WO2021193122A1 - Method for planning stowage of ship, stowage planning system, and ship - Google Patents

Method for planning stowage of ship, stowage planning system, and ship Download PDF

Info

Publication number
WO2021193122A1
WO2021193122A1 PCT/JP2021/009908 JP2021009908W WO2021193122A1 WO 2021193122 A1 WO2021193122 A1 WO 2021193122A1 JP 2021009908 W JP2021009908 W JP 2021009908W WO 2021193122 A1 WO2021193122 A1 WO 2021193122A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
ship
moment
margin
wave moment
Prior art date
Application number
PCT/JP2021/009908
Other languages
French (fr)
Japanese (ja)
Inventor
宏章 平澤
平川 真一
哲治 宮下
紀明 関
智美 吉田
Original Assignee
ジャパンマリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンマリンユナイテッド株式会社 filed Critical ジャパンマリンユナイテッド株式会社
Priority to CN202180023735.4A priority Critical patent/CN115250619A/en
Priority to KR1020227034610A priority patent/KR102526242B1/en
Publication of WO2021193122A1 publication Critical patent/WO2021193122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • B63B71/10Designing vessels; Predicting their performance using computer simulation, e.g. finite element method [FEM] or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers

Definitions

  • the present invention relates to a method of planning the loading of a cargo on a ship, a system capable of carrying out the method, and a ship to which the system is applied.
  • a vessel for carrying a load such as a container ship
  • a vessel for carrying a load is designed to be strong enough to withstand long-term operation while carrying as much cargo as possible.
  • the hull will be operated for 25 years under the sea conditions of the North Atlantic Ocean, and the maximum load moment (design wave moment Mw (d)) that can be generated on the hull due to the sea conditions during that period is estimated.
  • the maximum load capacity of the cargo is determined according to the difference in the design tolerance of the load moment of the ship. That is, the design permissible value (referred to as Ma) of the load moment of the ship is expressed by the following equation (1).
  • Ms (d) is a load moment (referred to as a design hydrostatic moment) generated by the weight of the ship, the weight of the load, and the buoyancy in still water when a load with an assumed maximum load capacity is loaded.
  • the load moment (referred to as the actual wave moment Mw (r)) generated by the sea condition is estimated as Mw (d) for convenience, and the amount of the load is determined. That is, the amount of cargo to be loaded on a ship is the sum of the load moment (actual hydrostatic moment Ms (r)) generated in still water when it is loaded and the design wave moment Mw (d). It is determined within the range that satisfies the following equation (2) so as not to exceed the design permissible value Ma of. Ms (r) ⁇ Ma-Mw (d) ... (2)
  • Patent Documents 1 and 2 As a technique for satisfying these conditions and supporting the safe operation of a ship, for example, the techniques described in Patent Documents 1 and 2 below have been proposed. These are techniques implemented from the viewpoint of ensuring safety in the operation of a ship, and Patent Document 1 describes a technique for loading a cargo while satisfying the above formula (2), and Patent Document 2 provides a technique for loading a cargo. , It can be said that the techniques for navigating so that the actual wave moment Mw (r) does not actually exceed Mw (d) are described.
  • ensuring safety is, of course, the most important matter for a ship carrying cargo, but it is also important to increase the load capacity of the cargo as much as possible.
  • the expansion of the load capacity is mainly considered at the time of design as well as ensuring safety, and as a result of focusing almost exclusively on the safety aspect in the operational phase, the ship sails with the load capacity remaining.
  • the reality In other words, even if it is possible to load more cargo while ensuring safety by design, the amount of cargo that can be loaded is underestimated because of the importance placed on safety. It was an obstacle to improving transportation efficiency.
  • the present disclosure relates to a shipping planning method for a ship that estimates the actual wave moment generated by the sea condition on the ship based on the sea condition predicted in the shipping route and plans the loading based on the predicted value of the actual wave moment. It is a thing.
  • the difference between the predicted value of the actual wave moment and the design wave moment is calculated as the loading margin, and whether or not the loading is changed based on the loading margin. Can be determined.
  • the cargo can be increased within the range of the loading margin.
  • the amount of ballast water filled can be reduced within the range of the loading margin.
  • the ship loading planning method of the present disclosure can be applied to container ships.
  • the present disclosure relates to a ship loading planning system configured to enable the above-mentioned ship loading planning method.
  • this disclosure relates to a ship to which the above-mentioned ship loading planning system is applied.
  • the ship loading planning method, the loading planning system, and the ship disclosed in the present disclosure it is possible to achieve an excellent effect that the transportation efficiency of the cargo can be easily improved while ensuring safety.
  • FIG. 1 shows a form of a ship loading planning system according to the embodiment of the present disclosure.
  • the system is constructed so as to straddle the ship S and the land L, and the loading plan drafted by the land L side is transmitted to the ship S side, and the ship S side loads based on this. And the result of loading can be transmitted to the land L side as needed.
  • a route selection unit 1 On the land L side, a route selection unit 1, a sea condition data storage unit 2, a loading planning unit 3, a loading data storage unit 4, a wave moment calculation unit 5, a hydrostatic moment calculation unit 6, a loading margin determination unit 7, A display unit 8, an operation input unit 9, and a communication unit 10 are provided.
  • a data storage unit 11, a display unit 12, an operation input unit 13, and a communication unit 14 are provided on the ship S side.
  • the route selection unit 1 has a function of assisting the selection of the route of the ship S.
  • the route selection unit 1 is connected to an information service such as Sea-Navi (registered trademark), and extracts route candidates that meet each condition based on conditions such as departure point, destination, waypoint and water area, and date and time. And can be presented.
  • the route selection unit 1 may be configured to extract an appropriate route from the library stored inside, instead of using an external service such as Sea-Navi.
  • the sea lane data storage unit 2 has a function of storing sea lane data related to various routes, and can acquire the sea lane data presented by the route selection unit 1 as needed.
  • the sea condition data stored in the sea condition data storage unit 2 may be forecast data acquired from an external organization such as the Japan Meteorological Agency, past sea condition data, or both.
  • the loading planning unit 3 has a function of creating a loading plan for the cargo on the ship S, and is assigned to the ship S based on each condition such as the type and maximum load capacity of the ship S, the design strength, and the type and amount of the cargo. On the other hand, it is possible to calculate the total weight of the cargo to be loaded during the scheduled navigation and the loading amount in each section of the ship.
  • the loading data storage unit 4 has a function of storing data (hereinafter referred to as loading data) related to the loading plan of the cargo on the ship S created by the loading planning unit 3.
  • the loading data includes, for example, the total weight of the cargo in the planned navigation, the loading amount in each section of the ship, the type of the cargo to be loaded, the distribution of its own weight in the ship S, and each ballast tank prepared for the ship S. Including the amount of ballast water filled in.
  • the wave moment calculation unit 5 has a function of referring to the sea condition data stored in the sea condition data storage unit 2 and calculating the sea condition (encounter sea condition) predicted to be encountered in the route presented by the route selection unit 1. .. Further, the wave moment calculation unit 5 is based on the calculated encounter sea condition and information on the ship S itself (self-weight, ship speed, outer plate shape, etc.), and the wave moment (actual wave moment Mw) generated in the ship S in the corresponding route. It has a function to calculate the predicted value of (r)).
  • the hydrostatic moment calculation unit 6 Based on the loading data stored in the loading data storage unit 4, the hydrostatic moment calculation unit 6 generates the actual hydrostatic moment Ms (r) generated in the ship S due to the weight of the ship S, the weight of the cargo and ballast water, and the buoyancy in still water. ) Is provided.
  • the loading margin determination unit 7 is added based on the predicted value of the actual wave moment Mw (r) calculated by the wave moment calculation unit 5 and the actual still water moment Ms (r) calculated by the hydrostatic moment calculation unit 6. It has a function to calculate the margin that can be loaded (referred to as the loading margin ⁇ M). The prediction of the actual wave moment Mw (r), the calculation of the actual hydrostatic moment Ms (r), and the calculation of the loading margin ⁇ M will be described later.
  • the display unit 8 is the route information presented by the route selection unit 1, the sea condition data stored in the sea condition data storage unit 2, and the loading created by the loading planning unit 3 and stored in the loading data storage unit 4.
  • a display that displays data, information such as the calculation results of the wave moment calculation unit 5, the hydrostatic moment calculation unit 6, and the loading margin determination unit 7, an interface screen for inputting operations to each unit, and other information as needed. Is.
  • the operation input unit 9 is an interface for inputting operations to each of the above-mentioned units, such as a keyboard, a mouse, and a touch panel type display.
  • the operation input unit 9 can also serve a part or all of the functions of the display unit 8.
  • the communication unit 10 has a function of communicating with the outside of the system, and can exchange various information (for example, route data, sea condition data, loading data, etc.).
  • the data storage unit 11 on the ship S side has a function of storing various data necessary for the operation of the ship S.
  • Various data necessary for the operation of the ship S are, for example, route information presented by the route selection unit 1 on the land L side, sea condition data stored in the sea condition data storage unit 2, and created by the loading planning unit 3.
  • the loading data stored in the loading data storage unit 4 the information such as the calculation results of the wave moment calculation unit 5, the hydrostatic moment calculation unit 6, and the loading margin determination unit 7 are included.
  • the display unit 12 is a display that displays various data stored in the data storage unit 11, an interface screen for inputting operations to each unit constituting the system, and other information as needed.
  • the operation input unit 13 is an interface for inputting operations to the above-mentioned units, for example, a keyboard, a mouse, a touch panel type display, or the like.
  • the operation input unit 9 is a touch panel type display
  • the operation input unit 13 can also serve a part or all of the functions of the display unit 12.
  • the communication unit 14 has a function of communicating with the outside of the system, and exchanges various information (for example, route data, sea condition data, loading data, etc.) with the communication unit 10 on the land L side. You can do it.
  • the system configuration is not limited to the example shown here in implementing the ship loading planning system of the present invention. ..
  • the ship loading planning system may have an appropriate configuration as long as the functions described below can be realized.
  • An object of the present invention is to estimate the wave moment (actual wave moment Mw (r)) generated during the navigation of the ship S, and to plan the loading based on this. That is, conventionally, the difference between the design allowable value Ma and the design wave moment Mw (d) was used as the maximum load capacity for loading (see the above equation (2)), but the design wave moment Mw (d) By using the predicted value of the actual wave moment Mw (r) instead, the design strength of the ship can be increased by the difference (loading margin ⁇ M) between the design wave moment Mw (d) and the actual wave moment Mw (r). Will occur, and this amount will be used for the loading plan.
  • the design wave moment Mw (d) is set as the maximum wave moment expected to occur in the ship S, for example, during the long-term operation period of the ship S. This value is the maximum value of the wave moment peculiar to each ship S, and the wave moment (actual wave moment Mw (r)) actually generated in the ship S in many actual navigations is the design wave moment Mw (d). ) It fluctuates for each navigation within the following range. In other words, there is no safety problem even if the difference (loading margin ⁇ M) is used in the loading plan and a large amount of cargo is loaded by the amount corresponding to the loading margin ⁇ M, and the cargo is transported while maintaining safety. Efficiency can be improved.
  • the design hydrostatic moment Ms (d) is full by the conventional method.
  • Ms (r) Ms (d)
  • the total value of the actual wave moment Mw (r) and the actual hydrostatic moment Ms (r) is designed as shown by the alternate long and short dash line. It is distributed at a value lower than the total value of the wave moment Mw (d) and the design hydrostatic moment Ms (d).
  • the difference between the two is calculated as the loading margin ⁇ M and utilized.
  • route candidates are extracted (step S1). Using the function of the route selection unit 1, for example, an external service such as Sea-Navi is used, or a route candidate is extracted from the route information stored in the route selection unit 1. If you enter conditions such as departure point, destination, waypoint, water area, etc., routes that meet each condition will be extracted and presented as candidates.
  • an external service such as Sea-Navi is used, or a route candidate is extracted from the route information stored in the route selection unit 1. If you enter conditions such as departure point, destination, waypoint, water area, etc., routes that meet each condition will be extracted and presented as candidates.
  • the predicted sea image is acquired for the route presented as a candidate (step S2).
  • the sea condition data in the same water area and the same season in the past are referred to.
  • the forecast data provided by the Japan Meteorological Agency or the like.
  • the sea condition data acquired in step S2 includes the maximum wave height encountered by the ship S on the corresponding route.
  • the wave height most directly affects the comfort of navigation, the load generated on the ship S, and the like. Therefore, in step S3, a threshold value for wave height (avoidance limit) is set, and a route in which a wave height exceeding the avoidance limit is predicted is excluded from the candidates. Then, a route to be actually navigated is selected from the remaining candidates and determined (step S4).
  • the loading planning unit 3 plans the loading of the ship S (step S5).
  • the total load capacity of the cargo, the load capacity of the cargo in each section of the ship S, and the filling amount of ballast water in each ballast tank are determined and stored in the loading data storage unit 4 as loading data.
  • the wave moment calculation unit 5 calculates the predicted value of the actual wave moment Mw (r) based on the sea condition predicted to be encountered on the selected route (step S6).
  • the sea elephant (Hs, Ts) is included in the sea elephant data acquired in step S2. Therefore, these values (values predicted based on past data and forecasts) are substituted into the above equation (3) to calculate the value of Mw. Since the draft also affects the value of Mw and the draft fluctuates depending on the loading, the loading data is also referred to for the calculation of Mw. The maximum value of Mw thus obtained is used as a predicted value of the actual wave moment Mw (r) encountered during navigation. Of course, in addition to the strip method, various methods may be used for calculating the predicted value of the actual wave moment Mw (r).
  • the actual hydrostatic moment Ms (r) is determined by the loading, regardless of the route or sea conditions.
  • the still water moment calculation unit 6 calculates the actual still water moment Ms (r) with reference to the loading data of the loading data storage unit 4 (step S7).
  • the loading margin determination unit 7 calculates the difference between the actual wave moment Mw (r) calculated in step S6 and the design wave moment Mw (d) as the loading margin ⁇ M (step S8).
  • the loading margin ⁇ M is a portion that may be further loaded on the ship S in consideration of the design allowable value Ma of the load moment on the ship S and the condition of the route. It is determined whether or not to change the loading according to the size of the obtained loading margin ⁇ M, the amount of the cargo to be loaded, and the like (step S9) (step S9). If the loading is not changed, the loading is terminated, but if it is changed, the process proceeds to step S10, the loading plan is changed by the loading planning unit 3, and the loading is stored in the loading data storage unit 4 as new loading data. do.
  • the actual hydrostatic moment Ms (r) generated in the ship S changes. Further, as a result of the draft of the ship S changing, the actual wave moment Mw (r) may also change. Therefore, after changing the loading plan, the predicted value of the actual wave moment Mw (r) and the actual hydrostatic moment Ms (r) are calculated again (steps S6 and S7), and the loading margin ⁇ M is calculated (step S8). ), The loading plan is changed according to the value of the loading margin ⁇ M (steps S9 and S10). In this way, it is possible to easily change the loading plan, such as adding the product, based on the value of the loading margin ⁇ M. Further, by repeating this, the loading plan is optimized so that the actual hydrostatic moment Ms (r) is maximized within the range satisfying the design tolerance Ma of the ship S.
  • the data storage unit 11 of the ship S stores necessary information such as route information, sea condition data, and loading data.
  • the loading data changed based on the loading margin ⁇ M is also transmitted to the ship S side via the communication units 10 and 14, and stored in the data storage unit 11. On the ship S side, loading is performed according to the new loading data.
  • Such a method is carried out on various vessels S in the form of simply performing the loading within the range of the calculated loading margin ⁇ M (increasing the actual hydrostatic moment Ms (r) by the weight of the cargo).
  • ⁇ M increasing the actual hydrostatic moment Ms (r) by the weight of the cargo.
  • it is effective to operate in a slightly different way, especially when targeting container ships.
  • ballast water may be injected into the hull for the purpose of maintaining draft or correcting the load moment generated in the hull, but especially in container ships, the weight of the cargo is light, so ballast water is used. There are many opportunities to be injected. Therefore, when the ship S is a container ship and a large amount of ballast water is injected in the initial loading plan, the above loading planning method can be applied, for example, by the procedure described below.
  • steps S1 to S8 shown in FIG. 3 are executed, and the load is increased within the range of the calculated loading margin ⁇ M (steps S9 and S10).
  • the ballast water of the same weight as the added portion is discharged with respect to the added section.
  • the value of the actual hydrostatic moment Ms (r) is not much different from that before the change of the loading plan, and the loading margin ⁇ M remains. Therefore, the loading plan can be further changed and the loading can be performed. ..
  • the product when reducing the ballast water for the additional product, if the value of the actual hydrostatic moment Ms (r) does not change, theoretically, the product does not need to consider the loading margin ⁇ M as in the present embodiment. It is possible to add more. However, when actually loading, the position of the ballast tank on the hull is different from the position where the cargo is placed, so even if the ballast water of the ballast tank located as close as possible to the expanded section is reduced, it is actually The value of the hydrostatic moment Ms (r) changes to some extent. For this reason, if an attempt is made to add the product without keeping in mind the calculated loading margin ⁇ M, there is no standard as to how much the product can be added, so even if the ballast water is reduced. As a result, the possibility that the load capacity exceeds the permissible value cannot be ruled out. If the loading margin ⁇ M is used as in this embodiment, the loading can be safely performed within a range that does not cause any trouble.
  • ballast water may be injected for the purpose of correcting the load moment generated on the hull as described above, and in this case, the load of the ballast water acts in the direction of reducing the actual hydrostatic moment Ms (r). .. That is, if the amount of ballast water filled is reduced, the actual hydrostatic moment Ms (r) is increased, but the actual hydrostatic moment Ms (r) calculated by the above method is used to reduce the ballast water. ) Is used to increase. That is, the ballast water in the ship S may be discharged within the range of the loading margin ⁇ M.
  • ballast water when ballast water remains in the tank, but it is not possible to load more containers due to restrictions on cargo space, or when there is simply no more cargo to load. It is valid.
  • the ship S which is a container ship, can be navigated with a small amount of ballast water, and the weight of the entire ship S can be reduced to enable fuel-efficient navigation.
  • the above-described "reduction of ballast water by the amount of additional cargo” and “reduction of ballast water within the range of the loading margin ⁇ M” may be used in combination as appropriate.
  • the ballast water may not be simply reduced, but only the ballasting may be performed within the range of the loading margin ⁇ M.
  • the actual wave moment Mw (r) generated on the ship S by the sea condition is estimated based on the sea condition predicted in the route, and the actual wave moment Mw is estimated.
  • the loading is planned based on the predicted value of (r). In this way, safety was maintained by planning the loading using the actual wave moment Mw (r) having a value lower than that of the design wave moment Mw (d) peculiar to each ship S. It is possible to improve the transportation efficiency of the cargo as it is.
  • the difference between the predicted value of the actual wave moment Mw (r) and the design wave moment Mw (d) is calculated as the loading margin ⁇ M, and the loading margin is calculated. It is determined whether or not to change the loading based on the degree ⁇ M. In this way, the loading plan can be easily changed based on the loading margin ⁇ M.
  • the load can be increased within the range of the loading margin ⁇ M, and in this way, the loading margin ⁇ M is used as a reference for convenience. Can be added to.
  • the amount of ballast water filled can be reduced within the range of the loading margin ⁇ M, and in this way, the container ship with a small amount of ballast water.
  • the ship S can be navigated, and the weight of the entire ship S can be reduced to enable good fuel navigation.
  • the ship loading planning method of this embodiment can be applied to a container ship, and in this way, the same effect as described above can be obtained for the container ship.
  • the ship loading planning system of the present embodiment is configured to be able to execute the ship loading planning method described above, the same effects as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Navigation (AREA)

Abstract

Actual wave moment Mw(r) generated by a ship S due to marine phenomena on a shipping route is estimated on the basis of the marine phenomena predicted on the shipping route, and stowage is planned on the basis of the predicted value of the actual wave moment Mw(r). The difference between the predicted value of the actual wave moment Mw(r) and the design wave moment Mw(d) is calculated as a stowage margin ΔM, and it is determined whether to change the stowage on the basis of the stowage margin ΔM.

Description

船舶の積付計画方法、積付計画システムおよび船舶Ship loading planning method, loading planning system and ship
 本発明は、船舶に対し積荷の積付けを計画する方法、該方法を実行可能なシステム、および該システムを適用した船舶に関する。 The present invention relates to a method of planning the loading of a cargo on a ship, a system capable of carrying out the method, and a ship to which the system is applied.
 一般に、コンテナ船等、積荷を運搬するための船舶は、なるべく多くの積荷を積載しながら、長期の運用に耐え得る強度を確保し得るように設計されている。具体的には、例えば北大西洋の海象下で25年間運用することを想定し、その間に海象条件によって船体に生じ得る最大の荷重モーメント(設計波浪モーメントMw(d)とする)を見積もる。そして、船舶の荷重モーメントの設計許容値の差に応じて、積荷の最大積載量が決定される。すなわち、船舶の荷重モーメントの設計許容値(Maとする)は、下記の式(1)で表される。尚、Ms(d)は、想定する最大積載量の積荷を積み付けた場合に、静水中で船舶の自重と積荷の重量および浮力によって生じる荷重モーメント(設計静水モーメントとする)である。
Ma = Mw(d) + Ms(d) ……(1)
In general, a vessel for carrying a load, such as a container ship, is designed to be strong enough to withstand long-term operation while carrying as much cargo as possible. Specifically, for example, it is assumed that the hull will be operated for 25 years under the sea conditions of the North Atlantic Ocean, and the maximum load moment (design wave moment Mw (d)) that can be generated on the hull due to the sea conditions during that period is estimated. Then, the maximum load capacity of the cargo is determined according to the difference in the design tolerance of the load moment of the ship. That is, the design permissible value (referred to as Ma) of the load moment of the ship is expressed by the following equation (1). In addition, Ms (d) is a load moment (referred to as a design hydrostatic moment) generated by the weight of the ship, the weight of the load, and the buoyancy in still water when a load with an assumed maximum load capacity is loaded.
Ma = Mw (d) + Ms (d) …… (1)
 一方、船舶を運用する際には、航行中に海象条件によって生じる実際の荷重モーメントと、船舶の自重と積荷の重量および浮力によって生じる実際の荷重モーメントの合計が、船体の許容値を超えないようにする必要がある。その際、海象条件によって生じる荷重モーメント(実波浪モーメントMw(r)とする)を便宜的にMw(d)と見積もって、積荷の量を決定するようにしている。すなわち、船舶に積み付ける積荷の量は、それを積み付けた場合に静水中で生じる荷重モーメント(実静水モーメントMs(r)とする)と、設計波浪モーメントMw(d)との合計値が船舶の設計許容値Maを超えないよう、以下の式(2)を満たす範囲で決定される。
Ms(r) ≦ Ma - Mw(d)……(2)
On the other hand, when operating a ship, the sum of the actual load moment generated by the sea conditions during navigation and the actual load moment generated by the ship's own weight, the weight of the cargo and the buoyancy should not exceed the allowable value of the hull. Need to be. At that time, the load moment (referred to as the actual wave moment Mw (r)) generated by the sea condition is estimated as Mw (d) for convenience, and the amount of the load is determined. That is, the amount of cargo to be loaded on a ship is the sum of the load moment (actual hydrostatic moment Ms (r)) generated in still water when it is loaded and the design wave moment Mw (d). It is determined within the range that satisfies the following equation (2) so as not to exceed the design permissible value Ma of.
Ms (r) ≤ Ma-Mw (d) ... (2)
 尚、こうした条件を満たし、船舶の安全な運用を支援するための技術として、例えば下記特許文献1,2に記載の技術が提案されている。これらは、船舶の運用にあたって安全を確保する観点から実施される技術であり、特許文献1には、上記式(2)を満たしつつ積荷の積付けを行うための技術が、特許文献2には、実波浪モーメントMw(r)が実際にMw(d)を超えないように航行を行うための技術が、それぞれ記載されていると言える。 As a technique for satisfying these conditions and supporting the safe operation of a ship, for example, the techniques described in Patent Documents 1 and 2 below have been proposed. These are techniques implemented from the viewpoint of ensuring safety in the operation of a ship, and Patent Document 1 describes a technique for loading a cargo while satisfying the above formula (2), and Patent Document 2 provides a technique for loading a cargo. , It can be said that the techniques for navigating so that the actual wave moment Mw (r) does not actually exceed Mw (d) are described.
国際公開第2006/003708号明細書International Publication No. 2006/003708 特開2019-12029号公報JP-A-2019-12029
 ところで、積荷を運搬する船舶にとって、安全の確保はむろん最も重視すべき事項であるが、積荷の積載量をなるべく大きくすることも同様に重要である。しかしながら、従来の船舶においては、積載量の拡充については安全の確保と共に主に設計時に検討され、運用の局面ではほぼ安全面のみが重視される結果、積載量については余力を残した状態で航行が行われるのが実情であった。言い換えれば、設計上は安全を確保しながらそれ以上の積荷を積み込むことが十分に可能な場合であっても、安全面を重視するあまり積載可能な積荷の量が過小に評価されてしまい、これが運送効率の向上の妨げとなっていたのである。 By the way, ensuring safety is, of course, the most important matter for a ship carrying cargo, but it is also important to increase the load capacity of the cargo as much as possible. However, in conventional ships, the expansion of the load capacity is mainly considered at the time of design as well as ensuring safety, and as a result of focusing almost exclusively on the safety aspect in the operational phase, the ship sails with the load capacity remaining. Was the reality. In other words, even if it is possible to load more cargo while ensuring safety by design, the amount of cargo that can be loaded is underestimated because of the importance placed on safety. It was an obstacle to improving transportation efficiency.
 本開示においては、斯かる実情に鑑み、安全を確保しつつ積荷の運送効率を簡便に向上し得る船舶の積付計画方法、積付計画システムおよび船舶を説明する。 In this disclosure, in view of such circumstances, a ship loading planning method, a loading planning system, and a ship that can easily improve the transportation efficiency of cargo while ensuring safety will be described.
 本開示は、航路において予測される海象に基づき、航路において海象により船舶に生じる実波浪モーメントを見積もり、前記実波浪モーメントの予測値に基づいて積付けの計画を行う船舶の積付計画方法にかかるものである。 The present disclosure relates to a shipping planning method for a ship that estimates the actual wave moment generated by the sea condition on the ship based on the sea condition predicted in the shipping route and plans the loading based on the predicted value of the actual wave moment. It is a thing.
 本開示の船舶の積付計画方法においては、実波浪モーメントの予測値と、設計波浪モーメントの差分を積付余裕度として算出し、該積付余裕度に基づき、積付けの変更を行うか否かを判定することができる。 In the ship loading planning method of the present disclosure, the difference between the predicted value of the actual wave moment and the design wave moment is calculated as the loading margin, and whether or not the loading is changed based on the loading margin. Can be determined.
 本開示の船舶の積付計画方法においては、前記積付余裕度の範囲内で積荷の積増しを行うことができる。 In the ship loading planning method of the present disclosure, the cargo can be increased within the range of the loading margin.
 本開示の船舶の積付計画方法においては、前記積付余裕度の範囲内でバラスト水の漲水量を削減することができる。 In the ship loading planning method of the present disclosure, the amount of ballast water filled can be reduced within the range of the loading margin.
 本開示の船舶の積付計画方法は、コンテナ船に適用することができる。 The ship loading planning method of the present disclosure can be applied to container ships.
 また、本開示は、上述の船舶の積付計画方法を実行可能に構成された船舶の積付計画システムにかかるものである。 Further, the present disclosure relates to a ship loading planning system configured to enable the above-mentioned ship loading planning method.
 また、本開示は、上述の船舶の積付計画システムを適用した船舶にかかるものである。 Further, this disclosure relates to a ship to which the above-mentioned ship loading planning system is applied.
 本開示の船舶の積付計画方法、積付計画システムおよび船舶によれば、安全を確保しつつ積荷の運送効率を簡便に向上し得るという優れた効果を奏し得る。 According to the ship loading planning method, the loading planning system, and the ship disclosed in the present disclosure, it is possible to achieve an excellent effect that the transportation efficiency of the cargo can be easily improved while ensuring safety.
本発明の実施形態に係る船舶の積付計画システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the loading planning system of a ship which concerns on embodiment of this invention. 船舶におけるモーメントの分布の一例を示すグラフである。It is a graph which shows an example of the distribution of the moment in a ship. 本発明の実施形態に係る船舶の積付計画方法の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the loading planning method of a ship which concerns on embodiment of this invention.
 以下、本発明の実施の形態について添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は本開示の実施例による船舶の積付計画システムの形態を示している。本実施例の場合、船舶Sと陸Lを跨ぐ形でシステムが構築されており、陸L側で立案された積付計画を船舶S側に送信し、船舶S側ではこれに基づいて積付けを行い、さらに積付けの結果を必要に応じて陸L側へ送信できるようになっている。 FIG. 1 shows a form of a ship loading planning system according to the embodiment of the present disclosure. In the case of this embodiment, the system is constructed so as to straddle the ship S and the land L, and the loading plan drafted by the land L side is transmitted to the ship S side, and the ship S side loads based on this. And the result of loading can be transmitted to the land L side as needed.
 陸L側には、航路選択部1、海象データ格納部2、積付計画部3、積付データ格納部4、波浪モーメント計算部5、静水モーメント計算部6、積付余裕度判定部7、表示部8、操作入力部9および通信部10が設けられている。船舶S側には、データ格納部11、表示部12、操作入力部13および通信部14が設けられている。 On the land L side, a route selection unit 1, a sea condition data storage unit 2, a loading planning unit 3, a loading data storage unit 4, a wave moment calculation unit 5, a hydrostatic moment calculation unit 6, a loading margin determination unit 7, A display unit 8, an operation input unit 9, and a communication unit 10 are provided. A data storage unit 11, a display unit 12, an operation input unit 13, and a communication unit 14 are provided on the ship S side.
 航路選択部1は、船舶Sの航路の選択を補助する機能を備えている。航路選択部1は、例えばSea-Navi(登録商標)等の情報サービスに接続され、出港地、目的地、経由地や水域、日時等の条件に基づき、各条件に適合する航路の候補を抽出し、提示することができるようになっている。尚、航路選択部1は、Sea-Naviのような外部サービスを利用するのではなく、内部に格納されたライブラリから適当な航路を抽出するように構成されていてもよい。 The route selection unit 1 has a function of assisting the selection of the route of the ship S. The route selection unit 1 is connected to an information service such as Sea-Navi (registered trademark), and extracts route candidates that meet each condition based on conditions such as departure point, destination, waypoint and water area, and date and time. And can be presented. The route selection unit 1 may be configured to extract an appropriate route from the library stored inside, instead of using an external service such as Sea-Navi.
 海象データ格納部2は、種々の航路に関する海象データを格納する機能を備えており、航路選択部1により提示された航路に関する海象データを必要に応じて取得できるようになっている。海象データ格納部2に格納される海象データは、例えば気象庁等の外部機関から取得される予報データであってもよいし、過去の海象データであってもよく、その両方であってもよい。 The sea lane data storage unit 2 has a function of storing sea lane data related to various routes, and can acquire the sea lane data presented by the route selection unit 1 as needed. The sea condition data stored in the sea condition data storage unit 2 may be forecast data acquired from an external organization such as the Japan Meteorological Agency, past sea condition data, or both.
 積付計画部3は、船舶Sにおける積荷の積付計画を作成する機能を備えており、船舶Sの種類や最大積載量、設計強度、積荷の種類や量といった各条件に基づき、船舶Sに対し、予定している航行時に積載する積荷の総重量や、船内の各区画における積付量等を算出できるようになっている。 The loading planning unit 3 has a function of creating a loading plan for the cargo on the ship S, and is assigned to the ship S based on each condition such as the type and maximum load capacity of the ship S, the design strength, and the type and amount of the cargo. On the other hand, it is possible to calculate the total weight of the cargo to be loaded during the scheduled navigation and the loading amount in each section of the ship.
 積付データ格納部4は、積付計画部3によって作成された船舶Sにおける積荷の積付計画に関するデータ(以下、積付データと称する)を格納する機能を備えている。積付データは、例えば、予定している航行における積荷の総重量、船内の各区画における積付量、積み込まれる積荷の種類、また、船舶Sにおける自重の分布、船舶Sに備えた各バラストタンクにおけるバラスト水の漲水量等を含む。 The loading data storage unit 4 has a function of storing data (hereinafter referred to as loading data) related to the loading plan of the cargo on the ship S created by the loading planning unit 3. The loading data includes, for example, the total weight of the cargo in the planned navigation, the loading amount in each section of the ship, the type of the cargo to be loaded, the distribution of its own weight in the ship S, and each ballast tank prepared for the ship S. Including the amount of ballast water filled in.
 波浪モーメント計算部5は、海象データ格納部2に格納された海象データを参照し、航路選択部1によって提示された航路において遭遇すると予測される海象(遭遇海象)を算出する機能を備えている。また、波浪モーメント計算部5は、算出された遭遇海象と、船舶S自体に関する情報(自重や船速、外板形状等)に基づき、該当する航路において船舶Sに生じる波浪モーメント(実波浪モーメントMw(r))の予測値を算出する機能を備えている。 The wave moment calculation unit 5 has a function of referring to the sea condition data stored in the sea condition data storage unit 2 and calculating the sea condition (encounter sea condition) predicted to be encountered in the route presented by the route selection unit 1. .. Further, the wave moment calculation unit 5 is based on the calculated encounter sea condition and information on the ship S itself (self-weight, ship speed, outer plate shape, etc.), and the wave moment (actual wave moment Mw) generated in the ship S in the corresponding route. It has a function to calculate the predicted value of (r)).
 静水モーメント計算部6は、積付データ格納部4に格納された積付データに基づき、静水において船舶Sの自重、積荷とバラスト水の重量、および浮力により船舶Sに生じる実静水モーメントMs(r)を算出する機能を備えている。 Based on the loading data stored in the loading data storage unit 4, the hydrostatic moment calculation unit 6 generates the actual hydrostatic moment Ms (r) generated in the ship S due to the weight of the ship S, the weight of the cargo and ballast water, and the buoyancy in still water. ) Is provided.
 積付余裕度判定部7は、波浪モーメント計算部5により算出された実波浪モーメントMw(r)の予測値と、静水モーメント計算部6により算出された実静水モーメントMs(r)に基づき、追加で積付け可能な余裕分(積付余裕度ΔMとする)を算出する機能を備えている。尚、実波浪モーメントMw(r)の予測、実静水モーメントMs(r)の算出および積付余裕度ΔMの算出については、後に改めて説明する。 The loading margin determination unit 7 is added based on the predicted value of the actual wave moment Mw (r) calculated by the wave moment calculation unit 5 and the actual still water moment Ms (r) calculated by the hydrostatic moment calculation unit 6. It has a function to calculate the margin that can be loaded (referred to as the loading margin ΔM). The prediction of the actual wave moment Mw (r), the calculation of the actual hydrostatic moment Ms (r), and the calculation of the loading margin ΔM will be described later.
 表示部8は、航路選択部1により提示される航路の情報、海象データ格納部2に格納される海象データ、積付計画部3により作成され、積付データ格納部4に格納される積付データ、波浪モーメント計算部5や静水モーメント計算部6、積付余裕度判定部7の計算結果等の情報、各部への操作を入力するインターフェイス画面、その他の情報等を必要に応じて表示するディスプレイである。 The display unit 8 is the route information presented by the route selection unit 1, the sea condition data stored in the sea condition data storage unit 2, and the loading created by the loading planning unit 3 and stored in the loading data storage unit 4. A display that displays data, information such as the calculation results of the wave moment calculation unit 5, the hydrostatic moment calculation unit 6, and the loading margin determination unit 7, an interface screen for inputting operations to each unit, and other information as needed. Is.
 操作入力部9は、上述した各部への操作を入力するインターフェイスであり、例えばキーボードやマウス、タッチパネル式のディスプレイ等である。尚、操作入力部9をタッチパネル式のディスプレイとする場合、操作入力部9は表示部8の機能の一部あるいは全部を兼ねることもできる。 The operation input unit 9 is an interface for inputting operations to each of the above-mentioned units, such as a keyboard, a mouse, and a touch panel type display. When the operation input unit 9 is a touch panel type display, the operation input unit 9 can also serve a part or all of the functions of the display unit 8.
 通信部10は、システムの外部と通信を行う機能を備えており、各種の情報(例えば、航路のデータや海象データ、積付データ等)をやり取りできるようになっている。 The communication unit 10 has a function of communicating with the outside of the system, and can exchange various information (for example, route data, sea condition data, loading data, etc.).
 船舶S側のデータ格納部11は、船舶Sの運用に必要な各種のデータを格納する機能を備えている。船舶Sの運用に必要な各種のデータとは、例えば陸L側の航路選択部1により提示される航路の情報、海象データ格納部2に格納される海象データ、積付計画部3により作成され、積付データ格納部4に格納される積付データ、波浪モーメント計算部5や静水モーメント計算部6、積付余裕度判定部7の計算結果等の情報等を含む。 The data storage unit 11 on the ship S side has a function of storing various data necessary for the operation of the ship S. Various data necessary for the operation of the ship S are, for example, route information presented by the route selection unit 1 on the land L side, sea condition data stored in the sea condition data storage unit 2, and created by the loading planning unit 3. , The loading data stored in the loading data storage unit 4, the information such as the calculation results of the wave moment calculation unit 5, the hydrostatic moment calculation unit 6, and the loading margin determination unit 7 are included.
 表示部12は、データ格納部11に格納される各種のデータや、システムを構成する各部への操作を入力するインターフェイス画面、その他の情報等を必要に応じて表示するディスプレイである。 The display unit 12 is a display that displays various data stored in the data storage unit 11, an interface screen for inputting operations to each unit constituting the system, and other information as needed.
 操作入力部13は、上述した各部への操作を入力するインターフェイスであり、例えばキーボードやマウス、タッチパネル式のディスプレイ等である。尚、操作入力部9をタッチパネル式のディスプレイとする場合、操作入力部13は表示部12の機能の一部あるいは全部を兼ねることもできる。 The operation input unit 13 is an interface for inputting operations to the above-mentioned units, for example, a keyboard, a mouse, a touch panel type display, or the like. When the operation input unit 9 is a touch panel type display, the operation input unit 13 can also serve a part or all of the functions of the display unit 12.
 通信部14は、システムの外部と通信を行う機能を備えており、各種の情報(例えば、航路のデータや海象データ、積付データ等)を陸L側の通信部10等との間でやり取りできるようになっている。 The communication unit 14 has a function of communicating with the outside of the system, and exchanges various information (for example, route data, sea condition data, loading data, etc.) with the communication unit 10 on the land L side. You can do it.
 尚、ここでは船舶S側と陸L側を跨ぐ形でシステムを構築する場合を例示したが、本発明の船舶の積付計画システムを実施するにあたり、システム構成はここに示した例に限定されない。例えば、情報処理・通信技術の発達した昨今においては、システムの大部分を船舶S上に構築したり、陸L側と船舶S側とに積付けの計画に関し同等の機能を持たせるといったことも可能である。その他、以下に説明する機能を実現し得る限りにおいて、船舶の積付計画システムは適宜の構成を取り得る。 In addition, although the case where the system is constructed so as to straddle the ship S side and the land L side is illustrated here, the system configuration is not limited to the example shown here in implementing the ship loading planning system of the present invention. .. For example, in recent years when information processing and communication technology has been developed, most of the system can be built on the ship S, or the land L side and the ship S side can have the same function regarding the loading plan. It is possible. In addition, the ship loading planning system may have an appropriate configuration as long as the functions described below can be realized.
 上述のシステムを用いた積付計画の方法について説明する。本発明は、船舶Sの航行中に生じる波浪モーメント(実波浪モーメントMw(r))を見積もり、これに基づいて積付けの計画を行うことを趣旨としている。すなわち、従来であれば設計許容値Maと設計波浪モーメントMw(d)との差を最大積載量として積付けを行っていたところ(上記式(2)参照)、設計波浪モーメントMw(d)の代わりに実波浪モーメントMw(r)の予測値を用いることで、設計波浪モーメントMw(d)と実波浪モーメントMw(r)の差分(積付余裕度ΔM)にあたる分だけ船舶の設計強度に余裕が生じるので、この分を積付計画に活用するのである。 The method of loading planning using the above system will be explained. An object of the present invention is to estimate the wave moment (actual wave moment Mw (r)) generated during the navigation of the ship S, and to plan the loading based on this. That is, conventionally, the difference between the design allowable value Ma and the design wave moment Mw (d) was used as the maximum load capacity for loading (see the above equation (2)), but the design wave moment Mw (d) By using the predicted value of the actual wave moment Mw (r) instead, the design strength of the ship can be increased by the difference (loading margin ΔM) between the design wave moment Mw (d) and the actual wave moment Mw (r). Will occur, and this amount will be used for the loading plan.
 上述のように、設計波浪モーメントMw(d)は、例えば長期にわたる船舶Sの運用期間において、船舶Sに生じると想定される最大の波浪モーメントとして設定される。この値は、船舶S毎に固有の波浪モーメントの最大値であり、現実の多くの航行において、実際に船舶Sに生じる波浪モーメント(実波浪モーメントMw(r))は、設計波浪モーメントMw(d)以下の範囲で航行毎に変動する。つまり、その差分(積付余裕度ΔM)を積付計画に活用し、例えば積付余裕度ΔMにあたる分だけ積荷を多く積載しても安全上の問題はなく、安全を保ったまま積荷の運送効率を向上させることができるのである。 As described above, the design wave moment Mw (d) is set as the maximum wave moment expected to occur in the ship S, for example, during the long-term operation period of the ship S. This value is the maximum value of the wave moment peculiar to each ship S, and the wave moment (actual wave moment Mw (r)) actually generated in the ship S in many actual navigations is the design wave moment Mw (d). ) It fluctuates for each navigation within the following range. In other words, there is no safety problem even if the difference (loading margin ΔM) is used in the loading plan and a large amount of cargo is loaded by the amount corresponding to the loading margin ΔM, and the cargo is transported while maintaining safety. Efficiency can be improved.
 例えば、設計波浪モーメントMw(d)と設計静水モーメントMs(d)の合計値が船舶Sにおいて図2に破線で示す如く分布していたとして、仮に従来の方法により設計静水モーメントMs(d)いっぱいまで(すなわち、Ms(r)=Ms(d)となるよう)積付けを行った場合、実波浪モーメントMw(r)と実静水モーメントMs(r)の合計値は、一点鎖線で示す如く設計波浪モーメントMw(d)と設計静水モーメントMs(d)の合計値より低い値で分布する。本実施例では、両者の差(Mw(d)-Mw(r)にあたる値)を積付余裕度ΔMとして算出し、活用するのである。 For example, assuming that the total value of the design wave moment Mw (d) and the design hydrostatic moment Ms (d) is distributed on the ship S as shown by the broken line in FIG. 2, the design hydrostatic moment Ms (d) is full by the conventional method. When loading up to (that is, Ms (r) = Ms (d)), the total value of the actual wave moment Mw (r) and the actual hydrostatic moment Ms (r) is designed as shown by the alternate long and short dash line. It is distributed at a value lower than the total value of the wave moment Mw (d) and the design hydrostatic moment Ms (d). In this embodiment, the difference between the two (value corresponding to Mw (d) -Mw (r)) is calculated as the loading margin ΔM and utilized.
 ただし、これを実現するには、実波浪モーメントMw(r)の予測と、実静水モーメントMs(r)の算出を十分な精度で行う必要がある。そこで、この手順について、図3のフローチャートを参照しながら説明する。 However, in order to realize this, it is necessary to predict the actual wave moment Mw (r) and calculate the actual hydrostatic moment Ms (r) with sufficient accuracy. Therefore, this procedure will be described with reference to the flowchart of FIG.
 実波浪モーメントMw(r)を予測するためには、前提として、航路を選択し、その航路で遭遇する海象を予測する必要がある。そこで、まず航路の候補の抽出を行う(ステップS1)。航路選択部1の機能を用い、例えばSea-Navi等の外部サービスを利用し、あるいは航路選択部1に格納された航路の情報から、航路の候補を抽出する。出港地、目的地、経由地や水域等といった条件を入力すると、各条件に適合する航路が抽出され、候補として提示される。 In order to predict the actual wave moment Mw (r), it is necessary to select a route and predict the sea conditions encountered in that route as a premise. Therefore, first, route candidates are extracted (step S1). Using the function of the route selection unit 1, for example, an external service such as Sea-Navi is used, or a route candidate is extracted from the route information stored in the route selection unit 1. If you enter conditions such as departure point, destination, waypoint, water area, etc., routes that meet each condition will be extracted and presented as candidates.
 続いて、候補として提示された航路に関し、予測される海象を取得する(ステップS2)。海象データ格納部2の機能を用い、過去の同水域、同時季における海象データを参照する。あるいは、気象庁等から提供される予報データを参照する。 Subsequently, the predicted sea image is acquired for the route presented as a candidate (step S2). Using the function of the sea condition data storage unit 2, the sea condition data in the same water area and the same season in the past are referred to. Alternatively, refer to the forecast data provided by the Japan Meteorological Agency or the like.
 ステップS2で取得された海象データには、船舶Sが該当する航路で遭遇する最大の波高が含まれる。波高は、航行の快適度や、船舶Sに生じる荷重等に最も直接的に影響する。そこで、ステップS3では、波高の閾値(避航限界)を設定し、該避航限界を超える波高が予測される航路を候補から外す。そして、残った候補の中から実際に航行する航路を選択し、決定する(ステップS4)。 The sea condition data acquired in step S2 includes the maximum wave height encountered by the ship S on the corresponding route. The wave height most directly affects the comfort of navigation, the load generated on the ship S, and the like. Therefore, in step S3, a threshold value for wave height (avoidance limit) is set, and a route in which a wave height exceeding the avoidance limit is predicted is excluded from the candidates. Then, a route to be actually navigated is selected from the remaining candidates and determined (step S4).
 一方、積付計画部3では、船舶Sに対する積付けの計画を行う(ステップS5)。積荷の総積載量や、船舶Sの各区画における積荷の積載量、各バラストタンクにおけるバラスト水の漲水量が決定され、積付データとして積付データ格納部4に格納される。 On the other hand, the loading planning unit 3 plans the loading of the ship S (step S5). The total load capacity of the cargo, the load capacity of the cargo in each section of the ship S, and the filling amount of ballast water in each ballast tank are determined and stored in the loading data storage unit 4 as loading data.
 波浪モーメント計算部5は、選択された航路で遭遇すると予測される海象に基づき、実波浪モーメントMw(r)の予測値を算出する(ステップS6)。 The wave moment calculation unit 5 calculates the predicted value of the actual wave moment Mw (r) based on the sea condition predicted to be encountered on the selected route (step S6).
 実波浪モーメントMw(r)の予測値の算出方法として、ストリップ法を用いる場合を説明する。船舶Sに生じる荷重は、縦曲げモーメントによって評価することができ、波浪によって生じる縦曲げモーメントは、下記の式(3)で表すことができる。尚、Hsは波高、χは波向、Tsは波周期である。
Mw/Hs = R(χ,Ts) ……(3)
A case where the strip method is used as a method of calculating the predicted value of the real wave moment Mw (r) will be described. The load generated on the ship S can be evaluated by the vertical bending moment, and the vertical bending moment generated by the waves can be expressed by the following equation (3). Hs is the wave height, χ is the wave direction, and Ts is the wave period.
Mw / Hs = R (χ, Ts) …… (3)
 海象(Hs,Ts)は、ステップS2で取得される海象データに含まれる。そこで、これらの値(過去のデータや予報に基づき予測される値)を上記式(3)に代入し、Mwの値を算出する。尚、Mwの値には喫水も影響し、喫水は積付けによって変動するので、Mwの算出には積付データをも参照する。こうして得られたMwの最大値を、航行中に遭遇する実波浪モーメントMw(r)の予測値とする。尚、ストリップ法以外にも、種々の方法を実波浪モーメントMw(r)の予測値の算出に用いてもよいことは勿論である。 The sea elephant (Hs, Ts) is included in the sea elephant data acquired in step S2. Therefore, these values (values predicted based on past data and forecasts) are substituted into the above equation (3) to calculate the value of Mw. Since the draft also affects the value of Mw and the draft fluctuates depending on the loading, the loading data is also referred to for the calculation of Mw. The maximum value of Mw thus obtained is used as a predicted value of the actual wave moment Mw (r) encountered during navigation. Of course, in addition to the strip method, various methods may be used for calculating the predicted value of the actual wave moment Mw (r).
 一方、実静水モーメントMs(r)は、航路や海象によらず、積付けによって決まる。静水モーメント計算部6は、積付データ格納部4の積付データを参照し、実静水モーメントMs(r)を算出する(ステップS7)。 On the other hand, the actual hydrostatic moment Ms (r) is determined by the loading, regardless of the route or sea conditions. The still water moment calculation unit 6 calculates the actual still water moment Ms (r) with reference to the loading data of the loading data storage unit 4 (step S7).
 積付余裕度判定部7では、ステップS6で算出された実波浪モーメントMw(r)と、設計波浪モーメントMw(d)との差分を、積付余裕度ΔMとして算出する(ステップS8)。積付余裕度ΔMは、船舶Sにおける荷重モーメントの設計許容値Maと、航路の状況に鑑み、船舶Sに対しさらに積増しを行ってもよい分である。得られた積付余裕度ΔMの大きさや、積み込みたい積荷の量等に応じ、積付けを変更するか否かを判断する(ステップS9)。積付けを変更しない場合は積付けを終了するが、変更する場合にはステップS10に進み、積付計画部3で積付計画を変更し、新しい積付データとして積付データ格納部4に格納する。 The loading margin determination unit 7 calculates the difference between the actual wave moment Mw (r) calculated in step S6 and the design wave moment Mw (d) as the loading margin ΔM (step S8). The loading margin ΔM is a portion that may be further loaded on the ship S in consideration of the design allowable value Ma of the load moment on the ship S and the condition of the route. It is determined whether or not to change the loading according to the size of the obtained loading margin ΔM, the amount of the cargo to be loaded, and the like (step S9). If the loading is not changed, the loading is terminated, but if it is changed, the process proceeds to step S10, the loading plan is changed by the loading planning unit 3, and the loading is stored in the loading data storage unit 4 as new loading data. do.
 積付けが変更されると、船舶Sに生じる実静水モーメントMs(r)は変化する。また、船舶Sの喫水が変わる結果、実波浪モーメントMw(r)も変化する可能性がある。このため、積付計画を変更したら、改めて実波浪モーメントMw(r)の予測値および実静水モーメントMs(r)を算出し(ステップS6,S7)、積付余裕度ΔMを算出し(ステップS8)、積付余裕度ΔMの値に応じて、積付計画の変更を行う(ステップS9,S10)。こうして、積付余裕度ΔMの値を基準とし、積増し等、積付計画の変更を簡便に行うことができる。さらに、これを繰り返していくと、船舶Sの設計許容値Maを満足する範囲で実静水モーメントMs(r)が最大となるよう、積付計画が最適化される。 When the loading is changed, the actual hydrostatic moment Ms (r) generated in the ship S changes. Further, as a result of the draft of the ship S changing, the actual wave moment Mw (r) may also change. Therefore, after changing the loading plan, the predicted value of the actual wave moment Mw (r) and the actual hydrostatic moment Ms (r) are calculated again (steps S6 and S7), and the loading margin ΔM is calculated (step S8). ), The loading plan is changed according to the value of the loading margin ΔM (steps S9 and S10). In this way, it is possible to easily change the loading plan, such as adding the product, based on the value of the loading margin ΔM. Further, by repeating this, the loading plan is optimized so that the actual hydrostatic moment Ms (r) is maximized within the range satisfying the design tolerance Ma of the ship S.
 船舶Sのデータ格納部11には、航路の情報や海象データ、積付データ等の必要な情報が格納されている。積付余裕度ΔMに基づいて変更された積付データも、通信部10,14を介して船舶S側に送信され、データ格納部11に格納される。船舶S側では、新しい積付データに従って積付けを行う。 The data storage unit 11 of the ship S stores necessary information such as route information, sea condition data, and loading data. The loading data changed based on the loading margin ΔM is also transmitted to the ship S side via the communication units 10 and 14, and stored in the data storage unit 11. On the ship S side, loading is performed according to the new loading data.
 こうした方法は、種々の船舶Sにおいて、単に算出された積付余裕度ΔMの範囲内で積増しを行う(実静水モーメントMs(r)を、積荷の重量で増大させる)という形で実行することができるが、特にコンテナ船を対象とする場合には、やや異なる方法での運用が有効である。 Such a method is carried out on various vessels S in the form of simply performing the loading within the range of the calculated loading margin ΔM (increasing the actual hydrostatic moment Ms (r) by the weight of the cargo). However, it is effective to operate in a slightly different way, especially when targeting container ships.
 一般に、船舶においては、喫水を保つ目的や、船体に生じる荷重モーメントを是正する目的でバラスト水が船体内に注入される場合があるが、特にコンテナ船では積荷の比重が軽いため、バラスト水が多く注入される機会が多い。そこで、船舶Sがコンテナ船であり、最初の積付計画においてバラスト水が多く注入されているような場合、例えば次に述べる手順で上記の積付計画方法を適用することができる。 Generally, in ships, ballast water may be injected into the hull for the purpose of maintaining draft or correcting the load moment generated in the hull, but especially in container ships, the weight of the cargo is light, so ballast water is used. There are many opportunities to be injected. Therefore, when the ship S is a container ship and a large amount of ballast water is injected in the initial loading plan, the above loading planning method can be applied, for example, by the procedure described below.
 まず、図3に示すステップS1~S8の手順を実行し、算出された積付余裕度ΔMの範囲内で積荷の積増しを行う(ステップS9,S10)。このとき、積増しをした区画に関し、積増し分と同じ重量のバラスト水を放出するようにする。このようにすると、実静水モーメントMs(r)の値は積付計画の変更前とあまり変わらず、積付余裕度ΔMは残存するので、さらに積付計画を変更し、積み増しを行うことができる。 First, the procedures of steps S1 to S8 shown in FIG. 3 are executed, and the load is increased within the range of the calculated loading margin ΔM (steps S9 and S10). At this time, the ballast water of the same weight as the added portion is discharged with respect to the added section. In this way, the value of the actual hydrostatic moment Ms (r) is not much different from that before the change of the loading plan, and the loading margin ΔM remains. Therefore, the loading plan can be further changed and the loading can be performed. ..
 尚、積増し分のバラスト水を削減する場合、仮に実静水モーメントMs(r)の値が変化しないとすれば、理論上、本実施例のように積付余裕度ΔMを考慮せずとも積増しを行うことは可能である。しかしながら、実際に積付けを行う場合、船体におけるバラストタンクの位置は貨物を乗せる位置とは異なるため、仮に積増しをした区画のなるべく近くに位置するバラストタンクのバラスト水を削減したとしても、実静水モーメントMs(r)の値は多少変化してしまう。このため、算出された積付余裕度ΔMを念頭に置かずに積増しをしようとすると、どの程度の積増しであれば許容できるのかについての基準が存在しないので、バラスト水を削減したとしても結果的に積載量が許容値を超過してしまう可能性が排除できない。本実施例のように積付余裕度ΔMを用いれば、支障のない範囲で安全に積増しを行うことができる。 In addition, when reducing the ballast water for the additional product, if the value of the actual hydrostatic moment Ms (r) does not change, theoretically, the product does not need to consider the loading margin ΔM as in the present embodiment. It is possible to add more. However, when actually loading, the position of the ballast tank on the hull is different from the position where the cargo is placed, so even if the ballast water of the ballast tank located as close as possible to the expanded section is reduced, it is actually The value of the hydrostatic moment Ms (r) changes to some extent. For this reason, if an attempt is made to add the product without keeping in mind the calculated loading margin ΔM, there is no standard as to how much the product can be added, so even if the ballast water is reduced. As a result, the possibility that the load capacity exceeds the permissible value cannot be ruled out. If the loading margin ΔM is used as in this embodiment, the loading can be safely performed within a range that does not cause any trouble.
 また、積付余裕度ΔMをバラスト水の削減のために利用するという形での運用も可能である。コンテナ船では、上述のように船体に生じる荷重モーメントを是正する目的でバラスト水が注入される場合があり、この場合、バラスト水の荷重は実静水モーメントMs(r)を小さくする向きに作用する。すなわち、このバラスト水の漲水量を削減すれば実静水モーメントMs(r)は増大するのであるが、上記方法によって算出された積付余裕度ΔMを、バラスト水の削減による実静水モーメントMs(r)の増大に充てるのである。すなわち、積付余裕度ΔMの範囲内で、船舶S内のバラスト水を放出すればよい。 It is also possible to operate in the form of using the loading margin ΔM to reduce ballast water. In a container ship, ballast water may be injected for the purpose of correcting the load moment generated on the hull as described above, and in this case, the load of the ballast water acts in the direction of reducing the actual hydrostatic moment Ms (r). .. That is, if the amount of ballast water filled is reduced, the actual hydrostatic moment Ms (r) is increased, but the actual hydrostatic moment Ms (r) calculated by the above method is used to reduce the ballast water. ) Is used to increase. That is, the ballast water in the ship S may be discharged within the range of the loading margin ΔM.
 こうした運用は、例えばバラスト水はタンク内に残っているが、貨物スペースの制約等によりそれ以上のコンテナを積み込むことができなくなったような場合や、単にそれ以上積み込むべき貨物がなくなった場合等に有効である。このようにすると、バラスト水の少ない状態でコンテナ船である船舶Sを航行させることができ、船舶S全体の重量を減らした燃費の良い航行が可能となる。無論、上に説明した「積荷の積増し分のバラスト水の削減」と、「積付余裕度ΔMの範囲内でのバラスト水の削減」を適宜併用してもよい。あるいは単に、バラスト水の削減はせず、積付余裕度ΔMの範囲内で積増しのみを行ってもよいことは勿論である。 In such an operation, for example, when ballast water remains in the tank, but it is not possible to load more containers due to restrictions on cargo space, or when there is simply no more cargo to load. It is valid. In this way, the ship S, which is a container ship, can be navigated with a small amount of ballast water, and the weight of the entire ship S can be reduced to enable fuel-efficient navigation. Of course, the above-described "reduction of ballast water by the amount of additional cargo" and "reduction of ballast water within the range of the loading margin ΔM" may be used in combination as appropriate. Alternatively, it goes without saying that the ballast water may not be simply reduced, but only the ballasting may be performed within the range of the loading margin ΔM.
 上述の如き方法およびシステムを実施するにあたっては、例えば安全の確保あるいは積載量の拡充のために船体やその他の構造を変更するような必要はなく、既存の船舶にも容易に適用し、積荷の運送効率の向上を図ることができる。 In implementing the methods and systems described above, it is not necessary to change the hull or other structures, for example to ensure safety or increase the load capacity, and it can be easily applied to existing ships and loaded. It is possible to improve the transportation efficiency.
 以上のように、上記本実施例の船舶の積付計画方法においては、航路において予測される海象に基づき、航路において海象により船舶Sに生じる実波浪モーメントMw(r)を見積もり、実波浪モーメントMw(r)の予測値に基づいて積付けの計画を行っている。このようにすれば、船舶S毎に固有の設計波浪モーメントMw(d)の代わりに、それ以下の値の実波浪モーメントMw(r)を用いて積付けを計画することで、安全を保ったまま積荷の運送効率を向上させることができる。 As described above, in the ship loading planning method of the present embodiment, the actual wave moment Mw (r) generated on the ship S by the sea condition is estimated based on the sea condition predicted in the route, and the actual wave moment Mw is estimated. The loading is planned based on the predicted value of (r). In this way, safety was maintained by planning the loading using the actual wave moment Mw (r) having a value lower than that of the design wave moment Mw (d) peculiar to each ship S. It is possible to improve the transportation efficiency of the cargo as it is.
 また、本実施例の船舶の積付計画方法においては、実波浪モーメントMw(r)の予測値と、設計波浪モーメントMw(d)の差分を積付余裕度ΔMとして算出し、該積付余裕度ΔMに基づき、積付けの変更を行うか否かを判定している。このようにすれば、積付余裕度ΔMを基準とし、簡便に積付計画を変更することができる。 Further, in the ship loading planning method of the present embodiment, the difference between the predicted value of the actual wave moment Mw (r) and the design wave moment Mw (d) is calculated as the loading margin ΔM, and the loading margin is calculated. It is determined whether or not to change the loading based on the degree ΔM. In this way, the loading plan can be easily changed based on the loading margin ΔM.
 また、本実施例の船舶の積付計画方法においては、積付余裕度ΔMの範囲内で積荷の積増しを行うことができ、このようにすれば、積付余裕度ΔMを基準とし、簡便に積増しを行うことができる。 Further, in the ship loading planning method of the present embodiment, the load can be increased within the range of the loading margin ΔM, and in this way, the loading margin ΔM is used as a reference for convenience. Can be added to.
 また、本実施例の船舶の積付計画方法においては、積付余裕度ΔMの範囲内でバラスト水の漲水量を削減することができ、このようにすれば、バラスト水の少ない状態でコンテナ船である船舶Sを航行させることができ、船舶S全体の重量を減らした燃費の良い航行が可能となる。 Further, in the ship loading planning method of the present embodiment, the amount of ballast water filled can be reduced within the range of the loading margin ΔM, and in this way, the container ship with a small amount of ballast water. The ship S can be navigated, and the weight of the entire ship S can be reduced to enable good fuel navigation.
 また、本実施例の船舶の積付計画方法はコンテナ船に適用することができ、このようにすれば、コンテナ船に関して上記と同等の作用効果を奏することができる。 Further, the ship loading planning method of this embodiment can be applied to a container ship, and in this way, the same effect as described above can be obtained for the container ship.
 また、上記本実施例の船舶の積付計画システムは、上述の船舶の積付計画方法を実行可能に構成されているので、上記と同様の作用効果を奏することができる。 Further, since the ship loading planning system of the present embodiment is configured to be able to execute the ship loading planning method described above, the same effects as described above can be obtained.
 また、上記本実施例の船舶は、上述の船舶の積付計画システムを適用されているので、上記と同様の作用効果を奏することができる。 Further, since the ship of the above-mentioned embodiment is applied with the above-mentioned ship loading planning system, the same operation and effect as the above can be obtained.
 したがって、上記本実施例によれば、安全を確保しつつ積荷の運送効率を簡便に向上し得る。 Therefore, according to the above embodiment, it is possible to easily improve the transportation efficiency of cargo while ensuring safety.
 尚、本開示において説明した船舶の積付計画方法、積付計画システムおよび船舶は、上述の実施例にのみ限定されるものではなく、要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the ship loading planning method, the loading planning system and the ship described in the present disclosure are not limited to the above-described embodiment, and of course, various changes can be made without departing from the gist. Is.
    1  航路選択部
    2  海象データ格納部
    3  積付計画部
    4  積付データ格納部
    5  波浪モーメント計算部
    6  静水モーメント計算部
    7  積付余裕度判定部
    8  表示部
    9  操作入力部
   10  通信部
   11  データ格納部
   12  表示部
   13  操作入力部
   14  通信部
    L  陸
    S  船舶
 Mw(d) 設計波浪モーメント
 Mw(r) 実波浪モーメント
   ΔM  積付余裕度
1 Route selection unit 2 Sea condition data storage unit 3 Loading planning unit 4 Loading data storage unit 5 Wave moment calculation unit 6 Hydrostatic moment calculation unit 7 Loading margin determination unit 8 Display unit 9 Operation input unit 10 Communication unit 11 Data storage Part 12 Display part 13 Operation input part 14 Communication part L Land S Ship Mw (d) Design wave moment Mw (r) Actual wave moment ΔM Loading margin

Claims (8)

  1.  航路において予測される海象に基づき、航路において海象により船舶に生じる実波浪モーメントを見積もり、
     前記実波浪モーメントの予測値に基づいて積付けの計画を行う、船舶の積付計画方法。
    Based on the sea conditions predicted in the shipping route, the actual wave moment generated by the sea conditions in the shipping route is estimated.
    A ship loading planning method for planning loading based on the predicted value of the actual wave moment.
  2.  実波浪モーメントの予測値と、設計波浪モーメントの差分を積付余裕度として算出し、
     該積付余裕度に基づき、積付けの変更を行うか否かを判定する、請求項1に記載の船舶の積付計画方法。
    The difference between the predicted value of the actual wave moment and the design wave moment is calculated as the loading margin.
    The ship loading planning method according to claim 1, wherein it is determined whether or not to change the loading based on the loading margin.
  3.  前記積付余裕度の範囲内で積荷の積増しを行う、請求項2に記載の船舶の積付計画方法。 The ship loading planning method according to claim 2, wherein the load is increased within the range of the loading margin.
  4.  前記積付余裕度の範囲内でバラスト水の漲水量を削減する、請求項2に記載の船舶の積付計画方法。 The ship loading planning method according to claim 2, wherein the amount of ballast water filled is reduced within the range of the loading margin.
  5.  前記積付余裕度の範囲内でバラスト水の漲水量を削減する、請求項3に記載の船舶の積付計画方法。 The ship loading planning method according to claim 3, wherein the amount of ballast water filled is reduced within the range of the loading margin.
  6.  コンテナ船に適用された、請求項1に記載の船舶の積付計画方法。 The ship loading planning method according to claim 1, which is applied to a container ship.
  7.  請求項1に記載の船舶の積付計画方法を実行可能に構成された船舶の積付計画システム。 A ship loading planning system configured to enable the ship loading planning method according to claim 1.
  8.  請求項7に記載の船舶の積付計画システムを適用した船舶。 A ship to which the ship loading planning system according to claim 7 is applied.
PCT/JP2021/009908 2020-03-23 2021-03-11 Method for planning stowage of ship, stowage planning system, and ship WO2021193122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180023735.4A CN115250619A (en) 2020-03-23 2021-03-11 Ship stowage planning method, stowage planning system and ship
KR1020227034610A KR102526242B1 (en) 2020-03-23 2021-03-11 Ship stowage planning method, stowage planning system and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051575A JP6742549B1 (en) 2020-03-23 2020-03-23 Ship loading planning method, loading planning system, and ship
JP2020-051575 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193122A1 true WO2021193122A1 (en) 2021-09-30

Family

ID=72047992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009908 WO2021193122A1 (en) 2020-03-23 2021-03-11 Method for planning stowage of ship, stowage planning system, and ship

Country Status (4)

Country Link
JP (1) JP6742549B1 (en)
KR (1) KR102526242B1 (en)
CN (1) CN115250619A (en)
WO (1) WO2021193122A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918632B (en) * 2021-03-09 2022-08-19 武汉理工大学 Ship design method based on intelligent reasoning
CN113978645A (en) * 2021-09-16 2022-01-28 中国人民解放军海军工程大学 Vertical combined bending moment data processing method and system for whole life cycle of conventional surface vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079164U (en) * 1983-11-07 1985-06-01 川崎重工業株式会社 Motion acceleration detection device for moving objects
JPH05112284A (en) * 1991-10-22 1993-05-07 Mitsubishi Heavy Ind Ltd Crude oil loading schedule planning device for tanker
JPH10305929A (en) * 1997-05-01 1998-11-17 Kobe Steel Ltd Method and device for planning and preparing inboard loading position
WO2006003708A1 (en) * 2004-07-02 2006-01-12 Yasunobu Abe System for assisting ship cargo handling practice
JP2019012029A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Optimal route search method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142374A (en) * 1995-11-22 1997-06-03 Fuaa East Shitsupingu Kk Shipping support device and hull condition data determining method
JP4454404B2 (en) 2004-06-18 2010-04-21 株式会社リコー Fixing apparatus, image forming apparatus, and toner fixing method
CN101042743A (en) * 2006-03-21 2007-09-26 上海浦东国际集装箱码头有限公司 Container ship real time loading system and method based on bridge machine efficiency
CN202163593U (en) * 2011-07-20 2012-03-14 大连金迈海洋工程技术有限公司 Control system for regulating and loading ship
KR101641787B1 (en) * 2014-11-19 2016-07-22 한양대학교 산학협력단 Platform and method for safety navigation and disaster response of iot intelligent ship
US10501152B2 (en) * 2014-12-30 2019-12-10 CENTRO PER GLI STUDI DI TECNICA NAVALE-CETENA S.p.A. Structural monitoring system of the hull of a ship integrated with a navigation decision support system
CN107745785B (en) * 2017-09-27 2019-05-03 中国船级社 A kind of best Calculation of stowage on board method of loading instrument of bulk freighter and oil carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079164U (en) * 1983-11-07 1985-06-01 川崎重工業株式会社 Motion acceleration detection device for moving objects
JPH05112284A (en) * 1991-10-22 1993-05-07 Mitsubishi Heavy Ind Ltd Crude oil loading schedule planning device for tanker
JPH10305929A (en) * 1997-05-01 1998-11-17 Kobe Steel Ltd Method and device for planning and preparing inboard loading position
WO2006003708A1 (en) * 2004-07-02 2006-01-12 Yasunobu Abe System for assisting ship cargo handling practice
JP2019012029A (en) * 2017-06-30 2019-01-24 川崎重工業株式会社 Optimal route search method and device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HITACHI ZOSEN ET AL.: "Information System, New loading computer 'Road meter", SHIP MAGAZINE, vol. 52, no. 4, 1 April 1979 (1979-04-01), pages 43 - 49 *
IKEDA, YOSHIHO ET AL.: "Chapter 4 Basics of Stability, Chapter 5 Application of Stability (ship stability)", NAVAL ARCHITECTURE AND OCEAN ENGINEERING SERIES 1: SHIP GEOMETRY AND FUNDAMENTALS OF HYDROSTATICS, 18 April 2012 (2012-04-18), pages 63 - 133, ISBN: 978-4-425-71431-5 *
TOZAWA, SHIGERU ET AL.: "Mitsubishi Integrated Navigation System", BULLETIN OF THE SOCIETY OF NAVAL ARCHITECTS OF JAPAN, vol. 705, March 1988 (1988-03-01), pages 156 - 159, ISSN: 2433- 1007, DOI: 10.14856/zogakusi.705.0_156 *
TSURU, MASAKATSU ET AL.: "ClassNK-NAPA GREEN ' - Advanced Operational Solution for Energy Efficiency", JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 54, no. 2, 1 March 2019 (2019-03-01), pages 239 - 242, ISSN: 1884-3778, DOI: 10.5988/jime.54.239 *

Also Published As

Publication number Publication date
JP2021147007A (en) 2021-09-27
KR102526242B1 (en) 2023-04-28
JP6742549B1 (en) 2020-08-19
KR20220150367A (en) 2022-11-10
CN115250619A (en) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2021193122A1 (en) Method for planning stowage of ship, stowage planning system, and ship
Krata et al. Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction
Tsinker Handbook of port and harbor engineering: geotechnical and structural aspects
Kratzke et al. Search and rescue optimal planning system
Drewniak et al. Geopolitics of Arctic shipping: the state of icebreakers and future needs
CN106203721B (en) The polar region ice formation route design system and method for self-adaptive ship ice-breaking capacity
Bačkalov et al. Improvement of ship stability and safety in intact condition through operational measures: challenges and opportunities
JP2018172087A (en) Navigation support method and navigation support system adapted for risk on sea route
Prpić-Oršić et al. Operation of ULCS-real life
Papanikolau et al. GOALDS–goal based damage stability of passenger ships
Kytariolou et al. Ship routing optimisation based on forecasted weather data and considering safety criteria
WO2021235053A1 (en) Navigation method for marine vessel, navigation system, and marine vessel
Francescutto et al. Buoyancy, stability, and subdivision: from Archimedes to SOLAS 2009 and the way ahead
JP5988838B2 (en) Homestay recommendation device
Payer et al. A class society's view on rationally based ship structural design
Nordbø Optimal configuration of supply logistics for remote oil and gas fields
KR102206473B1 (en) A displaying method of the status of shippable oil-tankers
Drewniak et al. Geopolitical considerations of shipping operations in the Arctic: mapping the current state of icebreakers and identifying future needs
Kurt et al. The effect of offshore port systems to container sector'energy efficiency
Ahokas Analysis of voyage optimization benefits for different shipping stakeholders
Pedersen The Influence of Ice Classification on Design of an LNG Tanker
Froese Safe and efficient port approach by vessel traffic management in waterways
Shakeel et al. Development of intact stability calculations tool for ships
Higginbotham et al. The Northwest Territories and Arctic Maritime Development in the Beaufort Area
Ruiz Capel Weight optimization of ice strengthened hull structure of merchant vessels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227034610

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776417

Country of ref document: EP

Kind code of ref document: A1