WO2021193121A1 - Solid-state imaging device and image processing method - Google Patents

Solid-state imaging device and image processing method Download PDF

Info

Publication number
WO2021193121A1
WO2021193121A1 PCT/JP2021/009895 JP2021009895W WO2021193121A1 WO 2021193121 A1 WO2021193121 A1 WO 2021193121A1 JP 2021009895 W JP2021009895 W JP 2021009895W WO 2021193121 A1 WO2021193121 A1 WO 2021193121A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reduced
signals
pixel
memory
Prior art date
Application number
PCT/JP2021/009895
Other languages
French (fr)
Japanese (ja)
Inventor
山岸 弘幸
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022509917A priority Critical patent/JPWO2021193121A1/ja
Publication of WO2021193121A1 publication Critical patent/WO2021193121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to a solid-state image sensor and an image processing method.
  • a reduced image obtained by hierarchically reducing the original image is used.
  • the original image is transferred to a frame memory (for example, DRAM (Dynamic Random Access Memory) or the like) outside the pixel array, and the reduced image is generated from the original image using the frame memory. I needed it.
  • a frame memory for example, DRAM (Dynamic Random Access Memory) or the like
  • the reduced image is generated after transferring the original image having a large amount of data, it takes time to generate the reduced image and perform image processing such as object detection.
  • a solid-state image sensor and an image processing method capable of shortening the time for generating a reduced image and image processing.
  • the solid-state image sensor on one aspect of the present disclosure includes a pixel array including a plurality of pixels that perform photoelectric conversion, and a plurality of AD conversion units that are provided corresponding to each of the plurality of pixels and digitally convert a pixel signal from the pixels.
  • a plurality of first memory units provided corresponding to each of the plurality of AD conversion units and storing digitally converted pixel signals by the AD conversion unit, and N pixels (N is an integer of 2 or more) or
  • a plurality of second memory units provided for each of N AD conversion units are provided.
  • a signal processing circuit that arithmetically processes a signal from the first or second memory unit, and a selection circuit that receives an output signal from the signal processing circuit and transfers the output signal to either the first or second memory unit. May be further provided.
  • the signal processing circuit generates one first reduced signal from a plurality of pixel signals from the first and second memory units, and the selection circuit stores the first reduced signal in either the first or second memory unit. You may.
  • One second memory unit may be provided for two pixels.
  • the signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduced signals, and a part of the plurality of second memory units is used.
  • Each first reduction signal may be stored.
  • the signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units into a quarter to generate a plurality of second reduced signals, and the plurality of first memory units have a plurality of pixels. While holding the signal, the other second memory unit of the second memory unit may store each second reduction signal.
  • the pixel signal After transferring the plurality of first reduced signals or the plurality of second reduced signals to the outside of the second memory unit, the pixel signal may be transferred to the outside of the first memory unit.
  • the signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of third reduced signals, and the plurality of first memory units have a plurality of first memory units. While holding the pixel signal and holding the second reduced signal by the plurality of second memory units, the other second memory unit stores each third reduced signal, and the signal processing circuit has a plurality of second reduced signals.
  • a plurality of nth (n ⁇ 3) reduction signals stored in the second memory unit are further compressed to a quarter to generate a plurality of n + 1 reduction signals, and the other second memory units are each n + 1th.
  • a reduced signal may be stored.
  • One second memory unit may be provided for every three pixels.
  • the signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduced signals, and a part of the plurality of second memory units is used.
  • Each first reduction signal may be stored.
  • the signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units into a quarter to generate a plurality of second reduced signals, and the plurality of first memory units have a plurality of pixels. While holding the signal, the other second memory unit of the second memory unit may store each second reduction signal.
  • the pixel signal After transferring the plurality of first reduced signals or the plurality of second reduced signals to the outside of the second memory unit, the pixel signal may be transferred to the outside of the first memory unit.
  • the signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units into a quarter to generate a plurality of third reduced signals, and the plurality of first memory units have a plurality of first memory units. While holding the pixel signal and storing the second reduced signal in the plurality of second memory units, the other second memory unit stores each third reduced signal, and the signal processing circuit has a plurality of thirds.
  • a plurality of nth (n ⁇ 3) reduction signals stored in the second memory unit are further compressed to a quarter to generate a plurality of n + 1 reduction signals, and the other second memory units are each n + 1th.
  • a reduced signal may be stored.
  • One second memory unit may be provided for every four pixels.
  • the signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduction signals, and the plurality of second memory units each perform the first reduction.
  • the signal may be stored.
  • the signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units to a quarter to generate a plurality of second reduced signals, and the first memory unit generates each second reduced signal.
  • the signal may be stored.
  • the plurality of first memory units may store the second reduced signals.
  • the signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals, and the first or second memory unit may generate a plurality of third reduced signals.
  • Each third reduced signal is stored, and the signal processing circuit further compresses the plurality of nth (n ⁇ 3) reduced signals stored in the plurality of first or second memory units into a plurality of quarters.
  • the n + 1 reduction signal may be generated, and the first or second memory unit may store each n + 1 reduction signal.
  • the image processing method of one aspect of the present disclosure includes a pixel array including a plurality of pixels for photoelectric conversion, a plurality of AD conversion units provided corresponding to each of the plurality of pixels, and a plurality of AD conversion units, respectively.
  • N is an integer of 2 or more
  • N is an integer of 2 or more
  • the plurality of first reduction signals may be signals generated by compressing a plurality of pixel signals into a quarter.
  • the conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment.
  • the conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment A conceptual diagram showing an original pixel and a reduced image. A graph showing the transfer time of the original image and the reduced image.
  • the conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment.
  • the conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment.
  • FIG. 1 is a perspective view showing a configuration example of a solid-state image sensor according to the first embodiment of the present technology.
  • the solid-state image sensor 100 is configured by laminating a semiconductor chip 511 and a semiconductor chip 512.
  • the semiconductor chip 511 includes a pixel array unit 240 formed on the semiconductor substrate.
  • the semiconductor chip 512 includes an ADC unit 280 formed on another semiconductor substrate and other peripheral circuits.
  • the semiconductor chips 511 and 512 are formed as separate semiconductor chips, and are subsequently laminated.
  • Elements such as each pixel of the pixel array unit 240 of the semiconductor chip 511 and the ADC unit 280 of the semiconductor chip 512 are, for example, TSVs (Through Silicon Vias) provided in the via region around the pixel array unit 240 and the ADC unit 280. It is electrically connected using a through electrode or the like. Alternatively, both semiconductor chips may be bonded together so that the wiring of the semiconductor chip 511 and the wiring of the semiconductor chip 511 are in contact with each other (Cu-Cu bonding). Further, the pixel array unit 240 and the ADC unit 280 may be configured as one semiconductor chip, and the other peripheral circuits may be configured as another semiconductor chip. Further, the pixel array unit 240, the ADC unit 280, and other peripheral circuits may all be configured as one semiconductor chip. The number of laminated semiconductor chips may be three or more.
  • FIG. 2 is a block diagram showing a configuration example of a solid-state image sensor according to the first embodiment of the present technology.
  • a plurality of pixel circuits 250 are arranged in a two-dimensional lattice pattern on the pixel array unit 240 on the semiconductor chip 511.
  • the pixel circuit 250 has a photoelectric conversion element (not shown), receives power from a voltage source 180, and photoelectrically converts incident light to generate an electric charge.
  • a plurality of ADC circuits 290 are arranged in a two-dimensional lattice pattern in the ADC section 280 on the semiconductor chip 512. Each of the ADC circuits 290 is provided corresponding to the pixel circuit 250, and converts the pixel signal (analog signal) from the pixel circuit 250 into a digital signal.
  • the ADC circuit 290 is provided corresponding to each of the pixel circuits 250, the pixel signals simultaneously detected by all the pixel circuits 250 in the pixel array unit 240 are immediately and simultaneously AD-converted. Can be done.
  • the digital signal AD-converted by the ADC circuit 290 is subjected to signal processing such as CDS (Correlated Double Sampling) processing.
  • the digital signal is transferred to the frame memory 115 via the transfer circuit 260, and is detected and processed by the DSP (Digital Signal Processing) circuit 120 provided inside the semiconductor chip 512.
  • the digital signal may be transferred to an external DSP circuit (not shown) of the semiconductor chips 511 and 512 for detection processing.
  • the digital signal may be detected and processed in the same semiconductor chip after the CDS processing, or may be detected and processed in another semiconductor chip.
  • FIG. 3 is a schematic diagram showing a pixel array unit and an ADC (Analog-to-Digital Converter) unit.
  • the pixel array unit 240 includes a plurality of pixel circuits 250 that perform photoelectric conversion.
  • the pixel circuit 250 as a pixel is two-dimensionally arranged on the semiconductor substrate.
  • the ADC unit 280 includes a plurality of ADC circuits 290 that digitally convert the pixel signal from the pixel circuit 250.
  • the ADC circuit 290 as an AD conversion unit is two-dimensionally arranged on another semiconductor substrate. Further, the ADC circuit 290 is provided corresponding to each of the pixel circuits 250. In FIG. 3, the ADC circuit 290 is provided in the lateral direction over two pixel circuits 250 adjacent to each other. Further, two ADC circuits 290 are arranged in the vertical direction with respect to one pixel circuit 250. Therefore, in the present disclosure, the ADC circuit 290 is provided on a one-to-one basis with respect to the pixel circuit 250.
  • FIG. 4 is a schematic view showing a partial configuration example of the ADC section.
  • the ADC unit 280 includes a plurality of ADC circuits 290 provided corresponding to the plurality of pixel circuits 250, and a second memory unit 292. As shown in FIG. 5, the plurality of ADC circuits 290 include a first memory unit 291 in addition to a comparison circuit, a selector, and the like.
  • the first memory unit 291 is provided in the ADC circuit 290, and is provided corresponding to each of the ADC circuits 290.
  • the first memory unit 291 stores the pixel signals that have been AD-converted by the corresponding ADC circuits 290.
  • the second memory unit 292 is an additional memory provided separately from the first memory unit 291 of the ADC circuit 290, and in the present embodiment, the second memory unit 292 is provided for two ADC circuits 290 (that is, two pixels). It is provided one by one.
  • the second memory unit 292 is provided to store one reduced signal generated by using the plurality of pixel signals stored in the plurality of first memory units 291.
  • the first memory unit 291 stores pixel signals constituting a high-resolution original image.
  • the second memory unit 292 stores the signal (reduced signal) of the reduced image generated by compressing the original image, respectively.
  • the solid-state image sensor 100 does not output the pixel signal of the original image generated by the ADC circuit 290 as it is to the outside of the semiconductor chips 511 and 512, but for each pixel circuit 250 (that is, pixels). It is compressed in the ADC circuit 290 provided (for each) to make a reduced image. As a result, the original image can be compressed into a reduced image in a short time. A more detailed description of the image processing method will be described later.
  • FIG. 5 is a diagram showing a part of the configuration of the ADC unit in more detail.
  • the ADC section 280 includes an ADC circuit 290a_1, 290a_2, 290b_1, 290b_2, 290c_1, 290c_2 ..., a second memory section 292a, 292b, 292c ..., and a signal processing circuit 293a, 293b, 293c ...
  • the ADC circuits 290a_1, 290a_2, 290b_1, 290b_2, 290c_1, 290c_2, and the like each have the same internal configuration. Therefore, for convenience, the internal configuration of the ADC circuit 290a_1 will be described, and the description of the internal configuration of other ADC circuits will be omitted.
  • the ADC circuit 290a_1 includes a comparison circuit 295, a selector 296, and a first memory unit 291a_1.
  • the comparison circuit 295 compares the pixel signal from the corresponding pixel circuit 250 with the reference signal from the DAC 231.
  • the comparison circuit 295 measures the time from the start of the voltage change of the reference signal to the crossing of the voltage level of the pixel signal. As a result, the pixel signal is AD-converted and output as a digital value.
  • the selector 296 receives the digital value from the comparison circuit 295 and the output signal from the demultiplexer 294a, and selectively transfers any of them to the first memory unit 291a_1.
  • the first memory unit 291a_1 temporarily stores the signal from the demultiplexer 294a.
  • the comparison circuit 295 receives the pixel signal of the original image from the corresponding pixel circuit 250
  • the demultiplexer 294a sends the pixel signal of the original image to the first memory unit 291a_1, and the first memory unit 291a_1 Stores pixel signals.
  • the other first memory units 291a_2 and the like also store the pixel signals of the original image from the corresponding pixel circuits 250, similarly to the first memory unit 291a_1. Therefore, the ADC unit 280 stores the pixel signal of the original image as a whole.
  • the second memory unit 292a and the like have not yet stored a specific signal.
  • the first and second memory units 291a_1 to 291c_1, 291a_2 to 291c_2, and 292a to 292c may be latch circuits having the same configuration.
  • the signal processing circuit 293a receives a plurality of pixel signals from the first memory unit 291a_1, 291a_2, 291b_1, 291b_2 and the second memory unit 292a, and performs these arithmetic processing.
  • the arithmetic processing is filtering processing of a plurality of pixel signals, thinning out a certain pixel signal from a plurality of pixel signals, calculating the average of a plurality of pixel signals, or multiplying a plurality of pixel signals by a coefficient and adding them. It may be a process to be performed. By such arithmetic processing, those pixel signals can be combined to generate one signal (for example, a signal of a reduced image).
  • the signal processing circuit 293a synthesizes two pixel signals from the first memory units 291a_1 and 291a_2, the signal processing circuit 293a synthesizes the two pixel signals from the first memory units 291b_1 and 291b_2 adjacent to them in consideration of the pixel signals. Output as one signal (reduced signal). Since the signal of the second memory unit 292a or the like is undefined when synthesizing the pixel signal of the original image, the signal processing circuit 293a does not use the signal of the second memory unit 292a.
  • the signal processing circuits 293b and 293c also function in the same manner as the signal processing circuits 293a.
  • the signal processing circuit 293b receives a plurality of pixel signals from the first memory unit 291b_1, 291b_2, 291c_1, 291c_2, and the second memory unit 292b, and performs these arithmetic processing.
  • the signal processing circuit 293c receives a plurality of pixel signals from the first memory unit 291c_1, 291c_2, 291d_1, 291d_2, and the second memory unit 292c, and performs these arithmetic processing.
  • the signal processing circuits 293a to 293c may be digital logic circuits having the same configuration.
  • the demultiplexer 294a receives the output signal from the signal processing circuit 293a and selectively transfers the output signal to either the ADC circuit 290a_1 or the second memory unit 292a. For example, in the present embodiment, the demultiplexer 294a transfers an output signal to the second memory unit 292a and stores the output signal (that is, a reduced signal).
  • the demultiplexer 294b, 294c also functions in the same manner as the demultiplexer 294a. Therefore, the demultiplexer 294b receives the output signal from the signal processing circuit 293b and selectively transfers the output signal to either the ADC circuit 290b_1 or the second memory unit 292b. The demultiplexer 294c receives the output signal from the signal processing circuit 293c and selectively transfers the output signal to either the ADC circuit 290c_1 or the second memory unit 292c.
  • the second memory units 292a to 292c each store an output signal.
  • the output signal is a reduced signal obtained by synthesizing a plurality of pixel signals. That is, the second memory units 292a to 292c each store the signal of the reduced image (first reduced signal) obtained by compressing the original image.
  • the signal processing circuits 293a to 293c further synthesize at least two first reduction signals among the plurality of first reduction signals stored in the second memory units 292a to 292c.
  • the signal of the reduced image obtained by further compressing the reduced image may be stored respectively.
  • the pixel signal of the original image may be further added.
  • the ADC unit 280 can create and hold a reduced image of the original image before transferring the original image to the outside of the pixel array unit 240.
  • the second memory unit 292a is provided one by one for each of the two ADC circuits 290a_1 and 290a_2.
  • the other second memory units 292b and 292c are provided one for each of the two ADC circuits 290b_1, 290b_2, and 290c_1 and 290c_2, respectively. That is, one second memory unit 292 is provided for each of the two pixel circuits 250.
  • the number of memories (latches) provided in the ADC unit 280 is 1.5 times the number of the first memory units 291 including the first and second memory units 291 and 292.
  • the second memory unit 292 can hold the reduced signal while the first memory unit 291 maintains the pixel signal of the original image.
  • the relationship between the number of second memory units 292 and the amount of image data will be described in detail later.
  • the ratio of the number of the first memory unit 291 to the number of the second memory unit 292 is 2: 1, but the number thereof is not particularly limited.
  • the number of each of the ADC circuit 290, the second memory unit 292, the signal processing circuit 293, and the demultiplexer 294 is also not particularly limited.
  • demultiplexers 294a to 294c are provided. However, the demultiplexers 294a to 294c may be omitted, and the signal processing circuits 293a to 293c may transfer the output signal to both the first memory units 291a_1 to 291c_1 and the second memory units 292a to 292c. In this case, although not shown, a write enable signal may be input to the first memory units 291a_1 to 291c_1 and the second memory units 292a to 292c, and a memory for storing the output signal may be selected by the write enable signal.
  • the first memory units 291a_1 to 291c_1 store the output signals from the signal processing circuits 293a to 293c, respectively.
  • the second memory units 292a to 292c store the output signals from the signal processing circuits 293a to 293c, respectively.
  • the output signal can be stored in one of the first memory units 291a to 291c and the second memory units 292a to 292c. Further, since the demultiplexers 294a to 294c are not required, the area of the ADC unit 280 is reduced.
  • FIGS. 6A to 6E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the first embodiment.
  • FIG. 7 is a conceptual diagram showing an original pixel and a reduced image.
  • the first memory unit 291 and the second memory unit 292 in the ADC circuit 290 are arranged. As shown in FIGS. 4 and 6A, the plurality of first memory units 291 are arranged in the X direction, and the plurality of second memory units 292 are also arranged in the X direction. One second memory unit 292 is provided for each of the two first memory units 291.
  • the first memory unit 291 is provided for each ADC circuit 290, and the ADC circuit 290 is provided for each pixel circuit 250. Therefore, the first memory unit 291 is provided in the pixel circuit 250 in a one-to-one correspondence, and the second memory unit 292 is provided one for every two pixels.
  • the rows of the first memory unit 291 and the rows of the second memory unit 292 are alternately arranged in the Y direction orthogonal to the X direction.
  • the black-painted portion B of FIGS. 6A to 6D is an area in which the ADC circuit 290 (first memory unit 291) and the second memory unit 292 are not provided.
  • the other white parts indicate that the ADC circuit 290 (first memory unit 291) or the second memory unit 292 is provided, and each of them can store one pixel signal or a reduced signal.
  • the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal.
  • the plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
  • the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
  • the pixel signal S0 stored in the first memory unit 291 is combined to generate the first reduction signal S1.
  • the first reduced signal S1 is generated in the signal processing circuit 293 as described with reference to FIG.
  • the signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1.
  • the first reduction signal S1 is stored in a part of the second memory unit 292.
  • the first memory unit 291 holds the pixel signal of the original image.
  • the original image composed of the pixel signal S0 of FIG. 7 is compressed to a quarter of the reduced image composed of the first reduced signal S1.
  • Each point in FIG. 7 indicates one pixel signal or one reduced signal.
  • the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2.
  • the signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2.
  • the second reduction signal S2 is stored in another second memory unit 292 that does not store the first reduction signal S1.
  • the first memory unit 291 holds the pixel signal of the original image.
  • a part of the second memory unit 292 holds the first reduction signal S1.
  • the reduced image composed of the first reduced signal S1 in FIG. 7 is further compressed to a quarter of the reduced image composed of the second reduced signal S2.
  • the second reduced signal S2 is combined to generate the third reduced signal S3.
  • the signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3.
  • the third reduced signal S3 is stored in yet another second memory unit 292 that does not store the first and second reduced signals S1 and S2.
  • the first memory unit 291 holds the pixel signal of the original image.
  • the second memory unit 292 holds the first and second reduction signals S1 and S2.
  • the reduced image composed of the second reduced signal S2 in FIG. 7 is further compressed to a quarter of the reduced image composed of the third reduced signal S3.
  • the signal processing circuit 293 may compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ⁇ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the second memory unit 292 further stores the n + 1 reduced signal.
  • the amount of pixel signal data is reduced by a quarter each time the compression process is repeated. Therefore, assuming that the data amount of the original image is D0, the total data amount of the original image and the first to kth reduced signals is D0 + (1/4) D0 + (1/4 2 ) D0 + (1/4 3 ) D0 +. ..., and the maximum (4/3) * D0. That is, the total data amount of the original image and the first to kth reduced signals is 1.333 ... times the data amount D0 of the original image.
  • the first and second memory units 291 and 292 can sufficiently store the original image and all of the first to k-th reduction signals. For this reason, in the present embodiment, one second memory unit 292 is provided for each of the two first memory units 291.
  • the calculation load of the signal processing circuit 293 increases. Therefore, in the present embodiment, the first reduction signal S1 is generated from the pixel signal S0, the second reduction signal S2 is generated from the first reduction signal S1, and the third reduction signal S3 is generated from the second reduction signal S2. There is. Thereby, the load of the signal processing circuit 293 can be reduced.
  • FIG. 8 is a graph showing the transfer time of the original image and the reduced image.
  • the horizontal axis represents time t.
  • the first and second memory units 291 and 292 store the original image and all the reduced images. Therefore, after the image compression processing is completed, the images can be transferred in the order of detection processing, that is, in ascending order from the reduced image having the smallest amount of data, and the original image can be transferred last.
  • the object to be detected exists or the rough coordinates of the object are detected using a reduced low-resolution image.
  • This identifies a detection area with an object that should be detected in detail.
  • the detection area is cut out from the high-resolution image, and the object detection process is performed in the detection area of the high-resolution image.
  • motion detection a reduced low-resolution image is used to detect the rough motion of an object. This identifies the area of motion that should be detected in detail.
  • a detection area is cut out from the high-resolution image, and motion detection processing is performed in the detection area of the high-resolution image.
  • the transfer circuit 260 orders the larger image from the reduced image with the smallest amount of data (the order of detection processing). ) Is transferred to the frame memory 115 outside the signal processing circuit 293.
  • the transfer circuit 260 first transfers the third reduced signal S3. Since the data amount D3 of the third reduced signal S3 is the minimum, the transfer time t_t3 is the shortest time among t_t0 to t_t3.
  • the detection time t_d3 is the time required for object detection, motion detection, and the like using the third reduction signal S3.
  • the transfer process of the second reduced signal S2 is started.
  • the transfer circuit 260 is next to the third reduced signal S3. 2
  • the reduced signal S2 is transferred.
  • the transfer time t_t2 is longer than the transfer time t_t3, but is relatively short.
  • the detection time t_d2 is the time required for object detection, motion detection, and the like using the second reduction signal S2. During the detection process using the second reduced signal S2, the transfer process of the first reduced signal S1 is started.
  • the transfer circuit 260 is next to the second reduced signal S2. 1 Transfer the reduced signal S1.
  • the transfer time t_t1 is longer than the transfer time t_t2, but shorter than the transfer time of the original image.
  • the detection time t_d1 is the time required for object detection, motion detection, and the like using the first reduction signal S1. During the detection process using the first reduction signal S1, the transfer process of the pixel signal S0 of the original image is started.
  • the transfer circuit 260 transfers the pixel signal S0 last.
  • the transfer time t_t0 is the longest among t_t0 to t_t3.
  • the detection time t_d0 is the time required for object detection, motion detection, and the like using the pixel signal S0. If this compression process and transfer process are generalized, when the k-th reduction signal is generated, the transfer circuit 260 detects the pixel signal and the first to k-th reduction signals in the order of detection processing (after the generation of the k-reduction signal). Here, the data is transferred to the frame memory 115 outside the signal processing circuit 293 in ascending order of the amount of data).
  • the transfer circuit 260 frames the k-th reduced signal, the k-1 reduced signal, ...
  • the transfer circuit 260 transfers the reduced images in the order of detection processing, that is, in ascending order from the reduced image having the smallest amount of data, and finally transfers the original image to the frame memory 115 outside the signal processing circuit 293. ..
  • the DSP circuit 120 can immediately start the detection process from an image having a small amount of data without delay. Further, the detection process and the transfer process of the next reduced signal or pixel signal can be executed in parallel.
  • the DSP circuit 120 transfers the pixel signal S0 of the original image and then the DSP circuit 120.
  • a reduced image is generated using the pixel signal S0. Therefore, the detection process is started after the pixel signal S0 of the original image is transferred and the reduced image is generated. Therefore, the timing of starting the detection process is delayed. Furthermore, the transfer process and the detection process cannot be executed in parallel.
  • the signal processing circuit 293 in the ADC section 280 of the signal processing circuit 293, the signal processing circuit 293 generates reduced signals S1 to Sk using the original image of the first memory section 291. 2 Stored in the memory unit 292. Since the reduced image is generated inside the ADC unit 280 in this way, the signal processing circuit 293 can perform the image compression processing without waiting for the long transfer time t_t0 of the original image. Further, the ADC unit 280 can transfer the reduced image and the original image in ascending order from the reduced image having the smallest amount of data in the order of detection processing without waiting for the transfer time t_t0 of the original image. The transfer time for images with a small amount of data is relatively short. Therefore, the DSP circuit 120 can immediately start the detection process without delay.
  • the transfer circuit 260 can transfer the next reduced signal or pixel signal to the frame memory 115 in parallel. As a result, the end time of the detection process can be accelerated.
  • (Second Embodiment) 9A to 9E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the second embodiment.
  • the second memory unit 292 is provided one by one for each of the three first memory units 291. That is, one second memory unit 292 is provided for each of the three pixel circuits 250.
  • the number of memories (latches) provided in the ADC unit 280 is 4/3 (1.3333 7) Of the number of the first memory units 291 including the first and second memory units 291 and 292. ⁇ ) It has doubled.
  • the second memory unit 292 can hold the reduced signal while the first memory unit 291 maintains the pixel signal of the original image.
  • the total amount of data of the original image and the first to kth reduced signals is the maximum (4/3) * D0. That is, it is 1.333 ... times the data amount D0 of the original image. Therefore, according to the second embodiment, the capacity of the second memory unit 292 is equal to the total amount of data of the first to kth reduction signals. As a result, the first and second memory units 291 and 292 can store the entire original image and the first to k-th reduction signals, and the extra second memory unit 292 is eliminated. That is, waste of the first and second memory units 291 and 292 can be suppressed.
  • the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal.
  • the plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
  • the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
  • the signal processing circuit 293 synthesizes the pixel signal S0 stored in the first memory unit 291 to generate the first reduction signal S1. That is, the signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1.
  • the first reduction signal S1 is stored in a part of the second memory unit 292. At this time, the first memory unit 291 holds the pixel signal of the original image.
  • the second memory unit 292 refers to the twelve first memory units 291 (12 first reduction signals S1). Three are used.
  • the frame C1 of FIG. 9C includes twelve first memory units 291, and three second memory units 292 in the frame C1 store the first reduction signal S1.
  • the pattern of the frame C1 is repeated in the X direction and the Y direction.
  • the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2.
  • the signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2.
  • the second reduction signal S2 is stored in another second memory unit 292 that does not store the first reduction signal S1.
  • the first memory unit 291 holds the pixel signal of the original image. Further, a part of the second memory unit 292 holds the first reduction signal S1.
  • the second memory unit 292 is used three more for the twelve first reduction signals S1.
  • the frame C2 of FIG. 9D includes twelve second memory units 292 that store the first reduction signal S1, and the other three second memory units 292 in the frame C1 store the second reduction signal S2. ..
  • the pattern of the frame C2 is repeated in the X direction and the Y direction.
  • the second reduced signal S2 is combined to generate the third reduced signal S3.
  • the signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3.
  • the third reduced signal S3 is stored in yet another second memory unit 292 that does not store the first and second reduced signals S1 and S2.
  • the first memory unit 291 holds the pixel signal of the original image.
  • the second memory unit 292 holds the first and second reduction signals S1 and S2.
  • Three third reduction signals S3 are generated for twelve second reduction signals S2.
  • Three more second memory units 292 are used for the twelve second reduction signals S2.
  • the other three free second memory units 292 store the third reduced signal S3 with respect to the twelve second memory units 292 that store the second reduced signal S2. do.
  • the signal processing circuit 293 may similarly compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ⁇ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the second memory unit 292 further stores the n + 1 reduced signal.
  • the capacity of the second memory unit 292 is equal to the total amount of data of the first to kth reduced signals.
  • the first and second memory units 291 and 292 can store the entire original image and the first to k-th reduction signals, and the extra second memory unit 292 is eliminated.
  • waste of the first and second memory units 291 and 292 can be suppressed, and memory resources can be fully utilized.
  • FIGS. 10A to 10E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the third embodiment.
  • the second memory unit 292 is provided one by one for each of the four first memory units 291. That is, a second memory unit 292 is provided for each of the four pixel circuits 250.
  • the number of memories (latches) provided in the ADC unit 280 is 1.25 times the number of the first memory units 291 including the first and second memory units 291 and 292. Therefore, the capacities of the first and second memory units 291 and 292 are smaller than the total data amount (4/3) * D0) of the original image and the first to kth reduced signals. Therefore, in the third embodiment, the signal processing circuit 293 needs to execute the compression operation after transferring the original image or the reduced image before compression.
  • the first and second memory units 291 and 292 cannot store the entire original image and the first to kth reduced signals.
  • the image compression process is executed inside the ADC unit 280. Therefore, the transfer circuit 260 can transfer the pixel signal or the compressed signal used for the compression operation to the frame memory 115 while executing the compression operation. As a result, the compression operation can be executed almost simultaneously with the transfer process. As a result, the transfer time of the original image and the first to kth reduced signals is shortened, and the timing of starting the detection process is shortened.
  • the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal.
  • the plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
  • the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
  • the signal processing circuit 293 synthesizes the pixel signal S0 stored in the first memory unit 291 to generate the first reduction signal S1. That is, the signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1.
  • the first reduction signal S1 is stored in the second memory unit 292.
  • the transfer circuit 260 transfers the pixel signal S0 of the original image of the first memory unit 291 to the frame memory 115.
  • the first memory unit 291 is free and can store other signals.
  • the data in the first memory unit 291 may be overwritten with the next signal without erasing.
  • the transfer circuit 260 may transfer the pixel signal S0 whose compression operation has been completed to the frame memory 115 in parallel with the compression operation.
  • the transfer circuit 260 may transfer the pixel signal S0 while the first memory unit 291 holds the pixel signal S0, and then the signal processing circuit 293 may execute a compression operation of the pixel signal S0 of the original image.
  • the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2.
  • the signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2.
  • the second reduced signal S2 is stored in the first memory unit 291 that does not store the first reduced signal S1.
  • the transfer circuit 260 transfers the first reduction signal S1 of the second memory unit 292 to the frame memory 115.
  • the second memory unit 292 is free and can store other signals.
  • the data in the second memory unit 292 may be overwritten with the next signal without erasing.
  • the second reduced signal S2 is combined to generate the third reduced signal S3.
  • the signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3.
  • the third reduced signal S3 is stored in the second memory unit 292 that does not store the first and second reduced signals S1 and S2.
  • the transfer circuit 260 transfers the second reduction signal S2 of the first memory unit 291 to the frame memory 115.
  • the first memory unit 291 is free and can store other signals.
  • the transfer of the second reduced signal S2 the data in the first memory unit 291 may be overwritten with the next signal without erasing.
  • the signal processing circuit 293 may similarly compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ⁇ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the first or second memory units 291 and 292 are the n + 1 reduced signals. To store.
  • FIG. 11 is a graph showing the transfer time of the original image and the reduced image.
  • the horizontal axis represents time t.
  • the transfer circuit 260 executes the compression operation and the transfer process in parallel with each other. After the third reduced signal S3 having the smallest amount of data is transferred, the DSP circuit 120 starts the detection process from the third reduced signal S3.
  • the signal processing circuit 293 executes the compression operation of the pixel signal S0 of the original image, and the transfer circuit 260 transfers the pixel signal S0 for which the compression operation has been completed to the frame memory 115 in parallel.
  • the time t_c1 is the compression time of the pixel signal S0 and also the generation time of the first reduction signal S1.
  • the transfer process of the pixel signal S0 can be executed substantially simultaneously with the compression operation of the pixel signal S0. Therefore, the compression time t_c1 of the pixel signal S0 can be substantially overlapped with the transfer time t_t0 of the pixel signal S0.
  • the signal processing circuit 293 executes the compression operation of the first reduction signal S1, and the transfer circuit 260 transfers the first reduction signal S1 for which the compression operation has been completed to the frame memory 115 in parallel.
  • the time t_c2 is the compression time of the first reduction signal S1 and also the generation time of the second reduction signal S2.
  • the transfer process of the first reduced signal S1 can be executed substantially simultaneously with the compression operation of the first reduced signal S1. Therefore, the compression time t_c2 of the first reduced signal S1 can be substantially overlapped with the transfer time t_t1 of the first reduced signal S1.
  • the signal processing circuit 293 executes the compression operation of the second reduction signal S2, and the transfer circuit 260 transfers the second reduction signal S2, which has completed the compression operation, to the frame memory 115 in parallel.
  • the time t_c3 is the compression time of the second reduced signal S2 and also the generation time of the third reduced signal S3.
  • the transfer process of the second reduced signal S2 can be executed substantially simultaneously with the compression operation of the second reduced signal S2. Therefore, the compression time t_c3 of the second reduced signal S2 can be substantially overlapped with the transfer time t_t2 of the second reduced signal S2.
  • the transfer circuit 260 transfers the third reduced signal S3, which has completed the compression operation, to the frame memory 115.
  • the transfer time of the third reduced signal S3 is t_t3.
  • the DSP circuit 120 executes the detection process using the third reduction signal S3.
  • the DSP circuit 120 executes the detection process using the second reduced signal S2, executes the detection process using the first reduced signal S1, and executes the detection process using the pixel signal S0.
  • the image compression process is executed inside the ADC unit 280. Therefore, the transfer circuit 260 can transfer the pixel signal or the compressed signal used in the compression operation to the frame memory 115 while executing the compression operation. As a result, the compression operation can be executed in parallel with the transfer process, and the start timing of the detection process is accelerated. As a result, the solid-state image sensor 100 can reduce the time required for generating a reduced image and processing an image.
  • a pixel array containing multiple pixels that perform photoelectric conversion A plurality of AD conversion units provided corresponding to each of the plurality of pixels and digitally converting a pixel signal from the pixels.
  • a plurality of first memory units provided corresponding to each of the plurality of AD conversion units and storing the pixel signals digitally converted by the AD conversion unit, and a plurality of first memory units.
  • a solid-state image sensor including N (N is an integer of 2 or more) of the pixels or a plurality of second memory units provided for each of the N AD conversion units.
  • a signal processing circuit that arithmetically processes the signal from the first or second memory unit, and The solid-state image sensor according to (1), further comprising a selection circuit that receives an output signal from the signal processing circuit and transfers the output signal to either the first or second memory unit.
  • the signal processing circuit generates one first reduced signal from the plurality of pixel signals from the first and second memory units.
  • the solid-state image sensor according to (2), wherein the selection circuit stores the first reduction signal in either the first or second memory unit.
  • the signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
  • the signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
  • the pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit, according to (6).
  • Solid-state image sensor The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of third reduced signals.
  • the plurality of first memory units hold a plurality of the pixel signals
  • the plurality of second memory units hold the second reduced signal
  • the other second memory units are each a third.
  • the signal processing circuit further compresses the plurality of nth (n ⁇ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
  • the signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
  • the signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
  • the pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit.
  • Solid-state image sensor (13)
  • the signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
  • the plurality of first memory units hold the plurality of the pixel signals
  • the plurality of second memory units store the second reduction signal
  • the other second memory units are each of the third.
  • the signal processing circuit further compresses the plurality of nth (n ⁇ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
  • the solid-state image sensor according to any one of (1) to (3), wherein one second memory unit is provided for each of four pixels.
  • the signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
  • the signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
  • the signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
  • the first or second memory unit stores each third reduction signal and stores the third reduction signal.
  • the signal processing circuit further compresses the plurality of k (k ⁇ 3) reduced signals stored in the plurality of first or second memory units to a quarter to generate a plurality of k + 1 reduced signals. death,
  • a pixel array including a plurality of pixels for photoelectric conversion, a plurality of AD conversion units provided corresponding to each of the plurality of pixels, and a plurality of AD conversion units provided corresponding to each of the plurality of AD conversion units.
  • a solid-state image sensor including a first memory unit and a plurality of second memory units provided for each of the N pixels (N is an integer of 2 or more) or the N AD conversion units.
  • the image processing method used, The pixel signal from the pixel is digitally converted and The pixel signal digitally converted by the AD conversion unit is stored in the plurality of first memory units.
  • One first reduction signal is generated from the plurality of pixel signals from the plurality of first memory units, and the plurality of first reduction signals are stored in either the first or second memory unit.
  • 100 solid-state imaging device 240 pixel array unit, 260 transfer circuit, 115 frame memory, 120 DSP circuit, 250 pixel circuit, 280 ADC unit, 290 ADC circuit, 291 first memory unit, 292 second memory unit, 293 signal processing circuit. 294 demultiplexer, 295 comparison circuit, 296 selector

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)

Abstract

[Problem] To provide a solid-state imaging device and an image processing device that are capable of reducing the amount of time required for generating a reduced image and performing image processing. [Solution] A solid-state imaging device according to the present disclosure includes: a pixel array that performs photoelectric conversion and that contains a plurality of pixels; a plurality of AD conversion units that are provided so as to correspond to the plurality of pixels and that digitally convert pixel signals coming from the pixels; a plurality of first memory units that are provided so as to correspond to the plurality of AD conversion units and that store the pixel signals digitally converted by the AD conversion units; and a plurality of second memory units, each of which is provided for each of N (N is an integer that is equal to or greater than 2) pixels or N AD conversion units.

Description

固体撮像装置および画像処理方法Solid-state image sensor and image processing method
 本開示は、固体撮像装置および画像処理方法に関する。 The present disclosure relates to a solid-state image sensor and an image processing method.
 物体検出やトラッキングなどの画像処理技術では、元画像を階層的に縮小した縮小画像が用いられる。
 しかし、縮小画像を生成するためには、画素アレイの外部にあるフレームメモリ(例えばDRAM(Dynamic Random Access Memory)等)へ元画像を転送し、フレームメモリを用いて元画像から縮小画像を生成する必要があった。この場合、データ量の大きな元画像を転送した後に縮小画像を生成するため、縮小画像の生成および物体検出等の画像処理に時間がかかっていた。
In image processing techniques such as object detection and tracking, a reduced image obtained by hierarchically reducing the original image is used.
However, in order to generate a reduced image, the original image is transferred to a frame memory (for example, DRAM (Dynamic Random Access Memory) or the like) outside the pixel array, and the reduced image is generated from the original image using the frame memory. I needed it. In this case, since the reduced image is generated after transferring the original image having a large amount of data, it takes time to generate the reduced image and perform image processing such as object detection.
国際特許公開第2018/047618号公報International Patent Publication No. 2018/047618 国際特許公開第2016/136448号公報International Patent Publication No. 2016/136448
 縮小画像の生成および画像処理の時間を短縮することができる固体撮像装置および画像処理方法を提供する。 Provided is a solid-state image sensor and an image processing method capable of shortening the time for generating a reduced image and image processing.
 本開示の一側面の固体撮像装置は、光電変換を行う複数の画素を含む画素アレイと、複数の画素のそれぞれに対応して設けられ、画素からの画素信号をデジタル変換する複数のAD変換部と、複数のAD変換部のそれぞれに対応して設けられ、AD変換部でデジタル変換された画素信号を格納する複数の第1メモリ部と、N個(Nは2以上の整数)の画素またはN個のAD変換部に対して1つずつ設けられた複数の第2メモリ部と、を備える。 The solid-state image sensor on one aspect of the present disclosure includes a pixel array including a plurality of pixels that perform photoelectric conversion, and a plurality of AD conversion units that are provided corresponding to each of the plurality of pixels and digitally convert a pixel signal from the pixels. A plurality of first memory units provided corresponding to each of the plurality of AD conversion units and storing digitally converted pixel signals by the AD conversion unit, and N pixels (N is an integer of 2 or more) or A plurality of second memory units provided for each of N AD conversion units are provided.
 第1または第2メモリ部からの信号を演算処理する信号処理回路と、信号処理回路からの出力信号を受けて、該出力信号を第1または第2メモリ部のいずれかに転送する選択回路とをさらに備えてもよい。 A signal processing circuit that arithmetically processes a signal from the first or second memory unit, and a selection circuit that receives an output signal from the signal processing circuit and transfers the output signal to either the first or second memory unit. May be further provided.
 信号処理回路は、第1および第2メモリ部からの複数の画素信号から1つの第1縮小信号を生成し、選択回路は、第1縮小信号を第1または第2メモリ部のいずれかに格納してもよい。 The signal processing circuit generates one first reduced signal from a plurality of pixel signals from the first and second memory units, and the selection circuit stores the first reduced signal in either the first or second memory unit. You may.
 第2メモリ部は、2個の画素に対して1つ設けられてもよい。 One second memory unit may be provided for two pixels.
 信号処理回路は、複数の第1メモリ部に格納された複数の画素信号を4分の1に圧縮して複数の第1縮小信号を生成し、複数の第2メモリ部のうち一部は、各第1縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduced signals, and a part of the plurality of second memory units is used. Each first reduction signal may be stored.
 信号処理回路は、複数の第2メモリ部に格納された複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、複数の第1メモリ部が複数の画素信号を保持したまま、第2メモリ部のうち他の第2メモリ部は、各第2縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units into a quarter to generate a plurality of second reduced signals, and the plurality of first memory units have a plurality of pixels. While holding the signal, the other second memory unit of the second memory unit may store each second reduction signal.
 複数の第1縮小信号または複数の第2縮小信号を第2メモリ部の外部へ転送した後に、画素信号が第1メモリ部の外部へ転送されてもよい。 After transferring the plurality of first reduced signals or the plurality of second reduced signals to the outside of the second memory unit, the pixel signal may be transferred to the outside of the first memory unit.
 信号処理回路は、複数の第2メモリ部に格納された複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、複数の第1メモリ部が複数の画素信号を保持し、かつ、複数の第2メモリ部が第2縮小信号を保持したまま、さらに他の第2メモリ部は、各第3縮小信号を格納し、信号処理回路は、複数の第2メモリ部に格納された複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、さらに他の第2メモリ部は、各第n+1縮小信号を格納してもよい。 The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of third reduced signals, and the plurality of first memory units have a plurality of first memory units. While holding the pixel signal and holding the second reduced signal by the plurality of second memory units, the other second memory unit stores each third reduced signal, and the signal processing circuit has a plurality of second reduced signals. A plurality of nth (n ≧ 3) reduction signals stored in the second memory unit are further compressed to a quarter to generate a plurality of n + 1 reduction signals, and the other second memory units are each n + 1th. A reduced signal may be stored.
 第2メモリ部は、3個の画素に対して1つ設けられてもよい。 One second memory unit may be provided for every three pixels.
 信号処理回路は、複数の第1メモリ部に格納された複数の画素信号を4分の1に圧縮して複数の第1縮小信号を生成し、複数の第2メモリ部のうち一部は、各第1縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduced signals, and a part of the plurality of second memory units is used. Each first reduction signal may be stored.
 信号処理回路は、複数の第2メモリ部に格納された複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、複数の第1メモリ部が複数の画素信号を保持したまま、第2メモリ部のうち他の第2メモリ部は、各第2縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units into a quarter to generate a plurality of second reduced signals, and the plurality of first memory units have a plurality of pixels. While holding the signal, the other second memory unit of the second memory unit may store each second reduction signal.
 複数の第1縮小信号または複数の第2縮小信号を第2メモリ部の外部へ転送した後に、画素信号が第1メモリ部の外部へ転送されてもよい。 After transferring the plurality of first reduced signals or the plurality of second reduced signals to the outside of the second memory unit, the pixel signal may be transferred to the outside of the first memory unit.
 信号処理回路は、複数の第1メモリ部に格納された複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、複数の第1メモリ部が複数の画素信号を保持し、かつ、複数の第2メモリ部が第2縮小信号を格納したまま、さらに他の第2メモリ部は、各第3縮小信号を格納し、信号処理回路は、複数の第2メモリ部に格納された複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、さらに他の第2メモリ部は、各第n+1縮小信号を格納してもよい。 The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units into a quarter to generate a plurality of third reduced signals, and the plurality of first memory units have a plurality of first memory units. While holding the pixel signal and storing the second reduced signal in the plurality of second memory units, the other second memory unit stores each third reduced signal, and the signal processing circuit has a plurality of thirds. A plurality of nth (n ≧ 3) reduction signals stored in the second memory unit are further compressed to a quarter to generate a plurality of n + 1 reduction signals, and the other second memory units are each n + 1th. A reduced signal may be stored.
 第2メモリ部は、4個の画素に対して1つ設けられてもよい。 One second memory unit may be provided for every four pixels.
 信号処理回路は、複数の第1メモリ部に格納された複数の画素信号を4分の1に圧縮して複数の第1縮小信号を生成し、複数の第2メモリ部は、各第1縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of pixel signals stored in a plurality of first memory units to a quarter to generate a plurality of first reduction signals, and the plurality of second memory units each perform the first reduction. The signal may be stored.
 信号処理回路は、複数の第2メモリ部に格納された複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、第1メモリ部は、各第2縮小信号を格納してもよい。 The signal processing circuit compresses a plurality of first reduced signals stored in a plurality of second memory units to a quarter to generate a plurality of second reduced signals, and the first memory unit generates each second reduced signal. The signal may be stored.
 複数の第1メモリ部に格納された画素信号を第1メモリ部の外部へ転送した後に、複数の第1メモリ部は、各第2縮小信号を格納してもよい。 After transferring the pixel signals stored in the plurality of first memory units to the outside of the first memory unit, the plurality of first memory units may store the second reduced signals.
 信号処理回路は、複数の第1メモリ部に格納された複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、第1または第2メモリ部は、各第3縮小信号を格納し、信号処理回路は、複数の第1または第2メモリ部に格納された複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、第1または第2メモリ部は、各第n+1縮小信号を格納してもよい。 The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals, and the first or second memory unit may generate a plurality of third reduced signals. Each third reduced signal is stored, and the signal processing circuit further compresses the plurality of nth (n ≧ 3) reduced signals stored in the plurality of first or second memory units into a plurality of quarters. The n + 1 reduction signal may be generated, and the first or second memory unit may store each n + 1 reduction signal.
 本開示の一側面の画像処理方法は、光電変換を行う複数の画素を含む画素アレイと、複数の画素のそれぞれに対応して設けられた複数のAD変換部と、複数のAD変換部のそれぞれに対応して設けられた複数の第1メモリ部と、N個(Nは2以上の整数)の画素またはN個のAD変換部に対して1つずつ設けられた複数の第2メモリ部とを備えた固体撮像装置を用いた画像処理方法であって、画素からの画素信号をデジタル変換し、AD変換部でデジタル変換された画素信号を複数の第1メモリ部に格納し、複数の第1メモリ部からの複数の画素信号から1つの第1縮小信号を生成し、複数の第1縮小信号を第1または第2メモリ部のいずれかに格納することを具備する。 The image processing method of one aspect of the present disclosure includes a pixel array including a plurality of pixels for photoelectric conversion, a plurality of AD conversion units provided corresponding to each of the plurality of pixels, and a plurality of AD conversion units, respectively. A plurality of first memory units provided corresponding to, and a plurality of second memory units provided one by one for N pixels (N is an integer of 2 or more) or N AD conversion units. It is an image processing method using a solid-state imaging device equipped with One first reduction signal is generated from a plurality of pixel signals from one memory unit, and the plurality of first reduction signals are stored in either the first or second memory unit.
 複数の第1縮小信号は、複数の画素信号を4分の1に圧縮して生成された信号であってもよい。 The plurality of first reduction signals may be signals generated by compressing a plurality of pixel signals into a quarter.
本技術の第1実施形態における撮像装置の一構成例を示すブロック図。The block diagram which shows one configuration example of the image pickup apparatus in the 1st Embodiment of this technique. 本技術の第1実施形態における固体撮像装置の一構成例を示すブロック図。The block diagram which shows one configuration example of the solid-state image sensor in 1st Embodiment of this technique. 画素アレイ部および周辺回路部のADC部を示す該略図。The schematic diagram which shows the ADC part of the pixel array part and the peripheral circuit part. ADC部の一部の構成例を示す概略図。The schematic diagram which shows the structural example of a part of the ADC part. ADC部の一部の構成をさらに詳細に示す図。The figure which shows the structure of a part of the ADC part in more detail. 第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment. 第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment. 第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment. 第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment. 第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 1st Embodiment. 元画素および縮小画像を示す概念図。A conceptual diagram showing an original pixel and a reduced image. 元画像および縮小画像の転送時間を示すグラフ。A graph showing the transfer time of the original image and the reduced image. 第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment. 第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment. 第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment. 第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment. 第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 2nd Embodiment. 第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment. 第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment. 第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment. 第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment. 第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図。The conceptual diagram which shows the pixel signal or the reduction signal stored in the 1st and 2nd memory part by 3rd Embodiment. 元画像および縮小画像の転送時間を示すグラフ。A graph showing the transfer time of the original image and the reduced image.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, specific embodiments to which the present technology is applied will be described in detail with reference to the drawings. The drawings are schematic or conceptual, and the ratio of each part is not always the same as the actual one. In the specification and the drawings, the same elements as those described above with respect to the existing drawings are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
(第1実施形態) (First Embodiment)
 図1は、本技術の第1実施形態における固体撮像装置の一構成例を示す斜視図である。固体撮像装置100は、半導体チップ511と半導体チップ512とを積層して構成されている。半導体チップ511は、半導体基板上に形成された画素アレイ部240を備える。半導体チップ512は、他の半導体基板上に形成されたADC部280およびその他の周辺回路を備える。半導体チップ511、512は、それぞれ別々の半導体チップとして形成され、その後に積層される。 FIG. 1 is a perspective view showing a configuration example of a solid-state image sensor according to the first embodiment of the present technology. The solid-state image sensor 100 is configured by laminating a semiconductor chip 511 and a semiconductor chip 512. The semiconductor chip 511 includes a pixel array unit 240 formed on the semiconductor substrate. The semiconductor chip 512 includes an ADC unit 280 formed on another semiconductor substrate and other peripheral circuits. The semiconductor chips 511 and 512 are formed as separate semiconductor chips, and are subsequently laminated.
 半導体チップ511の画素アレイ部240の各画素と半導体チップ512のADC部280等の素子は、例えば、画素アレイ部240およびADC部280の周辺にあるビア領域に設けられたTSV(Through Silicon Via)のような貫通電極等を用いて電気的に接続されている。あるいは、半導体チップ511の配線と半導体チップ511の配線とを接触させるように、両方の半導体チップを貼り合わせてもよい(Cu-Cu接合)。さらに、画素アレイ部240およびADC部280を1つの半導体チップとして構成し、その他の周辺回路の構成を他の半導体チップとして構成してもよい。さらに、画素アレイ部240、ADC部280、および、その他の周辺回路を、全て1つの半導体チップとして構成してもよい。尚、半導体チップの積層数は、3層以上であってもよい。 Elements such as each pixel of the pixel array unit 240 of the semiconductor chip 511 and the ADC unit 280 of the semiconductor chip 512 are, for example, TSVs (Through Silicon Vias) provided in the via region around the pixel array unit 240 and the ADC unit 280. It is electrically connected using a through electrode or the like. Alternatively, both semiconductor chips may be bonded together so that the wiring of the semiconductor chip 511 and the wiring of the semiconductor chip 511 are in contact with each other (Cu-Cu bonding). Further, the pixel array unit 240 and the ADC unit 280 may be configured as one semiconductor chip, and the other peripheral circuits may be configured as another semiconductor chip. Further, the pixel array unit 240, the ADC unit 280, and other peripheral circuits may all be configured as one semiconductor chip. The number of laminated semiconductor chips may be three or more.
 図2は、本技術の第1実施形態における固体撮像装置の一構成例を示すブロック図である。半導体チップ511上の画素アレイ部240には、二次元格子状に複数の画素回路250が配列される。画素回路250は、図示しない光電変換素子を有し、電圧源180から電力供給を受けて、入射光を光電変換して電荷を生成する。
 半導体チップ512上のADC部280には、二次元格子状に複数のADC回路290が配列される。ADC回路290は、それぞれ画素回路250に対応して設けられており、画素回路250からの画素信号(アナログ信号)をデジタル信号へ変換する。本技術では、ADC回路290は、画素回路250のそれぞれに対応して設けられているので、画素アレイ部240内の全画素回路250で同時に検出された画素信号をそれぞれ即座に同時にAD変換することができる。
 ADC回路290でAD変換されたデジタル信号は、CDS(Correlated Double Sampling)処理などの信号処理が行われる。その後、デジタル信号は、転送回路260を介してフレームメモリ115へ転送され、半導体チップ512内部に設けられたDSP(Digital Signal Processing)回路120で検出処理される。 あるいは、デジタル信号は、半導体チップ511、512の外部のDSP回路(図示せず)へ転送され、検出処理されてもよい。このように、デジタル信号は、CDS処理後、同一半導体チップ内で検出処理される場合もあり、別の半導体チップで検出処理される場合もある。
FIG. 2 is a block diagram showing a configuration example of a solid-state image sensor according to the first embodiment of the present technology. A plurality of pixel circuits 250 are arranged in a two-dimensional lattice pattern on the pixel array unit 240 on the semiconductor chip 511. The pixel circuit 250 has a photoelectric conversion element (not shown), receives power from a voltage source 180, and photoelectrically converts incident light to generate an electric charge.
A plurality of ADC circuits 290 are arranged in a two-dimensional lattice pattern in the ADC section 280 on the semiconductor chip 512. Each of the ADC circuits 290 is provided corresponding to the pixel circuit 250, and converts the pixel signal (analog signal) from the pixel circuit 250 into a digital signal. In the present technology, since the ADC circuit 290 is provided corresponding to each of the pixel circuits 250, the pixel signals simultaneously detected by all the pixel circuits 250 in the pixel array unit 240 are immediately and simultaneously AD-converted. Can be done.
The digital signal AD-converted by the ADC circuit 290 is subjected to signal processing such as CDS (Correlated Double Sampling) processing. After that, the digital signal is transferred to the frame memory 115 via the transfer circuit 260, and is detected and processed by the DSP (Digital Signal Processing) circuit 120 provided inside the semiconductor chip 512. Alternatively, the digital signal may be transferred to an external DSP circuit (not shown) of the semiconductor chips 511 and 512 for detection processing. As described above, the digital signal may be detected and processed in the same semiconductor chip after the CDS processing, or may be detected and processed in another semiconductor chip.
 図3は、画素アレイ部およびADC(Analogue-to-Digital Converter)部を示す該略図である。画素アレイ部240は、上述の通り、光電変換を行う複数の画素回路250を含む。画素としての画素回路250は、半導体基板上に二次元配置されている。 FIG. 3 is a schematic diagram showing a pixel array unit and an ADC (Analog-to-Digital Converter) unit. As described above, the pixel array unit 240 includes a plurality of pixel circuits 250 that perform photoelectric conversion. The pixel circuit 250 as a pixel is two-dimensionally arranged on the semiconductor substrate.
 ADC部280は、画素回路250からの画素信号をデジタル変換する複数のADC回路290を含む。AD変換部としてのADC回路290は、他の半導体基板上に二次元配置されている。また、ADC回路290は、画素回路250のそれぞれに対応して設けられている。尚、図3において、ADC回路290は、互いに隣接する2つの画素回路250に亘って横方向に設けられている。また、2つのADC回路290が1つの画素回路250に対して縦方向に配置されている。従って、本開示では、ADC回路290は、画素回路250に対して1対1に対応して設けられている。 The ADC unit 280 includes a plurality of ADC circuits 290 that digitally convert the pixel signal from the pixel circuit 250. The ADC circuit 290 as an AD conversion unit is two-dimensionally arranged on another semiconductor substrate. Further, the ADC circuit 290 is provided corresponding to each of the pixel circuits 250. In FIG. 3, the ADC circuit 290 is provided in the lateral direction over two pixel circuits 250 adjacent to each other. Further, two ADC circuits 290 are arranged in the vertical direction with respect to one pixel circuit 250. Therefore, in the present disclosure, the ADC circuit 290 is provided on a one-to-one basis with respect to the pixel circuit 250.
 図4は、ADC部の一部の構成例を示す概略図である。ADC部280は、複数の画素回路250に対応して設けられた複数のADC回路290と、第2メモリ部292とを備えている。複数のADC回路290は、図5に示すように、比較回路、セレクタ等の他、第1メモリ部291を備えている。 FIG. 4 is a schematic view showing a partial configuration example of the ADC section. The ADC unit 280 includes a plurality of ADC circuits 290 provided corresponding to the plurality of pixel circuits 250, and a second memory unit 292. As shown in FIG. 5, the plurality of ADC circuits 290 include a first memory unit 291 in addition to a comparison circuit, a selector, and the like.
 第1メモリ部291は、ADC回路290内に設けられ、ADC回路290のそれぞれに対応して設けられている。第1メモリ部291は、それぞれに対応するADC回路290でAD変換された画素信号を格納する。 The first memory unit 291 is provided in the ADC circuit 290, and is provided corresponding to each of the ADC circuits 290. The first memory unit 291 stores the pixel signals that have been AD-converted by the corresponding ADC circuits 290.
 第2メモリ部292は、ADC回路290の第1メモリ部291とは別に、付加的に設けられたメモリであり、本実施形態では、2つのADC回路290(即ち、2つの画素)に対して1つずつ設けられている。第2メモリ部292は、複数の第1メモリ部291に格納されている複数の画素信号を用いて生成された1つの縮小信号を格納するために設けられている。例えば、第1メモリ部291は、高解像度の元画像を構成する画素信号を、それぞれ格納する。第2メモリ部292は、元画像を圧縮して生成された縮小画像の信号(縮小信号)を、それぞれ格納する。このように、本開示による固体撮像装置100は、ADC回路290で生成された元画像の画素信号をそのまま半導体チップ511、512の外部へ出力するのでは無く、画素回路250毎に(即ち、画素毎に)設けられたADC回路290内で圧縮して縮小画像にする。これにより、元画像は、短時間で縮小画像に圧縮することができる。尚、画像処理方法のより詳細な説明は、後述する。 The second memory unit 292 is an additional memory provided separately from the first memory unit 291 of the ADC circuit 290, and in the present embodiment, the second memory unit 292 is provided for two ADC circuits 290 (that is, two pixels). It is provided one by one. The second memory unit 292 is provided to store one reduced signal generated by using the plurality of pixel signals stored in the plurality of first memory units 291. For example, the first memory unit 291 stores pixel signals constituting a high-resolution original image. The second memory unit 292 stores the signal (reduced signal) of the reduced image generated by compressing the original image, respectively. As described above, the solid-state image sensor 100 according to the present disclosure does not output the pixel signal of the original image generated by the ADC circuit 290 as it is to the outside of the semiconductor chips 511 and 512, but for each pixel circuit 250 (that is, pixels). It is compressed in the ADC circuit 290 provided (for each) to make a reduced image. As a result, the original image can be compressed into a reduced image in a short time. A more detailed description of the image processing method will be described later.
[ADCの構成例]
 図5は、ADC部の一部の構成をさらに詳細に示す図である。ADC部280は、ADC回路290a_1、290a_2、290b_1、290b_2、290c_1、290c_2・・・と、第2メモリ部292a、292b、292c・・・と、信号処理回路293a、293b、293c・・・と、デマルチプレクサ294a、294b、294c・・・とを備えている。
[ADC configuration example]
FIG. 5 is a diagram showing a part of the configuration of the ADC unit in more detail. The ADC section 280 includes an ADC circuit 290a_1, 290a_2, 290b_1, 290b_2, 290c_1, 290c_2 ..., a second memory section 292a, 292b, 292c ..., and a signal processing circuit 293a, 293b, 293c ... The demultiplexer 294a, 294b, 294c ...
 ADC回路290a_1、290a_2、290b_1、290b_2、290c_1、290c_2・・・は、それぞれ同一の内部構成を有する。従って、便宜的に、ADC回路290a_1の内部構成を説明し、他のADC回路の内部構成の説明は省略する。 The ADC circuits 290a_1, 290a_2, 290b_1, 290b_2, 290c_1, 290c_2, and the like each have the same internal configuration. Therefore, for convenience, the internal configuration of the ADC circuit 290a_1 will be described, and the description of the internal configuration of other ADC circuits will be omitted.
 ADC回路290a_1は、比較回路295と、セレクタ296と、第1メモリ部291a_1とを備える。比較回路295は、対応する画素回路250からの画素信号と、DAC231からの参照信号とを比較する。比較回路295は、参照信号の電圧変化開始から画素信号の電圧レベルを横切るまでの時間を計測する。これにより、画素信号は、AD変換されて、デジタル値として出力される。 The ADC circuit 290a_1 includes a comparison circuit 295, a selector 296, and a first memory unit 291a_1. The comparison circuit 295 compares the pixel signal from the corresponding pixel circuit 250 with the reference signal from the DAC 231. The comparison circuit 295 measures the time from the start of the voltage change of the reference signal to the crossing of the voltage level of the pixel signal. As a result, the pixel signal is AD-converted and output as a digital value.
 セレクタ296は、比較回路295からのデジタル値およびデマルチプレクサ294aからの出力信号を受けて、それらのいずれかを選択的に第1メモリ部291a_1へ転送する。 The selector 296 receives the digital value from the comparison circuit 295 and the output signal from the demultiplexer 294a, and selectively transfers any of them to the first memory unit 291a_1.
 第1メモリ部291a_1は、デマルチプレクサ294aからの信号を一時的に格納する。最初、比較回路295が対応の画素回路250からの元画像の画素信号を受けた場合、デマルチプレクサ294aは、元画像の画素信号を第1メモリ部291a_1へ送り、第1メモリ部291a_1は、その画素信号を格納する。 The first memory unit 291a_1 temporarily stores the signal from the demultiplexer 294a. First, when the comparison circuit 295 receives the pixel signal of the original image from the corresponding pixel circuit 250, the demultiplexer 294a sends the pixel signal of the original image to the first memory unit 291a_1, and the first memory unit 291a_1 Stores pixel signals.
 このとき、他の第1メモリ部291a_2等も、第1メモリ部291a_1と同様に、それぞれに対応する画素回路250からの元画像の画素信号を格納する。従って、ADC部280は、全体として元画像の画素信号を格納している。尚、第2メモリ部292a等は、まだ特定の信号を格納していない。 At this time, the other first memory units 291a_2 and the like also store the pixel signals of the original image from the corresponding pixel circuits 250, similarly to the first memory unit 291a_1. Therefore, the ADC unit 280 stores the pixel signal of the original image as a whole. The second memory unit 292a and the like have not yet stored a specific signal.
 第1および第2メモリ部291a_1~291c_1、291a_2~291c_2、292a~292cは、同一構成を有するラッチ回路でよい。 The first and second memory units 291a_1 to 291c_1, 291a_2 to 291c_2, and 292a to 292c may be latch circuits having the same configuration.
 信号処理回路293aは、第1メモリ部291a_1、291a_2、291b_1、291b_2および第2メモリ部292aから複数の画素信号を受けて、これらの演算処理をする。演算処理は、複数の画素信号のフィルタリング処理したり、複数の画素信号から或る画素信号を間引いたり、複数の画素信号の平均を演算したり、あるいは、複数の画素信号に係数を乗じて加算する処理等でよい。このような演算処理によって、それらの画素信号を合成して1つの信号(例えば、縮小画像の信号)を生成することができる。例えば、信号処理回路293aは、第1メモリ部291a_1、291a_2からの2つの画素信号を合成する際に、それらに隣接する第1メモリ部291b_1、291b_2からの画素信号を加味して合成し、1つの信号(縮小信号)として出力する。尚、元画像の画素信号を合成する際には、第2メモリ部292a等の信号は不定であるので、信号処理回路293aは、第2メモリ部292aの信号を用いていない。 The signal processing circuit 293a receives a plurality of pixel signals from the first memory unit 291a_1, 291a_2, 291b_1, 291b_2 and the second memory unit 292a, and performs these arithmetic processing. The arithmetic processing is filtering processing of a plurality of pixel signals, thinning out a certain pixel signal from a plurality of pixel signals, calculating the average of a plurality of pixel signals, or multiplying a plurality of pixel signals by a coefficient and adding them. It may be a process to be performed. By such arithmetic processing, those pixel signals can be combined to generate one signal (for example, a signal of a reduced image). For example, when the signal processing circuit 293a synthesizes two pixel signals from the first memory units 291a_1 and 291a_2, the signal processing circuit 293a synthesizes the two pixel signals from the first memory units 291b_1 and 291b_2 adjacent to them in consideration of the pixel signals. Output as one signal (reduced signal). Since the signal of the second memory unit 292a or the like is undefined when synthesizing the pixel signal of the original image, the signal processing circuit 293a does not use the signal of the second memory unit 292a.
 信号処理回路293b、293cも、信号処理回路293aと同様に機能する。例えば、信号処理回路293bは、第1メモリ部291b_1、291b_2、291c_1、291c_2および第2メモリ部292bから複数の画素信号を受けて、これらの演算処理をする。信号処理回路293cは、第1メモリ部291c_1、291c_2、291d_1、291d_2および第2メモリ部292cから複数の画素信号を受けて、これらの演算処理をする。信号処理回路293a~293cは、同一構成を有するデジタルロジック回路でよい。 The signal processing circuits 293b and 293c also function in the same manner as the signal processing circuits 293a. For example, the signal processing circuit 293b receives a plurality of pixel signals from the first memory unit 291b_1, 291b_2, 291c_1, 291c_2, and the second memory unit 292b, and performs these arithmetic processing. The signal processing circuit 293c receives a plurality of pixel signals from the first memory unit 291c_1, 291c_2, 291d_1, 291d_2, and the second memory unit 292c, and performs these arithmetic processing. The signal processing circuits 293a to 293c may be digital logic circuits having the same configuration.
 デマルチプレクサ294aは、信号処理回路293aからの出力信号を受けて、ADC回路290a_1または第2メモリ部292aのいずれかに選択的に出力信号を転送する。例えば、本実施形態では、デマルチプレクサ294aは、第2メモリ部292aに出力信号を転送し、該出力信号(即ち、縮小信号)を格納する。 The demultiplexer 294a receives the output signal from the signal processing circuit 293a and selectively transfers the output signal to either the ADC circuit 290a_1 or the second memory unit 292a. For example, in the present embodiment, the demultiplexer 294a transfers an output signal to the second memory unit 292a and stores the output signal (that is, a reduced signal).
 デマルチプレクサ294b、294cもデマルチプレクサ294aと同様に機能する。従って、デマルチプレクサ294bは、信号処理回路293bからの出力信号を受けて、ADC回路290b_1または第2メモリ部292bのいずれかに選択的に出力信号を転送する。デマルチプレクサ294cは、信号処理回路293cからの出力信号を受けて、ADC回路290c_1または第2メモリ部292cのいずれかに選択的に出力信号を転送する。 The demultiplexer 294b, 294c also functions in the same manner as the demultiplexer 294a. Therefore, the demultiplexer 294b receives the output signal from the signal processing circuit 293b and selectively transfers the output signal to either the ADC circuit 290b_1 or the second memory unit 292b. The demultiplexer 294c receives the output signal from the signal processing circuit 293c and selectively transfers the output signal to either the ADC circuit 290c_1 or the second memory unit 292c.
 例えば、第2メモリ部292a~292cがそれぞれ出力信号を格納する。この場合、出力信号は、複数の画素信号を合成して得られた縮小信号である。即ち、第2メモリ部292a~292cは、元画像を圧縮して得られた縮小画像の信号(第1縮小信号)をそれぞれ格納する。 For example, the second memory units 292a to 292c each store an output signal. In this case, the output signal is a reduced signal obtained by synthesizing a plurality of pixel signals. That is, the second memory units 292a to 292c each store the signal of the reduced image (first reduced signal) obtained by compressing the original image.
 図5では配線を図示していないが、信号処理回路293a~293cは、第2メモリ部292a~292cに格納された複数の第1縮小信号のうち少なくとも2つの第1縮小信号をさらに合成して、縮小画像をさら圧縮した縮小画像の信号(第2縮小信号)をそれぞれ格納してもよい。このとき、元画像の画素信号をさらに加味してもよい。 Although the wiring is not shown in FIG. 5, the signal processing circuits 293a to 293c further synthesize at least two first reduction signals among the plurality of first reduction signals stored in the second memory units 292a to 292c. , The signal of the reduced image obtained by further compressing the reduced image (second reduced signal) may be stored respectively. At this time, the pixel signal of the original image may be further added.
 このように、ADC部280は、元画像を画素アレイ部240の外部へ転送する前に、その元画像の縮小画像を作成し保持することができる。 In this way, the ADC unit 280 can create and hold a reduced image of the original image before transferring the original image to the outside of the pixel array unit 240.
 図5では、第2メモリ部292aは、2個のADC回路290a_1、290a_2に対して1つずつ設けられている。他の第2メモリ部292b、292cも同様に、それぞれ2個のADC回路290b_1、290b_2、および、290c_1、290c_2に対して1つ設けられている。即ち、第2メモリ部292は、2つの画素回路250に対して1つずつ設けられている。ADC部280に設けられているメモリ(ラッチ)の個数は、第1および第2メモリ部291、292を合わせて、第1メモリ部291の個数の1.5倍となっている。これにより、第1メモリ部291が元画像の画素信号を維持した状態で、第2メモリ部292は縮小信号を保持することができる。第2メモリ部292の個数と画像のデータ量との関係については、後で詳細に説明する。 In FIG. 5, the second memory unit 292a is provided one by one for each of the two ADC circuits 290a_1 and 290a_2. Similarly, the other second memory units 292b and 292c are provided one for each of the two ADC circuits 290b_1, 290b_2, and 290c_1 and 290c_2, respectively. That is, one second memory unit 292 is provided for each of the two pixel circuits 250. The number of memories (latches) provided in the ADC unit 280 is 1.5 times the number of the first memory units 291 including the first and second memory units 291 and 292. As a result, the second memory unit 292 can hold the reduced signal while the first memory unit 291 maintains the pixel signal of the original image. The relationship between the number of second memory units 292 and the amount of image data will be described in detail later.
 尚、本実施形態では、第1メモリ部291の個数と第2メモリ部292の個数との比は2:1となっているが、それらの個数は特に限定されない。ADC回路290、第2メモリ部292、信号処理回路293、デマルチプレクサ294のそれぞれの個数も、特に限定されない。 In the present embodiment, the ratio of the number of the first memory unit 291 to the number of the second memory unit 292 is 2: 1, but the number thereof is not particularly limited. The number of each of the ADC circuit 290, the second memory unit 292, the signal processing circuit 293, and the demultiplexer 294 is also not particularly limited.
 また、図5では、デマルチプレクサ294a~294cが設けられている。しかし、デマルチプレクサ294a~294cを省略し、信号処理回路293a~293cは、出力信号を第1メモリ部291a_1~291c_1と第2メモリ部292a~292cとの両方に転送してもよい。この場合、図示しないが、第1メモリ部291a_1~291c_1および第2メモリ部292a~292cに書き込みイネーブル信号を入力して、その書き込みイネーブル信号によって出力信号を格納するメモリを選択してもよい。例えば、書き込みイネーブル信号が第1論理の場合には、第1メモリ部291a_1~291c_1が信号処理回路293a~293cからの出力信号をそれぞれ格納する。書き込みイネーブル信号が第2論理の場合には、第2メモリ部292a~292cが信号処理回路293a~293cからの出力信号をそれぞれ格納する。このように構成することにより、第1メモリ部291a~291cおよび第2メモリ部292a~292cの一方に出力信号を格納することができる。また、デマルチプレクサ294a~294cが不要になるので、ADC部280の面積が小さくなる。 Further, in FIG. 5, demultiplexers 294a to 294c are provided. However, the demultiplexers 294a to 294c may be omitted, and the signal processing circuits 293a to 293c may transfer the output signal to both the first memory units 291a_1 to 291c_1 and the second memory units 292a to 292c. In this case, although not shown, a write enable signal may be input to the first memory units 291a_1 to 291c_1 and the second memory units 292a to 292c, and a memory for storing the output signal may be selected by the write enable signal. For example, when the write enable signal is the first logic, the first memory units 291a_1 to 291c_1 store the output signals from the signal processing circuits 293a to 293c, respectively. When the write enable signal is the second logic, the second memory units 292a to 292c store the output signals from the signal processing circuits 293a to 293c, respectively. With this configuration, the output signal can be stored in one of the first memory units 291a to 291c and the second memory units 292a to 292c. Further, since the demultiplexers 294a to 294c are not required, the area of the ADC unit 280 is reduced.
 図6A~図6Eは、第1実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図である。図7は、元画素および縮小画像を示す概念図である。 6A to 6E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the first embodiment. FIG. 7 is a conceptual diagram showing an original pixel and a reduced image.
 ADC部280では、ADC回路290内の第1メモリ部291と第2メモリ部292とが配列されている。図4および図6Aに示すように、複数の第1メモリ部291はX方向に配列されており、複数の第2メモリ部292もX方向に配列されている。第2メモリ部292は、2つの第1メモリ部291に対して1つ設けられている。第1メモリ部291は、ADC回路290ごとに設けられており、ADC回路290は、画素回路250ごとに設けられている。従って、第1メモリ部291は、画素回路250に1対1に対応して設けられており、第2メモリ部292は、2個の画素ごとに1つずつ設けられていることになる。第1メモリ部291の行と第2メモリ部292の行は、X方向と直交するY方向に交互に配置されている。 In the ADC unit 280, the first memory unit 291 and the second memory unit 292 in the ADC circuit 290 are arranged. As shown in FIGS. 4 and 6A, the plurality of first memory units 291 are arranged in the X direction, and the plurality of second memory units 292 are also arranged in the X direction. One second memory unit 292 is provided for each of the two first memory units 291. The first memory unit 291 is provided for each ADC circuit 290, and the ADC circuit 290 is provided for each pixel circuit 250. Therefore, the first memory unit 291 is provided in the pixel circuit 250 in a one-to-one correspondence, and the second memory unit 292 is provided one for every two pixels. The rows of the first memory unit 291 and the rows of the second memory unit 292 are alternately arranged in the Y direction orthogonal to the X direction.
 図6A~図6Dの黒塗り部分Bは、ADC回路290(第1メモリ部291)および第2メモリ部292が設けられてない領域である。それ以外の白抜き部分は、ADC回路290(第1メモリ部291)または第2メモリ部292が設けられており、各々1つの画素信号または縮小信号を格納することができることを示している。 The black-painted portion B of FIGS. 6A to 6D is an area in which the ADC circuit 290 (first memory unit 291) and the second memory unit 292 are not provided. The other white parts indicate that the ADC circuit 290 (first memory unit 291) or the second memory unit 292 is provided, and each of them can store one pixel signal or a reduced signal.
 図6Aでは、第1および第2メモリ部291、292は、初期状態であり、まだ、画素信号を格納していない。複数の画素回路250が、撮像された画像の画素信号をADC部280へ送る。 In FIG. 6A, the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal. The plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
 図6Bに示すように、画素回路250からの元画像の画素信号S0は、AD変換された後、画素回路250のそれぞれに対応する第1メモリ部291へ格納される。このとき、第1メモリ部291に格納されている画素信号S0は、まだ圧縮されていない。 As shown in FIG. 6B, the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
 次に、図6Cに示すように、第1メモリ部291に格納されている画素信号S0を合成して、第1縮小信号S1を生成する。第1縮小信号S1は、図5を参照して説明した通り、信号処理回路293において生成する。信号処理回路293は、画素信号S0を4分の1に圧縮して第1縮小信号S1を生成する。第1縮小信号S1は、第2メモリ部292のうち一部に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。図7の画素信号S0からなる元画像は、第1縮小信号S1からなる縮小画像へ4分の1に圧縮されている。尚、図7の各点は、1つの画素信号または1つの縮小信号を示している。 Next, as shown in FIG. 6C, the pixel signal S0 stored in the first memory unit 291 is combined to generate the first reduction signal S1. The first reduced signal S1 is generated in the signal processing circuit 293 as described with reference to FIG. The signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1. The first reduction signal S1 is stored in a part of the second memory unit 292. At this time, the first memory unit 291 holds the pixel signal of the original image. The original image composed of the pixel signal S0 of FIG. 7 is compressed to a quarter of the reduced image composed of the first reduced signal S1. Each point in FIG. 7 indicates one pixel signal or one reduced signal.
 次に、図6Dに示すように、第2メモリ部292に格納されている第1縮小信号S1を合成して、第2縮小信号S2を生成する。信号処理回路293は、第1縮小信号S1を4分の1に圧縮して第2縮小信号S2を生成する。第2縮小信号S2は、第1縮小信号S1を格納していない他の第2メモリ部292に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。また、第2メモリ部292の一部は、第1縮小信号S1を保持している。図7の第1縮小信号S1からなる縮小画像は、第2縮小信号S2からなる縮小画像へさらに4分の1に圧縮されている。 Next, as shown in FIG. 6D, the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2. The signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2. The second reduction signal S2 is stored in another second memory unit 292 that does not store the first reduction signal S1. At this time, the first memory unit 291 holds the pixel signal of the original image. Further, a part of the second memory unit 292 holds the first reduction signal S1. The reduced image composed of the first reduced signal S1 in FIG. 7 is further compressed to a quarter of the reduced image composed of the second reduced signal S2.
 次に、図6Eに示すように、第2縮小信号S2を合成して、第3縮小信号S3を生成する。信号処理回路293は、第2縮小信号S2を4分の1に圧縮して第3縮小信号S3を生成する。第3縮小信号S3は、第1および第2縮小信号S1、S2を格納していないさらに他の第2メモリ部292に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。また、第2メモリ部292は、第1および第2縮小信号S1、S2を保持している。図7の第2縮小信号S2からなる縮小画像は、第3縮小信号S3からなる縮小画像へさらに4分の1に圧縮されている。 Next, as shown in FIG. 6E, the second reduced signal S2 is combined to generate the third reduced signal S3. The signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3. The third reduced signal S3 is stored in yet another second memory unit 292 that does not store the first and second reduced signals S1 and S2. At this time, the first memory unit 291 holds the pixel signal of the original image. Further, the second memory unit 292 holds the first and second reduction signals S1 and S2. The reduced image composed of the second reduced signal S2 in FIG. 7 is further compressed to a quarter of the reduced image composed of the third reduced signal S3.
 さらに、信号処理回路293は、第3縮小信号S3を4分の1に圧縮して、第4縮小信号(図示せず)を生成してもよい。このように、信号処理回路293は、元画像の圧縮処理を繰り返して縮小画像を生成する。つまり、信号処理回路293は、第n(n≧3)縮小信号を4分の1に圧縮して第n+1縮小信号を生成し、第2メモリ部292は、第n+1縮小信号をさらに格納する。圧縮処理の繰り返し回数は、k(kは、1以上の整数)でよい。即ち、信号処理回路293は、第k-1縮小信号を4分の1に圧縮して第k縮小信号を生成する。尚、k=0は元画像の画素信号とする。本実施形態では、圧縮処理を繰り返すごとに、画素信号のデータ量が、4分の1ずつに減少する。従って、元画像のデータ量をD0とすると、元画像および第1~第k縮小信号の全体のデータ量は、D0+(1/4)D0+(1/4)D0+(1/4)D0+・・・となり、最大(4/3)*D0となる。つまり、元画像および第1~第k縮小信号の全体のデータ量は、元画像のデータ量D0の1.333・・・倍となる。よって、第1および第2メモリ部291および292の総数が元画像(データ量D0)を格納する第1メモリ部291の数の1.5倍あれば、第1および第2メモリ部291および292は、元画像および第1~第k縮小信号の全部を充分に格納することができる。このような理由により、本実施形態では、第2メモリ部292は、2つの第1メモリ部291に対して1つずつ設けられている。 Further, the signal processing circuit 293 may compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ≧ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the second memory unit 292 further stores the n + 1 reduced signal. The number of repetitions of the compression process may be k (k is an integer of 1 or more). That is, the signal processing circuit 293 compresses the k-1 reduced signal to a quarter to generate the k reduced signal. Note that k = 0 is a pixel signal of the original image. In the present embodiment, the amount of pixel signal data is reduced by a quarter each time the compression process is repeated. Therefore, assuming that the data amount of the original image is D0, the total data amount of the original image and the first to kth reduced signals is D0 + (1/4) D0 + (1/4 2 ) D0 + (1/4 3 ) D0 +. ..., and the maximum (4/3) * D0. That is, the total data amount of the original image and the first to kth reduced signals is 1.333 ... times the data amount D0 of the original image. Therefore, if the total number of the first and second memory units 291 and 292 is 1.5 times the number of the first memory units 291 that store the original image (data amount D0), the first and second memory units 291 and 292 Can sufficiently store the original image and all of the first to k-th reduction signals. For this reason, in the present embodiment, one second memory unit 292 is provided for each of the two first memory units 291.
 また、元画像の画素信号S0から第2~第4縮小信号S2~S4いずれかを直接生成しようとすると、信号処理回路293の演算負荷が増大する。従って、本実施形態では、画素信号S0から第1縮小信号S1を生成し、第1縮小信号S1から第2縮小信号S2を生成し、第2縮小信号S2から第3縮小信号S3を生成している。これにより、信号処理回路293の負荷を軽減させることができる。 Further, if any one of the second to fourth reduced signals S2 to S4 is to be directly generated from the pixel signal S0 of the original image, the calculation load of the signal processing circuit 293 increases. Therefore, in the present embodiment, the first reduction signal S1 is generated from the pixel signal S0, the second reduction signal S2 is generated from the first reduction signal S1, and the third reduction signal S3 is generated from the second reduction signal S2. There is. Thereby, the load of the signal processing circuit 293 can be reduced.
 図8は、元画像および縮小画像の転送時間を示すグラフである。横軸は、時間tを示す。本実施形態では、第1および第2メモリ部291、292は、元画像および全ての縮小画像を格納している。従って、画像の圧縮処理が終了した後に、検出処理の順番、即ち、データ量の最も少ない縮小画像から昇順に転送し、元画像を最後に転送することができる。 FIG. 8 is a graph showing the transfer time of the original image and the reduced image. The horizontal axis represents time t. In the present embodiment, the first and second memory units 291 and 292 store the original image and all the reduced images. Therefore, after the image compression processing is completed, the images can be transferred in the order of detection processing, that is, in ascending order from the reduced image having the smallest amount of data, and the original image can be transferred last.
 通常、物体検出では、縮小された低解像度画像を用いて検出対象の物体が存在するか、または、物体の大まかな座標などを検出する。これにより、詳細に検出すべき、物体のある検出領域を特定する。次に、高解像度画像から検出領域を切り出し、その高解像度画像の検出領域において物体検出処理を行う。動き検出では、縮小された低解像度画像を用いて物体の大まかな動きを検出する。これにより、詳細に検出すべき、動きのある領域を特定する。次に、高解像度画像から検出領域を切り出し、その高解像度画像の検出領域において動き検出処理を行う。このように低解像度画像から高解像度画像を用いて階層的に検出することで、処理するデータ量を抑制しつつ、動き検出の精度や検出速度を上げることができる。 Normally, in object detection, the object to be detected exists or the rough coordinates of the object are detected using a reduced low-resolution image. This identifies a detection area with an object that should be detected in detail. Next, the detection area is cut out from the high-resolution image, and the object detection process is performed in the detection area of the high-resolution image. In motion detection, a reduced low-resolution image is used to detect the rough motion of an object. This identifies the area of motion that should be detected in detail. Next, a detection area is cut out from the high-resolution image, and motion detection processing is performed in the detection area of the high-resolution image. By hierarchically detecting from a low-resolution image using a high-resolution image in this way, it is possible to improve the accuracy and detection speed of motion detection while suppressing the amount of data to be processed.
 従って、本実施形態によれば、転送回路260は、低解像度画像から高解像度画像を用いて階層的に検出するために、データ量の最も小さな縮小画像からより大きな画像を順番(検出処理の順番)に信号処理回路293の外部のフレームメモリ115へ転送する。例えば、図8において、第3縮小信号S3の画像のデータ量が最小であるとする。この場合、転送回路260は、第3縮小信号S3を最初に転送する。第3縮小信号S3のデータ量D3は最小であるので、転送時間t_t3は、t_t0~t_t3の中で最短時間となる。検出時間t_d3は、第3縮小信号S3を用いた物体検出や動き検出等にかかる時間である。第3縮小信号S3を用いた検出処理中に、第2縮小信号S2の転送処理を開始している。 Therefore, according to the present embodiment, in order to hierarchically detect the low-resolution image to the high-resolution image using the high-resolution image, the transfer circuit 260 orders the larger image from the reduced image with the smallest amount of data (the order of detection processing). ) Is transferred to the frame memory 115 outside the signal processing circuit 293. For example, in FIG. 8, it is assumed that the amount of image data of the third reduction signal S3 is the minimum. In this case, the transfer circuit 260 first transfers the third reduced signal S3. Since the data amount D3 of the third reduced signal S3 is the minimum, the transfer time t_t3 is the shortest time among t_t0 to t_t3. The detection time t_d3 is the time required for object detection, motion detection, and the like using the third reduction signal S3. During the detection process using the third reduced signal S3, the transfer process of the second reduced signal S2 is started.
 第2縮小信号S2の画像のデータ量は、第3縮小信号S3の次に小さく、第3縮小信号S3の次に検出処理されるので、転送回路260は、第3縮小信号S3の次に第2縮小信号S2を転送する。転送時間t_t2は、転送時間t_t3よりも長くなるものの、比較的短時間である。検出時間t_d2は、第2縮小信号S2を用いた物体検出や動き検出等にかかる時間である。第2縮小信号S2を用いた検出処理中に、第1縮小信号S1の転送処理を開始している。 Since the amount of image data of the second reduced signal S2 is the second smallest after the third reduced signal S3 and is detected and processed next to the third reduced signal S3, the transfer circuit 260 is next to the third reduced signal S3. 2 The reduced signal S2 is transferred. The transfer time t_t2 is longer than the transfer time t_t3, but is relatively short. The detection time t_d2 is the time required for object detection, motion detection, and the like using the second reduction signal S2. During the detection process using the second reduced signal S2, the transfer process of the first reduced signal S1 is started.
 第1縮小信号S1の画像のデータ量は、第2縮小信号S2の次に小さく、第2縮小信号S2の次に検出処理されるので、転送回路260は、第2縮小信号S2の次に第1縮小信号S1を転送する。転送時間t_t1は、転送時間t_t2よりも長くなるものの、元画像の転送時間より短時間である。検出時間t_d1は、第1縮小信号S1を用いた物体検出や動き検出等にかかる時間である。第1縮小信号S1を用いた検出処理中に、元画像の画素信号S0の転送処理を開始している。 Since the amount of image data of the first reduced signal S1 is the second smallest after the second reduced signal S2 and the detection process is performed next to the second reduced signal S2, the transfer circuit 260 is next to the second reduced signal S2. 1 Transfer the reduced signal S1. The transfer time t_t1 is longer than the transfer time t_t2, but shorter than the transfer time of the original image. The detection time t_d1 is the time required for object detection, motion detection, and the like using the first reduction signal S1. During the detection process using the first reduction signal S1, the transfer process of the pixel signal S0 of the original image is started.
 元画像の画素信号S0の画像のデータ量は、最も大きく、最後に検出処理されるので、転送回路260は、画素信号S0を最後に転送する。転送時間t_t0は、t_t0~t_t3の中で最も長くなる。検出時間t_d0は、画素信号S0を用いた物体検出や動き検出等にかかる時間である。この圧縮処理および転送処理を一般化すると、第k縮小信号が生成される場合、第k縮小信号の生成後、転送回路260は、画素信号および第1~第k縮小信号を検出処理の順番(ここでは、データ量の少ない順)で信号処理回路293の外部のフレームメモリ115へ転送する。即ち、転送回路260は、画像の圧縮後、第k縮小信号、第k-1縮小信号、・・・第3縮小信号、第2縮小信号、第1縮小信号、元画像の画素信号の順にフレームメモリ115へ転送する。 Since the amount of data in the image of the pixel signal S0 of the original image is the largest and the detection process is performed last, the transfer circuit 260 transfers the pixel signal S0 last. The transfer time t_t0 is the longest among t_t0 to t_t3. The detection time t_d0 is the time required for object detection, motion detection, and the like using the pixel signal S0. If this compression process and transfer process are generalized, when the k-th reduction signal is generated, the transfer circuit 260 detects the pixel signal and the first to k-th reduction signals in the order of detection processing (after the generation of the k-reduction signal). Here, the data is transferred to the frame memory 115 outside the signal processing circuit 293 in ascending order of the amount of data). That is, after the image is compressed, the transfer circuit 260 frames the k-th reduced signal, the k-1 reduced signal, ... The third reduced signal, the second reduced signal, the first reduced signal, and the pixel signal of the original image in this order. Transfer to memory 115.
 このように、転送回路260は、検出処理の順番、即ち、データ量の最も小さな縮小画像から昇順に縮小画像を転送し、最後に元画像を信号処理回路293の外部のフレームメモリ115へ転送する。これにより、DSP回路120は、データ量の小さい画像から検出処理を遅延無く直ぐに開始することができる。また、検出処理と次の縮小信号または画素信号の転送処理とが並行に実行され得る。 In this way, the transfer circuit 260 transfers the reduced images in the order of detection processing, that is, in ascending order from the reduced image having the smallest amount of data, and finally transfers the original image to the frame memory 115 outside the signal processing circuit 293. .. As a result, the DSP circuit 120 can immediately start the detection process from an image having a small amount of data without delay. Further, the detection process and the transfer process of the next reduced signal or pixel signal can be executed in parallel.
 もし、第2メモリ部292が設けられておらず、第1メモリ部291に格納された元画像のみをフレームメモリ115へ転送する場合、元画像の画素信号S0を転送した後、DSP回路120が画素信号S0を用いて縮小画像を生成する。従って、検出処理の開始は、元画像の画素信号S0を転送し、縮小画像を生成した後である。よって、検出処理の開始のタイミングが遅くなる。さらに、転送処理と検出処理とを並行して実行することができない。 If the second memory unit 292 is not provided and only the original image stored in the first memory unit 291 is transferred to the frame memory 115, the DSP circuit 120 transfers the pixel signal S0 of the original image and then the DSP circuit 120. A reduced image is generated using the pixel signal S0. Therefore, the detection process is started after the pixel signal S0 of the original image is transferred and the reduced image is generated. Therefore, the timing of starting the detection process is delayed. Furthermore, the transfer process and the detection process cannot be executed in parallel.
 これに対し、本実施形態によれば、信号処理回路293のADC部280内において、信号処理回路293が、第1メモリ部291の元画像を用いて、縮小信号S1~Skを生成し、第2メモリ部292へ格納する。このように、ADC部280の内部で縮小画像を生成するので、信号処理回路293は、元画像の長い転送時間t_t0を待つことなく、画像の圧縮処理をすることができる。また、ADC部280は、元画像の転送時間t_t0を待つことなく、検出処理の順番でデータ量の最も小さな縮小画像から昇順に縮小画像および元画像を転送することができる。データ量の小さな画像の転送時間は比較的短時間で済む。よって、DSP回路120は、検出処理を遅延無く直ぐに開始することができる。 On the other hand, according to the present embodiment, in the ADC section 280 of the signal processing circuit 293, the signal processing circuit 293 generates reduced signals S1 to Sk using the original image of the first memory section 291. 2 Stored in the memory unit 292. Since the reduced image is generated inside the ADC unit 280 in this way, the signal processing circuit 293 can perform the image compression processing without waiting for the long transfer time t_t0 of the original image. Further, the ADC unit 280 can transfer the reduced image and the original image in ascending order from the reduced image having the smallest amount of data in the order of detection processing without waiting for the transfer time t_t0 of the original image. The transfer time for images with a small amount of data is relatively short. Therefore, the DSP circuit 120 can immediately start the detection process without delay.
 また、DSP回路120が検出処理を実行する際には、すでに画像の圧縮処理は終了している。従って、DSP回路120が検出処理を実行している期間に、転送回路260は、次の縮小信号または画素信号を並行してフレームメモリ115へ転送することができる。その結果、検出処理の終了時期を早めることができる。 Further, when the DSP circuit 120 executes the detection process, the image compression process has already been completed. Therefore, while the DSP circuit 120 is executing the detection process, the transfer circuit 260 can transfer the next reduced signal or pixel signal to the frame memory 115 in parallel. As a result, the end time of the detection process can be accelerated.
(第2実施形態)
 図9A~図9Eは、第2実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図である。第2実施形態では、第2メモリ部292が、3個の第1メモリ部291に対して1つずつ設けられている。即ち、第2メモリ部292が、3個の画素回路250に対して1つずつ設けられている。この場合、ADC部280に設けられているメモリ(ラッチ)の個数は、第1および第2メモリ部291、292を合わせて、第1メモリ部291の個数の4/3(1.3333・・・)倍となっている。これにより、第1メモリ部291が元画像の画素信号を維持した状態で、第2メモリ部292は縮小信号を保持することができる。
(Second Embodiment)
9A to 9E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the second embodiment. In the second embodiment, the second memory unit 292 is provided one by one for each of the three first memory units 291. That is, one second memory unit 292 is provided for each of the three pixel circuits 250. In this case, the number of memories (latches) provided in the ADC unit 280 is 4/3 (1.3333 ...) Of the number of the first memory units 291 including the first and second memory units 291 and 292.・) It has doubled. As a result, the second memory unit 292 can hold the reduced signal while the first memory unit 291 maintains the pixel signal of the original image.
 上述の通り、元画像および第1~第k縮小信号の全体のデータ量は、最大(4/3)*D0となる。つまり、元画像のデータ量D0の1.333・・・倍である。従って、第2実施形態によれば、第2メモリ部292の容量が第1~第k縮小信号の総データ量と等しくなる。これにより、第1および第2メモリ部291、292は、元画像および第1~第k縮小信号の全体を格納することができ、かつ、余剰に空いている第2メモリ部292が無くなる。即ち、第1および第2メモリ部291、292の無駄を抑制することができる。 As described above, the total amount of data of the original image and the first to kth reduced signals is the maximum (4/3) * D0. That is, it is 1.333 ... times the data amount D0 of the original image. Therefore, according to the second embodiment, the capacity of the second memory unit 292 is equal to the total amount of data of the first to kth reduction signals. As a result, the first and second memory units 291 and 292 can store the entire original image and the first to k-th reduction signals, and the extra second memory unit 292 is eliminated. That is, waste of the first and second memory units 291 and 292 can be suppressed.
 例えば、図9Aでは、第1および第2メモリ部291、292は、初期状態であり、まだ、画素信号を格納していない。複数の画素回路250が、撮像された画像の画素信号をADC部280へ送る。 For example, in FIG. 9A, the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal. The plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
 図9Bに示すように、画素回路250からの元画像の画素信号S0は、AD変換された後、画素回路250のそれぞれに対応する第1メモリ部291へ格納される。このとき、第1メモリ部291に格納されている画素信号S0は、まだ圧縮されていない。 As shown in FIG. 9B, the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
 次に、図9Cに示すように、信号処理回路293は、第1メモリ部291に格納されている画素信号S0を合成して、第1縮小信号S1を生成する。即ち、信号処理回路293は、画素信号S0を4分の1に圧縮して第1縮小信号S1を生成する。第1縮小信号S1は、第2メモリ部292のうち一部に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。 Next, as shown in FIG. 9C, the signal processing circuit 293 synthesizes the pixel signal S0 stored in the first memory unit 291 to generate the first reduction signal S1. That is, the signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1. The first reduction signal S1 is stored in a part of the second memory unit 292. At this time, the first memory unit 291 holds the pixel signal of the original image.
 12個の画素信号S0に対して3つの第1縮小信号S1が生成されるので、第2メモリ部292は、12個の第1メモリ部291(12個の第1縮小信号S1)に対して3つ使用される。例えば、図9Cの枠C1は、12個の第1メモリ部291を含み、枠C1内の3つの第2メモリ部292が第1縮小信号S1を格納する。枠C1のパターンがX方向およびY方向に繰り返されている。 Since three first reduction signals S1 are generated for the twelve pixel signals S0, the second memory unit 292 refers to the twelve first memory units 291 (12 first reduction signals S1). Three are used. For example, the frame C1 of FIG. 9C includes twelve first memory units 291, and three second memory units 292 in the frame C1 store the first reduction signal S1. The pattern of the frame C1 is repeated in the X direction and the Y direction.
 次に、図9Dに示すように、第2メモリ部292に格納されている第1縮小信号S1を合成して、第2縮小信号S2を生成する。信号処理回路293は、第1縮小信号S1を4分の1に圧縮して第2縮小信号S2を生成する。第2縮小信号S2は、第1縮小信号S1を格納していない他の第2メモリ部292に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。また、第2メモリ部292の一部は、第1縮小信号S1を保持している。 Next, as shown in FIG. 9D, the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2. The signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2. The second reduction signal S2 is stored in another second memory unit 292 that does not store the first reduction signal S1. At this time, the first memory unit 291 holds the pixel signal of the original image. Further, a part of the second memory unit 292 holds the first reduction signal S1.
 12個の第1縮小信号S1に対して3つの第2縮小信号S2が生成されるので、第2メモリ部292は、12個の第1縮小信号S1に対してさらに3つ使用される。例えば、図9Dの枠C2は、第1縮小信号S1を格納する12個の第2メモリ部292を含み、枠C1内の他の3つの第2メモリ部292が第2縮小信号S2を格納する。枠C2のパターンがX方向およびY方向に繰り返されている。 Since three second reduction signals S2 are generated for the twelve first reduction signals S1, the second memory unit 292 is used three more for the twelve first reduction signals S1. For example, the frame C2 of FIG. 9D includes twelve second memory units 292 that store the first reduction signal S1, and the other three second memory units 292 in the frame C1 store the second reduction signal S2. .. The pattern of the frame C2 is repeated in the X direction and the Y direction.
 次に、図9Eに示すように、第2縮小信号S2を合成して、第3縮小信号S3を生成する。信号処理回路293は、第2縮小信号S2を4分の1に圧縮して第3縮小信号S3を生成する。第3縮小信号S3は、第1および第2縮小信号S1、S2を格納していないさらに他の第2メモリ部292に格納される。このとき、第1メモリ部291は、元画像の画素信号を保持している。また、第2メモリ部292は、第1および第2縮小信号S1、S2を保持している。 Next, as shown in FIG. 9E, the second reduced signal S2 is combined to generate the third reduced signal S3. The signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3. The third reduced signal S3 is stored in yet another second memory unit 292 that does not store the first and second reduced signals S1 and S2. At this time, the first memory unit 291 holds the pixel signal of the original image. Further, the second memory unit 292 holds the first and second reduction signals S1 and S2.
 12個の第2縮小信号S2に対して3つの第3縮小信号S3が生成される。第2メモリ部292は、12個の第2縮小信号S2に対してさらに3つ使用される。図9Eでは図示しきれていないが、第2縮小信号S2を格納する12個の第2メモリ部292に対して、他の3つの空いている第2メモリ部292が第3縮小信号S3を格納する。 Three third reduction signals S3 are generated for twelve second reduction signals S2. Three more second memory units 292 are used for the twelve second reduction signals S2. Although not shown in FIG. 9E, the other three free second memory units 292 store the third reduced signal S3 with respect to the twelve second memory units 292 that store the second reduced signal S2. do.
 さらに、信号処理回路293は、同様に、第3縮小信号S3を4分の1に圧縮して、第4縮小信号(図示せず)を生成してもよい。このように、信号処理回路293は、元画像の圧縮処理を繰り返して縮小画像を生成する。つまり、信号処理回路293は、第n(n≧3)縮小信号を4分の1に圧縮して第n+1縮小信号を生成し、第2メモリ部292は、第n+1縮小信号をさらに格納する。 Further, the signal processing circuit 293 may similarly compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ≧ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the second memory unit 292 further stores the n + 1 reduced signal.
 第2実施形態のその他の構成および動作は、第1実施形態の対応する構成および動作と同様でよい。従って、第2実施形態は、第1実施形態と同様の効果を得ることができる。 Other configurations and operations of the second embodiment may be the same as the corresponding configurations and operations of the first embodiment. Therefore, the second embodiment can obtain the same effect as the first embodiment.
 また、第2実施形態によれば、第2メモリ部292の容量が第1~第k縮小信号の総データ量と等しくなる。これにより、第1および第2メモリ部291、292は、元画像および第1~第k縮小信号の全体を格納することができ、かつ、余剰に空いている第2メモリ部292が無くなる。その結果、第1および第2メモリ部291、292の無駄を抑制することができ、メモリ資源を充分に活用することができる。 Further, according to the second embodiment, the capacity of the second memory unit 292 is equal to the total amount of data of the first to kth reduced signals. As a result, the first and second memory units 291 and 292 can store the entire original image and the first to k-th reduction signals, and the extra second memory unit 292 is eliminated. As a result, waste of the first and second memory units 291 and 292 can be suppressed, and memory resources can be fully utilized.
(第3実施形態)
 図10A~図10Eは、第3実施形態による第1および第2メモリ部に格納される画素信号または縮小信号を示す概念図である。第3施形態では、第2メモリ部292が、4個の第1メモリ部291に対して1つずつ設けられている。即ち、第2メモリ部292が、4個の画素回路250に対して1つずつ設けられている。この場合、ADC部280に設けられているメモリ(ラッチ)の個数は、第1および第2メモリ部291、292を合わせて、第1メモリ部291の個数の1.25倍となっている。よって、第1および第2メモリ部291、292の容量は、元画像および第1~第k縮小信号の全体のデータ量(4/3)*D0)よりも小さい。従って、第3実施形態では、元画像または圧縮前の縮小画像を転送した後に、信号処理回路293は、圧縮動作を実行する必要がある。
(Third Embodiment)
10A to 10E are conceptual diagrams showing pixel signals or reduced signals stored in the first and second memory units according to the third embodiment. In the third embodiment, the second memory unit 292 is provided one by one for each of the four first memory units 291. That is, a second memory unit 292 is provided for each of the four pixel circuits 250. In this case, the number of memories (latches) provided in the ADC unit 280 is 1.25 times the number of the first memory units 291 including the first and second memory units 291 and 292. Therefore, the capacities of the first and second memory units 291 and 292 are smaller than the total data amount (4/3) * D0) of the original image and the first to kth reduced signals. Therefore, in the third embodiment, the signal processing circuit 293 needs to execute the compression operation after transferring the original image or the reduced image before compression.
 第3実施形態によれば、第1および第2メモリ部291、292は、元画像および第1~第k縮小信号の全体を格納することはできない。しかし、画像の圧縮処理は、ADC部280の内部で実行されている。従って、圧縮動作を実行しつつ、転送回路260は、圧縮動作に使用済みの画素信号または圧縮信号をフレームメモリ115へ転送することができる。これにより、圧縮動作は、転送処理とほぼ同時並行して実行することができる。その結果、元画像および第1~第k縮小信号の転送時間が短縮され、検出処理の開始のタイミングが早くなる。 According to the third embodiment, the first and second memory units 291 and 292 cannot store the entire original image and the first to kth reduced signals. However, the image compression process is executed inside the ADC unit 280. Therefore, the transfer circuit 260 can transfer the pixel signal or the compressed signal used for the compression operation to the frame memory 115 while executing the compression operation. As a result, the compression operation can be executed almost simultaneously with the transfer process. As a result, the transfer time of the original image and the first to kth reduced signals is shortened, and the timing of starting the detection process is shortened.
 例えば、図10Aでは、第1および第2メモリ部291、292は、初期状態であり、まだ、画素信号を格納していない。複数の画素回路250が、撮像された画像の画素信号をADC部280へ送る。 For example, in FIG. 10A, the first and second memory units 291 and 292 are in the initial state and do not yet store the pixel signal. The plurality of pixel circuits 250 send the pixel signals of the captured image to the ADC unit 280.
 図10Bに示すように、画素回路250からの元画像の画素信号S0は、AD変換された後、画素回路250のそれぞれに対応する第1メモリ部291へ格納される。このとき、第1メモリ部291に格納されている画素信号S0は、まだ圧縮されていない。 As shown in FIG. 10B, the pixel signal S0 of the original image from the pixel circuit 250 is AD-converted and then stored in the first memory unit 291 corresponding to each of the pixel circuits 250. At this time, the pixel signal S0 stored in the first memory unit 291 has not been compressed yet.
 次に、図10Cに示すように、信号処理回路293は、第1メモリ部291に格納されている画素信号S0を合成して、第1縮小信号S1を生成する。即ち、信号処理回路293は、画素信号S0を4分の1に圧縮して第1縮小信号S1を生成する。第1縮小信号S1は、第2メモリ部292に格納される。 Next, as shown in FIG. 10C, the signal processing circuit 293 synthesizes the pixel signal S0 stored in the first memory unit 291 to generate the first reduction signal S1. That is, the signal processing circuit 293 compresses the pixel signal S0 to a quarter to generate the first reduced signal S1. The first reduction signal S1 is stored in the second memory unit 292.
 次に、転送回路260は、第1メモリ部291の元画像の画素信号S0をフレームメモリ115へ転送する。これにより、第1メモリ部291は空き、他の信号を格納可能になる。尚、画素信号S0の転送後、第1メモリ部291のデータは、消去すること無く、次の信号で上書きされてもよい。
 また、信号処理回路293が元画像の画素信号S0の圧縮動作を実行しつつ、転送回路260が圧縮動作の終了した画素信号S0を圧縮動作と並行してフレームメモリ115へ転送してもよい。あるいは、第1メモリ部291が画素信号S0を保持したまま、転送回路260が画素信号S0を転送し、その後、信号処理回路293が元画像の画素信号S0の圧縮動作を実行してもよい。
Next, the transfer circuit 260 transfers the pixel signal S0 of the original image of the first memory unit 291 to the frame memory 115. As a result, the first memory unit 291 is free and can store other signals. After the pixel signal S0 is transferred, the data in the first memory unit 291 may be overwritten with the next signal without erasing.
Further, while the signal processing circuit 293 executes the compression operation of the pixel signal S0 of the original image, the transfer circuit 260 may transfer the pixel signal S0 whose compression operation has been completed to the frame memory 115 in parallel with the compression operation. Alternatively, the transfer circuit 260 may transfer the pixel signal S0 while the first memory unit 291 holds the pixel signal S0, and then the signal processing circuit 293 may execute a compression operation of the pixel signal S0 of the original image.
 次に、図10Dに示すように、第2メモリ部292に格納されている第1縮小信号S1を合成して、第2縮小信号S2を生成する。信号処理回路293は、第1縮小信号S1を4分の1に圧縮して第2縮小信号S2を生成する。第2縮小信号S2は、第1縮小信号S1を格納していない第1メモリ部291に格納される。 Next, as shown in FIG. 10D, the first reduction signal S1 stored in the second memory unit 292 is combined to generate the second reduction signal S2. The signal processing circuit 293 compresses the first reduced signal S1 to a quarter to generate the second reduced signal S2. The second reduced signal S2 is stored in the first memory unit 291 that does not store the first reduced signal S1.
 次に、転送回路260は、第2メモリ部292の第1縮小信号S1をフレームメモリ115へ転送する。これにより、第2メモリ部292は空き、他の信号を格納可能になる。尚、第1縮小信号S1の転送後、第2メモリ部292のデータは、消去すること無く、次の信号で上書きされてもよい。 Next, the transfer circuit 260 transfers the first reduction signal S1 of the second memory unit 292 to the frame memory 115. As a result, the second memory unit 292 is free and can store other signals. After the transfer of the first reduction signal S1, the data in the second memory unit 292 may be overwritten with the next signal without erasing.
 次に、図10Eに示すように、第2縮小信号S2を合成して、第3縮小信号S3を生成する。信号処理回路293は、第2縮小信号S2を4分の1に圧縮して第3縮小信号S3を生成する。第3縮小信号S3は、第1および第2縮小信号S1、S2を格納していない第2メモリ部292に格納される。 Next, as shown in FIG. 10E, the second reduced signal S2 is combined to generate the third reduced signal S3. The signal processing circuit 293 compresses the second reduced signal S2 to a quarter to generate the third reduced signal S3. The third reduced signal S3 is stored in the second memory unit 292 that does not store the first and second reduced signals S1 and S2.
 次に、転送回路260は、第1メモリ部291の第2縮小信号S2をフレームメモリ115へ転送する。これにより、第1メモリ部291は空き、他の信号を格納可能になる。尚、第2縮小信号S2の転送後、第1メモリ部291のデータは、消去すること無く、次の信号で上書きされてもよい。 Next, the transfer circuit 260 transfers the second reduction signal S2 of the first memory unit 291 to the frame memory 115. As a result, the first memory unit 291 is free and can store other signals. After the transfer of the second reduced signal S2, the data in the first memory unit 291 may be overwritten with the next signal without erasing.
 さらに、信号処理回路293は、同様に、第3縮小信号S3を4分の1に圧縮して、第4縮小信号(図示せず)を生成してもよい。このように、信号処理回路293は、元画像の圧縮処理を繰り返して縮小画像を生成する。つまり、信号処理回路293は、第n(n≧3)縮小信号を4分の1に圧縮して第n+1縮小信号を生成し、第1または第2メモリ部291、292は、第n+1縮小信号を格納する。 Further, the signal processing circuit 293 may similarly compress the third reduced signal S3 to a quarter to generate a fourth reduced signal (not shown). In this way, the signal processing circuit 293 repeats the compression processing of the original image to generate a reduced image. That is, the signal processing circuit 293 compresses the nth (n ≧ 3) reduced signal to a quarter to generate the n + 1 reduced signal, and the first or second memory units 291 and 292 are the n + 1 reduced signals. To store.
 第3実施形態のその他の構成および動作は、第1実施形態の対応する構成および動作と同様でよい。 Other configurations and operations of the third embodiment may be the same as the corresponding configurations and operations of the first embodiment.
 図11は、元画像および縮小画像の転送時間を示すグラフである。横軸は、時間tを示す。第3実施形態では、転送回路260は、圧縮動作および転送処理をほぼ同時並行して実行している。データ量の最も小さな第3縮小信号S3が転送された後、DSP回路120は、第3縮小信号S3から検出処理を開始している。 FIG. 11 is a graph showing the transfer time of the original image and the reduced image. The horizontal axis represents time t. In the third embodiment, the transfer circuit 260 executes the compression operation and the transfer process in parallel with each other. After the third reduced signal S3 having the smallest amount of data is transferred, the DSP circuit 120 starts the detection process from the third reduced signal S3.
 例えば、信号処理回路293が元画像の画素信号S0の圧縮動作を実行し、転送回路260が圧縮動作の終了した画素信号S0を並行してフレームメモリ115へ転送している。時間t_c1は、画素信号S0の圧縮時間であり、かつ、第1縮小信号S1の生成時間でもある。画素信号S0の転送処理は、画素信号S0の圧縮動作とほぼ同時並行に実行され得る。従って、画素信号S0の圧縮時間t_c1は、画素信号S0の転送時間t_t0とほぼ重複させることができる。 For example, the signal processing circuit 293 executes the compression operation of the pixel signal S0 of the original image, and the transfer circuit 260 transfers the pixel signal S0 for which the compression operation has been completed to the frame memory 115 in parallel. The time t_c1 is the compression time of the pixel signal S0 and also the generation time of the first reduction signal S1. The transfer process of the pixel signal S0 can be executed substantially simultaneously with the compression operation of the pixel signal S0. Therefore, the compression time t_c1 of the pixel signal S0 can be substantially overlapped with the transfer time t_t0 of the pixel signal S0.
 次に、信号処理回路293が第1縮小信号S1の圧縮動作を実行し、転送回路260が圧縮動作の終了した第1縮小信号S1を並行してフレームメモリ115へ転送している。時間t_c2は、第1縮小信号S1の圧縮時間であり、かつ、第2縮小信号S2の生成時間でもある。第1縮小信号S1の転送処理は、第1縮小信号S1の圧縮動作とほぼ同時並行に実行され得る。従って、第1縮小信号S1の圧縮時間t_c2は、第1縮小信号S1の転送時間t_t1とほぼ重複させることができる。 Next, the signal processing circuit 293 executes the compression operation of the first reduction signal S1, and the transfer circuit 260 transfers the first reduction signal S1 for which the compression operation has been completed to the frame memory 115 in parallel. The time t_c2 is the compression time of the first reduction signal S1 and also the generation time of the second reduction signal S2. The transfer process of the first reduced signal S1 can be executed substantially simultaneously with the compression operation of the first reduced signal S1. Therefore, the compression time t_c2 of the first reduced signal S1 can be substantially overlapped with the transfer time t_t1 of the first reduced signal S1.
 次に、信号処理回路293が第2縮小信号S2の圧縮動作を実行し、転送回路260が圧縮動作の終了した第2縮小信号S2を並行してフレームメモリ115へ転送している。時間t_c3は、第2縮小信号S2の圧縮時間であり、かつ、第3縮小信号S3の生成時間でもある。第2縮小信号S2の転送処理は、第2縮小信号S2の圧縮動作とほぼ同時並行に実行され得る。従って、第2縮小信号S2の圧縮時間t_c3は、第2縮小信号S2の転送時間t_t2とほぼ重複させることができる。 Next, the signal processing circuit 293 executes the compression operation of the second reduction signal S2, and the transfer circuit 260 transfers the second reduction signal S2, which has completed the compression operation, to the frame memory 115 in parallel. The time t_c3 is the compression time of the second reduced signal S2 and also the generation time of the third reduced signal S3. The transfer process of the second reduced signal S2 can be executed substantially simultaneously with the compression operation of the second reduced signal S2. Therefore, the compression time t_c3 of the second reduced signal S2 can be substantially overlapped with the transfer time t_t2 of the second reduced signal S2.
 次に、転送回路260が圧縮動作の終了した第3縮小信号S3をフレームメモリ115へ転送する。第3縮小信号S3の転送時間は、t_t3である。 Next, the transfer circuit 260 transfers the third reduced signal S3, which has completed the compression operation, to the frame memory 115. The transfer time of the third reduced signal S3 is t_t3.
 その後、DSP回路120が第3縮小信号S3を用いて検出処理を実行している。次に、DSP回路120が第2縮小信号S2を用いて検出処理を実行し、第1縮小信号S1を用いて検出処理を実行し、画素信号S0を用いて検出処理を実行している。 After that, the DSP circuit 120 executes the detection process using the third reduction signal S3. Next, the DSP circuit 120 executes the detection process using the second reduced signal S2, executes the detection process using the first reduced signal S1, and executes the detection process using the pixel signal S0.
 第3実施形態によれば、画像の圧縮処理をADC部280内部で実行している。従って、転送回路260は、圧縮動作を実行しながら、圧縮動作に使用済みの画素信号または圧縮信号をフレームメモリ115へ転送することができる。これにより、圧縮動作は、転送処理とほぼ同時並行して実行することができ、検出処理の開始タイミングが早くなる。その結果、固体撮像装置100は、縮小画像の生成および画像処理の時間を短縮することができる。 According to the third embodiment, the image compression process is executed inside the ADC unit 280. Therefore, the transfer circuit 260 can transfer the pixel signal or the compressed signal used in the compression operation to the frame memory 115 while executing the compression operation. As a result, the compression operation can be executed in parallel with the transfer process, and the start timing of the detection process is accelerated. As a result, the solid-state image sensor 100 can reduce the time required for generating a reduced image and processing an image.
 本技術に係る実施形態は、上記実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
(1)
 光電変換を行う複数の画素を含む画素アレイと、
 前記複数の画素のそれぞれに対応して設けられ、前記画素からの画素信号をデジタル変換する複数のAD変換部と、
 前記複数のAD変換部のそれぞれに対応して設けられ、前記AD変換部でデジタル変換された前記画素信号を格納する複数の第1メモリ部と、
 N個(Nは2以上の整数)の前記画素またはN個の前記AD変換部に対して1つずつ設けられた複数の第2メモリ部と、を備えた固体撮像装置。
(2)
 前記第1または第2メモリ部からの信号を演算処理する信号処理回路と、
 前記信号処理回路からの出力信号を受けて、該出力信号を前記第1または第2メモリ部のいずれかに転送する選択回路とをさらに備えた、(1)に記載の固体撮像装置。
(3)
 前記信号処理回路は、前記第1および前記第2メモリ部からの前記複数の画素信号から1つの第1縮小信号を生成し、
 前記選択回路は、前記第1縮小信号を前記第1または第2メモリ部のいずれかに格納する、(2)に記載の固体撮像装置。
(4)
 前記第2メモリ部は、2個の画素に対して1つ設けられている、(1)から(3)のいずれか一項に記載の固体撮像装置。
(5)
 前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
 前記複数の第2メモリ部のうち一部は、各第1縮小信号を格納する、(4)に記載の固体撮像装置。
(6)
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
 前記複数の第1メモリ部が複数の前記画素信号を保持したまま、前記第2メモリ部のうち他の前記第2メモリ部は、各第2縮小信号を格納する、(5)に記載の固体撮像装置。(7)
 前記複数の第1縮小信号または前記複数の第2縮小信号を前記第2メモリ部の外部へ転送した後に、前記画素信号が前記第1メモリ部の外部へ転送される、(6)に記載の固体撮像装置。
(8)
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
 前記複数の第1メモリ部が複数の前記画素信号を保持し、かつ、前記複数の第2メモリ部が前記第2縮小信号を保持したまま、さらに他の前記第2メモリ部は、各第3縮小信号を格納し、
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、
 さらに他の前記第2メモリ部は、各第n+1縮小信号を格納する、(6)または(7)に記載の固体撮像装置。
(9)
 前記第2メモリ部は、3個の画素に対して1つ設けられている、(1)から(3)のいずれか一項に記載の固体撮像装置。
(10)
 前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
 前記複数の第2メモリ部のうち一部は、各第1縮小信号を格納する、(9)に記載の固体撮像装置。
(11)
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
 前記複数の第1メモリ部が複数の前記画素信号を保持したまま、前記第2メモリ部のうち他の前記第2メモリ部は、各第2縮小信号を格納する、(10)に記載の固体撮像装置。
(12)
 前記複数の第1縮小信号または前記複数の第2縮小信号を前記第2メモリ部の外部へ転送した後に、前記画素信号が前記第1メモリ部の外部へ転送される、(11)に記載の固体撮像装置。
(13)
 前記信号処理回路は、前記複数の第1メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
 前記複数の第1メモリ部が複数の前記画素信号を保持し、かつ、前記複数の第2メモリ部が前記第2縮小信号を格納したまま、さらに他の前記第2メモリ部は、各第3縮小信号を格納し、
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、
 さらに他の前記第2メモリ部は、各第n+1縮小信号を格納する、(11)または(12)に記載の固体撮像装置。
(14)
 前記第2メモリ部は、4個の画素に対して1つ設けられている、(1)から(3)のいずれか一項に記載の固体撮像装置。
(15)
 前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
 前記複数の第2メモリ部は、各第1縮小信号を格納する、(14)に記載の固体撮像装置。
(16)
 前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
 前記第1メモリ部は、各第2縮小信号を格納する、(15)に記載の固体撮像装置。
(17)
 前記複数の第1メモリ部に格納された前記画素信号を前記第1メモリ部の外部へ転送した後に、前記複数の第1メモリ部は、各第2縮小信号を格納する、(16)に記載の固体撮像装置。
(18)
 前記信号処理回路は、前記複数の第1メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
 前記第1または第2メモリ部は、各第3縮小信号を格納し、
 前記信号処理回路は、前記複数の第1または第2メモリ部に格納された前記複数の第k(k≧3)縮小信号をさらに4分の1に圧縮して複数の第k+1縮小信号を生成し、
 前記第1または第2メモリ部は、各第k+1縮小信号を格納する、(16)または(17)に記載の固体撮像装置。
(19)
 光電変換を行う複数の画素を含む画素アレイと、前記複数の画素のそれぞれに対応して設けられた複数のAD変換部と、前記複数のAD変換部のそれぞれに対応して設けられた複数の第1メモリ部と、N個(Nは2以上の整数)の前記画素またはN個の前記AD変換部に対して1つずつ設けられた複数の第2メモリ部とを備えた固体撮像装置を用いた画像処理方法であって、
 前記画素からの画素信号をデジタル変換し、
 前記AD変換部でデジタル変換された前記画素信号を前記複数の第1メモリ部に格納し、
 前記複数の第1メモリ部からの前記複数の画素信号から1つの第1縮小信号を生成し、 複数の前記第1縮小信号を前記第1または第2メモリ部のいずれかに格納することを具備する画像処理方法。
(20)
 前記複数の第1縮小信号は、前記複数の画素信号を4分の1に圧縮して生成された信号である、(19)に記載の方法。
The embodiment according to the present technology is not limited to the above embodiment, and various changes can be made without departing from the gist of the present technology.
(1)
A pixel array containing multiple pixels that perform photoelectric conversion,
A plurality of AD conversion units provided corresponding to each of the plurality of pixels and digitally converting a pixel signal from the pixels.
A plurality of first memory units provided corresponding to each of the plurality of AD conversion units and storing the pixel signals digitally converted by the AD conversion unit, and a plurality of first memory units.
A solid-state image sensor including N (N is an integer of 2 or more) of the pixels or a plurality of second memory units provided for each of the N AD conversion units.
(2)
A signal processing circuit that arithmetically processes the signal from the first or second memory unit, and
The solid-state image sensor according to (1), further comprising a selection circuit that receives an output signal from the signal processing circuit and transfers the output signal to either the first or second memory unit.
(3)
The signal processing circuit generates one first reduced signal from the plurality of pixel signals from the first and second memory units.
The solid-state image sensor according to (2), wherein the selection circuit stores the first reduction signal in either the first or second memory unit.
(4)
The solid-state image sensor according to any one of (1) to (3), wherein one second memory unit is provided for two pixels.
(5)
The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
The solid-state image sensor according to (4), wherein a part of the plurality of second memory units stores each first reduction signal.
(6)
The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
The solid according to (5), wherein the other second memory unit of the second memory unit stores each second reduced signal while the plurality of first memory units hold the plurality of pixel signals. Image sensor. (7)
The pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit, according to (6). Solid-state image sensor.
(8)
The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of third reduced signals.
The plurality of first memory units hold a plurality of the pixel signals, the plurality of second memory units hold the second reduced signal, and the other second memory units are each a third. Stores the reduced signal,
The signal processing circuit further compresses the plurality of nth (n ≧ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
The solid-state image sensor according to (6) or (7), wherein the second memory unit stores each n + 1 reduction signal.
(9)
The solid-state image sensor according to any one of (1) to (3), wherein one second memory unit is provided for each of three pixels.
(10)
The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
The solid-state image sensor according to (9), wherein a part of the plurality of second memory units stores each first reduction signal.
(11)
The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
The solid according to (10), wherein the other second memory unit of the second memory unit stores each second reduced signal while the plurality of first memory units hold the plurality of pixel signals. Image sensor.
(12)
(11). The pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit. Solid-state image sensor.
(13)
The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
The plurality of first memory units hold the plurality of the pixel signals, the plurality of second memory units store the second reduction signal, and the other second memory units are each of the third. Stores the reduced signal,
The signal processing circuit further compresses the plurality of nth (n ≧ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
The solid-state image sensor according to (11) or (12), wherein the second memory unit stores each n + 1 reduction signal.
(14)
The solid-state image sensor according to any one of (1) to (3), wherein one second memory unit is provided for each of four pixels.
(15)
The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
The solid-state image sensor according to (14), wherein the plurality of second memory units store each first reduction signal.
(16)
The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
The solid-state image sensor according to (15), wherein the first memory unit stores each second reduction signal.
(17)
(16), wherein after transferring the pixel signal stored in the plurality of first memory units to the outside of the first memory unit, the plurality of first memory units store each second reduced signal. Solid-state image sensor.
(18)
The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
The first or second memory unit stores each third reduction signal and stores the third reduction signal.
The signal processing circuit further compresses the plurality of k (k ≧ 3) reduced signals stored in the plurality of first or second memory units to a quarter to generate a plurality of k + 1 reduced signals. death,
The solid-state image sensor according to (16) or (17), wherein the first or second memory unit stores each k + 1 reduction signal.
(19)
A pixel array including a plurality of pixels for photoelectric conversion, a plurality of AD conversion units provided corresponding to each of the plurality of pixels, and a plurality of AD conversion units provided corresponding to each of the plurality of AD conversion units. A solid-state image sensor including a first memory unit and a plurality of second memory units provided for each of the N pixels (N is an integer of 2 or more) or the N AD conversion units. The image processing method used,
The pixel signal from the pixel is digitally converted and
The pixel signal digitally converted by the AD conversion unit is stored in the plurality of first memory units.
One first reduction signal is generated from the plurality of pixel signals from the plurality of first memory units, and the plurality of first reduction signals are stored in either the first or second memory unit. Image processing method to be performed.
(20)
The method according to (19), wherein the plurality of first reduction signals are signals generated by compressing the plurality of pixel signals to a quarter.
 尚、本開示は、上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Note that the present disclosure is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present disclosure. Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
100 固体撮像装置、240 画素アレイ部、260 転送回路、115 フレームメモリ、120 DSP回路、250 画素回路、280 ADC部、290 ADC回路、291 第1メモリ部、292 第2メモリ部、293 信号処理回路、294 デマルチプレクサ、295 比較回路、296 セレクタ 100 solid-state imaging device, 240 pixel array unit, 260 transfer circuit, 115 frame memory, 120 DSP circuit, 250 pixel circuit, 280 ADC unit, 290 ADC circuit, 291 first memory unit, 292 second memory unit, 293 signal processing circuit. 294 demultiplexer, 295 comparison circuit, 296 selector

Claims (20)

  1.  光電変換を行う複数の画素を含む画素アレイと、
     前記複数の画素のそれぞれに対応して設けられ、前記画素からの画素信号をデジタル変換する複数のAD(Analogue-to-Digital)変換部と、
     前記複数のAD変換部のそれぞれに対応して設けられ、前記AD変換部でデジタル変換された前記画素信号を格納する複数の第1メモリ部と、
     N個(Nは2以上の整数)の前記画素またはN個の前記AD変換部に対して1つずつ設けられた複数の第2メモリ部と、を備えた固体撮像装置。
    A pixel array containing multiple pixels that perform photoelectric conversion,
    A plurality of AD (Analogue-to-Digital) converters provided corresponding to each of the plurality of pixels and digitally converting a pixel signal from the pixels.
    A plurality of first memory units provided corresponding to each of the plurality of AD conversion units and storing the pixel signals digitally converted by the AD conversion unit, and a plurality of first memory units.
    A solid-state image sensor including N (N is an integer of 2 or more) of the pixels or a plurality of second memory units provided for each of the N AD conversion units.
  2.  前記第1または第2メモリ部からの信号を演算処理する信号処理回路と、
     前記信号処理回路からの出力信号を受けて、該出力信号を前記第1または第2メモリ部のいずれかに転送する選択回路とをさらに備えた、請求項1に記載の固体撮像装置。
    A signal processing circuit that arithmetically processes the signal from the first or second memory unit, and
    The solid-state imaging device according to claim 1, further comprising a selection circuit that receives an output signal from the signal processing circuit and transfers the output signal to either the first or second memory unit.
  3.  前記信号処理回路は、前記第1および前記第2メモリ部からの前記複数の画素信号から1つの第1縮小信号を生成し、
     前記選択回路は、前記第1縮小信号を前記第1または第2メモリ部のいずれかに格納する、請求項2に記載の固体撮像装置。
    The signal processing circuit generates one first reduced signal from the plurality of pixel signals from the first and second memory units.
    The solid-state image sensor according to claim 2, wherein the selection circuit stores the first reduction signal in either the first or second memory unit.
  4.  前記第2メモリ部は、2個の画素に対して1つ設けられている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein one second memory unit is provided for two pixels.
  5.  前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
     前記複数の第2メモリ部のうち一部は、各第1縮小信号を格納する、請求項4に記載の固体撮像装置。
    The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
    The solid-state image sensor according to claim 4, wherein a part of the plurality of second memory units stores each first reduction signal.
  6.  前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
     前記複数の第1メモリ部が複数の前記画素信号を保持したまま、前記第2メモリ部のうち他の前記第2メモリ部は、各第2縮小信号を格納する、請求項5に記載の固体撮像装置。
    The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
    The solid according to claim 5, wherein the other second memory unit of the second memory unit stores each second reduced signal while the plurality of first memory units hold the plurality of pixel signals. Image sensor.
  7.  前記複数の第1縮小信号または前記複数の第2縮小信号を前記第2メモリ部の外部へ転送した後に、前記画素信号が前記第1メモリ部の外部へ転送される、請求項6に記載の固体撮像装置。 The sixth aspect of claim 6, wherein the pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit. Solid-state image sensor.
  8.  前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
     前記複数の第1メモリ部が複数の前記画素信号を保持し、かつ、前記複数の第2メモリ部が前記第2縮小信号を保持したまま、さらに他の前記第2メモリ部は、各第3縮小信号を格納し、
     前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、
     さらに他の前記第2メモリ部は、各第n+1縮小信号を格納する、請求項6に記載の固体撮像装置。
    The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of third reduced signals.
    The plurality of first memory units hold a plurality of the pixel signals, the plurality of second memory units hold the second reduced signal, and the other second memory units are each a third. Stores the reduced signal,
    The signal processing circuit further compresses the plurality of nth (n ≧ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
    The solid-state image sensor according to claim 6, wherein the second memory unit stores each n + 1 reduction signal.
  9.  前記第2メモリ部は、3個の画素に対して1つ設けられている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein one second memory unit is provided for each of three pixels.
  10.  前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
     前記複数の第2メモリ部のうち一部は、各第1縮小信号を格納する、請求項9に記載の固体撮像装置。
    The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
    The solid-state image sensor according to claim 9, wherein a part of the plurality of second memory units stores each first reduction signal.
  11.  前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
     前記複数の第1メモリ部が複数の前記画素信号を保持したまま、前記第2メモリ部のうち他の前記第2メモリ部は、各第2縮小信号を格納する、請求項10に記載の固体撮像装置。
    The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
    The solid according to claim 10, wherein the other second memory unit of the second memory unit stores each second reduced signal while the plurality of first memory units hold the plurality of pixel signals. Image sensor.
  12.  前記複数の第1縮小信号または前記複数の第2縮小信号を前記第2メモリ部の外部へ転送した後に、前記画素信号が前記第1メモリ部の外部へ転送される、請求項11に記載の固体撮像装置。 The eleventh aspect of claim 11, wherein the pixel signal is transferred to the outside of the first memory unit after the plurality of first reduced signals or the plurality of second reduced signals are transferred to the outside of the second memory unit. Solid-state image sensor.
  13.  前記信号処理回路は、前記複数の第1メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
     前記複数の第1メモリ部が複数の前記画素信号を保持し、かつ、前記複数の第2メモリ部が前記第2縮小信号を格納したまま、さらに他の前記第2メモリ部は、各第3縮小信号を格納し、
     前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、
     さらに他の前記第2メモリ部は、各第n+1縮小信号を格納する、請求項11に記載の固体撮像装置。
    The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
    The plurality of first memory units hold the plurality of the pixel signals, the plurality of second memory units store the second reduction signal, and the other second memory units are each of the third. Stores the reduced signal,
    The signal processing circuit further compresses the plurality of nth (n ≧ 3) reduction signals stored in the plurality of second memory units to a quarter to generate a plurality of n + 1 reduction signals.
    The solid-state image sensor according to claim 11, wherein the second memory unit stores each n + 1 reduction signal.
  14.  前記第2メモリ部は、4個の画素に対して1つ設けられている、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein one second memory unit is provided for each of four pixels.
  15.  前記信号処理回路は、前記複数の第1メモリ部に格納された複数の前記画素信号を4分の1に圧縮して複数の前記第1縮小信号を生成し、
     前記複数の第2メモリ部は、各第1縮小信号を格納する、請求項14に記載の固体撮像装置。
    The signal processing circuit compresses a plurality of the pixel signals stored in the plurality of first memory units to a quarter to generate a plurality of the first reduced signals.
    The solid-state image sensor according to claim 14, wherein the plurality of second memory units store each first reduction signal.
  16.  前記信号処理回路は、前記複数の第2メモリ部に格納された前記複数の第1縮小信号を4分の1に圧縮して複数の第2縮小信号を生成し、
     前記第1メモリ部は、各第2縮小信号を格納する、請求項15に記載の固体撮像装置。
    The signal processing circuit compresses the plurality of first reduced signals stored in the plurality of second memory units to a quarter to generate a plurality of second reduced signals.
    The solid-state image sensor according to claim 15, wherein the first memory unit stores each second reduction signal.
  17.  前記複数の第1メモリ部に格納された前記画素信号を前記第1メモリ部の外部へ転送した後に、前記複数の第1メモリ部は、各第2縮小信号を格納する、請求項16に記載の固体撮像装置。 16. The 16. Solid-state image sensor.
  18.  前記信号処理回路は、前記複数の第1メモリ部に格納された前記複数の第2縮小信号をさらに4分の1に圧縮して複数の第3縮小信号を生成し、
     前記第1または第2メモリ部は、各第3縮小信号を格納し、
     前記信号処理回路は、前記複数の第1または第2メモリ部に格納された前記複数の第n(n≧3)縮小信号をさらに4分の1に圧縮して複数の第n+1縮小信号を生成し、
     前記第1または第2メモリ部は、各第n+1縮小信号を格納する、請求項16に記載の固体撮像装置。
    The signal processing circuit further compresses the plurality of second reduced signals stored in the plurality of first memory units to a quarter to generate a plurality of third reduced signals.
    The first or second memory unit stores each third reduction signal and stores the third reduction signal.
    The signal processing circuit further compresses the plurality of nth (n ≧ 3) reduced signals stored in the plurality of first or second memory units to a quarter to generate a plurality of n + 1 reduced signals. death,
    The solid-state image sensor according to claim 16, wherein the first or second memory unit stores each n + 1 reduction signal.
  19.  光電変換を行う複数の画素を含む画素アレイと、前記複数の画素のそれぞれに対応して設けられた複数のAD変換部と、前記複数のAD変換部のそれぞれに対応して設けられた複数の第1メモリ部と、N個(Nは2以上の整数)の前記画素またはN個の前記AD変換部に対して1つずつ設けられた複数の第2メモリ部とを備えた固体撮像装置を用いた画像処理方法であって、
     前記画素からの画素信号をデジタル変換し、
     前記AD変換部でデジタル変換された前記画素信号を前記複数の第1メモリ部に格納し、
     前記複数の第1メモリ部からの前記複数の画素信号から1つの第1縮小信号を生成し、 複数の前記第1縮小信号を前記第1または第2メモリ部のいずれかに格納することを具備する画像処理方法。
    A pixel array including a plurality of pixels for photoelectric conversion, a plurality of AD conversion units provided corresponding to each of the plurality of pixels, and a plurality of AD conversion units provided corresponding to each of the plurality of AD conversion units. A solid-state image sensor including a first memory unit and a plurality of second memory units provided for each of the N pixels (N is an integer of 2 or more) or the N AD conversion units. The image processing method used,
    The pixel signal from the pixel is digitally converted and
    The pixel signal digitally converted by the AD conversion unit is stored in the plurality of first memory units.
    One first reduction signal is generated from the plurality of pixel signals from the plurality of first memory units, and the plurality of first reduction signals are stored in either the first or second memory unit. Image processing method to be performed.
  20.  前記複数の第1縮小信号は、前記複数の画素信号を4分の1に圧縮して生成された信号である、請求項19に記載の方法。 The method according to claim 19, wherein the plurality of first reduction signals are signals generated by compressing the plurality of pixel signals to a quarter.
PCT/JP2021/009895 2020-03-26 2021-03-11 Solid-state imaging device and image processing method WO2021193121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509917A JPWO2021193121A1 (en) 2020-03-26 2021-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056322 2020-03-26
JP2020056322 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193121A1 true WO2021193121A1 (en) 2021-09-30

Family

ID=77891792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009895 WO2021193121A1 (en) 2020-03-26 2021-03-11 Solid-state imaging device and image processing method

Country Status (2)

Country Link
JP (1) JPWO2021193121A1 (en)
WO (1) WO2021193121A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168665A1 (en) * 2016-03-30 2017-10-05 株式会社ニコン Feature extraction element, feature extraction system, and determination apparatus
JP2018148528A (en) * 2017-03-09 2018-09-20 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor and electronic apparatus
WO2020045122A1 (en) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for driving same, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168665A1 (en) * 2016-03-30 2017-10-05 株式会社ニコン Feature extraction element, feature extraction system, and determination apparatus
JP2018148528A (en) * 2017-03-09 2018-09-20 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor and electronic apparatus
WO2020045122A1 (en) * 2018-08-31 2020-03-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for driving same, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2021193121A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7111141B2 (en) Imaging element and imaging device
JP6593469B2 (en) Imaging device, imaging device, and electronic apparatus
US9374541B2 (en) Imaging device and camera system including sense circuits to make binary decision
US20200244915A1 (en) Imaging sensor and imaging device with column adc
US10567685B2 (en) Signal processing device and method, imaging element, and electronic device
US8586903B2 (en) Counter circuits, analog to digital converters, image sensors and digital imaging systems including the same
CN1902903A (en) Pixel signal binning and interpolation in column circuits of a sensor circuit
US9282269B2 (en) A/D conversion device, solid-state image-capturing device, and electronic device
USRE42117E1 (en) Apparatus for operating a CMOS imager having a pipelined analog to digital converter
US20100259662A1 (en) Solid-state imaging device and camera system
JP2004015701A (en) Solid imaging apparatus and method for controlling the same
JP2011151800A (en) Cmos image sensor and electronic system including the image sensor
TWI616099B (en) Method and system of implementing an uneven timing gap between each image capture in an image sensor
KR20140007909A (en) A/d converter, solid-state imaging device and drive method, as well as electronic apparatis
JP2001250113A (en) Signal processing device and image signal processing system
CN109922284B (en) Image sensing system and operation method thereof
WO2021193121A1 (en) Solid-state imaging device and image processing method
TW522723B (en) Circuit and method for pixel rearrangement in a digital pixel sensor readout
JP6388662B2 (en) Solid-state imaging device
US9706143B2 (en) Readout circuit and method of using the same
TWI709339B (en) Dram with simultaneous read & write for multiwafer image sensors and method of the same
CN117278876A (en) Image sensor based on stack type process
JP7176917B2 (en) Solid-state imaging device and imaging device
EP3324545B1 (en) Image sensor and method for readout of an image sensor
JP2012227892A (en) Image signal processing device, solid state imaging device, and image signal processing method of solid state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774086

Country of ref document: EP

Kind code of ref document: A1