WO2021192983A1 - 機械学習装置、データ処理システム、推論装置及び機械学習方法 - Google Patents
機械学習装置、データ処理システム、推論装置及び機械学習方法 Download PDFInfo
- Publication number
- WO2021192983A1 WO2021192983A1 PCT/JP2021/009120 JP2021009120W WO2021192983A1 WO 2021192983 A1 WO2021192983 A1 WO 2021192983A1 JP 2021009120 W JP2021009120 W JP 2021009120W WO 2021192983 A1 WO2021192983 A1 WO 2021192983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- solenoid
- unit
- data
- fluid pressure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/16—Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member
- F16K31/163—Actuating devices; Operating means; Releasing devices actuated by fluid with a mechanism, other than pulling-or pushing-rod, between fluid motor and closure member the fluid acting on a piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/25—Manufacturing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/10—Detection; Monitoring
Definitions
- the present invention relates to a machine learning device, a data processing system, an inference device, and a machine learning method for diagnosing an abnormality in a valve system.
- a fluid pressure drive valve that opens and closes the main valve by controlling the drive fluid with a solenoid valve.
- a fluid pressure drive valve used for piping of plant equipment
- the drive fluid is controlled by a solenoid valve to close the ball valve (main valve).
- an emergency shutoff valve device that shuts off the fluid flowing through the pipe is disclosed.
- a fluid pressure driven valve such as an emergency shutoff valve used in plant equipment as shown in Patent Document 1
- unexpected abnormalities may not occur in order to improve the operating rate and reliability of the entire plant equipment.
- the fluid pressure drive valve should be opened and closed for a predetermined period while suppressing the influence on the plant equipment as much as possible. It has been confirmed that the fluid pressure drive valve operates normally. Therefore, in such a fluid pressure drive valve, it is desired to realize not only post-maintenance for grasping the abnormality generated in the fluid pressure drive valve after the fact but also predictive maintenance for grasping the sign of the abnormality. There is.
- the signs of abnormality of the fluid pressure drive valve can be expressed as various events by, for example, opening and closing of the fluid pressure drive valve in a predetermined period, but the events and abnormalities that can occur in the fluid pressure drive valve The causal relationship with the signs was not clearly identified.
- the predictive maintenance of the fluid pressure drive valve is carried out based on the judgment depending on the experience (including tacit knowledge) of the operator, and there is a problem that the accuracy differs depending on the operator in charge. ..
- the present invention is a machine learning device for accurately grasping abnormalities and signs of abnormalities in a fluid pressure drive valve (hereinafter, these are collectively referred to as "abnormalities" in the present invention). It is an object of the present invention to provide a data processing system, an inference device, and a machine learning method.
- the machine learning device includes, for example, a main valve 11, a drive device 12 for driving the main valve 11, and the above, as shown in FIGS. It is applied to the fluid pressure drive valve 10 including at least an electromagnetic valve 1 that controls the supply and discharge of the drive fluid A to the drive device 12, and is a time series of the valve opening degree of the main valve 11 in a predetermined period. Data, time-series data of the electromagnetic valve input side pressure of the drive fluid A supplied to the electromagnetic valve 1 during the predetermined period, and the electromagnetic valve output of the drive fluid A supplied to and discharged from the drive device 12 during the predetermined period.
- the learning data set storage unit 202 that stores a plurality of sets of training data sets to be performed; a learning model that infers the correlation between the input data and the output data by inputting a plurality of sets of the training data sets. It includes a learning unit 203 to be learned; and a learned model storage unit 204 to store the learning model learned by the learning unit 203.
- the machine learning device of the present invention it is possible to provide a learned model capable of estimating the presence or absence of an abnormality in the fluid pressure drive valve based on various information and the like that can be acquired by the fluid pressure drive valve in a predetermined period. become able to. Therefore, by using this trained model, it becomes possible to estimate the abnormality generated in the fluid pressure drive valve with high accuracy without depending on the experience of the operator.
- FIG. 1 is a schematic view showing an example of a fluid pressure drive valve 10 according to an embodiment of the present invention.
- the fluid pressure drive valve 10 in the present embodiment is installed in, for example, a pipe 100 through which various gases, oil, etc. flow in the plant equipment, and shuts off the flow of the pipe 100 at the time of an emergency stop when an abnormality occurs in the plant equipment. It can be used as an emergency shutoff valve.
- the installation location and application of the fluid pressure drive valve 10 are not limited to the above examples.
- the fluid pressure drive valve 10 shown in FIG. 1 is a main valve 11 by driving a main valve 11 arranged in the middle of a pipe 100 and a valve shaft 13 connected to the main valve 11 according to the fluid pressure of the driving fluid. It is provided with a fluid pressure type drive device 12 for opening and closing the drive device 12 and a solenoid valve 1 having a function of controlling the supply and discharge of the drive fluid to the drive device 12.
- Instrumentation air (hereinafter, simply referred to as "air”) A is adopted as the driving fluid used for the fluid pressure drive valve 10.
- the air A is supplied from the air supply source 14 to the solenoid valve 1 via the first air pipe 140, and further to the drive device 12 via the second air pipe 141.
- the fluid pressure drive valve 10 includes a communication cable 150 for transmitting and receiving various data between the external device 15 and the solenoid valve 1, and a power cable 160 for supplying electric power from the external power supply 16 to the solenoid valve 1. Is connected.
- the driving fluid is not limited to the above-mentioned air A, and may be another gas or a liquid (for example, oil).
- the external device 15 is a device for transmitting and receiving various information to and from the fluid pressure drive valve 10, and is, for example, a computer for plant management (including a local server and a cloud server), a worker (maintenance inspector). ) Uses a diagnostic computer or an external storage unit such as a USB memory or an external HDD.
- the external device 15 can also be connected to a machine learning device 200, which will be described later, to transmit various data constituting a learning data set. Further, the external device 15 notifies the operator or the like that an abnormality has occurred when an abnormality occurs in the fluid pressure drive valve 10 and a notification including a GUI (Graphical User Interface) or the like for notifying the contents thereof. It has the means.
- Wireless communication may be used for communication between the external device 15 and the solenoid valve 1.
- the airless close system is adopted as the drive system of the fluid pressure drive valve 10 of the present embodiment. Therefore, during steady operation, the main valve 11 is opened by supplying (air supply) air A from the air supply source 14 to the drive device 12 via the solenoid valve 1, and during emergency stop or test operation, The main valve 11 is closed by discharging (exhausting) air A from the drive device 12 via the solenoid valve 1.
- the fluid pressure drive valve 10 may adopt an airless open system. In that case, the fluid pressure drive valve 10 is closed by supplying air A to the drive device 12, and the air A is discharged from the drive device 12. The main valve 11 is closed.
- a ball valve is used for the main valve 11.
- a valve box 110 arranged in the middle of the pipe 100 and a ball-shaped valve body 111 rotatably provided in the valve box 110 are provided. Further, a first end portion 130A of the valve shaft 13 is connected to the upper portion of the valve body 111.
- the valve body 111 rotates in the valve box 110 in response to the valve shaft 13 being rotationally driven from 0 to 90 degrees, and the main valve 11 can be switched between a fully open state (state shown in FIG. 1) and a fully closed state. ..
- the valve used as the main valve 11 is not limited to the ball valve, and may be, for example, a butterfly valve or other on / off valve.
- the drive device 12 employs a single-acting air cylinder mechanism arranged between the main valve 11 and the solenoid valve 1.
- a cylindrical cylinder 120 As a specific configuration of the drive device 12, a cylindrical cylinder 120, a pair of pistons 122A and 122B provided in the cylinder 120 so as to be reciprocally linearly movable and connected via a piston rod 121, and a first piston.
- a coil spring 123 provided on the piston 122A side, an air supply / discharge port 124 formed on the second piston 122B side, and a valve shaft 13 and a piston arranged so as to penetrate the cylinder 120 along the radial direction.
- a transmission mechanism 125 provided at a portion orthogonal to the rod 121 is provided.
- the drive device 12 is not limited to the single-acting type, and may be configured in another form such as a double-acting type.
- the first piston 122A is urged by the coil spring 123 to operate the main valve 11 in the closing direction. Further, the second piston 122B presses the main valve 11 so as to operate in the opening direction (against the urging force of the coil spring 123) by the air A (air supply) supplied from the air supply / discharge port 124. It is a thing. Further, the transmission mechanism 125 is composed of a rack and pinion mechanism, a link mechanism, a cam mechanism, and the like, and converts the reciprocating linear motion of the piston rod 121 into a rotary motion and transmits it to the valve shaft 13.
- the valve shaft 13 is formed in a shaft shape and is arranged so as to penetrate the drive device 12 in a rotatable state.
- the first end 130A of the valve shaft 13 is connected to the main valve 11, and the second end 130B of the valve shaft 13 is pivotally supported by the solenoid valve 1.
- the valve shaft 13 may have a plurality of shafts connected via a coupling or the like.
- the solenoid valve 1 has a function of controlling the supply and discharge of air A to the drive device 12, and is, for example, a three-way solenoid valve of a normally closed type (“open” when energized, “closed” when not energized) at two positions. It is configured as.
- the solenoid valve 1 has a spool portion 2 that switches the flow path through which the air A flows inside the accommodating portion 6 that functions as a housing of the indoor type or explosion-proof type solenoid valve 1, and an energized state (when energized or de-energized). It is provided with a solenoid unit 3 that displaces the spool unit 2 according to the above.
- the solenoid valve 1 is not limited to the above-mentioned type of three-way solenoid valve, and may be a three-position solenoid valve, a normally open type, a four-way solenoid valve, or the like, and any combination thereof. It can be composed of various formations based on. Further, in the present embodiment, the solenoid valve 1 is used as a pilot valve in the fluid pressure drive valve 10, but the application of the solenoid valve 1 is not limited to this.
- the spool portion 2 has an input port 20 connected to the air supply source 14 via the first air pipe 140, an output port 21 connected to the drive device 12 via the second air pipe 141, and a drive device.
- the exhaust port 22 for discharging the exhaust from the 12 is provided.
- the solenoid unit 3 displaces the spool unit 2 so as to communicate between the input port 20 and the output port 21 when energized, and communicates between the output port 21 and the exhaust port 22 when the power is off. , Displace the spool portion 2.
- the air A (air supply) from the air supply source 14 is the first air pipe 140, the input port 20, the output port 21, and the second.
- the second piston 122B is pressed and the coil spring 123 is compressed by flowing in the order of the air pipe 141 and being supplied to the air supply / discharge port 124.
- the valve shaft 13 is rotationally driven via the piston rod 121 and the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the compression of the coil spring 123, the valve body 111 rotates in the valve box 110.
- the main valve 11 is operated in the fully open state.
- the solenoid valve 1 when the solenoid valve 1 is in the non-energized state, the air A (exhaust) in the cylinder 120 flows from the air supply / exhaust port 124 to the second air pipe 141, the output port 21, and the exhaust port 22 in this order.
- the pressing force of the second piston 122B is reduced, and the coil spring 123 is restored from the compressed state.
- the valve shaft 13 is rotationally driven via the transmission mechanism 125 by the amount that the piston rod 121 moves in response to the restoration of the coil spring 123, the valve body 111 rotates in the valve box 110, and the main valve 11 rotates. It is operated in the fully closed state.
- FIG. 2 is a cross-sectional view showing an example of a solenoid valve 1 according to an embodiment of the present invention.
- the solenoid valve 1 includes a plurality of sensors 4 for acquiring the state of each portion of the solenoid valve 1 and a plurality of sensors in addition to the spool portion 2 and the solenoid portion 3 described above. It includes a substrate 5 on which at least one of the four is mounted, a spool portion 2, a solenoid portion 3, a plurality of sensors 4, and an accommodating portion 6 accommodating the substrate 5.
- the accommodating portion 6 is adjacent to the first accommodating portion 60 accommodating the spool portion 2 and the first accommodating portion 60, and also accommodates the solenoid unit 3, the plurality of sensors 4, and the substrate 5.
- a terminal box 62 to which the communication cable 150 and the power cable 160 are connected is provided.
- the first accommodating portion 60 and the second accommodating portion 61 are made of a metal material such as aluminum.
- the first accommodating portion 60 has openings (not shown) that function as input ports 20, output ports 21, and exhaust ports 22, respectively.
- the second accommodating portion 61 includes a cylindrical housing 610 with both ends (first housing end 610a and second housing end 610b) open, a body 611 arranged inside the housing 610, and a second housing portion 61.
- a solenoid cover 612 that covers the solenoid portion 3 fixed to the housing end portion 610a of 1 from the outside air, and a terminal box cover 613 that covers the terminal box 62 fixed to the second housing end portion 610b from the outside air are provided.
- the housing 610 has a shaft insertion port 610c formed in the lower portion thereof and into which the second end 130B of the valve shaft 13 is inserted, a body insertion port 610d formed in the upper portion thereof into which the body 611 is inserted, and a second. It has a cable insertion port 610e formed on the housing end portion 610b side of the above and into which the communication cable 150 and the power cable 160 are inserted.
- the first accommodating portion 60 and the second accommodating portion 61 are branched from the input side flow path 26 so as to penetrate the body 611, and between the input side flow path 26 and the first pressure sensor 40.
- a spool flow path 65 through which air A for interlocking with the portion 3 flows is formed.
- the spool portion 2 includes a spool hole 23 formed in a second accommodating portion 61 that functions as a spool case, a spool valve 24 that is movably arranged in the spool hole 23, and a spool that urges the spool valve 24.
- the spring 25 the input side flow path 26 communicating between the input port 20 and the spool hole 23, the output side flow path 27 communicating between the output port 21 and the spool hole 23, the exhaust port 22 and the spool hole 23. It is provided with an exhaust flow path 28 that communicates between the two.
- the solenoid unit 3 is arranged in a solenoid case 30, a solenoid coil 31 housed in the solenoid case 30, a movable iron core 32 movably arranged in the solenoid coil 31, and a fixed state in the solenoid coil 31.
- a fixed iron core 33 and a solenoid spring 34 for urging the movable iron core 32 are provided.
- the solenoid coil 31 When the solenoid valve 1 is switched from the non-energized state to the energized state, the solenoid coil 31 generates an electromagnetic force when the coil current flows through the solenoid coil 31 in the solenoid unit 3, and the movable iron core is generated by the electromagnetic force.
- the flow state of the air A flowing through the spool flow path 65 is switched.
- the flow state of the air A flowing through the spool flow path 65 is switched, so that the spool valve 24 is moved against the urging force of the spool spring 25, so that the input port 20 and the exhaust are exhausted.
- the state of communicating with the port 22 can be switched to the state of communicating between the input port 20 and the output port 21.
- the substrate 5 includes a first substrate 50 arranged so that the substrate surfaces 500A and 500B are arranged along the valve shaft 13 inserted from the shaft insertion port 610c, and a second substrate 51 arranged close to the terminal box 62. And a third substrate 52 arranged close to the solenoid unit 3.
- the body 611, the solenoid unit 3, and the third substrate 52 are arranged on the first substrate surface 500A side.
- the second substrate 51 and the terminal box 62 are arranged on the second substrate surface 500B side opposite to the first substrate surface 500A side.
- Sensors 4 are arranged at appropriate positions on the first substrate 50, the second substrate 51, and the third substrate 52.
- Examples of the sensor 4 include a first pressure sensor 40 that measures the fluid pressure of air A flowing through the input side flow path 26 and the first flow path 63, and an output side flow path 27 and a second flow path 64.
- the second pressure sensor 41 that measures the fluid pressure of the air A flowing through the surface and the rotation angle when the valve shaft 13 is rotationally driven are measured, and valve opening information of the main valve 11 is acquired according to the rotation angle. Includes a main valve opening sensor 42.
- the main valve opening sensor 42 is composed of, for example, a magnetic sensor, measures the magnetic strength generated by the permanent magnet 131 attached to the second end 130B of the valve shaft 13, and measures the magnetic strength. Correspondingly, the valve opening information of the main valve 11 is acquired.
- the main valve opening sensor 42 is provided on the outer periphery of the first substrate surface 500A of the first substrate 5 arranged along the valve shaft 13 inserted from the shaft insertion port 610c around the axis of the valve shaft 13. It is preferable that it is placed at the opposite position. As a result, in the accommodating portion 6, the main valve opening sensor 42 mounted on the first substrate 50 and the second end portion 130B of the valve shaft 13 are brought close to each other without wasting the arrangement space. The valve opening information can be accurately acquired.
- FIG. 3 is a block diagram showing an example of the solenoid valve 1 according to the embodiment of the present invention.
- the solenoid valve 1 communicates with a control unit 7 that controls the solenoid valve 1 and an external device 15 in addition to the above-mentioned substrate 3 and sensor 4, as an example of electrical configuration.
- a unit 8 and a power supply circuit unit 9 connected to the external power supply 16 are provided.
- the plurality of sensors 4 measure the supply voltage to the solenoid unit 3 in addition to the above-mentioned first pressure sensor 40, second pressure sensor 41, and main valve opening sensor 42 as a sensor group for measuring the physical quantity of each part.
- the plurality of sensors 4 measure at least one of the total energization time for the solenoid unit and the current energization continuous time as the operating time of the solenoid unit 3 as a sensor group for acquiring information on the operation history of each unit.
- a total (timer) 47 and an operation counter (counter) 48 for counting the number of operations of each of the solenoid valve 1, the drive device 12, and the main valve 11 are provided.
- these sensors 40 to 48 are not limited to those in which each sensor is individually provided as described above, and the other sensor is individually provided by the specific sensor having the function of the other sensor. It does not have to be.
- the magnetic sensor 46 measures the magnetic strength generated by the solenoid unit 3, and the current / resistance sensor 44 obtains the current value when the solenoid unit 3 is energized based on the magnetic strength. It does not have to be provided individually.
- the microcontroller 70 may have a built-in sensor function or a part of the sensor function.
- the microcontroller 70 has a built-in operating time meter 47 and an operation counter 48. , The operation time meter 47 and the operation counter 48 may not be provided separately.
- the control unit 7 processes information indicating the state of each part of the solenoid valve 1 acquired by the plurality of sensors 4, and also controls the state of energization of the microcontroller 70 that controls each part of the solenoid valve 1 and the solenoid unit 3.
- a valve test switch 71 that opens and closes the main valve 11 during a test operation is provided.
- the microcontroller 70 includes a processor (not shown) such as a CPU (Central Processing Unit) and a memory composed of a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the microcontroller 70 can include a function of realizing the data processing system 300 described later in the present embodiment.
- the valve test switch 71 receives a command from the microcontroller 70 when a predetermined test operation condition is satisfied, and executes a stroke test of the fluid pressure drive valve 10 as a test operation.
- the stroke test is executed by, for example, either a full stroke test or a partial stroke test.
- the full stroke test is executed by operating the main valve 11 in the fully open state by switching from the energized state to the non-energized state, and by switching from the non-energized state to the energized state in the fully closed state to return to the fully open state. Will be done.
- a predetermined opening degree is obtained by switching the main valve 11 from the energized state to the non-energized state in the fully open state without operating the main valve 11 in the fully closed state (that is, without stopping the plant equipment). It is executed by partially closing up to and returning to the fully open state by switching from the non-energized state to the energized state in the partially closed state.
- test operation conditions for example, the execution time or a specific designated date and time according to the execution frequency (for example, once a year) specified as a set value by the administrator has arrived, or an execution command from the external device 15 has arrived. Is accepted, or when the test execution button (not shown) provided on the solenoid valve 1 is operated by the administrator, the test operation (stroke test) should be executed so that the test operation condition is satisfied. Just do it.
- Machine learning device In the fluid pressure drive valve 10 having the above-mentioned series of configurations, by providing the above-mentioned plurality of sensors 4, for example, during steady operation and unsteady operation (for example, during test operation in which opening / closing operation is performed or during emergency stop). ), Various information on the fluid pressure drive valve 10 can be acquired. Therefore, in the following, machine learning for learning an inference model (learned model) capable of estimating diagnostic information of the fluid pressure drive valve 10 based on information (state variable) that can be acquired from the fluid pressure drive valve 10. The device 200 will be described.
- the machine learning device 200 referred to here is not only provided as a device that operates independently, but also a program for causing an arbitrary processor to execute the operation described below, or 1 for executing the operation. Includes those provided in the form of non-temporary computer-readable media containing multiple instructions.
- FIG. 4 is a schematic block diagram of the machine learning device 200 according to the embodiment of the present invention.
- the machine learning device 200 according to the present embodiment includes a learning data set acquisition unit 201, a learning data set storage unit 202, a learning unit 203, and a trained model storage unit 204. I have.
- the learning data set acquisition unit 201 is an interface unit for acquiring a plurality of data constituting the learning (training) data set from various devices connected via, for example, a wired or wireless communication line.
- various devices connected to the learning data set acquisition unit 201 include a worker computer PC1 used by a worker of an external device 15 and a fluid pressure drive valve 10.
- FIG. 4 shows an example in which the external device 15 and the computer PC 1 are connected separately, the external device 15 and the worker computer PC 1 may be configured by the same computer.
- the detection data of the plurality of sensors 4 of the fluid pressure drive valve 10 is acquired as input data from, for example, an external device 15, and the diagnostic information of the fluid pressure drive valve 10 associated with the input data is acquired. Can be obtained as output data from, for example, the worker computer PC1. Then, the input data and the output data associated with each other constitute one learning data set described later.
- FIG. 5 is a diagram showing a configuration example (supervised learning) of data used in the machine learning device 200 according to the embodiment of the present invention.
- FIG. 6 is a diagram showing a configuration example (unsupervised learning) of data used in the machine learning device 200 according to the embodiment of the present invention. It should be noted that FIGS. 5 and 6 are appropriately referred to in the description of the data processing system and the inference device.
- the learning data set has, as input data, at least time-series data of the valve opening degree of the main valve 11 and time-series data of the electromagnetic valve input side pressure of the air A in a predetermined period.
- Time-series data of the electromagnetic valve output side pressure of air A and time-series data of the supply voltage of the solenoid unit 3 are included as output data, and include diagnostic information of the fluid pressure drive valve 10. It refers to a dataset for use. The details of these various data will be described below as an example, but the present invention is not limited thereto.
- the valve opening degree of the main valve 11 indicates the value of the open / closed state of the main valve 11, and can be obtained from the main valve opening degree sensor 42 described above.
- the pressure of the air A is preferably the pressure of the air A flowing through each part inside the fluid pressure drive valve 10.
- the solenoid valve output side pressure of the air A is the pressure of the air A supplied and discharged from the solenoid valve 1 to the drive device 12 during a predetermined period, and the air A is supplied from the solenoid valve 1 to the drive device 12.
- the pressure of the air A (supply air) at that time and the pressure of the air A (exhaust) when the air A is discharged from the drive device 12 through the solenoid valve 1 are included.
- the solenoid valve input side pressure of air A can be acquired by the above-mentioned first pressure sensor 40
- the solenoid valve output side pressure of air A can be acquired by the above-mentioned second pressure sensor 41.
- the supply voltage supplied to the solenoid coil 31 of the solenoid unit 3 can be acquired by the voltage sensor 43 described above.
- the time series data is composed of a plurality of data acquired at a plurality of different time points within a predetermined period, and is acquired at a predetermined sampling cycle, for example.
- the time series data of the valve opening degree of the main valve 11, the time series data of the solenoid valve output side pressure of air A, the time series data of the solenoid valve input side pressure of air A, and the solenoid unit The time-series data of the supply voltage to 3 is assumed to be acquired at a plurality of time points with the same sampling period and the same phase (without phase difference), but at least one of the sampling period and the phase is different. It may be.
- the predetermined period is a period during which the main valve 11 is opened and closed during unsteady operation (including during test operation and emergency stop).
- the predetermined period may be the entire period from the start of the test to the end of the test, or a part of the execution period of the stroke test. Therefore, the predetermined period may be, for example, the entire period of the full stroke test (fully open state ⁇ fully closed state ⁇ fully open state) or the entire period of the partial stroke test (fully open state ⁇ partially closed state), or the full stroke test.
- Partial period (fully open state ⁇ fully closed state, or fully closed state ⁇ fully open state, etc.) and part of the partial stroke test (fully open state ⁇ partially closed state, partially closed state ⁇ fully open state, etc.) Etc.), and is not limited to these.
- the diagnostic information of the fluid pressure drive valve 10 is information indicating whether or not any abnormality has occurred in the fluid pressure drive valve 10 when the abnormality diagnosis of the fluid pressure drive valve 10 is performed, and the data format thereof.
- Abnormalities are not only ex post facto abnormalities such that the occurrence of the abnormality was found at the time of the abnormality diagnosis, but also within the permissible range that is judged to be normal at the time of the abnormality diagnosis, but future abnormalities. It also includes signs of anomalies that are foreseen.
- the diagnostic information as one aspect is that all of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 10 are normal. Either (no abnormality) or one of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 10 is abnormal (there is an abnormality). It can be composed of information representing.
- the diagnostic information is classified into two values, for example, a value indicating that the fluid pressure drive valve 10 is in a normal state is set to "0", and a value indicating that the fluid pressure drive valve 10 is in an abnormal state. Is set to "1", and the corresponding value may be input by the operator using the working computer PC1 in a form associated with the input data. In this case, information on the specific content of the abnormality is not always necessary.
- the information indicating that the abnormality may include the specific content of the abnormality as shown by the broken line in FIG. 5, as the specific content of the abnormality, For example, malfunction of the main valve 11, failure of the air A circuit, abnormality of the supply pressure of air A from the air supply source 14, abnormality of the supply voltage in the solenoid unit 3, deterioration / damage of the solenoid coil 31, short circuit of the electric circuit, The life of the solenoid unit 3, abnormal heat generation of the fluid pressure drive valve 10, malfunction of the iron core, and the like are included.
- the diagnostic information is classified into a plurality of values (3 or more), for example, the value indicating that the fluid pressure drive valve 10 is in a normal state is set to "0", and the fluid pressure drive valve 10 is the main valve 11.
- the value indicating that the abnormality corresponds to a malfunction is "1”
- the value indicating that the fluid pressure drive valve 10 is an abnormality corresponding to the defect of the air A circuit is "2””
- the contents of each abnormality are similarly described below.
- the value may be uniquely determined in advance according to the above, and then the corresponding value may be input by the operator using the working computer PC1 in a form associated with the input data.
- diagnostic information not only the presence or absence of the occurrence of an abnormality but also the specific content information of the abnormality when the abnormality occurs (abnormality 1 / abnormality 2 / ... / abnormality n shown in FIG. 6). It is possible to prepare a training data set that also includes ().
- the diagnostic information as one aspect described above is used in the case of supervised learning (see FIG. 5) in the machine learning described below.
- the diagnostic information of the fluid pressure drive valve 10 it can be adopted other than the above-mentioned ones.
- the diagnostic information as another aspect, as shown in FIG. 6, all of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 10 are not abnormal. It can be information indicating only normality.
- the diagnostic information since the diagnostic information includes only information indicating that the fluid pressure drive valve 10 is normal, the fluid pressure drive valve 10 is inevitably normal in the learning data set including this diagnostic information as output data. Only the data set composed of the input data and the output data in the case of is.
- the output data of the training data set in this case is always the same, it can be understood by those skilled in the art that the training data set does not necessarily have the output data as data. There will be.
- the diagnostic information as another aspect is used in the case of unsupervised learning (see FIG. 6) in the machine learning described below.
- all of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 10 are normal. That (no abnormality), or a period in which the remaining life of any one of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 10 is preset (for example). It can be composed of remaining life prediction information indicating that the abnormality is within several hours, days, months, years, etc. (with abnormality).
- the diagnostic information is classified into two values, for example, the value indicating that the fluid pressure drive valve 10 is in a normal state is set to "0", and the remaining life of the fluid pressure drive valve 10 is within a preset period.
- the value indicating the abnormal state of the above is set to "1”, and the corresponding value may be input by the operator using the working computer PC1 in a form associated with the input data. In this case, information on the specific content of the abnormality is not always necessary.
- the remaining life prediction information indicating that the remaining life of the fluid pressure drive valve 10 is an abnormality within a preset period is specific as shown by the broken line in FIG. Content may also be included.
- Specific details of the abnormality include, for example, the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 (here, "target of remaining life diagnosis") constituting the fluid pressure drive valve 10. ), Each of which is one or more of preset periods (eg, hours, days, months, or years, etc.).
- the remaining life prediction information indicating that the abnormality is within referred to as “remaining life period” (with abnormality) is included.
- the diagnostic information is classified into a plurality of values (at least 3 or more), and the fluid pressure drive valve 10 is in a normal state. It is composed of information indicating that the remaining life of the object of the remaining life diagnosis, which constitutes the fluid pressure drive valve 10, is an abnormality that falls within any of the preset remaining life periods.
- the value indicating that the fluid pressure drive valve 10 is in a normal state is set to "0", and the remaining life of the fluid pressure drive valve 10 is an abnormality corresponding to the first period (for example, 6 months or more and less than 1 year).
- a value indicating that the abnormality corresponds to a second period (for example, less than 6 months) in which the remaining life of the fluid pressure drive valve 10 is shorter than the first period is "2".
- the value may be uniquely set in advance according to the content of each abnormality, and then the corresponding value may be input in a form associated with the input data by the operator using the working computer PC1.
- a training data set including (corresponding to n) can be prepared.
- the life prediction information as one aspect described above is used in the case of supervised learning (see FIG. 5) in the machine learning described below.
- life prediction information of the fluid pressure drive valve 10 other than the above-mentioned information can be adopted.
- the life prediction information as another aspect, as shown in FIG. 6, all of the solenoid unit 3, the spool unit 2, the drive device 12, and the main valve 11 constituting the fluid pressure drive valve 1 are abnormal. It can be information that only indicates that it is normal. In this case, since the life prediction information includes only information indicating that the fluid pressure drive valve 10 is normal, the learning data set including this life prediction information as output data inevitably includes the fluid pressure drive valve 10. Is only a dataset consisting of input data and output data when is normal.
- the output data of the training data set in this case is always the same, it can be understood by those skilled in the art that the training data set does not necessarily have the output data as data. There will be.
- the life prediction information as another aspect is used in the case of unsupervised learning (see FIG. 6) in the machine learning described below.
- the input data in the training data set includes time-series data of the pressure of air A (excluding the pressure on the solenoid valve input / output side of air A), time-series data of the control parameter of the solenoid unit 3, and fluid.
- the number of times of operation of 12, the number of times of operation of the solenoid unit 3, and the opening / closing time of the main valve 11 can be selectively included.
- the pressure of air A (excluding the pressure on the input / output side of the solenoid valve of air A) is preferably the pressure of air A flowing through each part inside the fluid pressure drive valve 10.
- the electromagnetic valve of air A It is preferable to include the differential pressure between the input side pressure and the solenoid valve output side pressure of the air A.
- the control parameters of the solenoid unit 3 are various parameter information for controlling the solenoid unit 3. Specifically, the current value when the solenoid coil 31 is energized, the resistance value when the solenoid coil 31 is not energized, and the solenoid. It is preferable to include at least one of the operating time of the unit 3 and the magnetic strength generated in the solenoid unit 3.
- the current value when the solenoid coil 31 is energized and the resistance value when the solenoid coil 31 is not energized can be acquired by the above-mentioned current / resistance sensor 44, and the operating time of the solenoid unit 3 can be acquired by the above-mentioned operating time total 47.
- the magnetic strength generated in the solenoid unit 3 can be acquired by the above-mentioned magnetic sensor 46.
- the temperature of the fluid pressure drive valve 10 refers to the value of the internal temperature of the fluid pressure drive valve 10, and can be obtained by the temperature sensor 45 described above.
- the total operating time of the fluid pressure drive valve 10 and the operating time since the last power supply to the fluid pressure drive valve 10 can be obtained by the above-mentioned operating time total 47, and the number of operations of the main valve 11 and the driving device.
- the number of operations of 12 and the number of operations of the solenoid unit 3 can be acquired by the operation counter 48 described above, and the opening / closing time of the main valve 11 can be acquired by using a timer or the like (not shown).
- Increasing the types of input data as described above generally contributes to improving the estimation accuracy of the trained model obtained after machine learning, but adopts input data with a low degree of correlation with diagnostic information. On the contrary, doing so may hinder the improvement of the estimation accuracy of the trained model. Therefore, the number and types of data to be adopted as input data should be appropriately selected in consideration of the state of the fluid pressure drive valve 10 to which the trained model is applied.
- an abnormality in the movable iron core 32 of the solenoid unit 3, the spool unit 2, the packing, and the valve shaft 13 of the solenoid valve 1 that drives the drive device 12 affects the change in the drive characteristics of the fluid pressure drive valve 10. is assumed. Therefore, in the present embodiment, it is preferable to acquire the operation time or operation timing of the main valve 11 with respect to the supply parameters to the fluid pressure drive valve 10 such as voltage and supply pressure, and perform the diagnosis.
- the learning data set storage unit 202 associates a plurality of data for forming the learning data set acquired by the learning data set acquisition unit 201 with related input data and output data into one learning data set. It is a database for storing. The specific configuration of the database that constitutes this learning data set storage unit can be adjusted as appropriate. For example, in FIG. 4, for convenience of explanation, the learning data set storage unit 202 and the trained model storage unit 204 described later are shown as separate storage means, but these are used as a single storage medium (database). ) Can also be configured.
- the learning unit 203 correlates the input data and the output data included in the plurality of learning data sets by executing machine learning using the plurality of learning data sets stored in the learning data set storage unit 202. It generates a trained model that trains relationships.
- supervised learning using a neural network is adopted as a specific method of machine learning.
- the specific method of machine learning is not limited to this, and other learning methods may be adopted as long as the correlation between input and output can be learned from the training data set. It is possible. For example, ensemble learning (random forest, boosting, etc.) can also be used.
- the trained model storage unit 204 is a database for storing the trained model generated by the training unit 203.
- the trained model stored in the trained model storage unit 24 is applied to the actual system via a communication line including the Internet or a storage medium, if requested.
- the specific application mode of the trained model to the actual system (data processing system 300) will be described in detail later.
- FIG. 7 is a diagram showing an example of a neural network model for supervised learning implemented in the machine learning device according to the embodiment of the present invention.
- the neural network in the neural network model shown in FIG. 7 includes l neurons (x1 to xl) in the input layer, m neurons (y11 to y1 m) in the first intermediate layer, and n neurons in the second intermediate layer. It is composed of neurons (y21 to y2n) and o neurons (z1 to zo) in the output layer.
- the first intermediate layer and the second intermediate layer are also called hidden layers, and the neural network may have a plurality of hidden layers in addition to the first intermediate layer and the second intermediate layer. Alternatively, only the first intermediate layer may be used as the hidden layer.
- FIG. 7 illustrates a neural network model in which a plurality (o) output layers are set, but for example, when the above-mentioned diagnostic information is specified from one value, that is, described later.
- the number of teacher data to be used is one (t1 only)
- the number of neurons in the output layer can also be one (z1 only).
- nodes connecting the neurons between the layers are stretched between the input layer and the first intermediate layer, between the first intermediate layer and the second intermediate layer, and between the second intermediate layer and the output layer.
- Each node is associated with a weight wi (i is a natural number).
- the neural network in the neural network model according to the present embodiment uses the learning data set, the time series data of the valve opening of the main valve 11, the time series data of the electromagnetic valve input side pressure of the air A, and the air A.
- the correlation between the time-series data of the electromagnetic valve output side pressure, the time-series data of the supply voltage of the solenoid unit 3, and the diagnostic information of the electromagnetic valve 1 is learned.
- time-series data of the valve opening of the main valve 11 as a state variable, time-series data of the electromagnetic valve input side pressure of air A, time-series data of the electromagnetic valve output side pressure of air A, and a solenoid.
- Each of the time-series data of the supply voltage of Part 3 is associated with the neurons of the input layer, and the values of the neurons in the output layer are calculated by a general neural network output value calculation method, that is, the values of the neurons on the output side. Is calculated as the sum of the number of multiplication values of the value of the input side neural network connected to the relevant neural network and the weight wi associated with the node connecting the output side neural network and the input side neural network. , Calculated by using the method performed on all neurons other than those in the input layer.
- the format in which the information acquired as the state variables is input can be appropriately set in consideration of the accuracy of the generated trained model and the like. can.
- preprocessing can be performed on specific input data in order to adjust the number of neurons corresponding to each input data or to adjust the value to correspond to the neurons.
- the values of o neurons z1 to zo in the calculated output layer that is, one or more diagnostic information in the present embodiment and one or more diagnostic information constituting a part of the learning data set.
- the teacher data t1 to to consisting of the above are compared with each other to obtain an error, and the weight wi associated with each node is adjusted (back provacation) so that the obtained error becomes small.
- the learning is terminated and the neural network model (of the neural network model) All the weights wi) associated with each of the nodes are stored in the trained model storage unit 204 as a trained model.
- FIG. 8 is a flowchart showing an example of a machine learning method according to an embodiment of the present invention.
- the machine learning method shown below will be described based on the machine learning device 200 described above, but the premise configuration is not limited to the machine learning device 200.
- this machine learning method is realized by using a computer, various computers can be applied, for example, an external device 15, a working computer PC 1 or a computer device constituting a microcontroller 70. Or, a server device or the like arranged on the network can be mentioned.
- communication for communicating with an arithmetic unit consisting of at least a CPU, a GPU, etc., a storage device composed of a volatile or non-volatile memory, etc., and a network or other devices for example, communication for communicating with an arithmetic unit consisting of at least a CPU, a GPU, etc., a storage device composed of a volatile or non-volatile memory, etc., and a network or other devices. It is possible to adopt a device including a device and a bus connecting each of these devices.
- a desired number of learning data sets (see FIG. 5) are prepared, and a plurality of prepared data sets are prepared.
- the learning data sets are stored in the learning data set storage unit 202 (step S11).
- the number of training data sets prepared here may be set in consideration of the inference accuracy required for the finally obtained trained model.
- the method of preparing the learning data set used for this supervised learning For example, when the opening / closing operation of the main valve 11 is executed for a predetermined period by a stroke test or the like, an abnormality occurs in a specific fluid pressure drive valve 10, or when an operator recognizes a sign of the abnormality, at that time.
- Various information of the fluid pressure drive valve 10 in the predetermined period of the above is acquired by using a plurality of sensors 4 and the like, and the operator specifies and inputs diagnostic information by using the work computer PC1 and the like in a form associated with the information.
- the input data and the output data (for example, the value of the output data in this case is “1”) that constitute the training data set are prepared.
- a method of preparing a desired number of training data sets can be adopted.
- various methods such as acquiring the learning data set by positively creating an abnormal state in the fluid pressure drive valve 10 are adopted as the method for preparing the learning data set. can do.
- the target for acquiring the data constituting the learning data set is subjected to the machine learning described later. It is preferred to collect from only one fluid pressure driven valve 10 to which the resulting trained model will be applied.
- the learning data set is not limited to the input / output data when an abnormality occurs, but also the input data and the output data when the abnormality does not occur, that is, in the normal state of the fluid pressure drive valve 10. (For example, the value of the output data in this case is "0"), and a predetermined number of training data sets are included.
- a neural network model before learning is prepared in order to start learning in the learning unit 203 (S12).
- the pre-learning neural network model prepared here has, for example, the structure shown in FIG. 7, and the weight of each node is set as an initial value.
- one learning data set is randomly selected from the plurality of learning data sets stored in the learning data set storage unit 202 (step S13), and the input data in the one learning data set is selected. Is input to the input layer (see FIG. 7) of the prepared pre-learning neural network model (step S14).
- step S14 since the value of the output layer (see FIG. 7) generated as a result of step S14 is generated by the neural network model before training, the value is different from the desired result in most cases, that is, , A value indicating information different from the correct diagnostic information. Therefore, next, machine learning is performed using the diagnostic information as the teacher data in one learning data set acquired in step S13 and the value of the output layer generated in step S13 (step S15). ..
- the machine learning performed here is, for example, compared with the diagnostic information constituting the teacher data and the value of the output layer, and is associated with each node in the neural network model before learning so that a preferable output layer can be obtained. It may be a process of adjusting the weight (back propagation).
- the number and format of the values output to the output layer of the neural network model before learning are the same numbers and formats as the teacher data in the training data set as the learning target.
- step S13 the value of the output layer is a predetermined value of 0 to 1, specifically, , For example, a value such as "0.63" is output. Therefore, in step S15, if the same input data is input to the input layer, the value obtained by the neural network model being trained approaches "1" to each node of the neural network model being trained. Adjust the associated weights.
- step S15 When machine learning is performed in step S15, whether or not it is necessary to continue machine learning is determined based on, for example, the remaining number of unlearned learning data sets stored in the learning data set storage unit 202. (Step S16). Then, when the machine learning is continued (No in step S16), the process returns to step S13, and when the machine learning is finished (Yes in step S16), the process proceeds to step S17.
- the steps S13 to S15 are performed a plurality of times on the neural network model being trained by using the unlearned learning data set. The accuracy of the finally generated trained model generally increases in proportion to this number of times.
- step S16 When the machine learning is finished (Yes in step S16), the neural network generated by adjusting the weights associated with each node by a series of steps is stored in the trained model storage unit 204 as a trained model. (Step S17), a series of learning processes is completed.
- the trained model stored here can be applied to and used in the data processing system 300 described later.
- one machine learning process is repeatedly executed for one (pre-learning) neural network model.
- one (pre-learning) neural network model is repeatedly executed for one (pre-learning) neural network model.
- the present invention is not limited to this acquisition method.
- a plurality of trained models that have undergone machine learning a predetermined number of times are stored in the trained model storage unit 204 as one candidate, and data sets for validity judgment are input to the plurality of trained model groups.
- the output layer (the value of the neuron) may be generated, and the accuracy of the value specified in the output layer may be compared and examined to select one of the best trained models to be applied to the data processing system 300. ..
- the validity determination data set may be any data set that is similar to the learning data set used for learning and is not used for learning.
- abnormalities are obtained from various data acquired by a plurality of sensors 4 provided at appropriate positions of the fluid pressure drive valve 10. It is possible to obtain a learned model capable of accurately deriving diagnostic information indicating whether or not an abnormality and a sign of an abnormality occur.
- supervised learning has been described, but as a method for generating a trained model, other known “supervised learning” such as a convolutional neural network (CNN) is used.
- CNN convolutional neural network
- the method of “Supervised learning” using the including learning data set may be used.
- unsupervised learning even when the diagnostic information in the output data associated with the input data is only the information on the normal state of the fluid pressure drive valve 10, the “learning phase” in FIG. As shown in, a trained model can be obtained by learning the correlation representing the characteristics of the normal state between the input data and the output data.
- the inference of diagnostic information can be realized by regarding the input data determined to not match the characteristics of the normal state by a predetermined amount as not in the normal state, that is, in the abnormal state. ..
- a specific method of this "unsupervised learning" for example, a known method using an autoencoder or the like simplified in FIG. 6 can be used, and detailed description thereof will be omitted here.
- FIG. 9 is a schematic block diagram showing a data processing system according to an embodiment of the present invention.
- an embodiment mounted in the microcontroller 70 of the fluid pressure drive valve 10 described above will be exemplified. It is also possible to apply at least a part of the data processing system 300 to other devices, for example, other devices connected to the external device 15 and the fluid pressure drive valve 10.
- This data processing system 300 includes at least an input data acquisition unit 301, an inference unit 302, a trained model storage unit 303, and a notification unit 304.
- the input data acquisition unit 301 is an interface unit that is connected to a plurality of sensors 4 included in the fluid pressure drive valve 10 and acquires various data output by each sensor 4.
- the input data acquisition unit 301 has at least time-series data of the valve opening degree of the main valve 11, time-series data of the electromagnetic valve input side pressure of air A, time-series data of the electromagnetic valve output side pressure of air A, and The input data including the time series data of the supply voltage of the solenoid unit 3 is acquired.
- the input data that can be used for inference is connected to all the sensors 4 including the main valve opening sensor 42 and the second pressure sensor 41 so that the input data can be acquired.
- the reasoning result of the reasoning unit 302 is preferably stored in a storage means (not shown), and the stored past reasoning result can be used, for example, to further improve the reasoning accuracy of the trained model in the trained model storage unit 303. It can be used as a learning data set used for online learning.
- the inference unit 302 is for inferring whether or not an abnormality has occurred in the solenoid valve 1 from various data of the fluid pressure drive valve 10 acquired by the input data acquisition unit 301.
- a trained model trained using the machine learning device 200 and the machine learning method described above is used, and the trained model is a trained model storage unit 303 composed of an arbitrary storage medium. It is stored in.
- the inference unit 302 not only has a function of performing inference processing using the trained model, but also adjusts the input data acquired by the input data acquisition unit 301 to a desired format or the like as a preprocessing of the inference processing.
- an abnormality (ex post-abnormality and a sign of abnormality) are included by applying a predetermined threshold value to the output value output by the trained model, for example. It also includes a post-processing function that finally determines whether or not () has occurred (no abnormality (normal) or abnormal (abnormal)).
- the trained model storage unit 303 is a storage medium for storing the trained model used in the inference unit 302.
- the number of trained models stored in the trained model storage unit 303 is not limited to one.
- a plurality of trained models with different numbers of input data or different learning methods for example, supervised learning and unsupervised learning performed by the machine learning device 200 or the like described above are stored and selectively. Can be made available to.
- the notification unit 304 is for notifying an operator or the like of the inference result of the inference unit 302.
- Various specific means of notification can be adopted.
- the inference result is transmitted to the external device 15 via the communication unit 8 and displayed on the GUI of the external device 15, or a light emitting member or a light emitting member is previously displayed on the fluid pressure drive valve 10.
- a speaker or the like and operating the speaker or the like it is possible to notify the operator or the like of the presence or absence of an abnormality.
- FIG. 10 is a flowchart showing an example of a data processing process by the data processing system 300 according to the embodiment of the present invention.
- the input data acquisition unit 301 receives the input data acquisition unit 301.
- Various data indicating the state of each part of the fluid pressure drive valve 10 acquired by the plurality of sensors 4 are acquired (step S21).
- the input data acquisition unit 301 has desired input data (time-series data of valve opening of main valve 11 in a predetermined period, time-series data of electromagnetic valve input side pressure of air A, electromagnetic valve output side pressure of air A).
- the series data and the time series data of the supply voltage of the solenoid unit 3 can be acquired, the inference by the inference unit 302 based on the input data is performed (step S22). ..
- the inference unit 302 is an inference result by performing preprocessing on the input data and inputting it to the learning modeled model, and post-processing the output value from the learning modeled model. Judge the presence or absence of abnormalities (including ex post facto abnormalities and signs of abnormalities). In the post-processing in supervised learning (see “Inference Phase” in FIG. 5), the inference unit 302 sets the output value of the learning modeled model (the number between 0 and 1 in the case of binary classification) and a predetermined value.
- the inference unit 302 is the difference (distance) between the output value (feature amount) of the learning modeled model and the feature amount based on the input data.
- step S22 when the inference result by the inference unit 302 is executed and the inference result indicates "no abnormality (normal)" (No in step S23), step S21 is to continue the series of inferences.
- step S21 is to continue the series of inferences.
- the inference result indicates "abnormal (abnormal)" as shown in FIGS. 5 and 6 (Yes in step S23)
- the inference result is "abnormal (abnormal)" by the notification unit 304. That is, the operator or the like is notified that an abnormality (including a subsequent abnormality and a sign of an abnormality) has occurred in the fluid pressure drive valve 10 (step S24).
- step S24 the process returns to step S21 so as to continue a series of inferences.
- the fluid pressure drive valve 10 may be stopped at the stage when the abnormality is detected.
- the present invention can be provided not only by the mode of the data processing system 300 described above, but also by the mode of an inference device for performing inference.
- the inference device may include a memory and at least one processor, of which the processor may execute a series of processes.
- the series of processes includes time-series data of the valve opening degree of the main valve 11 and air when the opening / closing operation of the main valve 11 is executed for a predetermined period in the fluid pressure drive valve 10, for example, by a stroke test or the like. Processing to acquire input data including time series data of solenoid valve input side pressure of A, time series data of solenoid valve output side pressure of air A, and time series data of supply voltage of solenoid unit 3, and the input data.
- Micro controller 100 ... Piping, 200 ... Machine learning device, 201 ... Learning data set acquisition unit, 202 ... Learning data set storage unit, 203 ... Learning unit, 204 ... Learned model storage unit, 300 ... Data processing system, 301 ... Input Data acquisition unit, 302 ... Inference unit, 303 ... Learned model storage unit, 304 ... Notification unit, A ... Air (driving fluid), PC1 ... Working computer
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mechanical Engineering (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Fluid-Driven Valves (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
【課題】流体圧駆動弁における異常及び異常の兆候を作業者の経験等に依存することなく精度よく把握することを可能とする機械学習装置等を提供する。 【解決手段】機械学習装置(200)は、主弁(11)と、主弁(11)を駆動する駆動装置(12)と、駆動装置(12)に対して駆動流体(A)の給排を制御する電磁弁(1)とを含む流体圧駆動弁(10)に適用されるものであって、所定期間における、主弁(11)の弁開度の時系列データ、駆動流体(A)の電磁弁入力側圧力の時系列データ、駆動流体(A)の電磁弁出力側圧力の時系列データ、及び、ソレノイド部(3)の供給電圧の時系列データを含む入力データと、入力データに対応付けられた流体圧駆動弁(10)の診断情報からなる出力データとで構成される学習用データセットを複数組記憶する学習用データセット記憶ユニット(202)と;学習用データセットを複数組入力することで、入力データと出力データとの相関関係を推論する学習モデルを学習する学習ユニット(203)と;学習済モデルを記憶する学習済モデル記憶ユニット(204)と;を備える。
Description
本発明は、バルブシステムの異常診断を行うための機械学習装置、データ処理システム、推論装置及び機械学習方法に関するものである。
従来、電磁弁により駆動流体を制御して主弁を開閉する流体圧駆動弁が知られている。例えば、特許文献1には、プラント設備の配管に使用される流体圧駆動弁として、設備に異常が発生したような緊急時に、電磁弁により駆動流体を制御してボールバルブ(主弁)を閉じることにより、配管を流れる流体を遮断する緊急遮断弁装置が開示されている。
特許文献1に示されるような、プラント設備に用いられる緊急遮断弁等の流体圧駆動弁においては、プラント設備全体の稼働率・信頼性を向上させるためには、予期しない異常が発生しないことが好ましい。そのため、流体圧駆動弁では、緊急時に確実に動作するように、例えば、定期的な保守点検として、プラント設備への影響を極力抑制しながらも所定期間において流体圧駆動弁の開閉操作を行うことで流体圧駆動弁が正常に動作することを確認している。したがって、このような流体圧駆動弁にあっては、流体圧駆動弁に発生した異常を事後的に把握する事後保全のみならず、異常の兆候を把握する予兆保全を実現することが望まれている。
ここで、流体圧駆動弁の異常の兆候は、例えば、所定期間において流体圧駆動弁の開閉操作が行われることで様々な事象として表出し得るが、流体圧駆動弁に生じ得る事象と異常の兆候との因果関係は明確に特定されていなかった。その結果、流体圧駆動弁における予兆保全は、作業者の経験(暗黙知を含む)に依存した判断に基づいて実施されることとなり、担当する作業者によってその精度に差が生じるという課題がある。
本発明は、上述した課題に鑑み、流体圧駆動弁における異常及び異常の兆候(以下、本発明においては、これらをまとめて「異常」という。)を精度よく把握するための、機械学習装置、データ処理システム、推論装置及び機械学習方法を提供することを目的とする。
上記目的を達成するために、本発明の第1の態様に係る機械学習装置は、例えば図1―4に示すように、主弁11と、前記主弁11を駆動する駆動装置12と、前記駆動装置12に対して駆動流体Aの給排を制御する電磁弁1と、を少なくとも含む流体圧駆動弁10に適用されるものであって、所定期間における主弁11の弁開度の時系列データ、所定期間中に電磁弁1に対して供給される駆動流体Aの電磁弁入力側圧力の時系列データ、所定期間中に駆動装置12に対して給排される駆動流体Aの電磁弁出力側圧力の時系列データ、及び、所定期間におけるソレノイド部3の供給電圧の時系列データを含む入力データと、入力データに対応付けられた流体圧駆動弁10の診断情報からなる出力データとで構成される学習用データセットを複数組記憶する学習用データセット記憶ユニット202と;前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニット203と;前記学習ユニット203によって学習された前記学習モデルを記憶する学習済モデル記憶ユニット204と;を含むものである。
本発明の機械学習装置によれば、所定期間において流体圧駆動弁により取得可能な各種情報等に基づいて、流体圧駆動弁の異常の発生の有無を推定可能な学習済モデルを提供することができるようになる。よって、この学習済モデルを利用することにより、流体圧駆動弁において発生する異常を、作業者の経験に依存することなく高精度に推定することを実現できるようになる。
以下、図面を参照して本発明を実施するための各実施の形態について説明する。なお、以下では本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。
本発明の一実施の形態に係る機械学習装置、データ処理システム、推論装置及び機械学習方法を説明する前に、以下には先ず機械学習装置等が適用される流体圧駆動弁について説明を行う。
(流体圧駆動弁)
図1は、本発明の一実施の形態に係る流体圧駆動弁10の一例を示す概略図である。本実施の形態における流体圧駆動弁10としては、例えば、プラント設備において各種のガスや石油等が流れる配管100に設置され、プラント設備に異常等が発生した緊急停止時に、配管100の流れを遮断するための緊急遮断弁として用いることができる。なお、流体圧駆動弁10の設置場所や用途は、上記の例に限られない。
図1は、本発明の一実施の形態に係る流体圧駆動弁10の一例を示す概略図である。本実施の形態における流体圧駆動弁10としては、例えば、プラント設備において各種のガスや石油等が流れる配管100に設置され、プラント設備に異常等が発生した緊急停止時に、配管100の流れを遮断するための緊急遮断弁として用いることができる。なお、流体圧駆動弁10の設置場所や用途は、上記の例に限られない。
図1に示す流体圧駆動弁10は、配管100の途中に配置される主弁11と、主弁11に連結された弁軸13を駆動流体の流体圧に応じて駆動させることで主弁11の開閉操作を行う流体圧式の駆動装置12と、駆動装置12に対して駆動流体の給排を制御する機能を有する電磁弁1とを備えている。
この流体圧駆動弁10に用いられる駆動流体には、計装空気(以下、単に「空気」という)Aが採用されている。この空気Aは空気供給源14から第1の空気配管140を介して電磁弁1に供給され、さらに、第2の空気配管141を介して駆動装置12に供給される。また、流体圧駆動弁10には、外部装置15及び電磁弁1の間で各種のデータを送受信するための通信ケーブル150と、外部電源16から電磁弁1に電力を供給するための電力ケーブル160とが接続されている。なお、駆動流体としては、上記の空気Aに限られず、他の気体でも液体(例えば、油)でもよい。
外部装置15は、流体圧駆動弁10との間で各種情報を送受信するための装置であって、例えば、プラント管理用のコンピュータ(ローカルサーバ及びクラウドサーバを含む。)、作業者(保守点検者)が使用する診断用コンピュータ、又は、USBメモリや外付けHDD等の外部記憶ユニットで構成されている。この外部装置15は、後述する機械学習装置200に接続されて学習用データセットを構成する各種データを送信することも可能である。また、この外部装置15は、流体圧駆動弁10に異常が発生した場合に作業者等に対して異常が発生したことやその内容を報知するための、GUI(Graphical User Interface)等からなる報知手段を備えている。なお、外部装置15及び電磁弁1の間の通信には無線通信を利用してもよい。
本実施の形態の流体圧駆動弁10の駆動方式は、エアーレスクローズ方式が採用されている。したがって、定常運転時は空気供給源14から電磁弁1を介して駆動装置12に空気Aを供給(給気)することで、主弁11が開操作され、緊急停止時や試験運転時は、駆動装置12から電磁弁1を介して空気Aを排出(排気)することで、主弁11が閉操作される。なお、流体圧駆動弁10は、エアーレスオープン方式を採用してもよく、その場合には、駆動装置12に空気Aを供給することで閉操作され、駆動装置12から空気Aを排出することで主弁11を閉操作される。
主弁11には、ボールバルブが採用されている。この主弁11の具体的な構成としては、配管100の途中に配置される弁箱110と、弁箱110内に回転可能に設けられたボール状の弁体111とを備えている。また、弁体111の上部には、弁軸13の第1の端部130Aが連結されている。弁軸13が0度~90度に回転駆動されることに応じて弁箱110内で弁体111が回転し、主弁11の全開状態(図1に示す状態)と全閉状態が切り替えられる。なお、主弁11として用いられる弁は、ボールバルブに限られず、例えば、バタフライバルブやその他のオンオフ弁であってもよい。
駆動装置12には、主弁11と電磁弁1との間に配置された単作動式のエアシリンダ機構が採用されている。この駆動装置12の具体的な構成としては、円筒状のシリンダ120と、このシリンダ120内に往復直線移動可能に設けられピストンロッド121を介して連結された一対のピストン122A、122Bと、第1のピストン122A側に設けられたコイルばね123と、第2のピストン122B側に形成された空気給排口124と、シリンダ120を径方向に沿って貫通するように配置された弁軸13とピストンロッド121とが直交する部分に設けられた伝達機構125と、を備えている。なお、駆動装置12は、単作動式に限られず、例えば、複作動式等の他の形式で構成されていてもよい。
第1のピストン122Aは、コイルばね123により主弁11を閉方向に動作するように付勢されている。また、第2のピストン122Bは、空気給排口124から供給された空気A(給気)により主弁11を開方向に動作するように(コイルばね123の付勢力に抗して)押圧するものである。さらに、伝達機構125は、ラックアンドピニオン機構、リンク機構、カム機構等で構成されており、ピストンロッド121の往復直線運動を回転運動に変換して弁軸13に伝達するものである。
弁軸13は、シャフト状に形成されており、回動可能な状態で駆動装置12を貫通するようにして配置される。弁軸13の第1の端部130Aは主弁11に連結され、弁軸13の第2の端部130Bは電磁弁1により軸支される。なお、弁軸13は、複数本のシャフトがカップリング等を介して連結されたものでもよい。
電磁弁1は、駆動装置12に対して空気Aの給排を制御する機能を有し、例えば、2ポジションでノーマルクローズタイプ(通電時「開」、非通電時「閉」)の三方電磁弁として構成されている。この電磁弁1は、屋内型又は防爆型の電磁弁1のハウジングとして機能する収容部6の内部に、空気Aが流れる流路を切り替えるスプール部2と、通電状態(通電時又は非通電時)に応じてスプール部2を変位させるソレノイド部3とを備えている。なお、この電磁弁1には、上述したタイプの三方電磁弁に限られず、3ポジションであっても、ノーマルオープンタイプであっても、四方電磁弁等であってもよく、これらの任意の組み合わせに基づく各種の形成で構成できる。また、本実施の形態では、電磁弁1は、流体圧駆動弁10におけるパイロットバルブとして用いられるものであるが、電磁弁1の用途はこれに限られない。
スプール部2は、空気供給源14に第1の空気配管140を介して接続される入力ポート20と、駆動装置12に第2の空気配管141を介して接続される出力ポート21と、駆動装置12からの排気を排出する排気ポート22とを備える。
ソレノイド部3は、通電時に、入力ポート20と出力ポート21との間を連通するように、スプール部2を変位させ、非通電時に、出力ポート21と排気ポート22との間を連通するように、スプール部2を変位させる。
上述した一連の構成により、電磁弁1が通電状態である場合には、空気供給源14からの空気A(給気)が、第1の空気配管140、入力ポート20、出力ポート21及び第2の空気配管141の順に流れて、空気給排口124に供給されることで、第2のピストン122Bが押圧されてコイルばね123が圧縮する。そして、コイルばね123の圧縮に応じてピストンロッド121が移動した分だけピストンロッド121及び伝達機構125を介して弁軸13が回転駆動されると、弁箱110内で弁体111が回転し、主弁11が全開状態に操作される。
一方、電磁弁1が非通電状態である場合には、シリンダ120内の空気A(排気)が、空気給排口124から第2の空気配管141、出力ポート21及び排気ポート22の順に流れて、外気に排出されることで、第2のピストン122Bの押圧力が低下し、コイルばね123が圧縮状態から復元する。そして、コイルばね123の復元に応じてピストンロッド121が移動した分だけ伝達機構125を介して弁軸13が回転駆動されると、弁箱110内で弁体111が回転し、主弁11が全閉状態に操作される。
図2は、本発明の一実施の形態に係る電磁弁1の一例を示す断面図である。本実施の形態に係る電磁弁1は、図2に示すように、上記のスプール部2及びソレノイド部3に加えて、電磁弁1の各部の状態を取得する複数のセンサ4と、複数のセンサ4のうち少なくとも1つが載置された基板5と、スプール部2、ソレノイド部3、複数のセンサ4及び基板5を収容する収容部6とを備える。
収容部6は、スプール部2を収容する第1の収容部60と、第1の収容部60に隣接されるとともに、ソレノイド部3、複数のセンサ4及び基板5を収容する第2の収容部61と、通信ケーブル150及び電力ケーブル160が接続されるターミナルボックス62とを備える。第1の収容部60及び第2の収容部61は、例えば、アルミニウム等の金属材料で製作されている。
第1の収容部60は、入力ポート20、出力ポート21及び排気ポート22として、それぞれ機能する開口部(不図示)を有する。
第2の収容部61は、両端(第1のハウジング端部610a及び第2のハウジング端部610b)が開放された円筒状のハウジング610と、ハウジング610の内部に配置されるボディー611と、第1のハウジング端部610aに固定されたソレノイド部3を外気から覆うソレノイドカバー612と、第2のハウジング端部610bに固定されたターミナルボックス62を外気から覆うターミナルボックスカバー613とを備える。
ハウジング610は、その下部に形成されて弁軸13の第2の端部130Bが挿入される軸挿入口610cと、その上部に形成されてボディー611が挿入されるボディー挿入口610dと、第2のハウジング端部610b側に形成されて通信ケーブル150及び電力ケーブル160が挿入されるケーブル挿入口610eとを有する。
第1の収容部60及び第2の収容部61には、ボディー611を貫通するようにして、入力側流路26から分岐して入力側流路26と第1の圧力センサ40との間を連通する第1の流路63と、出力側流路27から分岐して出力側流路27と第2の圧力センサ41との間を連通する第2の流路64と、スプール部2とソレノイド部3とを連動させるための空気Aが流れるスプール流路65が形成されている。
スプール部2は、スプールケースとして機能する第2の収容部61内に形成されたスプールホール23と、スプールホール23内に移動可能に配置されたスプールバルブ24と、スプールバルブ24を付勢するスプールスプリング25と、入力ポート20とスプールホール23との間を連通する入力側流路26と、出力ポート21とスプールホール23との連通する出力側流路27と、排気ポート22とスプールホール23との間を連通する排気流路28とを備える。
ソレノイド部3は、ソレノイドケース30と、ソレノイドケース30内に収容されたソレノイドコイル31と、ソレノイドコイル31内に移動可能に配置された可動鉄芯32と、ソレノイドコイル31内に固定状態で配置された固定鉄芯33と、可動鉄芯32を付勢するソレノイドスプリング34とを備える。
電磁弁1が非通電状態から通電状態に切り替えられた場合には、ソレノイド部3において、コイル電流がソレノイドコイル31に流れることによりソレノイドコイル31が電磁力を発生し、当該電磁力により可動鉄芯32がソレノイドスプリング34の付勢力に抗して固定鉄芯33に吸引されることで、スプール流路65を流れる空気Aの流通状態が切り替えられる。そして、スプール部2において、スプール流路65を流れる空気Aの流通状態が切り替えられたことにより、スプールバルブ24がスプールスプリング25の付勢力に抗して移動されることで、入力ポート20と排気ポート22との間を連通する状態から、入力ポート20と出力ポート21との間を連通する状態に切り替えられる。
基板5は、基板面500A、500Bが軸挿入口610cから挿入された弁軸13に沿うように配置された第1の基板50と、ターミナルボックス62に近接して配置された第2の基板51と、ソレノイド部3に近接して配置された第3の基板52とを備える。
第1の基板50の基板面500A、500Bのうち、第1の基板面500A側には、ボディー611、ソレノイド部3及び第3の基板52が配置される。第1の基板面500A側と反対側の第2の基板面500B側には、第2の基板51及びターミナルボックス62が配置される。
第1の基板50、第2の基板51及び第3の基板52の適所には、センサ4が配置されている。このセンサ4としては、例えば、入力側流路26及び第1の流路63を流れる空気Aの流体圧を計測する第1の圧力センサ40と、出力側流路27及び第2の流路64を流れる空気Aの流体圧を計測する第2の圧力センサ41と、弁軸13が回転駆動するときの回転角度を計測し、当該回転角度に応じて主弁11の弁開度情報を取得する主弁開度センサ42とを含む。
主弁開度センサ42は、例えば、磁気センサにより構成されており、弁軸13の第2の端部130Bに取り付けられた永久磁石131が発生する磁気の強さを計測し、当該磁気の強さに応じて主弁11の弁開度情報を取得する。この主弁開度センサ42は、軸挿入口610cから挿入された弁軸13に沿うように配置された第1の基板5の第1の基板面500Aのうち弁軸13の軸周りの外周に対向する位置に載置されると好ましい。これにより、収容部6内において、配置スペースを無駄にすることなく、第1の基板50に載置された主弁開度センサ42と、弁軸13の第2の端部130Bとを近接して配置することが可能となり、弁開度情報を正確に取得することができる。
図3は、本発明の一実施の形態に係る電磁弁1の一例を示すブロック図である。電磁弁1は、図3に示すように、電気的な構成例として、上記の基板3及びセンサ4の他に、電磁弁1を制御する制御部7と、外部装置15と通信するための通信部8と、外部電源16に接続される電源回路部9とを備える。
複数のセンサ4は、各部の物理量を計測するセンサ群として、上記の第1の圧力センサ40、第2の圧力センサ41及び主弁開度センサ42の他に、ソレノイド部3に対する供給電圧を計測する電圧センサ43と、ソレノイド部3における通電時の電流値及び非通電時の抵抗値を計測する電流・抵抗センサ44と、収容部6の内部温度を計測する温度センサ45と、ソレノイド部3が発生する磁気の強さを計測する磁気センサ46とを備える。
また、複数のセンサ4は、各部の動作履歴に関する情報を取得するセンサ群として、ソレノイド部3の稼働時間としてソレノイド部に対する通電時間の合計及び現在の通電連働時間の少なくとも一方を計測する稼働時間計(タイマ)47と、電磁弁1、駆動装置12及び主弁11それぞれの作動回数を計数する作動カウンタ(カウンタ)48とを備える。
また、これらのセンサ40~48は、上述のようにそれぞれのセンサが個別に設けられたものに限られず、特定のセンサが他のセンサの機能を兼ねることで、当該他のセンサが個別に設けられていなくてもよい。例えば、磁気センサ46が、ソレノイド部3が発生する磁気の強さを計測するとともに、当該磁気の強さに基づいてソレノイド部3における通電時の電流値を求めることで、電流・抵抗センサ44が個別に設けられていなくてもよい。また、マイクロコントローラ70が、センサの機能を内蔵したり、センサの機能の一部を実現したりしてもよく、例えば、マイクロコントローラ70が、稼働時間計47及び作動カウンタ48を内蔵することで、稼働時間計47及び作動カウンタ48が個別に設けられていなくてもよい。
制御部7は、複数のセンサ4により取得された電磁弁1の各部の状態を示す情報を処理するとともに、電磁弁1の各部を制御するマイクロコントローラ70と、ソレノイド部3の通電状態を制御し、試験運転時における主弁11の開閉操作を行うバルブテストスイッチ71とを備える。
マイクロコントローラ70は、CPU(Central Processing Unit)等のプロセッサ(不図示)と、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成されるメモリとを備える。このマイクロコントローラ70は、本実施の形態において後述するデータ処理システム300を実現する機能を含むことができる。
バルブテストスイッチ71は、所定の試験運転条件が満たされた場合にマイクロコントローラ70からの指令を受けて、試験運転として、流体圧駆動弁10のストロークテストを実行するためのものである。
ストロークテストは、例えば、フルストロークテスト及びパーシャルストロークテストのいずれかにより実行される。フルストロークテストは、主弁11を全開状態において通電状態から非通電状態に切り替えることで全閉状態に操作し、全閉状態において非通電状態から通電状態に切り替えることで全開状態に戻すことで実行される。パーシャルストロークテストは、主弁11を全閉状態に操作することなく(すなわち、プラント設備を停止することなく)、主弁11を全開状態において通電状態から非通電状態に切り替えることで所定の開度まで部分的に閉じて、部分的な閉状態において非通電状態から通電状態に切り替えることで全開状態に戻すことで実行される。
なお、試験運転条件としては、例えば、管理者により設定値として指定された実行頻度(例えば、1年に1回)による実行時期や特定の指定日時が到来したり、外部装置15からの実行命令を受け付けたり、電磁弁1に設けられた試験実行ボタン(不図示)が管理者により操作されたりした場合に、試験運転条件を満たすものとして、試験運転(ストロークテスト)が実行されるようにすればよい。
(機械学習装置)
上述した一連の構成を備える流体圧駆動弁10においては、上述した複数のセンサ4を備えることにより、例えば定常運転時及び非定常運転時(例えば、開閉操作が行われる試験運転時や緊急停止時を含む。)において流体圧駆動弁10の各種情報を取得することができる。そこで、以下には、流体圧駆動弁10から取得可能な情報(状態変数)に基づいて流体圧駆動弁10の診断情報を推定することが可能な推論モデル(学習済モデル)を学習する機械学習装置200について、説明を行う。なお、ここでいう機械学習装置200は、それ単独で動作する装置として提供されるもののみならず、任意のプロセッサに以下に説明する動作を実行させるためプログラム、あるいは当該動作を実行させるための1乃至複数の命令を格納した非一時的なコンピュータ読取可能媒体の形式で提供されるものを含む。
上述した一連の構成を備える流体圧駆動弁10においては、上述した複数のセンサ4を備えることにより、例えば定常運転時及び非定常運転時(例えば、開閉操作が行われる試験運転時や緊急停止時を含む。)において流体圧駆動弁10の各種情報を取得することができる。そこで、以下には、流体圧駆動弁10から取得可能な情報(状態変数)に基づいて流体圧駆動弁10の診断情報を推定することが可能な推論モデル(学習済モデル)を学習する機械学習装置200について、説明を行う。なお、ここでいう機械学習装置200は、それ単独で動作する装置として提供されるもののみならず、任意のプロセッサに以下に説明する動作を実行させるためプログラム、あるいは当該動作を実行させるための1乃至複数の命令を格納した非一時的なコンピュータ読取可能媒体の形式で提供されるものを含む。
図4は、本発明の一実施の形態に係る機械学習装置200の概略ブロック図である。本実施の形態に係る機械学習装置200は、図4に示すように、学習用データセット取得ユニット201と、学習用データセット記憶ユニット202と、学習ユニット203と、学習済モデル記憶ユニット204とを備えている。
学習用データセット取得ユニット201は、例えば有線又は無線の通信回線を介して接続された各種機器から学習(トレーニング)用データセットを構成する複数のデータを取得するためのインタフェースユニットである。ここで、学習用データセット取得ユニット201に接続される各種機器としては、例えば外部装置15や流体圧駆動弁10の作業者が使用する作業者用コンピュータPC1等を挙げることができる。なお、図4においては外部装置15とコンピュータPC1とは別々に接続された例を示しているが、外部装置15と作業者用コンピュータPC1とは同一のコンピュータにより構成されていてもよい。この学習用データセット取得ユニット201では、流体圧駆動弁10の複数のセンサ4の検出データを入力データとして例えば外部装置15から取得すると共に、この入力データに関連付けられる流体圧駆動弁10の診断情報を出力データとして、例えば作業者用コンピュータPC1から取得することができる。そして、これら互いに関連付けられる入力データと出力データとが、後述する一の学習用データセットを構成する。
図5は、本発明の一実施の形態に係る機械学習装置200で使用されるデータの構成例(教師あり学習)を示す図である。図6は、本発明の一実施の形態に係る機械学習装置200で使用されるデータの構成例(教師なし学習)を示す図である。なお、図5、図6は、データ処理システム及び推論装置の説明でも適宜参照する。
学習用データセットは、図5、図6に示すように、入力データとして、少なくとも、所定期間における、主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データを、出力データとして、流体圧駆動弁10の診断情報を含んでおり、後述する機械学習において使用するためのデータセットを指すものである。これらの各種データの詳細について以下に一例を説示するが、本発明はこれらに限定されるものではない。
主弁11の弁開度は、主弁11の開閉状態の値を指すものであって、上述した主弁開度センサ42より取得できる。
空気Aの圧力は、流体圧駆動弁10の内部の各部を流れる空気Aの圧力であることが好ましく、具体的には、空気供給源14から電磁弁1に供給される空気Aの電磁弁入力側圧力、及び、電磁弁1から駆動装置12に給排される空気Aの電磁弁出力側圧力を含むことが好ましい。また、空気Aの電磁弁出力側圧力は、所定期間中に電磁弁1から駆動装置12に給排される空気Aの圧力であって、電磁弁1から駆動装置12に空気Aが供給されるときの空気A(給気)の圧力と、駆動装置12から電磁弁1を介して外気に空気Aが排出されるときの空気A(排気)の圧力とを含む。このうち、空気Aの電磁弁入力側圧力は上述した第1の圧力センサ40により取得でき、空気Aの電磁弁出力側圧力は上述した第2の圧力センサ41により取得できる。
ソレノイド部3のソレノイドコイル31へ供給される供給電圧は上述した電圧センサ43により取得できる。
時系列データは、所定期間内の異なる複数の時点でそれぞれ取得された複数のデータで構成されたものであり、例えば、所定のサンプリング周期で取得される。本実施の形態においては、主弁11の弁開度の時系列データと、空気Aの電磁弁出力側圧力の時系列データと、空気Aの電磁弁入力側圧力の時系列データと、ソレノイド部3への供給電圧の時系列データとは、同一のサンプリング周期及び同一の位相(位相差がない状態)で複数の時点で取得されたものとするが、サンプリング周期及び位相の少なくとも一方が異なるものでもよい。
所定期間は、非定常運転時(試験運転時や緊急停止時を含む)に主弁11の開閉操作が行われる期間であり、例えば、流体圧駆動弁10におけるストロークテストを実行したときの実行期間からなる。所定期間は、ストロークテストの実行期間のうちテスト開始からテスト終了までの全期間でもよいし、そのうちの一部の期間でもよい。したがって、所定期間は、例えば、フルストロークテストの全期間(全開状態→全閉状態→全開状態)やパーシャルストロークテストの全期間(全開状態→部分的な閉状態態)でもよいし、フルストロークテストの一部の期間(全開状態→全閉状態、又は、全閉状態→全開状態等)やパーシャルストロークテストの一部の期間(全開状態→部分的な閉状態、部分的な閉状態→全開状態等)でもよいし、これらに限られない。
流体圧駆動弁10の診断情報は、流体圧駆動弁10に対する異常診断が行われたときの、流体圧駆動弁10に何らかの異常が発生しているか否かを示す情報であって、そのデータ形式としては種々のものを採用することができる。異常は、異常診断が行われた時点において異常の発生が判明したような事後的な異常だけなく、異常診断が行われた時点では正常と判断される許容範囲ではあるが、将来的な異常の発生が予見されたような異常の兆候も含む。
例えば、一態様としての診断情報は、図5に示すように、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のすべてが正常であること(異常なし)、若しくは、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のうちのいずれかが異常であること(異常あり)のいずれかを表す情報で構成することができる。この場合、診断情報は、2値に分類され、例えば流体圧駆動弁10が正常な状態であることを示す値を「0」とし、流体圧駆動弁10が異常な状態であることを示す値を「1」として、作業用コンピュータPC1を用いて作業者により入力データに関連付けた形で該当する値が入力されればよい。なお、この場合には具体的な異常の内容に関する情報は必ずしも必要ない。
加えて、上記診断情報のうち、異常であることを表す情報は、図5の破線で示すように、異常の具体的な内容をも含んでいてもよい、異常の具体的な内容としては、例えば、主弁11の動作不良、空気A回路の不良、空気供給源14からの空気Aの供給圧力の異常、ソレノイド部3における供給電圧異常、ソレノイドコイル31の劣化・破損、電気回路の短絡、ソレノイド部3の寿命、流体圧駆動弁10の異常発熱、鉄芯の動作不良等が含まれる。この場合、診断情報は、複数の値(3以上)に分類され、例えば流体圧駆動弁10が正常な状態であることを示す値を「0」とし、流体圧駆動弁10が主弁11の動作不良に該当する異常であることを示す値を「1」、流体圧駆動弁10が空気A回路の不良に該当する異常であることを示す値を「2」、以下同様に各異常の内容に合わせて値を一意に事前に定めた上で、作業用コンピュータPC1を用いて作業者により入力データに関連付けた形で該当する値が入力されればよい。このような診断情報の設定を行うことで、異常の発生の有無のみならず、異常が発生したときの異常の具体的な内容の情報(図6に示す異常1/異常2/…/異常nに対応する。)をも含んだ学習用データセットを準備することができる。上述した一態様としての診断情報は、以下に述べる機械学習においては、教師あり学習(図5参照。)を行う場合に利用されるものである。
また、流体圧駆動弁10の診断情報としては、上述したもの以外にも採用することができる。例えば、他の態様としての診断情報は、図6に示すように、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のすべてが異常でなく正常であることのみを表す情報とすることができる。この場合、診断情報には流体圧駆動弁10が正常であることを表す情報しか含まれないため、必然的にこの診断情報を出力データとして含む学習用データセットは、流体圧駆動弁10が正常である場合の入力データと出力データとで構成されたデータセットのみとなる。したがって、この場合における学習用データセットの出力データは常に同じであるため、学習用データセットは出力データをデータとして有している必要は必ずしもないことは、当業者であれば当然に理解できるであろう。当該他の態様としての診断情報は、以下に述べる機械学習においては、教師なし学習(図6参照。)を行う場合に利用されるものである。
また、他の態様としての診断情報は、図5に示すように、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のすべてが正常であること(異常なし)、若しくは、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のうちのいずれかの余寿命が予め設定された期間(例えば数時間、数日、数ヶ月、又は、数年等)以内の異常であること(異常あり)のいずれかを表す余寿命予測情報で構成することができる。この場合、診断情報は、2値に分類され、例えば流体圧駆動弁10が正常な状態であることを示す値を「0」とし、流体圧駆動弁10の余寿命が予め設定された期間以内の異常な状態であることを示す値を「1」として、作業用コンピュータPC1を用いて作業者により入力データに関連付けた形で該当する値が入力されればよい。なお、この場合には具体的な異常の内容に関する情報は必ずしも必要ない。
加えて、上記診断情報のうち、流体圧駆動弁10の余寿命が予め設定された期間以内の異常であることを表す余寿命予測情報は、図5の破線で示すように、異常の具体的な内容をも含んでいてもよい。異常の具体的な内容としては、例えば、流体圧駆動弁10を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11(ここでは、「余寿命診断の対象」という。)のうちの1又は複数の余寿命のそれぞれが、予め設定された1又は複数の期間(例えば数時間、数日、数ヶ月、又は、数年等のうちの1又は複数の期間であり、ここでは、「余寿命の期間」という。)以内の異常であること(異常あり)のいずれかを表す余寿命予測情報が含まれる。前記余寿命診断の対象又は前記余寿命の期間のいずれかが複数である場合、診断情報は、複数の値(少なくとも3以上)に分類され、流体圧駆動弁10が正常な状態であること、流体圧駆動弁10を構成する前記余寿命診断の対象の余寿命が予め設定された前記余寿命の期間以内のいずれかに該当するという異常であることのいずれかを表す情報で構成する。
例えば流体圧駆動弁10が正常な状態であることを示す値を「0」とし、流体圧駆動弁10の余寿命が第1の期間(例えば6ヶ月以上1年未満)に該当する異常であることを示す値を「1」、流体圧駆動弁10の余寿命が第1の期間よりも短い第2の期間(例えば6ヶ月未満)に該当する異常であることを示す値を「2」、以下同様に各異常の内容に合わせて値を一意に事前に設定した上で、作業用コンピュータPC1を用いて作業者により入力データに関連付けた形で該当する値が入力されればよい。このような診断情報の設定を行うことで、異常の発生の有無のみならず、異常が発生したときの余寿命の具体的な内容の情報(図6に示す異常1/異常2/…/異常nに対応する。)をも含んだ学習用データセットを準備することができる。上述した一態様としての寿命予測情報は、以下に述べる機械学習においては、教師あり学習(図5参照。)を行う場合に利用されるものである。
また、流体圧駆動弁10の寿命予測情報としては、上述したもの以外にも採用することができる。例えば、他の態様としての寿命予測情報は、図6に示すように、流体圧駆動弁1を構成する、ソレノイド部3、スプール部2、駆動装置12、及び、主弁11のすべてが異常でなく正常であることのみを表す情報とすることができる。この場合、寿命予測情報には流体圧駆動弁10が正常であることを表す情報しか含まれないため、必然的にこの寿命予測情報を出力データとして含む学習用データセットは、流体圧駆動弁10が正常である場合の入力データと出力データとで構成されたデータセットのみとなる。したがって、この場合における学習用データセットの出力データは常に同じであるため、学習用データセットは出力データをデータとして有している必要は必ずしもないことは、当業者であれば当然に理解できるであろう。当該他の態様としての寿命予測情報は、以下に述べる機械学習においては、教師なし学習(図6参照。)を行う場合に利用されるものである。
オプションとして、学習用データセット内の入力データには、更に、空気Aの圧力(空気Aの電磁弁入出力側圧力を除く)の時系列データ、ソレノイド部3の制御パラメータの時系列データ、流体圧駆動弁10の温度の時系列データ、流体圧駆動弁10の総稼働時間、流体圧駆動弁10に対して最後に電源が投入されてからの稼働時間、主弁11の作動回数、駆動装置12の作動回数、ソレノイド部3の作動回数、及び、主弁11の開閉時間を選択的に含むことができる。
空気Aの圧力(空気Aの電磁弁入出力側圧力を除く)は、流体圧駆動弁10の内部の各部を流れる空気Aの圧力であることが好ましく、具体的には、空気Aの電磁弁入力側圧力と空気Aの電磁弁出力側圧力との差圧を含むことが好ましい。
ソレノイド部3の制御パラメータは、ソレノイド部3を制御するための各種パラメータ情報であって、具体的にはソレノイドコイル31への通電時の電流値、ソレノイドコイル31の非通電時における抵抗値、ソレノイド部3の稼働時間、及び、ソレノイド部3に生じる磁気の強度の少なくとも1つを含むと好ましい。このうち、ソレノイドコイル31への通電時の電流値、及び、非通電時における抵抗値は上述した電流・抵抗センサ44により取得でき、ソレノイド部3の稼働時間は上述した稼働時間計47により取得でき、ソレノイド部3に生じる磁気の強度は上述した磁気センサ46により取得できる。
流体圧駆動弁10の温度は、流体圧駆動弁10の特に内部温度の値を指すものであって、上述した温度センサ45により取得できる。
流体圧駆動弁10の総稼働時間と流体圧駆動弁10に対して最後に電源が投入されてからの稼働時間とは上述した稼働時間計47により取得でき、主弁11の作動回数と駆動装置12の作動回数とソレノイド部3の作動回数とは上述した作動カウンタ48により取得でき、主弁11の開閉時間は図示しないタイマ等を用いて取得できる。
上述のように入力データの種類を増やすことは、機械学習の後に得られる学習済モデルの推定精度を向上させるのに概ね寄与するものであるが、診断情報との相関度合いが低い入力データを採用することは、却って学習済モデルの推定精度の向上を阻害する可能性がある。したがって、入力データとして採用するデータの数及び種類については、学習済モデルが適用される流体圧駆動弁10の状態等を考慮して適宜選択されるべきものである。
特に、ソレノイド部3の可動鉄心32、駆動装置12を駆動させる電磁弁1のスプール部2、パッキン、及び、弁軸13の異常は、流体圧駆動弁10の駆動特性の変化に影響を与えると想定される。したがって、本実施の形態においては、電圧及び供給圧等の流体圧駆動弁10への供給パラメータに対する主弁11の動作時間又は動作タイミング等を取得し、診断を行うことが好ましい。つまり、電磁弁1の電圧がONとなり、電磁弁1の入出力側の圧力が変化し、弁開度が変化するという一連の流れを追うことで、ソレノイド部3、スプール部2、駆動装置12、主弁11のそれぞれに発生する異常予兆を検出することができる。
学習用データセット記憶ユニット202は、学習用データセット取得ユニット201で取得した学習用データセットを構成するための複数のデータを、関連する入力データと出力データとを関連付けて1つの学習用データセットとし、格納するためのデータベースである。この学習用データセット記憶ユニットを構成するデータベースの具体的な構成については適宜調整することができる。例えば、図4においては、説明の都合上、この学習用データセット記憶ユニット202と後述する学習済モデル記憶ユニット204とを別々の記憶手段として示しているが、これらは単一の記憶媒体(データベース)によって構成することもできる。
学習ユニット203は、学習用データセット記憶ユニット202に記憶された複数の学習用データセットを用いて機械学習を実行することで、複数の学習用データセットに含まれる入力データと出力データとの相関関係を学習した学習済モデルを生成するものである。本実施の形態においては、後に詳しく説示するように、機械学習の具体的な手法としてニューラルネットワークを用いた教師あり学習を採用している。ただし、機械学習の具体的な手法については、これに限定されるものではなく、入出力の相関関係を学習用データセットから学習することができるものであれば他の学習手法を採用することも可能である。例えば、アンサンブル学習(ランダムフォレスト、ブースティング等)を用いることもできる。
学習済モデル記憶ユニット204は、学習ユニット203で生成された学習済モデルを記憶するためのデータベースである。この学習済モデル記憶ユニット24に記憶された学習済モデルは、要求に応じて、インターネットを含む通信回線や記憶媒体を介して実システムへ適用される。実システム(データ処理システム300)に対する学習済モデルの具体的な適用態様については、後に詳述する。
次に、上述のようにして得られた複数の学習用データセットを用いた、学習ユニット203における学習手法について、教師あり学習を中心に説明する。図7は、本発明の一実施の形態に係る機械学習装置において実施される教師あり学習のためのニューラルネットワークモデルの例を示す図である。図7に示すニューラルネットワークモデルにおけるニューラルネットワークは、入力層にあるl個のニューロン(x1~xl)、第1中間層にあるm個のニューロン(y11~y1m)、第2中間層にあるn個のニューロン(y21~y2n)、及び、出力層にあるo個のニューロン(z1~zo)から構成されている。第1中間層及び第2中間層は、隠れ層とも呼ばれており、ニューラルネットワークとしては、第1中間層及び第2中間層の他に、さらに複数の隠れ層を有するものであってもよく、あるいは第1中間層のみを隠れ層とするものであってもよい。なお、図7においては、出力層が複数個(o個)設定されたニューラルネットワークモデルを例示しているが、例えば上述した診断情報が一の値から特定されるものである場合、すなわち、後述する教師データの数が1個(t1のみ)である場合には、出力層のニューロンの数も1個(z1のみ)とすることができる。
また、入力層と第1中間層との間、第1中間層と第2中間層との間、第2中間層と出力層との間には、層間のニューロンを接続するノードが張られており、それぞれのノードには、重みwi(iは自然数)が対応づけられている。
本実施の形態に係るニューラルネットワークモデルにおけるニューラルネットワークは、学習用データセットを用いて、主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データと、空気Aの電磁弁出力側圧力の時系列データと、及び、ソレノイド部3の供給電圧の時系列データと、電磁弁1の診断情報との相関関係を学習する。具体的には、状態変数としての主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データのそれぞれを入力層のニューロンに対応づけ、出力層にあるニューロンの値を、一般的なニューラルネットワークの出力値の算出方法で、つまり、出力側のニューロンの値を、当該ニューロンに接続される入力側のニューロンの値と、出力側のニューロンと入力側のニューロンとを接続するノードに対応づけられた重みwiとの乗算値の数列の和として算出することを、入力層にあるニューロン以外の全てのニューロンに対して行う方法を用いることで、算出する。なお、上記状態変数を入力層のニューロンに入力するに際し、状態変数として取得した情報をどのような形式として入力するかは、生成される学習済モデルの精度等を考慮して適宜設定することができる。具体的には、入力データそれぞれに対応させるニューロンの数を調整するため、あるいはニューロンに対応可能な値に調整するために、特定の入力データに対して前処理を実行することができる。
そして、算出された出力層にあるo個のニューロンz1~zoの値、すなわち本実施の形態においては1以上の診断情報と、学習用データセットの一部を構成する、同じく1以上の診断情報からなる教師データt1~toとを、それぞれ比較して誤差を求め、求められた誤差が小さくなるように、各ノードに対応づけられた重みwiを調整する(バックプロバケーション)ことを反復する。
そして、上述した一連の工程を所定回数反復実施すること、あるいは前記誤差が許容値より小さくなること等の所定の条件が満たされた場合には、学習を終了して、そのニューラルネットワークモデル(のノードのそれぞれに対応づけられた全ての重みwi)を学習済モデルとして学習済モデル記憶ユニット204に記憶する。
(機械学習方法)
上記に関連して、本発明は、機械学習方法を提供する。以下に本発明に係る機械学習方法について、図5(学習フェーズ)、図6(学習フェーズ)、図7、図8を参照して説明を行う。図8は、本発明の一実施の形態に係る機械学習方法の例を示すフローチャートである。以下に示す機械学習方法においては、上述した機械学習装置200に基づいて説明を行うが、前提となる構成については、上記機械学習装置200に限定されない。また、この機械学習方法はコンピュータを用いることで実現されるものであるが、コンピュータとしては種々のものが適用可能であり、例えば外部装置15、作業用コンピュータPC1あるいはマイクロコントローラ70を構成するコンピュータ装置や、ネットワーク上に配されたサーバ装置等を挙げることができる。また、このコンピュータの具体的構成については、例えば、少なくともCPUやGPU等からなる演算装置と、揮発性又は不揮発性メモリ等で構成される記憶装置と、ネットワークや他の機器に通信するための通信装置と、これら各装置を接続するバスとを含むものを採用することができる。
上記に関連して、本発明は、機械学習方法を提供する。以下に本発明に係る機械学習方法について、図5(学習フェーズ)、図6(学習フェーズ)、図7、図8を参照して説明を行う。図8は、本発明の一実施の形態に係る機械学習方法の例を示すフローチャートである。以下に示す機械学習方法においては、上述した機械学習装置200に基づいて説明を行うが、前提となる構成については、上記機械学習装置200に限定されない。また、この機械学習方法はコンピュータを用いることで実現されるものであるが、コンピュータとしては種々のものが適用可能であり、例えば外部装置15、作業用コンピュータPC1あるいはマイクロコントローラ70を構成するコンピュータ装置や、ネットワーク上に配されたサーバ装置等を挙げることができる。また、このコンピュータの具体的構成については、例えば、少なくともCPUやGPU等からなる演算装置と、揮発性又は不揮発性メモリ等で構成される記憶装置と、ネットワークや他の機器に通信するための通信装置と、これら各装置を接続するバスとを含むものを採用することができる。
本実施の形態に係る機械学習方法としての教師あり学習は、機械学習を開始するための事前準備として、先ず、所望の数の学習用データセット(図5参照。)を準備し、準備した複数個の学習用データセットを学習用データセット記憶ユニット202に記憶する(ステップS11)。ここで準備する学習用データセットの数については、最終的に得られる学習済みモデルに求められる推論精度を考慮して設定するとよい。
この教師あり学習に用いられる学習用データセットを準備する方法にはいくつかの方法が採用できる。例えば、ストロークテスト等により主弁11の開閉操作を所定期間に亘り実行した際、特定の流体圧駆動弁10において異常が発生した場合、あるいは作業者が異常の兆候を認識した場合において、そのときの所定期間における流体圧駆動弁10の各種情報を複数のセンサ4等を用いて取得し、これらの情報に関連付ける形で作業者が診断情報を、作業用コンピュータPC1等を用いて特定・入力することで、学習データセットを構成する入力データと出力データ(例えば、この場合の出力データの値は「1」)とを準備する。そしてこのような作業を繰り返すことで所望の数の学習用データセットを準備する方法が採用できる。なお、学習用データセットを準備する方法としてはこのような方法以外にも、例えば積極的に流体圧駆動弁10に異常状態を作ることで学習用データセットを取得する等、種々の方法を採用することができる。ただし、流体圧駆動弁10の各種情報は流体圧駆動弁10夫々に特有の傾向が存在することが多いため、学習用データセットを構成するデータを取得する対象としては、後述する機械学習を経て得られる学習済みモデルを適用する予定の一の流体圧駆動弁10のみから収集することが好ましい。また、学習用データセットとしては、異常が発生した場合の入出力データで構成されたもののみならず、異常が発生していないとき、すなわち流体圧駆動弁10の正常状態における入力データ及び出力データ(例えば、この場合の出力データの値は「0」)で構成された学習用データセットが所定数含まれる。
ステップS11が完了すると、次いで学習ユニット203における学習を開始すべく、学習前のニューラルネットワークモデルを準備する(S12)。ここで準備される学習前のニューラルネットワークモデルは、その構造としては、例えば図7で示した構造を有し、且つ各ノードの重みが初期値に設定されている。そして、学習用データセット記憶ユニット202に記憶された複数個の学習用データセットから、例えばランダムに一の学習用データセットを選択し(ステップS13)、当該一の学習用データセット中の入力データを、準備された学習前のニューラルネットワークモデルの入力層(図7参照。)に入力する(ステップS14)。
ここで、上記ステップS14の結果として生成された出力層(図7参照。)の値は、学習前のニューラルネットワークモデルによって生成されたものであるため、ほとんどの場合望ましい結果とは異なる値、すなわち、正しい診断情報とは異なる情報を示す値である。そこで、次に、ステップS13において取得された一の学習用データセット中の教師データとしての診断情報とステップS13において生成された出力層の値とを用いて、機械学習を実施する(ステップS15)。ここで行う機械学習とは、例えば、教師データを構成する診断情報と出力層の値とを比較し、好ましい出力層が得られるよう、学習前のニューラルネットワークモデル内の各ノードに対応付けられた重みを調整する処理(バックプロパゲーション)であってよい。なお、学習前のニューラルネットワークモデルの出力層に出力される値の数及び形式は、学習対象としての学習用データセット中の教師データと同様の数及び形式である。
ここでいう機械学習について具体的に例示すると、仮に、教師データを構成する診断情報が、正常の場合を「0」とし、異常の場合を「1」としたいずれかの値(2値分類)で構成され、且つステップS13で選択された一の学習用データセット内の出力データの値が「1」である場合、出力層の値は、0~1の所定の値、具体的に言えば、例えば「0.63」といった値が出力される。そこで、ステップS15では、仮に同様の入力データが入力層に入力された場合に学習中のニューラルネットワークモデルによって得られる値が「1」に近づくように、当該学習中のニューラルネットワークモデルの各ノードに対応付けられた重みを調整する。
ステップS15において機械学習が実施されると、さらに機械学習を継続する必要があるか否かを、例えば学習用データセット記憶ユニット202内に記憶された未学習の学習用データセットの残数に基づいて特定する(ステップS16)。そして、機械学習を継続する場合(ステップS16でNo)にはステップS13に戻り、機械学習を終了する場合(ステップS16でYes)には、ステップS17に移る。上記機械学習を継続する場合には、学習中のニューラルネットワークモデルに対してステップS13~S15の工程を未学習の学習用データセットを用いて複数回実施する。最終的に生成される学習済モデルの精度は、一般にこの回数に比例して高くなる。
機械学習を終了する場合(ステップS16でYes)には、各ノードに対応付けられた重みが一連の工程によって調整され生成されたニューラルネットワークを学習済モデルとして、学習済モデル記憶ユニット204に記憶し(ステップS17)、一連の学習プロセスを終了する。ここで記憶された学習済モデルは、後述するデータ処理システム300に適用され使用され得るものである。
上述した機械学習装置の学習プロセス及び機械学習方法においては、1つの学習済モデルを生成するために、1つの(学習前の)ニューラルネットワークモデルに対して複数回の機械学習処理を繰り返し実行することでその精度を向上させ、データ処理システム300に適用するに足る学習済モデルを得るものを説示している。しかし、本発明はこの取得方法に限定されない。例えば、所定回数の機械学習を実施した学習済モデルを一候補として複数個学習済モデル記憶ユニット204に格納しておき、この複数個の学習済モデル群に妥当性判断用のデータセットを入力して出力層(のニューロンの値)を生成し、出力層で特定された値の精度を比較検討して、データ処理システム300に適用する最良の学習済モデルを1つ選定するようにしてもよい。なお、妥当性判断用データセットは、学習に用いた学習用データセットと同様のデータセットで構成され、且つ学習に用いられていないものであればよい。
以上説明した通り、本実施の形態に係る機械学習装置及び機械学習方法を適用することにより、流体圧駆動弁10の適所に設けられた複数のセンサ4により取得される各種データから、異常(事後的な異常及び異常の予兆を含む。)が発生するか否かを示す診断情報を的確に導出することが可能な学習済モデルを得ることができる。
上記機械学習装置200の学習方法及び機械学習方法では、「教師あり学習」について説明したが、学習済みモデルを生成する方法としては、畳み込みニューラルネットワーク(CNN)等のその他の公知の「教師あり学習」の手法を用いることでもよいし、また、出力データを構成する診断情報として、上述した他の態様に係る診断情報、すなわち流体圧駆動弁10が異常でなく正常であることのみを表す情報を含む学習用データセット(図6参照。)を用いた「教師なし学習」を用いてもよい。「教師なし学習」を用いることで、入力データに対応付けられた出力データにおける診断情報が、流体圧駆動弁10の正常状態の情報しか入手できない場合であっても、図6の「学習フェーズ」で示すように、入力データと出力データとの正常状態の特徴を表す相関関係を学習することにより、学習済みモデルを得ることができる。この場合、後述するデータ処理システム300における推論時には、正常状態の特徴に所定量合致しないと判断した入力データを正常状態でない、つまり、異常状態であるとみなすことで、診断情報の推論が実現できる。この「教師なし学習」の具体的な手法としては、例えば、図6に簡略的に示すオートエンコーダ等を用いた公知の手法を用いることができ、詳細な説明はここでは省略する。
(データ処理システム)
次に、図9を参照して、上述した機械学習装置200及び機械学習方法によって生成された学習済モデルの適用例を説示する。図9は、本発明の一実施の形態に係るデータ処理システムを示す概略ブロック図である。
次に、図9を参照して、上述した機械学習装置200及び機械学習方法によって生成された学習済モデルの適用例を説示する。図9は、本発明の一実施の形態に係るデータ処理システムを示す概略ブロック図である。
本実施の形態に係るデータ処理システム300としては、上述した流体圧駆動弁10のマイクロコントローラ70内に搭載された態様を例示する。なお、このデータ処理システム300については、その少なくとも一部を他の機器、例えば外部装置15や流体圧駆動弁10に接続された他の装置に適用することも可能である。
このデータ処理システム300は、入力データ取得ユニット301と、推論ユニット302と、学習済モデル記憶ユニット303と、報知ユニット304とを少なくとも含むものである。
入力データ取得ユニット301は、流体圧駆動弁10が有する複数のセンサ4に接続されて各センサ4が出力する各種データを取得するためのインタフェースユニットである。この入力データ取得ユニット301は、少なくとも、主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データを含む入力データを取得する。なお、図9に示す例においては、推論に利用可能な入力データが取得できるように、主弁開度センサ42及び第2の圧力センサ41を含む全てのセンサ4に接続されているが、入力データ取得ユニット301にどのセンサ4を接続するかについては、後述する推論ユニット302において用いられる学習済モデル等に合わせて適宜選択することができる。また、推論ユニット302の推論結果は、図示しない記憶手段に記憶することが好ましく、記憶された過去の推論結果は、例えば学習済モデル記憶ユニット303内の学習済モデルの推論精度の更なる向上のための、オンライン学習に用いられる学習用データセットとして利用することができる。
推論ユニット302は、入力データ取得ユニット301により取得された流体圧駆動弁10の各種データから、電磁弁1に異常が発生しているか否かを推論するためのものである。この推論には、例えば上述した機械学習装置200及び機械学習方法を用いて学習が行われた学習済モデルが用いられ、この学習済モデルは任意の記憶媒体で構成された学習済モデル記憶ユニット303内に格納されている。なお、この推論ユニット302は、学習済モデルを用いた推論処理を行う機能のみならず、推論処理の前処理として、入力データ取得ユニット301により取得された入力データを所望の形式等に調整して学習済モデルに入力する前処理機能や、推論処理の後処理として、学習済モデルが出力した出力値に、例えば所定の閾値を適用することで異常(事後的な異常及び異常の予兆を含む。)の発生の有無(異常なし(正常)又は異常あり(異常))を最終的に判断する後処理機能をも含んでいる。
学習済モデル記憶ユニット303は、上述した通り、推論ユニット302において用いられる学習済モデルを格納するための記憶媒体である。この学習済モデル記憶ユニット303内に格納される学習済モデルの数は1つに限定されない。例えば入力されるデータの数が異なる、あるいはその学習手法の異なる(例えば、上述した機械学習装置200等で実施される教師あり学習と教師なし学習)複数個の学習済モデルが格納され、選択的に利用可能とすることができる。
報知ユニット304は、推論ユニット302の推論結果を作業者等に報知するためのものである。具体的な報知の手段は種々採用でき、例えば推論結果を通信部8を介して外部装置15に送信し、外部装置15のGUIに表示等を行ったり、流体圧駆動弁10に予め発光部材やスピーカ等を設け、それらを動作させたりすることで、作業者等に異常の発生の有無を知らせることができる。
以上の構成を備えたデータ処理システムによるデータ処理プロセスについて、図5(推論フェーズ)、図6(推論フェーズ)、図10を参照して以下に説明を行う。図10は、本発明の一実施の形態に係るデータ処理システム300によるデータ処理工程の例を示すフローチャートである。
流体圧駆動弁10において、例えば、ストロークテスト等により主弁11の開閉操作が所定期間に亘り実行され、それに伴って流体圧駆動弁10の診断が開始されると、入力データ取得ユニット301が、複数のセンサ4により取得された流体圧駆動弁10の各部の状態を示す各種データを取得する(ステップS21)。入力データ取得ユニット301が、所望の入力データ(所定期間における主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データ(図5、図6参照。))を取得できた時点で、当該入力データに基づく推論ユニット302による推論が実施される(ステップS22)。
具体的には、推論ユニット302は、入力データに前処理を施して学習モデル済モデルに入力するとともに、その学習モデル済モデルからの出力値に対して後処理を施すことにより、推論結果である異常(事後的な異常及び異常の予兆を含む。)の発生の有無を判断する。教師あり学習(図5の「推論フェーズ」参照。)における後処理では、推論ユニット302は、学習モデル済モデルの出力値(2値分類であれば、0~1の間の数)と所定の閾値とを比較し、例えば、学習モデル済モデルの出力値が、所定の閾値以上であれば「異常あり(異常)」、所定の閾値未満であれば「異常なし(正常)」と判断することで、その判断結果を推論結果として出力する。また、教師なし学習(図6の「推論フェーズ」参照。)における後処理では、推論ユニット302は、学習モデル済モデルの出力値(特徴量)と、入力データに基づく特徴量との差(距離)を求め、その差(距離)が所定の閾値以上であれば「異常あり(異常)」、所定の閾値未満であれば「異常なし(正常)」と判断することで、その判断結果を推論結果として出力する。
そして、ステップS22において、推論ユニット302による推論が実施された結果、その推論結果が「異常なし(正常)」を示す場合(ステップS23でNo)には、引き続き一連の推論を継続するようステップS21に戻る。一方、その推論結果が、図5、図6に示すように、「異常あり(異常)」を示す場合(ステップS23でYes)には、報知ユニット304により推論結果が「異常あり(異常)」であること、すなわち、流体圧駆動弁10に異常(事後的な異常及び異常の予兆を含む。)が発生したことを作業者等に報知する(ステップS24)。そして、ステップS24において異常の発生を報知した後は、引き続き一連の推論を継続するようステップS21に戻る。なお、流体圧駆動弁10の使用用途や検出された異常の内容によっては、異常が検出された段階で流体圧駆動弁10を停止するといった対応を実行するようにしてもよい。
(推論装置)
本発明は、上述したデータ処理システム300の態様によるもののみならず、推論を行うための推論装置の態様で提供することもできる。その場合、推論装置としては、メモリと、少なくとも1つのプロセッサとを含み、このうちのプロセッサが、一連の処理を実行するものとすることができる。当該一連の処理とは、流体圧駆動弁10において、例えば、ストロークテスト等により主弁11の開閉操作が所定期間に亘り実行された際の、主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データを含む入力データを取得する処理と、当該入力データが入力された際に流体圧駆動弁10における診断情報を推論する処理と、を含む。本発明を上述した推論装置の態様で提供することで、データ処理システム300を実装する場合に比して簡単に種々の流体圧駆動弁10への適用が可能となる。このとき、推論装置が診断情報を推論する処理を行うに際しては、ここまで本書において説明した、本発明における、機械学習装置及び機械学習方法によって学習された学習済みモデルを用い、データ処理システムの推論ユニット302が実施する推論手法を適用してもよいことは、当業者にとって当然に理解され得るものである。
本発明は、上述したデータ処理システム300の態様によるもののみならず、推論を行うための推論装置の態様で提供することもできる。その場合、推論装置としては、メモリと、少なくとも1つのプロセッサとを含み、このうちのプロセッサが、一連の処理を実行するものとすることができる。当該一連の処理とは、流体圧駆動弁10において、例えば、ストロークテスト等により主弁11の開閉操作が所定期間に亘り実行された際の、主弁11の弁開度の時系列データ、空気Aの電磁弁入力側圧力の時系列データ、空気Aの電磁弁出力側圧力の時系列データ、及び、ソレノイド部3の供給電圧の時系列データを含む入力データを取得する処理と、当該入力データが入力された際に流体圧駆動弁10における診断情報を推論する処理と、を含む。本発明を上述した推論装置の態様で提供することで、データ処理システム300を実装する場合に比して簡単に種々の流体圧駆動弁10への適用が可能となる。このとき、推論装置が診断情報を推論する処理を行うに際しては、ここまで本書において説明した、本発明における、機械学習装置及び機械学習方法によって学習された学習済みモデルを用い、データ処理システムの推論ユニット302が実施する推論手法を適用してもよいことは、当業者にとって当然に理解され得るものである。
本発明は上述した実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本発明の技術思想に含まれるものである。
1…電磁弁、3…ソレノイド部、4…センサ、10…流体圧駆動弁、11…主弁、12…(流体圧式)駆動装置、14…空気供給源、15…外部装置、26…入力側流路、27…出力側流路、28…排気流路、30…ソレノイドケース、31…ソレノイドコイル、32…可動鉄芯、40…第1の圧力センサ、41…第2の圧力センサ、42…主弁開度センサ、43…電圧センサ、44…電流・抵抗センサ、45…温度センサ、46…磁気センサ、47…稼働時間計(タイマ)、48…作動カウンタ(カウンタ)、70…マイクロコントローラ、100…配管、200…機械学習装置、201…学習用データセット取得ユニット、202…学習用データセット記憶ユニット、203…学習ユニット、204…学習済モデル記憶ユニット、300…データ処理システム、301…入力データ取得ユニット、302…推論ユニット、303…学習済モデル記憶ユニット、304…報知ユニット、A…空気(駆動流体)、PC1…作業用コンピュータ
Claims (10)
- 主弁と、前記主弁を駆動する駆動装置と、前記駆動装置に対して駆動流体の給排を制御するソレノイド部を有する電磁弁と、を少なくとも備える流体圧駆動弁に適用される機械学習装置であって、
所定期間における前記主弁の弁開度の時系列データ、前記所定期間中に前記電磁弁に対して供給される前記駆動流体の電磁弁入力側圧力の時系列データ、前記所定期間中に前記電磁弁から前記駆動装置に給排される前記駆動流体の電磁弁出力側圧力の時系列データ、及び、前記所定期間におけるソレノイド部の供給電圧の時系列データを含む入力データと、前記入力データに対応付けられた前記流体圧駆動弁の診断情報からなる出力データとで構成される学習用データセットを複数組記憶する学習用データセット記憶ユニットと;
前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニットと;
前記学習ユニットによって学習された前記学習モデルを記憶する学習済モデル記憶ユニットと;を備える、
機械学習装置。 - 前記電磁弁は、スプール部をさらに有し、
前記診断情報は、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、及び、前記主弁のうちのすべてが正常であること、
若しくは、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、又は、前記主弁のうちのいずれかが異常であることのいずれかを表す情報である、
請求項1に記載の機械学習装置。 - 前記電磁弁は、スプール部をさらに有し、
前記診断情報は、前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、及び、前記主弁のすべてが異常でなく正常であることのみを表す情報である、
請求項1に記載の機械学習装置。 - 前記所定期間は、前記流体圧駆動弁におけるストロークテストの実行期間からなる、
請求項1乃至請求項3のいずれか一項に記載の機械学習装置。 - 前記ストロークテストは、パーシャルストロークテスト及びフルストロークテストのうちいずれか1つである、
請求項4に記載の機械学習装置。 - 前記電磁弁は、スプール部をさらに有し、
前記診断情報は、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、及び、前記主弁のすべてが正常であること、
若しくは、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、又は、前記主弁のうちのいずれかが予め設定された余寿命の期間以内の異常であること、
のいずれかを表す余寿命予測情報で構成する
請求項1乃至請求項5のいずれか一項に記載の機械学習装置。 - 前記電磁弁は、スプール部をさらに有し、
前記診断情報は、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、及び、前記主弁のすべてが正常な状態であること、
若しくは、
前記流体圧駆動弁を構成する、前記ソレノイド部、前記スプール部、前記駆動装置、又は、前記主弁のうちの1又は複数の余寿命のそれぞれが予め設定された複数の余寿命の期間以内のいずれかに該当するという異常であること、
のいずれかを表す余寿命予測情報で構成する
請求項1乃至請求項5のいずれか一項に記載の機械学習装置。 - 主弁と、前記主弁を駆動する駆動装置と、前記駆動装置に対して駆動流体の給排を制御する電磁弁と、を少なくとも備える流体圧駆動弁に用いられるデータ処理システムであって、
所定期間における前記主弁の弁開度の時系列データ、前記所定期間中に前記電磁弁に対して供給される前記駆動流体の電磁弁入力側圧力の時系列データ、前記所定期間中に前記電磁弁から前記駆動装置に給排される前記駆動流体の電磁弁出力側圧力の時系列データ、及び、前記所定期間におけるソレノイド部の供給電圧の時系列データを含む入力データを取得する入力データ取得ユニットと;
前記入力データ取得ユニットにより取得された前記入力データを、請求項1乃至5のいずれか一項に記載の機械学習装置によって生成された学習済モデルに入力し、前記流体圧駆動弁の診断情報を推論する推論ユニットと;を備える、
データ処理システム。 - 主弁と、前記主弁を駆動する駆動装置と、前記駆動装置に対して駆動流体の給排を制御する電磁弁と、を少なくとも備える流体圧駆動弁に用いられる推論装置であって、
前記推論装置は、メモリと、少なくとも1つのプロセッサとを備え、
前記少なくとも1つのプロセッサは、
所定期間における前記主弁の弁開度の時系列データ、前記所定期間中に前記電磁弁に対して供給される前記駆動流体の電磁弁入力側圧力の時系列データ、前記所定期間中に前記電磁弁から前記駆動装置に給排される前記駆動流体の電磁弁出力側圧力の時系列データ、及び、前記所定期間におけるソレノイド部の供給電圧の時系列データを含む入力データを取得する処理と;
前記入力データが入力されると、前記流体圧駆動弁の診断情報を推論する処理と;を実行するように構成される、
推論装置。 - 主弁と、前記主弁を駆動する駆動装置と、前記駆動装置に対して駆動流体の給排を制御する電磁弁と、を少なくとも備える流体圧駆動弁に適用される、コンピュータを用いた機械学習方法であって、
所定期間における前記主弁の弁開度の時系列データ、前記所定期間中に前記電磁弁に対して供給される前記駆動流体の電磁弁入力側圧力の時系列データ、前記所定期間中に前記電磁弁から前記駆動装置に給排される前記駆動流体の電磁弁出力側圧力の時系列データ、及び、前記所定期間におけるソレノイド部の供給電圧の時系列データを含む入力データと、前記入力データに対応付けられた前記流体圧駆動弁の診断情報からなる出力データとで構成される学習用データセットを複数組記憶するステップと;
前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習するステップと;
前記学習モデルを記憶するステップと;を備える、
機械学習方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020059129A JP6783488B1 (ja) | 2020-03-27 | 2020-03-27 | 機械学習装置、データ処理システム、推論装置及び機械学習方法 |
JP2020-059129 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192983A1 true WO2021192983A1 (ja) | 2021-09-30 |
Family
ID=73043578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009120 WO2021192983A1 (ja) | 2020-03-27 | 2021-03-09 | 機械学習装置、データ処理システム、推論装置及び機械学習方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6783488B1 (ja) |
WO (1) | WO2021192983A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7058447B1 (ja) | 2020-11-30 | 2022-04-22 | 金子産業株式会社 | 機械学習装置、データ処理システム、推論装置及び機械学習方法 |
CN113504741A (zh) * | 2021-05-28 | 2021-10-15 | 捷佳润科技集团股份有限公司 | 一种无线远程控制终端的快速响应控制阀门的系统及方法 |
CN117425792A (zh) * | 2021-06-10 | 2024-01-19 | 株式会社开滋 | 信息处理系统、发送系统、信息处理方法以及阀系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413935A (ja) * | 1990-05-08 | 1992-01-17 | Mitsubishi Kasei Corp | 弁の作動状態の診断方法 |
JPH0861551A (ja) * | 1994-08-17 | 1996-03-08 | Osaka Gas Co Ltd | 緊急遮断弁用アクチュエータ |
WO2019235599A1 (ja) * | 2018-06-06 | 2019-12-12 | 株式会社キッツ | バルブの状態把握システム |
-
2020
- 2020-03-27 JP JP2020059129A patent/JP6783488B1/ja active Active
-
2021
- 2021-03-09 WO PCT/JP2021/009120 patent/WO2021192983A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413935A (ja) * | 1990-05-08 | 1992-01-17 | Mitsubishi Kasei Corp | 弁の作動状態の診断方法 |
JPH0861551A (ja) * | 1994-08-17 | 1996-03-08 | Osaka Gas Co Ltd | 緊急遮断弁用アクチュエータ |
WO2019235599A1 (ja) * | 2018-06-06 | 2019-12-12 | 株式会社キッツ | バルブの状態把握システム |
Also Published As
Publication number | Publication date |
---|---|
JP6783488B1 (ja) | 2020-11-11 |
JP2021157663A (ja) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021192983A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021187213A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021192984A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021220766A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021220767A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2023135892A1 (ja) | データ処理システム、データ処理方法 | |
WO2021192982A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021187212A1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
JP6779457B1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
JP7058447B1 (ja) | 機械学習装置、データ処理システム、推論装置及び機械学習方法 | |
WO2021182116A1 (ja) | 電磁弁 | |
WO2023053608A1 (ja) | データベース生成装置、状態判定装置、データベース生成方法及び状態判定方法 | |
JP7536290B2 (ja) | 性状判定装置、データベース生成装置、性状判定方法及びデータベース生成方法 | |
WO2021182115A1 (ja) | 電磁弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775572 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775572 Country of ref document: EP Kind code of ref document: A1 |