WO2021193108A1 - Bio-bead particles, and method for producing same - Google Patents

Bio-bead particles, and method for producing same Download PDF

Info

Publication number
WO2021193108A1
WO2021193108A1 PCT/JP2021/009814 JP2021009814W WO2021193108A1 WO 2021193108 A1 WO2021193108 A1 WO 2021193108A1 JP 2021009814 W JP2021009814 W JP 2021009814W WO 2021193108 A1 WO2021193108 A1 WO 2021193108A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polymer
containing polymer
amino group
group
Prior art date
Application number
PCT/JP2021/009814
Other languages
French (fr)
Japanese (ja)
Inventor
竹林 恭志
亮 森下
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2021193108A1 publication Critical patent/WO2021193108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin

Definitions

  • the present invention uses particles for biobeads for immobilizing bio-related substances such as proteins, nucleic acids, peptide derivatives, sugar chains and their derivatives, natural products, and small molecule compounds as probes, a method for producing the same, and the like. Regarding biobeads.
  • Patent Document 1 discloses a biochip in which a reactive active group such as an amino group, an aldehyde group, an epoxy group, or a carboxylic acid group is added to the surface of a substrate made of glass, ceramics, or the like. Then, the DNA fragment having a reactive active group is spotted on the substrate surface to form a covalent bond between the reactive active group on the substrate surface and the reactive active group of the DNA fragment, thereby fixing the DNA fragment on the substrate surface. doing.
  • a reactive active group such as an amino group, an aldehyde group, an epoxy group, or a carboxylic acid group
  • the entire substrate is usually used for operations such as immersion and cleaning. Therefore, for example, even when it is desired to examine a single combination of a certain detection object and a probe by changing various conditions such as reaction and washing, a biochip having the probe immobilized therein. It was necessary to use the entire sheet, which led to an increase in cost.
  • Patent Document 2 discloses biobeads for DNA immobilization made of amorphous carbon, and as a method for immobilizing DNA, a reactive group is introduced on the surface of a substrate and a functional group modified at the DNA terminal is used. A method of binding DNA by a chemical reaction is disclosed.
  • Patent Document 2 the only immobilization method specifically disclosed in Patent Document 2 is a method of immobilizing DNA as a reactive group via an amide bond. Further, Patent Document 2 only discloses that the beads have good durability and fluidity.
  • An object of the present invention is to provide particles for biobeads, which can independently detect an object to be detected via a probe and increase the amount of immobilized probe.
  • the inventors of the present application bond a polymer containing a specific reactive group to a polymer containing a reactive group by covalently immobilizing a polymer containing a specific reactive group on the surface of particles whose surface is at least carbon.
  • the present invention has been completed by finding that it is possible to independently detect an object to be detected via the probe and to provide particles for biobeads in which the amount of immobilized probe is increased.
  • At least one polymer selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer is shared on the surface of particles whose surface is made of carbon at least.
  • biobead particles immobilized by binding are provided.
  • the present invention also provides biobeads in which a bio-related substance is bound to the amino group of the biobead particles of the present invention by a covalent bond or a non-covalent bond.
  • the present invention comprises applying the amino group-containing polymer to the surface of the particles and then irradiating the surface of the particles with light in a reduced pressure atmosphere or an inert gas atmosphere.
  • the present invention provides the method for producing the particles for biobeads of the present invention, which comprises irradiating the surface of the particles with plasma or light, and then applying the amino group-containing polymer to the particles. Furthermore, the present invention provides the use of the particles of the present invention as particles of biobeads.
  • Particles for beads can be provided.
  • FIG. It is a figure which shows the fluorescence image of the biobead particle 1 produced in Example 1.
  • FIG. It is a figure which shows the SEM image of the biobead particle 1 produced in Example 1.
  • FIG. It is a figure which shows the result of having performed the mapping of the nitrogen atom by EPMA about the biobead particle 1 produced in Example 1.
  • FIG. It is a figure which shows the SEM image of the biobead particle 2 produced in Example 2.
  • the biobead particles of the present embodiment (hereinafter, may be simply abbreviated as "particles”) have an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an aldehyde group-containing polymer on the surface of particles whose surface is at least carbon. It is characterized in that at least one polymer selected from the group consisting of epoxy group-containing polymers is immobilized by covalent bonds.
  • an amino group, a carboxyl group, an aldehyde group, and an epoxy group may be collectively referred to as a "reactive group”.
  • the amino group-containing polymer containing these reactive groups, the carboxyl group-containing polymer, the aldehyde group-containing polymer, and the epoxy group-containing polymer may be collectively referred to as a “polymer”.
  • ⁇ Particles> particles having at least a carbon surface are used. Since the surface is made of carbon, radicals are likely to be generated by light irradiation or plasma irradiation described later, and the polymer is easily covalently bonded.
  • the carbon amorphous carbon and diamond-like carbon are preferable. Among them, amorphous carbon is particularly preferable in that the amount of polymer immobilization increases as the number of fixed points increases, and the detection sensitivity and the amount of adsorption are improved.
  • the material of the particle body is not limited at all.
  • the entire particle can be made of carbon such as amorphous carbon, or a carbon layer such as amorphous carbon can be formed on the particle body.
  • the particle body can be formed of, for example, any one of carbon, metal, glass, ceramics, and plastic, or a composite thereof, and when the particle body is other than carbon, a carbon layer is formed on the surface thereof. After the treatment for providing, the polymer described later can be immobilized. Of these, it is preferable to form the entire particle with carbon, particularly amorphous carbon, because it has no chemical resistance, heat resistance, and self-emission.
  • thermosetting resin examples include urea resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, epoxy resin, melamine resin, urethane resin, phenol resin, furan resin, ketone resin, and xylene resin.
  • examples thereof include polyimide resins, polycarbodiimide resins, styrylpyridine resins, and triazine resins.
  • epoxy resin polyimide resin
  • phenol resin is particularly preferable.
  • LPS registered trademark
  • series / spherical phenol resin manufactured by Lignite, Marilyn series / true spherical phenol resin manufactured by Gunei Chemical Co., Ltd. which are commercially available as phenol resin particles, can be used.
  • metal when metal is used as the particle body, aluminum, stainless steel, steel, copper, etc. can be used as the particle material.
  • Aluminum can be used as a particle material after being subjected to a surface treatment such as nickel-phosphorus plating in order to improve corrosion resistance and surface hardness, and after the carbon layer is further provided on the surface.
  • carbon or diamond-like carbon can be formed on the surface of the particle body made of metal by a treatment method such as sputtering, CVD, PVD, etc.
  • a layer can be provided to form a particle material.
  • the lower limit of the average particle size of the particles is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more. Further, if the average particle size of the particles is too large, for example, when the particles are dispersed in a solution in which the pro-part molecule is dissolved for fixing the probe, the particles are likely to settle, and the association between the probe molecule and the particle is reduced, so that the probe is used. The fixed amount decreases.
  • the upper limit of the average particle size of the particles is usually 500 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • At least one polymer selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer is shared on the surface of particles whose surface is made of carbon at least. It is fixed by binding.
  • These polymers are compounds formed by polymerizing a plurality of monomers containing reactive groups. That is, the polymer has a large number of reactive groups derived from the monomer.
  • Bonding of the polymer to the particles is confirmed by binding the reactive groups of the polymer and the fluorescent molecules having the reactivity to the particles and observing the fluorescent image of the particles for biobeads using a fluorescent scanner to see if there is a fluorescent signal. be able to.
  • it can be confirmed from the increase in the fluorescence intensity by measuring the fluorescence intensity of the carbon beads to which the polymer is not fixed using a fluorescence scanner and the fluorescence intensity of the particles for biobeads.
  • the binding of the polymer to the particles can be confirmed from the change in the surface texture of the particles by observing the SEM image of the particles for biobeads using an SEM (Scanning Electron Microscope).
  • EPMA Electro Probe Micro Analyzer
  • EPMA Electro Probe Micro Analyzer
  • a nitrogen atom is used in the case of the amino group-containing polymer.
  • an oxygen atom is used in the case of an aldehyde group-containing polymer.
  • an epoxy group-containing polymer an oxygen atom is used.
  • the above-mentioned method for confirming the bond of the polymer to the particles can confirm the bond of the polymer to the particles by using one method, but it is possible to confirm by combining a plurality of methods of 2 or more or 3 or more. Preferred for increased certainty.
  • the amino group-containing polymer is not particularly limited as long as it is a polymer containing an amino group.
  • the "amino group” means a primary amino group, that is, -NH 2 .
  • the amino group-containing polymer is preferably 50% or more, more preferably 90% or more, still more preferably 99% or more of the constituent units constituting the amino group-containing polymer before being immobilized on the particle surface.
  • each has at least one amino group. Since such an amino group-containing polymer has a large number of amino groups in one molecule, the amino groups are uniformly and densely bonded on the particle surface.
  • the amino group-containing polymer is preferably formed by addition polymerization of a vinyl-based monomer having an amino group, and polyallylamine (PAA) is particularly preferable.
  • PAA polyallylamine
  • the amino group-containing polymer does not come off even after washing in pure water with shaking for 1 hour.
  • the amino group can be quantified by a method of quantifying the free bromide ion by bromoacetylation treatment of the amino group and then treatment with mercaptoethanol. It is also possible to directly confirm the presence or absence of covalent bonds by X-ray photoelectron spectroscopy (XPS).
  • the lower limit of the average molecular weight (weight average molecular weight) of the amino group-containing polymer is usually 1000 or more, preferably 1500 or more, preferably 2000 or more, in terms of polyallylamine (PAA), from the viewpoint of better achieving the effects of the present invention. More preferably, 2500 or more is further preferable.
  • PAA conversion means conversion based on the number of amino groups in one molecule (the same applies hereinafter).
  • the upper limit of the average molecular weight (weight average molecular weight) of the amino group-containing polymer is not particularly limited as long as there is no problem in handleability such as solubility and stability of the coating solution, and is usually 60,000 or less. It is preferably 10000 or less, more preferably 8000 or less, further preferably 6000 or less, and particularly preferably 5000 or less.
  • the carboxyl group-containing polymer is not particularly limited as long as it is a polymer containing a carboxyl group.
  • an acrylic polymer is preferable, and among them, polyacrylic acid, polymethacrylic acid, or a copolymer containing acrylic acid or methacrylic acid is more preferable, and polyacrylic acid is particularly preferable.
  • the copolymerization component other than acrylic acid or methacrylic acid is not particularly limited, and for example, poly (acrylic acid-co-styrene), poly (acrylic acid-co-). Methacrylic acid) and poly (acrylic acid-co-ethylene) can be mentioned.
  • the copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer.
  • the content of the acrylic acid or methacrylic acid component in the copolymer is usually about 20 to 99%, preferably about 50 to 99% on a molar basis.
  • the lower limit of the average molecular weight (weight average molecular weight) of the carboxyl group-containing polymer is not particularly limited, but is usually 1000 or more, preferably 2000 or more, and more preferably 2000 or more from the viewpoint of better achieving the effects of the present invention. It is 2500 or more, more preferably 3000 or more, and particularly preferably 3500 or more.
  • the upper limit of the average molecular weight (weight average molecular weight) of the carboxyl group-containing polymer is not particularly limited as long as there is no problem in handleability such as solubility and stability of the coating solution, and is usually 60,000 or less. It is preferably 10000 or less, more preferably 8000 or less, and further preferably 6000 or less.
  • ⁇ Polymer immobilization method> In order to covalently bond the carbon on the particle surface and the polymer, the first method of applying the polymer to the particle surface and then covalently bonding the carbon surface and the polymer by generating radicals by light irradiation, and the carbon on the particle surface. There is a second method in which radicals are generated by subjecting them to plasma treatment or light irradiation, and a polymer is applied to the radicals to cause them to react and bond them.
  • the first method is a method in which a polymer solution is applied to the particle surface and then the carbon on the particle surface and the polymer are covalently bonded by radicals generated by light irradiation.
  • a general method can be used for coating on the particle surface, and the method is not particularly limited as long as the method can control the coating amount of the polymer.
  • it can be carried out by selecting from a spray coating method in which the polymer solution is sprayed onto the particles, a dipping method in which the particles are immersed in the polymer solution, and the like. Among them, particles having a high polymer immobilization rate and a uniform immobilization density can be obtained.
  • the dipping method is preferable.
  • the polymer solution is applied by immersing the particles in the polymer solution under stirring, holding the particles under stirring for a predetermined time, and then vacuum-drying the particles obtained by solid-liquid separation.
  • the polymer coating amount is an amount that achieves the desired polymer immobilization amount.
  • the concentration of the polymer solution may be any concentration that can achieve the required polymer coating amount and can be uniformly applied, and is preferably about 0.5 to 3% by mass. Such a coating operation may be performed a plurality of times before the next light irradiation.
  • ultraviolet rays having a wavelength of about 150 nm to 260 nm, for example, a wavelength of 185 nm or 254 nm can be used.
  • Light of this wavelength breaks the CC, CO, and CH bonds to generate radicals.
  • oxygen molecules and water molecules in the air are also decomposed to generate oxygen radicals and ozone, and oxidative decomposition of the particle material carbon and the polymer also occurs at the same time, which causes inhibition of covalent bond formation.
  • the depressurization is carried out at a degree of vacuum of ⁇ 0.05 MPa or less, more preferably ⁇ 0.08 MPa or less, based on atmospheric pressure (0 MPa).
  • a noble gas element such as argon or helium that is hard to be radicalized even when irradiated with light is used.
  • the amount of light irradiation may be any amount necessary for covalent bonding of the polymer, and the amount of energy is usually about 1 to 6 joules, preferably about 2 to 4 joules per 1 cm 2 of the particle surface. For example, 18.5 mW of ultraviolet light per 1 cm 2 of particle surface is usually irradiated for 1 to 5 minutes, preferably 2 to 4 minutes.
  • the first method it is possible to immobilize the polymer on the particle surface only by performing the operation of applying the polymer and the operation of irradiating the light once, respectively, but the operation of applying the polymer and the operation of irradiating the light are performed. It is preferable to perform the operation a plurality of times, for example, 2 to 4 times. At this time, when performing the operation of performing the light irradiation a plurality of times, it is preferable to perform the operation of changing the direction of the light irradiated to the particles during each light irradiation operation. Such an operation can be performed, for example, by stirring or shaking the container containing the particles.
  • the irradiated surface By performing such a plurality of coatings and light irradiation, it is possible to make the irradiated surface to be irradiated with light not only one surface but also a plurality of surfaces (preferably the whole) on the surface of the particles, and the polymer is immobilized.
  • the amount can be increased. Further, it is not necessary to increase the concentration of the polymer solution used in one coating operation in order to increase the amount of polymer immobilization, and a low concentration polymer solution can be used.
  • the polymer can be evenly immobilized on a plurality of surfaces of the particles, preferably the entire surface of the particles, even if the total amount of immobilization is the same. ..
  • the polymer and the bio-related substance are less likely to be peeled off from the particles, and when used as biobeads, the substance to be detected is bound to the beads to facilitate detection, and the detection sensitivity is improved.
  • the second method is a method in which the surface of the particles is irradiated with plasma or light to generate radicals, and the particles are immediately coated with a polymer solution to react the radicals generated on the surface of the particles with the polymer.
  • the wavelength of the light to be irradiated by the light irradiation in the second method can be the same as that in the light irradiation in the first method.
  • plasma irradiation or light irradiation may be performed a plurality of times.
  • Plasma irradiation can be carried out under reduced pressure or atmospheric pressure, but it can also be carried out as reactive plasma by appropriately introducing argon gas, carbon dioxide gas, ammonia gas, water vapor or the like.
  • the plasma irradiation amount is high frequency output 1 to 100 W, reaction gas flow rate 5 to 20 cm 3 / min, irradiation time 10 to 120 seconds, more preferably 1 to 10 W, reaction gas flow rate 5 to 15 cm 3 / min, irradiation time 20. ⁇ 90 seconds.
  • the amount of light irradiation may be any amount necessary for covalent bonding of the polymer, and the amount of energy is usually about 3 to 35 joules, preferably about 5 to 16 joules per 1 cm 2 of the particle surface. For example, 18.5 mW of ultraviolet rays per 1 cm 2 of particle surface is usually irradiated for 3 to 30 minutes, preferably 5 to 15 minutes. Light irradiation can be performed under atmospheric pressure.
  • the same operations and conditions as the application operation in the first method can be used.
  • it can be carried out by selecting from a spray coating, a dipping method and the like, and among them, the dipping method is preferable in that particles having a high polymer immobilization rate and a uniform immobilization density can be obtained.
  • the polymer solution is applied by immersing the particles in the polymer solution under stirring, holding the particles under stirring for a predetermined time, and then vacuum-drying the particles obtained by solid-liquid separation. be able to.
  • the polymer coating amount is an amount that achieves the desired polymer immobilization amount.
  • the concentration of the polymer solution may be any concentration that can achieve the required polymer coating amount and can be uniformly applied, and is preferably about 0.5 to 3% by mass. Such a coating operation may be performed a plurality of times. Further, when the polymer is immobilized only by the second method, it is necessary to promptly apply the polymer solution to the particles before the generated radicals disappear.
  • either the first method or the second method described above may be performed, but the first method is performed after the second method is performed by combining these.
  • the particle surface may be irradiated with plasma or light, then the polymer solution may be applied to the particles, and then light irradiation may be performed. In this case, even if the radicals generated by the second method are reduced or eliminated, there is no problem because further light irradiation is performed after the application of the polymer solution.
  • the operation of applying the polymer to the particles and the operation of subsequently irradiating the light are performed only once.
  • Such an operation can be performed, for example, by stirring or shaking the container containing the particles.
  • the surface to be irradiated with light can be not only one surface but also a plurality of surfaces (preferably the whole) on the surface of the particles, and the amount of polymer immobilization can be increased. Can be made to. Further, it is not necessary to increase the concentration of the polymer solution used in one coating operation in order to increase the amount of polymer immobilization, and a low concentration polymer solution can be used.
  • the polymer can be evenly immobilized on a plurality of surfaces of the particles, preferably the entire surface of the particles, even if the total amount of immobilization is the same. ..
  • the polymer and the bio-related substance are less likely to be peeled off from the particles, and when used as biobeads, the substance to be detected is bound to the beads to facilitate detection, and the detection sensitivity is improved.
  • Surface modification can be performed by subjecting the particles to light irradiation or plasma treatment.
  • Surface modification produces polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups from the carbon surface of the particles. This polar group improves the affinity for polymer solutions with protic solvents. That is, by modifying the surface of the particles before immobilization, the parent coating liquid property of the particles can be improved. This makes it possible to increase the amount of polymer immobilized on the particles.
  • ultraviolet rays having a wavelength of about 150 nm to 260 nm, for example, a wavelength of 185 nm or 254 nm can be used. Light of this wavelength breaks the CC, CO, and CH bonds and reacts with oxygen and water to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups. Light irradiation is preferably carried out in the atmosphere.
  • the amount of light irradiation may be any amount necessary to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups, and the amount of energy is usually about 1 to 6 joules, preferably about 1 cm 2 per 1 cm 2 of the particle surface. It is about 2 to 4 joules. For example, 18.5 mW of ultraviolet light per 1 cm 2 of particle surface is usually irradiated for 1 to 5 minutes, preferably 2 to 4 minutes.
  • Plasma irradiation is preferably carried out in the atmosphere.
  • the amount of plasma irradiation may be any amount necessary to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups, and has a high frequency output of 1 to 100 W, a reaction gas flow rate of 5 to 20 cm, 3 / min, and an irradiation time of 10 to. It is 120 seconds, more preferably 1 to 10 W, a reaction gas flow rate of 5 to 15 cm 3 / min, and an irradiation time of 20 to 90 seconds.
  • the biobead particles of the present embodiment obtained as described above have a reactive group such as an amino group, a carboxyl group, an aldehyde group, and an epoxy group on the surface of the particles.
  • a reactive group such as an amino group, a carboxyl group, an aldehyde group, and an epoxy group on the surface of the particles.
  • biobeads can be constructed by binding a bio-related substance to particles.
  • the bio-related substance may be any substance conventionally used as a probe for a detection system, and any polypeptide (including natural or synthetic proteins and oligopeptides), nucleic acid (DNA and RNA, and artificial). Nucleic acids are included), sugars, lipids, complexes thereof (glycoproteins, etc.) and derivatives (modified proteins, nucleic acids, etc.).
  • the probe refers to a substance that binds to a specific substance to be detected.
  • the biobead particles can detect a substance that acts on the bio-related substance by using a bio-related substance immobilized on the particle as a probe. In this way, the biobead particles and biobeads can be used for testing substances that act with bio-related substances.
  • Bio-related substances and reactive groups can be bound by covalent or non-covalent bonds.
  • the biorelated substance and the reactive group can be covalently bonded directly or can be covalently bonded via a desired linker.
  • the bio-related substance and the reactive group can be directly non-covalently bonded or can be non-covalently bonded via a desired linker.
  • the bio-related substance and the reactive group are usually non-covalently bonded via a linker.
  • the covalent bond between the biological substance and the reactive group can be easily carried out by a well-known conventional method.
  • the bio-related substance When the bio-related substance has a carboxyl group or the like that binds to an amino group, such as a protein, it can be directly bonded, and if it does not have such a functional group, or if desired, a linker can be used. It is also possible to combine via. Linkers are also well known, and for example, those having a carboxyl group at one end and a maleimide group at the other end are widely used.
  • the non-covalent bond between the bio-related substance and the reactive group can be carried out by, for example, a hydrogen bond, an electrostatic interaction, a hydrophobic interaction, a van der Waals interaction, or the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • non-covalent bonds specific or non-specific interactions found between proteins, sugar chains, lipids, etc. can be utilized.
  • the linker may be introduced on the reactive group side, on the bio-related substance side, or on both the reactive group side and the bio-related substance side.
  • a linker may be bound to the reactive group side to non-covalently bind the linker to the bio-related substance.
  • a set of linkers that can be non-covalently bonded to each other may be bound to both the reactive group side and the bio-related substance side, and these linkers may be non-covalently bonded to each other.
  • Examples of such a set of linkers include biotin / avidin, glutathione / glutathione-S-transferase, histidine / metal and the like.
  • the conventionally used biochip is discarded once it is used. Therefore, even if you want to consider the detection of the detection target by the coupling between one probe immobilized on the biochip and the detection target, use the entire biochip on which the probe is immobilized. It was necessary to dispose of it just by doing it, which led to an increase in cost.
  • many kinds of probes are fixed in an array on a biochip, and it is possible to detect an object to be detected by many kinds of probes with one operation. Considering the detection of an object to be detected by only one probe immobilized on the biochip for such a biochip does not effectively use the residual probe immobilized on the biochip. It was unproductive because it was wasted.
  • the particles for biobeads of the present embodiment for example, by dispensing the biobeads into each well of the well plate, the conditions such as reaction and washing of the beads on which the probe is immobilized can be met. It can be used for a variety of different independent operations. Therefore, it can be used for inspection of small lots or small types of detection objects. That is, if it is a conventional biochip, it is necessary to use a whole biochip, which leads to an increase in cost.
  • the detection of the object to be detected via the probe is individually performed in relation to the one type of probe bound to the polymer immobilized on the particles and the object to be detected. Can be done independently. Further, before the inspection of the target bio-related substance is performed using the biochip, a preliminary inspection can be performed in advance by using the biobeads of the present embodiment.
  • the biobead particles or biobeads of the present embodiment are used for an adsorption treatment for removing unnecessary components contained in a sample sample, which causes an increase in background when performing an immunoprecipitation method or a biochip test.
  • the detection system includes substances used for the detection system of particles for biobeads, substrates such as substrates for biochips; biological substances such as immunoglobulins and blocking materials; Non-specific adsorbates such as proteins that are easily adsorbed non-specifically to the substance may be contained in a sample sample such as serum.
  • the non-specific adsorbent and the biobead particles or biobeads can be adsorbed by mixing the nonspecific adsorbent with the biobead particles or biobeads to be adsorbed with the sample sample. Further, the non-specific adsorbent can be precipitated together with the biobead particles or biobeads, and then the supernatant separated by centrifugation can be separated. Then, the obtained supernatant can be used as a sample for the subsequent detection operation. In this way, it is possible to carry out the adsorption treatment of the particles for biobeads or the non-specific adsorbent using the biobeads.
  • any particles that adsorb the non-specific adsorbent can be appropriately used.
  • the non-specific adsorbent is adsorbed on the biobead particles
  • the biobead particles to which the bio-related substance as a probe is not bound can be used.
  • biobeads to which immunoglobulins having no specificity for the protein to be detected and having specificity for non-specific adsorbents can be used.
  • an immobilization method for immobilizing a probe on a biochip via a reactive group has been known, but in such a method, the reactive group formed on the biochip is directly or directly or.
  • the probe was bound via a linker. That is, since the bond between the biochip, the reactive group, and the probe is one, the amount of the probe immobilized on the biochip is limited.
  • the polymer having a reactive group is immobilized on the particles by a covalent bond.
  • the polymer immobilized on the particles modifies the plurality of reactive groups branched from the polymer into the particles. That is, a plurality of reactive groups are presented by the polymer immobilized on the particles, and a large number of polymers can be further immobilized through the plurality of reactive groups. Therefore, the particles for biobeads of the present embodiment have an increased amount of probe immobilization as compared with the conventional immobilization method.
  • the probe immobilization rate improves and the immobilization density becomes uniform. Furthermore, by using the particles for biobeads of the present embodiment, it is possible to provide biobeads capable of inspecting a detection object with high detection sensitivity and high reproducibility.
  • the particles for biobeads of the present embodiment have a larger surface area than the flat plate-shaped substrate because they are granular, the amount of polymer or probe immobilized on the surface of the particles can be increased. As a result, the detection sensitivity can be improved when used as biobeads. In addition, the amount of adsorption of unnecessary components can be increased during the above-mentioned adsorption treatment.
  • the complex formed by binding the detection target to the probe on the particle surface is granular, which makes it easier to handle.
  • the particle body is made of a magnetic material and the surface of the particle body is a magnetic particle made of carbon, the complex can be easily separated, washed and recovered by using a magnetic force or the like. can.
  • the particles for biobeads of the present embodiment use at least particles whose surface is made of carbon, autofluorescence is less than that of the case where the surface is made of glass or plastic. Therefore, it is possible to provide biobeads capable of accurately detecting an object to be detected even in a measurement using a fluorescent label, which has become widely used in recent years. Further, since the particles for biobeads of the present embodiment use at least particles whose surface is made of carbon, non-specific adsorption of proteins is less than in the case where the surface is made of glass or plastic. Therefore, it is possible to provide biobeads capable of detecting an object to be detected with high detection sensitivity and reproducibility by improving the S / N ratio by suppressing the signal caused by non-specific adsorption. can.
  • Example 1 Particles for biobeads on which an amino group-containing polymer is immobilized
  • the carbon beads were placed in a quartz cell with a lid, and after the lid was closed, the cell was turned sideways and the cell was shaken so that the carbon beads were evenly distributed in the cell.
  • the carbon beads were irradiated with ultraviolet rays (18.5 mW / cm 2 , 254 nm) for 2 minutes under atmospheric pressure. Further, the cells were shaken to stir the carbon beads, and then the carbon beads were again irradiated with ultraviolet rays (18.5 mW / cm 2 , 254 nm) under atmospheric pressure for 2 minutes.
  • a coating solution was prepared by adjusting the concentration of polyallylamine (PAA: average molecular weight 3000) to 1% by mass with ethanol. Under room temperature conditions, carbon beads irradiated with ultraviolet rays under stirring were immersed in 20 ml of a coating solution, and the beads were kept under stirring for 15 minutes. Then, the carbon beads and the coating liquid were solid-liquid separated by vacuum filtration using a filter paper, and the obtained carbon beads were vacuum-dried for 30 minutes (vacuum degree ⁇ 0.09 MPa) (polymer solution coating operation).
  • PAA polyallylamine
  • the dried carbon beads are placed in a quartz cell with a lid, the cell is shaken so that the carbon beads are evenly distributed in the cell, and then the cell is subjected to ultraviolet rays under vacuum (vacuum degree ⁇ 0.09 MPa) for 2 minutes. irradiation (18.5mW / cm 2, 254nm) was. After opening the cell to atmospheric pressure, the cell is shaken to stir so that the carbon beads are evenly distributed in the cell, and then the second ultraviolet irradiation is performed under vacuum (vacuum degree ⁇ 0.09 MPa) for 2 minutes. (Polymer immobilization operation). Next, the carbon beads were immersed in pure water and washed under stirring. Further, the carbon beads and water were solid-liquid separated by vacuum filtration using a filter paper, and the obtained carbon beads were vacuum-dried for 30 minutes (vacuum degree ⁇ 0.09 MPa) to obtain particles 1 for biobeads.
  • Example 2 Particles for biobeads on which an amino group-containing polymer is immobilized (multiple treatments)
  • the particles 2 for biobeads were similarly applied except that the polymer solution coating operation and the two ultraviolet irradiations were performed, and then the polymer solution coating operation and the two ultraviolet irradiations were repeated.
  • the polymer solution coating operation and the two ultraviolet irradiations were repeated.
  • the fluorescence image and the fluorescence intensity of the biobead particles 2 were measured in the same manner as in Example 1.
  • the fluorescence image of the biobead particles 2 is shown in FIG.
  • the fluorescence intensity was 2068 LAU / mm 2 .
  • the surface texture of the beads of the biobead particles 2 was evaluated by SEM and the nitrogen atoms were mapped by EPMA.
  • the SEM image of the biobead particles 2 is shown in FIG.
  • the mapping result of N atom of the biobead particle 2 is shown in FIG.
  • ⁇ Comparative example 1> (Untreated carbon beads)
  • the fluorescence image and fluorescence intensity of the untreated carbon beads formed from amorphous carbon used as the particle material in Example 1 before irradiation with ultraviolet rays were measured by the same method as in Example 1.
  • the fluorescence image of the carbon beads is shown in FIG.
  • the fluorescence intensity was 86 LAU / mm 2 .
  • the surface texture of the carbon beads was evaluated by SEM, and the nitrogen atom was mapped and the strength was measured by EPMA.
  • the SEM image of the carbon beads is shown in FIG.
  • the mapping result of N atoms of carbon beads is shown in FIG.
  • the strength of the N atom of the carbon beads is shown in FIG.
  • "unmodified-2" to "unmodified-4" in FIG. 11 indicate the analyzed locations, respectively.
  • Example 5 in which the application operation of the polymer solution and the irradiation with ultraviolet rays were repeated twice, the fluorescence signal was emitted more densely than the fluorescence image of Example 1 (FIG. 1). , Showed strong fluorescence intensity. Furthermore, the fluorescence of the fluorescence intensity (268LAU / mm 2) is much higher than the fluorescence intensity of Comparative Example 1 (86LAU / mm 2), also in Example 2 biobeads particles bio beads for particles of Example 1 The intensity (2068 LAU / mm 2 ) is even higher than the fluorescence intensity of Example 1, and it can be seen that the amount of the amino group-containing polymer immobilized is large.

Abstract

The present invention provides bio-bead particles which can independently detect an object to be detected via a probe and with which the immobilized probe quantity is increased. The bio-bead particles are obtained by immobilizing, through covalent bonding, at least one polymer, selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer, on the surfaces of particles of which at least the surfaces are composed of carbon. In these bio-beads, a bio-related substance is bound to an amino group of the bio-beads particles through covalent bonding or non-covalent bonding. The bio-bead particles can be produced through a combination of: coating the particle surface with a polymer; and irradiating the particle surface with plasma or light.

Description

バイオビーズ用粒子及びその製造方法Particles for biobeads and their manufacturing method
 本発明は、タンパク質、核酸、ペプチド誘導体、糖鎖とその誘導体、天然物、小分子化合物等の生体関連物質をプローブとして固定化するためのバイオビーズ用粒子、その製造方法、及びそれを用いたバイオビーズに関する。 The present invention uses particles for biobeads for immobilizing bio-related substances such as proteins, nucleic acids, peptide derivatives, sugar chains and their derivatives, natural products, and small molecule compounds as probes, a method for producing the same, and the like. Regarding biobeads.
 従来より、平板状の基板表面に核酸、タンパク質等のプローブがアレイ状に固定化されたバイオチップが知られている。プローブが認識して結合することのできる検出対象物を含む試料溶液中にバイオチップを浸漬させて、その後にバイオチップを洗浄することで、基板表面にプローブを介して検出対象物を結合させるとともに、結合しなかった検出対象物を洗い流すことができる。そして、基板表面に結合した検出対象物を検出することができる。 Conventionally, a biochip in which probes such as nucleic acids and proteins are immobilized in an array on the surface of a flat substrate has been known. By immersing the biochip in a sample solution containing a detection target that the probe can recognize and bind to, and then washing the biochip, the detection target is bound to the substrate surface via the probe. , The unbound detection object can be washed away. Then, the detection target bonded to the surface of the substrate can be detected.
 特許文献1には、ガラスやセラミックス等からなる基板表面に、アミノ基、アルデヒド基、エポキシ基、カルボン酸基等の反応活性基を付与したバイオチップが開示されている。そして、反応活性基を有するDNA断片を基板表面上にスポットして、基板表面の反応活性基とDNA断片の反応活性基との間に共有結合を形成させることで、基板表面にDNA断片を固定している。 Patent Document 1 discloses a biochip in which a reactive active group such as an amino group, an aldehyde group, an epoxy group, or a carboxylic acid group is added to the surface of a substrate made of glass, ceramics, or the like. Then, the DNA fragment having a reactive active group is spotted on the substrate surface to form a covalent bond between the reactive active group on the substrate surface and the reactive active group of the DNA fragment, thereby fixing the DNA fragment on the substrate surface. doing.
 このようなバイオチップでは、一枚の基板に数十から数万にもなる多数のプローブを固定化しておくことで、一回の検査により、基板表面にスポットされた多数のプローブと多数の検出対象物との間の反応の有無を確認することができる。 In such a biochip, by immobilizing a large number of probes of tens to tens of thousands on a single substrate, a large number of probes spotted on the surface of the substrate and a large number of detections can be performed by a single inspection. It is possible to confirm the presence or absence of a reaction with the object.
 しかしながら、バイオチップでは、通常、一枚の基板全体を浸漬、洗浄等の操作に供する。このため、例えば、ある検出対象物とプローブとの単一の組み合わせについて、反応や洗浄等の条件を種々変更して検討を行いたい場合であっても、そのプローブを固定化させたバイオチップ一枚をまるごと使用する必要があり、コストアップに繋がっていた。 However, in biochips, the entire substrate is usually used for operations such as immersion and cleaning. Therefore, for example, even when it is desired to examine a single combination of a certain detection object and a probe by changing various conditions such as reaction and washing, a biochip having the probe immobilized therein. It was necessary to use the entire sheet, which led to an increase in cost.
 一方、特許文献2には、アモルファスカーボンよりなるDNA固定化用のバイオビーズが開示され、DNAの固定化方法として、基板表面に反応性基を導入し、DNA末端に修飾された官能基との化学反応によってDNAを結合させる方法が開示されている。 On the other hand, Patent Document 2 discloses biobeads for DNA immobilization made of amorphous carbon, and as a method for immobilizing DNA, a reactive group is introduced on the surface of a substrate and a functional group modified at the DNA terminal is used. A method of binding DNA by a chemical reaction is disclosed.
 しかしながら、特許文献2に具体的に開示されている固定化方法は、反応性基としてアミド結合を介してDNAを固定化する方法のみであった。また、特許文献2には、ビーズの耐久性や流動性が良好であることが開示されているのみであった。 However, the only immobilization method specifically disclosed in Patent Document 2 is a method of immobilizing DNA as a reactive group via an amide bond. Further, Patent Document 2 only discloses that the beads have good durability and fluidity.
特開2001-128683号公報Japanese Unexamined Patent Publication No. 2001-128683 特開2003-121436号公報Japanese Unexamined Patent Publication No. 2003-121436
 本発明の目的は、プローブを介した検出対象物の検出を個々に独立して行うことができるとともに、プローブの固定化量が増加するバイオビーズ用粒子を提供することにある。 An object of the present invention is to provide particles for biobeads, which can independently detect an object to be detected via a probe and increase the amount of immobilized probe.
 本願発明者らは、鋭意研究の結果、少なくとも表面がカーボンからなる粒子の表面に、特定の反応性基を含有するポリマーを共有結合で固定化することにより、反応性基を含有するポリマーに結合したプローブを介する検出対象物の検出を個々に独立して行うことができるとともに、プローブの固定化量が増加するバイオビーズ用粒子を提供できることを見出し、本発明を完成した。 As a result of diligent research, the inventors of the present application bond a polymer containing a specific reactive group to a polymer containing a reactive group by covalently immobilizing a polymer containing a specific reactive group on the surface of particles whose surface is at least carbon. The present invention has been completed by finding that it is possible to independently detect an object to be detected via the probe and to provide particles for biobeads in which the amount of immobilized probe is increased.
 すなわち、本発明は、少なくとも表面がカーボンからなる粒子の表面に、アミノ基含有ポリマー、カルボキシル基含有ポリマー、アルデヒド基含有ポリマー、及びエポキシ基含有ポリマーからなる群より選ばれる少なくとも1種のポリマーが共有結合により固定化されたバイオビーズ用粒子を提供する。また、本発明は、上記本発明のバイオビーズ用粒子の前記アミノ基に、共有結合又は非共有結合により生体関連物質が結合されたバイオビーズを提供する。さらに、本発明は、前記粒子の表面に前記アミノ基含有ポリマーを塗布した後、減圧雰囲気下又は不活性ガス雰囲気下で該粒子表面を光照射することを含む上記本発明のバイオビーズ用粒子の製造方法を提供する。さらに、本発明は、前記粒子の表面をプラズマ照射又は光照射し、次いで該粒子に前記アミノ基含有ポリマーを塗布することを含む上記本発明のバイオビーズ用粒子の製造方法を提供する。さらに、本発明は、上記本発明の粒子の、バイオビーズの粒子としての使用を提供する。 That is, in the present invention, at least one polymer selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer is shared on the surface of particles whose surface is made of carbon at least. Provided are biobead particles immobilized by binding. The present invention also provides biobeads in which a bio-related substance is bound to the amino group of the biobead particles of the present invention by a covalent bond or a non-covalent bond. Further, the present invention comprises applying the amino group-containing polymer to the surface of the particles and then irradiating the surface of the particles with light in a reduced pressure atmosphere or an inert gas atmosphere. Provide a manufacturing method. Furthermore, the present invention provides the method for producing the particles for biobeads of the present invention, which comprises irradiating the surface of the particles with plasma or light, and then applying the amino group-containing polymer to the particles. Furthermore, the present invention provides the use of the particles of the present invention as particles of biobeads.
 本発明によれば、アミノ基等の反応性基を含有するポリマーに結合したプローブを介した検出対象物の検出を個々に独立して行うことができるとともに、プローブの固定化量が増加するバイオビーズ用粒子を提供することができる。 According to the present invention, it is possible to independently detect an object to be detected via a probe bound to a polymer containing a reactive group such as an amino group, and the amount of immobilized probe is increased. Particles for beads can be provided.
実施例1で作製したバイオビーズ粒子1の蛍光像を示す図である。It is a figure which shows the fluorescence image of the biobead particle 1 produced in Example 1. FIG. 実施例1で作製したバイオビーズ粒子1のSEM像を示す図である。It is a figure which shows the SEM image of the biobead particle 1 produced in Example 1. FIG. 実施例1で作製したバイオビーズ粒子1について、EPMAにより窒素原子のマッピングを行った結果を示す図である。It is a figure which shows the result of having performed the mapping of the nitrogen atom by EPMA about the biobead particle 1 produced in Example 1. 実施例1で作製したバイオビーズ粒子1について、EPMAにより測定した窒素原子の強度を示す図である。It is a figure which shows the intensity of the nitrogen atom measured by EPMA about the biobead particle 1 produced in Example 1. 実施例2で作製したバイオビーズ粒子2の蛍光像を示す図である。It is a figure which shows the fluorescence image of the biobead particle 2 produced in Example 2. FIG. 実施例2で作製したバイオビーズ粒子2のSEM像を示す図である。It is a figure which shows the SEM image of the biobead particle 2 produced in Example 2. FIG. 実施例2で作製したバイオビーズ粒子2について、EPMAにより窒素原子のマッピングを行った結果を示す図である。It is a figure which shows the result of having performed the mapping of the nitrogen atom by EPMA about the biobead particle 2 produced in Example 2. 比較例1のカーボンビーズの蛍光像を示す図である。It is a figure which shows the fluorescence image of the carbon bead of the comparative example 1. FIG. 比較例1のカーボンビーズのSEM像を示す図である。It is a figure which shows the SEM image of the carbon bead of the comparative example 1. FIG. 比較例1のカーボンビーズについて、EPMAにより窒素原子のマッピングを行った結果を示す図である。It is a figure which shows the result of having performed the mapping of the nitrogen atom by EPMA about the carbon bead of the comparative example 1. FIG. 比較例1のカーボンビーズについて、EPMAにより測定した窒素原子の強度を示す図である。It is a figure which shows the intensity of the nitrogen atom measured by EPMA about the carbon bead of the comparative example 1.
 以下、本実施形態に係るバイオビーズ用粒子、バイオビーズ、及びその製造方法について詳細に説明する。本発明は以下の実施形態のみに限定されるものではない。また、実施形態における構成要素は、一部又は全部を適宜組み合わせることができる。 Hereinafter, the particles for biobeads, the biobeads, and the method for producing the same according to the present embodiment will be described in detail. The present invention is not limited to the following embodiments. In addition, some or all of the components in the embodiment can be combined as appropriate.
 本実施形態のバイオビーズ用粒子(以下、単に「粒子」と略すことがある)は、少なくとも表面がカーボンからなる粒子の表面に、アミノ基含有ポリマー、カルボキシル基含有ポリマー、アルデヒド基含有ポリマー、及びエポキシ基含有ポリマーからなる群より選ばれる少なくとも1種のポリマーが共有結合により固定化されている点に特徴がある。本明細書において、アミノ基、カルボキシル基、アルデヒド基、及びエポキシ基をあわせて、「反応性基」と称することがある。また、これらの反応性基を含有するアミノ基含有ポリマー、カルボキシル基含有ポリマー、アルデヒド基含有ポリマー、及びエポキシ基含有ポリマーをあわせて、単に「ポリマー」と称することがある。 The biobead particles of the present embodiment (hereinafter, may be simply abbreviated as "particles") have an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an aldehyde group-containing polymer on the surface of particles whose surface is at least carbon. It is characterized in that at least one polymer selected from the group consisting of epoxy group-containing polymers is immobilized by covalent bonds. In the present specification, an amino group, a carboxyl group, an aldehyde group, and an epoxy group may be collectively referred to as a "reactive group". Further, the amino group-containing polymer containing these reactive groups, the carboxyl group-containing polymer, the aldehyde group-containing polymer, and the epoxy group-containing polymer may be collectively referred to as a “polymer”.
<粒子>
 本実施形態のバイオビーズ用粒子においては、少なくとも表面がカーボンからなる粒子を用いる。表面がカーボンからなることで、後述する光照射やプラズマ照射によりラジカルが生じ易く、ポリマーを共有結合させやすくなる。カーボンとしては、アモルファスカーボンやダイヤモンドライクカーボンが好ましい。中でも、固定点の数が多くなることで、ポリマーの固定化量が増加して、検出感度や吸着量が向上するという点で、アモルファスカーボンが特に好ましい。
<Particles>
In the biobead particles of the present embodiment, particles having at least a carbon surface are used. Since the surface is made of carbon, radicals are likely to be generated by light irradiation or plasma irradiation described later, and the polymer is easily covalently bonded. As the carbon, amorphous carbon and diamond-like carbon are preferable. Among them, amorphous carbon is particularly preferable in that the amount of polymer immobilization increases as the number of fixed points increases, and the detection sensitivity and the amount of adsorption are improved.
 少なくとも粒子の表面がカーボンで形成されていれば、粒子本体の材質は何ら限定されない。粒子全体をアモルファスカーボン等のカーボンで構成することもできるし、粒子本体上にアモルファスカーボン等のカーボン層を形成することもできる。粒子本体は、例えば、カーボン、金属、ガラス、セラミックス、プラスチックの何れか1種、またはこれらの複合体等で形成することができ、粒子本体がカーボン以外の場合には、その表面にカーボン層を設ける処理を行った後、後述するポリマーを固定化することができる。これらのうち、粒子全体をカーボン、特にはアモルファスカーボンで形成することは、耐薬品性、耐熱性、自家発光が無いことから好ましい。 At least as long as the surface of the particles is made of carbon, the material of the particle body is not limited at all. The entire particle can be made of carbon such as amorphous carbon, or a carbon layer such as amorphous carbon can be formed on the particle body. The particle body can be formed of, for example, any one of carbon, metal, glass, ceramics, and plastic, or a composite thereof, and when the particle body is other than carbon, a carbon layer is formed on the surface thereof. After the treatment for providing, the polymer described later can be immobilized. Of these, it is preferable to form the entire particle with carbon, particularly amorphous carbon, because it has no chemical resistance, heat resistance, and self-emission.
 粒子全体がアモルファスカーボンで形成された粒子は、コークス、石炭、ピッチ、黒鉛、カーボンブラックや、樹脂、木材などの炭素を多く含む原料を炭化焼成することによって得ることができる。炭素を多く含む原料としては熱硬化性樹脂からなる粒子が好ましい。熱硬化性樹脂としては、ユリア樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、ポリイミド樹脂、ポリカルボジイミド樹脂、スチリルピリジン樹脂、トリアジン系樹脂などが挙げられる。中でも、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂が好ましく、フェノール樹脂が特に好ましい。フェノール樹脂の粒子として市販されている、リグナイト社製のLPS(登録商標)シリーズ/球状フェノール樹脂、群栄化学社製のマリリンシリーズ/真球状フェノール樹脂等を用いることができる。 Particles whose entire particles are made of amorphous carbon can be obtained by carbonizing and firing a carbon-rich raw material such as coke, coal, pitch, graphite, carbon black, resin, and wood. As the raw material containing a large amount of carbon, particles made of a thermosetting resin are preferable. Examples of the thermosetting resin include urea resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, epoxy resin, melamine resin, urethane resin, phenol resin, furan resin, ketone resin, and xylene resin. Examples thereof include polyimide resins, polycarbodiimide resins, styrylpyridine resins, and triazine resins. Of these, epoxy resin, polyimide resin, and phenol resin are preferable, and phenol resin is particularly preferable. LPS (registered trademark) series / spherical phenol resin manufactured by Lignite, Marilyn series / true spherical phenol resin manufactured by Gunei Chemical Co., Ltd., which are commercially available as phenol resin particles, can be used.
 また、粒子本体として金属を用いる場合には、アルミニウム、ステンレス鋼、鉄鋼、銅等を粒子材料として使用することができる。アルミニウムは耐食性、表面硬度を改善するためにニッケル-リンめっきなどの表面処理を施した後、さらに上記カーボン層を表面に設けた後に粒子材料に供することも可能である。ポリマーとの共有結合を確保する目的と、タンパク質検体の余分な吸着を防止する目的のために、金属からなる粒子本体の表面にスパッタリング、CVD、PVD等の処理方法により、カーボンまたはダイヤモンドライクカーボンの層を設けて粒子材料とすることができる。 When metal is used as the particle body, aluminum, stainless steel, steel, copper, etc. can be used as the particle material. Aluminum can be used as a particle material after being subjected to a surface treatment such as nickel-phosphorus plating in order to improve corrosion resistance and surface hardness, and after the carbon layer is further provided on the surface. For the purpose of ensuring a covalent bond with the polymer and for the purpose of preventing excessive adsorption of the protein sample, carbon or diamond-like carbon can be formed on the surface of the particle body made of metal by a treatment method such as sputtering, CVD, PVD, etc. A layer can be provided to form a particle material.
 なお、ポリマーを固定化させる粒子の平均粒径は、小さすぎると粒子が凝集を起こし、バイオビーズとして用いた場合に正確な測定が困難になる。このため、粒子の平均粒径の下限値は通常0.5μm以上であり、好ましくは1μm以上、更に好ましくは5μm以上、特に好ましくは10μm以上である。また、粒子の平均粒径は、大きすぎると、例えば、プローブ固定のためプロ部分子の溶解した溶液中に粒子を分散させときに沈降し易くなり、プローブ分子と粒子の会合が減少するためプローブ固定量が低下する。また、粒子の比表面積効果が小さくなるため表面積の効果が小さくなる。このため、粒子の平均粒径の上限値は通常500μm以下、好ましくは200μm以下、更に好ましくは100μm以下、特に好ましくは50μm以下である。 If the average particle size of the particles that immobilize the polymer is too small, the particles will agglomerate, making accurate measurement difficult when used as biobeads. Therefore, the lower limit of the average particle size of the particles is usually 0.5 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and particularly preferably 10 μm or more. Further, if the average particle size of the particles is too large, for example, when the particles are dispersed in a solution in which the pro-part molecule is dissolved for fixing the probe, the particles are likely to settle, and the association between the probe molecule and the particle is reduced, so that the probe is used. The fixed amount decreases. Moreover, since the specific surface area effect of the particles is small, the surface area effect is small. Therefore, the upper limit of the average particle size of the particles is usually 500 μm or less, preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 50 μm or less.
<ポリマー>
 本実施形態において、少なくとも表面がカーボンからなる粒子の表面には、アミノ基含有ポリマー、カルボキシル基含有ポリマー、アルデヒド基含有ポリマー、及びエポキシ基含有ポリマーからなる群より選ばれる少なくとも1種のポリマーが共有結合により固定化される。これらのポリマーは、反応性基を含有するモノマーが複数重合することで形成される化合物である。すなわち、ポリマーは、モノマーに由来する多数の反応性基を有している。
<Polymer>
In the present embodiment, at least one polymer selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer is shared on the surface of particles whose surface is made of carbon at least. It is fixed by binding. These polymers are compounds formed by polymerizing a plurality of monomers containing reactive groups. That is, the polymer has a large number of reactive groups derived from the monomer.
 粒子へのポリマーの結合は、ポリマーが有する反応性基と反応性を有する蛍光分子を粒子に結合させて、蛍光スキャナーを用いたバイオビーズ用粒子の蛍光像の観察による蛍光シグナルの有無から確認することができる。または、蛍光スキャナーを用いたポリマーを固定していないカーボンビーズの蛍光強度とバイオビーズ用粒子の蛍光強度の測定による蛍光強度の増加から確認することができる。 Bonding of the polymer to the particles is confirmed by binding the reactive groups of the polymer and the fluorescent molecules having the reactivity to the particles and observing the fluorescent image of the particles for biobeads using a fluorescent scanner to see if there is a fluorescent signal. be able to. Alternatively, it can be confirmed from the increase in the fluorescence intensity by measuring the fluorescence intensity of the carbon beads to which the polymer is not fixed using a fluorescence scanner and the fluorescence intensity of the particles for biobeads.
 また、粒子へのポリマーの結合は、SEM(Scanning Electron Microscope;走査型電子顕微鏡)を用いたバイオビーズ用粒子のSEM像の観察による、粒子の表面性状の変化から確認することができる。 Further, the binding of the polymer to the particles can be confirmed from the change in the surface texture of the particles by observing the SEM image of the particles for biobeads using an SEM (Scanning Electron Microscope).
 また、粒子へのポリマーの結合は、EPMA(Electron Probe Micro Analyzer;電子線マイクロアナライザ)を用いて、バイオビーズ用粒子に対して反応性基に存在する原子の特性X線のマッピングを行い、反応性基に存在する原子に由来する信号の有無から確認することができる。また、EPMAを用いて、バイオビーズ用粒子における反応性基に存在する原子ピーク強度の増加から確認することができる。このようなEPMAを用いた粒子へのポリマーの結合の確認では、アミノ基含有ポリマーの場合には、窒素原子が用いられる。また、カルボキシル基含有ポリマーの場合には、酸素原子が用いられる。また、アルデヒド基含有ポリマーの場合には、酸素原子が用いられる。また、エポキシ基含有ポリマーの場合には、酸素原子が用いられる。 In addition, for the bonding of the polymer to the particles, EPMA (Electron Probe Micro Analyzer) is used to map the characteristic X-rays of the atoms present in the reactive groups to the particles for biobeads, and the reaction is carried out. It can be confirmed from the presence or absence of a signal derived from an atom existing in the sex group. In addition, EPMA can be used to confirm the increase in the atomic peak intensity present in the reactive group in the biobead particles. In the confirmation of the bond of the polymer to the particles using EPMA, a nitrogen atom is used in the case of the amino group-containing polymer. In the case of a carboxyl group-containing polymer, an oxygen atom is used. In the case of an aldehyde group-containing polymer, an oxygen atom is used. In the case of an epoxy group-containing polymer, an oxygen atom is used.
 上述した粒子へのポリマーの結合の確認手法は、一つの手法を用いて粒子へのポリマーの結合を確認することができるが、2以上又は3以上の複数の手法を組み合わせて確認を行うことが確実性を増すために好ましい。 The above-mentioned method for confirming the bond of the polymer to the particles can confirm the bond of the polymer to the particles by using one method, but it is possible to confirm by combining a plurality of methods of 2 or more or 3 or more. Preferred for increased certainty.
(アミノ基含有ポリマー)
 アミノ基含有ポリマーはアミノ基を含有するポリマーであれば特に限定されない。ここで、「アミノ基」は、一級アミノ基、すなわち、-NHを意味する。アミノ基含有ポリマーとしては、好ましくは、粒子表面に固定化される前の状態で、前記アミノ基含有ポリマーを構成する構成単位の50%以上、さらに好ましくは90%以上、さらに好ましくは99%以上が、それぞれアミノ基を少なくとも1個有するものが好ましい。このようなアミノ基含有ポリマーは、1分子中に多数のアミノ基を有するので、粒子表面上にアミノ基が均一かつ高密度に結合される。アミノ基含有ポリマーは、アミノ基を有するビニル系モノマーが付加重合することにより形成されたものであることが好ましく、特にポリアリルアミン(PAA)が好ましい。なお、アミノ基含有ポリマーが共有結合している場合には、純水中で1時間振とう洗浄してもアミノ基含有ポリマーが離脱することはない。また、アミノ基をブロモアセチル化処理した後、メルカプトエタノールで処理することで遊離した臭化物イオンをイオンクロマトグラフィーで定量する方法により、アミノ基の定量が可能である。また、X線光電分光(XPS)により共有結合の有無を直接確認することも可能である。
(Amino group-containing polymer)
The amino group-containing polymer is not particularly limited as long as it is a polymer containing an amino group. Here, the "amino group" means a primary amino group, that is, -NH 2 . The amino group-containing polymer is preferably 50% or more, more preferably 90% or more, still more preferably 99% or more of the constituent units constituting the amino group-containing polymer before being immobilized on the particle surface. However, it is preferable that each has at least one amino group. Since such an amino group-containing polymer has a large number of amino groups in one molecule, the amino groups are uniformly and densely bonded on the particle surface. The amino group-containing polymer is preferably formed by addition polymerization of a vinyl-based monomer having an amino group, and polyallylamine (PAA) is particularly preferable. When the amino group-containing polymer is covalently bonded, the amino group-containing polymer does not come off even after washing in pure water with shaking for 1 hour. Further, the amino group can be quantified by a method of quantifying the free bromide ion by bromoacetylation treatment of the amino group and then treatment with mercaptoethanol. It is also possible to directly confirm the presence or absence of covalent bonds by X-ray photoelectron spectroscopy (XPS).
 アミノ基含有ポリマーの平均分子量(重量平均分子量)の下限値は、本発明の効果をより良く達成する観点から、ポリアリルアミン(PAA)換算で通常1000以上であり、1500以上が好ましく、2000以上がより好ましく、2500以上が更に好ましい。ここで、「PAA換算」は、1分子中のアミノ基の数を基準として換算することを意味する(以下同じ)。一方、アミノ基含有ポリマーの平均分子量(重量平均分子量)の上限値は、特に限定されず、溶解性及び塗布液の安定性等の取扱い性に問題がない範囲であればよく、通常6万以下であり、10000以下が好ましく、8000以下がより好ましく、6000以下が更に好ましく、5000以下が特に好ましい。 The lower limit of the average molecular weight (weight average molecular weight) of the amino group-containing polymer is usually 1000 or more, preferably 1500 or more, preferably 2000 or more, in terms of polyallylamine (PAA), from the viewpoint of better achieving the effects of the present invention. More preferably, 2500 or more is further preferable. Here, "PAA conversion" means conversion based on the number of amino groups in one molecule (the same applies hereinafter). On the other hand, the upper limit of the average molecular weight (weight average molecular weight) of the amino group-containing polymer is not particularly limited as long as there is no problem in handleability such as solubility and stability of the coating solution, and is usually 60,000 or less. It is preferably 10000 or less, more preferably 8000 or less, further preferably 6000 or less, and particularly preferably 5000 or less.
(カルボキシル基含有ポリマー)
 カルボキシル基含有ポリマーはカルボキシル基を含有するポリマーであれば特に限定されない。カルボキシル基含有ポリマーとしては、アクリル系ポリマーが好ましく、中でも、ポリアクリル酸、ポリメタクリル酸、又はアクリル酸若しくはメタクリル酸を含む共重合体がさらに好ましく、特にはポリアクリル酸が好ましい。なお、アクリル系ポリマーが共重合体である場合、アクリル酸又はメタクリル酸以外の共重合成分としては、特に限定されず、例えば、ポリ(アクリル酸-co-スチレン)、ポリ(アクリル酸-co-メタクリル酸)やポリ(アクリル酸-co-エチレン)を挙げることができる。共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれでもよい。共重合体中のアクリル酸又はメタクリル酸成分の含量は、モル基準で通常20~99%、好ましくは50~99%程度である。カルボキシル基含有ポリマーの平均分子量(重量平均分子量)の下限値は、特に限定されないが、本発明の効果をより良く達成する観点から、通常1000以上であり、好ましくは2000以上であり、より好ましくは2500以上であり、さらに好ましくは3000以上であり、特に好ましくは3500以上である。一方、カルボキシル基含有ポリマーの平均分子量(重量平均分子量)の上限値は、特に限定されず、溶解性及び塗布液の安定性等の取扱い性に問題がない範囲であればよく、通常6万以下であり、10000以下が好ましく、8000以下がより好ましく、6000以下が更に好ましい。
(Carboxyl group-containing polymer)
The carboxyl group-containing polymer is not particularly limited as long as it is a polymer containing a carboxyl group. As the carboxyl group-containing polymer, an acrylic polymer is preferable, and among them, polyacrylic acid, polymethacrylic acid, or a copolymer containing acrylic acid or methacrylic acid is more preferable, and polyacrylic acid is particularly preferable. When the acrylic polymer is a copolymer, the copolymerization component other than acrylic acid or methacrylic acid is not particularly limited, and for example, poly (acrylic acid-co-styrene), poly (acrylic acid-co-). Methacrylic acid) and poly (acrylic acid-co-ethylene) can be mentioned. The copolymer may be any of a random copolymer, a block copolymer, and a graft copolymer. The content of the acrylic acid or methacrylic acid component in the copolymer is usually about 20 to 99%, preferably about 50 to 99% on a molar basis. The lower limit of the average molecular weight (weight average molecular weight) of the carboxyl group-containing polymer is not particularly limited, but is usually 1000 or more, preferably 2000 or more, and more preferably 2000 or more from the viewpoint of better achieving the effects of the present invention. It is 2500 or more, more preferably 3000 or more, and particularly preferably 3500 or more. On the other hand, the upper limit of the average molecular weight (weight average molecular weight) of the carboxyl group-containing polymer is not particularly limited as long as there is no problem in handleability such as solubility and stability of the coating solution, and is usually 60,000 or less. It is preferably 10000 or less, more preferably 8000 or less, and further preferably 6000 or less.
<ポリマーの固定化方法>
 粒子表面のカーボンとポリマーとを共有結合させるためには、粒子表面にポリマーを塗布後、光照射によりカーボンの表面とポリマーにラジカルを生成させて共有結合させる第1の方法と、粒子表面のカーボンにプラズマ処理または光照射を施してラジカルを生成させ、これにポリマーを塗布して反応させて結合させる第2の方法とがある。
<Polymer immobilization method>
In order to covalently bond the carbon on the particle surface and the polymer, the first method of applying the polymer to the particle surface and then covalently bonding the carbon surface and the polymer by generating radicals by light irradiation, and the carbon on the particle surface. There is a second method in which radicals are generated by subjecting them to plasma treatment or light irradiation, and a polymer is applied to the radicals to cause them to react and bond them.
 第1の方法は、ポリマー溶液を粒子表面に塗布後、光照射によって生成するラジカルにより、粒子表面のカーボンとポリマーとを共有結合させる方法である。 The first method is a method in which a polymer solution is applied to the particle surface and then the carbon on the particle surface and the polymer are covalently bonded by radicals generated by light irradiation.
 第1の方法において、粒子表面への塗布は、一般的な手法を用いることができ、ポリマーの塗布量を制御できる手法であれば、特にその方法を限定するものではない。例えば、ポリマー溶液を粒子に噴霧するスプレーコート、粒子をポリマー溶液に浸漬する浸漬法等から選択して実施可能であり、中でもポリマーの固定化率が高く、固定化密度が均一な粒子が得られるという点で、浸漬法が好ましい。浸漬法による場合には、例えば、ポリマー溶液に撹拌下で粒子を浸漬させ、撹拌下で所定時間を保持した後、固液分離して得た粒子を真空乾燥することにより、ポリマー溶液を塗布することができる。ポリマー溶液においてポリマーを溶解させる溶媒としては、水、アルコール系、エーテル系等の溶媒が使用できるが、ポリマーの固定化率を高めるという点で、中でもエタノール等のアルコール系溶媒を用いることが好ましい。ポリマーの塗布量は、所望のポリマー固定化量を達成する量である。ポリマー溶液の濃度は、必要なポリマー塗布量を達成でき、均一に塗布できる濃度であればよく、0.5~3質量%程度が好ましい。このような塗布操作は次の光照射を行う前に複数回行ってもよい。 In the first method, a general method can be used for coating on the particle surface, and the method is not particularly limited as long as the method can control the coating amount of the polymer. For example, it can be carried out by selecting from a spray coating method in which the polymer solution is sprayed onto the particles, a dipping method in which the particles are immersed in the polymer solution, and the like. Among them, particles having a high polymer immobilization rate and a uniform immobilization density can be obtained. In that respect, the dipping method is preferable. In the case of the dipping method, for example, the polymer solution is applied by immersing the particles in the polymer solution under stirring, holding the particles under stirring for a predetermined time, and then vacuum-drying the particles obtained by solid-liquid separation. be able to. As a solvent for dissolving the polymer in the polymer solution, a solvent such as water, an alcohol-based solvent, or an ether-based solvent can be used, but an alcohol-based solvent such as ethanol is particularly preferable from the viewpoint of increasing the immobilization rate of the polymer. The polymer coating amount is an amount that achieves the desired polymer immobilization amount. The concentration of the polymer solution may be any concentration that can achieve the required polymer coating amount and can be uniformly applied, and is preferably about 0.5 to 3% by mass. Such a coating operation may be performed a plurality of times before the next light irradiation.
 第1の方法において、照射する光としては、波長150nm~260nm程度、例えば波長185nmや254nm等の紫外線を使用することができる。この波長の光によりC-C、C-O、C-H結合が切断され、ラジカルが発生する。このとき空気中の酸素分子、水分子も分解されて酸素ラジカル、オゾンが発生し粒子材料カーボンとポリマーの酸化分解も同時に起こり共有結合生成阻害の原因となる。これを防止するため本製造方法は減圧下または、不活性ガス雰囲気下で光照射を実施することが好ましい。減圧は大気圧を基準(0MPa)として-0.05MPa以下、より好ましくは-0.08MPa以下の真空度で実施する。不活性ガスとしては、アルゴン、ヘリウム等の光照射を受けてもラジカル化しにくい希ガス元素を使用する。光の照射量は、ポリマーを共有結合するのに必要な量であればよく、エネルギー量として、粒子表面1cm当たり通常、約1~6ジュール、好ましくは約2~4ジュール程度である。例えば、粒子表面1cm当たり18.5mWの紫外線を通常1~5分、好ましくは2~4分照射する。 In the first method, as the light to be irradiated, ultraviolet rays having a wavelength of about 150 nm to 260 nm, for example, a wavelength of 185 nm or 254 nm can be used. Light of this wavelength breaks the CC, CO, and CH bonds to generate radicals. At this time, oxygen molecules and water molecules in the air are also decomposed to generate oxygen radicals and ozone, and oxidative decomposition of the particle material carbon and the polymer also occurs at the same time, which causes inhibition of covalent bond formation. In order to prevent this, it is preferable to carry out light irradiation under reduced pressure or under an inert gas atmosphere in this production method. The depressurization is carried out at a degree of vacuum of −0.05 MPa or less, more preferably −0.08 MPa or less, based on atmospheric pressure (0 MPa). As the inert gas, a noble gas element such as argon or helium that is hard to be radicalized even when irradiated with light is used. The amount of light irradiation may be any amount necessary for covalent bonding of the polymer, and the amount of energy is usually about 1 to 6 joules, preferably about 2 to 4 joules per 1 cm 2 of the particle surface. For example, 18.5 mW of ultraviolet light per 1 cm 2 of particle surface is usually irradiated for 1 to 5 minutes, preferably 2 to 4 minutes.
 第1の方法においては、ポリマーを塗布する操作及び光照射を行う操作をそれぞれ1回ずつ行うだけでも粒子表面にポリマーを固定化することが可能であるが、ポリマーを塗布する操作及び光照射を行う操作を複数回、例えば、2~4回行うことが好ましい。このとき、複数回の光照射を行う操作を行う際に、各々の光照射の操作の間に、粒子に照射される光の向きを変える操作を行うことが好ましい。このような操作は、例えば、粒子を収容した容器の撹拌、揺動等により行うことができる。このような複数回の塗布及び光照射を行うことにより、粒子の表面において、光が照射される被照射面を一面だけでなく複数面(好ましくは全体)とすることができ、ポリマーの固定化量を増加させることができる。また、ポリマーの固定化量を増加させるために1回の塗布操作に使用するポリマー溶液の濃度を高くする必要がなく、低い濃度のポリマー溶液を使用することができる。さらに、ポリマーを粒子の一面に多量に固定化する場合に比べ、総固定化量が同じであっても、粒子の複数の面、好ましくは粒子の表面全体にわたりポリマーをまんべんなく固定化させることができる。その結果、ポリマーや生体関連物質が粒子からが剥離しにくくなり、さらには、バイオビーズとして利用する際に、検出対象物質をビーズに結合させて検出し易くなり、検出感度が向上する。 In the first method, it is possible to immobilize the polymer on the particle surface only by performing the operation of applying the polymer and the operation of irradiating the light once, respectively, but the operation of applying the polymer and the operation of irradiating the light are performed. It is preferable to perform the operation a plurality of times, for example, 2 to 4 times. At this time, when performing the operation of performing the light irradiation a plurality of times, it is preferable to perform the operation of changing the direction of the light irradiated to the particles during each light irradiation operation. Such an operation can be performed, for example, by stirring or shaking the container containing the particles. By performing such a plurality of coatings and light irradiation, it is possible to make the irradiated surface to be irradiated with light not only one surface but also a plurality of surfaces (preferably the whole) on the surface of the particles, and the polymer is immobilized. The amount can be increased. Further, it is not necessary to increase the concentration of the polymer solution used in one coating operation in order to increase the amount of polymer immobilization, and a low concentration polymer solution can be used. Further, as compared with the case where a large amount of polymer is immobilized on one surface of the particles, the polymer can be evenly immobilized on a plurality of surfaces of the particles, preferably the entire surface of the particles, even if the total amount of immobilization is the same. .. As a result, the polymer and the bio-related substance are less likely to be peeled off from the particles, and when used as biobeads, the substance to be detected is bound to the beads to facilitate detection, and the detection sensitivity is improved.
 第2の方法は、粒子の表面にプラズマ照射または光照射を施してラジカルを発生させ、直ちに粒子にポリマー溶液を塗布して、粒子表面に生じたラジカルとポリマーを反応させる方法である。第2の方法における光照射の照射する光の波長は、第1の方法における光照射と同様に行うことができる。 The second method is a method in which the surface of the particles is irradiated with plasma or light to generate radicals, and the particles are immediately coated with a polymer solution to react the radicals generated on the surface of the particles with the polymer. The wavelength of the light to be irradiated by the light irradiation in the second method can be the same as that in the light irradiation in the first method.
 第2の方法において、プラズマ照射または光照射は複数回行ってもよい。プラズマ照射は減圧下または大気圧下で実施することができるが、アルゴンガス、炭酸ガス、アンモニアガス、水蒸気等を適宜導入して反応性プラズマとしても実施可能である。プラズマの照射量は、高周波出力1~100W、反応ガス流量5~20cm/min、照射時間10~120秒、より好ましくは、1~10W、反応ガス流量5~15cm/min、照射時間20~90秒である。光の照射量は、ポリマーを共有結合するのに必要な量であればよく、エネルギー量として、粒子表面1cm当たり通常、約3~35ジュール、好ましくは約5~16ジュール程度である。例えば、粒子表面1cm当たり18.5mWの紫外線を通常3~30分、好ましくは5~15分照射する。光照射は、大気圧下で行なうことができる。 In the second method, plasma irradiation or light irradiation may be performed a plurality of times. Plasma irradiation can be carried out under reduced pressure or atmospheric pressure, but it can also be carried out as reactive plasma by appropriately introducing argon gas, carbon dioxide gas, ammonia gas, water vapor or the like. The plasma irradiation amount is high frequency output 1 to 100 W, reaction gas flow rate 5 to 20 cm 3 / min, irradiation time 10 to 120 seconds, more preferably 1 to 10 W, reaction gas flow rate 5 to 15 cm 3 / min, irradiation time 20. ~ 90 seconds. The amount of light irradiation may be any amount necessary for covalent bonding of the polymer, and the amount of energy is usually about 3 to 35 joules, preferably about 5 to 16 joules per 1 cm 2 of the particle surface. For example, 18.5 mW of ultraviolet rays per 1 cm 2 of particle surface is usually irradiated for 3 to 30 minutes, preferably 5 to 15 minutes. Light irradiation can be performed under atmospheric pressure.
 第2の方法におけるポリマー溶液の粒子への塗布は、第1の方法における塗布操作と同様の操作及び条件を用いることができる。例えば、スプレーコート、浸漬法等から選択して実施可能であり、中でもポリマーの固定化率が高く、固定化密度が均一な粒子が得られるという点で、浸漬法が好ましい。浸漬法による場合には、例えば、ポリマー溶液に撹拌下で粒子を浸漬させ、撹拌下で所定時間を保持した後、固液分離して得た粒子を真空乾燥することにより、ポリマー溶液を塗布することができる。ポリマー溶液においてポリマーを溶解させる溶媒としては、水、アルコール系、エーテル系等の溶媒が使用できるが、ポリマーの固定化率を高めるという点で、中でもエタノール等のアルコール系溶媒を用いることが好ましい。ポリマーの塗布量は、所望のポリマー固定化量を達成する量である。ポリマー溶液の濃度は、必要なポリマー塗布量を達成でき、均一に塗布できる濃度であればよく、0.5~3質量%程度が好ましい。このような塗布操作は複数回行ってもよい。また、第2の方法のみによりポリマーを固定化する場合には、生じたラジカルが消失する前に速やかにポリマー溶液を粒子に塗布する必要がある。 For the application of the polymer solution to the particles in the second method, the same operations and conditions as the application operation in the first method can be used. For example, it can be carried out by selecting from a spray coating, a dipping method and the like, and among them, the dipping method is preferable in that particles having a high polymer immobilization rate and a uniform immobilization density can be obtained. In the case of the dipping method, for example, the polymer solution is applied by immersing the particles in the polymer solution under stirring, holding the particles under stirring for a predetermined time, and then vacuum-drying the particles obtained by solid-liquid separation. be able to. As a solvent for dissolving the polymer in the polymer solution, a solvent such as water, an alcohol-based solvent, or an ether-based solvent can be used, but an alcohol-based solvent such as ethanol is particularly preferable from the viewpoint of increasing the immobilization rate of the polymer. The polymer coating amount is an amount that achieves the desired polymer immobilization amount. The concentration of the polymer solution may be any concentration that can achieve the required polymer coating amount and can be uniformly applied, and is preferably about 0.5 to 3% by mass. Such a coating operation may be performed a plurality of times. Further, when the polymer is immobilized only by the second method, it is necessary to promptly apply the polymer solution to the particles before the generated radicals disappear.
 ポリマーの固定化のためには、上記した第1の方法と第2の方法のいずれかを行なえばよいが、これらを組合せて、第2の方法を実施した後、第1の方法を行うことも可能である。すなわち、粒子表面にプラズマ照射又は光照射を行なった後、粒子にポリマー溶液を塗布し、さらに、光照射を行なってもよく、好ましい方法である。この場合には、第2の方法により生じたラジカルが減少又は消滅しても、ポリマー溶液の塗布後にさらに光照射が行なわれるので問題はない。 For the immobilization of the polymer, either the first method or the second method described above may be performed, but the first method is performed after the second method is performed by combining these. Is also possible. That is, it is a preferable method that the particle surface may be irradiated with plasma or light, then the polymer solution may be applied to the particles, and then light irradiation may be performed. In this case, even if the radicals generated by the second method are reduced or eliminated, there is no problem because further light irradiation is performed after the application of the polymer solution.
 第2の方法と第1の方法を組み合わせる場合においては、粒子表面にプラズマ照射又は光照射を行なった後、粒子にポリマーを塗布する操作及びその後に光照射を行う操作をそれぞれ1回ずつ行うだけでも粒子表面にポリマーを固定化することが可能であるが、ポリマーを塗布する操作及びその後さらに光照射を行う操作を複数回、例えば、2~4回行うことが好ましい。このとき、複数回の光照射を行う操作を行う際に、各々の光照射の操作の間に、粒子に照射される光の向きを変える操作を行うことが好ましい。このような操作は、例えば、粒子を収容した容器の撹拌、揺動等により行うことができる。このような複数回の塗布及び光照射により、粒子の表面において、光が照射される被照射面を一面だけでなく複数面(好ましくは全体)とすることができ、ポリマーの固定化量を増加させることができる。また、ポリマーの固定化量を増加させるために1回の塗布操作に使用するポリマー溶液の濃度を高くする必要がなく、低い濃度のポリマー溶液を使用することができる。さらに、ポリマーを粒子の一面に多量に固定化する場合に比べ、総固定化量が同じであっても、粒子の複数の面、好ましくは粒子の表面全体にわたりポリマーをまんべんなく固定化させることができる。その結果、ポリマーや生体関連物質が粒子からが剥離しにくくなり、さらには、バイオビーズとして利用する際に、検出対象物質をビーズに結合させて検出し易くなり、検出感度が向上する。 In the case of combining the second method and the first method, after the particle surface is irradiated with plasma or light, the operation of applying the polymer to the particles and the operation of subsequently irradiating the light are performed only once. Although it is possible to immobilize the polymer on the surface of the particles, it is preferable to perform the operation of applying the polymer and the operation of further irradiating with light a plurality of times, for example, 2 to 4 times. At this time, when performing the operation of performing the light irradiation a plurality of times, it is preferable to perform the operation of changing the direction of the light irradiated to the particles during each light irradiation operation. Such an operation can be performed, for example, by stirring or shaking the container containing the particles. By such a plurality of coatings and light irradiation, the surface to be irradiated with light can be not only one surface but also a plurality of surfaces (preferably the whole) on the surface of the particles, and the amount of polymer immobilization can be increased. Can be made to. Further, it is not necessary to increase the concentration of the polymer solution used in one coating operation in order to increase the amount of polymer immobilization, and a low concentration polymer solution can be used. Further, as compared with the case where a large amount of polymer is immobilized on one surface of the particles, the polymer can be evenly immobilized on a plurality of surfaces of the particles, preferably the entire surface of the particles, even if the total amount of immobilization is the same. .. As a result, the polymer and the bio-related substance are less likely to be peeled off from the particles, and when used as biobeads, the substance to be detected is bound to the beads to facilitate detection, and the detection sensitivity is improved.
<粒子の表面改質>
 粒子へのポリマーの固定化の前処理として、粒子の表面改質を行うことが好ましい。表面改質は、粒子に光照射またはプラズマ処理を施すことで行うことができる。表面改質により、粒子のカーボン表面からカルボキシル基、水酸基、アルデヒド基等の極性基が生じる。この極性基により、極性溶媒を用いたポリマー溶液に対する親和性が向上する。すなわち、固定化の前に粒子の表面改質を行うことで、粒子の親塗布液性を上げることができる。これにより、粒子へのポリマーの固定化量を増加させることができる。
<Surface modification of particles>
It is preferable to modify the surface of the particles as a pretreatment for immobilizing the polymer on the particles. Surface modification can be performed by subjecting the particles to light irradiation or plasma treatment. Surface modification produces polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups from the carbon surface of the particles. This polar group improves the affinity for polymer solutions with protic solvents. That is, by modifying the surface of the particles before immobilization, the parent coating liquid property of the particles can be improved. This makes it possible to increase the amount of polymer immobilized on the particles.
 照射する光としては、波長150nm~260nm程度、例えば波長185nmや254nm等の紫外線を使用することができる。この波長の光により、C-C、C-O、C-H結合が切断され、酸素や水と反応して、カルボキシル基、水酸基、アルデヒド基等の極性基が発生する。光照射は、大気下で実施することが好ましい。光の照射量は、カルボキシル基、水酸基、アルデヒド基等の極性基を生成するのに必要な量であればよく、エネルギー量として、粒子表面1cm当たり通常、約1~6ジュール、好ましくは約2~4ジュール程度である。例えば、粒子表面1cm当たり18.5mWの紫外線を通常1~5分、好ましくは2~4分照射する。 As the light to be irradiated, ultraviolet rays having a wavelength of about 150 nm to 260 nm, for example, a wavelength of 185 nm or 254 nm can be used. Light of this wavelength breaks the CC, CO, and CH bonds and reacts with oxygen and water to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups. Light irradiation is preferably carried out in the atmosphere. The amount of light irradiation may be any amount necessary to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups, and the amount of energy is usually about 1 to 6 joules, preferably about 1 cm 2 per 1 cm 2 of the particle surface. It is about 2 to 4 joules. For example, 18.5 mW of ultraviolet light per 1 cm 2 of particle surface is usually irradiated for 1 to 5 minutes, preferably 2 to 4 minutes.
 プラズマ照射は、大気下で実施することが好ましい。プラズマの照射量は、カルボキシル基、水酸基、アルデヒド基等の極性基を生成するのに必要な量であればよく、高周波出力1~100W、反応ガス流量5~20cm/min、照射時間10~120秒、より好ましくは、1~10W、反応ガス流量5~15cm/min、照射時間20~90秒である。 Plasma irradiation is preferably carried out in the atmosphere. The amount of plasma irradiation may be any amount necessary to generate polar groups such as carboxyl groups, hydroxyl groups, and aldehyde groups, and has a high frequency output of 1 to 100 W, a reaction gas flow rate of 5 to 20 cm, 3 / min, and an irradiation time of 10 to. It is 120 seconds, more preferably 1 to 10 W, a reaction gas flow rate of 5 to 15 cm 3 / min, and an irradiation time of 20 to 90 seconds.
<バイオビーズ用粒子>
 上記のようにして得られる本実施形態のバイオビーズ用粒子は、粒子の表面にアミノ基、カルボキシル基、アルデヒド基、及びエポキシ基等の反応性基を有する。この反応性基を利用して、生体関連物質を粒子に結合させることによりバイオビーズを構成することができる。生体関連物質としては、従来から検出系のプローブとして用いられているいずれの物質であってもよく、任意のポリペプチド(天然又は合成のタンパク質、オリゴペプチドを包含)、核酸(DNA及びRNA並びに人工核酸を包含)、糖、脂質、これらの複合体(糖タンパク質等)並びに誘導体(修飾タンパク質や核酸等)が挙げられる。なお、プローブとは、検出対象となる特定の物質と結合する物質をいう。バイオビーズ用粒子は、粒子に固定化された生体関連物質をプローブとすることで、生体関連物質と作用する物質を検出することができる。このようにして、バイオビーズ用粒子及びバイオビーズは、生体関連物質と作用する物質の検査に用いることができる。
<Particles for bio beads>
The biobead particles of the present embodiment obtained as described above have a reactive group such as an amino group, a carboxyl group, an aldehyde group, and an epoxy group on the surface of the particles. Using this reactive group, biobeads can be constructed by binding a bio-related substance to particles. The bio-related substance may be any substance conventionally used as a probe for a detection system, and any polypeptide (including natural or synthetic proteins and oligopeptides), nucleic acid (DNA and RNA, and artificial). Nucleic acids are included), sugars, lipids, complexes thereof (glycoproteins, etc.) and derivatives (modified proteins, nucleic acids, etc.). The probe refers to a substance that binds to a specific substance to be detected. The biobead particles can detect a substance that acts on the bio-related substance by using a bio-related substance immobilized on the particle as a probe. In this way, the biobead particles and biobeads can be used for testing substances that act with bio-related substances.
 生体関連物質と反応性基は、共有結合又は非共有結合によって結合することができる。共有結合の場合には、生体関連物質と反応性基とは、直接に共有結合することもできるし、所望のリンカーを介して共有結合することもできる。非共有結合の場合には、生体関連物質と反応性基とは、直接に非共有結合することもできるし、所望のリンカーを介して非共有結合することもできる。非共有結合の場合には、通常、生体関連物質と反応性基とは、リンカーを介して非共有結合する。生体関連物質と反応性基との共有結合は、周知の常法により容易に行なうことができる。生体関連物質がタンパク質のように、アミノ基と結合するカルボキシル基等を有している場合には直接結合することができ、このような官能基を有していない場合、あるいは所望により、リンカーを介して結合することも可能である。リンカーも周知であり、例えば、一端にカルボキシル基、他端に例えばマレイミド基等を有するものが広く用いられている。生体関連物質と反応性基との非共有結合は、例えば、水素結合、静電気的相互作用、疎水性相互作用、ファンデルワールス相互作用等によって行うことができる。これらは、一種を単独で用いてよく、二種以上を組み合わせて用いてもよい。非共有結合の例として、タンパク質、糖鎖、脂質等の間で見られる特異的な又は非特異的な相互作用を利用することができる。非共有結合を行う場合には、非共有結合するリンカーを介して結合することも可能である。リンカーは、反応性基側に導入してもよく、生体関連物質側に導入してもよく、反応性基側と生体関連物質側との両方に導入してもよい。生体関連物質自体がタンパク質のように、非共有結合しうる場合には、反応性基側にリンカーを結合させて、このリンカーと生体関連物質とを非共有結合させてもよい。また、反応性基側と生体関連物質側との両方に、互いに非共有結合しうる一組のリンカーを結合させて、これらのリンカー同士を非共有結合させてもよい。このような一組のリンカーとしては、例えば、ビオチン/アビジン、グルタチオン/グルタチオン-S-トランスフェラーゼ、ヒスチジン/金属等が挙げられる。 Bio-related substances and reactive groups can be bound by covalent or non-covalent bonds. In the case of covalent bonding, the biorelated substance and the reactive group can be covalently bonded directly or can be covalently bonded via a desired linker. In the case of non-covalent bond, the bio-related substance and the reactive group can be directly non-covalently bonded or can be non-covalently bonded via a desired linker. In the case of non-covalent bond, the bio-related substance and the reactive group are usually non-covalently bonded via a linker. The covalent bond between the biological substance and the reactive group can be easily carried out by a well-known conventional method. When the bio-related substance has a carboxyl group or the like that binds to an amino group, such as a protein, it can be directly bonded, and if it does not have such a functional group, or if desired, a linker can be used. It is also possible to combine via. Linkers are also well known, and for example, those having a carboxyl group at one end and a maleimide group at the other end are widely used. The non-covalent bond between the bio-related substance and the reactive group can be carried out by, for example, a hydrogen bond, an electrostatic interaction, a hydrophobic interaction, a van der Waals interaction, or the like. These may be used individually by 1 type, and may be used in combination of 2 or more type. As an example of non-covalent bonds, specific or non-specific interactions found between proteins, sugar chains, lipids, etc. can be utilized. When non-covalent bonding is performed, it is also possible to bond via a non-covalent linking linker. The linker may be introduced on the reactive group side, on the bio-related substance side, or on both the reactive group side and the bio-related substance side. When the bio-related substance itself can be non-covalently bonded like a protein, a linker may be bound to the reactive group side to non-covalently bind the linker to the bio-related substance. Further, a set of linkers that can be non-covalently bonded to each other may be bound to both the reactive group side and the bio-related substance side, and these linkers may be non-covalently bonded to each other. Examples of such a set of linkers include biotin / avidin, glutathione / glutathione-S-transferase, histidine / metal and the like.
 ここで、従来用いられているバイオチップは一度使用すると廃棄されるものである。このため、バイオチップに固定化されている一つのプローブと検出対象物との結合による検出対象物の検出を検討したい場合であっても、そのプローブが固定化されたバイオチップ一枚をまるごと使用しただけで廃棄する必要があり、コストアップに繋がっていた。また、通常、バイオチップには多種類のプローブがアレイ状に固定化されており、一度の操作で多種類のプローブによる検出対象物の検出を可能としたものである。このようなバイオチップに対して、バイオチップに固定化されている一つのプローブのみによる検出対象物の検出を検討することは、バイオチップに固定化されている残余のプローブが有効に使用されず無駄になるため非生産的であった。 Here, the conventionally used biochip is discarded once it is used. Therefore, even if you want to consider the detection of the detection target by the coupling between one probe immobilized on the biochip and the detection target, use the entire biochip on which the probe is immobilized. It was necessary to dispose of it just by doing it, which led to an increase in cost. In addition, usually, many kinds of probes are fixed in an array on a biochip, and it is possible to detect an object to be detected by many kinds of probes with one operation. Considering the detection of an object to be detected by only one probe immobilized on the biochip for such a biochip does not effectively use the residual probe immobilized on the biochip. It was unproductive because it was wasted.
 これに対して、本実施形態のバイオビーズ用粒子を用いることにより、例えば、バイオビーズをウェルプレートの各ウェルに分注することで、プローブが固定化されたビーズを反応や洗浄等の条件が異なる種々の独立した操作に供することができる。このため、小ロット又は少品種の検出対象物の検査に用いることができる。すなわち、従来のバイオチップであればバイオチップ一枚をまるごと使用する必要がありコストアップに繋がっていた。これに対して、本実施形態のバイオビーズ用粒子によれば、プローブを介する検出対象物の検出を、粒子に固定化されたポリマーに結合した一種類のプローブと検出対象物との関係で個々に独立して行うことができる。また、バイオチップを用いて目的の生体関連物質の検査を行う前に、本実施形態のバイオビーズを用いることにより事前に予備的な検査を行うことができる。 On the other hand, by using the particles for biobeads of the present embodiment, for example, by dispensing the biobeads into each well of the well plate, the conditions such as reaction and washing of the beads on which the probe is immobilized can be met. It can be used for a variety of different independent operations. Therefore, it can be used for inspection of small lots or small types of detection objects. That is, if it is a conventional biochip, it is necessary to use a whole biochip, which leads to an increase in cost. On the other hand, according to the particles for biobeads of the present embodiment, the detection of the object to be detected via the probe is individually performed in relation to the one type of probe bound to the polymer immobilized on the particles and the object to be detected. Can be done independently. Further, before the inspection of the target bio-related substance is performed using the biochip, a preliminary inspection can be performed in advance by using the biobeads of the present embodiment.
 また、本実施形態のバイオビーズ用粒子又はバイオビーズは、免疫沈降法やバイオチップで検査を行う際のバックグラウンド上昇の原因となる、サンプル試料に含まれる不要成分を除くための吸着処理に用いることができる。例えば、検出系には、バイオビーズ用の粒子、バイオチップ用の基板等の基材;免疫グロブリンやブロッキング材等の生体関連物質等;の検出系に用いられる物質が含まれているが、これらの物質に対して非特異的に吸着しやすいタンパク質等の非特異的吸着物が、血清等のサンプル試料に含まれている場合がある。この場合に、非特異的吸着物と吸着するバイオビーズ用粒子又はバイオビーズをサンプル試料と混合することで、非特異的吸着物とバイオビーズ用粒子又はバイオビーズとを吸着させることができる。さらに、非特異的吸着物をバイオビーズ用粒子又はバイオビーズとともに沈降させた後に、遠心分離させた上澄を分取することができる。そして、得られた上澄みをサンプルとして、続く検出操作に使用することができる。このようにして、バイオビーズ用粒子又はバイオビーズを用いた非特異的吸着物の吸着処理を行うことができる。これにより、バックグラウンドを上昇させるタンパク質の非特異的吸着物が、バイオビーズやバイオチップ等の検出系に用いられる物質の表面上に非特異的に吸着することを防ぎ、バックグラウンドの上昇を抑えることができる。非特異的吸着物と吸着するバイオビーズ用粒子又はバイオビーズとしては、非特異的吸着物が吸着するものであれば、適宜用いることができる。例えば、非特異的吸着物がバイオビーズ用粒子に吸着する場合には、プローブとしての生体関連物質が結合していないバイオビーズ用粒子を用いることができる。また、検出対象となるタンパク質に特異性の無く、且つ非特異的吸着物に特異性のある免疫グロブリンが結合したバイオビーズを用いることができる。 In addition, the biobead particles or biobeads of the present embodiment are used for an adsorption treatment for removing unnecessary components contained in a sample sample, which causes an increase in background when performing an immunoprecipitation method or a biochip test. be able to. For example, the detection system includes substances used for the detection system of particles for biobeads, substrates such as substrates for biochips; biological substances such as immunoglobulins and blocking materials; Non-specific adsorbates such as proteins that are easily adsorbed non-specifically to the substance may be contained in a sample sample such as serum. In this case, the non-specific adsorbent and the biobead particles or biobeads can be adsorbed by mixing the nonspecific adsorbent with the biobead particles or biobeads to be adsorbed with the sample sample. Further, the non-specific adsorbent can be precipitated together with the biobead particles or biobeads, and then the supernatant separated by centrifugation can be separated. Then, the obtained supernatant can be used as a sample for the subsequent detection operation. In this way, it is possible to carry out the adsorption treatment of the particles for biobeads or the non-specific adsorbent using the biobeads. This prevents non-specific adsorbents of proteins that raise the background from being non-specifically adsorbed on the surface of substances used in detection systems such as biobeads and biochips, and suppresses the rise in background. be able to. As the particles for biobeads or biobeads that adsorb to the non-specific adsorbent, any particles that adsorb the non-specific adsorbent can be appropriately used. For example, when the non-specific adsorbent is adsorbed on the biobead particles, the biobead particles to which the bio-related substance as a probe is not bound can be used. In addition, biobeads to which immunoglobulins having no specificity for the protein to be detected and having specificity for non-specific adsorbents can be used can be used.
 ここで、従来、反応性基を介してプローブをバイオチップに固定化する固定化方法が知られていたが、このような方法では、バイオチップに形成した反応性基に対して、直接に又はリンカーを介して、プローブを結合させるものであった。すなわち、バイオチップ-反応性基-プローブ間の結合が一繋ぎであるため、バイオチップへのプローブの固定化量が限られていた。 Here, conventionally, an immobilization method for immobilizing a probe on a biochip via a reactive group has been known, but in such a method, the reactive group formed on the biochip is directly or directly or. The probe was bound via a linker. That is, since the bond between the biochip, the reactive group, and the probe is one, the amount of the probe immobilized on the biochip is limited.
 これに対して、本実施形態のバイオビーズ用粒子では、反応性基を有するポリマーが共有結合によって粒子に固定化されている。これにより、本実施形態のバイオビーズ用粒子によれば、粒子に固定化されたポリマーによって、粒子にポリマーから分岐する複数の反応性基が修飾されている。すなわち、粒子に固定化されたポリマーによって複数の反応性基が提示されて、さらにこの複数の反応性基を介して多数のポリマーを固定化することができる。従って、本実施形態のバイオビーズ用粒子は、従来の固定化方法に比してプローブの固定化量が増加するものとなっている。また、プローブの固定化量の増加にあわせて、プローブの固定化率が向上し、固定化密度が均一なものとなる。さらには、本実施形態のバイオビーズ用粒子を用いることで、高い検出感度で再現性良く検出対象物を検査することが可能なバイオビーズを提供することができる。 On the other hand, in the particles for biobeads of the present embodiment, the polymer having a reactive group is immobilized on the particles by a covalent bond. As a result, according to the biobead particles of the present embodiment, the polymer immobilized on the particles modifies the plurality of reactive groups branched from the polymer into the particles. That is, a plurality of reactive groups are presented by the polymer immobilized on the particles, and a large number of polymers can be further immobilized through the plurality of reactive groups. Therefore, the particles for biobeads of the present embodiment have an increased amount of probe immobilization as compared with the conventional immobilization method. In addition, as the amount of probe immobilization increases, the probe immobilization rate improves and the immobilization density becomes uniform. Furthermore, by using the particles for biobeads of the present embodiment, it is possible to provide biobeads capable of inspecting a detection object with high detection sensitivity and high reproducibility.
 また、本実施形態のバイオビーズ用粒子は粒状であることで平板状の基板よりも表面積が大きいため、粒子の表面におけるポリマーやプローブの固定化量を増加させることができる。その結果、バイオビーズとして用いた場合に検出感度を向上させることができる。また、上述した吸着処理の際にも不要成分の吸着量を増大させることができる。 Further, since the particles for biobeads of the present embodiment have a larger surface area than the flat plate-shaped substrate because they are granular, the amount of polymer or probe immobilized on the surface of the particles can be increased. As a result, the detection sensitivity can be improved when used as biobeads. In addition, the amount of adsorption of unnecessary components can be increased during the above-mentioned adsorption treatment.
 また、粒子表面のプローブに検出対象物が結合して形成された複合体は、粒状であることで取り扱い性が増している。例えば、粒子本体が磁性を有する材質で形成されており、この粒子本体の表面がカーボンからなる磁性粒子であることにより、磁力等を用いて複合体を容易に分離、洗浄して回収することができる。 In addition, the complex formed by binding the detection target to the probe on the particle surface is granular, which makes it easier to handle. For example, since the particle body is made of a magnetic material and the surface of the particle body is a magnetic particle made of carbon, the complex can be easily separated, washed and recovered by using a magnetic force or the like. can.
 さらに、本実施形態のバイオビーズ用粒子は、少なくとも表面がカーボンからなる粒子を用いるため、表面がガラスやプラスチックからなる場合と比して、自家蛍光が少ない。そのため、近年多く用いられるようになった蛍光標識を利用した測定においても、正確に検出対象物を検出することが可能なバイオビーズを提供することができる。また、本実施形態のバイオビーズ用粒子は、少なくとも表面がカーボンからなる粒子を用いるため、表面がガラスやプラスチックからなる場合と比して、タンパク質の非特異的吸着が少ない。そのため、非特異的吸着に起因するシグナルが抑制されることでS/N比が向上して、高い検出感度及び再現性にて検出対象物を検出することが可能なバイオビーズを提供することができる。 Furthermore, since the particles for biobeads of the present embodiment use at least particles whose surface is made of carbon, autofluorescence is less than that of the case where the surface is made of glass or plastic. Therefore, it is possible to provide biobeads capable of accurately detecting an object to be detected even in a measurement using a fluorescent label, which has become widely used in recent years. Further, since the particles for biobeads of the present embodiment use at least particles whose surface is made of carbon, non-specific adsorption of proteins is less than in the case where the surface is made of glass or plastic. Therefore, it is possible to provide biobeads capable of detecting an object to be detected with high detection sensitivity and reproducibility by improving the S / N ratio by suppressing the signal caused by non-specific adsorption. can.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
<実施例1>
(アミノ基含有ポリマーが固定化されたバイオビーズ用粒子)
(1)表面がカーボンである粒子への光照射
 フェノール樹脂を炭化焼成して得られた、アモルファスカーボンから形成されるカーボンビーズ(リグナイト社製、品名:LPS-100D、平均粒径:87.1μm)0.1gを粒子材料とした。蓋付き石英セルにカーボンビーズを入れ、蓋をした後セルを横向きにして、カーボンビーズがセル内に均一に分布するようにセルを振とうした。次いで、紫外線照射装置(セン特殊光源株式会社,フォト・サーフェイス・プロセッサーPL16-110)を用いて、カーボンビーズに大気圧下で2分間紫外線照射(18.5mW/cm、254nm)を行った。さらにセルを振とうさせてカーボンビーズを撹拌した後に、再度、カーボンビーズに大気圧下で2分間紫外線照射(18.5mW/cm、254nm)を行った。
<Example 1>
(Particles for biobeads on which an amino group-containing polymer is immobilized)
(1) Light irradiation of particles whose surface is carbon Carbon beads formed from amorphous carbon obtained by carbonizing and firing a phenol resin (manufactured by Lignite, product name: LPS-100D, average particle size: 87.1 μm) ) 0.1 g was used as a particle material. The carbon beads were placed in a quartz cell with a lid, and after the lid was closed, the cell was turned sideways and the cell was shaken so that the carbon beads were evenly distributed in the cell. Next, using an ultraviolet irradiation device (Sen Special Light Source Co., Ltd., Photo Surface Processor PL16-110), the carbon beads were irradiated with ultraviolet rays (18.5 mW / cm 2 , 254 nm) for 2 minutes under atmospheric pressure. Further, the cells were shaken to stir the carbon beads, and then the carbon beads were again irradiated with ultraviolet rays (18.5 mW / cm 2 , 254 nm) under atmospheric pressure for 2 minutes.
(2)ポリマー溶液の塗布及びポリマーの固定化
 ポリアリルアミン(PAA:平均分子量3000)をエタノールで1質量%となるように濃度調整したものをコーティング液とした。室温条件下、20mlのコーティング液に撹拌下で紫外線照射を行ったカーボンビーズを浸漬させ、撹拌下で15分間保持した。その後、濾紙を用いた減圧濾過によりカーボンビーズとコーティング液とを固液分離して、得られたカーボンビーズを30分間真空乾燥した(真空度-0.09MPa)(ポリマー溶液の塗布操作)。
 次いで、乾燥させたカーボンビーズを蓋付き石英セルに入れ、カーボンビーズがセル内に均一に分布するようにセルを振とうした後、セルを真空下(真空度-0.09MPa)で2分間紫外線照射(18.5mW/cm,254nm)した。セルを大気圧に開放後、セルを振とうしてカーボンビーズがセル内に均一に分布するように撹拌した後に、2回目の紫外線照射を真空下(真空度-0.09MPa)で2分間行った(ポリマーの固定化操作)。
 次いで、純水にカーボンビーズを浸漬させて撹拌下で洗浄した。さらに、濾紙を用いた減圧濾過によりカーボンビーズと水とを固液分離して、得られたカーボンビーズを30分間真空乾燥(真空度-0.09MPa)させてバイオビーズ用粒子1を得た。
(2) Application of Polymer Solution and Polymer Immobilization A coating solution was prepared by adjusting the concentration of polyallylamine (PAA: average molecular weight 3000) to 1% by mass with ethanol. Under room temperature conditions, carbon beads irradiated with ultraviolet rays under stirring were immersed in 20 ml of a coating solution, and the beads were kept under stirring for 15 minutes. Then, the carbon beads and the coating liquid were solid-liquid separated by vacuum filtration using a filter paper, and the obtained carbon beads were vacuum-dried for 30 minutes (vacuum degree −0.09 MPa) (polymer solution coating operation).
Next, the dried carbon beads are placed in a quartz cell with a lid, the cell is shaken so that the carbon beads are evenly distributed in the cell, and then the cell is subjected to ultraviolet rays under vacuum (vacuum degree −0.09 MPa) for 2 minutes. irradiation (18.5mW / cm 2, 254nm) was. After opening the cell to atmospheric pressure, the cell is shaken to stir so that the carbon beads are evenly distributed in the cell, and then the second ultraviolet irradiation is performed under vacuum (vacuum degree −0.09 MPa) for 2 minutes. (Polymer immobilization operation).
Next, the carbon beads were immersed in pure water and washed under stirring. Further, the carbon beads and water were solid-liquid separated by vacuum filtration using a filter paper, and the obtained carbon beads were vacuum-dried for 30 minutes (vacuum degree −0.09 MPa) to obtain particles 1 for biobeads.
(3)蛍光像によるアミノ基含有ポリマー固定化の評価
 64穴貫通孔スライドの一方の主面側(下面側)にカバーガラスを配置することで、スライドの貫通孔を壁面として、カバーガラスを底面とするウェルを形成した。このスライドにウェルを中心にバイオビーズ粒子1を供給して、64穴貫通孔スライドの他方の主面側(上面側)にカバーガラスを配置することでウェルに蓋をした。このスライドを蛍光スキャナー(富士フイルム FLA―8000)でスキャン(Resolution 20μm、PMT 50%、励起光532nm、発光570nm)し、蛍光像(図1)及び蛍光強度を測定した。バイオビーズ粒子1の蛍光像を図1に示す。蛍光強度は268LAU/mmであった。
(3) Evaluation of immobilization of amino group-containing polymer by fluorescence image By arranging the cover glass on one main surface side (lower surface side) of the 64-hole through-hole slide, the through hole of the slide is used as the wall surface and the cover glass is used as the bottom surface. Well was formed. Biobead particles 1 were supplied to this slide centering on the well, and the well was covered by arranging a cover glass on the other main surface side (upper surface side) of the 64-hole through-hole slide. This slide was scanned with a fluorescence scanner (Fujifilm FLA-8000) (Resolution 20 μm, PMT 50%, excitation light 532 nm, emission 570 nm), and the fluorescence image (FIG. 1) and fluorescence intensity were measured. The fluorescence image of the biobead particles 1 is shown in FIG. The fluorescence intensity was 268 LAU / mm 2 .
(4)SEMによるビーズの表面性状の評価
 SEM(Scanning Electron Microscope;走査型電子顕微鏡)を用いて、バイオビーズ粒子1の表面性状を観察した。バイオビーズ粒子1のSEM像を図2に示す。
(4) Evaluation of surface texture of beads by SEM The surface texture of biobead particles 1 was observed using a SEM (Scanning Electron Microscope). The SEM image of the biobead particles 1 is shown in FIG.
(5)EPMAによる窒素原子のマッピングと強度測定
 EPMA(Electron Probe Micro Analyzer;電子線マイクロアナライザ)を用いて、バイオビーズ粒子1の窒素原子(N原子)の特性X線のマッピングと強度測定を行った。バイオビーズ粒子1のN原子のマッピング結果を図3に示す。バイオビーズ粒子1のN原子の強度を図4に示す。図4では、横軸は波長を、縦軸は強度を示している。また、図4の「修飾-1」~「修飾-5」は、それぞれ分析した場所を示している。なお、図4の横軸と縦軸の関係は、図11についても同様である。
(5) Mapping and intensity measurement of nitrogen atoms by EPMA Using EPMA (Electron Probe Micro Analyzer), characteristic X-ray mapping and intensity measurement of nitrogen atoms (N atoms) of biobead particles 1 are performed. rice field. The mapping result of N atom of the biobead particle 1 is shown in FIG. The intensity of the N atom of the biobead particle 1 is shown in FIG. In FIG. 4, the horizontal axis represents the wavelength and the vertical axis represents the intensity. Further, "Modification-1" to "Modification-5" in FIG. 4 indicate the locations analyzed respectively. The relationship between the horizontal axis and the vertical axis in FIG. 4 is the same for FIG.
<実施例2>
(アミノ基含有ポリマーが固定化されたバイオビーズ用粒子(複数回処理)
 実施例1において、ポリマー溶液の塗布操作と2回の紫外線照射とを行った後に、再度のポリマー溶液の塗布操作と2回の紫外線照射とを繰り返したこと以外は同様にしてバイオビーズ用粒子2を作製した。
<Example 2>
(Particles for biobeads on which an amino group-containing polymer is immobilized (multiple treatments)
In Example 1, the particles 2 for biobeads were similarly applied except that the polymer solution coating operation and the two ultraviolet irradiations were performed, and then the polymer solution coating operation and the two ultraviolet irradiations were repeated. Was produced.
 実施例1と同様にして、バイオビーズ用粒子2の蛍光像及び蛍光強度を測定した。バイオビーズ粒子2の蛍光像を図5に示す。蛍光強度は2068LAU/mmであった。また、実施例1と同様にして、バイオビーズ用粒子2のSEMによるビーズの表面性状の評価、及びEPMAによる窒素原子のマッピングを行った。バイオビーズ粒子2のSEM像を図6に示す。バイオビーズ粒子2のN原子のマッピング結果を図7に示す。 The fluorescence image and the fluorescence intensity of the biobead particles 2 were measured in the same manner as in Example 1. The fluorescence image of the biobead particles 2 is shown in FIG. The fluorescence intensity was 2068 LAU / mm 2 . Further, in the same manner as in Example 1, the surface texture of the beads of the biobead particles 2 was evaluated by SEM and the nitrogen atoms were mapped by EPMA. The SEM image of the biobead particles 2 is shown in FIG. The mapping result of N atom of the biobead particle 2 is shown in FIG.
<比較例1>
(未処理のカーボンビーズ)
 実施例1において粒子材料として使用した、アモルファスカーボンから形成される、紫外線照射前の未処理のカーボンビーズについて、実施例1と同様の方法により蛍光像及び蛍光強度を測定した。カーボンビーズの蛍光像を図8に示す。蛍光強度は86LAU/mmであった。また、実施例1と同様にして、カーボンビーズのSEMによるビーズの表面性状の評価、及びEPMAによる窒素原子のマッピングと強度測定を行った。カーボンビーズのSEM像を図9に示す。カーボンビーズのN原子のマッピング結果を図10に示す。カーボンビーズのN原子の強度を図11に示す。なお、図11の「未修飾-2」~「未修飾-4」は、それぞれ分析した場所を示している。
<Comparative example 1>
(Untreated carbon beads)
The fluorescence image and fluorescence intensity of the untreated carbon beads formed from amorphous carbon used as the particle material in Example 1 before irradiation with ultraviolet rays were measured by the same method as in Example 1. The fluorescence image of the carbon beads is shown in FIG. The fluorescence intensity was 86 LAU / mm 2 . Further, in the same manner as in Example 1, the surface texture of the carbon beads was evaluated by SEM, and the nitrogen atom was mapped and the strength was measured by EPMA. The SEM image of the carbon beads is shown in FIG. The mapping result of N atoms of carbon beads is shown in FIG. The strength of the N atom of the carbon beads is shown in FIG. In addition, "unmodified-2" to "unmodified-4" in FIG. 11 indicate the analyzed locations, respectively.
<検討>
 実施例1、実施例2及び比較例1で得られたバイオビーズ用粒子の蛍光像を比較すると、ポリアリルアミン(PAA)の固定化を行っていない比較例1の蛍光像(図8)は蛍光シグナルを殆ど示さなかった。これに対し、実施例1の蛍光像(図1)はスライド上で発せられる蛍光シグナルが観察されており、アミノ基含有ポリマーが固定されていることが確認された。なお、実施例1では、スライドのウェル内とウェル周辺に蛍光修飾粒子が供給されており、ウェル内とその周辺に蛍光シグナルが観察されている。また、ポリマー溶液の塗布操作と2回の紫外線照射を繰り返した実施例2の蛍光像(図5)は、実施例1の蛍光像(図1)に比べて蛍光シグナルが密に発せられており、強い蛍光強度を示した。さらに、実施例1のバイオビーズ用粒子の蛍光強度(268LAU/mm)は比較例1の蛍光強度(86LAU/mm)よりも非常に高く、また、実施例2のバイオビーズ用粒子の蛍光強度(2068LAU/mm)は実施例1の蛍光強度よりも更に高く、アミノ基含有ポリマーの固定化量が多いことが分かる。
<Examination>
Comparing the fluorescence images of the particles for biobeads obtained in Example 1, Example 2 and Comparative Example 1, the fluorescence image (FIG. 8) of Comparative Example 1 in which polyallylamine (PAA) was not immobilized is fluorescent. It showed almost no signal. On the other hand, in the fluorescence image of Example 1 (FIG. 1), the fluorescence signal emitted on the slide was observed, and it was confirmed that the amino group-containing polymer was immobilized. In Example 1, fluorescence-modified particles are supplied into and around the wells of the slide, and fluorescence signals are observed in and around the wells. Further, in the fluorescence image of Example 2 (FIG. 5) in which the application operation of the polymer solution and the irradiation with ultraviolet rays were repeated twice, the fluorescence signal was emitted more densely than the fluorescence image of Example 1 (FIG. 1). , Showed strong fluorescence intensity. Furthermore, the fluorescence of the fluorescence intensity (268LAU / mm 2) is much higher than the fluorescence intensity of Comparative Example 1 (86LAU / mm 2), also in Example 2 biobeads particles bio beads for particles of Example 1 The intensity (2068 LAU / mm 2 ) is even higher than the fluorescence intensity of Example 1, and it can be seen that the amount of the amino group-containing polymer immobilized is large.
 また、比較例1のSEM像(図9)では、ビーズの表面が滑らかであったのに対して、実施例1のSEM像(図2)では、ビーズの表面にかさぶた状の凹凸が散発的に観察された。さらに、実施例2のSEM像(図6)では、実施例1のSEM像(図2)と比べて粒子表面のかさぶた状の凹凸が連続して粒子の大部分を覆うように観察された。 Further, in the SEM image of Comparative Example 1 (FIG. 9), the surface of the beads was smooth, whereas in the SEM image of Example 1 (FIG. 2), scab-like irregularities were sporadically formed on the surface of the beads. Was observed in. Further, in the SEM image of Example 2 (FIG. 6), as compared with the SEM image of Example 1 (FIG. 2), scab-like irregularities on the particle surface were observed to continuously cover most of the particles.
 また、比較例1のEPMAマッピング(図10)では、N原子の分布がわずかにしか観察されなかったのに対して、実施例1のEPMAマッピング(図3)では、N原子の強い強度の分布を示しているビーズが観察された。図3では、強くN原子が分布している粉体を丸線で囲って示している。さらに、実施例2のEPMAマッピング(図7)では、実施例1のEPMAマッピング(図3)と比べて、N原子の強度が強く観察されるビーズが増加しており、また個々のビーズが示すN原子の強度も増加していた。 Further, in the EPMA mapping of Comparative Example 1 (FIG. 10), the distribution of N atoms was observed only slightly, whereas in the EPMA mapping of Example 1 (FIG. 3), the distribution of strong intensity of N atoms was observed. Beads showing the above were observed. In FIG. 3, the powder in which N atoms are strongly distributed is shown by enclosing it with a circle. Furthermore, in the EPMA mapping of Example 2 (FIG. 7), the number of beads in which the intensity of N atoms is strongly observed is increased as compared with the EPMA mapping of Example 1 (FIG. 3), and each bead shows. The intensity of N atoms was also increasing.
 また、波長31.5(A)付近に示されるN原子のピーク強度は、比較例1(図11)では微弱であったのに対して、実施例1(図4)では強いピーク強度を示すものがみられた。 Further, the peak intensity of the N atom shown near the wavelength of 31.5 (A) was weak in Comparative Example 1 (FIG. 11), whereas it showed a strong peak intensity in Example 1 (FIG. 4). Something was seen.
 上述したように、比較例1との対比により、実施例1のバイオビーズ粒子1ではアミノ基含有ポリマーが固定されていること明らかとなった。さらに、実施例1との対比により、実施例2のバイオビーズ粒子2ではポリマー溶液の塗布操作と紫外線照射とを繰り返すことで、より多くのアミノ基含有ポリマーが固定されていることが裏付けられた。 As described above, by comparison with Comparative Example 1, it became clear that the amino group-containing polymer was fixed in the biobead particles 1 of Example 1. Furthermore, by comparison with Example 1, it was confirmed that more amino group-containing polymers were fixed in the biobead particles 2 of Example 2 by repeating the application operation of the polymer solution and the irradiation with ultraviolet rays. ..

Claims (14)

  1.  少なくとも表面がカーボンからなる粒子の表面に、アミノ基含有ポリマー、カルボキシル基含有ポリマー、アルデヒド基含有ポリマー、及びエポキシ基含有ポリマーからなる群より選ばれる少なくとも1種のポリマーが共有結合により固定化されたバイオビーズ用粒子。 At least one polymer selected from the group consisting of an amino group-containing polymer, a carboxyl group-containing polymer, an aldehyde group-containing polymer, and an epoxy group-containing polymer was covalently immobilized on the surface of particles having at least a carbon surface. Particles for biobeads.
  2.  前記カーボンがアモルファスカーボンである請求項1記載の粒子。 The particle according to claim 1, wherein the carbon is amorphous carbon.
  3.  前記粒子の表面に固定化されたポリマーがアミノ基含有ポリマーである請求項1又は2記載の粒子。 The particle according to claim 1 or 2, wherein the polymer immobilized on the surface of the particle is an amino group-containing polymer.
  4.  前記粒子の表面に固定化される前の状態で、前記アミノ基含有ポリマーを構成する構成単位の50%以上が、それぞれアミノ基を少なくとも1個有する請求項3記載の粒子。 The particle according to claim 3, wherein 50% or more of the constituent units constituting the amino group-containing polymer each have at least one amino group in a state before being immobilized on the surface of the particles.
  5.  前記アミノ基含有ポリマーがポリアリルアミンである請求項3又は4記載の粒子。 The particles according to claim 3 or 4, wherein the amino group-containing polymer is polyallylamine.
  6.  前記アミノ基含有ポリマーの重量平均分子量が、ポリアリルアミン換算で1000以上である請求項3~5のいずれか1項に記載の粒子。 The particle according to any one of claims 3 to 5, wherein the weight average molecular weight of the amino group-containing polymer is 1000 or more in terms of polyallylamine.
  7.  前記アミノ基含有ポリマーの重量平均分子量が6万以下である請求項3~6のいずれか1項に記載の粒子。 The particle according to any one of claims 3 to 6, wherein the amino group-containing polymer has a weight average molecular weight of 60,000 or less.
  8.  請求項1~7のいずれか1項に記載のバイオビーズ用粒子の前記アミノ基に、共有結合又は非共有結合により生体関連物質が結合されたバイオビーズ。 Biobeads in which a bio-related substance is bound to the amino group of the biobead particles according to any one of claims 1 to 7 by a covalent bond or a non-covalent bond.
  9.  前記粒子の表面に前記アミノ基含有ポリマーを塗布した後、減圧雰囲気下又は不活性ガス雰囲気下で該粒子表面を光照射することを含む請求項1~7のいずれか1項に記載のバイオビーズ用粒子の製造方法。 The biobead according to any one of claims 1 to 7, which comprises applying the amino group-containing polymer to the surface of the particles and then irradiating the surface of the particles with light under a reduced pressure atmosphere or an inert gas atmosphere. Manufacturing method of particles for use.
  10.  前記塗布を行う操作及び前記光照射を行う操作を複数回行う請求項9記載の製造方法。 The manufacturing method according to claim 9, wherein the operation of performing the coating and the operation of performing the light irradiation are performed a plurality of times.
  11.  前記粒子の表面をプラズマ照射又は光照射し、次いで該粒子に前記アミノ基含有ポリマーを塗布することを含む請求項1~7のいずれか1項に記載のバイオビーズ用粒子の製造方法。 The method for producing particles for biobeads according to any one of claims 1 to 7, which comprises irradiating the surface of the particles with plasma or light, and then applying the amino group-containing polymer to the particles.
  12.  前記粒子に前記アミノ基含有ポリマーを塗布した後、さらに減圧雰囲気下又は不活性ガス雰囲気下で該粒子の表面を光照射することを含む請求項11記載の製造方法。 The production method according to claim 11, further comprising irradiating the surface of the particles with light under a reduced pressure atmosphere or an inert gas atmosphere after applying the amino group-containing polymer to the particles.
  13.  前記塗布を行う操作及びその後さらに光照射を行う操作を複数回行う請求項11又は12記載の製造方法。 The manufacturing method according to claim 11 or 12, wherein the operation of applying the coating and then the operation of further irradiating the light are performed a plurality of times.
  14.  請求項1~7に記載の粒子の、バイオビーズの粒子としての使用。 Use of the particles according to claims 1 to 7 as particles of biobeads.
PCT/JP2021/009814 2020-03-26 2021-03-11 Bio-bead particles, and method for producing same WO2021193108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056613 2020-03-26
JP2020056613 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193108A1 true WO2021193108A1 (en) 2021-09-30

Family

ID=77892021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009814 WO2021193108A1 (en) 2020-03-26 2021-03-11 Bio-bead particles, and method for producing same

Country Status (1)

Country Link
WO (1) WO2021193108A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346830A (en) * 1991-05-23 1992-12-02 Tonen Corp Packing material for chromatography
JP2009513798A (en) * 2005-10-27 2009-04-02 クレムソン・ユニヴァーシティ Fluorescent carbon nanoparticles
US20110177619A1 (en) * 2008-07-14 2011-07-21 Andrew Metters In vitro diagnostic markers comprising carbon nanoparticles and kits
US20120238725A1 (en) * 2009-09-04 2012-09-20 Northwestern University Primary carbon nanoparticles
JP2015513107A (en) * 2012-04-13 2015-04-30 ビバクタ、リミテッドVivacta Limited Assay label

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346830A (en) * 1991-05-23 1992-12-02 Tonen Corp Packing material for chromatography
JP2009513798A (en) * 2005-10-27 2009-04-02 クレムソン・ユニヴァーシティ Fluorescent carbon nanoparticles
US20110177619A1 (en) * 2008-07-14 2011-07-21 Andrew Metters In vitro diagnostic markers comprising carbon nanoparticles and kits
US20120238725A1 (en) * 2009-09-04 2012-09-20 Northwestern University Primary carbon nanoparticles
JP2015513107A (en) * 2012-04-13 2015-04-30 ビバクタ、リミテッドVivacta Limited Assay label

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAKOVA PAVLINA ET AL.: "Cytocompatibility of amine functionalized carbon nanoparticles grafted on polyethylene", MATERIALS SCIENCE AND ENGINEERING C, vol. 60, 25 November 2015 (2015-11-25), pages 394 - 401, XP029365436, DOI: 10.1016/j.msec.2015.11.058 *

Similar Documents

Publication Publication Date Title
US9857369B2 (en) Biochip substratum and method for production thereof
Wang et al. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly (ethylene oxide) and low molecular weight poly (ethylene glycol) thin films
Miyachi et al. Application of polymer‐embedded proteins to fabrication of DNA array
Zanini et al. Polyethylene glycol grafting on polypropylene membranes for anti-fouling properties
JP4818056B2 (en) Structure having a binding functional group on a substrate for binding a capture molecule for capturing a target substance
Chen et al. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR sensor
Sangsuwan et al. Patterned poly (acrylic acid) brushes containing gold nanoparticles for peptide detection by surface-assisted laser desorption/ionization mass spectrometry
JPH10114832A (en) Surface coated with amino groups
EP2176066A1 (en) Structural member and method of producing the structural member
Ducker et al. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents
Lin et al. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity
Singh et al. Electrochemical impedance spectroscopy reveals a new mechanism based on competitive binding between Tris and protein on a conductive biomimetic polydopamine surface
WO2021193108A1 (en) Bio-bead particles, and method for producing same
Kumar et al. Diamond Surfaces with Clickable Antifouling Polymer Coating for Microarray‐Based Biosensing
Mutlu et al. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor
Chu et al. Surface Plasmon‐Based Techniques for the Analysis of Plasma Deposited Functional Films and Surfaces
Van et al. A highly sensitive impedimetric sensor based on a MIP biomimetic for the detection of enrofloxacin
Chu et al. Biologically multifunctional surfaces using plasma polymerization methods
WO2002053299A1 (en) A method for the preparation of a substrate for immobilising chemical compounds and the substrate and the use thereof
Killian et al. Influence of bioactive linker molecules on protein adsorption
Yang et al. Thin, highly crosslinked polymer layer synthesized via photoinitiated graft copolymerization on a self‐assembled‐monolayer‐coated gold surface
Chatelier et al. Covalent attachment and non-specific binding of reactive probe molecules onto surfaces
Choi et al. Patterned immobilization of biomolecules by using ion irradiation‐induced graft polymerization
Kim et al. One-step fabrication method of non-fouling amine-functionalized polyethylene glycol thin film using a single precursor through plasma-enhanced chemical vapor deposition
Kursun et al. Glycopolymer brushes with specific protein recognition property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP