WO2021193097A1 - Method for determining factor of chemical substance influencing endocrine system - Google Patents

Method for determining factor of chemical substance influencing endocrine system Download PDF

Info

Publication number
WO2021193097A1
WO2021193097A1 PCT/JP2021/009779 JP2021009779W WO2021193097A1 WO 2021193097 A1 WO2021193097 A1 WO 2021193097A1 JP 2021009779 W JP2021009779 W JP 2021009779W WO 2021193097 A1 WO2021193097 A1 WO 2021193097A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
acid
seq
endocrine
represented
Prior art date
Application number
PCT/JP2021/009779
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 清水
文博 山田
駿 河合
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021193097A1 publication Critical patent/WO2021193097A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for determining factors affecting the endocrine system of a chemical substance and a kit for carrying out this method.
  • the present invention also relates to a method for selecting a gene that serves as a specific marker and / or an endogenous metabolite that serves as a specific marker for determining factors that affect the endocrine system of a chemical substance.
  • ED substances endocrine disrupting chemicals
  • IPCS International Chemical Safety Cards
  • WHO World Health Organization
  • ED substances have a detrimental effect on the health of an individual or its offspring by altering the function of the endocrine system of the individual. It is an exogenous substance or a mixture thereof that causes Furthermore, in June 2018, guidance for ED substance determination was prepared by the European Food Safety Authority (EFSA), the European Chemicals Agency (ECHA), and the Joint Research Center (JRC).
  • EFSA European Food Safety Authority
  • ECHA European Chemicals Agency
  • JRC Joint Research Center
  • an ED substance is determined if three items are met: adverse effects on the endocrine system, mechanism of action that changes the endocrine system (MOA), and the relationship between MOA and toxic effects.” More detailed evaluation of the effects on the endocrine system has come to be required.
  • the effects on the endocrine system include, for example, atrophy and weight gain of tissues related to sex hormones such as ovary, uterus, testis, prostate, adrenal gland and blood, and tissues that control the secretion of higher hormones that control sex hormones.
  • sex hormones such as ovary, uterus, testis, prostate, adrenal gland and blood
  • tissues that control the secretion of higher hormones that control sex hormones include, for example, atrophy and weight gain of tissues related to sex hormones such as ovary, uterus, testis, prostate, adrenal gland and blood, and tissues that control the secretion of higher hormones that control sex hormones.
  • the pituitary gland, hypothalamus, hormonal gland, etc. are enlarged and atrophic.
  • the endocrine system such as adrenal glands and testis derived from animals to which the chemical substances were administered Impact may be seen on related organizations.
  • chemical substances such as having the same activity as sex hormones (male hormones and female hormones) or showing that the sex hormone synthesis pathway has been inhibited or induced. It is difficult to newly register or re-register the compound when it is considered that the compound acted directly in the living body.
  • Non-Patent Document 1 Neurotransmitters such as heart rate, blood pressure, adrenaline and noradrenaline of a test animal are known as stress markers, and among them, cortisol, which is an adrenocortical hormone, is well known (Non-Patent Document 1). ..
  • cortisol has large diurnal fluctuations and individual differences, and cannot be analyzed accurately with good reproducibility.
  • stress can be evaluated by quantifying the expression level of a stress evaluation marker gene in leukocytes (Patent Document 1), but the direct action of a chemical substance on the endocrine system is discriminated. I could't.
  • the problem to be solved by the present invention is to simultaneously determine whether the factor of the influence of a chemical substance on the endocrine system is a direct action as an endocrine disruptor or an indirect action as stress at the same time with high accuracy. To provide a way that can be done.
  • the present inventors have made a specific marker in an organism, tissue, or cell that is not in contact with the chemical substance to be tested and in the organism, tissue, or cell that is in contact with the chemical substance.
  • a specific marker By analyzing fluctuations in the expression level of a gene and / or the amount of an endogenous metabolite that serves as a specific marker, factors that affect the endocrine system of a chemical substance act directly as an endocrine disruptor.
  • the present invention has been completed by finding that it is possible to determine whether the substance acts indirectly as stress.
  • the present invention is as follows. [1] It is a method for discriminating factors that affect the endocrine system in an organism possessed by a chemical substance.
  • a method comprising the step of determining whether the chemical substance is a factor affecting the endocrine system as an endocrine disturbing substance or a factor affecting the endocrine system as stress.
  • the gene and / or the endogenous metabolite machine-learns and / or the amount of the gene expression and / or the amount of the endogenous metabolite in a sample taken from a subject not in contact with the chemical and a subject in contact with the chemical.
  • the method according to [1] which is selected by applying to a statistical method.
  • the genes are guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen sterol binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513
  • the genes are from the lysine demethylase 8 gene, the microtubule-associated protein RP / EB family member 3 gene, the oxysterol binding protein-like 3 gene, the translocase of outer mitochondrial membrane 70 gene, and A_64_P100513 (the gene represented by SEQ ID NO: 5).
  • One or more selected from the group, said endogenous metabolites are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, benzoic acid, isoleucine, ellaidic acid, dopamine, and.
  • the method according to any one of [1] to [3], which is one or more selected from the group consisting of mannitol.
  • [5] The method according to any one of [1] to [4], wherein the analysis in the step (2) is performed using machine learning and / or a statistical method.
  • the machine learning and / or statistical method is linear regression, logistic regression, support vector machine, neural network, random forest, Lasso (LASSO) regression, ridge (Ridge) regression, elastic net regression, t test, ROC curve,
  • the method according to [5] which is selected from the group consisting of and variance analysis (ANOVA).
  • the machine learning is based on the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, and translocase of outer mitochondrial membrane 70 gene.
  • A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylesterase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and One or more genes selected from the group consisting of A_64_P100513 (gene represented by SEQ ID NO: 5) and / or selected from the group consisting of 2-deoxyglucose, 3-hydroxyisobutyric acid, and 4-aminobutyric acid.
  • the method according to [6] wherein when a sex metabolite is used, Lasso regression is used, and the Lasso regression uses logistic regression analysis to construct a model formula.
  • kits for determining a factor of a chemical substance that affects the endocrine system in an organism includes a means for carrying out the method according to any one of [1] to [13].
  • the means include the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513
  • Steps to measure gene expression and / or amount of endogenous metabolites in samples taken from, and (2) genes in samples taken from subjects not in contact with endocrine disruptors and those in contact The step of measuring the expression level and / or the amount of the endogenous metabolite, (3) the expression level of the gene obtained in the steps (1) and (2), and / or the amount of the endogenous metabolite
  • the present invention when investigating the effects of chemical substances on the endocrine system of an organism, not only the feed reduction data, but also the expression level of genes that are specific markers in multiple tissues and / or specific endogenous metabolites. It is possible to determine the factors of influence on the endocrine system from the fluctuation data of the amount of. Furthermore, the present invention can easily determine the factors that affect the endocrine system of chemical substances with high versatility and accuracy.
  • the present invention is a method for determining a factor of a chemical substance that affects the endocrine system in an organism, and (1) is specific in a subject to which the chemical substance is not in contact and a sample collected from a subject in contact with the chemical substance.
  • a chemical substance affects the endocrine system in an organism by measuring fluctuations in the expression level of a gene that serves as a specific marker and / or the amount of an endogenous metabolite that serves as a specific marker. Whether the factor acts directly as an endocrine disruptor or indirectly as a stress can be easily and simultaneously determined.
  • a chemical substance affects the endocrine system of an organism as either an endocrine disruptor or stress.
  • the effect as an endocrine disruptor on the endocrine system means that by altering the function of the endocrine system of an organism, it has a detrimental effect on the health of the individual or its offspring (direct action), for example, the adrenal gland. , Womb, testis, prostate, adrenal gland, blood and other sex hormone-related tissues such as atrophy or weight gain, or pituitary gland, hypothalamus, or thyroid gland, which are tissues that control the secretion of superior hormones that control sex hormones. Such as enlargement or atrophy.
  • the effect as stress on the endocrine system means the effect (indirect action) due to the stress on the organism due to the administration of the chemical substance, and is distinguished from the effect as the endocrine disruptor. It is a thing.
  • effects as stress include an increase in heart rate or blood pressure, an increase or decrease in neurotransmitters such as adrenaline and noradrenaline in the body, and atrophy of the thymus. According to the method of the present invention, it is possible to determine whether the factor in which the chemical substance of interest affects the endocrine system of an organism is an endocrine disruptor or a stress.
  • the endocrine disruptor in the present invention means an exogenous substance or a mixture thereof, which is known to change the function of the endocrine system of an individual organism.
  • the stress in the present invention means a substance that causes an organism to imitate a stress state.
  • Known markers for measuring stress include heart rate, blood pressure, neurotransmitters such as adrenaline and noradrenaline, and corticosteroids cortisol or corticosterone in test animals.
  • the stress in the present invention includes, for example, those caused by starvation, restraint, swimming, electricity and the like.
  • the endocrine system in the present invention is also referred to as an endocrine system, and means an organ that secretes hormones in living organisms, especially animals. Examples include the body, adrenal glands, thyroid glands, parathyroid glands, and pancreas.
  • the chemical substance to which the method of the present invention can be applied is not particularly limited as long as it is a chemical substance for which it is necessary to investigate the factors of influence on the endocrine system of the organism.
  • a chemical substance for example, it may be a useful candidate substance developed as a novel compound developed in the fields of pesticides, medicines, veterinary medicine, the environment and the like.
  • the chemical substance may include a known chemical substance, for example, one that may have an adverse effect on the endocrine system in an organism.
  • Organisms to which the present invention applies include any animal that may be affected by the endocrine system of chemicals, such as vertebrates, mammals, birds, reptiles, amphibians, fish, and pet animals. Examples include, but are not limited to, vertebrates, shellfish, insects, arthropods such as spiders, and invertebrates such as soft-bodied animals.
  • Organisms applied to the present invention are preferably humans, monkeys, chimpanzees, mice, rats, rabbits, and more preferably humans, mice, or rats.
  • examples of the rat include the RccHan: Wist system.
  • the subject to which the present invention is applied may be the organism, or the tissue or cell of the organism.
  • the tissue or cell of the organism may be, for example, a tissue or cell formed by in vitro differentiation induction from a pluripotent stem cell or somatic stem cell of the organism, or a tissue or cell created by direct reprogramming. good.
  • the sample used in the method of the invention may be part or all taken from any body tissue or organ in an organism, taken from an organ or tissue that reflects the effects of chemicals on the endocrine system. It may be the one that has been done. It may also be part or all of the tissue, organ or cell of the subject to which the present invention applies.
  • the sample includes tissues, liver, or blood (or blood) related to the endocrine system including ovaries, uterus, placenta, testis, prostate, pituitary gland, hypothalamus, pineal gland, adrenal gland, thyroid gland, parathyroid gland, and pancreas. It may be collected from (serum), or cells isolated from these tissues or cultured cells thereof can be used, but is not limited thereto.
  • the sample used in the method of the invention is preferably taken from blood (or serum), thymus, liver, or pituitary gland.
  • the method of the present invention includes (1) measuring the expression level of the gene and / or the amount of the endogenous metabolite in a subject not in contact with a chemical substance and a sample collected from the subject in contact with the chemical substance. included.
  • the method of contacting the chemical substance with the organism in the present invention may be any method as long as the chemical substance can be introduced into the body of the organism, and the method can be used orally or parenterally to the organism. It may be injected, for example, subcutaneously or intraperitoneally. Alternatively, the contact may be contact or exposure to the surface of the body of the organism.
  • a method common in the art can be used.
  • the method of collecting the sample may differ depending on each tissue or organ, and includes, for example, collecting by surgically removing a part from the target tissue or organ.
  • the method also includes collecting blood by injection into an organism.
  • a sample may be collected from the target tissue or organ by dissecting the target organism.
  • the effect of the present invention on the endocrine system is preferably a decrease in testosterone concentration in the blood.
  • the specific marker gene and / or the specific marker endogenous metabolite used in the present invention is the expression level of the gene in a subject not in contact with a chemical substance and a sample collected from a subject in contact with the chemical substance. And / or may be selected by applying the amount of said endogenous metabolite to machine learning and / or statistical techniques.
  • the gene used in the method of the present invention includes a guanine deaminase (sometimes referred to as Gda) gene, an interleukin-1 receptor-associated kinase (sometimes referred to as Irak3) gene, and lysine demethylase 8 (sometimes referred to as Irak3).
  • A_44_P1058703 (gene represented by SEQ ID NO: 1)
  • A_64_P039501 (gene represented by SEQ ID NO: 2)
  • GA binding protein transcription factor subsystem alpha Gene (sometimes called Gabpa)
  • kelch-like family member 30 (sometimes called Klhl30) gene
  • carboxylesterase-like (sometimes called LOC291863) gene
  • migration and inhibition inhibition protein Gene (sometimes called Miip), signal-regulatory protein alpha (sometimes called Sirpa) gene, solute carrier family 7 member 7 (sometimes called Slc7a7) gene
  • vomeronasal 1 receptor From 77 (sometimes referred to as Vom1r77) gene
  • A_44_P323754 (gene represented by SEQ ID NO:
  • guanine deaminase gene In order to carry out the method of the present invention with high accuracy, guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 Gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene , Quadresterase-like gene, migration and inhibition inhibition protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (SEQ ID NO: 3) It is preferable to measure the
  • the endogenous metabolites used in the method of the present invention are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid.
  • the endogenous metabolite used in the present invention is preferably 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, benzoic acid, isoleucine, elaidic acid, dopamine, or mannitol.
  • the endogenous metabolite described in the present specification is a metabolite of a protein existing in the living body or composed in the living body, and means a general term for substances existing in blood or tissue. Examples include, but are not limited to, amino acids, nucleic acids, lipids, vitamins, hormones and the like.
  • the most preferred embodiment of the method of the present invention is the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase.
  • A_44_P1058703 (gene represented by SEQ ID NO: 1)
  • A_64_P039501 (gene represented by SEQ ID NO: 2)
  • GA binding protein transcription factor subsystem alpha gene kelch-like family member 30 gene
  • carboxylelesterase- like gene mimerase-like gene
  • migration and incubation protein gene signal-regulatory protein alpha gene
  • solute carrier family 7 member 7 gene vomeronasal 1 receptor 77 gene
  • A_44_P323754 (gene represented by SEQ ID NO: 3)
  • A_64_P032023 (Table in SEQ ID NO: 4)
  • the expression level of A_64_P100513 (gene represented by SEQ ID NO: 5), and 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoisobutyric acid, 3-hydroxyisovaleric acid,
  • isoleucine uracil
  • a known method for measuring the expression level of the gene in the art can be used, for example, a microarray method, a real-time PCR method, Northern blotting, or EST analysis. , SAGE (gene expression chain analysis) method, and sequencing method using NGS (next generation sequencer) and nanopore sequencer. Further, the data acquired by the measurement by the above method is subjected to gene ID conversion, deletion value processing, global normalization, logarithmic conversion and the like as pretreatment for comparing fluctuations in gene expression level. May be good.
  • a method for measuring the amount of the endogenous metabolite in the present invention a method known in the art for measuring the amount of the endogenous metabolite can be used, for example, gas chromatograph mass spectrometry (GC / MS). ), Liquid chromatograph mass spectrometry (LC / MS), capillary electrophoresis mass spectrometry (CE / MS), ion chromatograph mass spectrometry (IC / MS), supercritical fluid chromatograph mass spectrometry (SFC / MS), and NMR Etc. are included.
  • gas chromatograph mass spectrometry GC / MS
  • LC / MS Liquid chromatograph mass spectrometry
  • CE / MS capillary electrophoresis mass spectrometry
  • IC / MS ion chromatograph mass spectrometry
  • SFC / MS supercritical fluid chromatograph mass spectrometry
  • NMR Etc NMR Etc.
  • step (1) (2) the expression level of the gene and / or the amount of the endocrine disrupter measured in the step (1) is analyzed to obtain the chemical substance.
  • a step of determining whether a substance is a factor affecting the endocrine system as an endocrine disruptor or a factor affecting the endocrine system as stress is included.
  • the measurement data is used.
  • Machine learning and statistical methods commonly used in the art can be applied.
  • machine learning as used herein is used by a computer system to efficiently perform a particular task without using explicit instructions, but instead relying on patterns and inferences.
  • Algorithms and statistical models are referred to, and statistical methods are methods for quantitatively grasping trends and properties of collected data.
  • machine learning and statistical methods examples include linear regression, logistic regression, support vector machine, neural network, random forest, Lasso (LASSO) regression, ridge (Ridge) regression, elastic net regression, t-test, and ROC curve.
  • methods such as analysis of variance (ANOVA) can be used, but are not limited thereto.
  • the machine learning in the method of the present invention includes a guanine deaminase gene, an interleukin-1 receptor-associated kinase gene, a lysine demethylase 8 gene, a microtubule-associated protein RP / EB family member 3 gene, an oxygensterol binding protein-like 3 gene, and a translocase of outer.
  • A_44_P1058703 (gene represented by SEQ ID NO: 1)
  • A_64_P039501 (gene represented by SEQ ID NO: 2)
  • GA binding protein transcription factor subsystem alpha gene kelch-like family member 30 gene
  • carboxylelesterase-like gene kelch-like family member 30 gene
  • Migration and incubation protein gene signal-regulatory protein alpha gene
  • solute carrier family 7 member 7 gene vomeronasal 1 receptor 77 gene
  • A_44_P323754 (gene represented by SEQ ID NO: 3
  • A_64_P032023 represented by SEQ ID NO: 4) Gene
  • one or more of the genes selected from the group consisting of A_64_P100513 (gene represented by SEQ ID NO: 5), and / or 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid,
  • a support vector machine When used, it is preferably carried out using a support vector machine.
  • the expression level of the gene and / or the amount of the endocrine metabolite in a subject not in contact with the target chemical substance and a sample collected from the contacted subject were measured. After that, the measured data is analyzed using a support vector machine to determine with high accuracy whether the chemical substance of interest acts directly on the endocrine system of the organism as an endocrine disturbing substance or indirectly as stress. Can be done.
  • the support vector machine used in the method of the present invention may be characterized by a radial basis function kernel (Gaussian kernel).
  • Machine learning in the methods of the invention is one selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, lassoyl, elaidic acid, xylulose, succinic acid, dopamine, and mannitol.
  • lasso lasso
  • the expression level of the gene and / or the amount of the endocrine metabolite in a subject not in contact with the target chemical substance and a sample collected from the contacted subject were measured.
  • the measured data will be analyzed using LASSO regression, and logistic regression analysis will be used to construct the model formula, and whether the chemical substance of interest acts directly on the endocrine system of the organism as an endocrine disruptor. Alternatively, it can be determined with high accuracy whether it acts indirectly as stress.
  • the discrimination in the step (2) in the present invention uses the data of the amount of the endogenous metabolite measured in the step (1), linear regression, logistic regression, neural network, random forest, Lasso (LASSO) regression, ridge. It can be optimized by machine learning such as (Ridge) regression and elastic net regression, and then can be performed using logistic regression analysis, support vector machine and the like.
  • a coefficient is calculated by Lasso regression, and logistic regression analysis can be used to determine that the chemical substance is a factor affecting the endocrine system as an endocrine disruptor or stress.
  • the coefficient calculated by Lasso regression (corresponding to a in the following formula) is the formula (model formula) used in logistic regression analysis.
  • a indicates a coefficient calculated by machine learning such as Lasso regression, and x indicates a fluctuation ratio].
  • y indicates a coefficient calculated by machine learning such as Lasso regression
  • x indicates a fluctuation ratio
  • the method of the present invention can, for example, measure the expression level of the gene and / or the amount of the endogenous metabolite, examine the fluctuation ratio, and then perform statistical methods and / or machine learning.
  • the invention is a kit for determining factors that affect an endocrine system in an organism possessed by a chemical, including means for carrying out the methods described herein.
  • a kit for determining factors that affect an endocrine system in an organism possessed by a chemical.
  • the means used in the kits of the present invention include means for measuring the expression level and / or the amount of endogenous metabolites of the gene. Further, the means used in the kit of the present invention may include means for analyzing measurement data of the expression level of the gene and / or the amount of the endogenous metabolite.
  • means generally used in the art such as microarray, real-time PCR, NGS (next generation sequencer), Northern blotting, EST analysis, SAGE. (Gene expression chain analysis), nanopore sequencing, etc. are mentioned, and a microarray is preferable.
  • a means generally used among those skilled in the art can be used, for example, a gas chromatograph mass spectrometer, a liquid chromatograph mass.
  • Examples thereof include an analyzer, a capillary electrophoresis mass spectrometer, an ion chromatograph mass spectrometer, a supercritical fluid chromatograph mass spectrometer, and an NMR, and a gas chromatograph mass spectrometer is preferable.
  • an analyzer a capillary electrophoresis mass spectrometer, an ion chromatograph mass spectrometer, a supercritical fluid chromatograph mass spectrometer, and an NMR
  • a gas chromatograph mass spectrometer is preferable.
  • statistical methods and machine learning generally used in the art, for example, Linear Regression, Logistic Regression, Support Vector Machine, Neural Network, Random Forest, Lasso (LASSO) Regression, Ridge Regression, Elastic Net Regression, t Test, ROC Curve, and Dispersion Analysis (ANOVA) Is included.
  • the kit of the present invention includes various means for carrying out the methods described herein, such as personal computers, wells, containers, trays, kit instruction manuals, and reagents for extracting RNA.
  • a set, a nucleic acid concentration measuring device, a nucleic acid quality checker, a set of endogenous metabolite extraction reagents, a mathematical formula for discrimination, and the like may be included, but the present invention is not limited thereto.
  • the invention is a method for selecting the gene and / or the endogenous metabolite for determining factors that affect the endocrine system in an organism possessed by a chemical substance. , (1) Steps to measure gene expression and / or endogenous metabolites in samples taken from unstressed and loaded organisms, and (2) endocrine disruptors are in contact. Steps of measuring gene expression and / or endocrine metabolites in samples taken from non-subjects and contacted subjects, followed by (3) obtained in steps (1) and (2) above.
  • a method comprising the step of analyzing the expression level of a gene and / or the amount of an endocrine metabolite using machine learning and / or statistical techniques and selecting the gene and / or the endocrine metabolite. .. Further, in the method of the present invention, among the gene and the endogenous metabolite selected in the step (3), the gene and the endogenous metabolite selected in the step (3) after the step (1). A step of excluding duplicates of the metabolite with the gene selected in step (3) after step (2) and said endogenous metabolite is further included.
  • the machine learning and statistical methods used in the method of the present invention may be those generally used in the art, for example, linear regression, logistic regression, support vector machine, neural network, random forest, lasso. (Lasso) regression, Ridge regression, elastic net regression, t-test, ROC curve, analysis of variance (ANOVA), etc., but are not limited thereto.
  • step (3) of the present invention the gene is subjected to t-test and support vector machine-recursive feature elimination method (SVM-RFE) based on the expression level obtained in step (2), and the probability is 0. If it is larger than .5, it can be judged that it has a direct action as an endocrine disruptor and can be selected.
  • SVM-RFE support vector machine-recursive feature elimination method
  • the formula of logistic regression analysis is applied based on the amount obtained in the step (2), and the calculation result is 0.5 or more.
  • the regression coefficient by Lasso, and if the coefficient is 0 or more, or create an ROC curve, and if the log 2 ratio of the AUC value is 0 or more, it is judged that it has a direct action as an endocrine disruptor and is selected. be able to.
  • Example 1 Preparation of model animals (stress loading group / ED substance administration group) using male rats Use male rats (RccHan: Wist system) that will be 9 weeks old at the end of the test so that there will be 8 animals in each group. I made a test design. The number of administration days is 8 days unless otherwise specified.
  • the stress-loaded group includes a 3-hour restraint group, a severe starvation stress group (average feeding 20 g / day 60% feeding), a moderate starvation stress group (average feeding 20 g / day 70% feeding), and stress hormones.
  • a corticosterone 50 mg / kg administration group and an adrenergic receptor agonist isoproterenol 1 mg / kg administration group were prepared together with a control group under each condition.
  • the ED substance administration group 3 mg / kg and 0.6 mg / kg administration group of leuprorelin, which is a gonadotropin-releasing hormone receptor agonist having a testosterone lowering effect, and 25 mg of ketoconazole, which is an oxidative metabolizing enzyme CYP3A4 inhibitor.
  • Four groups, a / kg group and a 12.5 mg / kg administration group were prepared together with a control group under each condition.
  • Example 1 (1) Implementation of a new animal experiment for the purpose of verifying marker accuracy
  • the point of action is the animal test of Example 1 (1).
  • a novel animal study was conducted in which different compounds were administered. As a stress-bearing group, a single dose of fenfluramine 25 mg / kg, which has an appetite-suppressing effect, was administered, and as an ED substance-administered group, 1000 mg / kg of dibutyl phthalate, which has been reported to inhibit testosterone biosynthesis, was administered for 15 days.
  • Control of each condition was divided into 4 groups, 3 days and 8 days after a single dose of avilateron 50 mg / kg, which is an oxidative metabolizing enzyme CYP17A1 inhibitor, and degarelix 2 mg / kg, which is a gonad stimulating hormone-releasing hormone receptor antagonist. It was set up with the group and animal tests were performed.
  • Example 2 Examples for the test compound Serum, thymus, liver, and pituitary gland are collected from animals such as rats to which the test compound has not been administered and animals such as rats to which the test compound has been administered for about 1 week. Endogenous metabolites of serum and thymus are measured with a gas chromatograph mass spectrometer. Gene expression in the liver and pituitary gland is measured on a microarray. Using the gene of the present invention and the endogenous metabolite, the variation data of the administration group when compared with the control group was compared with the variation of the discriminant marker, and the method shown in Example 1 (6) was used. Classify as direct action or indirect action, and determine the factors of endocrine influence of the test compound.
  • Verification example determined using Lasso and logistic regression analysis RccHan: Wist male rat male not in contact with 3 types of assumed test compounds A, B, and C (corresponding to Examples 1 to 3 in Table 3 below, respectively) Lasso (LASSO) using data of 10 endogenous metabolites (arbitrarily set the fluctuation ratio of the endogenous metabolites) that are assumed to be measured from a sample collected from the serum of the rat male that has been contacted with the lasso. ) The coefficient a was calculated by regression and discriminated as either stress or ED by logistic regression analysis.
  • the following formula is used using data (Examples 1 to 3 in Table 3 below) of three types of fluctuation ratios (the fluctuation ratios of the endocrine disrupters are arbitrarily set).
  • a is the coefficient of each endogenous metabolite marker
  • x is the fluctuation ratio of the treatment group with respect to the control group
  • ED endocrine disruptor
  • a was calculated by Lasso regression and classified as stress or ED by logistic regression analysis.
  • Verification example determined using a support vector machine RccHan: Wist rat male and contact not in contact with 3 types of assumed test compounds A, B, and C (corresponding to Examples 1 to 3 in Table 4 below, respectively)
  • the probability was calculated by applying a support vector machine using data of 8 kinds of genes assumed to be measured from a sample collected from the liver of the rat male (arbitrarily setting the fluctuation ratio of the gene). Determined as either stress or ED. If the probability is greater than 0.5, it is determined to be ED, and if the probability is less than 0.5, it is determined to be stress.
  • the R package e1071 is executed using the log2-converted data (Examples 1 to 3 in Table 4 below) of three types of fluctuation ratios (the fluctuation ratios of the genes are arbitrarily set), and radial.
  • a support vector machine of the basis function kernel (Gaussian kernel) was applied to calculate the probability and classify it as stress or ED.
  • the present invention can be used in fields where it is necessary to identify factors that affect the endocrine system of living organisms, including the fields of pesticides, pharmaceuticals, veterinary medicine, livestock, and the environment.
  • chemical substances whose effects on the endocrine system act directly as endocrine disruptors must be excluded, and chemical substances whose effects on the endocrine system act indirectly as stress must be excluded. Can be discriminated at the same time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention provides a method for determining a factor of a chemical substance influencing the endocrine system in an organism, wherein the method includes (1) a step in which the expression amount of a gene serving as a marker and/or the amount of an endogenous metabolite serving as a marker in samples collected from a subject not brought into contact with the chemical substance and from a subject brought into contact with the chemical substance are measured, and (2) a step in which the expression amount of the gene and/or the amount of the endogenous metabolite measured in step (1) are subsequently analyzed and it is determined whether the chemical substance is a factor influencing the endocrine system as an endocrine disruptor or a factor influencing the endocrine system as stress.

Description

化学物質が有する内分泌系に影響を与える要因の判別方法How to determine the factors that affect the endocrine system of chemical substances
 本特許出願は、日本国特許出願2020-050701号(2020年3月23日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。 This patent application claims the priority and interests under the Paris Convention based on Japanese Patent Application No. 2020-050701 (filed on March 23, 2020) and is described in the above application by reference here. The entire content of this is incorporated herein by reference.
 本発明は、化学物質が有する内分泌系に影響を与える要因の判別方法およびこの方法を実施するためのキットに関する。本発明はまた、化学物質が有する内分泌系に影響を与える要因を判別するための特定のマーカーとなる遺伝子および/または特定のマーカーとなる内因性代謝物を選択するための方法に関する。 The present invention relates to a method for determining factors affecting the endocrine system of a chemical substance and a kit for carrying out this method. The present invention also relates to a method for selecting a gene that serves as a specific marker and / or an endogenous metabolite that serves as a specific marker for determining factors that affect the endocrine system of a chemical substance.
 化学物質に対する安全性意識の高まりとともに、内分泌攪乱物質(Endocrine disrupting chemicals;ED物質)を適切に規制することは世界的に重要課題となっている。世界保健機関(WHO)は2002年に国際化学物質安全性計画(IPCS)を通じて「ED物質とは、生物個体の内分泌系の機能を変化させることによって、その個体またはその子孫の健康に有害な影響を及ぼす外因性物質またはその混合物である」と提唱している。さらに2018年6月には欧州食品安全機関(EFSA)、欧州化学機関(ECHA)、および共同研究センター(JRC)によるED物質判定のためのガイダンスが作成された。前記ガイダンスでは、「内分泌系への有害影響、内分泌系を変化させる作用機序(MOA)、MOAと毒性影響の関連性の3つの項目が揃うとED物質と判定される」と規定され、欧州を中心に内分泌系への影響のより詳細な評価が求められるようになった。 With the growing awareness of safety regarding chemical substances, it has become an important issue worldwide to properly regulate endocrine disrupting chemicals (ED substances). Through the International Chemical Safety Cards (IPCS) in 2002, the World Health Organization (WHO) stated that "ED substances have a detrimental effect on the health of an individual or its offspring by altering the function of the endocrine system of the individual. It is an exogenous substance or a mixture thereof that causes Furthermore, in June 2018, guidance for ED substance determination was prepared by the European Food Safety Authority (EFSA), the European Chemicals Agency (ECHA), and the Joint Research Center (JRC). The guidance stipulates that "an ED substance is determined if three items are met: adverse effects on the endocrine system, mechanism of action that changes the endocrine system (MOA), and the relationship between MOA and toxic effects." More detailed evaluation of the effects on the endocrine system has come to be required.
 内分泌系への影響としては、例えば、卵巣、子宮、精巣、前立腺、副腎および血液等の性ホルモンに関連する組織等の萎縮、重量増大等や性ホルモンを制御する上位ホルモンの分泌を制御する組織である下垂体、視床下部、甲状腺等の肥大、萎縮が挙げられる。 The effects on the endocrine system include, for example, atrophy and weight gain of tissues related to sex hormones such as ovary, uterus, testis, prostate, adrenal gland and blood, and tissues that control the secretion of higher hormones that control sex hormones. The pituitary gland, hypothalamus, hormonal gland, etc. are enlarged and atrophic.
 先述の内分泌攪乱作用に関する規制強化の影響のもと、化学物質の安全性評価のために実施するラット等を用いた動物試験において、化学物質を投与した動物由来の副腎、精巣等の内分泌系に関連する組織に影響が認められる場合がある。内分泌系への影響を評価する1つの手段として、性ホルモン(雄性ホルモンや雌性ホルモン)と同等の活性があるか、または性ホルモン合成経路の阻害、誘導が生じたことが示される等、化学物質が生体内に直接作用したと考えられる場合、化合物の新規登録や再登録は困難である。 Under the influence of the above-mentioned tightening of regulations on endocrine disrupting effects, in animal tests using rats, etc. conducted to evaluate the safety of chemical substances, the endocrine system such as adrenal glands and testis derived from animals to which the chemical substances were administered Impact may be seen on related organizations. As one means of assessing the effects on the endocrine system, chemical substances such as having the same activity as sex hormones (male hormones and female hormones) or showing that the sex hormone synthesis pathway has been inhibited or induced. It is difficult to newly register or re-register the compound when it is considered that the compound acted directly in the living body.
 一般的に、生体にストレスがかかると、内分泌組織、ホルモン濃度に影響が出ることが知られている(間接作用)。現在、一部の内分泌組織への影響については、化合物の直接作用(ED作用)ではなく、摂餌量減少データ(化合物を餌に混ぜた場合、餌を忌避した結果飢餓状態になる)を根拠として、(飢餓)ストレス状態による間接作用と推察しているが、将来的にはストレス状態を示す科学的根拠が求められると考えられる。 In general, it is known that when stress is applied to the living body, the endocrine tissue and hormone concentration are affected (indirect action). Currently, the effects on some endocrine tissues are based on food reduction data (when a compound is mixed with food, it becomes starved as a result of avoiding food) rather than the direct effect of the compound (ED effect). As a result, it is presumed that it is an indirect effect due to the (hunger) stress state, but in the future, it is thought that a scientific basis indicating the stress state will be required.
 従来、ストレスのマーカーとしては、被験動物の心拍数、血圧、アドレナリン及びノルアドレナリン等の神経伝達物質が知られているが、中でも副腎皮質ホルモンであるコルチゾールがよく知られている(非特許文献1)。しかし、コルチゾールは日内変動や個体差が大きく、再現性よく正確に分析できない上、動物実験においては、実験動物の多頭飼いの影響、採血時の刺激、実験施設間の移動、実験者による拘束等の刺激により鋭敏に影響を受けやすく、動物実験におけるストレス状態を正確に示すことは困難であった。また、従来の技術では、白血球中のストレス評価マーカー遺伝子の発現量を定量することによってストレスを評価することは可能であるが(特許文献1)、化学物質による内分泌系への直接作用を判別することはできなかった。 Conventionally, neurotransmitters such as heart rate, blood pressure, adrenaline and noradrenaline of a test animal are known as stress markers, and among them, cortisol, which is an adrenocortical hormone, is well known (Non-Patent Document 1). .. However, cortisol has large diurnal fluctuations and individual differences, and cannot be analyzed accurately with good reproducibility. In animal experiments, the effects of multi-headed laboratory animals, stimulation during blood collection, movement between laboratory facilities, restraint by experimenters, etc. It was sensitive to the stimulus of the animal, and it was difficult to accurately indicate the stress state in animal experiments. Further, in the conventional technique, stress can be evaluated by quantifying the expression level of a stress evaluation marker gene in leukocytes (Patent Document 1), but the direct action of a chemical substance on the endocrine system is discriminated. I couldn't.
特開2013-110969号公報Japanese Unexamined Patent Publication No. 2013-110969
 本発明の解決課題は、化学物質の内分泌系への影響の要因が、内分泌攪乱物質としての直接作用であるか、またはストレスとしての間接作用であるかを簡便かつ高い精度で同時に判別することができる方法を提供することである。 The problem to be solved by the present invention is to simultaneously determine whether the factor of the influence of a chemical substance on the endocrine system is a direct action as an endocrine disruptor or an indirect action as stress at the same time with high accuracy. To provide a way that can be done.
 そこで、本発明者らは、上記課題を解決するために、試験対象の化学物質が接触していない生物、組織、または細胞と、前記化学物質が接触した生物、組織、または細胞における特定のマーカーとなる遺伝子の発現量および/または特定のマーカーとなる内因性代謝物の量の変動を解析することにより、化学物質が有する内分泌系に影響を与える要因が、内分泌攪乱物質として直接的に作用するか、またはストレスとして間接的に作用するかを判別することができることを見出し、本発明を完成させた。 Therefore, in order to solve the above-mentioned problems, the present inventors have made a specific marker in an organism, tissue, or cell that is not in contact with the chemical substance to be tested and in the organism, tissue, or cell that is in contact with the chemical substance. By analyzing fluctuations in the expression level of a gene and / or the amount of an endogenous metabolite that serves as a specific marker, factors that affect the endocrine system of a chemical substance act directly as an endocrine disruptor. The present invention has been completed by finding that it is possible to determine whether the substance acts indirectly as stress.
 本発明は、以下のとおりである。
[1]
 化学物質が有する生物における内分泌系に影響を与える要因の判別方法であって、(1)前記化学物質が接触していない被験体および接触した被験体から採取された試料におけるマーカーとなる遺伝子の発現量および/またはマーカーとなる内因性代謝物の量を測定する工程、次いで(2)前記工程(1)で測定された前記遺伝子の発現量および/または前記内因性代謝物の量を解析して、前記化学物質が、内分泌攪乱物質として内分泌系に影響を与える要因であるか、またはストレスとして内分泌系に影響を与える要因であるかを判別する工程を含む、方法。
[2]
 前記遺伝子および/または内因性代謝物が、前記化学物質が接触していない被験体および接触した被験体から採取された試料における遺伝子の発現量および/または内因性代謝物の量を機械学習および/または統計学的手法に適用することにより選択されたものである、[1]に記載の方法。
[3]
 前記遺伝子が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上のものであり、前記内因性代謝物が、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上のものである、[1]または[2]に記載の方法。
[4]
 前記遺伝子が、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上のものであり、前記内因性代謝物が、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、安息香酸、イソロイシン、エライジン酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上のものである、[1]~[3]のいずれか1つに記載の方法。
[5]
 前記工程(2)における解析が、機械学習および/または統計学的手法を用いて行われるものである、[1]~[4]のいずれか1つに記載の方法。
[6]
 前記機械学習および/または統計学的手法が、線形回帰、ロジスティック回帰、サポートベクターマシン、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰、t検定、ROC曲線、および分散分析(ANOVA)からなる群から選択されるものである、[5]に記載の方法。
[7]
 前記機械学習が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上の遺伝子、ならびに/あるいは2-デオキシグルコース、3-ヒドロキシイソ酪酸、および4-アミノ酪酸からなる群から選択される1つまたはそれ以上の内因性代謝物を用いる場合、サポートベクターマシンを用いて行われ、前記サポートベクターマシンが、ラジアル基底関数カーネルを特徴とするものである、[6]に記載の方法。
[8]
 前記機械学習が、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の内因性代謝物を用いる場合、LASSO回帰を用いて行われ、前記LASSO回帰が、モデル式の構築には、ロジスティック回帰分析を用いるものである、[6]に記載の方法。
[9]
 前記内分泌系への影響が、血液中のテストステロン濃度の減少を特徴とする、[1]~[8]のいずれか1つに記載の方法。
[10]
 前記試料が、内分泌系に関連する組織、肝臓または血液、あるいは内分泌系に関連する組織、肝臓または血液から分離された細胞もしくはその培養細胞である、[1]~[9]のいずれか1つに記載の方法。
[11]
 前記内分泌系に関連する組織が、胸腺または下垂体である、[10]に記載の方法。
[12]
 前記被験体が、哺乳動物またはその組織もしくは細胞である、[1]~[11]のいずれか1つに記載の方法。
[13]
 前記哺乳動物が、ヒト、ラットまたはマウスである、[12]に記載の方法。
[14]
 化学物質が有する生物における内分泌系に影響を与える要因を判別するためのキットであって、[1]~[13]のいずれか1つに記載の方法を実施するための手段を含むキット。
[15]
 前記手段が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上の遺伝子の発現量、ならびに/あるいは2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の内因性代謝物の量を測定するための手段である、[14]に記載のキット。
[16]
 化学物質が有する生物における内分泌系に影響を与える要因を判別するための遺伝子および/または内因性代謝物を選択するための方法であって、(1)ストレスを負荷していない生物および負荷した生物から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、ならびに(2)内分泌攪乱物質が接触していない被験体および接触した被験体から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、(3)前記工程(1)および工程(2)で得られた遺伝子の発現量および/または内因性代謝物の量を、機械学習および/または統計学的手法を用いて解析し、遺伝子および/または内因性代謝物を選択する工程、次いで(4)前記工程(3)で選択された遺伝子および内因性代謝物のうち、前記工程(1)後の工程(3)で選択された遺伝子および内因性代謝物と、前記工程(2)後の工程(3)で選択された遺伝子および内因性代謝物との重複するものを除外する工程を含む、方法。
The present invention is as follows.
[1]
It is a method for discriminating factors that affect the endocrine system in an organism possessed by a chemical substance. (1) Expression of a gene that serves as a marker in a subject to which the chemical substance is not in contact and a sample collected from a subject in contact with the chemical substance. The step of measuring the amount and / or the amount of the endocrine metabolite as a marker, and then (2) analyzing the expression level of the gene and / or the amount of the endocrine metabolite measured in the step (1). A method comprising the step of determining whether the chemical substance is a factor affecting the endocrine system as an endocrine disturbing substance or a factor affecting the endocrine system as stress.
[2]
The gene and / or the endogenous metabolite machine-learns and / or the amount of the gene expression and / or the amount of the endogenous metabolite in a sample taken from a subject not in contact with the chemical and a subject in contact with the chemical. Alternatively, the method according to [1], which is selected by applying to a statistical method.
[3]
The genes are guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen sterol binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513 One or more selected from the group consisting of (gene represented by SEQ ID NO: 5), wherein the endogenous metabolites are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, One or more selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid, xylrose, succinic acid, dopamine, and mannitol, [1 ] Or the method according to [2].
[4]
The genes are from the lysine demethylase 8 gene, the microtubule-associated protein RP / EB family member 3 gene, the oxysterol binding protein-like 3 gene, the translocase of outer mitochondrial membrane 70 gene, and A_64_P100513 (the gene represented by SEQ ID NO: 5). One or more selected from the group, said endogenous metabolites are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, benzoic acid, isoleucine, ellaidic acid, dopamine, and. The method according to any one of [1] to [3], which is one or more selected from the group consisting of mannitol.
[5]
The method according to any one of [1] to [4], wherein the analysis in the step (2) is performed using machine learning and / or a statistical method.
[6]
The machine learning and / or statistical method is linear regression, logistic regression, support vector machine, neural network, random forest, Lasso (LASSO) regression, ridge (Ridge) regression, elastic net regression, t test, ROC curve, The method according to [5], which is selected from the group consisting of and variance analysis (ANOVA).
[7]
The machine learning is based on the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, and translocase of outer mitochondrial membrane 70 gene. , A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylesterase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and One or more genes selected from the group consisting of A_64_P100513 (gene represented by SEQ ID NO: 5) and / or selected from the group consisting of 2-deoxyglucose, 3-hydroxyisobutyric acid, and 4-aminobutyric acid. The method according to [6], wherein when one or more endogenous metabolites are used, the support vector machine is used and the support vector machine is characterized by a radial basis function kernel. ..
[8]
One or more intrinsic factors in which the machine learning is selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisobutyric acid, benzoic acid, isoleucine, lassoyl, ellaic acid, xylulose, succinic acid, dopamine, and mannitol. The method according to [6], wherein when a sex metabolite is used, Lasso regression is used, and the Lasso regression uses logistic regression analysis to construct a model formula.
[9]
The method according to any one of [1] to [8], wherein the effect on the endocrine system is characterized by a decrease in testosterone concentration in blood.
[10]
Any one of [1] to [9], wherein the sample is a tissue related to the endocrine system, liver or blood, or a tissue related to the endocrine system, a cell isolated from the liver or blood, or a cultured cell thereof. The method described in.
[11]
The method of [10], wherein the tissue associated with the endocrine system is the thymus or pituitary gland.
[12]
The method according to any one of [1] to [11], wherein the subject is a mammal or a tissue or cell thereof.
[13]
The method according to [12], wherein the mammal is a human, rat or mouse.
[14]
A kit for determining a factor of a chemical substance that affects the endocrine system in an organism, and includes a means for carrying out the method according to any one of [1] to [13].
[15]
The means include the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subunit alpha gene, kelch-like family member 30 gene, carboxylase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513 The expression level of one or more genes selected from the group consisting of (gene represented by SEQ ID NO: 5), and / or 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoiso. Measure the amount of one or more endogenous metabolites selected from the group consisting of butyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid, xylrose, succinic acid, dopamine, and mannitol. The kit according to [14], which is a means for the above.
[16]
A method for selecting genes and / or endogenous metabolites for determining factors that affect the endocrine system in organisms possessed by chemical substances. (1) Unstressed organisms and loaded organisms. Steps to measure gene expression and / or amount of endogenous metabolites in samples taken from, and (2) genes in samples taken from subjects not in contact with endocrine disruptors and those in contact. The step of measuring the expression level and / or the amount of the endogenous metabolite, (3) the expression level of the gene obtained in the steps (1) and (2), and / or the amount of the endogenous metabolite A step of selecting a gene and / or an endocrine metabolite by analysis using learning and / or statistical methods, and then (4) among the genes and endocrine metabolites selected in the step (3). Exclude duplicates of the gene and endocrine metabolite selected in step (1) and step (3) after step (1) and the gene and endocrine metabolite selected in step (3) after step (2). A method that includes the steps to be performed.
 本発明によれば、化学物質の生物の内分泌系への影響を調べる際、摂餌量減少データのみではなく、複数組織における特定のマーカーとなる遺伝子の発現量および/または特定の内因性代謝物の量の変動データから内分泌系への影響の要因を判別することが可能になる。さらに、本発明は、簡便で、かつ高い汎用性と精度で化学物質の内分泌系への影響を与える要因を判別することができる。 According to the present invention, when investigating the effects of chemical substances on the endocrine system of an organism, not only the feed reduction data, but also the expression level of genes that are specific markers in multiple tissues and / or specific endogenous metabolites. It is possible to determine the factors of influence on the endocrine system from the fluctuation data of the amount of. Furthermore, the present invention can easily determine the factors that affect the endocrine system of chemical substances with high versatility and accuracy.
各試験群に対して各組織(肝臓、下垂体、副腎、甲状腺、および精巣)から採取した試料において、特定のマーカーとなる遺伝子を指標としてマイクロアレイを実施し、前記遺伝子の発現量を分析した場合の各試料における予測率を示す。When a microarray was performed on a sample collected from each tissue (liver, pituitary gland, adrenal gland, thyroid gland, and testis) for each test group using a gene as a specific marker as an index, and the expression level of the gene was analyzed. The prediction rate for each sample is shown. 各試験群に対して各組織(血清、精巣、下垂体、副腎、胸腺、甲状腺、および肝臓)から採取した試料において、特定のマーカーとなる内因性代謝物を指標としてGC/MSによる分析を実施し、前記内因性代謝物の量を分析した場合の各試料における予測率を示す。GC / MS analysis was performed on each test group using samples collected from each tissue (serum, testis, pituitary gland, adrenal gland, thoracic gland, thyroid gland, and liver) using endogenous metabolites as specific markers as indicators. Then, the prediction rate in each sample when the amount of the endogenous metabolite is analyzed is shown.
 特に定義しない限り、本明細書で用いられる全ての技術用語および科学用語は、一般的に、本発明が属する技術分野の当業者によって理解される意味と同一の意味を有する。 Unless otherwise defined, all technical and scientific terms used herein generally have the same meaning as understood by one of ordinary skill in the art to which the present invention belongs.
 本発明は、化学物質が有する生物における内分泌系に影響を与える要因の判別方法であって、(1)前記化学物質が接触していない被験体および接触した被験体から採取された試料における特定のマーカーとなる遺伝子の発現量および/または特定のマーカーとなる内因性代謝物の量を測定する工程、次いで(2)前記工程(1)で測定された前記遺伝子の発現量および/または内因性代謝物の量を解析して、前記化学物質が、内分泌攪乱物質として内分泌系に影響を与える要因であるか、またはストレスとして内分泌系に影響を与える要因であるかを判別する工程を含むことを特徴とするものである。本発明の方法によれば、特定のマーカーとなる遺伝子の発現量および/または特定のマーカーとなる内因性代謝物の量の変動を測定することにより、化学物質が生物における内分泌系に影響を与える要因が、内分泌攪乱物質として直接的に作用するか、またはストレスとして間接的に作用するかを簡便かつ同時に判別することができる。 The present invention is a method for determining a factor of a chemical substance that affects the endocrine system in an organism, and (1) is specific in a subject to which the chemical substance is not in contact and a sample collected from a subject in contact with the chemical substance. A step of measuring the expression level of a gene as a marker and / or the amount of an endocrine metabolite as a specific marker, and then (2) the expression level of the gene and / or the endocrine metabolism measured in the step (1). It is characterized by including a step of analyzing the amount of a substance and determining whether the chemical substance is a factor affecting the endocrine system as an endocrine disturbing substance or a factor affecting the endocrine system as stress. Is to be. According to the method of the present invention, a chemical substance affects the endocrine system in an organism by measuring fluctuations in the expression level of a gene that serves as a specific marker and / or the amount of an endogenous metabolite that serves as a specific marker. Whether the factor acts directly as an endocrine disruptor or indirectly as a stress can be easily and simultaneously determined.
 本発明における内分泌系に影響を与える要因として、化学物質が生物の内分泌系に内分泌攪乱物質またはストレスのいずれかとして影響を与えることが想定されている。内分泌系への内分泌攪乱物質としての影響とは、生物の内分泌系の機能を変化させることによって、その個体またはその子孫の健康に有害な影響を及ぼすこと(直接作用)を意味し、例えば、卵巣、子宮、精巣、前立腺、副腎および血液等の性ホルモンに関連する組織等の萎縮または重量増大等、あるいは性ホルモンを制御する上位ホルモンの分泌を制御する組織である下垂体、視床下部、または甲状腺等の肥大または萎縮等が挙げられる。一方、内分泌系へのストレスとしての影響とは、化学物質が投与されることによって、生物にストレスが負荷することによる影響(間接作用)を意味し、前記内分泌攪乱物質としての影響とは区別されるものである。ストレスとしての影響の例として、心拍数または血圧の上昇、アドレナリンおよびノルアドレナリン等の神経伝達物質の体内での増減、胸腺の委縮等が挙げられる。本発明の方法によれば、対象の化学物質が生物の内分泌系に影響を与える要因が、内分泌攪乱物質としてであるか、またはストレスとしてであるかを判別することができる。 As a factor affecting the endocrine system in the present invention, it is assumed that a chemical substance affects the endocrine system of an organism as either an endocrine disruptor or stress. The effect as an endocrine disruptor on the endocrine system means that by altering the function of the endocrine system of an organism, it has a detrimental effect on the health of the individual or its offspring (direct action), for example, the adrenal gland. , Womb, testis, prostate, adrenal gland, blood and other sex hormone-related tissues such as atrophy or weight gain, or pituitary gland, hypothalamus, or thyroid gland, which are tissues that control the secretion of superior hormones that control sex hormones. Such as enlargement or atrophy. On the other hand, the effect as stress on the endocrine system means the effect (indirect action) due to the stress on the organism due to the administration of the chemical substance, and is distinguished from the effect as the endocrine disruptor. It is a thing. Examples of effects as stress include an increase in heart rate or blood pressure, an increase or decrease in neurotransmitters such as adrenaline and noradrenaline in the body, and atrophy of the thymus. According to the method of the present invention, it is possible to determine whether the factor in which the chemical substance of interest affects the endocrine system of an organism is an endocrine disruptor or a stress.
 本発明における内分泌攪乱物質とは、生物個体の内分泌系の機能を変化させることが知られている外因性物質またはその混合物を意味する。本発明におけるストレスとは、生物にストレス状態を模倣させる物質を意味する。ストレスを測定するためのマーカーとしては、被験動物の心拍数、血圧、アドレナリンおよびノルアドレナリン等の神経伝達物質、ならびに副腎皮質ホルモンであるコルチゾールあるいはコルチコステロンが知られている。本発明におけるストレスとしては、例えば、飢餓、拘束、遊泳、および電気等に起因するものが含まれる。 The endocrine disruptor in the present invention means an exogenous substance or a mixture thereof, which is known to change the function of the endocrine system of an individual organism. The stress in the present invention means a substance that causes an organism to imitate a stress state. Known markers for measuring stress include heart rate, blood pressure, neurotransmitters such as adrenaline and noradrenaline, and corticosteroids cortisol or corticosterone in test animals. The stress in the present invention includes, for example, those caused by starvation, restraint, swimming, electricity and the like.
 本発明における内分泌系とは、内分泌器とも称され、生物、特に、動物において、ホルモンを分泌する器官を意味し、例えば、卵巣、子宮、胎盤、精巣、前立腺、下垂体、視床下部、松果体、副腎、甲状腺、副甲状腺、および膵臓等が挙げられる。 The endocrine system in the present invention is also referred to as an endocrine system, and means an organ that secretes hormones in living organisms, especially animals. Examples include the body, adrenal glands, thyroid glands, parathyroid glands, and pancreas.
 本発明の方法を適用することができる化学物質は、生物の内分泌系に及ぼす影響の要因を調べることが必要となる化学物質であれば、特に限定されるものではない。このような化学物質として、例えば、農薬、医薬、獣医学、および環境分野等で開発された新規な化合物として開発された有用な候補物質であってもよい。あるいは、前記化学物質には、公知の化学物質が含まれ、例えば、生物における内分泌系への悪影響が懸念されているものであってもよい。 The chemical substance to which the method of the present invention can be applied is not particularly limited as long as it is a chemical substance for which it is necessary to investigate the factors of influence on the endocrine system of the organism. As such a chemical substance, for example, it may be a useful candidate substance developed as a novel compound developed in the fields of pesticides, medicines, veterinary medicine, the environment and the like. Alternatively, the chemical substance may include a known chemical substance, for example, one that may have an adverse effect on the endocrine system in an organism.
 本発明が適用される生物には、化学物質の内分泌系への影響を受ける可能性があるあらゆる動物が含まれ、例えば、霊長類、哺乳類、鳥類、爬虫類、両生類、魚類、および愛玩動物等の脊椎動物、甲殻類、昆虫類、クモ類等の節足動物および軟体動物等の無脊椎動物が挙げられるが、これらに限定されるものではない。本発明に適用される生物は、好ましくは、ヒト、サル、チンパンジー、マウス、ラット、ウサギであり、より好ましくは、ヒト、マウス、またはラットである。例えば、前記ラットとしては、RccHan:Wist系が挙げられる。 Organisms to which the present invention applies include any animal that may be affected by the endocrine system of chemicals, such as vertebrates, mammals, birds, reptiles, amphibians, fish, and pet animals. Examples include, but are not limited to, vertebrates, shellfish, insects, arthropods such as spiders, and invertebrates such as soft-bodied animals. Organisms applied to the present invention are preferably humans, monkeys, chimpanzees, mice, rats, rabbits, and more preferably humans, mice, or rats. For example, examples of the rat include the RccHan: Wist system.
 本発明が適用される被験体(subject)は、前記生物であってもよく、前記生物の組織または細胞であってもよい。前記生物の組織または細胞は、例えば前記生物の多能性幹細胞または体性幹細胞からin vitroで分化誘導し形成された組織または細胞であってもよく、ダイレクトリプログラミングにより作成された組織または細胞でもよい。 The subject to which the present invention is applied may be the organism, or the tissue or cell of the organism. The tissue or cell of the organism may be, for example, a tissue or cell formed by in vitro differentiation induction from a pluripotent stem cell or somatic stem cell of the organism, or a tissue or cell created by direct reprogramming. good.
 本発明の方法で用いられる試料は、生物中のあらゆる体の組織または器官から採取された一部または全部であってもよく、化学物質の内分泌系への影響が反映される器官または組織から採取されたものであってもよい。また、本発明が適用される被験体の組織、器官または細胞から採取された一部または全部であってもよい。前記試料としては、卵巣、子宮、胎盤、精巣、前立腺、下垂体、視床下部、松果体、副腎、甲状腺、副甲状腺、および膵臓等を含む内分泌系に関連する組織、肝臓、または血液(もしくは血清)から採取されたものであってもよく、あるいはこれらの組織から分離された細胞もしくはこれらの培養細胞を用いることができるが、これらに限定されるものではない。本発明の方法で用いられる試料は、好ましくは、血液(もしくは血清)、胸腺、肝臓、または下垂体から採取されたものである。 The sample used in the method of the invention may be part or all taken from any body tissue or organ in an organism, taken from an organ or tissue that reflects the effects of chemicals on the endocrine system. It may be the one that has been done. It may also be part or all of the tissue, organ or cell of the subject to which the present invention applies. The sample includes tissues, liver, or blood (or blood) related to the endocrine system including ovaries, uterus, placenta, testis, prostate, pituitary gland, hypothalamus, pineal gland, adrenal gland, thyroid gland, parathyroid gland, and pancreas. It may be collected from (serum), or cells isolated from these tissues or cultured cells thereof can be used, but is not limited thereto. The sample used in the method of the invention is preferably taken from blood (or serum), thymus, liver, or pituitary gland.
 本発明の方法には、(1)化学物質が接触していない被験体および接触した被験体から採取された試料における前記遺伝子の発現量および/または前記内因性代謝物の量を測定する工程が含まれる。被験体が生物である場合、本発明における化学物質を生物に接触させる方法は、化学物質を生物の体内に導入することができれば、いずれの方法であってもよく、経口または非経口で生物に注入してもよく、例えば、皮下もしくは腹腔内に注射することが挙げられる。あるいは、前記接触は、生物の体の表面に接触または暴露させることであってもよい。本発明の方法における試料の採取は、当該技術分野で一般的な方法を用いることができる。前記試料の採取方法は、各組織または器官によって異なっていてもよく、例えば、外科的手術により対象とする組織または器官から一部を切除することにより採取することが含まれる。また、当該方法には、生物への注射により血液を採取することも含まれる。あるいは、ヒト以外の生物の場合、対象の生物を解剖することにより目的の組織または器官から試料を採取してもよい。本発明の内分泌系への影響とは、好ましくは、血液中のテストステロン濃度が減少することである。 The method of the present invention includes (1) measuring the expression level of the gene and / or the amount of the endogenous metabolite in a subject not in contact with a chemical substance and a sample collected from the subject in contact with the chemical substance. included. When the subject is an organism, the method of contacting the chemical substance with the organism in the present invention may be any method as long as the chemical substance can be introduced into the body of the organism, and the method can be used orally or parenterally to the organism. It may be injected, for example, subcutaneously or intraperitoneally. Alternatively, the contact may be contact or exposure to the surface of the body of the organism. For sampling in the method of the present invention, a method common in the art can be used. The method of collecting the sample may differ depending on each tissue or organ, and includes, for example, collecting by surgically removing a part from the target tissue or organ. The method also includes collecting blood by injection into an organism. Alternatively, in the case of a non-human organism, a sample may be collected from the target tissue or organ by dissecting the target organism. The effect of the present invention on the endocrine system is preferably a decrease in testosterone concentration in the blood.
 本発明に用いられる特定のマーカーとなる遺伝子および/または特定のマーカーとなる内因性代謝物は、化学物質が接触していない被験体および接触した被験体から採取された試料における前記遺伝子の発現量および/または前記内因性代謝物の量を機械学習および/または統計学的手法に適用することにより選択されたものであってもよい。また、本発明の方法で用いられる前記遺伝子は、guanine deaminase(Gdaと称される場合もある)遺伝子、interleukin-1 receptor-associated kinase(Irak3と称される場合もある)遺伝子、lysine demethylase 8(Kdm8と称される場合もある)遺伝子、microtubule-associated protein RP/EB family member 3(Mapre3と称される場合もある)遺伝子、oxysterol binding protein-like 3(Osbpl3と称される場合もある)遺伝子、translocase of outer mitochondrial membrane 70(Tomm70と称される場合もある)遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha(Gabpaと称される場合もある)遺伝子、kelch-like family member 30(Klhl30と称される場合もある)遺伝子、carboxylesterase-like(LOC291863と称される場合もある)遺伝子、migration and invasion inhibitory protein(Miipと称される場合もある)遺伝子、signal-regulatory protein alpha(Sirpaと称される場合もある)遺伝子、solute carrier family 7 member 7(Slc7a7と称される場合もある)遺伝子、vomeronasal 1 receptor 77(Vom1r77と称される場合もある)遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上のものである。本発明で用いられる前記遺伝子は、好ましくは、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、およびA_64_P100513(配列番号5で表される遺伝子)である。本発明の方法を高い精度で実施するためには、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)の発現量を測定することが好ましい。ここで、本明細書に記載の遺伝子とは、特定のタンパク質のアミノ酸配列をコードする核酸分子を意味する。 The specific marker gene and / or the specific marker endogenous metabolite used in the present invention is the expression level of the gene in a subject not in contact with a chemical substance and a sample collected from a subject in contact with the chemical substance. And / or may be selected by applying the amount of said endogenous metabolite to machine learning and / or statistical techniques. In addition, the gene used in the method of the present invention includes a guanine deaminase (sometimes referred to as Gda) gene, an interleukin-1 receptor-associated kinase (sometimes referred to as Irak3) gene, and lysine demethylase 8 (sometimes referred to as Irak3). Gene (sometimes called Kdm8), microtubule-associated protein RP / EB family member 3 (sometimes called Mapre3) gene, oxygensterol binding protein-like 3 (sometimes called Osbpl3) gene , Translocase of outer mitochondrial membrane 70 (sometimes called Tomm70) gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha Gene (sometimes called Gabpa), kelch-like family member 30 (sometimes called Klhl30) gene, carboxylesterase-like (sometimes called LOC291863) gene, migration and inhibition inhibition protein Gene (sometimes called Miip), signal-regulatory protein alpha (sometimes called Sirpa) gene, solute carrier family 7 member 7 (sometimes called Slc7a7) gene, vomeronasal 1 receptor From 77 (sometimes referred to as Vom1r77) gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513 (gene represented by SEQ ID NO: 5) One or more selected from the group of The genes used in the present invention are preferably lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, and A_64_P100513 (SEQ ID NO:). The gene represented by 5). In order to carry out the method of the present invention with high accuracy, guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 Gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene , Quadresterase-like gene, migration and inhibition inhibition protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (SEQ ID NO: 3) It is preferable to measure the expression levels of (gene represented by 4) and A_64_P100513 (gene represented by SEQ ID NO: 5). Here, the gene described in the present specification means a nucleic acid molecule encoding an amino acid sequence of a specific protein.
 本発明の方法で用いられる前記内因性代謝物は、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上のものである。本発明で用いられる前記内因性代謝物は、好ましくは、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、安息香酸、イソロイシン、エライジン酸、ドーパミン、またはマンニトールである。本発明の方法をより高い精度で実施するためには、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールの内因性代謝物の量を測定することが好ましい。ここで、本明細書に記載の内因性代謝物とは、生体内に存在し、または生体内で構成されるタンパク質の代謝物であり、血液または組織内に存在する物質の総称を意味し、例えば、アミノ酸、核酸、脂質、ビタミン、ホルモン等が挙げられるが、これらに限定されない。 The endogenous metabolites used in the method of the present invention are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid. One or more selected from the group consisting of acid, xylulose, succinic acid, dopamine, and mannitol. The endogenous metabolite used in the present invention is preferably 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, benzoic acid, isoleucine, elaidic acid, dopamine, or mannitol. In order to carry out the method of the present invention with higher accuracy, 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, It is preferable to measure the amount of endogenous metabolites of elaidic acid, xylrose, succinic acid, dopamine, and mannitol. Here, the endogenous metabolite described in the present specification is a metabolite of a protein existing in the living body or composed in the living body, and means a general term for substances existing in blood or tissue. Examples include, but are not limited to, amino acids, nucleic acids, lipids, vitamins, hormones and the like.
 本発明の方法の最も好ましい実施態様は、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)の発現量、ならびに2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールの内因性代謝物の量を測定することである。 The most preferred embodiment of the method of the present invention is the guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase. of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene, carboxylelesterase- like gene, migration and incubation protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (Table in SEQ ID NO: 4) , And the expression level of A_64_P100513 (gene represented by SEQ ID NO: 5), and 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, To measure the amount of endogenous metabolites of benzoic acid, isoleucine, uracil, elaidic acid, xylulose, succinic acid, dopamine, and mannitol.
 本発明における前記遺伝子の発現量の測定方法としては、当該技術分野において遺伝子の発現量を測定するための公知の方法を用いることができ、例えば、マイクロアレイ法、リアルタイムPCR法、ノーザンブロッティング、EST解析、SAGE(遺伝子発現連鎖解析)法、ならびにNGS(次世代シークエンサー)およびナノポアシークエンサーを用いた配列決定法等が含まれる。さらに、前記方法による測定で取得されたデータは、遺伝子の発現量の変動を比較するための前処理として、遺伝子のID変換、欠損値の処理、グローバル正規化、および対数変換等が行われてもよい。 As a method for measuring the expression level of the gene in the present invention, a known method for measuring the expression level of the gene in the art can be used, for example, a microarray method, a real-time PCR method, Northern blotting, or EST analysis. , SAGE (gene expression chain analysis) method, and sequencing method using NGS (next generation sequencer) and nanopore sequencer. Further, the data acquired by the measurement by the above method is subjected to gene ID conversion, deletion value processing, global normalization, logarithmic conversion and the like as pretreatment for comparing fluctuations in gene expression level. May be good.
 本発明における前記内因性代謝物の量の測定方法としては、当該技術分野において内因性代謝物の量を測定するための公知の方法を用いることができ、例えば、ガスクロマトグラフ質量分析(GC/MS)、液体クロマトグラフ質量分析(LC/MS)、キャピラリー電気泳動質量分析(CE/MS)、イオンクロマトグラフ質量分析(IC/MS)、超臨界流体クロマトグラフ質量分析(SFC/MS)、およびNMR等が含まれる。 As a method for measuring the amount of the endogenous metabolite in the present invention, a method known in the art for measuring the amount of the endogenous metabolite can be used, for example, gas chromatograph mass spectrometry (GC / MS). ), Liquid chromatograph mass spectrometry (LC / MS), capillary electrophoresis mass spectrometry (CE / MS), ion chromatograph mass spectrometry (IC / MS), supercritical fluid chromatograph mass spectrometry (SFC / MS), and NMR Etc. are included.
 本発明の方法には、前記工程(1)に続いて、(2)前記工程(1)で測定された前記遺伝子の発現量および/または前記内因性代謝物の量を解析して、前記化学物質が、内分泌攪乱物質として内分泌系に影響を与える要因であるか、またはストレスとして内分泌系に影響を与える要因であるかを判別する工程が含まれる。 In the method of the present invention, following the step (1), (2) the expression level of the gene and / or the amount of the endocrine disrupter measured in the step (1) is analyzed to obtain the chemical substance. A step of determining whether a substance is a factor affecting the endocrine system as an endocrine disruptor or a factor affecting the endocrine system as stress is included.
 本発明において前記遺伝子の発現量および前記内因性代謝物の量を解析するための手法として、前記遺伝子の発現量および/または前記内因性代謝物の量を測定した後、前記測定データを用いて、当該技術分野において一般的に用いられる機械学習および統計学的手法を適用することができる。ここで、本明細書で用いられる機械学習とは、明示的な指示を用いることなく、その代わりにパターンと推論に依存して、特定の課題を効率的に実行するためにコンピュータシステムが使用するアルゴリズムおよび統計モデルをいい、統計学的手法とは、収集したデータの傾向や性質を数量的に把握するための手法をいう。前記機械学習および統計学的手法としては、例えば、線形回帰、ロジスティック回帰、サポートベクターマシン、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰、t検定、ROC曲線、および分散分析(ANOVA)等の手法を用いることができるが、これらに限定されるものではない。 In the present invention, as a method for analyzing the expression level of the gene and the amount of the endogenous metabolite, after measuring the expression level of the gene and / or the amount of the endogenous metabolite, the measurement data is used. , Machine learning and statistical methods commonly used in the art can be applied. Here, machine learning as used herein is used by a computer system to efficiently perform a particular task without using explicit instructions, but instead relying on patterns and inferences. Algorithms and statistical models are referred to, and statistical methods are methods for quantitatively grasping trends and properties of collected data. Examples of the machine learning and statistical methods include linear regression, logistic regression, support vector machine, neural network, random forest, Lasso (LASSO) regression, ridge (Ridge) regression, elastic net regression, t-test, and ROC curve. , And methods such as analysis of variance (ANOVA) can be used, but are not limited thereto.
 本発明の方法における機械学習は、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上の前記遺伝子、ならびに/あるいは2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の前記内因性代謝物を用いる場合、好ましくは、サポートベクターマシンを用いて行われるものである。本発明の方法によれば、例えば、対象の化学物質が接触していない被験体および接触した被験体から採取された試料における前記遺伝子の発現量および/または前記内因性代謝物の量を測定した後、前記測定したデータを、サポートベクターマシンを用いて解析し、対象の化学物質が生物の内分泌系に内分泌攪乱物質として直接作用するか、またはストレスとして間接作用するかを高い精度で判別することができる。本発明の方法で用いられるサポートベクターマシンは、ラジアル基底関数カーネル(ガウシアンカーネル)を特徴とするものであってもよい。 The machine learning in the method of the present invention includes a guanine deaminase gene, an interleukin-1 receptor-associated kinase gene, a lysine demethylase 8 gene, a microtubule-associated protein RP / EB family member 3 gene, an oxygensterol binding protein-like 3 gene, and a translocase of outer. mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene, carboxylelesterase-like gene , Migration and incubation protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (represented by SEQ ID NO: 4) Gene), and one or more of the genes selected from the group consisting of A_64_P100513 (gene represented by SEQ ID NO: 5), and / or 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, One or more of the endogenous metabolites selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid, xylrose, succinic acid, dopamine, and mannitol. When used, it is preferably carried out using a support vector machine. According to the method of the present invention, for example, the expression level of the gene and / or the amount of the endocrine metabolite in a subject not in contact with the target chemical substance and a sample collected from the contacted subject were measured. After that, the measured data is analyzed using a support vector machine to determine with high accuracy whether the chemical substance of interest acts directly on the endocrine system of the organism as an endocrine disturbing substance or indirectly as stress. Can be done. The support vector machine used in the method of the present invention may be characterized by a radial basis function kernel (Gaussian kernel).
 本発明の方法における機械学習は、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の前記内因性代謝物を用いる場合、好ましくは、ラッソ(LASSO)回帰を用いて行われるものである。本発明の方法によれば、例えば、対象の化学物質が接触していない被験体および接触した被験体から採取された試料における前記遺伝子の発現量および/または前記内因性代謝物の量を測定した後、前記測定したデータを、ラッソ(LASSO)回帰を用いて解析し、モデル式の構築にはロジスティック回帰分析を用い、対象の化学物質が生物の内分泌系に内分泌攪乱物質として直接作用するか、またはストレスとして間接作用するかを高い精度で判別することができる。 Machine learning in the methods of the invention is one selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, lassoyl, elaidic acid, xylulose, succinic acid, dopamine, and mannitol. When any more of the endogenous metabolites are used, it is preferably carried out using lasso (LASSO) regression. According to the method of the present invention, for example, the expression level of the gene and / or the amount of the endocrine metabolite in a subject not in contact with the target chemical substance and a sample collected from the contacted subject were measured. Later, the measured data will be analyzed using LASSO regression, and logistic regression analysis will be used to construct the model formula, and whether the chemical substance of interest acts directly on the endocrine system of the organism as an endocrine disruptor. Alternatively, it can be determined with high accuracy whether it acts indirectly as stress.
 本発明における工程(2)における判別は、工程(1)で測定された内因性代謝物の量のデータを用いて、線形回帰、ロジスティック回帰、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰等の機械学習によって最適化し、次いでロジスティック回帰分析、サポートベクターマシン等を用いて行うことができる。本発明の方法において、例えば、LASSO回帰によって係数を算出し、ロジスティック回帰分析を用いて、前記化学物質が、内分泌攪乱物質またはストレスとして内分泌系に影響を与える要因であると判別することができる。LASSO回帰によって算出された係数(下記式中、aに該当する)は、ロジスティック回帰分析で用いられる式(モデル式):
Figure JPOXMLDOC01-appb-M000001
[式中、aは、LASSO回帰などの機械学習によって算出された係数を示し、xは、変動倍率を示す]
を適用して、上記式中のyの値に応じて判別することができる。例えば、上記式中のyの値を0.5と設定した場合、0.5以上であれば、対象の化学物質が内分泌攪乱物質として直接作用し、0.5以下であれば、ストレスとして間接作用すると判別することができる。
The discrimination in the step (2) in the present invention uses the data of the amount of the endogenous metabolite measured in the step (1), linear regression, logistic regression, neural network, random forest, Lasso (LASSO) regression, ridge. It can be optimized by machine learning such as (Ridge) regression and elastic net regression, and then can be performed using logistic regression analysis, support vector machine and the like. In the method of the present invention, for example, a coefficient is calculated by Lasso regression, and logistic regression analysis can be used to determine that the chemical substance is a factor affecting the endocrine system as an endocrine disruptor or stress. The coefficient calculated by Lasso regression (corresponding to a in the following formula) is the formula (model formula) used in logistic regression analysis.
Figure JPOXMLDOC01-appb-M000001
[In the equation, a indicates a coefficient calculated by machine learning such as Lasso regression, and x indicates a fluctuation ratio].
Can be applied to determine according to the value of y in the above equation. For example, when the value of y in the above formula is set to 0.5, if it is 0.5 or more, the target chemical substance acts directly as an endocrine disruptor, and if it is 0.5 or less, it indirectly acts as stress. It can be determined that it works.
 本発明の方法は、例えば、前記遺伝子の発現量および/または前記内因性代謝物の量を測定し、変動倍率を調べた後に統計学的手法および/または機械学習を行うことができる。 The method of the present invention can, for example, measure the expression level of the gene and / or the amount of the endogenous metabolite, examine the fluctuation ratio, and then perform statistical methods and / or machine learning.
 本発明の別の態様において、本発明は、化学物質が有する生物における内分泌系に影響を与える要因を判別するためのキットであって、本明細書に記載の方法を実施するための手段を含むキットを提供する。本発明のキットで用いられる手段には、前記遺伝子の発現量および/または内因性代謝物の量を測定するための手段が含まれる。さらに、本発明のキットで用いられる手段には、前記遺伝子の発現量および/または前記内因性代謝物の量の測定データを解析するための手段が含まれてもよい。 In another aspect of the invention, the invention is a kit for determining factors that affect an endocrine system in an organism possessed by a chemical, including means for carrying out the methods described herein. Provide a kit. The means used in the kits of the present invention include means for measuring the expression level and / or the amount of endogenous metabolites of the gene. Further, the means used in the kit of the present invention may include means for analyzing measurement data of the expression level of the gene and / or the amount of the endogenous metabolite.
 本発明のキットで用いられる前記遺伝子の発現量を測定するための手段として、当該技術分野で一般に用いられる手段、例えば、マイクロアレイ、リアルタイムPCR、NGS(次世代シークエンサー)、ノーザンブロッティング、EST解析、SAGE(遺伝子発現連鎖解析)、およびナノポアシークエンス等が挙げられ、好ましくは、マイクロアレイである。また、本発明のキットで用いられる前記内因性代謝物の量を測定するための手段として、当業者間で一般に用いられる手段を用いることができ、例えば、ガスクロマトグラフ質量分析計、液体クロマトグラフ質量分析計、キャピラリー電気泳動質量分析計、イオンクロマトグラフ質量分析計、超臨界流体クロマトグラフ質量分析計、およびNMR等が挙げられ、好ましくは、ガスクロマトグラフ質量分析計である。本発明のキットで用いられる前記遺伝子の発現量および/または前記内因性代謝物の量の測定データを解析するための手段としては、当該技術分野で一般に用いられる統計学的手法および機械学習、例えば、線形回帰、ロジスティック回帰、サポートベクターマシン、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰、t検定、ROC曲線、および分散分析(ANOVA)を行うための手段が含まれる。 As means for measuring the expression level of the gene used in the kit of the present invention, means generally used in the art, such as microarray, real-time PCR, NGS (next generation sequencer), Northern blotting, EST analysis, SAGE. (Gene expression chain analysis), nanopore sequencing, etc. are mentioned, and a microarray is preferable. Further, as a means for measuring the amount of the endogenous metabolite used in the kit of the present invention, a means generally used among those skilled in the art can be used, for example, a gas chromatograph mass spectrometer, a liquid chromatograph mass. Examples thereof include an analyzer, a capillary electrophoresis mass spectrometer, an ion chromatograph mass spectrometer, a supercritical fluid chromatograph mass spectrometer, and an NMR, and a gas chromatograph mass spectrometer is preferable. As a means for analyzing the measurement data of the expression level of the gene and / or the amount of the endogenous metabolite used in the kit of the present invention, statistical methods and machine learning generally used in the art, for example, , Linear Regression, Logistic Regression, Support Vector Machine, Neural Network, Random Forest, Lasso (LASSO) Regression, Ridge Regression, Elastic Net Regression, t Test, ROC Curve, and Dispersion Analysis (ANOVA) Is included.
 本発明のキットには、上記手段の他、本明細書に記載の方法を実施するための様々な手段、例えば、パーソナルコンピュータ、ウェル、容器、トレイ、キットの取り扱い説明書、RNAを抽出する試薬一式、核酸濃度測定器、核酸品質確認機、内因性代謝物抽出試薬一式、および判別のための数式等を含んでいてもよいが、これらに限定されるものではない。 In addition to the above means, the kit of the present invention includes various means for carrying out the methods described herein, such as personal computers, wells, containers, trays, kit instruction manuals, and reagents for extracting RNA. A set, a nucleic acid concentration measuring device, a nucleic acid quality checker, a set of endogenous metabolite extraction reagents, a mathematical formula for discrimination, and the like may be included, but the present invention is not limited thereto.
 本発明のさらなる別の態様において、本発明は、化学物質が有する生物における内分泌系に影響を与える要因を判別するための前記遺伝子および/または前記内因性代謝物を選択するための方法であって、(1)ストレスを負荷していない生物および負荷した生物から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、ならびに(2)内分泌攪乱物質が接触していない被験体および接触した被験体から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、次いで(3)前記工程(1)および工程(2)で得られた遺伝子の発現量および/または内因性代謝物の量を、機械学習および/または統計学的手法を用いて解析し、前記遺伝子および/または前記内因性代謝物を選択する工程を含む方法を提供する。また、本発明の方法には、前記工程(3)で選択された前記遺伝子および前記内因性代謝物のうち、前記工程(1)後の工程(3)で選択された前記遺伝子および前記内因性代謝物と、前記工程(2)後の工程(3)で選択された前記遺伝子および前記内因性代謝物との重複するものを除外する工程がさらに含まれる。 In yet another aspect of the invention, the invention is a method for selecting the gene and / or the endogenous metabolite for determining factors that affect the endocrine system in an organism possessed by a chemical substance. , (1) Steps to measure gene expression and / or endogenous metabolites in samples taken from unstressed and loaded organisms, and (2) endocrine disruptors are in contact. Steps of measuring gene expression and / or endocrine metabolites in samples taken from non-subjects and contacted subjects, followed by (3) obtained in steps (1) and (2) above. Provided is a method comprising the step of analyzing the expression level of a gene and / or the amount of an endocrine metabolite using machine learning and / or statistical techniques and selecting the gene and / or the endocrine metabolite. .. Further, in the method of the present invention, among the gene and the endogenous metabolite selected in the step (3), the gene and the endogenous metabolite selected in the step (3) after the step (1). A step of excluding duplicates of the metabolite with the gene selected in step (3) after step (2) and said endogenous metabolite is further included.
 本発明の方法で用いられる機械学習および統計学的手法としては、当該技術分野で一般に用いられるものであってもよく、例えば、線形回帰、ロジスティック回帰、サポートベクターマシン、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰、t検定、ROC曲線、および分散分析(ANOVA)等が挙げられるが、これらに限定されるものではない。本発明における工程(3)において、遺伝子は、工程(2)で得られた発現量に基づいて、t検定とサポートベクターマシン-再帰的特徴消去法(SVM-RFE)を適用し、確率が0.5より大きい場合、内分泌攪乱物質として直接作用を示すものと判断し選択することができる。また、本発明における工程(3)において、内因性代謝物は、工程(2)で得られた量に基づいて、ロジスティック回帰分析の式を適用し、計算結果が0.5以上であるか、LASSOによる回帰係数を算出し、係数が0以上であるか、またはROC曲線を作成し、AUC値のlog比が0以上である場合、内分泌攪乱物質として直接作用を示すものと判断し選択することができる。 The machine learning and statistical methods used in the method of the present invention may be those generally used in the art, for example, linear regression, logistic regression, support vector machine, neural network, random forest, lasso. (Lasso) regression, Ridge regression, elastic net regression, t-test, ROC curve, analysis of variance (ANOVA), etc., but are not limited thereto. In step (3) of the present invention, the gene is subjected to t-test and support vector machine-recursive feature elimination method (SVM-RFE) based on the expression level obtained in step (2), and the probability is 0. If it is larger than .5, it can be judged that it has a direct action as an endocrine disruptor and can be selected. Further, in the step (3) of the present invention, for the endogenous metabolite, the formula of logistic regression analysis is applied based on the amount obtained in the step (2), and the calculation result is 0.5 or more. Calculate the regression coefficient by Lasso, and if the coefficient is 0 or more, or create an ROC curve, and if the log 2 ratio of the AUC value is 0 or more, it is judged that it has a direct action as an endocrine disruptor and is selected. be able to.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
実施例1
(1)雄ラットを用いたモデル動物(ストレス負荷群/ED物質投与群)の作製
 試験終了時に9週齢となる雄のラット(RccHan:Wist系)を用いて各群8匹となるように試験設計をした。投与日数は、特に記載のないものは8日間である。ストレス負荷群として、3時間拘束群、高度飢餓ストレス群(平均摂餌量20g/日の60%給餌)、中度飢餓ストレス群(平均摂餌量20g/日の70%給餌)、ストレスホルモンの一種であるコルチコステロン50mg/kg投与群、アドレナリン受容体作動薬であるイソプロテレノール1mg/kg投与群、の5つの群を各条件の対照群と共に作製した。また、ED物質投与群として、テストステロン低下作用を持つ性腺刺激ホルモン放出ホルモン受容体アゴニストであるリュープロレリンの3mg/kgおよび0.6mg/kg投与群、酸化代謝酵素CYP3A4阻害剤であるケトコナゾールの25mg/kg群および12.5mg/kg投与群の4つの群を各条件の対照群と共に作製した。
Example 1
(1) Preparation of model animals (stress loading group / ED substance administration group) using male rats Use male rats (RccHan: Wist system) that will be 9 weeks old at the end of the test so that there will be 8 animals in each group. I made a test design. The number of administration days is 8 days unless otherwise specified. The stress-loaded group includes a 3-hour restraint group, a severe starvation stress group (average feeding 20 g / day 60% feeding), a moderate starvation stress group (average feeding 20 g / day 70% feeding), and stress hormones. Five groups, a corticosterone 50 mg / kg administration group and an adrenergic receptor agonist isoproterenol 1 mg / kg administration group, were prepared together with a control group under each condition. In addition, as the ED substance administration group, 3 mg / kg and 0.6 mg / kg administration group of leuprorelin, which is a gonadotropin-releasing hormone receptor agonist having a testosterone lowering effect, and 25 mg of ketoconazole, which is an oxidative metabolizing enzyme CYP3A4 inhibitor. Four groups, a / kg group and a 12.5 mg / kg administration group, were prepared together with a control group under each condition.
(2)血清テストステロン濃度の分析およびマーカー抽出用個体の決定
 試験実施後の動物から採取した血清のテストステロン濃度を、液体クロマトグラフ-質量分析計(LC/MS)を用いて測定した。処理群からテストステロン濃度の低い個体上位3匹、対照群からテストステロン濃度の中央値付近を示す3匹を選抜し、マーカー抽出用の個体として決定した。
(2) Analysis of serum testosterone concentration and determination of individual for marker extraction The testosterone concentration of serum collected from animals after the test was measured using a liquid chromatograph-mass spectrometer (LC / MS). The top three individuals with low testosterone concentration were selected from the treatment group, and the three animals showing near the median testosterone concentration were selected from the control group and determined as individuals for marker extraction.
(3)動物個体における遺伝子・内因性代謝物のデータ取得(マイクロアレイ・GC/MS分析)
 上記で決定した個体の精巣、副腎、甲状腺、下垂体、胸腺、肝臓から抽出したRNAを用いてマイクロアレイ(アジレント・テクノロジー)を用いて網羅的な遺伝子発現量の解析を実施した(分析対象数約40000個に対して検出数は約30000個であった)。また、精巣、副腎、甲状腺、下垂体、胸腺、肝臓、血清の代謝物をGC/MS(TQ-8030,島津製作所)により網羅的に分析し、データを取得した(分析対象数約500個に対して検出数は約200個であった)。
(3) Acquisition of data on genes and endogenous metabolites in individual animals (microarray / GC / MS analysis)
A comprehensive gene expression level analysis was performed using RNA extracted from the testis, adrenal gland, thyroid gland, pituitary gland, thymus, and liver of the individual determined above using a microarray (Agilent Technology) (about the number of analysis subjects). The number of detections was about 30,000 for 40,000). In addition, the testis, adrenal gland, thyroid gland, pituitary gland, thymus, liver, and serum metabolites were comprehensively analyzed by GC / MS (TQ-8030, Shimadzu Corporation), and data were obtained (the number of analysis targets was approximately 500). On the other hand, the number of detections was about 200).
(4)判別マーカー候補の抽出(各遺伝子および内因性代謝物)
[遺伝子マーカー]
 t検定の実施およびp値<0.05での選抜により、遺伝子発現変動量の大きい遺伝子をランキングした後、サポートベクターマシン-再帰的特徴消去法(SVM-RFE)により遺伝子を絞り込んだ。
[内因性代謝物マーカー]
1)LASSOによりモデルを構築し、各内因性代謝物に対する回帰係数を算出した。
2)ROC曲線を作成し、AUC値のlog比が0あるいは1の内因性代謝物を選抜した。各組織から採取した試料におけるマーカー候補数を下記表1で示す。
<表1.各組織におけるマーカー候補数>
Figure JPOXMLDOC01-appb-T000002
(4) Extraction of discriminant marker candidates (each gene and endogenous metabolites)
[Genetic marker]
Genes with large fluctuations in gene expression were ranked by performing a t-test and selecting with a p-value <0.05, and then the genes were narrowed down by a support vector machine-recursive feature elimination method (SVM-RFE).
[Intrinsic metabolite marker]
1) A model was constructed by LASSO, and the regression coefficient for each endogenous metabolite was calculated.
2) An ROC curve was created, and endogenous metabolites having a log 2 ratio of AUC value of 0 or 1 were selected. The number of marker candidates in the samples collected from each tissue is shown in Table 1 below.
<Table 1. Number of marker candidates in each tissue>
Figure JPOXMLDOC01-appb-T000002
(5)マーカー精度の検証を目的とした新規動物実験の実施
 実施例1(4)で抽出した判別マーカー候補の予測精度を検証するために、実施例1(1)の動物試験とは作用点の異なる化合物を投与する新規動物試験を実施した。ストレス負荷群として、食欲抑制作用のあるフェンフルラミン25mg/kg単回投与の1群、ED物質投与群としてテストステロン生合成阻害の可能性が報告されているフタル酸ジブチル1000mg/kgの15日間投与群、酸化代謝酵素CYP17A1阻害剤であるアビラテロン50mg/kg、性腺刺激ホルモン放出ホルモン受容体アンタゴニストであるデガレリクス2mg/kgの単回投与後3日目および8日目群の4群を各条件の対照群と共に設定し、動物試験を実施した。
(5) Implementation of a new animal experiment for the purpose of verifying marker accuracy In order to verify the prediction accuracy of the discrimination marker candidates extracted in Example 1 (4), the point of action is the animal test of Example 1 (1). A novel animal study was conducted in which different compounds were administered. As a stress-bearing group, a single dose of fenfluramine 25 mg / kg, which has an appetite-suppressing effect, was administered, and as an ED substance-administered group, 1000 mg / kg of dibutyl phthalate, which has been reported to inhibit testosterone biosynthesis, was administered for 15 days. Control of each condition was divided into 4 groups, 3 days and 8 days after a single dose of avilateron 50 mg / kg, which is an oxidative metabolizing enzyme CYP17A1 inhibitor, and degarelix 2 mg / kg, which is a gonad stimulating hormone-releasing hormone receptor antagonist. It was set up with the group and animal tests were performed.
(6)マーカーの検証(予測率が高いマーカーセットの特定)
 実施例1(5)の試験で得られたサンプルについて、実施例1(2)および実施例1(3)と同様に分析を実施した。得られた遺伝子、内因性代謝物データを用いて、実施例1(4)で抽出したマーカー候補による正答率を求め、正答率が遺伝子で80%以上、内因性代謝物で93%以上を示すものを、化学物質による直接作用かストレスによる間接作用かを判別するマーカーとして決定した(図1、図2、および下記表2)。遺伝子マーカーについては、肝臓および下垂体で高い予測精度が確認され(図1および表2)、内因性代謝物マーカーについては、胸腺および血清で高い予測精度が確認された(図2および表2)。
<表2.ストレス/ED判別マーカーの予測率>
Figure JPOXMLDOC01-appb-T000003
(6) Marker verification (identification of marker sets with high prediction rate)
The samples obtained in the test of Example 1 (5) were analyzed in the same manner as in Example 1 (2) and Example 1 (3). Using the obtained gene and endogenous metabolite data, the correct answer rate by the marker candidates extracted in Example 1 (4) was obtained, and the correct answer rate was 80% or more for the gene and 93% or more for the endogenous metabolite. Those were determined as markers for discriminating between direct action by chemical substances and indirect action by stress (FIGS. 1, FIG. 2, and Table 2 below). For genetic markers, high predictive accuracy was confirmed in the liver and pituitary gland (Fig. 1 and Table 2), and for endogenous metabolite markers, high predictive accuracy was confirmed in the thymus and serum (Fig. 2 and Table 2). ..
<Table 2. Prediction rate of stress / ED discrimination marker>
Figure JPOXMLDOC01-appb-T000003
実施例2
被験化合物に対する実施例
 被験化合物を投与していないラット等の動物と被験化合物を約1週間投与したラット等の動物から、血清、胸腺、肝臓、下垂体を採取する。血清および胸腺の内因性代謝物をガスクロマトグラフ質量分析計で測定する。肝臓及び下垂体の遺伝子発現をマイクロアレイで測定する。本発明の前記遺伝子および前記内因性代謝物を用いて、対照群と比較した時の投与群の変動データを、判別マーカーの変動と比較して、実施例1(6)に示す手法を用いて直接作用あるいは間接作用に分類し、被験化合物の内分泌影響の要因を判別する。
Example 2
Examples for the test compound Serum, thymus, liver, and pituitary gland are collected from animals such as rats to which the test compound has not been administered and animals such as rats to which the test compound has been administered for about 1 week. Endogenous metabolites of serum and thymus are measured with a gas chromatograph mass spectrometer. Gene expression in the liver and pituitary gland is measured on a microarray. Using the gene of the present invention and the endogenous metabolite, the variation data of the administration group when compared with the control group was compared with the variation of the discriminant marker, and the method shown in Example 1 (6) was used. Classify as direct action or indirect action, and determine the factors of endocrine influence of the test compound.
LASSOおよびロジスティック回帰分析を用いて判別した検証例
 想定被験化合物A、B、Cの3種(下記表3中、それぞれ、例1~例3に対応)に接触していないRccHan:Wist系ラット雄および接触させた前記ラット雄の血清から採取した試料から測定されると想定される内因性代謝物10種のデータ(前記内因性代謝物の変動倍率を任意に設定)を用いて、ラッソ(LASSO)回帰によって係数aを算出し、ロジスティック回帰分析によってストレスまたはEDのいずれかとして判別した。具体的には、3種類の変動倍率(前記内因性代謝物の変動倍率を任意に設定)のデータ(下記表3中、例1~3)を用いて、下記式(ロジスティック回帰分析の式)中において、aには各内因性代謝物マーカーの係数、xには対照群に対する処理群の変動倍率を代入し、yが0.5より大きければ、内分泌撹乱物質(ED)、0.5より小さければ、ストレス(stress)と判別した。LASSO回帰によって係数aを算出し、ロジスティック回帰分析によってストレスまたはEDに分類した。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
Verification example determined using Lasso and logistic regression analysis RccHan: Wist male rat male not in contact with 3 types of assumed test compounds A, B, and C (corresponding to Examples 1 to 3 in Table 3 below, respectively) Lasso (LASSO) using data of 10 endogenous metabolites (arbitrarily set the fluctuation ratio of the endogenous metabolites) that are assumed to be measured from a sample collected from the serum of the rat male that has been contacted with the lasso. ) The coefficient a was calculated by regression and discriminated as either stress or ED by logistic regression analysis. Specifically, the following formula (logistic regression analysis formula) is used using data (Examples 1 to 3 in Table 3 below) of three types of fluctuation ratios (the fluctuation ratios of the endocrine disrupters are arbitrarily set). Among them, a is the coefficient of each endogenous metabolite marker, x is the fluctuation ratio of the treatment group with respect to the control group, and if y is larger than 0.5, the endocrine disruptor (ED) is better than 0.5. If it was small, it was determined to be stress. The coefficient a was calculated by Lasso regression and classified as stress or ED by logistic regression analysis.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
サポートベクターマシンを用いて判別した検証例
 想定被験化合物A、B、Cの3種(下記表4中、それぞれ、例1~例3に対応)に接触していないRccHan:Wist系ラット雄および接触させた前記ラット雄の肝臓から採取した試料から測定されると想定される遺伝子8種のデータ(前記遺伝子の変動倍率を任意に設定)を用いてサポートベクターマシンを適用して確率を算出し、ストレスまたはEDのいずれかとして判別した。確率が0.5より大きければED、確率が0.5より小さければストレス(stress)と判別した。具体的には、3種類の変動倍率(前記遺伝子の変動倍率を任意に設定)のlog2変換したデータ(下記表4中、例1~3)を用いて、Rのパッケージe1071を実行し、ラジアル基底関数カーネル(ガウシアンカーネル)のサポートベクターマシンを適用して確率を算出してストレスまたはEDに分類した。
Figure JPOXMLDOC01-appb-T000006
Verification example determined using a support vector machine RccHan: Wist rat male and contact not in contact with 3 types of assumed test compounds A, B, and C (corresponding to Examples 1 to 3 in Table 4 below, respectively) The probability was calculated by applying a support vector machine using data of 8 kinds of genes assumed to be measured from a sample collected from the liver of the rat male (arbitrarily setting the fluctuation ratio of the gene). Determined as either stress or ED. If the probability is greater than 0.5, it is determined to be ED, and if the probability is less than 0.5, it is determined to be stress. Specifically, the R package e1071 is executed using the log2-converted data (Examples 1 to 3 in Table 4 below) of three types of fluctuation ratios (the fluctuation ratios of the genes are arbitrarily set), and radial. A support vector machine of the basis function kernel (Gaussian kernel) was applied to calculate the probability and classify it as stress or ED.
Figure JPOXMLDOC01-appb-T000006
 本発明は、農薬、医薬、獣医薬、畜産、および環境分野を含む、化学物質が生物の内分泌系に影響を与える要因を判別することが必要とされる分野において利用可能である。本発明の判別方法によれば、内分泌系への影響が内分泌攪乱物質として直接的に作用する化学物質を排除し、かつ内分泌系への影響がストレスとして間接的に作用する化学物質を排除しないとの判別を同時にすることができる。 The present invention can be used in fields where it is necessary to identify factors that affect the endocrine system of living organisms, including the fields of pesticides, pharmaceuticals, veterinary medicine, livestock, and the environment. According to the discrimination method of the present invention, chemical substances whose effects on the endocrine system act directly as endocrine disruptors must be excluded, and chemical substances whose effects on the endocrine system act indirectly as stress must be excluded. Can be discriminated at the same time.

Claims (16)

  1.  化学物質が有する生物における内分泌系に影響を与える要因の判別方法であって、(1)前記化学物質が接触していない被験体および接触した被験体から採取された試料におけるマーカーとなる遺伝子の発現量および/またはマーカーとなる内因性代謝物の量を測定する工程、次いで(2)前記工程(1)で測定された前記遺伝子の発現量および/または前記内因性代謝物の量を解析して、前記化学物質が、内分泌攪乱物質として内分泌系に影響を与える要因であるか、またはストレスとして内分泌系に影響を与える要因であるかを判別する工程を含む、方法。 It is a method for discriminating factors that affect the endocrine system in an organism possessed by a chemical substance. (1) Expression of a gene that serves as a marker in a subject to which the chemical substance is not in contact and a sample collected from a subject in contact with the chemical substance. The step of measuring the amount and / or the amount of the endocrine metabolite as a marker, and then (2) analyzing the expression level of the gene and / or the amount of the endocrine metabolite measured in the step (1). A method comprising the step of determining whether the chemical substance is a factor affecting the endocrine system as an endocrine disturbing substance or a factor affecting the endocrine system as stress.
  2.  前記遺伝子および/または内因性代謝物が、前記化学物質が接触していない被験体および接触した被験体から採取された試料における遺伝子の発現量および/または内因性代謝物の量を機械学習および/または統計学的手法に適用することにより選択されたものである、請求項1に記載の方法。 The gene and / or the endogenous metabolite machine-learns and / or the amount of the gene expression and / or the amount of the endogenous metabolite in a sample taken from a subject not in contact with the chemical and a subject in contact with the chemical. Or the method of claim 1, which is selected by applying to a statistical method.
  3.  前記遺伝子が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上のものであり、前記内因性代謝物が、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上のものである、請求項1または2に記載の方法。 The genes are guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygensterol binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene, carboxylesterase-like gene, migration and inhibition inhibition protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513 One or more selected from the group consisting of (gene represented by SEQ ID NO: 5), wherein the endogenous metabolites are 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2. One or more selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid, xylrose, succinic acid, dopamine, and mannitol. The method according to 1 or 2.
  4.  前記遺伝子が、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択されるものであり、前記内因性代謝物が、2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、安息香酸、イソロイシン、エライジン酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上のものである、請求項1~3のいずれか1項に記載の方法。 The genes are from lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygen binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, and A_64_P100513 (gene represented by SEQ ID NO: 5). The endogenous metabolite is selected from the group consisting of 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, benzoic acid, isoleucine, ellaidic acid, dopamine, and mannitol. The method according to any one of claims 1 to 3, wherein the method is one or more.
  5.  前記工程(2)における解析が、機械学習および/または統計学的手法を用いて行われるものである、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the analysis in the step (2) is performed using machine learning and / or a statistical method.
  6.  前記機械学習および/または統計学的手法が、線形回帰、ロジスティック回帰、サポートベクターマシン、ニューラルネットワーク、ランダムフォレスト、ラッソ(LASSO)回帰、リッジ(Ridge)回帰、elastic net回帰、t検定、ROC曲線、および分散分析(ANOVA)からなる群から選択されるものである、請求項5に記載の方法。 The machine learning and / or statistical method includes linear regression, logistic regression, support vector machine, neural network, random forest, lasso regression, ridge regression, elastic net regression, t-test, ROC curve, etc. The method of claim 5, wherein the method is selected from the group consisting of and variance analysis (ANOVA).
  7.  前記機械学習が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上の遺伝子、ならびに/あるいは2-デオキシグルコース、3-ヒドロキシイソ酪酸、および4-アミノ酪酸からなる群から選択される1つまたはそれ以上の内因性代謝物を用いる場合、サポートベクターマシンを用いて行われ、前記サポートベクターマシンが、ラジアル基底関数カーネルを特徴とするものである、請求項6に記載の方法。 The machine learning is guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygensterol binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene. , A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene, carboxylesterase-like gene, migration and invasion inhibitory protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and One or more genes selected from the group consisting of A_64_P100513 (gene represented by SEQ ID NO: 5) and / or selected from the group consisting of 2-deoxyglucose, 3-hydroxyisobutyric acid, and 4-aminobutyric acid. The method of claim 6, wherein when one or more endogenous metabolites are used, the support vector machine is used and the support vector machine is characterized by a radial basal function kernel. ..
  8.  前記機械学習が、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の内因性代謝物を用いる場合、LASSO回帰を用いて行われ、前記LASSO回帰が、モデル式の構築には、ロジスティック回帰分析を用いるものである、請求項6に記載の方法。 One or more intrinsic factors in which the machine learning is selected from the group consisting of 2-aminoisobutyric acid, 3-hydroxyisobutyric acid, benzoic acid, isoleucine, lassoyl, ellaic acid, xylulose, succinic acid, dopamine, and mannitol. The method according to claim 6, wherein when a sex metabolite is used, Lasso regression is used, and the Lasso regression uses logistic regression analysis to construct a model formula.
  9.  前記内分泌系への影響が、血液中のテストステロン濃度の減少を特徴とする、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the effect on the endocrine system is characterized by a decrease in testosterone concentration in blood.
  10.  前記試料が、内分泌系に関連する組織、肝臓または血液、あるいは内分泌系に関連する組織、肝臓または血液から分離された細胞もしくはその培養細胞である、請求項1~9のいずれか1項に記載の方法。 6. the method of.
  11.  前記内分泌系に関連する組織が、胸腺または下垂体である、請求項10に記載の方法。 The method of claim 10, wherein the tissue associated with the endocrine system is the thymus or pituitary gland.
  12.  前記被験体が、哺乳動物またはその組織もしくは細胞である、請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the subject is a mammal or a tissue or cell thereof.
  13.  前記哺乳動物が、ヒト、ラットまたはマウスである、請求項12に記載の方法。 The method of claim 12, wherein the mammal is a human, rat or mouse.
  14.  化学物質が有する生物における内分泌系に影響を与える要因を判別するためのキットであって、請求項1~13のいずれか1項に記載の方法を実施するための手段を含むキット。 A kit for determining factors that affect the endocrine system in an organism possessed by a chemical substance, and includes means for carrying out the method according to any one of claims 1 to 13.
  15.  前記手段が、guanine deaminase遺伝子、interleukin-1 receptor-associated kinase遺伝子、lysine demethylase 8遺伝子、microtubule-associated protein RP/EB family member 3遺伝子、oxysterol binding protein-like 3遺伝子、translocase of outer mitochondrial membrane 70遺伝子、A_44_P1058703(配列番号1で表される遺伝子)、A_64_P039501(配列番号2で表される遺伝子)、GA binding protein transcription factor subunit alpha遺伝子、kelch-like family member 30遺伝子、carboxylesterase-like遺伝子、migration and invasion inhibitory protein遺伝子、signal-regulatory protein alpha遺伝子、solute carrier family 7 member 7遺伝子、vomeronasal 1 receptor 77遺伝子、A_44_P323754(配列番号3で表される遺伝子)、A_64_P032023(配列番号4で表される遺伝子)、およびA_64_P100513(配列番号5で表される遺伝子)からなる群から選択される1つまたはそれ以上の遺伝子の発現量、ならびに/あるいは2-デオキシグルコース、3-ヒドロキシイソ酪酸、4-アミノ酪酸、2-アミノイソ酪酸、3-ヒドロキシイソ吉草酸、安息香酸、イソロイシン、ウラシル、エライジン酸、キシルロース、コハク酸、ドーパミン、およびマンニトールからなる群から選択される1つまたはそれ以上の内因性代謝物の量を測定するための手段である、請求項14に記載のキット。 The means are guanine deaminase gene, interleukin-1 receptor-associated kinase gene, lysine demethylase 8 gene, microtubule-associated protein RP / EB family member 3 gene, oxygensterol binding protein-like 3 gene, translocase of outer mitochondrial membrane 70 gene, A_44_P1058703 (gene represented by SEQ ID NO: 1), A_64_P039501 (gene represented by SEQ ID NO: 2), GA binding protein transcription factor subsystem alpha gene, kelch-like family member 30 gene, carboxylesterase-like gene, migration and inhibition inhibition protein gene, signal-regulatory protein alpha gene, solute carrier family 7 member 7 gene, vomeronasal 1 receptor 77 gene, A_44_P323754 (gene represented by SEQ ID NO: 3), A_64_P032023 (gene represented by SEQ ID NO: 4), and A_64_P100513 The expression level of one or more genes selected from the group consisting of (gene represented by SEQ ID NO: 5), and / or 2-deoxyglucose, 3-hydroxyisobutyric acid, 4-aminobutyric acid, 2-aminoiso. Measure the amount of one or more endogenous metabolites selected from the group consisting of butyric acid, 3-hydroxyisovaleric acid, benzoic acid, isoleucine, uracil, elaidic acid, xylrose, succinic acid, dopamine, and mannitol. The kit according to claim 14, which is a means for the above.
  16.  化学物質が有する生物における内分泌系に影響を与える要因を判別するための遺伝子および/または内因性代謝物を選択するための方法であって、(1)ストレスを負荷していない生物および負荷した生物から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、ならびに(2)内分泌攪乱物質が接触していない被験体および接触した被験体から採取された試料における遺伝子の発現量および/または内因性代謝物の量を測定する工程、(3)前記工程(1)および工程(2)で得られた遺伝子の発現量および/または内因性代謝物の量を、機械学習および/または統計学的手法を用いて解析し、遺伝子および/または内因性代謝物を選択する工程、次いで(4)前記工程(3)で選択された遺伝子および内因性代謝物のうち、前記工程(1)後の工程(3)で選択された遺伝子および内因性代謝物と、前記工程(2)後の工程(3)で選択された遺伝子および内因性代謝物との重複するものを除外する工程を含む、方法。 A method for selecting genes and / or endogenous metabolites for determining factors that affect the endocrine system in organisms possessed by chemical substances. (1) Unstressed organisms and loaded organisms. Steps to measure gene expression and / or amount of endogenous metabolites in samples taken from, and (2) genes in samples taken from subjects not in contact with endocrine disruptors and those in contact. The step of measuring the expression level and / or the amount of the endogenous metabolite, (3) the expression level of the gene obtained in the steps (1) and (2), and / or the amount of the endogenous metabolite A step of selecting a gene and / or an endocrine metabolite by analysis using learning and / or statistical methods, and then (4) among the genes and endocrine metabolites selected in the step (3). Exclude duplicates of the gene and endocrine metabolite selected in step (1) and step (3) after step (1) and the gene and endocrine metabolite selected in step (3) after step (2). A method that includes the steps to be performed.
PCT/JP2021/009779 2020-03-23 2021-03-11 Method for determining factor of chemical substance influencing endocrine system WO2021193097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050701A JP2021145635A (en) 2020-03-23 2020-03-23 Determination method of factor giving impact to endocrine system of chemical material
JP2020-050701 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193097A1 true WO2021193097A1 (en) 2021-09-30

Family

ID=77848065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009779 WO2021193097A1 (en) 2020-03-23 2021-03-11 Method for determining factor of chemical substance influencing endocrine system

Country Status (2)

Country Link
JP (1) JP2021145635A (en)
WO (1) WO2021193097A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113013A1 (en) * 2021-12-17 2023-06-22 国立大学法人京都大学 Method for selecting gene for use in estimation of possibility of onset of disease, and method for estimating possibility of onset of disease

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026404A1 (en) * 1998-10-30 2000-05-11 Takara Shuzo Co., Ltd. Method for detecting gene affected by endocrine disruptor
JP2002355079A (en) * 2001-03-14 2002-12-10 Takara Bio Inc Method for detecting endocrine disruptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026404A1 (en) * 1998-10-30 2000-05-11 Takara Shuzo Co., Ltd. Method for detecting gene affected by endocrine disruptor
JP2002355079A (en) * 2001-03-14 2002-12-10 Takara Bio Inc Method for detecting endocrine disruptor

Also Published As

Publication number Publication date
JP2021145635A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
Li et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity
Aulbach et al. Biomarkers in nonclinical drug development
Carrano et al. Interrogating islets in health and disease with single-cell technologies
EP2023144A1 (en) Novel AS160-like protein, test systems, methods and uses involving it for the identification of diabetes type 2 therapeutics
Stella et al. Protein expression changes in skeletal muscle in response to growth promoter abuse in beef cattle
Chawana et al. Microbats appear to have adult hippocampal neurogenesis, but post-capture stress causes a rapid decline in the number of neurons expressing doublecortin
Ralston-Hooper et al. Application of a label-free, gel-free quantitative proteomics method for ecotoxicological studies of small fish species
WO2021193097A1 (en) Method for determining factor of chemical substance influencing endocrine system
Groh et al. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns
Yang et al. Jun, Gal, Cd74, and C1qb as potential indicator for neuropathic pain
Akpinar et al. Proteomics analysis of tissue samples reveals changes in mitochondrial protein levels in parathyroid hyperplasia over adenoma
Nissa et al. Organ-based proteome and post-translational modification profiling of a widely cultivated tropical water fish, Labeo rohita
Mandl et al. Two distinct classes of thymic tumors in patients with MEN1 show LOH at the MEN1 locus
Schultze et al. Ultrasensitive cross-species measurement of cardiac troponin-I using the Erenna immunoassay system
Chen et al. The phosphoproteome is a first responder in tiered cellular adaptation to chemical stress followed by proteomics and transcriptomics alteration
Jorgenson et al. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle
Rothstein et al. Answer ALS: A Large-Scale Resource for Sporadic and Familial ALS Combining Clinical Data with Multi-Omics Data from Induced Pluripotent Cell Lines
Slick et al. Aberrations in energetic metabolism and stress-related pathways contribute to pathophysiology in the neb conditional knockout mouse model of Nemaline myopathy
Khan et al. Mapping molecular datasets back to the brain regions they are extracted from: Remembering the native countries of hypothalamic expatriates and refugees
Artati et al. Untargeted and Targeted Circadian Metabolomics Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Flow Injection-Electrospray Ionization-Tandem Mass Spectrometry (FIA-ESI-MS/MS)
Fischer et al. Can antibody-based assays consistently detect differences in feather corticosterone?
Ge et al. Toxicoproteomics and its application to human health risk assessment
AU2010309988A1 (en) Method for generating biomarker reference patterns
Ahmed Proteomics and islet research
Palmer Phenotypic screening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776146

Country of ref document: EP

Kind code of ref document: A1