WO2021193375A1 - Surface-emitting laser - Google Patents

Surface-emitting laser Download PDF

Info

Publication number
WO2021193375A1
WO2021193375A1 PCT/JP2021/011205 JP2021011205W WO2021193375A1 WO 2021193375 A1 WO2021193375 A1 WO 2021193375A1 JP 2021011205 W JP2021011205 W JP 2021011205W WO 2021193375 A1 WO2021193375 A1 WO 2021193375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
region
mesa portion
type
Prior art date
Application number
PCT/JP2021/011205
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 義彦
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022510052A priority Critical patent/JPWO2021193375A1/ja
Publication of WO2021193375A1 publication Critical patent/WO2021193375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • This disclosure relates to a surface emitting laser.
  • Patent Documents 1 to 3 Surface emitting lasers that emit light in the normal direction of the substrate are known (for example, Patent Documents 1 to 3).
  • a contact layer may be provided between the substrate and the substrate side DBR as an energizing path from the electrode to the substrate side DBR (distributed Bragg reflector).
  • the contact layer is responsible for both reducing the contact resistance between the electrode and the substrate-side DBR and transporting the carrier from the electrode into the substrate-side DBR. Therefore, light absorption due to impurities in the contact layer occurs.
  • the resistance value of the contact layer rises, so that the drive voltage rises. Therefore, it is desirable to provide a surface emitting laser capable of achieving both a high light output and a low drive voltage.
  • the surface emitting laser according to the embodiment of the present disclosure is formed by a substrate and an epitaxial crystal growth method using the substrate as a crystal growth substrate, and has a first conductive DBR layer, an active layer, a second conductive DBR layer, and a second. A mesa portion including a conductive contact layer in this order is provided.
  • the surface emitting laser further includes a first electrode layer in contact with the substrate and a second electrode layer in contact with the second conductive contact layer.
  • the substrate has a first conductive diffusion region in which the concentration of impurities of the first conductive type is relatively high, at least from a region facing the outer edge of the mesa portion to a region at the base of the mesa portion, and the first electrode layer is a first electrode layer. 1 It is in contact with the conductive diffusion region.
  • the first conductive type diffusion region having a relatively high concentration of the first conductive type impurities is formed.
  • the first electrode layer is in contact with the first conductive diffusion region.
  • the first conductive diffusion region functions as an energization path from the first electrode layer to the first conductive DBR layer.
  • the first conductive diffusion region faces the center of the mesa portion.
  • FIG. 1 shows an example of cross-sectional configuration of the surface emitting laser 1.
  • the surface emitting laser 1 includes a vertical resonator on the substrate 10.
  • the vertical resonator is configured to oscillate at an oscillation wavelength of ⁇ 0 by two DBR (distributed Bragg reflector) layers (p-type DBR layer 21, n-type DBR layer 25) facing each other in the normal direction of the substrate 10.
  • the p-type DBR layer 21 corresponds to a specific example of the “first conductive DBR layer” of the present disclosure.
  • the n-type DBR layer 25 corresponds to a specific example of the “second conductive DBR layer” of the present disclosure.
  • the p-type DBR layer 21 is formed at a position closer to the substrate 10 than the n-type DBR layer 25.
  • the n-type DBR layer 25 is formed at a position distant from the substrate 10 as compared with the p-type DBR layer 21.
  • the surface emitting laser 1 is configured so that the laser beam L is emitted from the p-type DBR layer 21 side. Therefore, the surface emitting laser 1 is a back surface emitting type laser having a light emitting surface 1S of laser light L on the back surface.
  • the surface emitting laser 1 includes an epitaxial laminated structure 20 formed on a substrate 10 by an epitaxial crystal growth method using the substrate 10 as a crystal growth substrate.
  • the epitaxial laminated structure 20 includes, for example, a p-type DBR layer 21, a spacer layer 22, an active layer 23, a spacer layer 24, an n-type DBR layer 25, and an n-type contact layer 26 in this order from the substrate 10 side. There is.
  • the p-type DBR layer 21, the spacer layer 22, the active layer 23, the spacer layer 24, the n-type DBR layer 25, and the n-type contact layer 26 are columnar mesas extending in the normal direction of the substrate 10. It constitutes a part 20A.
  • the surface emitting laser 1 includes an electrode layer 32 in contact with the top of the mesa portion 20A (that is, the n-type contact layer 26), and the electrode layer 31 in contact with the p-type diffusion region 11 (described later) extending to the skirt of the mesa portion 20A. It has.
  • the n-type contact layer 26 is a layer for ohmic contacting the n-type DBR layer 25 and the electrode layer 32 with each other.
  • the p-type diffusion region 11 is formed on the surface of the substrate 10.
  • the p-type diffusion region 11 is formed in the substrate 10 from at least a region facing the outer edge of the mesa portion 20A to a region at the base of the mesa portion 20A.
  • the p-type diffusion region 11 is formed in a region of the substrate 10 on the mesa portion 20A side, excluding at least a region facing the center of the mesa portion 20A.
  • the electrode layer 31 is in contact with the skirt region of the mesa portion 20A on the surface of the p-type diffusion region 11.
  • the p-type diffusion region 11 is an energization path between the electrode layer 31 and the mesa portion 20A.
  • the electrode layer 32 is formed at least at a position facing the light emitting region of the active layer 23.
  • the electrode layer 32 corresponds to a specific example of the “second electrode layer” of the present disclosure.
  • the electrode layer 31 corresponds to a specific example of the “first electrode layer” of the present disclosure.
  • the surface emitting laser 1 is formed of, for example, an arsenic semiconductor.
  • the arsenic semiconductor refers to a compound semiconductor containing an arsenic (As) element and at least one of aluminum (Al), gallium (Ga), and indium (In).
  • the substrate 10 is, for example, a semi-insulating semiconductor substrate. Examples of the semi-insulating semiconductor substrate that can be used for the substrate 10 include a GaAs substrate.
  • the substrate 10 may be a low-doped p-type semiconductor substrate. Examples of the low-doped p-type semiconductor substrate that can be used for the substrate 10 include a GaAs substrate having a p-type impurity concentration of 1 ⁇ 10 16 cm -3 or less.
  • the p-type diffusion region 11 is the p-type impurity concentration (p-type impurity concentration in the unformed region of the p-type diffusion region 11) in the substrate 10.
  • the p-type impurity concentration is higher than 1 ⁇ 10 16 cm -3 or less (for example, 1 ⁇ 10 18 cm -3 or more).
  • the p-type diffusion region 11 is formed, for example, in the substrate 10 from the surface of the substrate 10 to a region having a depth of 300 nm or more.
  • the p-type DBR layer 21 is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown).
  • the low refractive index layer is composed of, for example, p-type Al x1 Ga 1-x1 As (0 ⁇ x1 ⁇ 1) having an optical thickness of ⁇ 0 ⁇ 1/4 ( ⁇ 0 is the oscillation wavelength).
  • the high refractive index layer is composed of, for example, p-type Al x2 Ga 1-x2 As (0 ⁇ x2 ⁇ x1) having an optical thickness of ⁇ 0 ⁇ 1/4.
  • the spacer layer 22 is made of, for example, p-type Al x3 Ga 1-x3 As (0 ⁇ x3 ⁇ 1). Examples of the p-type impurities in the p-type DBR layer 21 and the spacer layer 22 include carbon (C).
  • the active layer 23 includes, for example, a well layer (not shown) composed of undoped In x4 Ga 1-x4 As or Al x4 Ga 1-x4 As (0 ⁇ x4 ⁇ 1) and undoped In x5 Ga 1-x5 As. Alternatively, it has a multiple quantum well structure in which barrier layers (not shown) composed of Al x5 Ga 1-x5 As (0 ⁇ x4 ⁇ x5) are alternately laminated.
  • barrier layers (not shown) composed of Al x5 Ga 1-x5 As (0 ⁇ x4 ⁇ x5) are alternately laminated.
  • the region of the active layer 23 facing the current injection region 27B (described later) is the light emitting region.
  • the spacer layer 24 is made of, for example, n-type Al x6 Ga 1-x6 As (0 ⁇ x6 ⁇ 1).
  • the n-type DBR layer 25 is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown).
  • the low refractive index layer is composed of, for example, n-type Al x7 Ga 1-x7 As (0 ⁇ x7 ⁇ 1) having an optical thickness of ⁇ 0 ⁇ 1/4
  • the high refractive index layer is, for example, optical. It is composed of n-type Al x8 Ga 1-x8 As (0 ⁇ x8 ⁇ x7) having a thickness of ⁇ 0 ⁇ 1/4.
  • the n-type DBR layer 25 is configured to have a large reflectance with respect to the oscillation wavelength ⁇ 0 of the vertical resonator in the mesa portion 20A as compared with the p-type DBR layer 21.
  • the n-type DBR layer 25 is formed thicker than, for example, the p-type DBR layer 21.
  • the n-type contact layer 26 is composed of, for example, n-type Al x9 Ga 1-x9 As (0 ⁇ x9 ⁇ 1). Examples of the n-type impurities in the spacer layer 24, the n-type DBR layer 25 and the n-type contact layer 26 include silicon (Si).
  • the epitaxial laminated structure 20 has a current constriction layer 27 in the p-type DBR layer 21 or between the p-type DBR layer 21 and the spacer layer 24.
  • the current constriction layer 27 has a current injection region 27B and a current constriction region 27A.
  • the current constriction region 27A is formed in a peripheral region of the current injection region 27B.
  • the current injection region 27B is composed of, for example, p-type Al x10 Ga 1-x10 As (0 ⁇ x10 ⁇ 1).
  • the current constriction region 27A is composed of, for example, Al 2 O 3 (aluminum oxide), and can be obtained, for example, by oxidizing a high concentration of Al contained in the oxidized layer 27D (described later) from the side surface. .. Therefore, the current constriction layer 27 has a function of constricting the current.
  • the electrode layer 31 is in contact with the surface of the p-type diffusion region 11 on the mesa portion 20A side.
  • the electrode layer 31 is made of a non-alloy, and is, for example, a laminated body formed by laminating Ti, Pt, and Au in order from the substrate 10 (p-type diffusion region 11) side.
  • the electrode layer 32 is composed of an alloy, and is, for example, a laminated body formed by laminating AuGe, Ni, and Au in order from the n-type contact layer 26 side.
  • An insulating layer 33 is formed around the mesa portion 20A.
  • the insulating layer 33 is a layer for protecting the mesa portion 20A, and is composed of, for example, a laminated body in which SiO 2 , Si, and SiO 2 are laminated in this order.
  • a mask dielectric film such as SiO 2 or SiN was formed on a substrate 10 (for example, a semi-insulating semiconductor substrate or a low-doped p-type semiconductor substrate), and a circular resist layer was formed on the dielectric film for masking. After that, the dielectric film is etched to form the mask layer 110 when the impurities are diffused (FIG. 2). Next, by using the mask layer 110 as a mask and performing impurity diffusion, a p-type diffusion region 11 is formed on the surface of the substrate 10 in a region not covered with the mask layer 110 (FIG. 3). After that, the mask layer 110 is removed.
  • compound semiconductors are collectively formed on the substrate 10 on which the p-type diffusion region 11 is formed by an epitaxial crystal growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • raw materials for the compound semiconductor for example, methylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn) and other methyl-based organometallic gases and arsine (AsH 3 ) gas are used, and donor impurities are used.
  • disilane (Si 2 H 6 ) is used, and as a raw material for acceptor impurities, for example, carbon tetrabromide (CBr 4 ) is used.
  • the laminated structure 20 is formed (FIG. 4).
  • another layer such as a buffer layer may be formed between the substrate 10 and the p-type DBR layer 21.
  • a circular resist layer 120 is formed on the epitaxial laminated structure 20 (FIG. 5).
  • the resist layer 120 is formed at a size and position on the surface of the substrate 10 so as to cover at least the unformed region of the p-type diffusion region 11 when viewed in a plan view.
  • the epitaxial laminated structure 20 is selectively etched using the resist layer 120 as a mask, and the epitaxial laminated structure 20 is etched to a depth reaching the substrate (p-type diffusion region 11).
  • the p-type diffusion region 11 is exposed at the skirt of the mesa portion 20A. Further, an oxidized layer 27D made of, for example, AlAs is exposed on the side surface of the mesa portion 20A. After that, the resist layer 120 is removed.
  • an oxidation treatment is performed at a high temperature to selectively oxidize Al contained in the oxidized layer 27D from the side surface of the mesa portion 20A.
  • Al contained in the oxidized layer 27D is selectively oxidized from the side surface of the mesa portion 20A by a wet oxidation method.
  • the outer edge region of the oxidized layer 27D becomes an insulating layer (aluminum oxide), and the current constriction layer 27 is formed (FIG. 7).
  • the insulating layer 33 covering the mesa portion 20A is formed.
  • an opening is formed at a predetermined position in the skirt of the mesa portion 20A.
  • the p-type diffusion region 11 is exposed on the bottom surface of this opening.
  • an electrode layer 31 in contact with the surface of the p-type diffusion region 11 is formed in this opening. In this way, the surface emitting laser 1 is manufactured.
  • the electrode layer 31 electrically connected to the p-type DBR layer 21 via the p-type diffusion region 11 and the n-type DBR layer 25 via the n-type contact layer 26.
  • the current narrowed by the current narrowing layer 27 is injected into the active layer 23, whereby light emission due to recombination of electrons and holes is performed. Occurs.
  • the vertical resonator in the mesa section 20A causes laser oscillation at an oscillation wavelength of ⁇ 0.
  • the light leaked from the p-type DBR layer 21 becomes a beam-shaped laser beam L and is output to the outside from the light emitting surface 1S.
  • a contact layer may be provided between the substrate and the substrate-side DBR as an energization path from the electrode to the substrate-side DBR.
  • the contact layer is responsible for both reducing the contact resistance between the electrode and the substrate-side DBR and transporting the carrier from the electrode into the substrate-side DBR. Therefore, light absorption due to impurities in the contact layer occurs.
  • the resistance value of the contact layer rises, so that the drive voltage rises.
  • a p-type diffusion region 11 having a relatively high p-type impurity concentration is formed on the substrate 10 from at least the region facing the outer edge of the mesa portion 20A to the region of the skirt of the mesa portion 20A, and the electrode.
  • the layer 31 is in contact with the p-type diffusion region 11.
  • the p-type diffusion region 11 functions as an energization path from the electrode layer 31 to the mesa portion 20A (p-type DBR layer 21).
  • the p-type diffusion region 11 in a region of the surface on the mesa portion 20A side excluding at least the region facing the center of the mesa portion 20A, light absorption by impurities in the p-type diffusion region 11 is absorbed. It can be suppressed. Therefore, both high optical output and low drive voltage can be achieved at the same time.
  • the electrode layer 31 is in contact with the skirt region of the mesa portion 20A on the surface of the p-type diffusion region 11.
  • the electrode layers 31 and 33 can be provided in the region opposite to the light emitting surface 1S in the positional relationship with the substrate 10, so that, for example, the surface emitting laser 1 and the surface emitting laser 1 are driven.
  • the circuit boards including the circuit By sticking the circuit boards including the circuit to each other, it is possible to make electrical contact between the surface emitting laser 1 and the circuit for driving the surface emitting laser 1.
  • the substrate 10 when the substrate 10 is a semi-insulating semiconductor substrate or a low-doped p-type semiconductor substrate, the substrate 10 suppresses light absorption, and the substrate 10 causes the mesa portion 20A and the electrode layer 31. Can be supported.
  • FIG. 8 shows an example of cross-sectional configuration of the surface emitting laser array 2.
  • FIG. 9 shows an example of the upper surface configuration of the surface emitting laser array 2.
  • the surface emitting laser array 2 includes a plurality of surface emitting lasers 1 arranged two-dimensionally.
  • the surface emitting laser array 2 includes a plurality of mesa portions 20A two-dimensionally arranged on the substrate 10, and further includes a pedestal portion 20B having a layer structure (epitaxial laminated structure 20) common to the mesa portion 20A. There is.
  • the surface of the pedestal portion 20B is covered with the insulating layer 33, and the surface of the pedestal portion 20B is provided with a lead-out wiring 34 in contact with the electrode layer 31.
  • the laser light L generated by each mesa portion 20A is emitted from the back surface of the substrate 10.
  • the p-type diffusion region 11 of each surface emitting laser 1 is shared, and the electrode layer 31 of each surface emitting laser 1 is shared.
  • the p-type diffusion region 11 is formed on the surface of the substrate 10 on the mesa portion 20A side from a region facing the outer edge of each mesa portion 20A to a region of the entire skirt of each mesa portion 20A.
  • the electrode layer 31 is in contact with the entire skirt of each mesa portion 20A and the pedestal portion 20B on the surface of the p-type diffusion region 11.
  • the pedestal portion 20B functions as an electrode pad when energized.
  • the p-type diffusion region 11 is formed in a region of the surface on the mesa portion 20A side, excluding at least a region facing the center of the mesa portion 20A.
  • the p-type diffusion region 11 may be formed in at least a region of the surface on the mesa portion 20A side facing the center of the mesa portion 20A.
  • the p-type impurity concentration in the region facing the center of the mesa portion 20A is sufficiently lower than the p-type impurity concentration in the region facing the outer edge of the mesa portion 20A. As a result, light absorption due to impurities in the p-type diffusion region 11 can be reduced.
  • the surface emitting laser 1 is formed of an arsenic semiconductor.
  • the surface emitting laser 1 is formed of a group III-V semiconductor containing, for example, nitrogen (N), boron (B), antimony (Sb), and phosphorus (P). May be.
  • the surface emitting laser 1 is of the back surface emitting type, but it may be of the top surface emitting type.
  • the electrode layer 32 has a ring shape having an opening at least in a region facing the current constriction region 27A, and even if the bottom surface of the opening provided in the electrode layer 32 is a light emitting surface. good.
  • the present disclosure may have the following structure.
  • (1) With the board A mesa portion formed by an epitaxial crystal growth method using the substrate as a crystal growth substrate, and containing a first conductive DBR (distributed Bragg reflector) layer, an active layer, a second conductive DBR layer, and a second conductive contact layer in this order.
  • the first electrode layer in contact with the substrate and A second electrode layer in contact with the second conductive contact layer is provided.
  • the substrate has a first conductive diffusion region in which the concentration of impurities of the first conductive type is relatively high, at least from a region facing the outer edge of the mesa portion to a region at the base of the mesa portion.
  • the first electrode is a surface emitting laser in contact with the first conductive diffusion region.
  • the substrate is described in any one of (1) to (3), which is a semi-insulating semiconductor substrate or a low-doped semiconductor substrate having a first conductive type impurity concentration lower than that of the first conductive type diffusion region. Surface emitting laser.
  • the first conductive type diffusion region having a relatively high concentration of the first conductive type impurities is formed. It is formed on a substrate and the first electrode is in contact with the first conductive diffusion region. As a result, the first conductive diffusion region functions as an energization path from the first electrode to the first conductive DBR layer.
  • the first conductive diffusion region by forming the first conductive diffusion region in a region of the surface on the mesa portion side excluding at least the region facing the center of the mesa portion, light absorption by impurities in the first conductive diffusion region is achieved. It can be suppressed.
  • the first conductive diffusion region faces the center of the mesa portion.

Abstract

An embodiment of the present disclosure relates to a surface-emitting laser comprising a substrate and a mesa portion formed by an epitaxial crystal growth process using the substrate as a crystal growth substrate, the mesa portion including, in this order, a DBR layer of a first conductivity type, an active layer, a DBR layer of a second conductivity type, and a contact layer of the second conductivity type. The surface-emitting laser is further provided with a first electrode layer adjoining the substrate, and a second electrode layer adjoining the contact layer of the second conductivity type. The substrate includes a diffusion region of the first conductivity type having a relatively high concentration of an impurity of the first conductivity type and extending at least from a region opposing an outer edge of the mesa portion to a region at the foot of the mesa portion. The first electrode layer adjoins the diffusion region of the first conductivity type.

Description

面発光レーザSurface emitting laser
 本開示は、面発光レーザに関する。 This disclosure relates to a surface emitting laser.
 基板の法線方向に光を出射する面発光レーザが知られている(例えば特許文献1~3)。 Surface emitting lasers that emit light in the normal direction of the substrate are known (for example, Patent Documents 1 to 3).
特開2005-93634号公報Japanese Unexamined Patent Publication No. 2005-93634 特開平10-209565号公報Japanese Unexamined Patent Publication No. 10-209565 特開2015-41627号公報JP-A-2015-41627
 ところで、面発光レーザにおいて、電極から基板側DBR(distributed Bragg reflector)への通電経路として、基板と、基板側DBRとの間にコンタクト層が設けられることがある。この場合、コンタクト層は、電極と基板側DBRとの接触抵抗の低減と、電極から基板側DBR内へのキャリア輸送の両方を担うことになる。そのため、コンタクト層内の不純物による光吸収が生じてしまう。コンタクト層を薄くすることで、光吸収を低減することは可能ではあるが、そのようにした場合には、コンタクト層の抵抗値が上昇するため、駆動電圧が上昇してしまう。従って、高光出力と低駆動電圧を両立することの可能な面発光レーザを提供することが望ましい。 By the way, in a surface emitting laser, a contact layer may be provided between the substrate and the substrate side DBR as an energizing path from the electrode to the substrate side DBR (distributed Bragg reflector). In this case, the contact layer is responsible for both reducing the contact resistance between the electrode and the substrate-side DBR and transporting the carrier from the electrode into the substrate-side DBR. Therefore, light absorption due to impurities in the contact layer occurs. Although it is possible to reduce the light absorption by thinning the contact layer, in such a case, the resistance value of the contact layer rises, so that the drive voltage rises. Therefore, it is desirable to provide a surface emitting laser capable of achieving both a high light output and a low drive voltage.
 本開示の一実施形態に係る面発光レーザは、基板と、基板を結晶成長基板とするエピタキシャル結晶成長法により形成され、第1導電型DBR層、活性層、第2導電型DBR層および第2導電型コンタクト層をこの順に含むメサ部とを備える。この面発光レーザは、さらに、基板に接する第1電極層と、第2導電型コンタクト層に接する第2電極層とを備える。基板は、少なくともメサ部の外縁と対向する領域からメサ部のすそ野の領域にかけて、第1導電型の不純物濃度が相対的に高い第1導電型拡散領域を有し、第1電極層は、第1導電型拡散領域に接する。 The surface emitting laser according to the embodiment of the present disclosure is formed by a substrate and an epitaxial crystal growth method using the substrate as a crystal growth substrate, and has a first conductive DBR layer, an active layer, a second conductive DBR layer, and a second. A mesa portion including a conductive contact layer in this order is provided. The surface emitting laser further includes a first electrode layer in contact with the substrate and a second electrode layer in contact with the second conductive contact layer. The substrate has a first conductive diffusion region in which the concentration of impurities of the first conductive type is relatively high, at least from a region facing the outer edge of the mesa portion to a region at the base of the mesa portion, and the first electrode layer is a first electrode layer. 1 It is in contact with the conductive diffusion region.
 本開示の一実施形態に係る面発光レーザでは、少なくともメサ部の外縁と対向する領域からメサ部のすそ野の領域にかけて、第1導電型の不純物濃度が相対的に高い第1導電型拡散領域が基板に形成され、第1電極層が第1導電型拡散領域に接する。これにより、第1導電型拡散領域が、第1電極層から第1導電型DBR層への通電経路として機能する。このとき、第1導電型拡散領域を、メサ部側の表面のうち、少なくともメサ部の中央と対向する領域を除く領域に形成することにより、第1導電型拡散領域内の不純物による光吸収を抑制することが可能である。また、第1導電型拡散領域を、メサ部側の表面のうち、メサ部の中央と対向する領域にも形成した場合であっても、第1導電型拡散領域において、メサ部の中央と対向する領域の不純物濃度を、メサ部の外縁と対向する領域の不純物濃度よりも十分に低くすることにより、第1導電型拡散領域内の不純物による光吸収を抑制することができる。 In the surface emitting laser according to the embodiment of the present disclosure, at least from the region facing the outer edge of the mesa portion to the region of the skirt of the mesa portion, the first conductive type diffusion region having a relatively high concentration of the first conductive type impurities is formed. Formed on the substrate, the first electrode layer is in contact with the first conductive diffusion region. As a result, the first conductive diffusion region functions as an energization path from the first electrode layer to the first conductive DBR layer. At this time, by forming the first conductive diffusion region in a region of the surface on the mesa portion side excluding at least the region facing the center of the mesa portion, light absorption by impurities in the first conductive diffusion region is achieved. It can be suppressed. Further, even when the first conductive diffusion region is formed in the region of the surface on the mesa portion side facing the center of the mesa portion, the first conductive diffusion region faces the center of the mesa portion. By making the impurity concentration in the region to be squeezed sufficiently lower than the impurity concentration in the region facing the outer edge of the mesa portion, it is possible to suppress light absorption by impurities in the first conductive diffusion region.
本開示の第1の実施の形態に係る面発光レーザの断面構成例を表す図である。It is a figure which shows the cross-sectional composition example of the surface emitting laser which concerns on 1st Embodiment of this disclosure. 図1の面発光レーザの製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process of the surface emitting laser of FIG. 図2に続く製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process following FIG. 図3に続く製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process following FIG. 図4に続く製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process following FIG. 図5に続く製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process following FIG. 図6に続く製造過程の一例を表す図である。It is a figure which shows an example of the manufacturing process following FIG. 本開示の第2の実施の形態に係る面発光レーザアレイの断面構成例を表す図である。It is a figure which shows the cross-sectional composition example of the surface emitting laser array which concerns on 2nd Embodiment of this disclosure. 図8の面発光レーザの上面構成例を表す図である。It is a figure which shows the top surface composition example of the surface emitting laser of FIG.
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。 Hereinafter, the mode for carrying out the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure.
<第1の実施の形態>
[構成]
 本開示の第1の実施の形態に係る面発光レーザ1について説明する。図1は、面発光レーザ1の断面構成例を表したものである。
<First Embodiment>
[composition]
The surface emitting laser 1 according to the first embodiment of the present disclosure will be described. FIG. 1 shows an example of cross-sectional configuration of the surface emitting laser 1.
 面発光レーザ1は、基板10上に垂直共振器を備えている。垂直共振器は、基板10の法線方向において互いに対向する2つのDBR(distributed Bragg reflector)層(p型DBR層21、n型DBR層25)によって発振波長λ0で発振するように構成されている。p型DBR層21は、本開示の「第1導電型DBR層」の一具体例に相当する。n型DBR層25は、本開示の「第2導電型DBR層」の一具体例に相当する。p型DBR層21は、n型DBR層25と比べて基板10寄りの位置に形成されている。n型DBR層25は、p型DBR層21と比べて基板10から離れた位置に形成されている。面発光レーザ1は、p型DBR層21側からレーザ光Lが出射されるように構成されている。従って、面発光レーザ1は、裏面にレーザ光Lの光出射面1Sを有する裏面出射型のレーザである。 The surface emitting laser 1 includes a vertical resonator on the substrate 10. The vertical resonator is configured to oscillate at an oscillation wavelength of λ 0 by two DBR (distributed Bragg reflector) layers (p-type DBR layer 21, n-type DBR layer 25) facing each other in the normal direction of the substrate 10. There is. The p-type DBR layer 21 corresponds to a specific example of the “first conductive DBR layer” of the present disclosure. The n-type DBR layer 25 corresponds to a specific example of the “second conductive DBR layer” of the present disclosure. The p-type DBR layer 21 is formed at a position closer to the substrate 10 than the n-type DBR layer 25. The n-type DBR layer 25 is formed at a position distant from the substrate 10 as compared with the p-type DBR layer 21. The surface emitting laser 1 is configured so that the laser beam L is emitted from the p-type DBR layer 21 side. Therefore, the surface emitting laser 1 is a back surface emitting type laser having a light emitting surface 1S of laser light L on the back surface.
 面発光レーザ1は、基板10上に、基板10を結晶成長基板としてエピタキシャル結晶成長法により形成されたエピタキシャル積層構造20を備えている。エピタキシャル積層構造20は、例えば、p型DBR層21、スペーサ層22、活性層23、スペーサ層24、n型DBR層25およびn型コンタクト層26を、基板10側からこの順に含んで構成されている。エピタキシャル積層構造20において、p型DBR層21、スペーサ層22、活性層23、スペーサ層24、n型DBR層25およびn型コンタクト層26は、基板10の法線方向に延在する柱状のメサ部20Aを構成している。 The surface emitting laser 1 includes an epitaxial laminated structure 20 formed on a substrate 10 by an epitaxial crystal growth method using the substrate 10 as a crystal growth substrate. The epitaxial laminated structure 20 includes, for example, a p-type DBR layer 21, a spacer layer 22, an active layer 23, a spacer layer 24, an n-type DBR layer 25, and an n-type contact layer 26 in this order from the substrate 10 side. There is. In the epitaxial laminated structure 20, the p-type DBR layer 21, the spacer layer 22, the active layer 23, the spacer layer 24, the n-type DBR layer 25, and the n-type contact layer 26 are columnar mesas extending in the normal direction of the substrate 10. It constitutes a part 20A.
 面発光レーザ1は、メサ部20Aの頂部(つまり、n型コンタクト層26)に接する電極層32を備えており、メサ部20Aのすそ野に広がるp型拡散領域11(後述)に接する電極層31を備えている。n型コンタクト層26は、n型DBR層25と電極層32とを互いにオーミック接触させるための層である。p型拡散領域11は、基板10の表面に形成されている。p型拡散領域11は、基板10のうち、少なくともメサ部20Aの外縁と対向する領域からメサ部20Aのすそ野の領域にかけて形成されている。p型拡散領域11は、基板10の、メサ部20A側の表面のうち、少なくともメサ部20Aの中央と対向する領域を除く領域に形成されている。電極層31は、p型拡散領域11の表面のうち、メサ部20Aのすそ野の領域に接している。p型拡散領域11は、電極層31とメサ部20Aとの間の通電経路となっている。電極層32は、少なくとも、活性層23の発光領域と対向する位置に形成されている。電極層32は、本開示の「第2電極層」の一具体例に相当する。電極層31は、本開示の「第1電極層」の一具体例に相当する。 The surface emitting laser 1 includes an electrode layer 32 in contact with the top of the mesa portion 20A (that is, the n-type contact layer 26), and the electrode layer 31 in contact with the p-type diffusion region 11 (described later) extending to the skirt of the mesa portion 20A. It has. The n-type contact layer 26 is a layer for ohmic contacting the n-type DBR layer 25 and the electrode layer 32 with each other. The p-type diffusion region 11 is formed on the surface of the substrate 10. The p-type diffusion region 11 is formed in the substrate 10 from at least a region facing the outer edge of the mesa portion 20A to a region at the base of the mesa portion 20A. The p-type diffusion region 11 is formed in a region of the substrate 10 on the mesa portion 20A side, excluding at least a region facing the center of the mesa portion 20A. The electrode layer 31 is in contact with the skirt region of the mesa portion 20A on the surface of the p-type diffusion region 11. The p-type diffusion region 11 is an energization path between the electrode layer 31 and the mesa portion 20A. The electrode layer 32 is formed at least at a position facing the light emitting region of the active layer 23. The electrode layer 32 corresponds to a specific example of the “second electrode layer” of the present disclosure. The electrode layer 31 corresponds to a specific example of the “first electrode layer” of the present disclosure.
 面発光レーザ1は、例えば、砒化物半導体によって形成されている。砒化物半導体とは、砒素(As)元素を含み、またアルミニウム(Al)、ガリウム(Ga)、インジウム(In)のうちの少なくとも1元素以上を含んで構成された化合物半導体を指す。基板10は、例えば、半絶縁性半導体基板である。基板10に用いられ得る半絶縁性半導体基板としては、例えば、GaAs基板が挙げられる。基板10は、低ドープのp型半導体基板であってもよい。基板10に用いられ得る低ドープのp型半導体基板としては、例えば、p型不純物濃度が1×1016cm-3以下のGaAs基板が挙げられる。基板10が半絶縁性半導体基板または低ドープのp型半導体基板となっている場合に、p型拡散領域11は、基板10のうち、p型拡散領域11の未形成領域のp型不純物濃度(例えば1×1016cm-3以下)よりも高いp型不純部濃度(例えば1×1018cm-3以上)となっている。p型拡散領域11は、例えば、基板10において、基板10の表面から深さ300nm以上の領域まで形成されている。 The surface emitting laser 1 is formed of, for example, an arsenic semiconductor. The arsenic semiconductor refers to a compound semiconductor containing an arsenic (As) element and at least one of aluminum (Al), gallium (Ga), and indium (In). The substrate 10 is, for example, a semi-insulating semiconductor substrate. Examples of the semi-insulating semiconductor substrate that can be used for the substrate 10 include a GaAs substrate. The substrate 10 may be a low-doped p-type semiconductor substrate. Examples of the low-doped p-type semiconductor substrate that can be used for the substrate 10 include a GaAs substrate having a p-type impurity concentration of 1 × 10 16 cm -3 or less. When the substrate 10 is a semi-insulating semiconductor substrate or a low-doped p-type semiconductor substrate, the p-type diffusion region 11 is the p-type impurity concentration (p-type impurity concentration in the unformed region of the p-type diffusion region 11) in the substrate 10. For example, the p-type impurity concentration is higher than 1 × 10 16 cm -3 or less (for example, 1 × 10 18 cm -3 or more). The p-type diffusion region 11 is formed, for example, in the substrate 10 from the surface of the substrate 10 to a region having a depth of 300 nm or more.
 p型DBR層21は、低屈折率層(図示せず)および高屈折率層(図示せず)を交互に積層して構成されたものである。p型DBR層21において、低屈折率層は例えば光学厚さがλ0×1/4(λ0は発振波長)のp型Alx1Ga1-x1As(0<x1<1)からなり、高屈折率層は例えば光学厚さがλ0×1/4のp型Alx2Ga1-x2As(0≦x2<x1)からなる。スペーサ層22は、例えばp型Alx3Ga1-x3As(0≦x3<1)からなる。p型DBR層21およびスペーサ層22におけるp型不純物としては、例えば、カーボン(C)が挙げられる。 The p-type DBR layer 21 is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown). In the p-type DBR layer 21, the low refractive index layer is composed of, for example, p-type Al x1 Ga 1-x1 As (0 <x1 <1) having an optical thickness of λ 0 × 1/4 (λ 0 is the oscillation wavelength). The high refractive index layer is composed of, for example, p-type Al x2 Ga 1-x2 As (0 ≦ x2 <x1) having an optical thickness of λ 0 × 1/4. The spacer layer 22 is made of, for example, p-type Al x3 Ga 1-x3 As (0 ≦ x3 <1). Examples of the p-type impurities in the p-type DBR layer 21 and the spacer layer 22 include carbon (C).
 活性層23は、例えば、アンドープのInx4Ga1-x4AsもしくはAlx4Ga1-x4As(0≦x4<1)からなる井戸層(図示せず)およびアンドープのInx5Ga1-x5AsもしくはAlx5Ga1-x5As(0≦x4<x5)からなる障壁層(図示せず)を交互に積層してなる多重量子井戸構造となっている。なお、活性層23のうち電流注入領域27B(後述)との対向領域が発光領域となる。 The active layer 23 includes, for example, a well layer (not shown) composed of undoped In x4 Ga 1-x4 As or Al x4 Ga 1-x4 As (0 ≦ x4 <1) and undoped In x5 Ga 1-x5 As. Alternatively, it has a multiple quantum well structure in which barrier layers (not shown) composed of Al x5 Ga 1-x5 As (0 ≦ x4 <x5) are alternately laminated. The region of the active layer 23 facing the current injection region 27B (described later) is the light emitting region.
 スペーサ層24は、例えばn型Alx6Ga1-x6As(0≦x6<1)からなる。n型DBR層25は、低屈折率層(図示せず)および高屈折率層(図示せず)を交互に積層して構成されたものである。n型DBR層25において、低屈折率層は例えば光学厚さがλ0×1/4のn型Alx7Ga1-x7As(0<x7<1)からなり、高屈折率層は例えば光学厚さがλ0×1/4のn型Alx8Ga1-x8As(0≦x8<x7)からなる。n型DBR層25は、p型DBR層21と比較して、メサ部20A内の垂直共振器の発振波長λ0に対して大きな反射率を有するよう構成されている。n型DBR層25は、例えば、p型DBR層21と比較して厚く形成されている。n型コンタクト層26は、例えば、n型Alx9Ga1-x9As(0≦x9<1)からなる。スペーサ層24、n型DBR層25およびn型コンタクト層26におけるn型不純物としては、例えば、ケイ素(Si)が挙げられる。 The spacer layer 24 is made of, for example, n-type Al x6 Ga 1-x6 As (0 ≦ x6 <1). The n-type DBR layer 25 is formed by alternately laminating low refractive index layers (not shown) and high refractive index layers (not shown). In the n-type DBR layer 25, the low refractive index layer is composed of, for example, n-type Al x7 Ga 1-x7 As (0 <x7 <1) having an optical thickness of λ 0 × 1/4, and the high refractive index layer is, for example, optical. It is composed of n-type Al x8 Ga 1-x8 As (0 ≦ x8 <x7) having a thickness of λ 0 × 1/4. The n-type DBR layer 25 is configured to have a large reflectance with respect to the oscillation wavelength λ 0 of the vertical resonator in the mesa portion 20A as compared with the p-type DBR layer 21. The n-type DBR layer 25 is formed thicker than, for example, the p-type DBR layer 21. The n-type contact layer 26 is composed of, for example, n-type Al x9 Ga 1-x9 As (0 ≦ x9 <1). Examples of the n-type impurities in the spacer layer 24, the n-type DBR layer 25 and the n-type contact layer 26 include silicon (Si).
 エピタキシャル積層構造20は、p型DBR層21内、または、p型DBR層21とスペーサ層24との間に、電流狭窄層27を有している。電流狭窄層27は、電流注入領域27Bおよび電流狭窄領域27Aを有している。電流狭窄領域27Aは、電流注入領域27Bの周辺領域に形成されている。電流注入領域27Bは、例えばp型Alx10Ga1-x10As(0<x10≦1)からなる。電流狭窄領域27Aは、例えば、Al23(酸化アルミニウム)を含んで構成されており、例えば、被酸化層27D(後述)に含まれる高濃度のAlを、側面から酸化することにより得られる。従って、電流狭窄層27は電流を狭窄する機能を有している。 The epitaxial laminated structure 20 has a current constriction layer 27 in the p-type DBR layer 21 or between the p-type DBR layer 21 and the spacer layer 24. The current constriction layer 27 has a current injection region 27B and a current constriction region 27A. The current constriction region 27A is formed in a peripheral region of the current injection region 27B. The current injection region 27B is composed of, for example, p-type Al x10 Ga 1-x10 As (0 <x10 ≦ 1). The current constriction region 27A is composed of, for example, Al 2 O 3 (aluminum oxide), and can be obtained, for example, by oxidizing a high concentration of Al contained in the oxidized layer 27D (described later) from the side surface. .. Therefore, the current constriction layer 27 has a function of constricting the current.
 電極層31は、p型拡散領域11のうち、メサ部20A側の表面に接している。電極層31は、非合金によって構成されており、例えば、Ti、Pt、Auを基板10(p型拡散領域11)側から順に積層して構成された積層体となっている。電極層32は、合金を含んで構成されており、例えば、AuGe、Ni、Auをn型コンタクト層26側から順に積層して構成された積層体となっている。メサ部20Aの周囲には、絶縁層33が形成されている。絶縁層33は、メサ部20Aを保護するための層であり、例えば、SiO2、Si、SiO2の順に積層された積層体で構成されている。 The electrode layer 31 is in contact with the surface of the p-type diffusion region 11 on the mesa portion 20A side. The electrode layer 31 is made of a non-alloy, and is, for example, a laminated body formed by laminating Ti, Pt, and Au in order from the substrate 10 (p-type diffusion region 11) side. The electrode layer 32 is composed of an alloy, and is, for example, a laminated body formed by laminating AuGe, Ni, and Au in order from the n-type contact layer 26 side. An insulating layer 33 is formed around the mesa portion 20A. The insulating layer 33 is a layer for protecting the mesa portion 20A, and is composed of, for example, a laminated body in which SiO 2 , Si, and SiO 2 are laminated in this order.
[製造方法]
 次に、本実施の形態に係る面発光レーザ1の製造方法について説明する。図2~図7は、面発光レーザ1の製造手順の一例を表したものである。
[Production method]
Next, a method for manufacturing the surface emitting laser 1 according to the present embodiment will be described. 2 to 7 show an example of a manufacturing procedure of the surface emitting laser 1.
 まず、基板10(例えば半絶縁性半導体基板もしくは低ドープのp型半導体基板)上に、例えば、SiO2やSiNなどのマスク用誘電膜を形成し、その上に円形状のレジスト層を形成した後、誘電膜をエッチングし、不純物拡散時のマスク層110を形成する(図2)。次に、このマスク層110をマスクとして、不純物拡散を行うことにより、基板10の表面のうち、マスク層110で被覆されていない領域に、p型拡散領域11を形成する(図3)。その後、マスク層110を除去する。 First, a mask dielectric film such as SiO 2 or SiN was formed on a substrate 10 (for example, a semi-insulating semiconductor substrate or a low-doped p-type semiconductor substrate), and a circular resist layer was formed on the dielectric film for masking. After that, the dielectric film is etched to form the mask layer 110 when the impurities are diffused (FIG. 2). Next, by using the mask layer 110 as a mask and performing impurity diffusion, a p-type diffusion region 11 is formed on the surface of the substrate 10 in a region not covered with the mask layer 110 (FIG. 3). After that, the mask layer 110 is removed.
 次に、p型拡散領域11の形成された基板10上に、化合物半導体を、例えばMOCVD(Metal Organic Chemical Vapor Deposition :有機金属気相成長)法などのエピタキシャル結晶成長法により一括に形成する。この際、化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)などのメチル系有機金属ガスと、アルシン(AsH3)ガスを用い、ドナー不純物の原料としては、例えばジシラン(Si26)を用い、アクセプタ不純物の原料としては、例えば四臭化炭素(CBr4)を用いる。 Next, compound semiconductors are collectively formed on the substrate 10 on which the p-type diffusion region 11 is formed by an epitaxial crystal growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method. At this time, as raw materials for the compound semiconductor, for example, methylaluminum (TMAl), trimethylgallium (TMGa), trimethylindium (TMIn) and other methyl-based organometallic gases and arsine (AsH 3 ) gas are used, and donor impurities are used. As a raw material, for example, disilane (Si 2 H 6 ) is used, and as a raw material for acceptor impurities, for example, carbon tetrabromide (CBr 4 ) is used.
 基板10の表面上に、例えばMOCVD法などのエピタキシャル結晶成長法により、p型DBR層21、スペーサ層22、活性層23、スペーサ層24、n型DBR層25およびn型コンタクト層26を含むエピタキシャル積層構造20を形成する(図4)。このとき、基板10とp型DBR層21との間に、バッファ層などの他の層を形成してもよい。 Epitaxy containing a p-type DBR layer 21, a spacer layer 22, an active layer 23, a spacer layer 24, an n-type DBR layer 25, and an n-type contact layer 26 on the surface of the substrate 10 by an epitaxial crystal growth method such as the MOCVD method. The laminated structure 20 is formed (FIG. 4). At this time, another layer such as a buffer layer may be formed between the substrate 10 and the p-type DBR layer 21.
 次に、例えば、エピタキシャル積層構造20上に、円形状のレジスト層120を形成する(図5)。このとき、平面視したときに、基板10の表面のうち、少なくともp型拡散領域11の未形成の領域を覆うような大きさおよび位置に、レジスト層120を形成する。続いて、レジスト層120をマスクとして、エピタキシャル積層構造20を選択的にエッチングするとともに、基板(p型拡散領域11)に達する深さまでエピタキシャル積層構造20をエッチングする。このとき、例えばCl系ガスによるRIE(Reactive Ion Etching)を用いることが好ましい。このようにして、例えば、図6に示したように、柱状のメサ部20Aを形成する。このとき、メサ部20Aのすそ野には、p型拡散領域11が露出している。また、メサ部20Aの側面には、例えばAlAsからなる被酸化層27Dが露出している。その後、レジスト層120を除去する。 Next, for example, a circular resist layer 120 is formed on the epitaxial laminated structure 20 (FIG. 5). At this time, the resist layer 120 is formed at a size and position on the surface of the substrate 10 so as to cover at least the unformed region of the p-type diffusion region 11 when viewed in a plan view. Subsequently, the epitaxial laminated structure 20 is selectively etched using the resist layer 120 as a mask, and the epitaxial laminated structure 20 is etched to a depth reaching the substrate (p-type diffusion region 11). At this time, for example, it is preferable to use RIE (Reactive Ion Etching) using Cl-based gas. In this way, for example, as shown in FIG. 6, the columnar mesa portion 20A is formed. At this time, the p-type diffusion region 11 is exposed at the skirt of the mesa portion 20A. Further, an oxidized layer 27D made of, for example, AlAs is exposed on the side surface of the mesa portion 20A. After that, the resist layer 120 is removed.
 次に、水蒸気雰囲気中において、高温で酸化処理を行い、メサ部20Aの側面から被酸化層27Dに含まれるAlを選択的に酸化する。または、ウエット酸化法により、メサ部20Aの側面から被酸化層27Dに含まれるAlを選択的に酸化する。これにより、メサ部20A内において、被酸化層27Dの外縁領域が絶縁層(酸化アルミニウム)となり、電流狭窄層27が形成される(図7)。 Next, in a water vapor atmosphere, an oxidation treatment is performed at a high temperature to selectively oxidize Al contained in the oxidized layer 27D from the side surface of the mesa portion 20A. Alternatively, Al contained in the oxidized layer 27D is selectively oxidized from the side surface of the mesa portion 20A by a wet oxidation method. As a result, in the mesa portion 20A, the outer edge region of the oxidized layer 27D becomes an insulating layer (aluminum oxide), and the current constriction layer 27 is formed (FIG. 7).
 次に、メサ部20A(例えばn型コンタクト層26)の上面に接する電極層32を形成したのち、メサ部20Aを覆う絶縁層33を形成する。このとき、メサ部20Aのすそ野の所定の箇所に開口を形成しておく。この開口の底面には、p型拡散領域11が露出している。次に、この開口内に、p型拡散領域11の表面に接する電極層31を形成する。このようにして、面発光レーザ1が製造される。 Next, after forming the electrode layer 32 in contact with the upper surface of the mesa portion 20A (for example, the n-type contact layer 26), the insulating layer 33 covering the mesa portion 20A is formed. At this time, an opening is formed at a predetermined position in the skirt of the mesa portion 20A. The p-type diffusion region 11 is exposed on the bottom surface of this opening. Next, an electrode layer 31 in contact with the surface of the p-type diffusion region 11 is formed in this opening. In this way, the surface emitting laser 1 is manufactured.
[動作]
 このような構成の面発光レーザ1では、p型拡散領域11を介してp型DBR層21と電気的に接続された電極層31と、n型コンタクト層26を介してn型DBR層25と電気的に接続された電極層32との間に所定の電圧が印加されると、電流狭窄層27で狭窄された電流が活性層23に注入され、これにより電子と正孔の再結合による発光が生じる。その結果、メサ部20A内の垂直共振器により、発振波長λ0でレーザ発振が生じる。そして、p型DBR層21から漏れ出た光がビーム状のレーザ光Lとなって光出射面1Sから外部に出力される。
[motion]
In the surface emitting laser 1 having such a configuration, the electrode layer 31 electrically connected to the p-type DBR layer 21 via the p-type diffusion region 11 and the n-type DBR layer 25 via the n-type contact layer 26. When a predetermined voltage is applied between the electrically connected electrode layer 32 and the electrode layer 32, the current narrowed by the current narrowing layer 27 is injected into the active layer 23, whereby light emission due to recombination of electrons and holes is performed. Occurs. As a result, the vertical resonator in the mesa section 20A causes laser oscillation at an oscillation wavelength of λ 0. Then, the light leaked from the p-type DBR layer 21 becomes a beam-shaped laser beam L and is output to the outside from the light emitting surface 1S.
[効果]
 次に、本実施の形態に係る面発光レーザ1の効果について、説明する。
[effect]
Next, the effect of the surface emitting laser 1 according to the present embodiment will be described.
 面発光レーザにおいて、電極から基板側DBRへの通電経路として、基板と、基板側DBRとの間にコンタクト層が設けられることがある。この場合、コンタクト層は、電極と基板側DBRとの接触抵抗の低減と、電極から基板側DBR内へのキャリア輸送の両方を担うことになる。そのため、コンタクト層内の不純物による光吸収が生じてしまう。コンタクト層を薄くすることで、光吸収を低減することは可能ではあるが、そのようにした場合には、コンタクト層の抵抗値が上昇するため、駆動電圧が上昇してしまう。 In a surface emitting laser, a contact layer may be provided between the substrate and the substrate-side DBR as an energization path from the electrode to the substrate-side DBR. In this case, the contact layer is responsible for both reducing the contact resistance between the electrode and the substrate-side DBR and transporting the carrier from the electrode into the substrate-side DBR. Therefore, light absorption due to impurities in the contact layer occurs. Although it is possible to reduce light absorption by thinning the contact layer, in such a case, the resistance value of the contact layer rises, so that the drive voltage rises.
 一方、本実施の形態では、少なくともメサ部20Aの外縁と対向する領域からメサ部20Aのすそ野の領域にかけて、p型不純物濃度が相対的に高いp型拡散領域11が基板10に形成され、電極層31がp型拡散領域11に接する。これにより、p型拡散領域11が、電極層31からメサ部20A(p型DBR層21)への通電経路として機能する。このとき、p型拡散領域11を、メサ部20A側の表面のうち、少なくともメサ部20Aの中央と対向する領域を除く領域に形成することにより、p型拡散領域11内の不純物による光吸収を抑制することが可能である。従って、高光出力と低駆動電圧を両立することができる。 On the other hand, in the present embodiment, a p-type diffusion region 11 having a relatively high p-type impurity concentration is formed on the substrate 10 from at least the region facing the outer edge of the mesa portion 20A to the region of the skirt of the mesa portion 20A, and the electrode. The layer 31 is in contact with the p-type diffusion region 11. As a result, the p-type diffusion region 11 functions as an energization path from the electrode layer 31 to the mesa portion 20A (p-type DBR layer 21). At this time, by forming the p-type diffusion region 11 in a region of the surface on the mesa portion 20A side excluding at least the region facing the center of the mesa portion 20A, light absorption by impurities in the p-type diffusion region 11 is absorbed. It can be suppressed. Therefore, both high optical output and low drive voltage can be achieved at the same time.
 本実施の形態では、電極層31がp型拡散領域11の表面のうち、メサ部20Aのすそ野の領域に接している。これにより、基板10との位置関係で、光出射面1Sとは反対側の領域に、電極層31,33を設けることができるので、例えば、面発光レーザ1と、面発光レーザ1を駆動する回路を含む回路基板とを互いに貼り合わせることで、面発光レーザ1と、面発光レーザ1を駆動する回路との電気的なコンタクトを取ることができる。 In the present embodiment, the electrode layer 31 is in contact with the skirt region of the mesa portion 20A on the surface of the p-type diffusion region 11. As a result, the electrode layers 31 and 33 can be provided in the region opposite to the light emitting surface 1S in the positional relationship with the substrate 10, so that, for example, the surface emitting laser 1 and the surface emitting laser 1 are driven. By sticking the circuit boards including the circuit to each other, it is possible to make electrical contact between the surface emitting laser 1 and the circuit for driving the surface emitting laser 1.
 本実施の形態では、基板10が半絶縁性半導体基板もしくは低ドープのp型半導体基板となっている場合には、基板10での光吸収を抑えつつ、基板10によってメサ部20Aや電極層31を支持することができる。 In the present embodiment, when the substrate 10 is a semi-insulating semiconductor substrate or a low-doped p-type semiconductor substrate, the substrate 10 suppresses light absorption, and the substrate 10 causes the mesa portion 20A and the electrode layer 31. Can be supported.
<第2の実施の形態>
[構成]
 次に、本開示の第2の実施の形態に係る面発光レーザアレイ2について説明する。図8は、面発光レーザアレイ2の断面構成例を表したものである。図9は、面発光レーザアレイ2の上面構成例を表したものである。
<Second Embodiment>
[composition]
Next, the surface emitting laser array 2 according to the second embodiment of the present disclosure will be described. FIG. 8 shows an example of cross-sectional configuration of the surface emitting laser array 2. FIG. 9 shows an example of the upper surface configuration of the surface emitting laser array 2.
 面発光レーザアレイ2は、2次元配置された複数の面発光レーザ1を備えている。面発光レーザアレイ2は、基板10上に2次元配置された複数のメサ部20Aを備えており、さらに、メサ部20Aと共通の層構造(エピタキシャル積層構造20)を有する台座部20Bを備えている。台座部20Bの表面は絶縁層33で覆われており、台座部20Bの表面には、電極層31と接する引き出し配線34が設けられている。面発光レーザアレイ2では、各メサ部20Aで生成されたレーザ光Lが基板10の裏面から出射される。 The surface emitting laser array 2 includes a plurality of surface emitting lasers 1 arranged two-dimensionally. The surface emitting laser array 2 includes a plurality of mesa portions 20A two-dimensionally arranged on the substrate 10, and further includes a pedestal portion 20B having a layer structure (epitaxial laminated structure 20) common to the mesa portion 20A. There is. The surface of the pedestal portion 20B is covered with the insulating layer 33, and the surface of the pedestal portion 20B is provided with a lead-out wiring 34 in contact with the electrode layer 31. In the surface emitting laser array 2, the laser light L generated by each mesa portion 20A is emitted from the back surface of the substrate 10.
 本実施の形態では、各面発光レーザ1のp型拡散領域11が共通化されるとともに、各面発光レーザ1の電極層31が共通化されている。これにより、台座部20Bからの距離に応じた、電極層31およびp型拡散領域11による電圧ドロップが生じるのを低減している。例えば、p型拡散領域11が基板10の、メサ部20A側の表面のうち、各メサ部20Aの外縁と対向する領域から、各メサ部20Aのすそ野全体の領域にかけて形成されている。さらに、例えば、電極層31が、p型拡散領域11の表面のうち、各メサ部20Aおよび台座部20Bのすそ野全体の領域に接している。台座部20Bが、通電する際の電極Padとして機能する。 In the present embodiment, the p-type diffusion region 11 of each surface emitting laser 1 is shared, and the electrode layer 31 of each surface emitting laser 1 is shared. As a result, it is possible to reduce the occurrence of voltage drop due to the electrode layer 31 and the p-type diffusion region 11 according to the distance from the pedestal portion 20B. For example, the p-type diffusion region 11 is formed on the surface of the substrate 10 on the mesa portion 20A side from a region facing the outer edge of each mesa portion 20A to a region of the entire skirt of each mesa portion 20A. Further, for example, the electrode layer 31 is in contact with the entire skirt of each mesa portion 20A and the pedestal portion 20B on the surface of the p-type diffusion region 11. The pedestal portion 20B functions as an electrode pad when energized.
 以上、実施の形態およびその変形例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present disclosure has been described above with reference to the embodiments and examples thereof, the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible.
 例えば、上記各実施の形態では、p型拡散領域11は、メサ部20A側の表面のうち、少なくともメサ部20Aの中央と対向する領域を除く領域に形成されていた。しかし、例えば、上記各実施の形態において、p型拡散領域11が、メサ部20A側の表面のうち、少なくともメサ部20Aの中央と対向する領域にも形成されていてもよい。ただし、この場合には、p型拡散領域11において、メサ部20Aの中央と対向する領域のp型不純物濃度を、メサ部20Aの外縁と対向する領域のp型不純物濃度よりも十分に低くすることにより、p型拡散領域11内の不純物による光吸収を低減することができる。 For example, in each of the above embodiments, the p-type diffusion region 11 is formed in a region of the surface on the mesa portion 20A side, excluding at least a region facing the center of the mesa portion 20A. However, for example, in each of the above embodiments, the p-type diffusion region 11 may be formed in at least a region of the surface on the mesa portion 20A side facing the center of the mesa portion 20A. However, in this case, in the p-type diffusion region 11, the p-type impurity concentration in the region facing the center of the mesa portion 20A is sufficiently lower than the p-type impurity concentration in the region facing the outer edge of the mesa portion 20A. As a result, light absorption due to impurities in the p-type diffusion region 11 can be reduced.
 また、例えば、上記各実施の形態では、面発光レーザ1が、砒化物半導体によって形成されている場合が例示されていた。しかし、上記各実施の形態およびその変形例において、面発光レーザ1は、例えば、窒素(N)、ホウ素(B)、アンチモン(Sb)、リン(P)を含むIII-V族半導体によって形成されていてもよい。 Further, for example, in each of the above embodiments, the case where the surface emitting laser 1 is formed of an arsenic semiconductor has been exemplified. However, in each of the above embodiments and modifications thereof, the surface emitting laser 1 is formed of a group III-V semiconductor containing, for example, nitrogen (N), boron (B), antimony (Sb), and phosphorus (P). May be.
 また、例えば、上記各実施の形態およびその変形例では、面発光レーザ1が裏面出射型となっていたが、上面出射型となっていてもよい。この場合、電極層32は、例えば、少なくとも電流狭窄領域27Aと対向する領域に開口を有する環形状となっており、電極層32に設けられた開口の底面が、光出射面となっていてもよい。 Further, for example, in each of the above-described embodiments and modifications thereof, the surface emitting laser 1 is of the back surface emitting type, but it may be of the top surface emitting type. In this case, the electrode layer 32 has a ring shape having an opening at least in a region facing the current constriction region 27A, and even if the bottom surface of the opening provided in the electrode layer 32 is a light emitting surface. good.
 なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。 The effects described in this specification are merely examples. The effects of the present disclosure are not limited to the effects described herein. The present disclosure may have effects other than those described herein.
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 基板と、
 前記基板を結晶成長基板とするエピタキシャル結晶成長法により形成され、第1導電型DBR(distributed Bragg reflector)層、活性層、第2導電型DBR層および第2導電型コンタクト層をこの順に含むメサ部と、
 前記基板に接する第1電極層と、
 前記第2導電型コンタクト層に接する第2電極層と
 を備え、
 前記基板は、少なくとも前記メサ部の外縁と対向する領域から前記メサ部のすそ野の領域にかけて、第1導電型の不純物濃度が相対的に高い第1導電型拡散領域を有し、
 前記第1電極は、前記第1導電型拡散領域に接する
 面発光レーザ。
(2)
 前記第1導電型拡散領域は、前記メサ部側の表面のうち、少なくとも前記メサ部の中央と対向する領域を除く領域に形成される
 (1)に記載の面発光レーザ。
(3)
 前記第1電極層は、前記第1導電型拡散領域の表面のうち、前記メサ部のすそ野の領域に接する
 (1)または(2)に記載の面発光レーザ。
(4)
 前記基板は、半絶縁性半導体基板、または、第1導電型の不純物濃度が前記第1導電型拡散領域よりも低い低ドープ半導体基板である
 (1)ないし(3)のいずれか1つに記載の面発光レーザ。
Further, for example, the present disclosure may have the following structure.
(1)
With the board
A mesa portion formed by an epitaxial crystal growth method using the substrate as a crystal growth substrate, and containing a first conductive DBR (distributed Bragg reflector) layer, an active layer, a second conductive DBR layer, and a second conductive contact layer in this order. When,
The first electrode layer in contact with the substrate and
A second electrode layer in contact with the second conductive contact layer is provided.
The substrate has a first conductive diffusion region in which the concentration of impurities of the first conductive type is relatively high, at least from a region facing the outer edge of the mesa portion to a region at the base of the mesa portion.
The first electrode is a surface emitting laser in contact with the first conductive diffusion region.
(2)
The surface emitting laser according to (1), wherein the first conductive diffusion region is formed in a region of the surface on the mesa portion side, excluding at least a region facing the center of the mesa portion.
(3)
The surface emitting laser according to (1) or (2), wherein the first electrode layer is in contact with a region of the skirt of the mesa portion on the surface of the first conductive diffusion region.
(4)
The substrate is described in any one of (1) to (3), which is a semi-insulating semiconductor substrate or a low-doped semiconductor substrate having a first conductive type impurity concentration lower than that of the first conductive type diffusion region. Surface emitting laser.
 本開示の一実施形態に係る面発光レーザでは、少なくともメサ部の外縁と対向する領域からメサ部のすそ野の領域にかけて、第1導電型の不純物濃度が相対的に高い第1導電型拡散領域が基板に形成され、第1電極が第1導電型拡散領域に接する。これにより、第1導電型拡散領域が、第1電極から第1導電型DBR層への通電経路として機能する。このとき、第1導電型拡散領域を、メサ部側の表面のうち、少なくともメサ部の中央と対向する領域を除く領域に形成することにより、第1導電型拡散領域内の不純物による光吸収を抑制することが可能である。また、第1導電型拡散領域を、メサ部側の表面のうち、メサ部の中央と対向する領域にも形成した場合であっても、第1導電型拡散領域において、メサ部の中央と対向する領域の不純物濃度を、メサ部の外縁と対向する領域の不純物濃度よりも十分に低くすることにより、第1導電型拡散領域内の不純物による光吸収を低減することができる。従って、高光出力と低駆動電圧を両立することができる。 In the surface emitting laser according to the embodiment of the present disclosure, at least from the region facing the outer edge of the mesa portion to the region of the skirt of the mesa portion, the first conductive type diffusion region having a relatively high concentration of the first conductive type impurities is formed. It is formed on a substrate and the first electrode is in contact with the first conductive diffusion region. As a result, the first conductive diffusion region functions as an energization path from the first electrode to the first conductive DBR layer. At this time, by forming the first conductive diffusion region in a region of the surface on the mesa portion side excluding at least the region facing the center of the mesa portion, light absorption by impurities in the first conductive diffusion region is achieved. It can be suppressed. Further, even when the first conductive diffusion region is formed in the region of the surface on the mesa portion side facing the center of the mesa portion, the first conductive diffusion region faces the center of the mesa portion. By making the impurity concentration in the region facing the outer edge of the mesa portion sufficiently lower than the impurity concentration in the region facing the outer edge of the mesa portion, it is possible to reduce the light absorption due to the impurities in the first conductive diffusion region. Therefore, both high optical output and low drive voltage can be achieved at the same time.
 本出願は、日本国特許庁において2020年3月26日に出願された日本特許出願番号第2020-056047号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2020-056047 filed at the Japan Patent Office on March 26, 2020, and the entire contents of this application are referred to in this application. Incorporate for application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is something to be done.

Claims (4)

  1.  基板と、
     前記基板を結晶成長基板とするエピタキシャル結晶成長法により形成され、第1導電型DBR(distributed Bragg reflector)層、活性層、第2導電型DBR層および第2導電型コンタクト層をこの順に含むメサ部と、
     前記基板に接する第1電極層と、
     前記第2導電型コンタクト層に接する第2電極層と
     を備え、
     前記基板は、少なくとも前記メサ部の外縁と対向する領域から前記メサ部のすそ野の領域にかけて、第1導電型の不純物濃度が相対的に高い第1導電型拡散領域を有し、
     前記第1電極は、前記第1導電型拡散領域に接する
     面発光レーザ。
    With the board
    A mesa portion formed by an epitaxial crystal growth method using the substrate as a crystal growth substrate, and containing a first conductive DBR (distributed Bragg reflector) layer, an active layer, a second conductive DBR layer, and a second conductive contact layer in this order. When,
    The first electrode layer in contact with the substrate and
    A second electrode layer in contact with the second conductive contact layer is provided.
    The substrate has a first conductive diffusion region in which the concentration of impurities of the first conductive type is relatively high, at least from a region facing the outer edge of the mesa portion to a region at the base of the mesa portion.
    The first electrode is a surface emitting laser in contact with the first conductive diffusion region.
  2.  前記第1導電型拡散領域は、前記メサ部側の表面のうち、少なくとも前記メサ部の中央と対向する領域を除く領域に形成される
     請求項1に記載の面発光レーザ。
    The surface emitting laser according to claim 1, wherein the first conductive diffusion region is formed in a region of the surface on the mesa portion side, excluding at least a region facing the center of the mesa portion.
  3.  前記第1電極層は、前記第1導電型拡散領域の表面のうち、前記メサ部のすそ野の領域に接する
     請求項2に記載の面発光レーザ。
    The surface emitting laser according to claim 2, wherein the first electrode layer is in contact with a region of the skirt of the mesa portion on the surface of the first conductive diffusion region.
  4.  前記基板は、半絶縁性半導体基板、または、第1導電型の不純物濃度が前記第1導電型拡散領域よりも低い低ドープ半導体基板である
     請求項1に記載の面発光レーザ。
    The surface emitting laser according to claim 1, wherein the substrate is a semi-insulating semiconductor substrate or a low-doped semiconductor substrate having a first conductive type impurity concentration lower than that of the first conductive type diffusion region.
PCT/JP2021/011205 2020-03-26 2021-03-18 Surface-emitting laser WO2021193375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510052A JPWO2021193375A1 (en) 2020-03-26 2021-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056047 2020-03-26
JP2020-056047 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193375A1 true WO2021193375A1 (en) 2021-09-30

Family

ID=77891732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011205 WO2021193375A1 (en) 2020-03-26 2021-03-18 Surface-emitting laser

Country Status (2)

Country Link
JP (1) JPWO2021193375A1 (en)
WO (1) WO2021193375A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041627A (en) * 2013-08-20 2015-03-02 ウシオ電機株式会社 Semiconductor laser device
JP2015041688A (en) * 2013-08-21 2015-03-02 ウシオ電機株式会社 Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041627A (en) * 2013-08-20 2015-03-02 ウシオ電機株式会社 Semiconductor laser device
JP2015041688A (en) * 2013-08-21 2015-03-02 ウシオ電機株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JPWO2021193375A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US5557627A (en) Visible-wavelength semiconductor lasers and arrays
JP2001223384A (en) Semiconductor light-emitting element
CN211929898U (en) Vertical cavity surface emitting laser device
US6754245B2 (en) GaN series surface-emitting laser diode having spacer for effective diffusion of holes between p-type electrode and active layer, and method for manufacturing the same
US20110007769A1 (en) Laser diode
US20060193361A1 (en) Vertical cavity surface emitting laser device having a higher optical output power
US7852896B2 (en) Vertical cavity surface emitting laser
US20220393433A1 (en) Surface emission laser, surface emission laser array, electronic equipment, and surface emission laser manufacturing method
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
US20220224080A1 (en) Vertical cavity surface emitting laser device and manufacturing method thereof
JP2002204026A (en) Surface emitting device
US20010050935A1 (en) Surface emitting semiconductor laser device
US20060131557A1 (en) Optical semiconductor device and method for fabricating the same
WO2021177036A1 (en) Surface emitting laser
JP2007299897A (en) Surface-emitting laser element, surface-emitting laser array having same, and image forming apparatus, optical interconnection system and optical communication system of having respectively same laser element or same laser array
JP3785683B2 (en) Surface light emitting device
JP2006332623A (en) Semiconductor laser apparatus
WO2021193375A1 (en) Surface-emitting laser
US6501778B1 (en) Plane emission type semiconductor laser and method of manufacturing the same
WO2021187282A1 (en) Surface emitting laser
JP2011061083A (en) Semiconductor laser
JP2006253340A (en) Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
WO2023243298A1 (en) Vertical cavity surface-emitting laser element, and array of vertical cavity surface-emitting laser elements
WO2022091890A1 (en) Surface-emitting laser and surface-emitting laser array
JP2007299895A (en) Surface emitted laser element, surface emitted laser array having the same, electronic photographing system having surface emitted laser element or surface emitted laser array, optical interconnection system having surface emitted laser element or surface emitted laser array, and optical communication system having surface emitted laser element or surface emitted laser array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774405

Country of ref document: EP

Kind code of ref document: A1