WO2021193320A1 - Polarizing plate, method for producing same, and image display device using said polarizing plate - Google Patents

Polarizing plate, method for producing same, and image display device using said polarizing plate Download PDF

Info

Publication number
WO2021193320A1
WO2021193320A1 PCT/JP2021/010962 JP2021010962W WO2021193320A1 WO 2021193320 A1 WO2021193320 A1 WO 2021193320A1 JP 2021010962 W JP2021010962 W JP 2021010962W WO 2021193320 A1 WO2021193320 A1 WO 2021193320A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
polarizer
display device
pva
image display
Prior art date
Application number
PCT/JP2021/010962
Other languages
French (fr)
Japanese (ja)
Inventor
拓実 井ノ原
尾込 大介
直之 松尾
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227031132A priority Critical patent/KR20220131548A/en
Priority to CN202180024461.0A priority patent/CN115398287A/en
Publication of WO2021193320A1 publication Critical patent/WO2021193320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a polarizing plate, a method for producing the same, and an image display device using the polarizing plate.
  • a polarizing plate is often arranged on at least one side of a display cell due to the image forming method.
  • the polarizing plate has a problem of durability that the optical characteristics of the polarizer, which substantially controls the optical characteristics of the polarizing plate, are lowered in a high temperature and high humidity environment. More specifically, the polarizing element may lose its polarization performance at the end in a high temperature and high humidity environment, and as a result, a phenomenon of so-called color loss may occur.
  • narrower frames in some cases, so-called bezel-less
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to maintain excellent optical characteristics even in a high temperature and high humidity environment and prevent color loss, and a simple polarizing plate thereof.
  • the purpose is to provide a manufacturing method.
  • the polarizing plate according to the embodiment of the present invention is a single-wafered polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on at least one side of the polarizing element.
  • a polyenized portion is formed at the end of the polarizer.
  • the polyeneized portion is formed from the outer peripheral end of the polarizer to a position of 25 ⁇ m or more inward in the plane direction.
  • the polyeneized portion is formed from the outer peripheral end of the polarizer to a position of 1000 ⁇ m or less inward in the plane direction.
  • the polarizing plate is formed with a sealing portion that covers the outer peripheral end face.
  • the sealing portion is a melt-solidified resin film constituting the protective layer.
  • a method for manufacturing the above-mentioned polarizing plate includes cutting the end portion of the polarizing plate by laser irradiation; or irradiating the end face of the polarizing plate with an electron beam and then heating the irradiated portion.
  • an image display device is provided.
  • the image display device includes a display cell and the above-mentioned polarizing plate arranged on at least one side of the display cell.
  • a polarizing plate that maintains excellent optical characteristics even in a high temperature and high humidity environment and prevents color loss is provided. obtain.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention
  • FIG. 2 is a schematic plan view of a polarizer in the polarizing plate of FIG.
  • the polarizing plate 100 has a single-wafer shape, and has a polarizer 10, a first protective layer 20 arranged on one side of the polarizer 10, and a second protective layer arranged on the other side of the polarizer 10. Has 30 and. Either the first protective layer 20 or the second protective layer 30 may be omitted depending on the purpose and the like.
  • the polarizer 10 is made of a polyvinyl alcohol (PVA) -based resin film containing a dichroic substance (typically iodine or a dichroic dye).
  • a polyeneized portion 40 is formed at the end of the polarizer 10.
  • the polyene-ized portion 40 is a portion in which a polarizer (substantially, a PVA-based resin) is polyene-ized. More specifically, the polyene unit is, PVA system refers to three or more double bonds are formed partially by thermal decomposition in the resin, in the absorption spectrum of the Raman spectrometric measurement 1134 / cm -1 and 1527 / cm - It can be confirmed by the appearance of a peak at 1. Since polyene formation of a polarizer reduces or eliminates polarization performance, it is common general knowledge in the art that suppression or prevention of polyene formation of a polarizer is preferable.
  • a polarizer substantially, a PVA-based resin
  • the present inventors have surprisingly achieved high temperature and high temperature by intentionally polyeneizing the polarizer.
  • color loss in a moist environment can be remarkably suppressed, and have completed the present invention.
  • the present invention is based on a technical idea in a direction completely opposite to the common general technical idea in the industry, and the effect is an unexpectedly excellent effect obtained by trial and error based on such a technical idea. Is.
  • the polyeneized portion 40 is formed from the outer peripheral end of the polarizer 10 to a position of, for example, 25 ⁇ m or more.
  • the width W of the polyeneized portion is, for example, 25 ⁇ m or more.
  • the width W of the polyeneized portion is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, further preferably 150 ⁇ m or more, particularly preferably 200 ⁇ m or more, and particularly preferably 500 ⁇ m or more.
  • the width W of the polyeneized portion is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, from the viewpoint of preventing adverse effects on the optical characteristics of the polarizer and the display characteristics of the image display device.
  • the width of the polyeneized portion is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, from the viewpoint of preventing adverse effects on the optical characteristics of the polarizer and the display characteristics of the image display device.
  • the single transmittance of the polyeneized portion is preferably 25% to 45%, more preferably 35% to 45%.
  • the degree of polarization of the polyeneized portion is preferably 90% or more, more preferably 98% or more. It is practically difficult to structurally and quantitatively specify the degree of polyene formation in the polyene formation portion, and the single transmittance and the degree of polarization can be indicators of the degree of polyene formation. That is, the degree of deterioration of the polarization performance of the polarizer can be an index of the degree of polyene.
  • the polarizing plate 100 may be formed with a sealing portion 50 that covers the outer peripheral end face.
  • the sealing portion 50 is typically a melt-solidified resin film constituting the first protective layer 20 and / or the second protective layer 30.
  • Moisture permeability of the sealing portion is preferably not more than 300g / m 2 / 24hr, more preferably not more than 100g / m 2 / 24hr, more preferably not more than 50g / m 2 / 24hr, particularly preferably 25g / m 2 / 24hr or less.
  • the lower limit of the moisture permeability for example, 0.01g / m 2 / 24hr, and preferably below the detection limit.
  • the moisture permeability can be measured according to JIS Z0208.
  • the thickness of the sealing portion 50 is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m.
  • the "thickness of the sealing portion" is the thickness in the direction extending outward from the outer peripheral end surface of the polarizing plate, unless otherwise specified.
  • the polarizing plate according to the embodiment of the present invention has a color loss amount of preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less after being held in a 65 ° C. and 90% RH environment for 240 hours. It is particularly preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the lower limit of the amount of color loss is preferably zero.
  • the amount of color loss can be calculated, for example, as follows: A test piece of a predetermined size having two sides opposite to each other in the direction orthogonal to the stretching direction and the stretching direction is cut out from the polarizing plate (or the polarizer).
  • the stretching direction typically corresponds to the absorption axis direction of the polarizer.
  • the stretching direction may correspond to, for example, the elongated direction of the polarizing plate (conveying direction (MD direction)).
  • the test piece is attached to a non-alkali glass plate of the same size with an adhesive.
  • This is used as a substitute for an image display device.
  • the visible side test piece and the back side test piece are attached to both sides of the glass plate, respectively.
  • the organic EL display device only the visual inspection piece is attached to one side of the glass plate.
  • This image display device substitute is left to heat and humidify in an oven at 65 ° C. and 90% RH for 240 hours.
  • the state of color loss at the edges after heating and humidification is examined with a microscope.
  • the organic EL display device substitute As for the organic EL display device substitute, when the organic EL display device substitute after heating and humidification is placed in the state of the standard polarizing plate and the cross Nicol, the state of color loss at the end is examined with a microscope. In any case, specifically, the size of color loss (color loss amount: ⁇ m) from the end of the test piece (polarizing plate or polarizer) is measured. As shown in FIG. 3, the larger of the color loss amount a from the end portion in the stretching direction and the color loss amount b from the end portion in the direction orthogonal to the stretching direction is defined as the color loss amount. It should be noted that the color-excluded region has extremely low polarization characteristics and does not substantially function as a polarizing plate.
  • the polarizing element is composed of a PVA-based resin film containing a dichroic substance (typically, iodine or a dichroic dye).
  • the dichroic substance is preferably iodine.
  • the polarizer may be formed of a single-layer resin film or may be formed of a laminate of two or more layers.
  • the polarizer formed from the single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
  • PVA polyvinyl alcohol
  • a partially formalized PVA-based film ethylene / vinyl acetate copolymer system partially saponified film
  • examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
  • the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed.
  • the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
  • the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
  • Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material.
  • the polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution.
  • a high temperature eg, 95 ° C. or higher
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective film for the polarizer), or the resin base material is peeled off from the resin base material / polarizer laminate. Then, any suitable protective film according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
  • any suitable resin can be adopted as the PVA-based resin that forms the PVA-based resin film.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.9 mol%, and more preferably 99.0 mol% to 99.5 mol%. ..
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the iodine concentration in the PVA-based resin film (polarizer) is, for example, 5.0% by weight to 12.0% by weight.
  • the boric acid concentration in the PVA-based resin film is, for example, 12% by weight to 25% by weight.
  • the thickness of the polarizer is, for example, 12 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, still more preferably 6 ⁇ m or less. On the other hand, the thickness of the polarizer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the simple substance transmittance of the polarizer (excluding the polyeneized portion) is preferably 40.0% to 46.0%, more preferably 40.5% to 43.0%.
  • the degree of polarization of the polarizer (excluding the polyeneized portion) is preferably 99.9% or more, more preferably 99.95% or more, and further preferably 99.98% or more.
  • the first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizer.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based.
  • TAC triacetyl cellulose
  • thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
  • a vitreous polymer such as a siloxane-based polymer can also be mentioned.
  • the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
  • the polymer film can be, for example, an extruded product of the above resin composition.
  • the thickness of the protective layer (outer protective layer) arranged on the side opposite to the display cell is typically 300 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 100 ⁇ m or less. It is 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
  • the thickness of the protective layer (inner protective layer) arranged on the display cell side when the polarizing plate 100 is applied to the image display device is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and further preferably 10 ⁇ m to 60 ⁇ m. be.
  • the inner protective layer is preferably optically isotropic.
  • optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say.
  • the inner protective layer is a retardation layer having any suitable retardation value.
  • the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is, for example, 40 ° to 50 °.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
  • the manufacturing method includes cutting the end portion of the polarizing plate by laser irradiation.
  • a polyeneized portion 40 can be formed at the end portion (that is, the cut portion), and the sealing portion 50 can also be formed at the same time. More specifically, when the end portion of the polarizing plate is cut by laser irradiation, the laser-irradiated portion of the polarizer is thermally decomposed to form a polyene.
  • the laser-irradiated portion exists in both the cut portion of the polarizer and the polarizer remaining after cutting, and the polarizer remaining after cutting has a polyene at the end of the polarizer because the end portion thereof becomes the laser-irradiated portion. A conversion part is formed.
  • the laser irradiation melts the protective layer (substantially, the resin film constituting the protective layer) of the irradiated portion, and the molten resin flows to cover the end face of the polarizing plate and then solidifies. As a result, a sealing portion made of a melt-solidified resin film constituting the protective layer is formed.
  • Examples of the laser light source that can be used for laser irradiation include an infrared laser including a CO 2 laser light source in which the wavelength of the oscillating laser light is 9 ⁇ m to 11 ⁇ m in the infrared region.
  • Infrared lasers can easily obtain power of several tens of watts, and further, by efficiently generating heat by molecular vibration accompanying infrared absorption of a polarizing plate (substantially, a polarizing element), a phase transition of a substance is performed. It is possible to cause the etching that accompanies.
  • a laser light source that can be used for laser irradiation is a CO laser light source in which the wavelength of the oscillating laser light is in the vicinity of 5 ⁇ m.
  • a laser light source is a near infrared (NIR), visible light (Vis) and ultraviolet (UV) pulsed laser light source.
  • NIR near infrared
  • Vis and UV pulse laser light sources the wavelength of the oscillating laser light is 1064 nm, 532 nm, 355 nm, 349 nm or 266 nm (Nd: YAG, Nd: YLF, or YVO 4 as a medium).
  • an excimer laser light source having an oscillating laser light wavelength of 351 nm, 248 nm, 222 nm, 193 nm or 157 nm, and an F 2 laser light source having an oscillating laser light wavelength of 157 nm can be exemplified.
  • pulse oscillation is preferable to continuous wave (CW) from the viewpoint of suppressing excessive thermal damage of the polarizer.
  • the pulse width can be appropriately set in the range of 10 femtoseconds (10-14 seconds) to 1 millisecond ( 10-3 seconds). It is also possible to set two or more types of pulse widths for processing.
  • There are no restrictions on the polarization state of the laser light and linearly polarized light, circularly polarized light, and randomly polarized light can be applied.
  • a Gaussian beam that exhibits good light-collecting property, can be made into small spots, and is expected to improve productivity is preferable. It may be shaped into a flat top beam using a diffractive optical element or the like.
  • the irradiation conditions of the laser light can be set to any suitable conditions.
  • the pulse energy is preferably 2.67 mJ to 6.67 mJ, more preferably 4.00 mJ to 6.00 mJ.
  • the scanning speed is preferably 100 mm / sec to 1000 mm / sec, more preferably 250 mm / sec to 700 mm / sec.
  • the repetition frequency is, for example, 5 kHz to 30 Hz.
  • the input energy of the pulse laser is preferably 80,000 ⁇ J / mm to 200,000 ⁇ J / mm, and more preferably 120,000 ⁇ J / mm to 180,000 ⁇ J / mm.
  • the laser light irradiation form can be appropriately set according to the purpose.
  • the laser light may be scanned in a linear shape, in an S shape, in a spiral shape, or in combination thereof, for example.
  • the degree and width of the polyene formation of the polyene formation portion, the thickness of the sealing portion, and the like can be adjusted.
  • the manufacturing method includes irradiating the end face of the polarizing plate with an electron beam and then heating the irradiated portion.
  • the electron beam can typically irradiate the end face of the polarizing plate.
  • the processing speed is preferably 1 m / min to 10 m / min, more preferably 2 m / min to 5 m / min.
  • the beam current is preferably 5 mA to 30 mA, more preferably 12.5 mA to 17.5 mA.
  • the efficiency coefficient K of electron beam irradiation is preferably 60 to 130, and more preferably 80 to 120.
  • the efficiency coefficient is a numerical value determined by the acceleration voltage, but the correspondence between the acceleration voltage and the efficiency coefficient differs for each device.
  • the dose of the electron beam is preferably 200 kGy to 1000 kGy, more preferably 250 kGy to 500 kGy.
  • the heating temperature is preferably 80 ° C. or higher, more preferably 90 ° C. to 130 ° C., and even more preferably 100 ° C. to 120 ° C.
  • the heating time is preferably 10 hours or more, more preferably 15 hours to 30 hours, and even more preferably 22 hours to 26 hours. Under such heating conditions, a polyene-formed portion having a desired degree of polyeneization and width and a sealing portion having a desired thickness can be formed.
  • the polarizing plate according to the above items A and B can be applied to an image display device. Therefore, such an image display device is also included in the embodiment of the present invention.
  • the image display device includes a display cell and the polarizing plate according to items A and B arranged on at least one side of the display cell. Examples of the image display device include a liquid crystal display device and an organic electroluminescence (EL) display device. Since the configuration of the image display device is well known in the industry, detailed description thereof will be omitted.
  • Example 1 Fabrication of Polarizer
  • a thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of about 75 ° C. was used, and one side of the resin base material was treated with corona. Was given. 100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer”) are mixed at a ratio of 9: 1.
  • a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m to prepare a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
  • a cycloolefin-based film (manufactured by ZEON Corporation, 17 ⁇ m) is applied as a protective layer on the surface of the polarizer obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. And pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 ⁇ m, and bonded using a roll machine. Then, UV light was irradiated from the cycloolefin film side to cure the adhesive. Next, an acrylic film (manufactured by Toyo Kohan Co., Ltd., 40 ⁇ m) was attached to the exposed surface of the polarizer by peeling off the resin base material in the same manner as described above. In this way, a polarizing plate having a cycloolefin-based film (protective layer) / polarizer / acrylic-based film (protective layer) was obtained.
  • the polarizing plate was heated at 105 ° C. for 24 hours to form a polyeneized portion at the end of the polarizer.
  • the width of the polyeneized portion was 250 ⁇ m.
  • the width of the polyeneized portion was measured from an image taken with a microscope. As described above, a polarizing plate on which the polyeneized portion was formed was produced.
  • Two polarizing plates on which the polyeneized portion obtained above was formed were prepared, and these were used as test pieces.
  • Two test pieces were bonded to both sides of a non-alkali glass plate of the same size with an adhesive to prepare a laminated body of a visual side test piece / glass plate / back side test piece, which was used as a substitute for an image display device.
  • the visible side test piece and the back side test piece were attached to a glass plate so that the absorption axes of the respective polarizers were orthogonal to each other.
  • the image display device substitute was left in an oven at 65 ° C.
  • Example 2 A polarizing plate in which the polyeneized portion was formed was produced in the same manner as in Example 1 except that the polyeneized portion was formed as follows. The width of the polyeneized portion was 30 ⁇ m. It was also confirmed that the sealing portion was formed at the same time as the formation of the polyeneized portion. Moisture permeability of the sealing portion is 18g / m 2 / 24hr, the thickness was about 13 .mu.m. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
  • a 20 cm ⁇ 30 cm polarizing plate is prepared, and by irradiating the central portion of the polarizing plate with pulsed laser light, a 50 mm ⁇ 50 mm size single-wafer shape having two sides opposite to each other in the stretching direction and the stretching direction.
  • the polarizing plate was cut out.
  • the laser light irradiation conditions were an output of 85 W, a pulse frequency of 15 kHz, and a processing speed of 15 mm / s.
  • Example 1 A polarizing plate was produced in the same manner as in Example 1 except that neither electron beam irradiation nor subsequent heat treatment was performed. No polyene formation was formed on the polarizing plate. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A polarizing plate was produced in the same manner as in Example 1 except that the heat treatment after the electron beam irradiation was not performed. No polyene formation was formed on the polarizing plate. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
  • the polarizing plate according to the embodiment of the present invention is suitably used for an image display device (for example, a liquid crystal display device, an organic EL display device, a quantum dot display device).
  • an image display device for example, a liquid crystal display device, an organic EL display device, a quantum dot display device.
  • Polarizer 10 Polarizer 20 First protective layer 30 Second protective layer 40 Polyene conversion part 50 Sealing part 100 Polarizing plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laser Beam Processing (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides a polarizing plate which maintains excellent optical characteristics even in a high-temperature high-humidity environment, while being prevented from color loss. A polarizing plate according to the present invention comprises: a sheet-like polarizer which is configured from a polyvinyl alcohol resin film that contains a dichroic substance; and a protective layer which is arranged on at least one side of the polarizer. With respect to this polarizing plate, a polyene formation part is formed at an end of the polarizer.

Description

偏光板およびその製造方法、ならびに該偏光板を用いた画像表示装置A polarizing plate, a method for manufacturing the same, and an image display device using the polarizing plate.
 本発明は、偏光板およびその製造方法、ならびに該偏光板を用いた画像表示装置に関する。 The present invention relates to a polarizing plate, a method for producing the same, and an image display device using the polarizing plate.
 画像表示装置(例えば、液晶表示装置、有機EL表示装置、量子ドット表示装置)には、その画像形成方式に起因して、多くの場合、表示セルの少なくとも一方の側に偏光板が配置されている。しかし、偏光板は、実質的に偏光板の光学特性を支配する偏光子の光学特性が高温高湿環境下で低下するという耐久性の問題がある。より具体的には、偏光子は、高温高湿環境下において端部の偏光性能が消失し、結果として、いわゆる色抜けという現象が生じる場合がある。近年、画像表示装置の狭額縁化(場合によっては、いわゆるベゼルレス化)の要望が強まっており、端部の色抜け防止の必要性が高まっている。 In an image display device (for example, a liquid crystal display device, an organic EL display device, a quantum dot display device), a polarizing plate is often arranged on at least one side of a display cell due to the image forming method. There is. However, the polarizing plate has a problem of durability that the optical characteristics of the polarizer, which substantially controls the optical characteristics of the polarizing plate, are lowered in a high temperature and high humidity environment. More specifically, the polarizing element may lose its polarization performance at the end in a high temperature and high humidity environment, and as a result, a phenomenon of so-called color loss may occur. In recent years, there has been an increasing demand for narrower frames (in some cases, so-called bezel-less) of image display devices, and there is an increasing need to prevent color loss at the edges.
特開2000-338329号公報Japanese Unexamined Patent Publication No. 2000-338329
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高温高湿環境下においても優れた光学特性を維持し、色抜けが防止された偏光板およびその簡便な製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to maintain excellent optical characteristics even in a high temperature and high humidity environment and prevent color loss, and a simple polarizing plate thereof. The purpose is to provide a manufacturing method.
 本発明の実施形態による偏光板は、枚葉状であり、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成された偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、該偏光子の端部にポリエン化部が形成されている。
 1つの実施形態においては、上記ポリエン化部は、上記偏光子の外周端から面方向内方に25μm以上の位置まで形成されている。1つの実施形態においては、上記ポリエン化部は、上記偏光子の外周端から面方向内方に1000μm以下の位置まで形成されている。
 1つの実施形態においては、上記偏光板には、外周端面を覆う封止部が形成されている。1つの実施形態においては、上記封止部は、上記保護層を構成する樹脂フィルムの溶融固化物である。
 本発明の別の局面によれば、上記の偏光板の製造方法が提供される。この製造方法は、偏光板の端部をレーザー照射により切断すること;あるいは、偏光板の端面に電子線を照射した後、該照射部分を加熱すること;を含む。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、表示セルと、該表示セルの少なくとも一方の側に配置された上記の偏光板と、を備える。
The polarizing plate according to the embodiment of the present invention is a single-wafered polarizing element made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on at least one side of the polarizing element. A polyenized portion is formed at the end of the polarizer.
In one embodiment, the polyeneized portion is formed from the outer peripheral end of the polarizer to a position of 25 μm or more inward in the plane direction. In one embodiment, the polyeneized portion is formed from the outer peripheral end of the polarizer to a position of 1000 μm or less inward in the plane direction.
In one embodiment, the polarizing plate is formed with a sealing portion that covers the outer peripheral end face. In one embodiment, the sealing portion is a melt-solidified resin film constituting the protective layer.
According to another aspect of the present invention, there is provided a method for manufacturing the above-mentioned polarizing plate. This manufacturing method includes cutting the end portion of the polarizing plate by laser irradiation; or irradiating the end face of the polarizing plate with an electron beam and then heating the irradiated portion.
According to another aspect of the present invention, an image display device is provided. The image display device includes a display cell and the above-mentioned polarizing plate arranged on at least one side of the display cell.
 本発明の実施形態によれば、偏光子の端部にポリエン化部を形成することにより、高温高湿環境下においても優れた光学特性を維持し、色抜けが防止された偏光板が提供され得る。 According to the embodiment of the present invention, by forming a polyeneized portion at the end of the polarizer, a polarizing plate that maintains excellent optical characteristics even in a high temperature and high humidity environment and prevents color loss is provided. obtain.
本発明の1つの実施形態による偏光板の概略断面図である。It is a schematic cross-sectional view of the polarizing plate according to one Embodiment of this invention. 図1の偏光板における偏光子の概略平面図である。It is a schematic plan view of the polarizer in the polarizing plate of FIG. 色抜け量の算出を説明するための模式図である。It is a schematic diagram for demonstrating the calculation of the amount of color loss.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.偏光板の全体構成
 図1は、本発明の1つの実施形態による偏光板の概略断面図であり;図2は、図1の偏光板における偏光子の概略平面図である。偏光板100は、枚葉状であり、偏光子10と、偏光子10の一方の側に配置された第1の保護層20と、偏光子10の他方の側に配置された第2の保護層30とを有する。目的等に応じて、第1の保護層20または第2の保護層30のいずれか一方は省略されてもよい。偏光子10は、二色性物質(代表的には、ヨウ素、二色性染料)を含むポリビニルアルコール(PVA)系樹脂フィルムで構成されている。本発明の実施形態においては、偏光子10の端部には、ポリエン化部40が形成されている。
A. Overall Configuration of Polarizing Plate FIG. 1 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention; FIG. 2 is a schematic plan view of a polarizer in the polarizing plate of FIG. The polarizing plate 100 has a single-wafer shape, and has a polarizer 10, a first protective layer 20 arranged on one side of the polarizer 10, and a second protective layer arranged on the other side of the polarizer 10. Has 30 and. Either the first protective layer 20 or the second protective layer 30 may be omitted depending on the purpose and the like. The polarizer 10 is made of a polyvinyl alcohol (PVA) -based resin film containing a dichroic substance (typically iodine or a dichroic dye). In the embodiment of the present invention, a polyeneized portion 40 is formed at the end of the polarizer 10.
 ポリエン化部40は、名称のとおり偏光子(実質的には、PVA系樹脂)がポリエン化した部分である。より詳細には、ポリエン化部は、PVA系樹脂において熱分解等により3つ以上の二重結合が形成された部分をいい、ラマン分光測定の吸収スペクトルにおいて1134/cm-1および1527/cm-1にピークが現れることにより確認され得る。偏光子のポリエン化は偏光性能を低下または消失させるので、偏光子のポリエン化の抑制または防止が好ましいことは当業界の技術常識である。本発明者らは高温高湿環境下における偏光子(最終的には、画像表示装置)の色抜けに対して鋭意検討した結果、驚くべきことに、あえて偏光子をポリエン化することにより高温高湿環境下における色抜けが顕著に抑制され得ることを見出し、本発明を完成するに至った。このように、本発明は業界の技術常識とは全く逆方向の技術的思想に基づくものであり、その効果は、そのような技術的思想に基づく試行錯誤により得られた予期せぬ優れた効果である。 As the name suggests, the polyene-ized portion 40 is a portion in which a polarizer (substantially, a PVA-based resin) is polyene-ized. More specifically, the polyene unit is, PVA system refers to three or more double bonds are formed partially by thermal decomposition in the resin, in the absorption spectrum of the Raman spectrometric measurement 1134 / cm -1 and 1527 / cm - It can be confirmed by the appearance of a peak at 1. Since polyene formation of a polarizer reduces or eliminates polarization performance, it is common general knowledge in the art that suppression or prevention of polyene formation of a polarizer is preferable. As a result of diligent studies on color loss of the polarizer (eventually, an image display device) in a high-temperature and high-humidity environment, the present inventors have surprisingly achieved high temperature and high temperature by intentionally polyeneizing the polarizer. We have found that color loss in a moist environment can be remarkably suppressed, and have completed the present invention. As described above, the present invention is based on a technical idea in a direction completely opposite to the common general technical idea in the industry, and the effect is an unexpectedly excellent effect obtained by trial and error based on such a technical idea. Is.
 ポリエン化部40は、偏光子10の外周端から例えば25μm以上の位置まで形成されている。言い換えれば、ポリエン化部の幅Wは、例えば25μm以上である。幅がこのような範囲であれば、高温高湿環境下における色抜けが顕著に抑制された偏光子を得ることができる。ポリエン化部の幅Wは、好ましくは50μm以上であり、より好ましくは100μm以上であり、さらに好ましくは150μm以上であり、特に好ましくは200μm以上であり、とりわけ好ましくは500μm以上である。一方、ポリエン化部の幅Wは、偏光子の光学特性および画像表示装置の表示特性に対する悪影響を防止する観点から、好ましくは1000μm以下であり、より好ましくは800μm以下である。このように、ポリエン化部の幅を所定範囲とすることにより、偏光子の光学特性および画像表示装置の表示特性に悪影響を与えることなく、高温高湿環境下における色抜けが顕著に抑制された偏光子を得ることができる。 The polyeneized portion 40 is formed from the outer peripheral end of the polarizer 10 to a position of, for example, 25 μm or more. In other words, the width W of the polyeneized portion is, for example, 25 μm or more. When the width is in such a range, it is possible to obtain a polarizer in which color loss is remarkably suppressed in a high temperature and high humidity environment. The width W of the polyeneized portion is preferably 50 μm or more, more preferably 100 μm or more, further preferably 150 μm or more, particularly preferably 200 μm or more, and particularly preferably 500 μm or more. On the other hand, the width W of the polyeneized portion is preferably 1000 μm or less, more preferably 800 μm or less, from the viewpoint of preventing adverse effects on the optical characteristics of the polarizer and the display characteristics of the image display device. By setting the width of the polyeneized portion within a predetermined range in this way, color loss in a high temperature and high humidity environment is remarkably suppressed without adversely affecting the optical characteristics of the polarizer and the display characteristics of the image display device. A polarizer can be obtained.
 ポリエン化部の単体透過率は、好ましくは25%~45%であり、より好ましくは35%~45%である。ポリエン化部の偏光度は、好ましくは90%以上であり、より好ましくは98%以上である。ポリエン化部のポリエン化度を構造的・定量的に特定することは実質的に困難であり、単体透過率および偏光度がポリエン化度の指標となり得る。すなわち、偏光子の偏光性能の低下度合いがポリエン化度の指標となり得る。ポリエン化部における単体透過率および偏光度をこのような範囲に調整することにより、偏光子の光学特性および画像表示装置の表示特性に悪影響を与えることなく、高温高湿環境下における色抜けが顕著に抑制された偏光子を得ることができる。 The single transmittance of the polyeneized portion is preferably 25% to 45%, more preferably 35% to 45%. The degree of polarization of the polyeneized portion is preferably 90% or more, more preferably 98% or more. It is practically difficult to structurally and quantitatively specify the degree of polyene formation in the polyene formation portion, and the single transmittance and the degree of polarization can be indicators of the degree of polyene formation. That is, the degree of deterioration of the polarization performance of the polarizer can be an index of the degree of polyene. By adjusting the single transmittance and the degree of polarization in the polyeneized part to such a range, color loss is remarkable in a high temperature and high humidity environment without adversely affecting the optical characteristics of the polarizer and the display characteristics of the image display device. It is possible to obtain a polarizer that is suppressed to polyene.
 1つの実施形態においては、偏光板100には、外周端面を覆う封止部50が形成されていてもよい。封止部を形成することにより、高温高湿環境下における色抜けがさらに抑制され得る。封止部50は、代表的には、第1の保護層20および/または第2の保護層30を構成する樹脂フィルムの溶融固化物である。封止部の透湿度は、好ましくは300g/m/24hr以下であり、より好ましくは100g/m/24hr以下であり、さらに好ましくは50g/m/24hr以下であり、特に好ましくは25g/m/24hr以下である。透湿度の下限は、例えば0.01g/m/24hrであり、好ましくは検出限界未満である。封止部50の透湿度がこのような範囲であれば、偏光子を空気中の水分および酸素から良好に保護し得る。なお、透湿度は、JIS Z0208に準じて測定され得る。 In one embodiment, the polarizing plate 100 may be formed with a sealing portion 50 that covers the outer peripheral end face. By forming the sealing portion, color loss in a high temperature and high humidity environment can be further suppressed. The sealing portion 50 is typically a melt-solidified resin film constituting the first protective layer 20 and / or the second protective layer 30. Moisture permeability of the sealing portion is preferably not more than 300g / m 2 / 24hr, more preferably not more than 100g / m 2 / 24hr, more preferably not more than 50g / m 2 / 24hr, particularly preferably 25g / m 2 / 24hr or less. The lower limit of the moisture permeability, for example, 0.01g / m 2 / 24hr, and preferably below the detection limit. When the moisture permeability of the sealing portion 50 is within such a range, the polarizer can be well protected from moisture and oxygen in the air. The moisture permeability can be measured according to JIS Z0208.
 封止部50の厚みは、好ましくは1μm~1000μmであり、より好ましくは5μm~300μmである。本明細書において「封止部の厚み」とは、特に明記しない限り、偏光板の外周端面から外側に延びる方向の厚みである。 The thickness of the sealing portion 50 is preferably 1 μm to 1000 μm, more preferably 5 μm to 300 μm. In the present specification, the "thickness of the sealing portion" is the thickness in the direction extending outward from the outer peripheral end surface of the polarizing plate, unless otherwise specified.
 本発明の実施形態による偏光板は、65℃および90%RH環境下で240時間保持した後の色抜け量が、好ましくは100μm以下であり、より好ましくは50μm以下であり、さらに好ましくは40μm以下であり、特に好ましくは30μm以下であり、とりわけ好ましくは10μm以下である。色抜け量の下限は好ましくはゼロである。色抜け量は、例えば以下のようにして算出され得る:偏光板(または偏光子)から、延伸方向に直交する方向および延伸方向をそれぞれ対向する二辺とする所定サイズの試験片を切り出す。なお、延伸方向は、代表的には偏光子の吸収軸方向に対応する。延伸方向は、例えば偏光板の長尺方向(搬送方向(MD方向))に対応し得る。次いで、粘着剤で試験片を同じサイズの無アルカリガラス板に貼り合わせる。これを画像表示装置代替品とする。なお、液晶表示装置代替品は、ガラス板の両面に視認側試験片および背面側試験片をそれぞれ貼り合わせる。有機EL表示装置代替品は、ガラス板の片面に視認側試験片のみを貼り合わせる。この画像表示装置代替品を65℃および90%RHのオーブン内で240時間放置して加熱加湿する。液晶表示装置代替品は、加熱加湿後の端部の色抜け状態を顕微鏡により調べる。有機EL表示装置代替品は、加熱加湿後の有機EL表示装置代替品を標準偏光板とクロスニコルの状態に配置した時の、端部の色抜け状態を顕微鏡により調べる。いずれの場合にも、具体的には、試験片(偏光板または偏光子)端部からの色抜けの大きさ(色抜け量:μm)を測定する。図3に示すように、延伸方向の端部からの色抜け量aおよび延伸方向と直交する方向の端部からの色抜け量bのうち、大きい方を色抜け量とする。なお、色抜けした領域は偏光特性が著しく低く、偏光板としての機能を実質的に果たさない。したがって、色抜け量は小さければ小さいほど好ましい。本発明の実施形態によれば、上記のとおり、偏光子の端部をあえてポリエン化することにより、加熱加湿試験後の色抜けを顕著に抑制することができる。これは、当業界の技術常識からは全く予期できない優れた効果である。 The polarizing plate according to the embodiment of the present invention has a color loss amount of preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less after being held in a 65 ° C. and 90% RH environment for 240 hours. It is particularly preferably 30 μm or less, and particularly preferably 10 μm or less. The lower limit of the amount of color loss is preferably zero. The amount of color loss can be calculated, for example, as follows: A test piece of a predetermined size having two sides opposite to each other in the direction orthogonal to the stretching direction and the stretching direction is cut out from the polarizing plate (or the polarizer). The stretching direction typically corresponds to the absorption axis direction of the polarizer. The stretching direction may correspond to, for example, the elongated direction of the polarizing plate (conveying direction (MD direction)). Next, the test piece is attached to a non-alkali glass plate of the same size with an adhesive. This is used as a substitute for an image display device. As a substitute for the liquid crystal display device, the visible side test piece and the back side test piece are attached to both sides of the glass plate, respectively. As an alternative to the organic EL display device, only the visual inspection piece is attached to one side of the glass plate. This image display device substitute is left to heat and humidify in an oven at 65 ° C. and 90% RH for 240 hours. For the liquid crystal display alternative, the state of color loss at the edges after heating and humidification is examined with a microscope. As for the organic EL display device substitute, when the organic EL display device substitute after heating and humidification is placed in the state of the standard polarizing plate and the cross Nicol, the state of color loss at the end is examined with a microscope. In any case, specifically, the size of color loss (color loss amount: μm) from the end of the test piece (polarizing plate or polarizer) is measured. As shown in FIG. 3, the larger of the color loss amount a from the end portion in the stretching direction and the color loss amount b from the end portion in the direction orthogonal to the stretching direction is defined as the color loss amount. It should be noted that the color-excluded region has extremely low polarization characteristics and does not substantially function as a polarizing plate. Therefore, the smaller the amount of color loss, the more preferable. According to the embodiment of the present invention, as described above, by intentionally polyeneizing the end portion of the polarizer, color loss after the heating and humidifying test can be remarkably suppressed. This is an excellent effect that cannot be expected from the common general technical knowledge in the industry.
A-1.偏光子
 偏光子は、上記のとおり、二色性物質(代表的には、ヨウ素、二色性染料)を含むPVA系樹脂フィルムから構成される。二色性物質は、好ましくはヨウ素である。偏光子は、単層の樹脂フィルムから形成されてもよく、二層以上の積層体から形成されてもよい。
A-1. Polarizer As described above, the polarizing element is composed of a PVA-based resin film containing a dichroic substance (typically, iodine or a dichroic dye). The dichroic substance is preferably iodine. The polarizer may be formed of a single-layer resin film or may be formed of a laminate of two or more layers.
 単層の樹脂フィルムから形成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 Specific examples of the polarizer formed from the single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical properties, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is used. The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護フィルムとしてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護フィルムを積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. The polarizer obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying the resin base material. It is produced by forming a PVA-based resin layer on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer a polarizer. obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching may further include, if necessary, stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in boric acid aqueous solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective film for the polarizer), or the resin base material is peeled off from the resin base material / polarizer laminate. Then, any suitable protective film according to the purpose may be laminated on the peeled surface. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. The entire description of these publications is incorporated herein by reference.
 上記PVA系樹脂フィルムを形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.9モル%、さらに好ましくは99.0モル%~99.5モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Any suitable resin can be adopted as the PVA-based resin that forms the PVA-based resin film. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.9 mol%, and more preferably 99.0 mol% to 99.5 mol%. .. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~5000、さらに好ましくは1500~4500である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500. The average degree of polymerization can be determined according to JIS K 6726-1994.
 PVA系樹脂フィルム(偏光子)中のヨウ素濃度は、例えば5.0重量%~12.0重量%である。また、PVA系樹脂フィルム中のホウ酸濃度は、例えば12重量%~25重量%である。 The iodine concentration in the PVA-based resin film (polarizer) is, for example, 5.0% by weight to 12.0% by weight. The boric acid concentration in the PVA-based resin film is, for example, 12% by weight to 25% by weight.
 偏光子の厚みは、例えば12μm以下であり、好ましくは8μm以下であり、より好ましくは7μm以下、さらに好ましくは6μm以下である。一方、偏光子の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上である。 The thickness of the polarizer is, for example, 12 μm or less, preferably 8 μm or less, more preferably 7 μm or less, still more preferably 6 μm or less. On the other hand, the thickness of the polarizer is preferably 1 μm or more, more preferably 2 μm or more.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子(ポリエン化部を除く)の単体透過率は、好ましくは40.0%~46.0%であり、より好ましくは40.5%~43.0%である。偏光子(ポリエン化部を除く)の偏光度は、好ましくは99.9%以上であり、より好ましくは99.95%以上であり、さらに好ましくは99.98%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The simple substance transmittance of the polarizer (excluding the polyeneized portion) is preferably 40.0% to 46.0%, more preferably 40.5% to 43.0%. The degree of polarization of the polarizer (excluding the polyeneized portion) is preferably 99.9% or more, more preferably 99.95% or more, and further preferably 99.98% or more.
A-2.保護層
 第1および第2の保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
A-2. Protective Layer The first and second protective layers are formed of any suitable film that can be used as a protective layer for the polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based. , Polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, acetate-based transparent resins and the like. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, a vitreous polymer such as a siloxane-based polymer can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
 偏光板100を画像表示装置に適用したときに表示セルとは反対側に配置される保護層(外側保護層)の厚みは、代表的には300μm以下であり、好ましくは100μm以下、より好ましくは5μm~80μm、さらに好ましくは10μm~60μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 When the polarizing plate 100 is applied to an image display device, the thickness of the protective layer (outer protective layer) arranged on the side opposite to the display cell is typically 300 μm or less, preferably 100 μm or less, more preferably 100 μm or less. It is 5 μm to 80 μm, more preferably 10 μm to 60 μm. When the surface treatment is applied, the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
 偏光板100を画像表示装置に適用したときに表示セル側に配置される保護層(内側保護層)の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。1つの実施形態においては、内側保護層は光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。別の実施形態においては、内側保護層は、任意の適切な位相差値を有する位相差層である。この場合、位相差層の面内位相差Re(550)は、例えば110nm~150nmであり、その遅相軸と偏光子の吸収軸とがなす角度は、例えば40°~50°である。「Re(550)」は、23℃における波長550nmの光で測定した面内位相差であり、式:Re=(nx-ny)×dにより求められる。「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差であり、式:Re=(nx-nz)×dにより求められる。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率であり、「d」は層(フィルム)の厚み(nm)である。 The thickness of the protective layer (inner protective layer) arranged on the display cell side when the polarizing plate 100 is applied to the image display device is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and further preferably 10 μm to 60 μm. be. In one embodiment, the inner protective layer is preferably optically isotropic. As used herein, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. say. In another embodiment, the inner protective layer is a retardation layer having any suitable retardation value. In this case, the in-plane retardation Re (550) of the retardation layer is, for example, 110 nm to 150 nm, and the angle formed by the slow axis thereof and the absorption axis of the polarizer is, for example, 40 ° to 50 °. “Re (550)” is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C., and is obtained by the formula: Re = (nx−ny) × d. “Rth (550)” is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C., and is obtained by the formula: Re = (nx−nz) × d. Here, "nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane direction orthogonal to the slow-phase axis (that is, phase-advance). It is the refractive index in the axial direction), “nz” is the refractive index in the thickness direction, and “d” is the thickness (nm) of the layer (film).
B.偏光板の製造方法
 以下、上記A項に記載の偏光板の製造方法を、その特徴的な部分についてのみ説明する。偏光板の製造方法に関して下記で説明されていない操作、条件等については、当業界で周知であるので、詳細な説明は省略する。
B. Method for manufacturing a polarizing plate Hereinafter, the method for manufacturing a polarizing plate according to the above item A will be described only for its characteristic portion. Operations, conditions, and the like that are not described below regarding the method for manufacturing a polarizing plate are well known in the art, and detailed description thereof will be omitted.
 製造方法は、1つの実施形態においては、偏光板の端部をレーザー照射により切断することを含む。偏光板の端部をレーザー照射により切断することにより、端部(すなわち、切断部)にポリエン化部40が形成され、封止部50も同時に形成され得る。より詳細には、偏光板の端部をレーザー照射により切断する際、偏光子のレーザー照射部分が熱分解し、ポリエンが形成される。レーザー照射部分は、偏光子の切断された部分および切断で残った偏光子の両方に存在し、切断で残った偏光子はその端部がレーザー照射部分となるので、偏光子の端部にポリエン化部が形成される。同時に、レーザー照射により、照射部分の保護層(実質的には、保護層を構成する樹脂フィルム)が溶融し、当該溶融樹脂が流動して偏光板の端面を覆い、その後固化する。その結果、保護層を構成する樹脂フィルムの溶融固化物で構成された封止部が形成される。 In one embodiment, the manufacturing method includes cutting the end portion of the polarizing plate by laser irradiation. By cutting the end portion of the polarizing plate by laser irradiation, a polyeneized portion 40 can be formed at the end portion (that is, the cut portion), and the sealing portion 50 can also be formed at the same time. More specifically, when the end portion of the polarizing plate is cut by laser irradiation, the laser-irradiated portion of the polarizer is thermally decomposed to form a polyene. The laser-irradiated portion exists in both the cut portion of the polarizer and the polarizer remaining after cutting, and the polarizer remaining after cutting has a polyene at the end of the polarizer because the end portion thereof becomes the laser-irradiated portion. A conversion part is formed. At the same time, the laser irradiation melts the protective layer (substantially, the resin film constituting the protective layer) of the irradiated portion, and the molten resin flows to cover the end face of the polarizing plate and then solidifies. As a result, a sealing portion made of a melt-solidified resin film constituting the protective layer is formed.
 レーザー照射に用いられ得るレーザー光源としては、例えば、発振するレーザー光の波長が赤外域の9μm~11μmであるCOレーザー光源を含む赤外線レーザーが挙げられる。赤外線レーザーは、数10W級のパワーを容易に得ることができ、さらに、偏光板(実質的には、偏光子)を赤外線吸収に伴う分子振動によって効率的に発熱させることで、物質の相転移に伴うエッチングを起こすことが可能である。レーザー照射に用いられ得るレーザー光源の別の例としては、発振するレーザー光の波長が5μm近傍であるCOレーザー光源が挙げられる。レーザー光源のさらに別の例としては、近赤外線(NIR)、可視光(Vis)および紫外線(UV)パルスレーザー光源が挙げられる。NIR、VisおよびUVパルスレーザー光源としては、発振するレーザー光の波長が1064nm、532nm、355nm、349nmまたは266nm(Nd:YAG、Nd:YLF、またはYVOを媒質とする固体レーザー光源の高次高調波)であるもの、発振するレーザー光の波長が351nm、248nm、222nm、193nmまたは157nmであるエキシマレーザー光源、発振するレーザー光の波長が157nmであるFレーザー光源を例示できる。 Examples of the laser light source that can be used for laser irradiation include an infrared laser including a CO 2 laser light source in which the wavelength of the oscillating laser light is 9 μm to 11 μm in the infrared region. Infrared lasers can easily obtain power of several tens of watts, and further, by efficiently generating heat by molecular vibration accompanying infrared absorption of a polarizing plate (substantially, a polarizing element), a phase transition of a substance is performed. It is possible to cause the etching that accompanies. Another example of a laser light source that can be used for laser irradiation is a CO laser light source in which the wavelength of the oscillating laser light is in the vicinity of 5 μm. Yet another example of a laser light source is a near infrared (NIR), visible light (Vis) and ultraviolet (UV) pulsed laser light source. As the NIR, Vis and UV pulse laser light sources, the wavelength of the oscillating laser light is 1064 nm, 532 nm, 355 nm, 349 nm or 266 nm (Nd: YAG, Nd: YLF, or YVO 4 as a medium). Waves), an excimer laser light source having an oscillating laser light wavelength of 351 nm, 248 nm, 222 nm, 193 nm or 157 nm, and an F 2 laser light source having an oscillating laser light wavelength of 157 nm can be exemplified.
 レーザー光源の発振形態としては、偏光子の過度な熱ダメージを抑制する観点から、連続波(CW)よりもパルス発振が好ましい。パルス幅は10フェムト秒(10-14秒)~1ミリ秒(10-3秒)の範囲で適宜設定することができる。2種類以上のパルス幅を設定して加工することも可能である。レーザー光の偏光状態に関する制約はなく、直線偏光、円偏光、ランダム偏光が適用可能である。レーザー光の空間強度分布にも制約はない。良好な集光性を示し、小スポット化が可能で、かつ、生産性向上が期待できるガウシアンビームが好ましい。回折光学素子等を用いてフラットトップビームに整形されていてもよい。 As the oscillation form of the laser light source, pulse oscillation is preferable to continuous wave (CW) from the viewpoint of suppressing excessive thermal damage of the polarizer. The pulse width can be appropriately set in the range of 10 femtoseconds (10-14 seconds) to 1 millisecond ( 10-3 seconds). It is also possible to set two or more types of pulse widths for processing. There are no restrictions on the polarization state of the laser light, and linearly polarized light, circularly polarized light, and randomly polarized light can be applied. There are no restrictions on the spatial intensity distribution of the laser beam. A Gaussian beam that exhibits good light-collecting property, can be made into small spots, and is expected to improve productivity is preferable. It may be shaped into a flat top beam using a diffractive optical element or the like.
 レーザー光の照射条件は、任意の適切な条件に設定され得る。例えばCOレーザーを用いる場合、パルスエネルギーは、好ましくは2.67mJ~6.67mJであり、より好ましくは4.00mJ~6.00mJである。スキャン速度は、好ましくは100mm/秒~1000mm/秒であり、より好ましくは250mm/秒~700mm/秒である。繰返し周波数は、例えば5kHz~30Hzである。パルスレーザーの投入エネルギーは、好ましくは80000μJ/mm~200000μJ/mmであり、より好ましくは120000μJ/mm~180000μJ/mmである。なお、投入エネルギーE(μJ/mm)は下記の式から求められる。
    E=(e×M)/(V)
        e:パルスエネルギー(J)
        M:繰り返し周波数(Hz)
        V:スキャン速度(mm/秒)
The irradiation conditions of the laser light can be set to any suitable conditions. For example, when a CO 2 laser is used, the pulse energy is preferably 2.67 mJ to 6.67 mJ, more preferably 4.00 mJ to 6.00 mJ. The scanning speed is preferably 100 mm / sec to 1000 mm / sec, more preferably 250 mm / sec to 700 mm / sec. The repetition frequency is, for example, 5 kHz to 30 Hz. The input energy of the pulse laser is preferably 80,000 μJ / mm to 200,000 μJ / mm, and more preferably 120,000 μJ / mm to 180,000 μJ / mm. The input energy E (μJ / mm) is calculated from the following formula.
E = (e × M) / (V)
e: Pulse energy (J)
M: Repeat frequency (Hz)
V: Scan speed (mm / sec)
 レーザー光の照射形態(走査様式)は、目的に応じて適切に設定され得る。レーザー光は、例えば、直線状に走査されてもよく、S字状に走査されてもよく、渦巻き状に走査されてもよく、これらを組み合わせてもよい。 The laser light irradiation form (scanning mode) can be appropriately set according to the purpose. The laser light may be scanned in a linear shape, in an S shape, in a spiral shape, or in combination thereof, for example.
 上記レーザー光の照射条件、上記レーザーの種類等を適切に設定することにより、ポリエン化部のポリエン化度および幅、ならびに、封止部の厚み等を調整することができる。 By appropriately setting the irradiation conditions of the laser beam, the type of the laser, and the like, the degree and width of the polyene formation of the polyene formation portion, the thickness of the sealing portion, and the like can be adjusted.
 製造方法は、別の実施形態においては、偏光板の端面に電子線を照射した後、当該照射部分を加熱することを含む。このような操作によっても、ポリエン化部40および封止部50が同時に形成され得る。電子線は、代表的には、偏光板の端面に照射され得る。処理速度は、好ましくは1m/分~10m/分であり、より好ましくは2m/分~5m/分である。ビーム電流は、好ましくは5mA~30mAであり、より好ましくは、12.5mA~17.5mAである。電子線照射の効率係数Kは、好ましくは60~130であり、より好ましくは80~120である。効率係数は加速電圧により決定される数値であるが、装置ごとに加速電圧と効率係数の対応関係は異なる。電子線の線量は、好ましくは200kGy~1000kGyであり、より好ましくは250kGy~500kGyである。なお、線量D(kGy)は下記の式から求められる。
    D=K×I/V
        K:効率係数
        I:ビーム電流(mA)
        V:処理速度(m/分)
In another embodiment, the manufacturing method includes irradiating the end face of the polarizing plate with an electron beam and then heating the irradiated portion. By such an operation, the polyene-forming portion 40 and the sealing portion 50 can be formed at the same time. The electron beam can typically irradiate the end face of the polarizing plate. The processing speed is preferably 1 m / min to 10 m / min, more preferably 2 m / min to 5 m / min. The beam current is preferably 5 mA to 30 mA, more preferably 12.5 mA to 17.5 mA. The efficiency coefficient K of electron beam irradiation is preferably 60 to 130, and more preferably 80 to 120. The efficiency coefficient is a numerical value determined by the acceleration voltage, but the correspondence between the acceleration voltage and the efficiency coefficient differs for each device. The dose of the electron beam is preferably 200 kGy to 1000 kGy, more preferably 250 kGy to 500 kGy. The dose D (kGy) is calculated from the following formula.
D = K × I / V
K: Efficiency coefficient I: Beam current (mA)
V: Processing speed (m / min)
 加熱温度は、好ましくは80℃以上であり、より好ましくは90℃~130℃であり、さらに好ましくは100℃~120℃である。加熱時間は、好ましくは10時間以上であり、より好ましくは15時間~30時間であり、さらに好ましくは22時間~26時間である。このような加熱条件であれば、所望のポリエン化度および幅を有するポリエン化部ならびに所望の厚みを有する封止部が形成され得る。 The heating temperature is preferably 80 ° C. or higher, more preferably 90 ° C. to 130 ° C., and even more preferably 100 ° C. to 120 ° C. The heating time is preferably 10 hours or more, more preferably 15 hours to 30 hours, and even more preferably 22 hours to 26 hours. Under such heating conditions, a polyene-formed portion having a desired degree of polyeneization and width and a sealing portion having a desired thickness can be formed.
C.画像表示装置
 上記A項およびB項に記載の偏光板は、画像表示装置に適用され得る。したがって、このような画像表示装置も、本発明の実施形態に包含される。画像表示装置は、表示セルと、表示セルの少なくとも一方の側に配置された上記A項およびB項に記載の偏光板と、を備える。画像表示装置としては、例えば、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置が挙げられる。画像表示装置の構成は業界で周知であるので、詳細な説明は省略する。
C. Image display device The polarizing plate according to the above items A and B can be applied to an image display device. Therefore, such an image display device is also included in the embodiment of the present invention. The image display device includes a display cell and the polarizing plate according to items A and B arranged on at least one side of the display cell. Examples of the image display device include a liquid crystal display device and an organic electroluminescence (EL) display device. Since the configuration of the image display device is well known in the industry, detailed description thereof will be omitted.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み約5μmの偏光子を形成した。
[Example 1]
1. 1. Fabrication of Polarizer As a thermoplastic resin base material, an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75 ° C. was used, and one side of the resin base material was treated with corona. Was given.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 μm to prepare a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a desired value (dyeing treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a polarizer having a thickness of about 5 μm was formed on the resin substrate.
2.偏光板の作製
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層として、シクロオレフィン系フィルム(日本ゼオン社製、17μm)を紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが約1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離して露出した偏光子表面にアクリル系フィルム(東洋鋼鈑社製、40μm)を上記と同様にして貼り合せた。このようにして、シクロオレフィン系フィルム(保護層)/偏光子/アクリル系フィルム(保護層)の構成を有する偏光板を得た。
2. Fabrication of Polarizing Plate A cycloolefin-based film (manufactured by ZEON Corporation, 17 μm) is applied as a protective layer on the surface of the polarizer obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. And pasted together. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 μm, and bonded using a roll machine. Then, UV light was irradiated from the cycloolefin film side to cure the adhesive. Next, an acrylic film (manufactured by Toyo Kohan Co., Ltd., 40 μm) was attached to the exposed surface of the polarizer by peeling off the resin base material in the same manner as described above. In this way, a polarizing plate having a cycloolefin-based film (protective layer) / polarizer / acrylic-based film (protective layer) was obtained.
3.ポリエン化部の形成
 上記で得られた偏光板から、延伸方向に直交する方向および延伸方向をそれぞれ対向する二辺とする50mm×50mmサイズの枚葉状の偏光板を切り出した。電子線照射装置(岩崎電気株式会社製、製品名「標準EB実験機、型式:EC250/15/180L」)を用いて、切り出した偏光板の端面に電子線を照射した。電子線の照射条件は、効率係数は85、電流は15mA、処理スピード3.9m/minであった。またこの時の加速電圧は225kVであった。次いで、偏光板を105℃で24時間加熱して、偏光子の端部にポリエン化部を形成した。ポリエン化部の幅は250μmであった。なお、ポリエン化部の幅は、顕微鏡を用いて撮影した画像から測定した。以上のようにして、ポリエン化部が形成された偏光板を作製した。
3. 3. Formation of Polyeneized Part From the polarizing plate obtained above, a 50 mm × 50 mm size single-wafer-shaped polarizing plate having two sides facing each other in the direction orthogonal to the stretching direction and the stretching direction was cut out. An electron beam was irradiated to the end face of the cut out polarizing plate using an electron beam irradiator (manufactured by Iwasaki Electric Co., Ltd., product name "standard EB experimental machine, model: EC250 / 15 / 180L"). The electron beam irradiation conditions were an efficiency coefficient of 85, a current of 15 mA, and a processing speed of 3.9 m / min. The acceleration voltage at this time was 225 kV. Next, the polarizing plate was heated at 105 ° C. for 24 hours to form a polyeneized portion at the end of the polarizer. The width of the polyeneized portion was 250 μm. The width of the polyeneized portion was measured from an image taken with a microscope. As described above, a polarizing plate on which the polyeneized portion was formed was produced.
4.色抜け量の測定
 上記で得られたポリエン化部が形成された偏光板を2枚用意し、これらを試験片とした。粘着剤で2枚の試験片を同じサイズの無アルカリガラス板の両面にそれぞれ貼り合わせ、視認側試験片/ガラス板/背面側試験片の積層体を作製し、画像表示装置代替品とした。視認側試験片および背面側試験片は、それぞれの偏光子の吸収軸が互いに直交するようにしてガラス板に貼り合わせた。画像表示装置代替品を65℃および90%RHのオーブン内で240時間放置して加熱加湿し、加熱加湿後の偏光板(実質的には、偏光子)の端部の色抜け状態を顕微鏡により調べた。具体的には、偏光子端部からの色抜けの大きさ(色抜け量:μm)を測定した。顕微鏡としてOlympus社製、MX61Lを用い、倍率10倍で撮影した画像から色抜け量を測定した。図3に示すように、延伸方向の端部からの色抜け量aおよび延伸方向と直交する方向の端部からの色抜け量bのうち、大きい方を色抜け量とした。結果を表1に示す。
4. Measurement of the amount of color loss Two polarizing plates on which the polyeneized portion obtained above was formed were prepared, and these were used as test pieces. Two test pieces were bonded to both sides of a non-alkali glass plate of the same size with an adhesive to prepare a laminated body of a visual side test piece / glass plate / back side test piece, which was used as a substitute for an image display device. The visible side test piece and the back side test piece were attached to a glass plate so that the absorption axes of the respective polarizers were orthogonal to each other. The image display device substitute was left in an oven at 65 ° C. and 90% RH for 240 hours to be heated and humidified, and the color loss state at the end of the polarizing plate (substantially, the polarizer) after the heating and humidification was observed with a microscope. Examined. Specifically, the magnitude of color loss (color loss amount: μm) from the end of the polarizer was measured. An MX61L manufactured by Olympus was used as a microscope, and the amount of color loss was measured from an image taken at a magnification of 10 times. As shown in FIG. 3, the larger of the color loss amount a from the end portion in the stretching direction and the color loss amount b from the end portion in the direction orthogonal to the stretching direction was defined as the color loss amount. The results are shown in Table 1.
[実施例2]
 以下のようにしてポリエン化部を形成したこと以外は実施例1と同様にして、ポリエン化部が形成された偏光板を作製した。ポリエン化部の幅は30μmであった。また、ポリエン化部の形成と同時に封止部が形成されていることを確認した。封止部の透湿度は18g/m/24hrであり、厚みは約13μmであった。得られた偏光板について、実施例1と同様にして色抜け量を測定した。結果を表1に示す。
(ポリエン化部の形成)
 20cm×30cmの偏光板を用意し、この偏光板の中央部にパルスレーザー光を照射することにより、延伸方向に直交する方向および延伸方向をそれぞれ対向する二辺とする50mm×50mmサイズの枚葉状偏光板を切り出した。レーザー光の照射条件は、出力は85W、パルスの周波数は15kHz、処理速度は15mm/sであった。
[Example 2]
A polarizing plate in which the polyeneized portion was formed was produced in the same manner as in Example 1 except that the polyeneized portion was formed as follows. The width of the polyeneized portion was 30 μm. It was also confirmed that the sealing portion was formed at the same time as the formation of the polyeneized portion. Moisture permeability of the sealing portion is 18g / m 2 / 24hr, the thickness was about 13 .mu.m. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
(Formation of polyene)
A 20 cm × 30 cm polarizing plate is prepared, and by irradiating the central portion of the polarizing plate with pulsed laser light, a 50 mm × 50 mm size single-wafer shape having two sides opposite to each other in the stretching direction and the stretching direction. The polarizing plate was cut out. The laser light irradiation conditions were an output of 85 W, a pulse frequency of 15 kHz, and a processing speed of 15 mm / s.
[比較例1]
 電子線照射およびその後の加熱処理のいずれも行わなかったこと以外は実施例1と同様にして偏光板を作製した。偏光板にポリエン化部は形成されなかった。得られた偏光板について、実施例1と同様にして色抜け量を測定した。結果を表1に示す。
[Comparative Example 1]
A polarizing plate was produced in the same manner as in Example 1 except that neither electron beam irradiation nor subsequent heat treatment was performed. No polyene formation was formed on the polarizing plate. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
[比較例2]
 電子線照射後の加熱処理を行わなかったこと以外は実施例1と同様にして偏光板を作製した。偏光板にポリエン化部は形成されなかった。得られた偏光板について、実施例1と同様にして色抜け量を測定した。結果を表1に示す。
[Comparative Example 2]
A polarizing plate was produced in the same manner as in Example 1 except that the heat treatment after the electron beam irradiation was not performed. No polyene formation was formed on the polarizing plate. With respect to the obtained polarizing plate, the amount of color loss was measured in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の実施例は、偏光子の端部にポリエン化部を形成することにより、加熱加湿試験後の色抜け量を顕著に抑制できることがわかる。これは、当業界の技術常識からは全く予期できない優れた効果である。 As is clear from Table 1, it can be seen that in the examples of the present invention, the amount of color loss after the heating and humidifying test can be remarkably suppressed by forming a polyeneized portion at the end of the polarizer. This is an excellent effect that cannot be expected from the common general technical knowledge in the industry.
 本発明の実施形態による偏光板は、画像表示装置(例えば、液晶表示装置、有機EL表示装置、量子ドット表示装置)に好適に用いられる。 The polarizing plate according to the embodiment of the present invention is suitably used for an image display device (for example, a liquid crystal display device, an organic EL display device, a quantum dot display device).
 10   偏光子
 20   第1の保護層
 30   第2の保護層
 40   ポリエン化部
 50   封止部
100   偏光板
10 Polarizer 20 First protective layer 30 Second protective layer 40 Polyene conversion part 50 Sealing part 100 Polarizing plate

Claims (7)

  1.  枚葉状であり、
     二色性物質を含むポリビニルアルコール系樹脂フィルムで構成された偏光子と、該偏光子の少なくとも一方の側に配置された保護層と、を有し、
     該偏光子の端部にポリエン化部が形成されている、
     偏光板。
    It is single-leaved and
    It has a polarizer made of a polyvinyl alcohol-based resin film containing a dichroic substance, and a protective layer arranged on at least one side of the polarizer.
    A polyeneized portion is formed at the end of the polarizer,
    Polarizer.
  2.  前記ポリエン化部が、前記偏光子の外周端から面方向内方に25μm以上の位置まで形成されている、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the polyeneized portion is formed from the outer peripheral end of the polarizer to a position of 25 μm or more inward in the plane direction.
  3.  前記ポリエン化部が、前記偏光子の外周端から面方向内方に1000μm以下の位置まで形成されている、請求項2に記載の偏光板。 The polarizing plate according to claim 2, wherein the polyene-forming portion is formed from the outer peripheral end of the polarizer to a position of 1000 μm or less inward in the plane direction.
  4.  外周端面を覆う封止部が形成されている、請求項1から3のいずれかに記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein a sealing portion covering the outer peripheral end face is formed.
  5.  前記封止部が、前記保護層を構成する樹脂フィルムの溶融固化物である、請求項4に記載の偏光板。 The polarizing plate according to claim 4, wherein the sealing portion is a melt-solidified resin film constituting the protective layer.
  6.  請求項1から5のいずれかに記載の偏光板の製造方法であって、
     偏光板の端部をレーザー照射により切断すること;あるいは、偏光板の端面に電子線を照射した後、該照射部分を加熱すること;を含む、
     方法。
    The method for manufacturing a polarizing plate according to any one of claims 1 to 5.
    It includes cutting the end portion of the polarizing plate by laser irradiation; or irradiating the end face of the polarizing plate with an electron beam and then heating the irradiated portion.
    Method.
  7.  表示セルと、該表示セルの少なくとも一方の側に配置された請求項1から5のいずれかに記載の偏光板と、を備える、画像表示装置。
     
     
    An image display device comprising a display cell and the polarizing plate according to any one of claims 1 to 5 arranged on at least one side of the display cell.

PCT/JP2021/010962 2020-03-26 2021-03-18 Polarizing plate, method for producing same, and image display device using said polarizing plate WO2021193320A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227031132A KR20220131548A (en) 2020-03-26 2021-03-18 Polarizing plate, manufacturing method thereof, and image display device using the polarizing plate
CN202180024461.0A CN115398287A (en) 2020-03-26 2021-03-18 Polarizing plate, method for producing same, and image display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055984A JP7402723B2 (en) 2020-03-26 2020-03-26 Polarizing plate, method for manufacturing the same, and image display device using the polarizing plate
JP2020-055984 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193320A1 true WO2021193320A1 (en) 2021-09-30

Family

ID=77890249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010962 WO2021193320A1 (en) 2020-03-26 2021-03-18 Polarizing plate, method for producing same, and image display device using said polarizing plate

Country Status (5)

Country Link
JP (1) JP7402723B2 (en)
KR (1) KR20220131548A (en)
CN (1) CN115398287A (en)
TW (1) TW202141091A (en)
WO (1) WO2021193320A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085726A1 (en) * 2020-10-23 2022-04-28

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421386A (en) * 1982-03-03 1983-12-20 Honeywell Inc. Stress-free window for laser applications
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2009294649A (en) * 2008-05-07 2009-12-17 Nitto Denko Corp Polarizing plate and manufacturing method thereof
JP2011248192A (en) * 2010-05-28 2011-12-08 Konica Minolta Opto Inc Roll state polarizing plate, sheet-like polarizing plate and liquid crystal display device using the same
JP2012173588A (en) * 2011-02-23 2012-09-10 Nitto Denko Corp Polarizing plate and manufacturing method thereof
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer
JP2017531813A (en) * 2014-09-30 2017-10-26 エルジー・ケム・リミテッド Cutting method of polarizing plate and polarizing plate cut using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4279944B2 (en) 1999-06-01 2009-06-17 株式会社サンリッツ Manufacturing method of polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421386A (en) * 1982-03-03 1983-12-20 Honeywell Inc. Stress-free window for laser applications
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2009294649A (en) * 2008-05-07 2009-12-17 Nitto Denko Corp Polarizing plate and manufacturing method thereof
JP2011248192A (en) * 2010-05-28 2011-12-08 Konica Minolta Opto Inc Roll state polarizing plate, sheet-like polarizing plate and liquid crystal display device using the same
JP2012173588A (en) * 2011-02-23 2012-09-10 Nitto Denko Corp Polarizing plate and manufacturing method thereof
JP2017531813A (en) * 2014-09-30 2017-10-26 エルジー・ケム・リミテッド Cutting method of polarizing plate and polarizing plate cut using the same
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer

Also Published As

Publication number Publication date
KR20220131548A (en) 2022-09-28
CN115398287A (en) 2022-11-25
JP7402723B2 (en) 2023-12-21
TW202141091A (en) 2021-11-01
JP2021157009A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2017099017A1 (en) Method for manufacturing polarizing film
JP2012073570A (en) Polarizing film, optical film laminate including polarizing film and manufacturing method thereof
JP2015094907A (en) Polarizing film and method for manufacturing polarizing film
WO2021095527A1 (en) Polarizing film, polarizing plate, and image display device
JP6770646B2 (en) A method for manufacturing an image display device and an image display device obtained by the manufacturing method.
WO2019054268A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
JP2008122921A (en) Surface modification method for polarizer, method of manufacturing the polarizer, polarizer, polarizing plate, image display apparatus, liquid crystal panel and liquid crystal display
WO2021193320A1 (en) Polarizing plate, method for producing same, and image display device using said polarizing plate
JP2022173190A (en) Polarizing plate with phase difference layer
JP2022111165A (en) Polarizing film, polarizing plate, and method of manufacturing polarizing film
KR20100102291A (en) Preparing method for thin polarizer, thin polarizer and polarizing plate comprising the same
WO2019054272A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
WO2019054271A1 (en) Polarizing plate, polarizing plate roll, and method for manufacturing polarizing film
JP7312038B2 (en) Manufacturing method of polarizing plate
WO2020184082A1 (en) Polarizing film, polarizing plate, and polarizing film production method
JP7165805B2 (en) Polarizing film, polarizing plate, and method for producing the polarizing film
WO2021095526A1 (en) Polarizing film, polarizing plate, and image display device
JP7280349B2 (en) Polarizing film, polarizing plate, and method for producing the polarizing film
WO2020184137A1 (en) Polarizing film, polarizing plate and method for producing polarizing film
JP7219017B2 (en) Method for manufacturing polarizing film
JP2022152302A (en) Polarizing plate and manufacturing method therefor
KR102512665B1 (en) Process for producing polarizing film and apparatus for producing polarizing film
WO2019054269A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
JP7165813B2 (en) Polarizing film, polarizing plate, and method for producing the polarizing film
WO2021220907A1 (en) Polarizing plate, and image display device using polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774649

Country of ref document: EP

Kind code of ref document: A1