 mass ppb, it can be seen that the long-term defoaming performance cannot be ensured.
Further, it can be seen that the cleanliness cannot be ensured in Comparative Example 2 in which the silicon atom content in the lubricating oil composition is more than 4,000 mass ppb.
 また、潤滑油組成物中に、シリコーン系消泡剤(B)以外の潤滑油用添加剤も配合した場合について検討した表2の評価結果からも、上記と同様のことがわかる。
 すなわち、潤滑油組成物中のケイ素原子含有量が50質量ppb~4,000質量ppbの範囲内である実施例4では、長期消泡性能と清浄度が両立していることがわかる。
 これに対し、潤滑油組成物中のケイ素原子含有量が50質量ppb未満である比較例3では、長期消泡性能が確保できないことがわかる。
 また、潤滑油組成物中のケイ素原子含有量が4,000質量ppb超である比較例4では、清浄度が確保できないことがわかる。
Further, the same as above can be seen from the evaluation results of Table 2 in which an additive for lubricating oil other than the silicone-based defoaming agent (B) is also blended in the lubricating oil composition.
That is, in Example 4 in which the silicon atom content in the lubricating oil composition is in the range of 50 mass ppb to 4,000 mass ppb, it can be seen that both long-term defoaming performance and cleanliness are compatible.
On the other hand, in Comparative Example 3 in which the silicon atom content in the lubricating oil composition is less than 50 mass ppb, it can be seen that the long-term defoaming performance cannot be ensured.
Further, it can be seen that the cleanliness cannot be ensured in Comparative Example 4 in which the silicon atom content in the lubricating oil composition is more than 4,000 mass ppb.

Claims (8)

  1.  基油(A)と、シリコーン系消泡剤(B)とを含有する潤滑油組成物であって、
     ケイ素原子含有量が、前記潤滑油組成物の全量基準で、50質量ppb~4,000質量ppbである、潤滑油組成物。
    A lubricating oil composition containing a base oil (A) and a silicone-based defoaming agent (B).
    A lubricating oil composition having a silicon atom content of 50 mass ppb to 4,000 mass ppb based on the total amount of the lubricating oil composition.
  2.  前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択される1種以上である、請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the base oil (A) is at least one selected from the group consisting of synthetic oils (A1) and mineral oils (A2).
  3.  前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択される2種以上である、請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the base oil (A) is two or more kinds selected from the group consisting of synthetic oil (A1) and mineral oil (A2).
  4.  前記基油(A)が、合成油(A1)及び鉱油(A2)からなる群から選択され、且つ40℃における動粘度が互いに異なる2種以上である、請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the base oil (A) is selected from the group consisting of a synthetic oil (A1) and a mineral oil (A2), and has two or more kinds having different kinematic viscosities at 40 ° C. ..
  5.  前記基油(A)及び前記シリコーン系消泡剤(B)の合計含有量は、前記潤滑油組成物の全量基準で、75質量%以上94.9質量%以下である、請求項1~4のいずれか1項に記載の潤滑油組成物。 Claims 1 to 4 indicate that the total content of the base oil (A) and the silicone-based defoaming agent (B) is 75% by mass or more and 94.9% by mass or less based on the total amount of the lubricating oil composition. The lubricating oil composition according to any one of the above items.
  6.  前記シリコーン系消泡剤(B)は、ポリジメチルシロキサン及びフッ素化ポリシロキサンからなる群から選択される1種以上を含む、請求項1~5のいずれか1項に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 5, wherein the silicone-based defoaming agent (B) contains at least one selected from the group consisting of polydimethylsiloxane and fluorinated polysiloxane.
  7.  更に、酸化防止剤、極圧剤、抗乳化剤、防錆剤、粘度指数向上剤、流動点降下剤、金属不活性化剤、無灰清浄分散剤、及び摩擦調整剤からなる群から選択される1種以上の潤滑油用添加剤を含む、請求項1~6のいずれか1項に記載の潤滑油組成物。 Further, it is selected from the group consisting of antioxidants, extreme pressure agents, anti-emulsifiers, rust inhibitors, viscosity index improvers, flow point lowering agents, metal deactivators, ashless cleaning dispersants, and friction modifiers. The lubricating oil composition according to any one of claims 1 to 6, which comprises one or more kinds of additives for lubricating oil.
  8.  風車用増速機油、油圧作動油、圧縮機油、ギヤ油、切削油、工作機械油、冷凍機油、タービン油、内燃機油、変速機油、又は自動車用アクスルユニット油として用いられる、請求項1~7のいずれか1項に記載の潤滑油組成物。 Claims 1 to 7 used as an accelerator oil for a wind turbine, a hydraulic hydraulic oil, a compressor oil, a gear oil, a cutting oil, a machine tool oil, a refrigerating machine oil, a turbine oil, an internal combustion engine oil, a transmission oil, or an automobile axle unit oil. The lubricating oil composition according to any one of the above items.
PCT/JP2021/011432 2020-03-27 2021-03-19 Lubricating oil composition WO2021193443A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180023822.XA CN115279872A (en) 2020-03-27 2021-03-19 Lubricating oil composition
US17/907,023 US20230174887A1 (en) 2020-03-27 2021-03-19 Lubricating oil composition
JP2022510429A JPWO2021193443A1 (en) 2020-03-27 2021-03-19
EP21776337.4A EP4130212A4 (en) 2020-03-27 2021-03-19 Lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059028 2020-03-27
JP2020059028 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193443A1 true WO2021193443A1 (en) 2021-09-30

Family

ID=77892539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011432 WO2021193443A1 (en) 2020-03-27 2021-03-19 Lubricating oil composition

Country Status (6)

Country Link
US (1) US20230174887A1 (en)
EP (1) EP4130212A4 (en)
JP (1) JPWO2021193443A1 (en)
CN (1) CN115279872A (en)
TW (1) TW202200769A (en)
WO (1) WO2021193443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189301A1 (en) * 2022-03-31 2023-10-05 Eneos株式会社 Refrigerator oil, and working fluid composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519249B1 (en) * 1964-03-31 1970-07-01
JPH11209778A (en) * 1998-01-19 1999-08-03 Nippon Mitsubishi Oil Corp Defoaming agent for lubricating oil and lubricating oil composition containing the same
JP2001508357A (en) * 1997-01-07 2001-06-26 エクソン リサーチ アンド エンジニアリング カンパニー How to reduce lubricating oil foaming
JP2008120996A (en) * 2006-10-17 2008-05-29 Showa Shell Sekiyu Kk Lubricating oil composition and method for production thereof
JP2009138037A (en) * 2007-12-04 2009-06-25 Hitachi Appliances Inc Refrigerant compressor and heat pump water heater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060264339A1 (en) * 2005-05-19 2006-11-23 Devlin Mark T Power transmission fluids with enhanced lifetime characteristics
WO2007145924A1 (en) * 2006-06-06 2007-12-21 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst pao novel base stock lubricant blends
WO2008046862A1 (en) * 2006-10-17 2008-04-24 Shell Internationale Research Maatschappij B.V. Lubricating oil composition and method for production thereof
JP5820558B2 (en) * 2006-11-10 2015-11-24 昭和シェル石油株式会社 Lubricating oil composition
US20100105585A1 (en) * 2008-10-28 2010-04-29 Carey James T Low sulfur and ashless formulations for high performance industrial oils
CA2826107A1 (en) * 2011-01-31 2012-08-09 The Lubrizol Corporation Lubricant composition comprising anti-foam agents
JP6228849B2 (en) * 2014-01-07 2017-11-08 Jxtgエネルギー株式会社 Lubricating oil composition
WO2017030204A1 (en) * 2015-08-19 2017-02-23 Jxエネルギー株式会社 Lubricating oil composition, defoaming method for lubricating oil, and defoaming agent composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4519249B1 (en) * 1964-03-31 1970-07-01
JP2001508357A (en) * 1997-01-07 2001-06-26 エクソン リサーチ アンド エンジニアリング カンパニー How to reduce lubricating oil foaming
JPH11209778A (en) * 1998-01-19 1999-08-03 Nippon Mitsubishi Oil Corp Defoaming agent for lubricating oil and lubricating oil composition containing the same
JP2008120996A (en) * 2006-10-17 2008-05-29 Showa Shell Sekiyu Kk Lubricating oil composition and method for production thereof
JP2009138037A (en) * 2007-12-04 2009-06-25 Hitachi Appliances Inc Refrigerant compressor and heat pump water heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130212A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189301A1 (en) * 2022-03-31 2023-10-05 Eneos株式会社 Refrigerator oil, and working fluid composition

Also Published As

Publication number Publication date
EP4130212A4 (en) 2023-07-26
US20230174887A1 (en) 2023-06-08
CN115279872A (en) 2022-11-01
JPWO2021193443A1 (en) 2021-09-30
TW202200769A (en) 2022-01-01
EP4130212A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP5350583B2 (en) Lubricating oil composition and method for improving metal fatigue of automobile transmission using the same
JP5502356B2 (en) Gear oil composition
JP5352053B2 (en) Lubricating oil composition for oil-cooled screw air compressor and oil-cooled screw air compressor filled with the same
WO2016159258A1 (en) Gasoline engine lubricant oil composition and manufacturing method therefor
JP6445425B2 (en) Lubricating oil composition
JPWO2010032781A1 (en) Lubricating oil composition for internal combustion engines
WO2016158622A1 (en) Lubricant composition
WO2013137160A1 (en) Lubricating oil composition
US20130184191A1 (en) Gear oil compositions
JP5337598B2 (en) Gear oil composition
EP3434756A1 (en) Lubricant oil composition and lubrication method
CN109477025A (en) Lubricating oil composition and method for producing same
CN111748398A (en) Lubricating oil composition
US8834705B2 (en) Gear oil compositions
US11473030B2 (en) Lubricant composition
WO2021193443A1 (en) Lubricating oil composition
EP3872153A1 (en) Lubricating oil composition, mechanical device equipped with lubricating oil composition, and method for producing lubricating oil composition
JP2019147864A (en) Lubricant composition
JP7113162B1 (en) lubricating oil composition
JP7460445B2 (en) Lubricating Oil Composition
WO2022209942A1 (en) Lubricant composition
WO2021200799A1 (en) Lubricating oil composition
WO2023188839A1 (en) Lubricating oil composition for two-wheeled vehicle
WO2021200782A1 (en) Lubricant composition
WO2023190195A1 (en) Lubricant composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510429

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021776337

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021776337

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE